-
Notifications
You must be signed in to change notification settings - Fork 2
/
81P05-LieAlgebroids.tex
278 lines (236 loc) · 8.92 KB
/
81P05-LieAlgebroids.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{LieAlgebroids}
\pmcreated{2013-03-22 18:13:47}
\pmmodified{2013-03-22 18:13:47}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{Lie algebroids}
\pmrecord{25}{40816}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Topic}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81P05}
\pmclassification{msc}{81R15}
\pmclassification{msc}{81R10}
\pmclassification{msc}{81R50}
\pmclassification{msc}{81R05}
\pmsynonym{extended quantum symmetry structures}{LieAlgebroids}
\pmsynonym{generalized double algebras}{LieAlgebroids}
%\pmkeywords{double algebras}
%\pmkeywords{extensions of Lie algebras}
%\pmkeywords{Lie groupoids}
%\pmkeywords{'Weinstein' groupoids}
%\pmkeywords{extended quantum symmetry structures}
\pmrelated{HamiltonianAlgebroids}
\pmrelated{TangentBundle}
\pmrelated{HamiltonianOperatorOfAQuantumSystem}
\pmrelated{Algebroids}
\pmrelated{LieSuperalgebra3}
\pmdefines{Lie algebroid}
\pmdefines{anchor}
\pmdefines{bundle map}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
\setlength{\textwidth}{6.5in}
%\setlength{\textwidth}{16cm}
\setlength{\textheight}{9.0in}
%\setlength{\textheight}{24cm}
\hoffset=-.75in %%ps format
%\hoffset=-1.0in %%hp format
\voffset=-.4in
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{\mathcal G}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
%\newcommand{\>}{{\rangle}}
%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%%%\usepackage{xypic}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\midsqn}[1]{\ar@{}[dr]|{#1}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}
\begin{document}
\subsection{Topic on Lie algebroids}
This is a topic entry on Lie algebroids that focuses on their quantum applications and extensions of current algebraic theories.
\emph{Lie algebroids} generalize \emph{Lie algebras}, and in certain quantum systems they represent \emph{extended quantum (algebroid) symmetries}. One can think of a \emph{Lie algebroid} as generalizing the idea of a tangent bundle where the tangent space at a point is effectively the equivalence class of curves meeting at that point (thus
suggesting a groupoid approach), as well as serving as a site on which to study infinitesimal geometry (see, for example, ref. \cite{Mackenzie2005}). The formal definition of a \emph{Lie algebroid} is presented next. \\
\textbf{Definition 0.1}
Let $M$ be a manifold and let $\mathfrak X(M)$ denote the set of vector fields on $M$. Then, a
\emph{Lie algebroid} over $M$ consists of a \emph{vector bundle $E \lra M$,
equipped with a Lie bracket $[~,~]$ on the space of sections $\gamma(E)$,
and a bundle map $\Upsilon : E \lra TM$}, usually called the \emph{anchor}.
Furthermore, there is an induced map $\Upsilon : \gamma (E) \lra \mathfrak X(M)$,
which is required to be a map of Lie algebras, such that given sections $\a, \beta \in
\gamma(E)$ and a differentiable function $f$, the following
Leibniz rule is satisfied~:
\begin{equation}
[ \a, f \beta] = f [\a, \beta] + (\Upsilon (\a)) \beta~.
\end{equation}
\begin{example}
A typical example of a Lie algebroid is obtained when $M$ is a Poisson
manifold and $E=T^*M$, that is $E$ is the cotangent bundle of $M$.
\end{example}
Now suppose we have a Lie groupoid $\mathsf{G}$:
\begin{equation}
r,s~:~ \xymatrix{ \mathsf{G} \ar@<1ex>[r]^r \ar[r]_s & \mathsf{G}^{(0)}}=M~.
\end{equation}
There is an associated Lie algebroid $\A = \A( \mathsf{G})$, which in the
guise of a vector bundle, it is the restriction to $M$ of the
bundle of tangent vectors along the fibers of $s$ (ie. the
$s$--vertical vector fields). Also, the space of sections $\gamma
(\A)$ can be identified with the space of $s$--vertical,
right--invariant vector fields $\mathfrak X^s_{inv} (\mathsf{G})$ which
can be seen to be closed under $[~,~]$, and the latter induces a
bracket operation on $\gamma (A)$ thus turning $\A$ into a Lie
algebroid. Subsequently, a Lie algebroid $\A$ is integrable if
there exists a Lie groupoid $\mathsf{G}$ inducing $\A$~.
\begin{remark}
Unlike Lie algebras that can be integrated to corresponding Lie groups, not all {\em Lie algebroids} are `smoothly integrable' to Lie groupoids; the subset of Lie groupoids that have corresponding Lie algebroids are sometimes called {\em `Weinstein groupoids'}.
\end{remark}
Note also the relation of the Lie algebroids to Hamiltonian algebroids, also concerning recent developments in (relativistic) quantum gravity theories.
\begin{thebibliography}{9}
\bibitem{Mackenzie2005}
K. C. H. Mackenzie: \emph{General Theory of Lie Groupoids and Lie
Algebroids}, London Math. Soc. Lecture Notes Series, \textbf{213},
Cambridge University Press: Cambridge,UK (2005).
\end{thebibliography}
%%%%%
%%%%%
\end{document}