-
Notifications
You must be signed in to change notification settings - Fork 2
/
81Q60-BibliographyForOperatorAlgebrasInMathematicalPhysicsAndAQFTKtoZ.tex
977 lines (797 loc) · 32.6 KB
/
81Q60-BibliographyForOperatorAlgebrasInMathematicalPhysicsAndAQFTKtoZ.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{BibliographyForOperatorAlgebrasInMathematicalPhysicsAndAQFTKtoZ}
\pmcreated{2013-03-22 18:46:24}
\pmmodified{2013-03-22 18:46:24}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{bibliography for operator algebras in mathematical physics and AQFT: K-to- Z}
\pmrecord{6}{41566}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Bibliography}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81Q60}
\pmclassification{msc}{03G12}
\pmclassification{msc}{81R50}
\pmclassification{msc}{47C15}
\pmclassification{msc}{81T70}
\pmclassification{msc}{46L35}
\pmclassification{msc}{46L10}
\pmclassification{msc}{46L05}
\pmclassification{msc}{81T60}
\pmclassification{msc}{81T05}
%\pmkeywords{operator algebras in quantum statistical mechanics and AQFTs}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
%%\usepackage{xypic}
\usepackage[mathscr]{eucal}
% define commands here
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\subsection{Literature on operator algebras in mathematical physics and algebraic quantum field theories (AQFT):}
{\bf Alphabetical order: letters from K to Z.}
\begin{thebibliography} {299}
\bibitem{KSW}
Kawahigashi, Y., Sato, N. and Wakui, M. (2005). $(2+1)$-dimensional topological quantum field theory from subfactors
and Dehn surgery formula for $3$-manifold invariants. {\em Advances in Mathematics}, {\bf 195}, 165-179.
\bibitem{KLu}
Kazhdan, V. and Lusztig, G. (1994).
Tensor structures arising from affine Lie algebras.
{\em IV, Journal of the American Mathematical Society},
{\bf 7}, 383--453.
\bibitem{Ki}
Kirby, R. (1978).
A calculus of farmed links in $S^3$.
{\em Inventiones Mathematicae}, {\bf 45}, 35--56.
\bibitem{KM}
Kirby, R. and Melvin, P. (1990).
On the $3$-manifold invariants of Witten and Reshetikhin--Turaev.
{\em Inventiones Mathematicae}, {\bf 105}, 473--545.
\bibitem{KO}
Kirillov, A. Jr. and Ostrik, V. (2002).
On $q$-analog of McKay correspondence and ADE classification of
$sl^{(2)}$ conformal field theories.
{\em Advances in Mathematics}, {\bf 171}, 183--227.
math.QA/0101219.
\bibitem{KiR}
Kirillov, A. N. and Reshetikhin, N. Yu. (1988).
Representations of the algebra $U_q(sl_2)$,
$q$-orthogonal polynomials and invariants for links.
{\em Infinite dimensional Lie algebras and groups}, (Ka\v c,
V. G., ed.), Advanced Series in Mathematical Physics, vol. 7,
285--339.
\bibitem{KZ}
Knizhnik, V. and Zamolodchikov, A. (1984).
Current algebra and Weiss-Zumino models in two dimensions.
{\em Nuclear Physics B}, {\bf 247}, 83--103.
\bibitem{KS1}
Kodiyalam, V. and Sunder, V. S. (2001).
Spectra of principal graphs.
{\em International Journal of Mathematics}, {\bf 12}, 203--210.
\bibitem{KS2}
Kodiyalam, V. and Sunder, V. S. (2001).
Flatness and fusion coefficients.
{\em Pacific Journal of Mathematics}, {\bf 201}, 177--204.
\bibitem{KS3}
Kodiyalam, V. and Sunder, V. S. (2001).
Topological quantum field theories from subfactors.
Chapman \& Hall/CRC, Research Notes in Mathematics, {\bf 423}.
\bibitem{Kn}
Kohno, T. (1987).
Monodromy representations of braid groups and Yang--Baxter
equations.
{\em Annales de l'Institut Fourier, Grenoble},
{\bf 37,4}, 139--160.
\bibitem{Kn1}
Kohno, T. (1992).
Topological invariants for $3$-manifolds using
representations of mapping class groups I.
{\em Topology}, {\bf 31}, 203--230.
\bibitem{Kn2}
Kohno, T. (1992).
Three-manifold invariants derived from conformal field theory
and projective representations of modular groups.
{\em International Journal of Modern Physics}, {\bf 6},
1795--1805.
\bibitem{Ko1}
Kosaki, H. (1986).
Extension of Jones' theory on index to arbitrary factors.
{\em Journal of Functional Analysis}, {\bf 66}, 123--140.
\bibitem{Ko2}
Kosaki, H. (1989).
Characterization of crossed product (properly infinite case).
{\em Pacific Journal of Mathematics}, {\bf 137}, 159--167.
\bibitem{Ko3}
Kosaki, H. (1990).
Index theory for type III factors.
in {\em Mappings of operator algebras,
Proceedings of U.S.-Japan Seminar}, (ed. H. Araki and R. V.
Kadison), Birkh\"auser, 129--139.
\bibitem{Ko4}
Kosaki, H. (1993).
Automorphisms in the irreducible decompositions of sectors.
{\em Quantum and non-commutative analysis}, (ed. H. Araki et al.),
Kluwer Academic, 305--316.
\bibitem{Ko5}
Kosaki, H. (1994).
AFD factor of type III$_0$ with many isomorphic
index 3 subfactors.
{\em Journal of Operator Theory}, {\bf 32}, 17--29.
\bibitem{Ko6}
Kosaki, H. (1994).
Some remarks on automorphisms for inclusions of type III factors.
in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---},
(ed. H. Araki, et al.), World Scientific, 153--171.
\bibitem{Ko7}
Kosaki, H. (1996).
Sector theory and automorphisms for factor-subfactor pairs.
{\em Journal of the Mathematical Society of Japan},
{\bf 48}, 427--454.
\bibitem{KLoi}
Kosaki, H. and Loi, P. H. (1995).
A remark on non-splitting inclusions of type III$_1$
factors.
{\em International Journal of Mathematics}, {\bf 6}, 581--586.
\bibitem{KL}
Kosaki, H. and Longo, R. (1992).
A remark on the minimal index of subfactors.
{\em Journal of Functional Analysis}, {\bf 107}, 458--470.
\bibitem{KMY}
Kosaki, H., Munemasa, A. and Yamagami, S. (1997).
On fusion algebras associated to finite group actions.
{\em Pacific Journal of Mathematics}, {bf 177}, 269--290.
\bibitem{KY}
Kosaki, H. and Yamagami, S. (1992).
Irreducible bimodules associated with crossed
product algebras.
{\em International Journal of Mathematics},
{\bf 3}, 661--676.
\bibitem{Ks}
K\"oster, S. (2002).
Conformal transformations as observables.
{\em Letters in Mathematical Physics},
{\bf 61}, 187--198.
\bibitem{Ks2}
K\"oster, S. (preprint 2003).
Absence of stress energy tensor in CFT$_2$ models.
math-ph/0303053.
\bibitem{Ks3}
K\"oster, S. (2004).
Local nature of coset models.
{\em Reviews in Mathematical Physics},
{\bf 16}, 353--382.
math-ph/0303054.
\bibitem{Ks4}
K\"oster, S. (preprint 2003).
Structure of coset models.
math-ph/0308031.
\bibitem{Kv}
Kostov, I. (1988).
Free field presentation of the $A_n$ coset models on the torus.
{\em Nuclear Physics B}, {\bf 300}, 559--587.
\bibitem{KW}
Kramers, H. A. and Wannier, G. H. (1941).
Statistics of the two dimensional ferromagnet part 1.
{\em Physical Review}, {\bf 60}, 252--262.
\bibitem{Ku}
Kuik, R. (1986).
On the $q$-state Potts model by means of non-commutative algebras.
Ph.D. Thesis Groningen.
\bibitem{KuR}
Kulish, P. and Reshetikhin, N. (1983).
Quantum linear problem for the sine-Gordon equation
and higher representations.
{\em Journal of Soviet Mathematics},
{\bf 23}, 2435--2441.
\bibitem{KAW}
Kuniba, A., Akutsu, Y. and Wadati, M. (1986).
Virasoro algebra, von Neumann algebra
and critical eight vertex SOS model.
{\em Journal of Physics Society of Japan}, {\bf 55}, 3285--3288.
\bibitem{La1}
Landau, Z. (2001).
Fuss-Catalan algebras and chains of intermediate subfactors.
{\em Pacific Journal of Mathematics},
{\bf 197}, 325--367.
\bibitem{La2}
Landau, Z. (2002).
Exchange relation planar algebras.
{\em Journal of Functional Analysis}, {\bf 195}, 71--88.
\bibitem{Lic}
Lickorish, W. (1988).
Polynomials for links.
{\em Bulletin of the American Mathematical Society},
{\bf 20}, 558--588.
\bibitem{Loi1}
Loi, P. H. (1988).
On the theory of index and type III factors.
Thesis, Pennsylvania State University.
\bibitem{Loi2}
Loi, P. H. (1996).
On automorphisms of subfactors.
{\em Journal of Functional Analysis},
{\bf 141}, 275--293.
\bibitem{Loi3}
Loi, P. H. (1994).
On the derived tower of certain inclusions of type
III$_\lambda$ factors of index 4.
{\em Pacific Journal of Mathematics},
{\bf 165}, 321--345.
\bibitem{Loi4}
Loi, P. H. (1994).
Remarks on automorphisms of subfactors.
{\em Proceedings of the American Mathematical Society},
{\bf 121}, 523--531.
\bibitem{Loi5}
Loi, P. H. (1997).
Periodic and strongly free automorphisms on inclusions of
type III$_\lambda$ factors.
{\em International Journal of Mathematics},
{\bf 8}, 83--96.
\bibitem{Loi6}
Loi, P. H. (1998).
A structural result of irreducible inclusions of type
III$_\lambda$ factors.
{\em Proceedings of the American Mathematical Society},
{\bf 126}, 2651--2662.
\bibitem{Loi7}
Loi, P. H. (1998).
Commuting squares and the classification of finite depth
inclusions of AFD type III$_\lambda$ factors, $\lambda\in(0,1)$.
{\em Publications of the RIMS, Kyoto University},
{\bf 34}, 115--122.
\bibitem{Lo}
Loke, T. (1994).
Operator algebras and conformal field theory of the
discrete series representations of Diff$(S^1)$.
{\em Thesis, University of Cambridge}.
\bibitem{Ln1}
Longo, R. (1978)
A simple proof of the existence of modular
automorphisms in approximately finite dimensional
von Neumann algebras.
{\em Pacific Journal of Mathematics}, {\bf 75}, 199--205.
\bibitem{Ln2}
Longo, R. (1979).
Automatic relative boundedness of derivations in
$C^*$-algebras.
{\em Journal of Functional Analysis},
{\bf 34}, 21--28.
\bibitem{Ln3}
Longo, R. (1984).
Solution of the factorial Stone-Weierstrass conjecture.
An application of the theory of standard split $W^*$-inclusions.
{\em Inventiones Mathematicae}, {\bf 76}, 145--155.
\bibitem{Ln4}
Longo, R. (1987).
Simple injective subfactors.
{\em Advances in Mathematics}, {\bf 63}, 152--171.
\bibitem{Ln5}
Longo, R. (1989).
Index of subfactors and statistics of quantum fields, I.
{\em Communications in Mathematical Physics}, {\bf 126}, 217--247.
\bibitem{Ln6}
Longo, R. (1990).
Index of subfactors and statistics of quantum fields II.
{\em Communications in Mathematical Physics}, {\bf 130}, 285--309.
\bibitem{Ln7}
Longo, R. (1992).
Minimal index and braided subfactors.
{\em Journal of Functional Analysis}, {\bf 109}, 98--112.
\bibitem{Ln8}
Longo, R. (1994).
A duality for Hopf algebras and for subfactors I.
{\em Communications in Mathematical Physics},
{\bf 159}, 133--150.
\bibitem{Ln9}
Longo, R. (1994).
Problems on von Neumann algebras suggested by
quantum field theory.
in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---},
(ed. H. Araki, et al.),
World Scientific, 233--241.
\bibitem{Ln10}
Longo, R. (1997).
An analogue of the Kac-Wakimoto formula and black hole
conditional entropy.
{\em Communications in Mathematical Physics},
{\bf 186}, 451--479.
\bibitem{Ln11}
Longo, R. (1999).
On the spin-statistics relation for topological charges.
in {\em Operator Algebras and Quantum Field Theory}
(ed. S. Doplicher, et al.), International Press, 661--669.
\bibitem{Ln12}
Longo, R. (2001).
Notes for a quantum index theorem.
{\em Communications in Mathematical Physics},
{\bf 222}, 45--96.
\bibitem{Ln13}
Longo, R. (2003).
Conformal subnets and intermediate subfactors.
{\em Communications in Mathematical Physics},
{\bf 237}, 7--30.
math.OA/0102196.
\bibitem{LRe}
Longo, R. and Rehren, K.-H. (1995).
Nets of subfactors.
{\em Reviews in Mathematical Physics},
{\bf 7}, 567--597.
\bibitem{LRe2}
Longo, R. and Rehren, K.-H. (2004).
Local fields in boundary CFT.
{\em Reviews in Mathematical Physics},
{\bf 16}, 909--960.
math-ph/0405067.
\bibitem{LRe3}
Longo, R. and Rehren, K.-H. (preprint 2007).
How to remove the boundary.
arXiv:0712.2140.
\bibitem{LRo}
Longo, R. and Roberts, J. E. (1997).
A theory of dimension.
{\em $K$-theory}, {\bf 11}, 103--159.
\bibitem{LX}
Longo, R. and Xu, F. (2004).
Topological sectors and a dichotomy in conformal field theory.
{\em Communications in Mathematical Physics}, {\bf 251}, 321--364.
math.OA/0309366.
\bibitem{Mar}
Markov, A. (1935).
\"Uber de freie Aquivalenz geschlossener Z\"opfe.
{\em Rossiiskaya Akademiya Nauk, Matematicheskii Sbornik}, {\bf 1}, 73--78.
\bibitem{Masuda}
Masuda, T. (1997). An analogue of Longo's canonical endomorphism for
bimodule theory and its application to asymptotic inclusions.
{\em International Journal of Mathematics},
{\bf 8}, 249--265.
\bibitem{Masuda2}
Masuda, T. (1999). Classification of actions of discrete amenable groups on
strongly amenable subfactors of type $III_\lambda$.
{\em Proceedings of the American Mathematical Society},
{\bf 127}, 2053--2057.
\bibitem{Masuda3}
Masuda, T. (1999). Classification of strongly free actions of discrete amenable groups on
strongly amenable subfactors of type $III_0$. {\em Pacific Journal of Mathematics},
{\bf 191}, 347--357.
\bibitem{Masuda4}
Masuda, T. (2000). Generalization of Longo-Rehren construction to subfactors of
infinite depth and amenability of fusion algebras.
{\em Journal of Functional Analysis}, {\bf 171}, 53--77.
\bibitem{Masuda5}
Masuda, T. (2001). Extension of automorphisms of a subfactor to the symmetric
enveloping algebra. {\em International Journal of Mathematics},
{\bf 12}, 637--659.
\bibitem{Masuda6}
Masuda, T. (in press). Classification of approximately inner actions of discrete
amenable groups on strongly amenable subfactors.
{\em International Journal of Mathematics},
\bibitem{Masuda7}
Masuda, T. (2003).Notes on group actions on subfactors.
{\em Journal of the Mathematical Society of Japan}, {\bf 55}, 1--11.
\bibitem{Masuda8}
Masuda, T. (2003). On non-strongly free automorphisms of subfactors of type III$_0$.
{\em Canadian Mathematical Bulletin}, {\bf 46}, 419--428.
\bibitem{Masuda9}
Masuda, T. (2005). An analogue of Connes-Haagerup approach to classification of
subfactors of type $III_1$. {\em Journal of the Mathematical Society of Japan}, {\bf 57}, 959--1001.
\bibitem{MWu}
McCoy, B. and Wu, T. (1972). The two dimensional Ising model.
{\em Harvard University Press, Cambridge, Massachusetts}, {\bf 40}.
\bibitem{McD1}
McDuff, D. (1969). Uncountably many $II_1$ factors. {\em Annals of Mathematics}, {\bf 90}, 372--377.
\bibitem{McD2}
McDuff, D. (1970). Central sequences and the hyperfinite factor.
{\em Proceedings of the London Mathematical Society},
{\bf 21}, 443--461.
\bibitem{MS}
Moore, G. and Seiberg, N. (1989). Classical and quantum conformal field theory.
{\em Communications in Mathematical Physics},
{\bf 123}, 177--254.
\bibitem{MS1}
Moore, G. and Seiberg, N. (1989). Naturality in conformal field theory.
{\em Nuclear Physics B}, {\bf 313}, 16--40.
\bibitem{Mg1}
M\"uger, M. (1998). Superselection structure of massive quantum field theories in $1+1$
dimensions. {\em Reviews in Mathematical Physics}, {\bf 10}, 1147--1170.
\bibitem{Mg2}
M\"uger, M. (1999). On soliton automorphisms in massive and conformal theories.
{\em Reviews in Mathematical Physics}, {\bf 11}, 337--359.
\bibitem{Mg3}
M\"uger, M. (1999). On charged fields with group symmetry and degeneracies of Verlinde's
matrix $S$. {\em Annales de l'Institut Henri Poincar\'e. Physique Th\'eorique},
{\bf 71}, 359--394.
\bibitem{Mg4}
M\"uger, M. (2000). Galois theory for braided tensor categories and the modular closure.
{\em Advances in Mathematics}, {\bf 150}, 151--201.
\bibitem{Mg5}
M\"uger, M. (2001). Conformal field theory and Doplicher-Roberts reconstruction.
in {\em Mathematical Physics in Mathematics and Physics} (ed. R. Longo),
The Fields Institute Communications {\bf 30}, Providence, Rhode Island:
AMS Publications, 297--319. math-ph/0008027.
\bibitem{Mg6}
M\"uger, M. (2003). From subfactors to categories and topology I.
Frobenius algebras in and Morita equivalence of tensor categories.
{\em Journal of Pure and Applied Algebra}, {\bf 180}, 81--157. math.CT/0111204.
\bibitem{Mg7}
M\"uger, M. (2003). From subfactors to categories and topology II.
The quantum double of subfactors and categories.
{\em Journal of Pure and Applied Algebra}, {\bf 180}, 159--219. math.CT/0111205.
\bibitem{Mg8}
M\"uger, M. (in press).
On the structure of modular categories. {\em Proceedings of the London Mathematical Society}. math.CT/0201017.
\bibitem{Mg9}
M\"uger, M. (preprint 2002). Galois extensions of braided tensor categories and
braided crossed G-categories. math.CT/0209093.
\bibitem{Mg10}
M\"uger, M. (2005). Conformal orbifold theories and braided crossed G-categories
{\em Communications in Mathematical Physics}, {\bf 260}, 727--762. math.QA/0403322.
\bibitem{MW}
Munemasa, A. and Watatani, Y. (1992). Paires orthogonales de sous-algebres involutives.
{\em Comptes Rendus de l'Academie des Sciences,
S\'erie I, Math\'ematiques}, {\bf 314}, 329--331.
\bibitem{MuJ}
Murakami, J. (1987). The Kauffman polynomial of lins and representation theory.
{\em Osaka Journal of Mathematics}, {\bf 24}, 745--758.
\bibitem{MuH}
Murakami, H. (1994). Quantum $SU(2)$-invariants dominate Casson's
$SU(2)$-invariant. {\em Mathematical Proceedings of the Cambridge Philosophical Society},
{\bf 115}, 253--281.
\bibitem{Mur}
Murphy, G. J. (1990). $C^*$-Algebras and Operator Theory. {\em Academic Press Incorporated}.
\bibitem{Murray}
Murray, F. J. (1990). The rings of operators. {\em Symposia Mathematica},{\bf 50}, 57--60.
\bibitem{MvN1}
Murray, F. J. and von Neumann, J. (1936). On rings of operators.
{\em Annals of Mathematics},
{\bf 37}, 116--229.
\bibitem{MvN2}
Murray, F. J. and von Neumann, J. (1937). On rings of operators II.
{\em Transactions of the American Mathematical Society},
{\bf 41}, 208--248.
\bibitem{MvN3}
Murray, F. J. and von Neumann, J. (1943). On rings of operators IV.
{\em Annals of Mathematics}, {\bf 44}, 716--808.
\bibitem{Na}
Nahm, W. (1988). Lie group exponents and $SU(2)$ current algebras.
{\em Communications in Mathematical Physics}, {\bf 118}, 171--176.
\bibitem{Nahm}
Nahm, W. (1991). A proof of modular invariance. {\em International Journal of Modern Physics},
{\bf 6}, 2837--2845.
\bibitem{NT}
Nakanishi, T. and Tsuchiya, A. (1992). Level-rank duality of $WZW$ models in conformal field theory.
{\em Communications in Mathematical Physics}, {\bf 144}, 351--372.
\bibitem{vN1}
von Neumann, J. (1935). Charakterisierung des Spektrums eines Integral Operators.
{\em Act. Sci. et Ind.}, {\bf 229}.
\bibitem{vN2} von Neumann, J. (1940). On Rings of Operators III. {\em Annals of Mathematics}, {\bf 41}, 94--161.
\bibitem{Neu}
von Neumann, J. (1961). Collected works vol. III. Rings of Operators. Pergamon Press.
\bibitem{NV}
Nikshych, D. and Vainerman, L. (2000).
A Galois correspondence for $II_1$ factors and quantum groupoids.
{\em Journal of Functional Analysis}, {\bf 178}, 113--142.
\bibitem{NW}
Nill, F. and Wiesbrock, H.-W. (1995). A comment on Jones inclusions with infinite index. {\em Reviews in Mathematical Physics}, {\bf 7}, 599--630.
\bibitem{O1}
Ocneanu, A. (1985). {\em Actions of discrete amenable groups on factors},
Lecture Notes in Mathematics {\bf 1138}, Springer, Berlin.
\bibitem{O2}
Ocneanu, A. (1988). Quantized group, string algebras and Galois theory for algebras.
{\em Operator algebras and applications, Vol. 2 (Warwick, 1987)},
(ed. D. E. Evans and M. Takesaki), London Mathematical Society
Lecture Note Series Vol. 136, Cambridge University Press, 119--172.
\bibitem{O3}
Ocneanu, A. (1991). {\em Quantum symmetry, differential geometry of
finite graphs and classification of subfactors},
University of Tokyo Seminary Notes 45, (Notes recorded by Kawahigashi, Y.).
\bibitem{O4}
Ocneanu, A. (1994). Chirality for operator algebras. (recorded by Kawahigashi, Y.)
in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---},
(ed. H. Araki, et al.), World Scientific, 39--63.
\bibitem{O5}
Ocneanu, A. (2000).
Paths on Coxeter diagrams: from Platonic solids and singularities
to minimal models and subfactors. (Notes recorded by S. Goto), in
{\em Lectures on operator theory}, (ed. B. V. Rajarama Bhat et al.), The Fields Institute Monographs, Providence, Rhode Island: AMS Publications, 243--323.
\bibitem{O6}
Ocneanu, A. (2001). Operator algebras, topology and subgroups of quantum symmetry
--construction of subgroups of quantum groups--. (recorded by Goto, S. and Sato, N.) in {\em Taniguchi Conference on Mathematics Nara'98}, Advanced Studies in Pure Mathematics {\bf 31}, (ed. M. Maruyama and T. Sunada), Mathematical Society of Japan, 235--263.
\bibitem{O7}
Ocneanu, A. (2002).
The classification of subgroups of quantum $SU(N)$.
in {\em Quantum Symmetries in Theoretical Physics and
Mathematics} (ed. R. Coquereaux et al.), Comtemp. Math. {\bf 294}, Amer. Math. Soc., 133--159.
\bibitem{Ok}
Okamoto, S. (1991). Invariants for subfactors arising from Coxeter
graphs. {\em Current Topics in Operator Algebras},
World Scientific Publishing, 84--103.
\bibitem{On1}
Onsager, L. (1941). Crystal Statistics I. {\em Physical Review}, {\bf 65}, 117--149.
\bibitem{On2}
Onsager, L. (1949). Discussion remark (Spontaneous magnetisation of the
two-dimensional Ising model. {\em Nuovo Cimento, Supplement}, {\bf 6}, 261--262.
\bibitem{Os}
Ostrik, V. (preprint 2001). Module categories, weak Hopf algebras and modular invariants.
math.RT/0111140.
\bibitem{Os2}
Ostrik, V. (2003).
Module categories over the Drinfeld double of a finite group.
{\em International Mathematics Research Notices}, 1507-1520.
\bibitem{Oz}
Ozawa, N. (in press). No separable $II_1$-factor can contain all separable $II_1$-factors
as its subfactors. {\em Proceedings of the American Mathematical Society}. math.OA/0210411
\bibitem{Maltsiniotis}
G. Maltsiniotis.: Groupo$\ddot{i}$des quantiques., C. R. Acad. Sci. Paris, \textbf{314}:
249 -- 252.(1992)
\bibitem{May}
J.P. May: A Concise Course in Algebraic Topology. Chicago and London: The Chicago University
Press. (1999).
\bibitem{Mitchell}
B. Mitchell: \emph{The Theory of Categories}, Academic Press,
London, (1965).
\bibitem{Mitchell72}
B. Mitchell: Rings with several objects., \textit{Adv. Math}. \textbf{8}: 1 - 161 (1972).
\bibitem{Mitchell85}
B. Mitchell: Separable Algebroids., {\em M. American Math. Soc.} \textbf{333}:10-19 (1985).
\bibitem{Mo}
G. H. Mosa: \emph{Higher dimensional algebroids and Crossed
complexes}, PhD thesis, University of Wales, Bangor, (1986).
\bibitem{Moultaka}
G. Moultaka, M. Rausch de Traubenberg and A. Tanas\u a: Cubic
supersymmetry and abelain gauge invariance, \emph{Internat. J.
Modern Phys. A} \textbf{20} no. 25 (2005), 5779--5806.
\bibitem{Mrcun}
J. Mr\v cun : On spectral representation of coalgebras and Hopf
algebroids, (2002) preprint.\\ http://arxiv.org/abs/math/0208199.
\bibitem{MRW}
P. Muhli, J. Renault and D. Williams: Equivalence and isomorphism for groupoid C*--algebras., \textit{J. Operator Theory}, \textbf{17}: 3-22 (1987).
\bibitem{Nikshych}
D. A. Nikshych and L. Vainerman: \emph{J. Funct. Anal.}
\textbf{171} (2000) No. 2, 278--307
\bibitem{Nishimura96}
H. Nishimura.: Logical quantization of topos theory., \textit{International Journal of Theoretical Physics}, Vol. \textbf{35},(No. 12): 2555--2596 (1996).
\bibitem{NM}
M. Neuchl, PhD Thesis, University of Munich (1997).
\bibitem{OV06}
V. Ostrik.: Module Categories over Representations of $SL_q(2)$
in the Non--simple Case. (2006).
\\ http://arxiv.org/PS--cache/math/pdf/0509/0509530v2.pdf
\bibitem{PAk3}
A. L. T. Paterson: The Fourier-Stieltjes and Fourier algebras for locally
compact groupoids., \textit{Contemporary Mathematics} \textbf{321}: 223-237 (2003)
\bibitem{PLR}
R. J. Plymen and P. L. Robinson : {\em Spinors in Hilbert Space}.
\emph{Cambridge Tracts in Math.} \textbf{114}, \emph{Cambridge Univ. Press} (1994).
\bibitem{NPopescu}
N. Popescu.: \emph{The Theory of Abelian Categories with Applications to Rings and
Modules}, New York and London: Academic Press (1968).
\bibitem{Prigogine}
I. Prigogine: \textit{From being to becoming: time and complexity in the physical sciences}. W. H. Freeman and Co: San Francisco (1980).
\bibitem{RW1}
A. Ramsay: Topologies on measured groupoids., \textit{J. Functional Analysis}, \textbf{47}: 314-343 (1982).
\bibitem{RW2}
A. Ramsay and M. E. Walter: Fourier-Stieltjes algebras of locally compact groupoids.,
\textit{J. Functional Analysis}, \textbf{148}: 314-367 (1997).
\bibitem{RZ}
I. Raptis and R. R. Zapatrin : Quantisation of discretized
spacetimes and the correspondence principle, \emph{Int. Jour.Theor. Phys.} \textbf{39},(1), (2000).
\bibitem{REG}
T. Regge.: General relativity without coordinates. \textit{Nuovo Cimento} (\textbf{10}) 19: 558\^a~@~S571 (1961).
\bibitem{Rehren}
H.--K. Rehren: Weak C*--Hopf symmetry, \emph{Quantum Group
Symposium at Group 21, Proceedings, Goslar (1996}, Heron Ptess, Sofia BG : 62--69(1997).
\bibitem{Renault1}
J. Renault: A groupoid approach to C*-algebras. Lecture Notes in Maths. \textbf{793}, Berlin: Springer-Verlag,(1980).
\bibitem{Renault2}
J. Renault: Representations de produits croises d'algebres de groupoides. ,
\textit{J. Operator Theory}, \textbf{18}:67-97 (1987).
\bibitem{Renault3}
J. Renault: The Fourier algebra of a measured groupoid and its multipliers.,
\textit{J. Functional Analysis}, \textbf{145}: 455-490 (1997).
\bibitem{Rieffel1}
M. A. Rieffel: Group C*--algebras as compact quantum metric spaces, \emph{Documenta Math.} \textbf{7}: 605-651 (2002).
\bibitem{Rieffel2}
M. A. Rieffel: Induced representations of C*-algebras, \emph{Adv. in Math.} \textbf{13}: 176-254 (1974).
\bibitem{noncomm}
J. E. Roberts : More lectures on algebraic quantum field theory (in A. Connes, et al., {\em Noncommutative Geometry}), Springer: Berlin (2004).
\bibitem{RJ2}
J. Roberts.: Skein theory and Turaev-Viro invariants. \textit{Topology} \textbf{34}(no.4):771-787(1995).
\bibitem{RJ3} J. Roberts. Refined state-sum invariants of 3- and 4- manifolds. Geometric topology
(Athens, GA, 1993), 217-234, \textit{AMS/IP Stud. Adv. Math}., \textbf{2.1}, Amer. Math.Soc., Providence, RI,(1997).
\bibitem{RC98}
Rovelli, C.: 1998, Loop Quantum Gravity, in N. Dadhich, et al. {\em Living Reviews in Relativity}.
\bibitem{Schwartz45}
Schwartz, L.: Generalisation de la Notion de Fonction, de Derivation, de Transformation
de Fourier et Applications Mathematiques et Physiques, \textit{Annales de l'Universite de Grenoble},
21: 57-74 (1945).
\bibitem{Schwartz52}
Schwartz, L.: Th\'eorie des Distributions, Publications de l'Institut de Math\'ematique
de l'Universit\'e de Strasbourg, Vols 9-10, Paris: Hermann (1951-1952).
\bibitem{Seda1}
A. K. Seda: Haar measures for groupoids, \emph{Proc. Roy. Irish Acad.
Sect. A} \textbf{76} No. 5, 25--36 (1976).
\bibitem{Seda2}
A. K. Seda: Banach bundles of continuous functions and an integral
representation theorem, \emph{Trans. Amer. Math. Soc.} \textbf{270} No.1 : 327-332(1982).
\bibitem{Seda1}
A. K. Seda: On the Continuity of Haar measures on topological groupoids, \emph{Proc. Amer Mat. Soc.} \textbf{96}: 115--120 (1986).
\bibitem{Segal47b}
I. E. Segal, Postulates for General Quantum Mechanics, {\em Annals of Mathematics}, 4:
930-948 (1947b).
\bibitem{Segal47a}
I.E. Segal.: Irreducible Representations of Operator Algebras, {\em Bulletin of the
American Mathematical Society}, 53: 73-88 (1947a).
\bibitem{Sklyanin83}
E.K. Sklyanin: Some Algebraic Structures Connected with the Yang-Baxter equation, Funct. Anal. Appl., \textbf{16}: 263--270 (1983).
\bibitem{Sklyanin84}
Some Algebraic Structures Connected with the Yang-Baxter equation. Representations of Quantum Algebras, Funct. Anal.Appl., 17: 273-284 (1984).
\bibitem{Szlach}
K. Szlach\'anyi: The double algebraic view of finite quantum
groupoids, \emph{J. Algebra} \textbf{280} (1) , 249-294 (2004).
\bibitem{Sweedler96}
M. E. Sweedler: \textit{Hopf algebras.} W.A. Benjamin, INC., New
York (1996).
\bibitem{Tanasa}
A. Tanas\u a: Extension of the Poincar\'e symmetry and its field
theoretical interpretation, \emph{SIGMA Symmetry Integrability
Geom. Methods Appl.} \textbf{2} (2006), Paper 056, 23 pp.
(electronic).
\bibitem{taylorj:88}
J.~{T}aylor, {\em Quotients of Groupoids by the Action of a
Group\/}, Math. Proc. {C}amb. Phil. Soc., 103, (1988), 239--249.
\bibitem{tonksthesis}
A.~P. Tonks, 1993, {\em Theory and applications of crossed
complexes\/}, Ph.D. thesis, University of Wales, Bangor.
\bibitem{TV}
V.G. Turaev and O.Ya. Viro. State sum invariants of 3-manifolds and quantum
6j-symbols. \textit{Topology} \textbf{31} (no. 4): 865-902 (1992).
\bibitem{Varilly}
J. C. V\'arilly: An introduction to noncommutative geometry, (1997)
arXiv:physics/9709045
\bibitem{van kampen1}
E.~H.~van {Kampen}, {\em On the Connection Between the Fundamental
Groups of some Related Spaces\/}, Amer. J. Math., 55, (1933), 261--267.
\bibitem{Xu}
P. Xu.: Quantum groupoids and deformation quantization. (1997)
(at arxiv.org/pdf/q--alg/9708020.pdf).
\bibitem{Y}
D.N. Yetter.: TQFT's from homotopy 2-types. \textit{J. Knot Theor}. \textbf{2}:113-123(1993).
\bibitem{Weinberg}
S. Weinberg.: \emph{The Quantum Theory of Fields}. Cambridge, New York and Madrid: %%@
Cambridge University Press, Vols. 1 to 3, (1995--2000).
\bibitem{Weinstein}
A. Weinstein : Groupoids: unifying internal and external symmetry,
\emph{Notices of the Amer. Math. Soc.} \textbf{43} (7): 744--752 (1996).
\bibitem{WB}
J. Wess and J. Bagger: \emph{Supersymmetry and Supergravity},
Princeton University Press, (1983).
\bibitem{WJ1}
J. Westman: Harmonic analysis on groupoids, \textit{Pacific J. Math.} \textbf{27}: 621-632. (1968).
\bibitem{WJ1}
J. Westman: Groupoid theory in algebra, topology and analysis., \textit{University of California at Irvine} (1971).
\bibitem{Wickra}
S. Wickramasekara and A. Bohm: Symmetry representations in the rigged Hilbert space formulation of quantum mechanics, \emph{J. Phys. A} \textbf{35} (2002), no. 3, 807-829.
\bibitem{Wightman1}
Wightman, A. S., 1956, Quantum Field Theory in Terms of Vacuum Expectation Values, \emph{Physical Review}, \textbf{101}: 860--866.
\bibitem{Wightman2}
Wightman, A. S., 1976, Hilbert's Sixth Problem: Mathematical Treatment of the Axioms of Physics, \emph{Proceedings of Symposia in Pure Mathematics}, \textbf{28}: 147--240.
\bibitem{Wightman--Garding3}
Wightman, A.S. and G\aa{}rding, L., 1964, Fields as Operator--Valued Distributions in
Relativistic Quantum Theory, \emph{Arkiv fur Fysik}, 28: 129--184.
\bibitem{Woronowicz1}
S. L. Woronowicz : Twisted $SU(2)$ group : An example of a non-commutative differential calculus, RIMS, Kyoto University \textbf{23} 1987), 613-665.
\end{thebibliography}
%%%%%
%%%%%
\end{document}