-
Notifications
You must be signed in to change notification settings - Fork 2
/
81R60-SuperfieldsSuperspaceAndSupergravity.tex
534 lines (478 loc) · 20.4 KB
/
81R60-SuperfieldsSuperspaceAndSupergravity.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{SuperfieldsSuperspaceAndSupergravity}
\pmcreated{2013-03-22 18:17:03}
\pmmodified{2013-03-22 18:17:03}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{superfields, superspace and supergravity}
\pmrecord{23}{40894}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Feature}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81R60}
\pmclassification{msc}{81R50}
\pmclassification{msc}{83C47}
\pmclassification{msc}{83C75}
\pmclassification{msc}{83C45}
\pmclassification{msc}{81P05}
\pmsynonym{quantum gravity}{SuperfieldsSuperspaceAndSupergravity}
\pmsynonym{quantum space-times}{SuperfieldsSuperspaceAndSupergravity}
%\pmkeywords{superspace}
%\pmkeywords{quantum space-times}
%\pmkeywords{superfields}
%\pmkeywords{supergravity}
%\pmkeywords{supersymmetry and L-superalgebras}
\pmrelated{SupersymmetryOrSupersymmetries}
\pmrelated{NormedAlgebra}
\pmrelated{Supercategories}
\pmrelated{QuantumGravityTheories}
\pmrelated{SuperalgebroidsAndHigherDimensionalAlgebroids}
\pmrelated{AxiomaticTheoryOfSupercategories}
\pmrelated{LieSuperalgebra3}
\pmrelated{MetricSuperfields}
\pmrelated{SuperalgebroidsAndHigherDimensionalAlgebroids}
\pmdefines{superspace}
\pmdefines{superfields}
\pmdefines{supergravity}
\pmdefines{supersymmetry and L-superalgebras}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate,color}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
\setlength{\textwidth}{6.5in}
%\setlength{\textwidth}{16cm}
\setlength{\textheight}{9.0in}
%\setlength{\textheight}{24cm}
\hoffset=-.75in %%ps format
%\hoffset=-1.0in %%hp format
\voffset=-.4in
\def\blue{\textcolor{blue}}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{\mathcal G}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\midsqn}[1]{\ar@{}[dr]|{#1}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}
\begin{document}
\subsection{Superspace, superfields, supergravity and Lie superalgebras.}
\bigbreak
In general, a \emph{superfield}--or \emph{quantized gravity field}- has a highly reducible representation of the supersymmetry algebra, and the problem of specifying a supergravity theory can be defined as a search for those
representations that allow the construction of consistent local actions, perhaps considered
as either quantum group, or quantum groupoid, actions. Extending quantum symmetries to include
quantized gravity fields--specified as `superfields'-- is called \emph{supersymmetry} in current theories of Quantum Gravity. Graded `Lie' algebras (or Lie superalgebras) represent the quantum operator supersymmetries
by defining these simultaneously for both \emph{fermion} (spin $1/2$) and \emph{boson} (integer or 0 spin particles).
The quantized physical space with supersymmetric properties is then called a \emph{`superspace'},
(another name for \emph{`quantized space with supersymmetry'}) in Quantum Gravity. The following subsection defines
these physical concepts in precise mathematical terms.
\subsubsection{Mathematical definitions and propagation equations for superfields in superspace:
Graded Lie algebras}
Supergravity, in essence, is an extended supersymmetric theory of
both matter and gravitation ({\em viz}. Weinberg, 1995 \cite{Weinberg2000}).
A first approach to supersymmetry relied on a curved `superspace'
(Wess and Bagger,1983 \cite{WB83}) and is analogous to supersymmetric gauge theories (see, for
example, Sections 27.1 to 27.3 of Weinberg, 1995). Unfortunately,
a complete non--linear supergravity theory might be forbiddingly
complicated and furthermore, the constraints that need be made on
the graviton superfield appear somewhat subjective,
(according to Weinberg, 1995). In a different approach to supergravity,
one considers the physical components of the gravitational superfield
which can be then identified based on `flat-space' superfield methods
(Chs. 26 and 27 of Weinberg, 1995). By implementing the {\em gravitational
weak-field approximation} one obtains several of the most important
consequences of supergravity theory, including masses for the
hypothetical `gravitino' and `gaugino particles' whose existence might be
expected from supergravity theories. Furthermore, by adding on the
higher order terms in the gravitational constant to the
supersymmetric transformation, the general coordinate
transformations form a \emph{closed algebra} and the Lagrangian that
describes the interactions of the physical fields is then {\em invariant}
under such transformations.The first quantization of such a flat-space
superfield would obviously involve its `deformation', and as a result its corresponding
\emph{supersymmetry algebra} becomes \emph{non--commutative}.
\subsubsection{Metric superfield}
Because in supergravity both spinor and tensor fields are being
considered, the gravitational fields are represented in terms of
\emph{tetrads}, $e^a_\mu(x),$ rather than in terms of Einstein's general
relativistic metric $g_{\mu \nu}(x)$. The connections between
these two distinct representations are as follows:
\begin{equation}
g_{\mu\nu}(x) = \eta_{ab}~ e^a_\mu (x)e^b_\gamma(x)~,
\end{equation}
with the general coordinates being indexed by $\mu,\nu,$ etc.,
whereas local coordinates that are being defined in a locally
inertial coordinate system are labeled with superscripts a, b,
etc.; $ \eta_{ab}$ is the diagonal matrix with elements +1, +1,
+1 and -1. The tetrads are invariant to two distinct types of
symmetry transformations--the local Lorentz transformations:
\begin{equation}
e^a_\mu (x)\longmapsto \Lambda^a_b (x) e^b_\mu (x)~,
\end{equation}
(where $\Lambda^a_b$ is an arbitrary real matrix), and the general
coordinate transformations:
\begin{equation}
x^\mu \longmapsto (x')^\mu(x) ~.
\end{equation}
In a weak gravitational field the tetrad may be represented as:
\begin{equation}
e^a_\mu (x)=\delta^a_\mu(x)+ 2\kappa \Phi^a_\mu (x)~,
\end{equation}
where $\Phi^a_\mu(x)$ is small compared with $\delta^a_\mu(x)$ for
all $x$ values, and $\kappa= \surd 8\pi G$, where G is Newton's
gravitational constant. As it will be discussed next, the
supersymmetry algebra (SA) implies that the graviton has a
fermionic superpartner, the hypothetical \emph{`gravitino'}, with
helicities $\pm$ 3/2. Such a self-charge-conjugate massless
particle as the `gravitiono' with helicities $\pm$ 3/2 can only have
\emph{low-energy} interactions if it is represented by a Majorana
field $\psi _\mu(x)$ which is invariant under the gauge
transformations:
\begin{equation}
\psi _\mu(x)\longmapsto \psi _\mu(x)+\delta _\mu \psi(x) ~,
\end{equation}
with $\psi(x)$ being an arbitrary Majorana field as defined by
Grisaru and Pendleton (1977). The tetrad field $\Phi _{\mu
\nu}(x)$ and the graviton field $\psi _\mu(x)$ are then
incorporated into a term $H_\mu (x,\theta)$ defined as the
\emph{metric superfield}. The relationships between $\Phi _{\mu _
\nu}(x)$ and $\psi _\mu(x)$, on the one hand, and the components
of the metric superfield $H_\mu (x,\theta)$, on the other hand,
can be derived from the transformations of the whole metric
superfield:
\begin{equation}
H_\mu (x,\theta)\longmapsto H_\mu (x,\theta)+ \Delta _\mu
(x,\theta)~,
\end{equation}
by making the simplifying-- and physically realistic-- assumption
of a weak gravitational field (further details can be found, for
example, in Ch.31 of vol.3. of Weinberg, 1995). The interactions
of the entire superfield $H_\mu (x)$ with matter would be then
described by considering how a weak gravitational field,
$h_{\mu_\nu}$ interacts with an energy-momentum tensor $T^{\mu
\nu}$ represented as a linear combination of components of a real
vector superfield $\Theta^\mu$. Such interaction terms would,
therefore, have the form:
\begin{equation}
I_{\mathcal M}= 2\kappa \int dx^4 [H_\mu \Theta^\mu]_D ~,
\end{equation}
($\mathcal M$ denotes `matter') integrated over a four-dimensional
(Minkowski) spacetime with the metric defined by the superfield
$H_\mu (x,\theta)$. The term $\Theta^\mu$, as defined above, is
physically a \emph{supercurrent} and satisfies the conservation
conditions:
\begin{equation}
\gamma^\mu \mathbf{D} \Theta _\mu = \mathbf{D} ~,
\end{equation}
where $\mathbf{D}$ is the four-component super-derivative and $X$
denotes a real chiral scalar superfield. This leads immediately to
the calculation of the interactions of matter with a weak
gravitational field as:
\begin{equation}
I_{\mathcal M} = \kappa \int d^4 x T^{\mu \nu}(x)h_{\mu \nu}(x) ~,
\end{equation}
It is interesting to note that the gravitational actions for the
superfield that are invariant under the generalized gauge
transformations $H_\mu \longmapsto H _\mu + \Delta _\mu$ lead to
solutions of the Einstein field equations for a homogeneous,
non-zero vacuum energy density $\rho _V$ that correspond to either
a de Sitter space for $\rho _V>0$, or an anti-de Sitter space for
$\rho _V <0$. Such spaces can be represented in terms of the
hypersurface equation
\begin{equation}
x^2_5 \pm \eta _{\mu,\nu} x^\mu x^\nu = R^2 ~,
\end{equation}
in a {\em quasi-Euclidean five-dimensional space} with the metric
specified as:
\begin{equation}
ds^2 = \eta _{\mu,\nu} x^\mu x^\nu \pm dx^2_5 ~,
\end{equation}
with '$+$' for de Sitter space and '$-$' for anti-de Sitter space,
respectively.
\med
The spacetime symmetry groups, or extended symmetry groupoids, as the case may
be-- are different from the `classical' Poincar\'e symmetry group
of translations and Lorentz transformations. Such spacetime
symmetry groups, in the simplest case, are therefore the
$\rO(4,1)$ group for the \emph{de Sitter space} and the $\rO(3,2)$ group
for the \emph{anti--de Sitter space}. A detailed calculation indicates
that the transition from ordinary flat space to a bubble of
anti-de Sitter space is \emph{not} favored energetically and,
therefore, the ordinary (de Sitter) flat space is stable (viz.
Coleman and De Luccia, 1980), even though quantum fluctuations
might occur to an anti--de Sitter bubble within the limits
permitted by the Heisenberg uncertainty principle.
\subsection {Supersymmetry algebras and Lie (graded) superalgebras.}
It is well known that \emph{continuous symmetry transformations}
can be represented in terms of a \emph{Lie algebra} of linearly
independent \emph{symmetry generators} $t_j$ that satisfy the
commutation relations:
\begin{equation}
[t_j,t_k] = \iota \Sigma_l C_{jk} t_l ~,
\end{equation}
Supersymmetry is similarly expressed in terms of the symmetry
generators $t_j$ of a \textit{graded (`Lie') algebra} which is in
fact defined as a \textit{superalgebra}) by satisfying relations of the
general form:
\begin{equation}
t_j t_k - (-1)^{\eta _j \eta _k} t_k t_j = \iota \Sigma_l C_{jk}
^l t_l ~.
\end{equation}
The generators for which $\eta _j =1$ are fermionic whereas those
for which $\eta _j =0$ are bosonic. The coefficients $C^l_{jk}$
are structure constants satisfying the following conditions:
\begin{equation}
C _{jk} ^l = -(-1)^{\eta _j \eta _k} C _{jk} ^l ~.
\end{equation}
If the generators $ _j$ are quantum Hermitian operators, then the
structure constants satisfy the reality conditions $C_{jk}^* = -
C_{jk}$~. Clearly, such a graded algebraic structure is a superalgebra
and not a proper Lie algebra; thus graded Lie algebras are often called
\textit{`Lie superalgebras'}.
\med
The standard computational approach in QM utilizes the S-matrix
approach, and therefore, one needs to consider the general,
\emph{graded} `Lie algebra' of \emph{supersymmetry generators} that
commute with the S-matrix. If one denotes the fermionic generators
by $Q$, then $U^{-1}(\Lambda)Q U(\Lambda)$ will also be of the
same type when $U(\Lambda)$ is the quantum operator corresponding
to arbitrary, homogeneous Lorentz transformations $\Lambda^{\mu
_\nu}$~. Such a group of generators provide therefore a
representation of the homogeneous Lorentz group of transformations
$ \mathbb{L}$~. The irreducible representation of the homogeneous
Lorentz group of transformations provides therefore a
classification of such individual generators.
\subsubsection{Graded `Lie Algebras'/Superalgebras.}
A set of quantum operators $Q^{AB}_{jk}$ form an $\mathbf A,
\mathbf B$ representation of the group $\mathbf L$ defined above
which satisfy the commutation relations:
\begin{equation}
[\mathbf{A},Q^{AB}_{jk}] = -[\Sigma _j' J^A _{j j'}, Q^{AB}_{j'k}]
~,
\end{equation}
and
\begin{equation}
[\mathbf{B},Q^{AB}_{jk}] = -[\Sigma _{j'} J^A _{k k'},
Q^{AB}_{jk'}] ~,
\end{equation}
with the generators $\mathbf{A}$ and $\mathbf{B}$ defined by
$\mathbf{A}\equiv (1/2)(\mathbf{J} \pm i\mathbf{K})$ and
$\mathbf{B} \equiv (1/2)(\mathbf{J }- i\mathbf{K})$, with
$\mathbf{J}$ and $\mathbf{K}$ being the Hermitian generators of
rotations and `boosts', respectively.
\med
In the case of the two-component Weyl-spinors $Q _{jr}$ the
Haag--Lopuszanski--Sohnius (HLS) theorem applies, and thus the
fermions form a \emph{supersymmetry algebra} defined by the
anti-commutation relations:
\begin{equation}
\begin{aligned}
~[Q _{jr}, Q _{ks}^*] &= 2\delta _{rs} \sigma^\mu _{jk} P _\mu ~,
\\ [Q _{jr}, Q _{ks}] &= e _{jk} Z _{rs} ~,
\end{aligned}
\end{equation}
where $P _\mu$ is the 4--momentum operator, $Z_{rs} = -Z _{s r}$
are the bosonic symmetry generators, and $\sigma _\mu$ and
$\mathbf{e}$ are the usual $2 \times 2$ Pauli matrices.
Furthermore, the fermionic generators commute with both energy and
momentum operators:
\begin{equation}
[P _\mu,Q _{jr}] = [P _\mu, Q^* _{jr}] = 0 ~.
\end{equation}
The bosonic symmetry generators $Z _{ks}$ and $Z^* _{ks}$
represent the set of \emph{central charges} of the supersymmetric
algebra:
\begin{equation}
~[Z _{rs}, Z^* _{tn}] = [Z^* _{rs}, Q _{jt}]= [Z^* _{rs}, Q^*
_{jt}]= [Z^* _{rs}, Z^* _{tn}]=0 ~.
\end{equation}
From another direction, the Poincar\'e symmetry mechanism of
special relativity can be extended to new algebraic systems
(Tanas\u a, 2006). In Moultaka et al. (2005) in view of such
extensions, consider invariant-free Lagrangians and bosonic
multiplets constituting a symmetry that interplays with (Abelian)
$\U(1)$--gauge symmetry that may possibly be described in
categorical terms, in particular, within the notion of a
\emph{cubical site} (Grandis and Mauri, 2003).
We shall proceed to introduce in the next section generalizations
of the concepts of Lie algebras and graded Lie algebras to the
corresponding Lie \emph{algebroids} that may also be regarded as
C*--convolution representations of \emph{quantum gravity
groupoids} and superfield (or supergravity) supersymmetries. This
is therefore a novel approach to the proper representation of the
\emph{non-commutative geometry of quantum spacetimes}--that are
\emph{curved} (or `deformed') by the presence of \emph{intense}
gravitational fields--in the framework of \emph{non-Abelian,
graded Lie algebroids}. Their correspondingly \emph{deformed
quantum gravity groupoids} (QGG) should, therefore, adequately
represent supersymmetries modified by the presence of such intense
gravitational fields on the Planck scale. Quantum fluctuations
that give rise to quantum `foams' at the Planck scale may be then
represented by \emph{quantum homomorphisms} of such QGGs. If the
corresponding graded Lie algebroids are also \emph{integrable},
then one can reasonably expect to recover in the limit of $\hbar
\rightarrow 0$ the Riemannian geometry of General Relativity and
the \emph{globally hyperbolic spacetime} of Einstein's classical
gravitation theory (GR), as a result of such an integration to the
\emph{quantum gravity fundamental groupoid} (QGFG). The following
subsection will define the precise mathematical concepts
underlying our novel quantum supergravity and extended
supersymmetry notions.
\begin{thebibliography}{9}
\bibitem{Weinberg2000}
S. Weinberg.: \emph{The Quantum Theory of Fields}. Cambridge, New York and Madrid:
Cambridge University Press, Vols. 1 to 3, (1995--2000).
\bibitem{Weinstein}
A. Weinstein : Groupoids: unifying internal and external symmetry,
\emph{Notices of the Amer. Math. Soc.} \textbf{43} (7): 744-752 (1996).
\bibitem{WB83}
J. Wess and J. Bagger: \emph{Supersymmetry and Supergravity},
Princeton University Press, (1983).
\end{thebibliography}
%%%%%
%%%%%
\end{document}