-
Notifications
You must be signed in to change notification settings - Fork 2
/
81-00-CategoryOfMolecularSets.tex
267 lines (230 loc) · 9.69 KB
/
81-00-CategoryOfMolecularSets.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CategoryOfMolecularSets}
\pmcreated{2013-03-22 18:16:02}
\pmmodified{2013-03-22 18:16:02}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{category of molecular sets}
\pmrecord{38}{40868}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Topic}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81-00}
\pmclassification{msc}{18E05}
\pmclassification{msc}{92B05}
\pmclassification{msc}{18D35}
\pmsynonym{class of molecular set variables and their transformations}{CategoryOfMolecularSets}
\pmsynonym{mcv-observable}{CategoryOfMolecularSets}
%\pmkeywords{molecular set theory}
%\pmkeywords{molecular set variables and their transformations}
\pmrelated{MolecularSetVariable}
\pmrelated{MolecularSetTheory}
\pmrelated{SupercategoriesOfComplexSystems}
\pmrelated{ComplexSystemsBiology}
\pmrelated{SupercategoryOfVariableMolecularSets}
\pmrelated{IndexOfCategories}
\pmrelated{CategoryOfQuantumAutomata}
\pmdefines{category of molecular sets}
\pmdefines{molecular set}
\pmdefines{molecular set mapping}
\pmdefines{states of molecular sets}
\pmdefines{uni-molecular chemical reaction}
\pmdefines{chemical transformation}
\pmdefines{molecular set variable}
\pmdefines{molecular transformation}
\pmdefines{$m.c.v.$ observable}
\pmdefines{mcv-observable}
\pmdefines{states of molecular se}
\endmetadata
% this is the default PlanetMath preamble.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
%%\usepackage{xypic}
\usepackage[mathscr]{eucal}
\setlength{\textwidth}{6.5in}
%\setlength{\textwidth}{16cm}
\setlength{\textheight}{9.0in}
%\setlength{\textheight}{24cm}
\hoffset=-.75in %%ps format
%\hoffset=-1.0in %%hp format
\voffset=-.4in
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\subsection{Molecular sets as representations of chemical reactions}
A \emph{uni-molecular chemical reaction} is defined by the natural transformations
$$\eta: h^A\longrightarrow h^B,$$ specified in the following commutative diagram representing molecular sets and their quantum transformations:
\begin{equation}
\def\labelstyle{\textstyle}
\xymatrix@M=0.1pc @=4pc{h^A(A) = Hom(A,A) \ar[r]^{\eta_{A}}
\ar[d]_{h^A(t)} & h^B (A) = Hom(B,A)\ar[d]^{h^B (t)} \\ {h^A (B) =
Hom(A,B)} \ar[r]_{\eta_{B}} & {h^B (B) = Hom(B,B)}},
\end{equation}
with the \emph{states of molecular sets} $A_u = a_1, \ldots, a_n$ and
$B_u = b_1, \ldots b_n$ being defined as the endomorphism sets $Hom(A,A)$ and $Hom(B,B)$, respectively. In general, \emph{molecular sets} $M_S$ are defined as finite sets whose elements are molecules; the \emph{molecules} are mathematically defined in terms of their molecular observables as specified next. In order to define molecular observables one needs to define first the concept of a molecular class variable or $m.c.v$.
A \emph{molecular class variables} is defined as a family of molecular sets $[M_S]_{i \in I}$,
with $I$ being either an indexing set, or a proper class, that defines the variation range of the $m.c.v$}.
Most physical, chemical or biochemical applications require that $I$ is restricted to a finite set, (that is, without any sub-classes). A morphism, or molecular mapping, $M_t: M_S \to M_S$ of molecular sets, with $t \in T$ being real time values, is defined as a time-dependent mapping or function $M_S (t)$ also called a \emph{molecular transformation}, $M_t$.
An \emph{$m.c.v.$ observable} of $B$, characterizing the products of chemical type ``B'' of a chemical reaction is defined as a morphism:
$$\gamma : Hom(B,B) \longrightarrow \Re ,$$
where $\Re$ is the set or field of real numbers. This mcv-observable is subject
to the following commutativity conditions:
\begin{equation}
\def\labelstyle{\textstyle}
\xymatrix@M=0.1pc @=4pc{Hom(A,A) \ar[r]^{f} \ar[d]_{e} & Hom(B,B)\ar[d]^{\gamma} \\ {Hom(A,A)} \ar[r]_{\delta} & {R},}
\end{equation}~
with $c: A^*_u \longrightarrow B^*_u$, and $A^*_u$, $B^*_u$ being, respectively,
specially prepared \emph{fields of states} of the molecular sets $A_u$, and $B_u$ within a measurement uncertainty range, $\Delta$, which is determined by Heisenberg's uncertainty relation, or the commutator of the observable operators involved, such as $[A^*, B^*]$, associated with the observable $A$ of molecular set $A_u$, and respectively, with the obssevable $B$ of molecular set $B_u$, in the case of a molecular set $A_u$ interacting with molecular set $B_u$.
With these concepts and preliminary data one can now define the category of molecular sets and their transformations
as follows.
\subsection{Category of molecular sets and their transformations}
\begin{definition}
The \emph{category of molecular sets} is defined as the category $C_M$ whose objects are molecular sets $M_S$ and whose morphisms are molecular transformations $M_t$.
\end{definition}
\begin{remark}
This is a mathematical representation of chemical reaction systems in terms of molecular sets that vary with time
(or $msv$'s), and their transformations as a result of diffusion, collisions, and chemical reactions.
\end{remark}
\begin{thebibliography}{9}
\bibitem{BAF60}
Bartholomay, A. F.: 1960. Molecular Set Theory. A mathematical representation for chemical reaction mechanisms. \emph{Bull. Math. Biophys.}, \textbf{22}: 285-307.
\bibitem{BAF65}
Bartholomay, A. F.: 1965. Molecular Set Theory: II. An aspect of biomathematical theory of sets., \emph{Bull. Math. Biophys.} \textbf{27}: 235-251.
\bibitem{BAF71}
Bartholomay, A.: 1971. Molecular Set Theory: III. The Wide-Sense Kinetics of Molecular Sets ., \emph{Bulletin of Mathematical Biophysics}, \textbf{33}: 355-372.
\bibitem{ICB2}
Baianu, I. C.: 1983, Natural Transformation Models in Molecular
Biology., in \emph{Proceedings of the SIAM Natl. Meet}., Denver,
CO.; Eprint at cogprints.org with No. 3675.
\bibitem{ICB2}
Baianu, I.C.: 1984, A Molecular-Set-Variable Model of Structural
and Regulatory Activities in Metabolic and Genetic Networks
\emph{FASEB Proceedings} \textbf{43}, 917.
\end{thebibliography}
%%%%%
%%%%%
\end{document}