-
Notifications
You must be signed in to change notification settings - Fork 2
/
81Q10-SchrodingerOperator.tex
241 lines (219 loc) · 8.4 KB
/
81Q10-SchrodingerOperator.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{SchrodingerOperator}
\pmcreated{2013-03-22 14:02:08}
\pmmodified{2013-03-22 14:02:08}
\pmowner{mhale}{572}
\pmmodifier{mhale}{572}
\pmtitle{Schr\"odinger operator}
\pmrecord{30}{35143}
\pmprivacy{1}
\pmauthor{mhale}{572}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81Q10}
\pmsynonym{Hamiltonian operator}{SchrodingerOperator}
%\pmkeywords{Hamiltonian operator}
%\pmkeywords{Schr\"odinger equation}
%\pmkeywords{Schr\"odinger formulation}
\pmrelated{HamiltonianOperatorOfAQuantumSystem}
\pmrelated{SchrodingersWaveEquation}
\pmrelated{CanonicalQuantization}
\pmrelated{QuantumOperatorAlgebrasInQuantumFieldTheories}
\pmrelated{QuantumSpaceTimes}
\pmrelated{SchrodingerOperator}
\pmdefines{quantum system dynamics and eigenvalues}
\endmetadata
%fancy typeface/symbols
%\usepackage{beton}
%\usepackage{concmath}
%\usepackage{stmaryrd}
%margins
%\usepackage{simplemargins}
%\usepackage{multicol}
%\setleftmargin{1in}
%\setrightmargin{1in}
%\settopmargin{1in}
%\setbottommargin{1in}
% symbols
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage[mathscr]{euscript}
\usepackage[T1]{fontenc}
% graphics
%\usepackage{pstricks}
% math
\usepackage{amsmath}
\usepackage{amsopn}
\usepackage{amstext}
\usepackage{amsthm}
% only one theoremstyle
%\theoremstyle{definition}
%\newtheorem{exercise}{}[subsection]
% math operators
\DeclareMathOperator{\pipe}{{\big |} \hspace{-2.85pt} {\big |}}
\DeclareMathOperator{\et}{\&}
% misc math stuff
\newcommand{\vol}{\mathrm{vol}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\domain}{\mathrm{domain}}
\newcommand{\supp}{\mathrm{supp}}
\newcommand{\diam}{\mathrm{diameter}}
\newcommand{\incl}{\mathrm{incl}}
\newcommand{\interior}{\mathrm{interior}}
\newcommand{\triv}{\mathrm{triv}}
\newcommand{\image}{\mathrm{image}}
\newcommand{\closure}{\mathrm{closure}}
\newcommand{\degree}{\mathrm{degree}}
\newcommand{\im}{\mathrm{im}}
\newcommand{\esssup}{\mathrm{ess\ sup}}
\newcommand{\openset}{\mathrel{{\mathchoice{\rlap{$\subset$}{\;\circ}}%
{\rlap{$\subset$}{\;\circ}}%
{\rlap{$\scriptstyle\subset$}{\;\circ}}%
{\rlap{$\scriptscriptstyle\subset$}{\;\circ}}}}}
% foreignisms
\newcommand{\ie}{\emph{i.e.},}
\newcommand{\Ie}{\emph{I.e.},}
\newcommand{\cf}{\emph{cf.}}
\newcommand{\eg}{\emph{e.g.},}
\newcommand{\Eg}{\emph{E.g.},}
\newcommand{\ala}{\emph{\'a la}}
% labels for spaces
\newcommand{\N}{\mathbf{N}}
\newcommand{\Z}{\mathbf{Z}}
\newcommand{\Q}{\mathbf{Q}}
\newcommand{\C}{\mathbf{C}}
\newcommand{\CP}{\mathbf{CP}}
\newcommand{\RP}{\mathbf{RP}}
\newcommand{\R}{\mathbf{R}}
\newcommand{\Rtw}{\mathbf{R}^2}
\newcommand{\Rth}{\mathbf{R}^3}
\newcommand{\Rfo}{\mathbf{R}^4}
\newcommand{\Rfi}{\mathbf{R}^5}
\newcommand{\Rp}{\mathbf{R}^p}
\newcommand{\Rn}{\mathbf{R}^n}
\newcommand{\Rnmon}{\mathbf{R}^{n-1}}
\newcommand{\Rnpon}{\mathbf{R}^{n+1}}
\newcommand{\Rmpon}{\mathbf{R}^{m+1}}
\newcommand{\RNpon}{\mathbf{R}^{N+1}}
\newcommand{\Rtwn}{\mathbf{R}^{2n}}
\newcommand{\RN}{\mathbf{R}^N}
\newcommand{\Rm}{\mathbf{R}^m}
\newcommand{\Hon}{\mathbf{H}^1}
\newcommand{\Htw}{\mathbf{H}^2}
\newcommand{\Hth}{\mathbf{H}^3}
\newcommand{\Hn}{\mathbf{H}^n}
\newcommand{\Torus}{\mathbf{T}}
\newcommand{\Ttw}{\mathbf{T}^2}
\newcommand{\Tth}{\mathbf{T}^3}
\newcommand{\Tn}{\mathbf{T}^n}
\newcommand{\Son}{\mathbf{S}^1}
\newcommand{\Stw}{\mathbf{S}^2}
\newcommand{\Sth}{\mathbf{S}^3}
\newcommand{\Sfo}{\mathbf{S}^4}
\newcommand{\Sfi}{\mathbf{S}^5}
\newcommand{\SN}{\mathbf{S}^N}
\newcommand{\Sn}{\mathbf{S}^n}
\newcommand{\Sm}{\mathbf{S}^m}
\newcommand{\Smmon}{\mathbf{S}^{m-1}}
\newcommand{\Snmon}{\mathbf{S}^{n-1}}
\newcommand{\Snmtw}{\mathbf{S}^{n-2}}
\newcommand{\Hnmon}{\mathbf{H}^{n-1}}
\newcommand{\Ton}{\mathbf{T}^1}
\newcommand{\T}{\mathbf{T}}
% differential operators
\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\pkd}[3]{\frac{\partial^{#3} #1}{\partial #2^{#3}}}
\newcommand{\dkd}[3]{\frac{d^{#3} #1}{d#2^{#3}}}
\newcommand{\td}[2]{\frac{d #1}{d #2}}
\newcommand{\pdat}[3]{\left . \frac{\partial #1}{\partial #2}\right|_{#3}}
\newcommand{\dbyd}[1]{ \frac{d}{d #1}}
% Fri Oct 3 11:00:53 2003 -- should check at some point to see whether the replaced versions are actually used at all, I don't think so
\newcommand{\ddk}[3]{\frac{d^{#3} #1}{d#2^{#3}}}
% replaces...
\newcommand{\dbydk}[2]{ \frac{d^{#2}}{d #1^{#2}}}
\newcommand{\ppk}[3]{\frac{\partial^{#3} #1}{\partial #2^{#3}}}
% replaces...
\newcommand{\pbypk}[2]{ \frac{\partial^{#2}}{\partial #1^{#2}}}
\newcommand{\pp}[2]{\frac{\partial #1}{\partial #2}}
% replaces...
\newcommand{\pbyp}[1]{ \frac{\partial}{\partial #1}}
\newcommand{\ddat}[3]{\left .\frac{d #1}{d #2}\right|_{#3}}
% replaces...
\newcommand{\dbydat}[2]{\left . \frac{d}{d #1} \right|_{#2}}
\newcommand{\ppkat}[4]{\left .\frac{\partial^{#3} #1}{\partial #2^{#3}}\right|_{#4}}
\newcommand{\ddkat}[4]{\left .\frac{d^{#3} #1}{d#2^{#3}}\right|_{#4}}
% counters for new lists
%\newcounter{alistctr}
%\newcounter{Alistctr}
\newcounter{rlistctr}
\newcounter{Rlistctr}
\newcounter{123listctr}
\newcounter{123listcolonstylectr}
% a,b,c - small latin letter list
\newenvironment{alist}{
\indent \begin{list}{(\alph{alistctr})}{\usecounter{alistctr}}}
{\end{list}\setcounter{alistctr}{0}}
% A,B,C - LARGE LATIN LETTER LIST
\newenvironment{Alist}{
\indent \begin{list}{(\Alph{Alistctr})}{\usecounter{Alistctr}}
}
{\end{list}\setcounter{Alistctr}{0}}
% i,ii,iii - small roman numeral list
\newenvironment{rlist}{
\indent \begin{list}{(\roman{rlistctr})}{\usecounter{rlistctr}}
}
{\end{list}\setcounter{rlistctr}{0}}
% I,II,III - large roman numeral list
\newenvironment{Rlist}{
\indent \begin{list}{(\Roman{Rlistctr})}{\usecounter{Rlistctr}}
}
{\end{list}\setcounter{Rlistctr}{0}}
%1,2,3 - arabic numeral list
\newenvironment{123list}{
\indent \begin{list}{(\arabic{123listctr})}{\usecounter{123listctr}}
}
{\end{list}\setcounter{123listctr}{0}}
%1:,2:,3: - arabic numeral list with colon decoration
\newenvironment{123listcolonstyle}{\indent \begin{list}{\arabic{123listcolonstylectr}:}{\usecounter{123listcolonstylectr}}}
{\end{list}\setcounter{123listcolonstylectr}{0}}
% environment for definitions
\def\defn#1{\addcontentsline{toc}{subsection}{$\ast$} {\footnotesize \noindent \begin{123listcolonstyle} \setlength{\itemsep}{0em} \setlength{\topsep}{0em} \setlength{\parsep}{0em} #1 \end{123listcolonstyle}}}
%environment for proofs
\def\proof#1{\par {\footnotesize \indent \begin{tabular}{ll} #1 \end{tabular}}}
%% \include{packages}
%% \include{renewed_commands}
%% \include{simple_theorems}
%% \include{abbreviations}
%% \include{spaces}
%% \include{new_environments}
%% \include{margins}
%% \include{mathoperators}
%% \include{differentiation}
%% \include{limited_things}
%% \include{argawarga}
\newcommand{\Rset}{\mathbb{R}}
\begin{document}
Let $V\colon \Rset^n \to \Rset$ be a real-valued function.
The {\em Schroedinger operator} \textbf{H} on the Hilbert space $L^2(\Rset^n)$ is given by the action
\[
\psi \mapsto -\nabla^2\psi+V(x)\psi, \quad\psi\in L^2(\Rset^n).
\]
This can be obviously re-written as:
\[
\psi \mapsto [-\nabla^2 +V(x)]\psi, \quad\psi\in L^2(\Rset^n),
\] where $[-\nabla^2 +V(x)]$ is the {\em Schr\"odinger} operator, which is now
called the \PMlinkname{Hamiltonian operator}{HamiltonianOperatorOfAQuantumSystem}, \textbf{H}.
For stationary quantum systems such as electrons in `stable' atoms the {\em Schr\"odinger equation}
takes the very simple form :
\[
\textbf{H} \psi=E \psi
\] , where $E$ stands for energy eigenvalues of the stationary quantum states. Thus, in quantum mechanics of systems with finite degrees of freedom that are `stationary', the Schr\"odinger operator is used to calculate the (time-independent) energy states of a quantum system with potential energy $V(x)$. Schr\"odinger called this operator the \PMlinkname{`Hamilton' operator}{HamiltonianOperatorOfAQuantumSystem}, or the
\PMlinkname{Hamiltonian}{HamiltonianOperatorOfAQuantumSystem}, and the latter name is currently used in almost all of quantum physics publications, etc. The eigenvalues give the energy levels, and the wavefunctions are given by the eigenfunctions.
In the more general, non-stationary, or `dynamic' case, the Schr\"odinger equation takes the general form:
\[
\textbf{H} \psi= (-i) \partial \psi / \partial t
\].
%%%%%
%%%%%
\end{document}