-
Notifications
You must be signed in to change notification settings - Fork 2
/
81P10-GelfandTriple.tex
231 lines (187 loc) · 8.84 KB
/
81P10-GelfandTriple.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{GelfandTriple}
\pmcreated{2013-03-22 19:22:51}
\pmmodified{2013-03-22 19:22:51}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{Gel'fand triple}
\pmrecord{9}{42335}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Topic}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81P10}
\pmsynonym{rigged Hilbert space}{GelfandTriple}
%\pmkeywords{Riesz theorem}
%\pmkeywords{Gelfand triple}
%\pmkeywords{banach space}
%\pmkeywords{Hilbert space isomorphism}
\pmdefines{$\cS$}
\pmdefines{${\cS}^t$}
\pmdefines{injective bounded operator}
\pmdefines{$<m_x>$ operator}
\pmdefines{TVS}
\pmdefines{topological subvector space}
\pmdefines{canonical isomorphism}
\endmetadata
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
\def\im{\operatorname{im}}
\def\ker{\operatorname{ker}}
% there are many more packages, add them here as you need
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
%%\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\renewcommand{\H}{\mathcal H}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\cok}{\operatorname{cok}}
\begin{document}
\section{Gel'fand (or Gelfand) triple}
The basic idea is to equip a separable Hilbert space $\H$ with a dense \emph{Topological Subvector Space ($TVS$)} of test functions in such a manner that the dual of the subspace of test functions $T_f$ enhances the Hilbert space $\H$ through embedding into a larger topological subvector space $T^*$; the elements of $T^*$ represent generalized eigenvectors for the continuous spectrum of normal-and possibly unbounded-linear operators $L$.
One begins the Gelfand construction with a Banach space $B$, or the more general TVS considered above, and denote the dual TVS of $B$ as $B^*$ so that
$j: B \rightarrow \H$ is an \emph{injective bounded operator} with dense image. One then considers a canonical isomorphism $i_c: \H \cong \H^*$ determined by the inner product given by the {\em Riesz theorem}. The Banach transpose, or dual of $j$ is the operator $j^*: \H^* \to B^*$.
Then, one has a composition morphism $k: \H \rightarrow B^*$ as
$\H \to \H^* \to B^*$ , so that $k = j^* \circ i_c$ that can be employed to define the Gelfand triple as follows.
\begin{definition}
A {\em Gelfand triple} is defined by the operator sequence:
$B \rightarrow \H \rightarrow B^*,$
where $k$ is the composition morphism $k: \H \to B^*$ defined by $j^* \circ i_c$
\end{definition}
\subsection{Example:}
An interesting example of a Gel'fand triple which is preserved by the Fourier transform (FT) is obtained when $B = \cS (\R^n)$ --the Schwartz space,
$B^* = \cS^t$-the space of tempered Schwartz distributions and
$\H = L^2(\R^n)$.
\subsection{Acknowledgement}
The formalism utilized here followed the \PMlinkexternal{presentation by Urs Schreiber}{http://ncatlab.org/nlab/show/Gelfand+triple} of the Gel'fand triple at \PMlinkexternal{$nLab$- a `steered' wiki for Mathematics, Physical Mathematics and Philosophy}{http://ncatlab.org/nlab/show/HomePage}.
\subsection{References}
J.-P. Antoine. Dirac formalism and symmetry problems in quantum mechanics. I. General Dirac formalism. Journal of Mathematical Physics, 10(1):53--69, 1969.
N.Bogoliubov, A.Logunov, and I.Todorov. Introduction to Axiomatic Quantum Field Theory, chapter 1 Some Basic Concepts of Functional Analysis 4 The Space of States, pages 12--43, 113--128. Benjamin, Reading, Massachusetts, 1975.
R.de la Madrid. Quantum Mechanics in Rigged Hilbert Space Language. PhD thesis, Depertamento de Fisica Teorica Facultad de Ciencias. Universidad de Valladolid, 2001. (available here)
M.Gadella and F.Gomez. A unified mathematical formalism for the dirac formulation of quantum mechanics. Foundations of Physics, 32:815--869, 2002. (available here)
M.Gadella and F.Gomez. On the mathematical basis of the dirac formulation of quantum mechanics. International Journal of Theoretical Physics, 42:2225--2254, 2003.
M.Gadella and F.Gomez. Dirac formulation of quantum mechanics: Recent and new results. Reports on Mathematical Physics, 59:127--143, 2007.
I.M. Gel'fand and N.J. Vilenkin. Generalized Functions, vol. 4: Some Applications of Harmonic Analysis, volume4, chapter 2-4, pages 26--133. Academic Press, New York, 1964.
I. M. Gel'fand, A. G. Kostyucenko, Expansion in eigenfunctions of differential and other operators) (Russian), Dokl. Akad. Nauk SSSR (N.S.) 103 (1955), 349--352, MR73136
I. M. Gel'fand, N. Ja. Vilenkin, Generalized functions, vol. 4. Some applications of harmonic analysis. Equipped Hilbert spaces, Fizmatgiz, Moscow, 1961 MR146653, English transl. Acad. Press 1964 MR173945
Ciprian Foiash, D\'ecompositions int\'egrales des familles spectrales et
semi--spectrales en op\'erateurs qui sortent de l'espace Hilbertien, Acta Sci. Math. Szeged 20, 1959, 117--155. MR115092
John Roberts, The Dirac bra and ket formalism, J. Mathematical Phys. 7 (1966), 1097--1104, MR216836, Rigged Hilbert spaces in quantum mechanics , Comm. Math. Physics 3, n. 2 (1966), 98--119, MR228243, euclid
J.E. Roberts. The Dirac bra and ket formalism. Journal of Mathematical Physics, 7(6):1097--1104, 1966.
A.R. Marlow. Unified Dirac--Von Neumann formulation of quantum mechanics. I. Mathematical theory. Journal of Mathematical Physics, 6:919--927, 1965.
E.Prugovecki. The bra and ket formalism in extended Hilbert space. J. Math. Phys., 14:1410--1422, 1973.
J.E. Roberts. Rigged Hilbert spaces in quantum mechanics. Commun. math. Phys., 3:98--119, 1966.
Tjostheim. A note on the unified Dirac-Von Neumann formulation of quantum mechanics. Journal of Mathematical Physics, 16(4):766--767, 4 1975
%%%%%
%%%%%
\end{document}