-
Notifications
You must be signed in to change notification settings - Fork 2
/
81R40-CompactQuantumGroupoidsRelatedToCalgebras.tex
514 lines (434 loc) · 25.3 KB
/
81R40-CompactQuantumGroupoidsRelatedToCalgebras.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CompactQuantumGroupoidsRelatedToCalgebras}
\pmcreated{2013-03-22 18:13:34}
\pmmodified{2013-03-22 18:13:34}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{compact quantum groupoids related to C*-algebras}
\pmrecord{125}{40812}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Topic}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81R40}
\pmclassification{msc}{81R60}
\pmclassification{msc}{81Q60}
\pmclassification{msc}{81R50}
\pmclassification{msc}{81R15}
\pmclassification{msc}{46L05}
\pmsynonym{quantum compact groupoids}{CompactQuantumGroupoidsRelatedToCalgebras}
\pmsynonym{weak Hopf algebras}{CompactQuantumGroupoidsRelatedToCalgebras}
\pmsynonym{quantized locally compact groupoids with left Haar measure}{CompactQuantumGroupoidsRelatedToCalgebras}
%\pmkeywords{algebra of quantum operators}
%\pmkeywords{morphism of C*-algebras}
%\pmkeywords{C*-algebra}
%\pmkeywords{$C^*$-algebra groupoid and group representations related to quantum symmetries}
%\pmkeywords{C*-algebra definition}
%\pmkeywords{von Neumann Algebras}
%\pmkeywords{Grassman-Hopf algebra}
%\pmkeywords{coalgebra and tangled G-H algebras}
\pmrelated{GroupoidCDynamicalSystem}
\pmrelated{GroupoidAndGroupRepresentationsRelatedToQuantumSymmetries}
\pmrelated{QuantumAlgebraicTopology}
\pmrelated{GrassmanHopfAlgebrasAndTheirDualCoAlgebras}
\pmrelated{NoncommutativeGeometry}
\pmrelated{GroupoidCConvolutionAlgebra}
\pmrelated{JordanBanachAndJordanLieAlgebras}
\pmrelated{ClassesOfAlgebr}
\pmdefines{commutative C*-algebra}
\pmdefines{QOA}
\pmdefines{alternative definition of C*-algebra}
\pmdefines{C*-norm}
\pmdefines{morphism between C*-algebras}
\pmdefines{category of C*-algebras}
\pmdefines{quantum compact groupoid}
\endmetadata
% this is the default PlanetMath preamble.
% almost certainly you want these
\usepackage{amssymb,amscd}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{mathrsfs}
% for neatly defining theorems and propositions
\usepackage{amsthm}
% making logically defined graphics
%%\usepackage{xypic}
\newcommand*{\abs}[1]{\left\lvert #1\right\rvert}
\newtheorem{prop}{Proposition}
\newtheorem{thm}{Theorem}
\newtheorem{ex}{Example}
\newcommand{\real}{\mathbb{R}}
\newcommand{\pdiff}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\mpdiff}[3]{\frac{\partial^#1 #2}{\partial #3^#1}}
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
%%\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbo{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\section{Compact quantum groupoids (CGQs) and C*-algebras}
\subsection{Introduction: von Neumann and C*-algebras. Quantum operator algebras in quantum theories}
C*-algebra has evolved as a key concept in quantum operator algebra (QOA) after the introduction of the
von Neumann algebra for the mathematical foundation of quantum mechanics. The von Neumann algebra classification is simpler and studied in greater depth than that of general C*-algebra classification theory. The importance of
C*-algebras for understanding the geometry of quantum state spaces (viz. Alfsen and Schultz, 2003 \cite{AS2k3}) cannot be overestimated. Moreover, the introduction of non-commutative C*-algebras in noncommutative geometry has already played important roles in expanding the Hilbert space perspective of quantum mechanics developed by von Neumann. Furthermore, extended quantum symmetries are currently being approached in terms of groupoid C*- convolution algebra and their representations; the latter also enter into the construction of compact quantum groupoids as developed in the Bibliography cited, and also briefly outlined here in the third section. The fundamental connections that exist between categories of $C^*$-algebras and those of von Neumann and other quantum operator algebras, such as JB- or JBL- algebras are yet to be completed and are the subject
of in depth studies \cite{AS2k3}.
\subsection{Basic definitions}
Let us recall first the basic definitions of C*-algebra and involution on a complex algebra.
Further details can be found in a separate entry focused on \PMlinkname{$C^*$-algebras}{CAlgebra}.
A \emph{C*-algebra} is simultaneously a *--algebra and a Banach space -with additional conditions- as defined next.
Let us consider first the definition of an \emph{involution} on a complex algebra $\mathfrak A$.
\begin{definition}
An \emph{involution} on a complex algebra $\mathfrak A$ is a \emph{real--linear map} $T \mapsto T^*$
such that for all $S, T \in \mathfrak A$ and $\lambda \in \bC$, we have $ T^{**} = T~,~ (ST)^* = T^* S^*~,~ (\lambda T)^* = \bar{\lambda} T^*~. $
\end{definition}
A \emph{*-algebra} is said to be a complex associative algebra together with an involution $*$~.
\begin{definition}
A \emph{C*-algebra} is simultaneously a *-algebra and a Banach space $\mathfrak A$,
satisfying for all $S, T \in \mathfrak A$~ the following conditions:
$ \begin{aligned} \Vert S \circ T \Vert &\leq \Vert S \Vert ~ \Vert T \Vert~, \\ \Vert T^* T \Vert^2 & = \Vert T\Vert^2 ~. \end{aligned}$
\end{definition}
One can easily verify that $\Vert A^* \Vert = \Vert A \Vert$~.
By the above axioms a C*--algebra is a special case of a Banach algebra where the latter requires the above C*-norm property, but not the involution ($*$) property.
Given Banach spaces $E, F$ the space $\mathcal L(E, F)$ of (bounded) linear operators from $E$ to $F$ forms a Banach space, where for $E=F$, the space $\mathcal L(E) = \mathcal L(E, E)$ is a Banach algebra with respect to the norm
$\Vert T \Vert := \sup\{ \Vert Tu \Vert : u \in E~,~ \Vert u \Vert= 1 \}~. $
In quantum field theory one may start with a Hilbert space $H$, and consider the Banach
algebra of bounded linear operators $\mathcal L(H)$ which given to be closed under the usual
algebraic operations and taking adjoints, forms a $*$--algebra of bounded operators, where the
adjoint operation functions as the involution, and for $T \in \mathcal L(H)$ we have~:
$ \Vert T \Vert := \sup\{ ( Tu , Tu): u \in H~,~ (u,u) = 1 \}~,$ and $ \Vert Tu \Vert^2 = (Tu,
Tu) = (u, T^*Tu) \leq \Vert T^* T \Vert~ \Vert u \Vert^2~.$
By a \emph{morphism between C*-algebras} $\mathfrak A,\mathfrak B$ we mean a linear map $\phi :
\mathfrak A \lra \mathfrak B$, such that for all $S, T \in \mathfrak A$, the following hold~:
$\phi(ST) = \phi(S) \phi(T)~,~ \phi(T^*) = \phi(T)^*~, $
where a bijective morphism is said to be an isomorphism (in which case it is then an
isometry). A fundamental relation is that any norm-closed $*$-algebra $\mathcal A$ in
$\mathcal L(H)$ is a \PMlinkname{C*-algebra}{CAlgebra3}, and conversely, any \PMlinkname{C*-algebra}{CAlgebra3} is isomorphic to a norm--closed $*$-algebra in $\mathcal L(H)$ for some Hilbert space $H$~.
One can thus also define \emph{the category $\mathcal{C}^*$ of C*-algebras and morphisms between C*-algebras}.
For a \PMlinkname{C*-algebra}{CAlgebra3} $\mathfrak A$, we say that $T \in \mathfrak A$ is \emph{self--adjoint} if $T
= T^*$~. Accordingly, the self--adjoint part $\mathfrak A^{sa}$ of $\mathfrak A$ is a real
vector space since we can decompose $T \in \mathfrak A^{sa}$ as ~:
$ T = T' + T^{''} := \frac{1}{2} (T + T^*) + \iota (\frac{-\iota}{2})(T - T^*)~.$
A \emph{commutative} C* -algebra is one for which the associative multiplication is
commutative. Given a commutative C* -algebra $\mathfrak A$, we have $\mathfrak A \cong C(Y)$,
the algebra of continuous functions on a compact Hausdorff space $Y~$.
The classification of {\em $C^*$ -algebras} is far more complex than that of von Neumann algebras that provide
the fundamental algebraic content of quantum state and operator spaces in quantum theories.
\subsection{Quantum groupoids and the groupoid C*-algebra}
Quantum groupoid (or their dual, weak Hopf coalgebras) and algebroid symmetries figure prominently both in the theory of dynamical deformations of quantum groups (or their dual Hopf algebras) and the quantum Yang--Baxter equations (Etingof et al., 1999, 2001; \cite{E99,E2k}). On the other hand, one can also consider the natural
extension of locally compact (quantum) groups to locally compact
(proper) \emph{groupoids} equipped with a Haar measure and a corresponding groupoid representation theory
(Buneci, 2003,\cite{MB2k3}) as a major, potentially interesting source for locally compact (but
generally \emph{non-Abelian}) quantum groupoids. The corresponding quantum groupoid representations on bundles of
Hilbert spaces extend quantum symmetries well beyond those of quantum groups and their dual Hopf algebras, and also beyond the simpler operator algebra representations, and are also consistent with the locally compact quantum group representations. The latter quantum groups are neither Hopf algebras, nor are they equivalent to Hopf algebras or their dual coalgebras. As pointed out in the previous section, quantum groupoid representations are, however, the next important step towards unifying quantum field theories with General Relativity in a locally covariant and quantized form. Such representations need not however be restricted to weak Hopf algebra representations, as the latter have no known connection to any type of GR theory and also appear to be inconsistent with GR.
Quantum groupoids were recently considered as weak C* -Hopf algebras, and were studied in relationship to the non- commutative symmetries of depth 2 von Neumann subfactors. If
\begin{equation}
A \subset B \subset B_1 \subset B_2 \subset \ldots
\end{equation}
is the Jones extension induced by a finite index depth $2$
inclusion $A \subset B$ of $II_1$ factors, then $Q= A' \cap B_2$
admits a quantum groupoid structure and acts on $B_1$, so that $B
= B_1^{Q}$ and $B_2 = B_1 \rtimes Q$~. Similarly, `paragroups' derived from weak C* -Hopf algebras comprise (quantum) groupoids of equivalence classes such as those associated with $6j$-symmetry groups (relative to a fusion rules algebra). They correspond to type $II$ von Neumann algebras in quantum mechanics, and arise as symmetries where the local subfactors (in the sense of containment of quantum observables within fields) have depth 2 in the
Jones extension. A related question is how a von Neumann algebra $W^*$, such as
of finite index depth 2, sits inside a weak Hopf algebra formed as the crossed product
$W^* \rtimes A$.
\subsection{Quantum compact groupoids}
Compact quantum groupoids were introduced in Landsman (1998; ref. \cite{L98}) as a
simultaneous generalization of a compact groupoid and a quantum group. Since this construction is relevant to the definition of locally compact quantum groupoids and their representations investigated here, its exposition is required before we can step up to the next level of generality. Firstly, let $\mathfrak A$ and $\mathfrak B$ denote C*--algebras equipped with a *--homomorphism $\eta_s : \mathfrak B \lra \mathfrak A$, and a *--antihomomorphism $\eta_t : \mathfrak B \lra \mathfrak A$ whose images in $\mathfrak A$
commute. A non--commutative Haar measure is defined as a completely
positive map $P: \mathfrak A \lra \mathfrak B$ which satisfies
$P(A \eta_s (B)) = P(A) B$~. Alternatively, the composition $\E = \eta_s \circ P : \mathfrak A \lra \eta_s (B) \subset \mathfrak A$ is a faithful conditional expectation.
Next consider $\mathsf{G}$ to be a (topological) groupoid, and let us denote by $C_c(\mathsf{G})$ the space of smooth complex--valued functions with compact support on $\mathsf{G}$~. In particular, for all $f,g \in C_c(\mathsf{G})$, the
function defined via convolution
\begin{equation} (f ~*~g)(\gamma)
= \int_{\gamma_1 \circ \gamma_2 = \gamma} f(\gamma_1) g
(\gamma_2)~,
\end{equation}
is again an element of $C_c(\mathsf{G})$, where the convolution product defines the composition law on $C_c(\mathsf{G})$~. We can turn $C_c(\mathsf{G})$ into a $*$ -algebra once we have defined the involution
$*$, and this is done by specifying $f^*(\gamma) = \overline{f(\gamma^{-1})}$~.
We recall that following Landsman (1998) a \emph{representation} of a groupoid $\grp$, consists of a
family (or field) of Hilbert spaces $\{\mathcal H_x \}_{x \in X}$
indexed by $X = \ob~ \grp$, along with a collection of maps $\{
U(\gamma)\}_{\gamma \in \grp}$, satisfying:
\begin{itemize}
\item[1.]
$U(\gamma) : \mathcal H_{s(\gamma)} \lra \mathcal H_{r(\gamma)}$,
is unitary.
\item[2.]
$U(\gamma_1 \gamma_2) = U(\gamma_1) U( \gamma_2)$, whenever
$(\gamma_1, \gamma_2) \in \grp^{(2)}$~ (the set of arrows).
\item[3.]
$U(\gamma^{-1}) = U(\gamma)^*$, for all $\gamma \in \grp$~.
\end{itemize}
Suppose now $\mathsf{G}_{lc}$ is a Lie groupoid. Then the isotropy group
$\mathsf{G}_x$ is a Lie group, and for a (left or right) Haar
measure $\mu_x$ on $\mathsf{G}_x$, we can consider the Hilbert
spaces $\mathcal H_x = L^2(\mathsf{G}_x, \mu_x)$ as exemplifying the
above sense of a representation. Putting aside some technical
details which can be found in Connes (1994) and Landsman (2006), the
overall idea is to define an operator of Hilbert spaces
\begin{equation}\pi_x(f) : L^2(\mathsf{G_x},\mu_x) \lra L^2(\mathsf{G}_x, \mu_x)~,
\end{equation}
given by
\begin{equation}
(\pi_x(f) \xi)(\gamma) = \int f(\gamma_1) \xi (\gamma_1^{-1}
\gamma)~ d\mu_x~,
\end{equation}
for all $\gamma \in \mathsf{G}_x$, and
$\xi \in \mathcal H_x$~. For each $x \in X =\ob ~\mathsf{G}$, $\pi_x$
defines an involutive representation $\pi_x : C_c(\mathsf{G}) \lra
\mathcal H_x$~. We can define a norm on $C_c(\mathsf{G})$ given by
\begin{equation}
\Vert f \Vert = \sup_{x \in X} \Vert \pi_x(f) \Vert~,
\end{equation}
whereby the completion of $C_c(\mathsf{G})$ in this norm, defines
\emph{the reduced C*--algebra $C^*_r(\mathsf{G})$ of $\mathsf{G}_{lc}$}. It is
perhaps the most commonly used C*--algebra for Lie groupoids
(groups) in noncommutative geometry.
The next step requires a little familiarity with the theory of
Hilbert modules. We define a left
$\mathfrak B$--action $\lambda$ and a right $\mathfrak B$--action
$\rho$ on $\mathfrak A$ by $\lambda(B)A = A \eta_t (B)$ and
$\rho(B)A = A \eta_s(B)$~. For the sake of localization of the
intended Hilbert module, we implant a $\mathfrak B$--valued inner
product on $\mathfrak A$ given by $\langle A, C \rangle_{\mathfrak
B} = P(A^* C)$ ~. Let us recall that $P$ is defined as a \emph{completely positive map}.
Since $P$ is faithful, we fit a new norm on $\mathfrak A$ given by $\Vert A \Vert^2 = \Vert P(A^* A)
\Vert_{\mathfrak B}$~. The completion of $\mathfrak A$ in this new
norm is denoted by $\mathfrak A^{-}$ leading then to a Hilbert
module over $\mathfrak B$~.
The tensor product $\mathfrak A^{-} \otimes_{\mathfrak B}\mathfrak
A^{-}$ can be shown to be a Hilbert bimodule over $\mathfrak B$,
which for $i=1,2$, leads to *--homorphisms $\vp^{i} : \mathfrak A
\lra \mathcal L_{\mathfrak B}(\mathfrak A^{-} \otimes \mathfrak
A^{-})$~. Next is to define the (unital) C*--algebra $\mathfrak A
\otimes_{\mathfrak B} \mathfrak A$ as the C*--algebra contained in
$ \mathcal L_{\mathfrak B}(\mathfrak A^{-} \otimes \mathfrak
A^{-})$ that is generated by $\vp^1(\mathfrak A)$ and
$\vp^2(\mathfrak A)$~. The last stage of the recipe for defining a
compact quantum groupoid entails considering a certain coproduct
operation $\Delta : \mathfrak A \lra \mathfrak A
\otimes_{\mathfrak B} \mathfrak A$, together with a coinverse $Q :
\mathfrak A \lra \mathfrak A$ that it is both an algebra and
bimodule antihomomorphism. Finally, the following axiomatic
relationships are observed~:
\begin{equation}
\begin{aligned}
(\ID \otimes_{\mathfrak B} \Delta) \circ \Delta &= (\Delta
\otimes_{\mathfrak B} \ID) \circ \Delta \\ (\ID \otimes_{\mathfrak
B} P) \circ \Delta &= P \\ \tau \circ (\Delta \otimes_{\mathfrak
B} Q) \circ \Delta &= \Delta \circ Q
\end{aligned}
\end{equation}
where $\tau$ is a flip map : $\tau(a \otimes b) = (b \otimes a)$~.
There is a natural extension of the above definition of quantum compact groupoids
to \textit{locally compact} quantum groupoids by taking $\mathsf{G}_{lc}$ to be a locally compact groupoid (instead of a compact groupoid), and then following the steps in the above construction with the topological groupoid $\mathsf{G}$ being replaced by $\mathsf{G}_{lc}$. Additional integrability and Haar measure system conditions need however be also satisfied as in the general case of locally compact groupoid \textit{representations} (for further details, see for example the monograph by Buneci (2003).
\subsubsection{Reduced C*--algebra}
Consider $\mathsf{G}$ to be a topological groupoid. We denote by $C_c(\mathsf{G})$ the space of smooth complex--valued functions with compact support on $\mathsf{G}$~. In particular, for all $f,g \in C_c(\mathsf{G})$, the
function defined via convolution
\begin{equation} (f ~*~g)(\gamma)
= \int_{\gamma_1 \circ \gamma_2 = \gamma} f(\gamma_1) g
(\gamma_2)~,
\end{equation}
is again an element of $C_c(\mathsf{G})$, where the convolution product
defines the composition law on $C_c(\mathsf{G})$~. We can turn
$C_c(\mathsf{G})$ into a *--algebra once we have defined the involution
$*$, and this is done by specifying $f^*(\gamma) = \overline{f(\gamma^{-1})}$~.
We recall that following Landsman (1998) a \emph{representation} of a groupoid $\grp$, consists of a
family (or field) of Hilbert spaces $\{\mathcal H_x \}_{x \in X}$
indexed by $X = \ob~ \grp$, along with a collection of maps $\{
U(\gamma)\}_{\gamma \in \grp}$, satisfying:
\begin{itemize}
\item[1.]
$U(\gamma) : \mathcal H_{s(\gamma)} \lra \mathcal H_{r(\gamma)}$,
is unitary.
\item[2.]
$U(\gamma_1 \gamma_2) = U(\gamma_1) U( \gamma_2)$, whenever
$(\gamma_1, \gamma_2) \in \grp^{(2)}$~ (the set of arrows).
\item[3.]
$U(\gamma^{-1}) = U(\gamma)^*$, for all $\gamma \in \grp$~.
\end{itemize}
Suppose now $\mathsf{G}_{lc}$ is a Lie groupoid. Then the isotropy group
$\mathsf{G}_x$ is a Lie group, and for a (left or right) Haar
measure $\mu_x$ on $\mathsf{G}_x$, we can consider the Hilbert
spaces $\mathcal H_x = L^2(\mathsf{G}_x, \mu_x)$ as exemplifying the
above sense of a representation. Putting aside some technical
details which can be found in Connes (1994) and Landsman (2006), the
overall idea is to define an operator of Hilbert spaces
\begin{equation}\pi_x(f) : L^2(\mathsf{G_x},\mu_x) \lra L^2(\mathsf{G}_x, \mu_x)~,
\end{equation}
given by
\begin{equation}
(\pi_x(f) \xi)(\gamma) = \int f(\gamma_1) \xi (\gamma_1^{-1}
\gamma)~ d\mu_x~,
\end{equation}
for all $\gamma \in \mathsf{G}_x$, and
$\xi \in \mathcal H_x$~. For each $x \in X =\ob ~\mathsf{G}$, $\pi_x$
defines an involutive representation $\pi_x : C_c(\mathsf{G}) \lra
\mathcal H_x$~. We can define a norm on $C_c(\mathsf{G})$ given by
\begin{equation}
\Vert f \Vert = \sup_{x \in X} \Vert \pi_x(f) \Vert~,
\end{equation}
whereby the completion of $C_c(\mathsf{G})$ in this norm, defines
\emph{the reduced C*--algebra $C^*_r(\mathsf{G})$ of $\mathsf{G}_{lc}$}.
It is perhaps the most commonly used C*--algebra for Lie groupoids
(groups) in noncommutative geometry.
\begin{thebibliography}{99}
\bibitem{AS2k3}
E. M. Alfsen and F. W. Schultz: \emph{Geometry of State Spaces of Operator Algebras}, Birkh\"auser, Boston--Basel--Berlin (2003).
\bibitem{ICB71}
I. Baianu : Categories, Functors and Automata Theory: A Novel Approach to Quantum Automata through Algebraic--Topological Quantum Computations., \textit{Proceed. 4th Intl. Congress LMPS}, (August-Sept. 1971).
\bibitem{BGB07}
I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non--Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., \emph{Axiomathes} \textbf{17},(3-4): 353-408(2007).
\bibitem{BSS}
F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, \emph{Phys. Rev. Lett.} \textbf{89} No. 18 (1--4): 181--201 (2002).
\bibitem{BM2k3}
M. R. Buneci.: \emph{Groupoid Representations}, Ed. Mirton: Timishoara (2003).
\bibitem{Chaician}
M. Chaician and A. Demichev: \emph{Introduction to Quantum Groups}, World Scientific (1996).
\bibitem{CF}
L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. \textit{J. Math. Phys}. \textbf{35} (no. 10): 5136--5154 (1994).
\bibitem{DT96}
W. Drechsler and P. A. Tuckey: On quantum and parallel transport in a Hilbert bundle over spacetime., \emph{Classical and Quantum Gravity}, \textbf{13}:611-632 (1996). doi: 10.1088/0264--9381/13/4/004
\bibitem{Drinfeld}
V. G. Drinfel'd: Quantum groups, In \emph{Proc. Intl. Congress of Mathematicians, Berkeley 1986}, (ed. A. Gleason), Berkeley, 798-820 (1987).
\bibitem{Ellis}
G. J. Ellis: Higher dimensional crossed modules of algebras,
\emph{J. of Pure Appl. Algebra} \textbf{52} (1988), 277-282.
\bibitem{Etingof1}
P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, \emph{Comm.Math.Phys.}, \textbf{196}: 591-640 (1998).
\bibitem{E99}
P. I. Etingof and A. N. Varchenko: Exchange dynamical quantum groups, \emph{Commun. Math. Phys.} \textbf{205} (1): 19-52 (1999)
\bibitem{Etingof3}
P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang--Baxter equations, in \emph{Quantum Groups and Lie Theory (Durham, 1999)}, pp. 89-129, Cambridge University Press, Cambridge, 2001.
\bibitem{Fauser2002}
B. Fauser: \emph{A treatise on quantum Clifford Algebras}. Konstanz,
Habilitationsschrift. (arXiv.math.QA/0202059). (2002).
\bibitem{Fauser2004}
B. Fauser: Grade Free product Formulae from Grassman--Hopf Gebras.
Ch. 18 in R. Ablamowicz, Ed., \emph{Clifford Algebras: Applications to Mathematics, Physics and Engineering}, Birkh\"{a}user: Boston, Basel and Berlin, (2004).
\bibitem{Fell}
J. M. G. Fell.: The Dual Spaces of C*--Algebras., \emph{Transactions of the American
Mathematical Society}, \textbf{94}: 365--403 (1960).
\bibitem{FernCastro}
F.M. Fernandez and E. A. Castro.: \emph{(Lie) Algebraic Methods in Quantum Chemistry and Physics.}, Boca Raton: CRC Press, Inc (1996).
\bibitem{frohlich:nonab}
A.~Fr{\"o}hlich: Non--Abelian Homological Algebra. {I}.
{D}erived functors and satellites, \emph{Proc. London Math. Soc.}, \textbf{11}(3): 239--252 (1961).
\bibitem{GR02}
R. Gilmore: \emph{Lie Groups, Lie Algebras and Some of Their Applications.},
Dover Publs., Inc.: Mineola and New York, 2005.
\bibitem{Hahn1}
P. Hahn: Haar measure for measure groupoids, \textit{Trans. Amer. Math. Soc}. \textbf{242}: 1--33(1978).
\bibitem{Hahn2}
P. Hahn: The regular representations of measure groupoids., \textit{Trans. Amer. Math. Soc}. \textbf{242}:34--72(1978).
\end{thebibliography}
%%%%%
%%%%%
\end{document}