-
Notifications
You must be signed in to change notification settings - Fork 2
/
81-00-ClosedMonoidalCategory.tex
71 lines (62 loc) · 2.74 KB
/
81-00-ClosedMonoidalCategory.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ClosedMonoidalCategory}
\pmcreated{2013-03-22 18:30:25}
\pmmodified{2013-03-22 18:30:25}
\pmowner{CWoo}{3771}
\pmmodifier{CWoo}{3771}
\pmtitle{closed monoidal category}
\pmrecord{6}{41191}
\pmprivacy{1}
\pmauthor{CWoo}{3771}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81-00}
\pmclassification{msc}{18-00}
\pmclassification{msc}{18D10}
\pmrelated{IndexOfCategories}
\pmdefines{left closed}
\pmdefines{right closed}
\pmdefines{biclosed}
\pmdefines{symmetric monoidal closed}
\endmetadata
\usepackage{amssymb,amscd}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{mathrsfs}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%\usepackage{xypic}
\usepackage{pst-plot}
% define commands here
\newcommand*{\abs}[1]{\left\lvert #1\right\rvert}
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}
\newtheorem{ex}{Example}
\newcommand{\real}{\mathbb{R}}
\newcommand{\pdiff}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\mpdiff}[3]{\frac{\partial^#1 #2}{\partial #3^#1}}
\begin{document}
\PMlinkescapeword{closed}
Let $\mathcal{C}$ be a monoidal category, with tensor product $\otimes$. Then we say that
\begin{itemize}
\item $\mathcal{C}$ is \emph{closed}, or \emph{left closed}, if the functor $A\otimes -$ on $\mathcal{C}$ has a right adjoint $[A,-]_l$
\item $\mathcal{C}$ is \emph{right closed} if the functor $-\otimes B$ on $\mathcal{C}$ has a right adjoint $[B,-]_r$
\item $\mathcal{C}$ is \emph{biclosed} if it is both left closed and right closed.
\end{itemize}
A biclosed symmetric monoidal category is also known as a \emph{symmetric monoidal closed category}. In a symmetric monoidal closed category, $A\otimes B\cong B\otimes A$, so $[A, B]_l \cong [A,B]_r$. In this case, we denote the right adjoint by $[A,B]$.
Some examples:
\begin{itemize}
\item Any cartesian closed category is symmetric monoidal closed.
\item In particular, as a category with finite products is symmetric monoidal, it is biclosed iff it is cartesian closed.
\item An example of a biclosed monoidal category that is not symmetric monoidal is the category of bimodules over a non-commutative ring. The right adjoint of $A\times -$ is $[A,-]_l$, where $[A,B]_l$ is the collection of all left $R$-linear bimodule homomorphisms from $A$ to $B$, while the right adjoint of $-\times A$ is $[A,-]_r$, where $[A,B]_r$ is the collection of all right $R$-linear bimodule homomorphisms from $A$ to $B$. Unless $R$ is commutative, $[A,B]_l \ne [A,B]_r$ in general.
\end{itemize}
more to come...
%%%%%
%%%%%
\end{document}