-
Notifications
You must be signed in to change notification settings - Fork 2
/
81-00-ETASInterpretation.tex
284 lines (250 loc) · 15.9 KB
/
81-00-ETASInterpretation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ETASInterpretation}
\pmcreated{2013-03-22 18:16:04}
\pmmodified{2013-03-22 18:16:04}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{ETAS interpretation}
\pmrecord{80}{40870}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Topic}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81-00}
\pmclassification{msc}{92B05}
\pmclassification{msc}{03G30}
\pmclassification{msc}{18-00}
\pmsynonym{elementary theory of abstract supercategories}{ETASInterpretation}
\pmsynonym{ETAS}{ETASInterpretation}
%\pmkeywords{elementary theory of abstract supercategories}
%\pmkeywords{axiomatic theory of abstract supercategories}
\pmrelated{Category}
\pmrelated{CategoryTheory}
\pmrelated{ETAS}
\pmrelated{CategoricalOntologyABibliographyOfCategoryTheory}
\pmrelated{AlgebraicComputation}
\pmrelated{CategoricalOntology}
\pmrelated{QuantumLogic}
\pmrelated{CategoryOfQuantumAutomata}
\pmrelated{FunctorCategory2}
\pmrelated{QuantumAutomataAndQuantumComputation2}
\pmrelated{SupercategoryOfVariableMolecularSets}
\pmrelated{ETA}
\pmdefines{axioms of metacategories and supercategories}
\pmdefines{examples of supercategories and metacategories}
\pmdefines{ETAS interpretation}
\pmdefines{ETAS axiom}
\pmdefines{ETAS}
\endmetadata
% this is the default PlanetMath preamble. as your
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
%%\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bS}{\mathbb{S}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\subsection{Introduction}
\emph{ETAS} is the acronym for the {\em ``Elementary Theory of Abstract Supercategories''}
as defined by the {\em axioms of metacategories and supercategories}.
The following are simple examples of supercategories that are essentially interpretations
of the eight {\em ETAC} axioms reported by W. F. Lawvere (1968), with one or several \emph{ETAS} axioms added as indicated in the examples listed. A family, or class, of a specific level (or 'order') $(n+1)$ of a
supercategory $\mathbb{S}_{n+1}$ (with $n$ being an integer) is defined by the specific ETAS axioms added to the eight ETAC axioms; thus, for $n=0$, there are no additional ETAS axioms and the supercategory $\mathbb{S}_1$ is the limiting, lower type, currently defined as a category with only one composition law and any standard interpretation of the eight ETAC axioms. Thus, the first level of 'proper' supercategory $\mathbb{S}_2$ is defined as an interpretation of ETAS axioms \textbf{S1} and \textbf{S2}; for $n=3$, the supercategory $\mathbb{S}_4$ is defined as an interpretation of the eight ETAC axioms plus the additional three ETAS axioms: \textbf{S2}, \textbf{S3} and \textbf{S4}. Any (proper) recursive formula or 'function' can be utilized to generate supercategories at levels $n$ higher than $\mathbb{S}_4$ by adding composition or consistency laws to the ETAS axioms \textbf{S1} to \textbf{S4}, thus allowing a digital computer algorithm to generate any finite level supercategory $\mathbb{S}_n$ syntax, to which one needs then to add semantic interpretations (which are complementary to the computer generated syntax).
\subsection{Simple examples of ETAS interpretation in supercategories}
\begin{enumerate}
\item {\em Functor categories} subject only to the eight {\em ETAC} axioms;
\item {\em Functor supercategories}, $\mathsf{\F_S}: \mathcal{A} \to \mathcal{B}$,
with both $\mathcal{A}$ and $\mathcal{B}$ being 'large' categories (i.e.,
$\mathcal{A}$ does not need to be small as in the case of {\em functor categories});
\item A \emph{topological groupoid category} is an example of a particular supercategory
with all invertible morphisms endowed with both a topological and an agebraic
structure, still subject to all ETAC axioms;
\item \emph{Supergroupoids} (also definable as crossed complexes of groupoids), and \emph{supergroups} --also definable as crossed modules of groups-- seem to be of great interest to mathematicians currently involved in `categorified' mathematical physics or physical mathematics.)
\item A \emph{double groupoid category} is a `simple' example of a higher dimensional supercategory which is useful in higher dimensional homotopy theory, especially in non-Abelian algebraic topology;
this concept is subject to all eight ETAC axioms, plus additional axioms related to the definition of the double groupoid (generally non-Abelian) structures;
\item
An example of `standard' supercategories was recently introduced in mathematical (or more specifically `categorified') physics, on the web's \PMlinkexternal{n-Category caf\'e's web site}{http://golem.ph.utexas.edu/category/2007/07/supercategories.html} under \textit{``Supercategories''}. This is a rather `simple' example of supercategories, albeit in a much more restricted sense as it still involves only the standard categorical homo-morphisms, homo-functors, and so on; it begins with a somewhat standard definiton of super-categories, or `super categories' from category theory, but then it becomes more interesting as it is being tailored to supersymmetry and extensions of `Lie' superalgebras, or superalgebroids, which are sometimes called graded `Lie' algebras that are thought to be relevant to quantum gravity (\cite{BGB2} and references cited therein). The following is an almost exact quote from the above n-Category cafe' s website posted mainly by Dr. Urs Schreiber:
A \textit{supercategory} is a \textit{diagram} of the form:
$$\diamond \diamond Id_C \diamond \textbf{C} \diamond \diamond s $$
in \textbf{Cat}--the category of categories and (homo-) functors between categories-- such that:
$$\diamond \diamond \textsl{Id} \diamond \diamond Id_C \diamond \textbf{C} \diamond \textbf{C}\diamond \diamond s \diamond \diamond s = \diamond \diamond Id_C \diamond Id_C \diamond \diamond \textsl{Id},$$
(where the `diamond' symbol should be replaced by the symbol `square', as in the original Dr. Urs Schreiber's postings.)
This specific instance is that of a supercategory which has only \textbf{one object}-- the above quoted superdiagram of diamonds, an arbitrary abstract category \textbf{C} (subject to all ETAC axioms), and the standard category identity (homo-) functor; it can be further specialized to the previously introduced concepts of \textit{supergroupoids} (also definable as crossed complexes of groupoids), and \textit{supergroups} (also definable as crossed modules of groups), which seem to be of great interest to mathematicians involved in `Categorified' mathematical physics or physical mathematics.) This was then continued with the following interesting example. ``What, in this sense, is a \textit{braided monoidal supercategory ?}''. Dr. Urs Schreiber, suggested the following answer: ``like an ordinary braided monoidal catgeory is a 3-category which in lowest degrees looks like the trivial 2-group, a braided monoidal supercategory is a 3-category which in lowest degree looks like the strict 2-group that comes from
the crossed module $G(2)=(\diamond 2 \diamond \textsl{Id} \diamond 2)$''. Urs called this generalization of stabilization of n-categories, $G(2)$-\textit{stabilization}. Therefore, the claim would be that `braided monoidal supercategories come from $G(2)$-stabilized 3-categories, with $G(2)$ the above strict 2-group';
\item An \emph{organismic set} of order $n$ can be regarded either as a category of algebraic
theories representing organismic sets of different orders $o \leq n$ or as a \emph{discrete topology} organismic supercategory of algebraic theories (or supercategory only with discrete topology, e.g. , a {\em class} of objects);
\item Any `standard' topos with a (commutative) Heyting logic algebra as a subobject classifier is an example of
a commutative (and distributive) supercategory with the additional axioms to ETAC being those that
define the Heyting logic algebra;
\item The generalized $LM_n$ (\L ukasiewicz--Moisil) toposes are supercatgeories of
{\em non-commutative}, algebraic $n$-valued logic diagrams that are subject to the axioms of {\em $LM_n$ algebras of
$n$-valued logics};
\item $n$-categories are supercategories restricted to interpretations of the ETAC axioms;
\item An {\em organismic supercategory} is defined as a supercategory subject to the ETAC axioms
and also subject to the ETAS axiom of complete self--reproduction involving
$\pi$--entities ({\em viz}. L\"ofgren, 1968; \cite{Refs-13to26}); its objects are classes representing organisms
in terms of morphism (super) diagrams or equivalently as heterofunctors of organismic classes
with variable topological structure;
\end{enumerate}
\begin{definition}
\emph{Organismic Supercategories (\cite{Refs-13to26})}
An example of a class of supercategories interpreting such ETAS axioms as those stated above
was previously defined for organismic structures with different levels of complexity (\cite{Refs-13to26}); {\em organismic supercategories} were thus defined as {\em superstructure interpretations of ETAS} (including ETAC, as appropriate) in terms of triplets $\textbf{K} = (\textit{C}, \Pi,\textit{N})$, where \textit{C} is an arbitrary category (interpretation of ETAC axioms, formulas, etc.), $\Pi$ is a category of complete self--reproducing entities, $\pi$, (\cite{LO68}) subject to the negation of the axiom of restriction (for elements of sets):
$ \exists S: (S \neq \oslash) ~ and ~ \forall u: [u \in S) \Rightarrow \exists v: (v \in u)~ and ~( v \in S)]$, (which is known to be independent from the ordinary logico-mathematical and biological reasoning),
and $\textit{N}$ is a category of non-atomic expressions, defined as follows.
\end{definition}
\begin{definition}
An {\em atomically self--reproducing entity} is a unit class relation $u$ such that $\pi \pi \left\langle \pi \right\rangle$, which means
``$\pi$ stands in the relation $\pi$ to $\pi$'', $\pi \pi \left\langle \pi , \pi \right\rangle$, etc.
An expression that does not contain any such atomically self--reproducing entity is called a {\em non-atomic expression}.
\end{definition}
\begin{thebibliography}{9}
\bibitem{Refs-13to26}
See references [13] to [26] in the \PMlinkname{Bibliography for Category Theory and Algebraic Topology}{CategoricalOntologyABibliographyOfCategoryTheory}
\bibitem{LW1}
W.F. Lawvere: 1963. Functorial Semantics of Algebraic Theories., \emph{Proc. Natl. Acad. Sci. USA}, \textbf{50}: 869--872.
\bibitem{LW2}
W. F. Lawvere: 1966. The Category of Categories as a Foundation for Mathematics. , In \emph{Proc. Conf. Categorical Algebra--La Jolla}, 1965, Eilenberg, S et al., eds. Springer --Verlag: Berlin, Heidelberg and New York, pp. 1--20.
\bibitem{LO68}
L. L\"ofgren: 1968. On Axiomatic Explanation of Complete Self--Reproduction. \emph{Bull. Math. Biophysics},
\textbf{30}: 317--348.
\bibitem{BHS2}
R. Brown R, P.J. Higgins, and R. Sivera.: \textit{``Non--Abelian Algebraic Topology''} (2008).
\PMlinkexternal{PDF file}{http://www.bangor.ac.uk/mas010/nonab--t/partI010604.pdf}
\bibitem{BGB2}
R. Brown, J. F. Glazebrook and I. C. Baianu: A categorical and higher dimensional algebra framework for complex systems and spacetime structures, \emph{Axiomathes} \textbf{17}:409--493.
(2007).
\bibitem{BM}
R. Brown and G. H. Mosa: Double algebroids and crossed modules of algebroids, University of Wales--Bangor, Maths Preprint, 1986.
\bibitem{BS}
R. Brown and C.B. Spencer: Double groupoids and crossed modules, \emph{Cahiers Top. G\'eom.Diff.} \textbf{17} (1976), 343--362.
\bibitem{ICB04b}
I.C. Baianu: \L ukasiewicz--Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamics). CERN Preprint EXT-2004-059. \textit{Health Physics and Radiation Effects} (June 29, 2004).
\bibitem{BBGG1}
I.C. Baianu, Brown R., J. F. Glazebrook, and Georgescu G.: 2006, Complex Nonlinear Biodynamics in
Categories, Higher Dimensional Algebra and \L ukasiewicz--Moisil Topos: Transformations of
Neuronal, Genetic and Neoplastic networks, \emph{Axiomathes} \textbf{16} Nos. 1--2, 65--122.
\bibitem{ICBm2}
I.C. Baianu and M. Marinescu: 1974, A Functorial Construction of \emph{\textbf{(M,R)}}-- Systems. \emph{Revue Roumaine de Mathematiques Pures et Appliquees} \textbf{19}: 388--391.
\bibitem{ICB6}
I.C. Baianu: 1977, A Logical Model of Genetic Activities in \L ukasiewicz Algebras: The Non--linear Theory. \emph{Bulletin of Mathematical Biophysics}, \textbf{39}: 249--258.
\bibitem{ICB2}
I.C. Baianu: 1987a, Computer Models and Automata Theory in Biology and Medicine., in M. Witten (ed.),
\emph{Mathematical Models in Medicine}, vol. 7., Pergamon Press, New York, 1513--1577;
\PMlinkexternal{CERN Preprint No. EXT-2004-072}{http://doc.cern.ch//archive/electronic/other/ext/ext-2004-072.pdf}.
\end{thebibliography}
%%%%%
%%%%%
\end{document}