-
Notifications
You must be signed in to change notification settings - Fork 5
/
65F35-PascalMatrix.tex
57 lines (50 loc) · 1.49 KB
/
65F35-PascalMatrix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{PascalMatrix}
\pmcreated{2013-03-22 13:44:54}
\pmmodified{2013-03-22 13:44:54}
\pmowner{bbukh}{348}
\pmmodifier{bbukh}{348}
\pmtitle{Pascal matrix}
\pmrecord{6}{34445}
\pmprivacy{1}
\pmauthor{bbukh}{348}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{65F35}
\pmclassification{msc}{15A12}
\pmclassification{msc}{15A09}
\pmclassification{msc}{15A57}
\endmetadata
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
%%%\usepackage{xypic}
\makeatletter
\@ifundefined{bibname}{}{\renewcommand{\bibname}{References}}
\makeatother
\begin{document}
{\bf Definition} The \emph{Pascal matrix} $P$ of order $n$ is the real
square $n\times n$ matrix whose entries are \cite{higham}
$$ P_{ij} = { i+j-2 \choose j-1}. $$
For $n=5$,
$$P= \begin{pmatrix}
1 & 1 & 1 & 1 & 1\\
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 6 & 10 & 15\\
1 & 4 & 10 & 20 & 35 \\
1 & 5 & 15 & 35 & 70
\end{pmatrix}, $$
so we see that the Pascal matrix contains the Pascal triangle on its antidiagonals.
Pascal matrices are ill-conditioned. However, the inverse of the
$n\times n$ Pascal matrix is known explicitly and given in \cite{higham}.
The characteristic polynomial of a Pascal triangle is a reciprocal
polynomial \cite{higham}.
\begin{thebibliography}{9}
\bibitem{higham} N.J. Higham, \emph{Accuracy and Stability of Numerical Algorithms},
2nd ed., SIAM, 2002.
\end{thebibliography}
%%%%%
%%%%%
\end{document}