-
Notifications
You must be signed in to change notification settings - Fork 2
/
81Q60-BibliographyForOperatorAlgebrasInMathematicalPhysicsAndAQFTAToK.tex
2361 lines (1970 loc) · 67.8 KB
/
81Q60-BibliographyForOperatorAlgebrasInMathematicalPhysicsAndAQFTAToK.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{BibliographyForOperatorAlgebrasInMathematicalPhysicsAndAQFTAToK}
\pmcreated{2013-03-22 18:46:14}
\pmmodified{2013-03-22 18:46:14}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{bibliography for operator algebras in mathematical physics and AQFT-A to K}
\pmrecord{10}{41554}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Bibliography}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81Q60}
\pmclassification{msc}{03G12}
\pmclassification{msc}{81R50}
\pmclassification{msc}{81T70}
\pmclassification{msc}{47C15}
\pmclassification{msc}{46L35}
\pmclassification{msc}{46L10}
\pmclassification{msc}{46L05}
\pmclassification{msc}{81T60}
\pmclassification{msc}{81T05}
%\pmkeywords{operator algebras in mathematical physics and AQFT}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
%%\usepackage{xypic}
\usepackage[mathscr]{eucal}
% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\subsection{Bibliography for Operator Algebras in Mathematical Physics and Algebraic Quantum Field Theories (AQFT):}
\emph{Alphabetical order: Letters from A to K}
\begin{thebibliography} {399}
\bibitem{AW}
Akutsu, Y. and Wadati, M. (1987).
Knot invariants and critical statistical systems.
{\em Journal of the Physics Society of Japan},
{\bf 56}, 839--842.
\bibitem{Al}
Alexander, J. W. (1930).
The combinatorial theory of complexes.
{\em Annals of Mathematics}, {\bf (2) 31}, 294--322.
\bibitem{ABF}
Andrews, G. E., Baxter, R. J. and Forrester, P.J. (1984).
Eight vertex SOS model and generalized
Rogers--Ramanujan type identities. {\em Journal of Statistical Physics}, {\bf 35}, 193--266.
\bibitem{AoY}
Aoi, H. and Yamanouchi, T. (in press).
Construction of a canonical subfactor for an inclusion of factors with a common Cartan subalgebra.
{\rm Hokkaido Mathematical Journal}.
\bibitem{AGO}
Arcuri, R. C., Gomes, J. F. and D. I. Olive (1987). Conformal subalgebras and symmetric spaces.
{\em Nuclear Physics B}, {\bf 285}, 327--339.
\bibitem{Art}
Artin, E. (1947). Theory of braids. {\em Annals of Mathematics},
{\bf 48} 101--126.
\bibitem{A2}
Asaeda, M. (2007). Galois groups and an obstruction to principal graphs of subfactors.
{\em International Journal of Mathematics}, {\bf 18}, 191--202.
math.OA/0605318.
\bibitem{AH}
Asaeda, M. and Haagerup, U. (1999). Exotic subfactors of finite depth with Jones indices
${(5+\sqrt{13})}/{2}$ and ${(5+\sqrt{17})}/{2}$. {\em Communications in Mathematical Physics},
{\bf 202}, 1--63.
\bibitem{AY}
Asaeda, M. and Yasuda, S. (preprint 2007). On Haagerup's list of potential principal graphs of subfactors.
arXiv:0711.4144.
\bibitem{At1}
Atiyah, M. (1967). $K$-theory. {\em W. A. Benjamin Inc., New York}.
\bibitem{At2}
Atiyah, M. (1989). Topological quantum field theory. {\em Publication Math\'ematiques IHES},
{\bf 68}, 175--186.
\bibitem{Au}
Aubert, P.-L. (1976). Th\'eorie de Galois pour une $W^*$-alg\`ebre. {\em Commentarii Mathematici Helvetici},
{\bf 39 (51)}, 411--433.
\bibitem{BSZ}
Baez, J. C., Segal, I. E. and Zhou, Z. (1992). Introduction to algebraic and constructive quantum
field theory. {\em Princeton University Press}.
\bibitem{BK}
Bakalov, B. and Kirillov, A. Jr. (2001). Lectures on tensor categories and modular functors.
University Lecture Series {\bf 21}, Amer. Math. Soc.
\bibitem{Ban1}
Banica, T. (1997). Le groupe quantique compact libre $U(n)$, {\em Communications in Mathematical Physics}, {\bf 190},
143--172.
\bibitem{Ban2}
Banica, T. (1998). Hopf algebras and subfactors associated to vertex models.
{\em Journal of Functional Analysis}, {\bf 159}, 243--266.
\bibitem{Ban3}
Banica, T. (1999). Representations of compact quantum groups and subfactors.
{\em Journal f\"ur die Reine und Angewandte Mathematik}, {\bf 509}, 167--198.
\bibitem{Ban4}
Banica, T. (1999). Fusion rules for representations of compact quantum groups.
{\em Expositiones Mathematicae}, {\bf 17}, 313--337.
\bibitem{Ban5}
Banica, T. (1999). Symmetries of a generic coaction. {\em Mathematische Annalen}, {\bf 314}, 763--780.
\bibitem{Ban6}
Banica, T. (2000). Compact Kac algebras and commuting squares.
{\em Journal of Functional Analysis}, {\bf 176}, 80--99.
\bibitem{Ban7}
Banica, T. (2001). Subfactors associated to compact Kac algebras.
{\em Integral Equations Operator Theory}, {\bf 39}, 1--14.
\bibitem{Ban8}
Banica, T. (2002). Quantum groups and Fuss-Catalan algebras.
{\em Communications in Mathematical Physics}, {\bf 226}, 221--232
\bibitem{Ban9}
Banica, T. (2005). The planar algebra of a coaction. {\em Journal of Operator Theory} {\bf 53}, 119--158.
\bibitem{Ban10}
Banica, T. (2005). Quantum automorphism groups of homogeneous graphs.
{\em Journal of Functional Analysis}, {\bf 224}, 243--280.
\bibitem{Ban11}
Banica, T. (2005). Quantum automorphism groups of small metric spaces.
{\em Pacific Journal of Mathematics}, {\bf 219}, 27--51.
\bibitem{Ba1}
Baxter, R. J. (1981).Rogers--Ramanujan identities in the Hard Hexagon model. {\em Journal of Statistical Physics}, {\bf 26},
427--452.
\bibitem{Ba2}
Baxter, R. J. (1982). {\em Exactly solved models in statistical mechanics}.
Academic Press, New York.
\bibitem{Ba4}
Baxter, R. J. (1988). The superintegrable chiral Potts model. {\em Physics Letters A}, {\bf 133}, 185--189.
\bibitem{Ba3}
Baxter, R. J. (1989). A simple solvable $Z_4(N)$ Hamiltonian.
{\em Physics Letters A}, {\bf 140}, 155--157.
\bibitem{Ba5}
Baxter, R. J. (1989). Superintegrable Chiral Potts model: thermodynamic
properties, an ``inverse'' model, and a simple associated Hamiltonian. {\em Journal of Statistical
Physics}, {\bf 57}, 1--39.
\bibitem{BKW}
Baxter, R. J., Kelland, S. B. and Wu, F. Y. (1976). Potts model or Whitney Polynomial.
{\em Journal of Physics. A. Mathematical and General},
{\bf 9}, 397--406.
\bibitem{BPA}
Baxter, R. J., Perk, J. H. H. and Au-Yang, H. (1988). New solutions of the star-triangle relations for the chiral Potts model. {\em Physics Letters A} {\bf 128}, 138--142.
\bibitem{BTA}
Baxter, R. J., Temperley, H. N. V. and Ashley, S. E. (1978).
Triangular Potts model and its transition temperature and related models.
{\em Proceedings of the Royal Society of London A},
{\bf 358}, 535--559.
\bibitem{BeE}
Behrend, R. E., Evans, D. E. (preprint 2003). Integrable Lattice Models for Conjugate $A^{(1)}_n$.
hep-th/0309068.
\bibitem{BPPZ}
Behrend, R. E., Pearce, P. A., Petkova, V. B. and Zuber, J-B. (2000).
Boundary conditions in rational conformal field theories.
{\em Nuclear Physics B}, {\bf 579}, 707--773.
\bibitem{BPZ}
Belavin, A. A., Polyakov, A. M. and Zamolodchikov, A. B. (1980).
Infinite conformal symmetry in two-dimensional quantum field theory.
{\em Nuclear Physics B}, {\bf 241}, 333--380.
\bibitem{Ber}
Berezin, F. A. (1966). A method of second quantization. {\em Academic Press}, London/New York.
\bibitem{BCL}
Bertozzini, P., Conti, R. and Longo, R. (1998) Covariant sectors with infinite dimension and positivity of the energy.
{\em Communications in Mathematical Physics}, {\bf 193}, 471--492.
\bibitem{BiN}
Bion-Nadal, J. (1992).
Subfactor of the hyperfinite $II_1$ factor with
Coxeter graph $E_6$ as invariant.
{\em Journal of Operator Theory}, {\bf 28}, 27--50.
\bibitem{Bi}
Birman, J. (1974). Braids, links and mapping class groups.
{\em Annals of Mathematical Studies}, {\bf 82}.
\bibitem{BW}
Birman, J. S. and Wenzl, H. (1989).
Braids, link polynomials and a new algebra.
{\em Transactions of the American Mathematical Society},
{\bf 313}, 249--273.
\bibitem{Bs1}
Bisch, D. (1990). On the existence of central sequences in subfactors.
{\em Transactions of the American Mathematical Society},
{\bf 321}, 117--128.
\bibitem{Bs2}
Bisch, D. (1992). Entropy of groups and subfactors.
{\em Journal of Functional Analysis}, {\bf 103},
190--208.
\bibitem{Bs3}
Bisch, D. (1994). A note on intermediate subfactors.
{\em Pacific Journal of Mathematics}, {\bf 163},
201--216.
\bibitem{Bs4}
Bisch, D. (1994).
On the structure of finite depth subfactors.
in {\em Algebraic methods in operator theory},
(ed. R. Curto and P. E. T. J\"orgensen),
Birkh\"auser, 175--194.
\bibitem{Bs5}
Bisch, D. (1994).
Central sequences in subfactors II.
{\em Proceedings of the American Mathematical Society},
{\bf 121}, 725--731.
\bibitem{Bs6}
Bisch, D. (1994).
An example of an irreducible subfactor of the hyperfinite
II$_1$ factor with rational, non-integer index.
{\em Journal f\"ur die Reine und Angewandte
Mathematik}, {\bf 455}, 21--34.
\bibitem{Bs7}
Bisch, D. (1997).
Bimodules, higher relative commutants and the fusion algebra
associated to a subfactor.
In {\em Operator algebras and their applications}.
Fields Institute Communications,
Vol. 13, American Math. Soc., 13--63.
\bibitem{Bs8}
Bisch, D. (1998).
Principal graphs of subfactors with small Jones index.
{\em Mathematische Annalen}, {\bf 311}, 223--231.
\bibitem{Bs9}
Bisch, D. (2002).
Subfactors and planar algebras.
{\em Proc. ICM-2002, Beijing}, {\bf 2}, 775--786.
\bibitem{BH}
Bisch, D. and Haagerup, U. (1996).
Composition of subfactors: New examples of infinite
depth subfactors.
{\em Annales Scientifiques de l'\'Ecole Normale
Superieur}, {\bf 29}, 329--383.
\bibitem{BJ}
Bisch, D. and Jones, V. F. R. (1997).
Algebras associated to intermediate subfactors.
{\em Inventiones Mathematicae},
{\bf 128}, 89--157.
\bibitem{BJ2}
Bisch, D. and Jones, V. F. R. (1997).
A note on free composition of subfactors.
In {\em Geometry and Physics, (Aarhus 1995)},
Marcel Dekker, Lecture Notes in Pure
and Applied Mathematics, Vol. 184, 339--361.
\bibitem{BJ3}
Bisch, D. and Jones, V. F. R. (2000).
Singly generated planar algebras of small dimension.
{\em Duke Mathematical Journal}, {\bf 101}, 41--75.
\bibitem{BJ4}
Bisch, D. and Jones, V. F. R. (2003).
Singly generated planar algebras of small dimension. II
{\em Advances in Mathematics}, {\bf 175}, 297--318.
\bibitem{BNP}
Bisch, D., Nicoara, R. and Popa, S. (2007).
Continuous families of hyperfinite subfactors with
the same standard invariant.
{\em International Journal of Mathematics}, {\bf 18}, 255--267.
math.OA/0604460.
\bibitem{BP}
Bisch, D. and Popa, S. (1999).
Examples of subfactors with property T standard invariant.
{\em Geometric and Functional Analysis}, {\bf 9}, 215--225.
\bibitem{Bk}
B\"ockenhauer, J. (1996).
An algebraic formulation of level one Wess-Zumino-Witten models.
{\em Reviews in Mathematical Physics}, {\bf 8}, 925--947.
\bibitem{BE}
B\"ockenhauer, J. and Evans, D. E. (1998).
Modular invariants, graphs and $\alpha$-induction for
nets of subfactors I.
{\em Communications in Mathematical Physics}, {\bf 197}, 361--386.
\bibitem{BE2}
B\"ockenhauer, J. and Evans, D. E. (1999).
Modular invariants, graphs and $\alpha$-induction for
nets of subfactors II.
{\em Communications in Mathematical Physics}, {\bf 200}, 57--103.
\bibitem{BE3}
B\"ockenhauer, J. and Evans, D. E. (1999).
Modular invariants, graphs and $\alpha$-induction for
nets of subfactors III.
{\em Communications in Mathematical Physics}, {\bf 205}, 183--228.
\bibitem{BE4}
B\"ockenhauer, J. and Evans, D. E. (2000).
Modular invariants from subfactors: Type I coupling matrices and
intermediate subfactors.
{\em Communications in Mathematical Physics}, {\bf 213}, 267--289.
\bibitem{BE5}
B\"ockenhauer, J. and Evans, D. E. (2002).
Modular invariants from subfactors.
in {\em Quantum Symmetries in Theoretical Physics and Mathematics}
(ed. R. Coquereaux et al.),
Comtemp. Math. {\bf 294}, Amer. Math. Soc., 95--131.
math.OA/0006114.
\bibitem{BE6}
B\"ockenhauer, J. and Evans, D. E. (2001).
Modular invariants and subfactors.
in {\em Mathematical Physics in Mathematics and Physics} (ed. R. Longo),
The Fields Institute Communications {\bf 30}, Providence, Rhode Island:
AMS Publications, 11--37.
math.OA/0008056.
\bibitem{BEK}
B\"ockenhauer, J., Evans, D. E. and Kawahigashi, Y. (1999).
On $\alpha$-induction, chiral generators
and modular invariants for subfactors.
{\em Communications in Mathematical Physics}, {\bf 208}, 429--487.
math.OA/9904109.
\bibitem{BEK2}
B\"ockenhauer, J., Evans, D. E. and Kawahigashi, Y. (2000).
Chiral structure of modular invariants for subfactors.
{\em Communications in Mathematical Physics}, {\bf 210}, 733--784.
math.OA/9907149.
\bibitem{BEK3}
B\"ockenhauer, J., Evans, D. E. and Kawahigashi, Y. (2001).
Longo-Rehren subfactors arising from $\alpha$-induction.
{\em Publications of the RIMS, Kyoto University}, {\bf 37}, 1--35.
math.OA/0002154.
\bibitem{BG}
de Boer, J. and Goeree, J. (1991).
Markov traces and II$_1$ factors in
conformal field theory.
{\em Communications in Mathematical Physics},
{\bf 139}, 267--304.
\bibitem{Bon}
Bongaarts, P. J. M. (1970).
The electron-positron field, coupled to external
electromagnetic potentials as an elementary
$C^*$-algebra theory. {\em Annals of Physics},
{\bf 56}, 108--138.
\bibitem{Bra}
Bratteli, O. (1972).
Inductive limits of finite dimensional $C^*$-algebras.
{\em Transactions of the American Mathematical Society},
{\bf 171}, 195--234.
\bibitem{BGL1}
Brunetti, R., Guido, D. and Longo, R. (1993).
Modular structure and duality in conformal
quantum field theory.
{\em Communications in Mathematical Physics}, {\bf 156}, 201--219.
\bibitem{BGL2}
Brunetti, R., Guido, D. and Longo, R. (1995).
Group cohomology, modular theory and space-time symmetries.
{\em Reviews in Mathematical Physics}, {\bf 7} 57--71.
\bibitem{BDLR}
Buchholz, D., Doplicher, S., Longo, R. and Roberts, J. E. (1993).
Extensions of automorphisms and gauge symmetries.
{\em Communications in Mathematical Physics},
{\bf 155}, 123--134.
\bibitem{BMT}
Buchholz, D., Mack, G. and Todorov, I. (1988).
The current algebra on the circle as a germ of local field theories.
{\em Nuclear Physics B (Proc. Suppl.)}, {\bf B5}, 20--56.
\bibitem{BS}
Buchholz, D. and Schulz-Mirbach, H. (1990).
Haag duality in conformal quantum field theoery,
{\em Reviews in Mathematical Physics}, {\bf 2} 105--125.
\bibitem{CN}
Camp, W., and Nicoara, R. (preprint 2007).
Subfactors and Hadamard matrices.
arXiv:0704.1128.
\bibitem{CIZ}
Cappelli, A., Itzykson, C. and Zuber, J.-B. (1987).
The $A$-$D$-$E$ classification of minimal and
$A^{(1)}_1$ conformal invariant theories.
{\em Communications in Mathematical Physics}, {\bf 113}, 1--26.
\bibitem{Ca}
Carpi, S. (1998).
Absence of subsystems for the Haag-Kastler net generated by
the energy-momentum tensor in two-dimensional conformal field theory.
{\em Letters in Mathematical Physics}, {\bf 45}, 259--267.
\bibitem{Ca2}
Carpi, S. (2003).
The Virasoro algebra and sectors with infinite statistical dimension.
{\em Annales Henri Poincar\'e}, {\bf 4}, 601--611.
math.OA/0203027.
\bibitem{Ca3}
Carpi, S. (2004).
On the representation theory of Virasoro nets.
{\em Communications in Mathematical Physics}, {\bf 244}, 261--284.
math.OA/0306425.
\bibitem{Ca4}
Carpi, S. (2005).
Intersecting Jones projections.
{\em International Journal of Mathematics}, {\bf 16}, 687--691.
math.OA/0412457.
\bibitem{CC}
Carpi, S. and Conti, R. (2001).
Classification of subsystems for local nets with trivial
superselection structure.
{\em Communications in Mathematical Physics}, {\bf 217}, 89--106.
\bibitem{CC2}
Carpi, S. and Conti, R. (2005).
Classification of subsystems for graded-local nets with trivial
superselection structure.
{\em Communications in Mathematical Physics}.
{\bf 253}, 423--449.
math.OA/0312033.
\bibitem{CKL}
Carpi, S., Kawahigashi, Y. and Longo, R. (in press).
Structure and classification of superconformal nets.
{\em Annales Henri Poincar\'e}.
arXiv:0705.3609.
\bibitem{CW}
Carpi, S. and Weiner, M. (2005).
On the uniqueness of diffeomorphism symmetry in Conformal Field Theory.
{\em Communications in Mathematical Physics},
{\bf 258}, 203--221.
math.OA/0407190.
\bibitem{Ce}
Ceccherini, T. (1996).
Approximately inner and centrally free commuting squares
of type $II_1$ factors and their classification.
{\em Journal of Functioanl Analysis}, {\bf 142}, 296--336.
\bibitem{Chen}
Chen, J. (1993).
The Connes invariant $\chi(M)$ and cohomology of groups.
Ph. D. dissertation at University of California, Berkeley.
\bibitem{Ch1}
Choda, M. (1989).
Index for factors generated by Jones' two sided
sequence of projections.
{\em Pacific Journal of Mathematics}, {\bf 139}, 1--16.
\bibitem{Ch2}
Choda, M. (1991).
Entropy for $*$-endomorphisms and relative entropy
for subalgebras. {\em Journal of Operator Theory},
{\bf 25}, 125--140.
\bibitem{Ch3}
Choda, M. (1992).
Entropy for canonical shift.
{\em Transactions of the American Mathematical Society},
{\bf 334}, 827--849.
\bibitem{Ch4}
Choda, M. (1993).
Duality for finite bipartite graphs
(with applications to II$_1$ factors).
{\em Pacific Journal of Mathematics}, {\bf 158}, 49--65.
\bibitem{Ch5}
Choda, M. (1994).
Square roots of the canonical shifts.
{\em Journal of Operator Theory}, {\bf 31}, 145--163.
\bibitem{Ch6}
Choda, M. (1994).
Extension algebras via $*$-endomorphisms.
in {\em Subfactors ---
Proceedings of the Taniguchi Symposium, Katata ---},
(ed. H. Araki, et al.),
World Scientific, 105--128.
\bibitem{CH}
Choda, M. and Hiai, F. (1991).
Entropy for canonical shifts. II.
{\em Publications of the RIMS, Kyoto University},
{\bf 27}, 461--489.
\bibitem{CK}
Choda, M. and Kosaki, H. (1994).
Strongly outer actions for an inclusion of factors.
{\em Journal of Functional Analysis}, {\bf 122},
315--332.
\bibitem{Chr}
Christensen, E. (1979).
Subalgebras of a finite algebra.
{\em Mathematische Annalen}, {\bf 243}, 17--29.
\bibitem{Com}
Combes, F. (1968).
Poids sur une $C^*$-alg\`ebre.
{\em Journal de Math\'ematiques Pures et
Appliqu\'ees}, {\bf 47}, 57--100.
\bibitem{C1}
Connes, A. (1973).
Une classification des facteurs de type III.
{\em Annales Scientifiques de l'\'Ecole Normale Sup\'erieure},
{\bf 6}, 133--252.
\bibitem{C2}
Connes, A. (1975).
Outer conjugacy classes of automorphisms of factors.
{\em Annales Scientifiques de l'\'Ecole Normale Sup\'erieure},
{\bf 8}, 383--419.
\bibitem{C3}
Connes, A. (1975).
Hyperfinite factors of type III-0 and Krieger's factors.
{\em Journal of Functional Analysis},
{\bf 18}, 318--327.
\bibitem{C4}
Connes, A. (1975).
Sur la classification des facteurs de type II.
{\em Comptes Rendus de l'Academie des Sciences,
S\'erie I, Math\'ematiques}, {\bf 281}, 13--15.
\bibitem{C5}
Connes, A. (1975).
A factor not antiisomorphic to itself.
{\em Annals of Mathematics}, {\bf 101}, 536--554.
\bibitem{C6}
Connes, A. (1976).
Classification of injective factors.
{\em Annals of Mathematics},
{\bf 104}, 73--115.
\bibitem{C7}
Connes, A. (1976).
Outer conjugacy of automorphisms of factors.
{\em Symposia Mathematica}, {\bf XX}, 149--160.
\bibitem{C8}
Connes, A. (1976).
On the classification of von Neumann
algebras and their automorphisms.
{\em Symposia Mathematica}, {\bf XX}, 435--478.
\bibitem{C9}
Connes, A. (1977).
Periodic automorphisms of the hyperfinite factor of type II$_1$.
{\em Acta Scientiarum Mathematicarum},
{\bf 39}, 39--66.
\bibitem{C10}
Connes, A. (1978).
On the cohomology of operator algebras.
{\em Journal of Functional Analysis},
{\bf 28}, 248--253.
\bibitem{C11}
Connes, A. (1979).
Sur la th\'eorie non commutative de l'integration.
{\em Springer Lecture Notes in Math.},
{\bf 725}, 19--143.
\bibitem{C12}
Connes, A. (1980).
$C^*$-algebres et geom\`etrie diff\'erentielle.
{\em Comptes Rendus de l'Academie des Sciences,
S\'erie I, Math\'ematiques},
559--604.
\bibitem{C13}
Connes, A. (1980).
Spatial theory of von Neumann algebras.
{\em Journal of Functional Analysis}, {\bf 35}
(1980), 153--164.
\bibitem{C14}
Connes, A. (1981).
An analogue of the Thom isomorphism for crossed
products of a $C^*$-algebra by an action of
${\bf R}$. {\em Advances in Mathematics},
{\bf 39}, 311--355.
\bibitem{C15}
Connes, A. (1982).
Foliations and Operator Algebras.
{\em Proceedings of Symposia in Pure Mathematics.
ed. R. V. Kadison},
{\bf 38}, 521--628.
\bibitem{C16}
Connes, A. (1982).
Classification des facteurs.
{\em Proceedings of the Symposia in Pure Mathematics (II)},
{\bf 38}, 43--109.
\bibitem{C17}
Connes, A. (1985).
Non-commutative differential geometry I--II.
{\em Publication Math\'ematiques IHES},
{\bf 62}, 41--144.
\bibitem{C18}
Connes, A. (1985).
Factors of type III-1, property $L'_\lambda$ and
closure of inner automorphisms.
{\em Journal of Operator Theory}, {\bf 14}, 189--211.
\bibitem{C19}
Connes, A. (1985).
Non Commutative Differential Geometry,
Chapter II: De Rham homology and non commutative
algebra. {\em Publication Math\'ematiques IHES},
{\bf 62}, 257--360.
\bibitem{C20}
Connes, A. (1994).
Noncommutative geometry.
{\em Academic Press}.
\bibitem{CE}
Connes, A. and Evans, D. E. (1989).
Embeddings of $U(1)$-current algebras in
non-commutative algebras of classical statistical
mechanics. {\em Communications in Mathematical
Physics}, {\bf 121}, 507--525.
\bibitem{CoH}
Connes, A. and Higson, N. (1990).
D\'eformations, morphismes asymptotiques et
$K$-th\'eorie bivariante.
{\em Comptes Rendus de l' Academie des Sciences,
S\'erie I, Math\'ematiques},
{\bf 311}, 101--106.
\bibitem{CKa}
Connes, A. and Karoubi, M. (1988).
Caractere multiplicatif d'un module de Fredholm.
{\em $K$-theory}, {\bf 2} 431--463.
\bibitem{CKr}
Connes, A. and Krieger, W. (1977).
Measure space automorphism groups, the normalizer of their
full groups, and approximate finiteness.
{\em Journal of Functional Analysis}, {\bf 24}, 336--352.
\bibitem{CoR}
Connes, A. and Rieffel, M. (1985).
Yang-Mills for non-commutative tori.
{\em Contemporary Mathematics},
{\bf 62}, 237--265.
\bibitem{CoS}
Connes, A. and Skandalis, G. (1984).
The longitudinal index theorem for foliations.
{\em Publications of the RIMS, Kyoto University},
{\bf 20}, 1139--1183.
\bibitem{CS}
Connes, A. and St\"ormer, E. (1975).
Entropy for automorphisms of $II_1$ von Neumann algebras.
{\em Acta Mathematica}, {\bf 134}, 289--306.
\bibitem{CT}
Connes, A. and Takesaki, M. (1977).
The flow of weights on factors of type III.
{\em Tohoku Mathematical Journal}, {\bf 29}, 73--555.
\bibitem{CDR}
Conti, R., Doplicher, S., and Roberts, J. E. (2001).
Superselection theory for subsystems.
{\em Communications in Mathematical Physics},
{\bf 218}, 263--281.
\bibitem{CP}
Conti, R. and Pinzari, C. (1996).
Remarks on the index of endomorphisms of Cuntz algebras.
{\em Journal of Functional Analysis}, {\bf 142}, 369--405.
\bibitem{Cq}
Coquereaux, R. (2005)
The $A_2$ Ocneanu quantum groupoid.
in {\em Algebraic structures and their representations},
{\em Contemporary Mathematics}, {\bf 376}, 227--247.
hep-th/0311151.
\bibitem{CqS1}
Coquereaux, R. and Schieber, G. (2002).
Twisted partition functions for ADE boundary conformal
field theories and Ocneanu algebras of quantum symmetries.
{\em Journal of Geometry and Physics}, {\bf 42}, 216--258.
\bibitem{CqS2}
Coquereaux, R. and Schieber, G. (2003).
Determination of quantum symmetries for higher ADE systems
from the modular T matrix.
{\em Journal of Mathematical Physics}, {\bf 44}, 3809--3837.
hep-th/0203242.
\ bibitem{Cn}
Cuntz, J. (1977).
Simple $C^*$-algebras generated by isometries.
{\em Communications in Mathematical Physics},
{\bf 57}, 173--185.
\bibitem{Cun2}
Cuntz, J. (1981).
$K$-theory for certain $C^*$-algebras.
{\em Annals of Mathematics},
{\bf 113}, 181--197.
\bibitem{Cun4}
Cuntz, J. (1984).
$K$-theory and $C^*$-algebras.
{\em Lecture Notes in Mathematics, Springer-Verlag},
{\bf 1046}.
\bibitem{Cun5}
Cuntz, J. (1981).
A class of $C^*$-algebras and topological Markov chains II.
Reducible Markov chains and the $Ext$ functor for
$C^*$-algebras.
{\em Inventiones Mathematica},
{\bf 63}, 25--40.
\bibitem{CuntzK}
Cuntz, J. and Krieger, W. (1980).
A class of $C^*$-algebras and topological Markov chains.
{\em Inventiones Mathematicae},
{\bf 56}, 251--268.
\bibitem{CDG}
Cvetkovi\'c, D., Doob, M. and Gutman, I. (1982).
On graphs whose spectral radius does not exceed $(2+\sqrt5)^{1/2}$.
{\em Ars Combinatoria}, {\bf 14}, 225--239.
\bibitem{DFK}
D'Antoni, C., Fredenhagen, K. and K\"oster, S. (preprint 2003).
Implementation of conformal covariance by diffeomorphism symmetry.
math-ph/0312017.
\bibitem{DLR}
D'Antoni, C., Longo, R. and Radulescu, F. (2001).
Conformal nets, maximal temperature and models from free probability.
{\em Journal of Operator Theory}, {\bf 45}, 195--208.
\bibitem{DJKMO}
Date, E., Jimbo, M., Kuniba, A., Miwa, T. and Okado, M. (1988).
Exactly solvable SOS models II:
Proof of the star-triangle relation and combinatorial identities.
{\em Advanced Studies in Pure Mathematics}, {\bf 16}, 17--122.
\bibitem{DJMO}
Date, E., Jimbo, M., Miwa, T. and Okado, M. (1987).
Solvable lattice models.
{\em Theta functions --- Bowdoin 1987, Part 1},
Proceedings of Symposia in Pure
Mathematics Vol. 49, American Mathematical Society,
Providence, R.I., pp. 295--332.
\bibitem{David}
David, M. C. (1996).
Paragroupe d'Adrian Ocneanu et alg\`ebre de Kac.
{\em Pacific Journal of Mathematics}, {\bf 172}, 331--363.
\bibitem{Degi}
Degiovanni, P. (1990).
${\bf Z}/N{\bf Z}$ conformal field theories.
{\em Communications in Mathematical Physics},
{\bf 127}, 71--99.
\bibitem{Degi2}
Degiovanni, P. (1992).
Moore and Seiberg's equations and 3D toplogical field theory.
{\bf 145}, 459--505.
\bibitem{DiF}
Di Francesco, P. (1992).
Integrable lattice models, graphs, and modular
invariant conformal field theories.
{\em International Journal of Modern Physics A},
{\bf 7}, 407--500.
\bibitem{DMS}
Di Francesco, P., Mathieu, P. and S\'en\'echal, D. (1996).
Conformal Field Theory.
Springer-Verlag, New York.
\bibitem{DSZ}
Di Francesco, P., Saleur, H. and Zuber, J.-B. (1987).
Modular invariance in non-minimal two-dimensional conformal field
theories.
{\em Nuclear Physics}, {\bf B285}, 454--480.
\bibitem{DZ1}
Di Francesco, P. and Zuber, J.-B. (1990).
$SU(N)$ lattice integrable models associated with graphs.
{\em Nuclear Physics B}, {\bf 338}, 602--646.
\bibitem{DZ2}
Di Francesco, P. and Zuber, J.-B. (1990).
$SU(N)$ lattice integrable models and modular invariance.
in {\em Recent Developments in Conformal Field Theories, Trieste, 1989},
World Scientific, 179--215.
\bibitem{DiPaRo1}
Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1990).
Quasi Hopf algebras, group cohomology and orbifold models.
{\em Nuclear Physics B(Proc. Suppl.)}, {\bf 18}, 60--72.
\bibitem{DiPaRo2}
Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1991).
Quasi-quantum groups related to orbifold models.
{\em Proceedings of the International Colloquium on
Modern Quantum Field Theory}, World Scientific,
Singapore, 375--383.
\bibitem{DVVV}
Dijkgraaf, R., Vafa, C., Verlinde, E. and Verlinde,
H. (1989). The operator algebra of orbifold models.
{\em Communications in Mathematical Physics}, {\bf 123}, 485--526.
\bibitem{DW}
Dijkgraaf, R. and Witten, E. (1990).
Topological gauge theories and group cohomology.
{\em Communications in Mathematical Physics}, {\bf 129}, 393--429.
\bibitem{Di1}
Dixmier, J. (1964).
Les $C^*$-algebras et leurs repr\'esentations.
{\em Gauthier-Villars}.
\bibitem{Di2}
Dixmier, J. (1967).
On some $C^*$-algebras considered by Glimm.
{\em Journal of Functional Analysis}, {\bf 1}, 182--203.
\bibitem{Di3}