-
Notifications
You must be signed in to change notification settings - Fork 2
/
81T10-Ralgebroid.tex
216 lines (192 loc) · 7.01 KB
/
81T10-Ralgebroid.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{Ralgebroid}
\pmcreated{2013-03-22 18:14:19}
\pmmodified{2013-03-22 18:14:19}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{R-algebroid}
\pmrecord{25}{40827}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Definition}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81T10}
\pmclassification{msc}{81P05}
\pmclassification{msc}{81T05}
\pmclassification{msc}{81R10}
\pmclassification{msc}{81R50}
\pmsynonym{groupoid-derived algebroids}{Ralgebroid}
\pmsynonym{double groupoid dual of an algebroid}{Ralgebroid}
%\pmkeywords{defintions of R-algebroid}
%\pmkeywords{R-Category}
%\pmkeywords{Groupoid-derived algebroid}
\pmrelated{Module}
\pmrelated{RCategory}
\pmrelated{Algebroids}
\pmrelated{HamiltonianAlgebroids}
\pmrelated{RSupercategory}
\pmrelated{SuperalgebroidsAndHigherDimensionalAlgebroids}
\pmrelated{CategoricalAlgebras}
\pmdefines{$R$-module}
\pmdefines{convolution product}
\pmdefines{R-algebroid}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
%%\usepackage{xypic}
\usepackage[mathscr]{eucal}
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote%%@
}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\begin{definition}
If $\mathsf{G}$ is a groupoid (for example, regarded as a category with all morphisms invertible)
then we can construct an $R$-algebroid, $R\mathsf{G}$ as follows. Let us consider first a module over a ring $R$, also called a {\em $R$-module}, that is, a \PMlinkname{module}{Module} $M_R$ that takes its coefficients in a ring $R$. Then, the object set of $R\mathsf{G}$ is the same as that of $\mathsf{G}$ and $R\mathsf{G}(b,c)$ is the free $R$-module on the set $\mathsf{G}(b,c)$, with composition given by the usual bilinear rule, extending the composition of $\mathsf{G}$.
\end{definition}
\begin{definition}
Alternatively, one can define $\bar{R}\mathsf{G}(b,c)$ to be the set of functions $\mathsf{G}(b,c)\lra R$ with finite support, and then one defines the \emph{convolution product} as follows:
\end{definition}
\med
\begin{equation}
(f*g)(z)= \sum \{(fx)(gy)\mid z=x\circ y \} ~.
\end{equation}
\begin{remark}
As it is very well known, only the second construction is natural
for the topological case, when one needs to replace the general concept of `function' by
the topological-analytical concept of `continuous function with compact support' (or alternatively, with `locally
compact support') for all quantum field theory (QFT) extended symmetry sectors; in this case, one has that $R \cong \mathbb{C}$~.
The point made here is that to carry out the usual construction and end up with only an algebra
rather than an algebroid, is a procedure analogous to replacing a
groupoid $\mathsf{G}$ by a semigroup $G'=G\cup \{0\}$ in which the
compositions not defined in $G$ are defined to be $0$ in $G'$. We
argue that this construction removes the main advantage of
groupoids, namely the presence of the {\em spatial component} given by the set of objects of the groupoid.
More generally, a \PMlinkname{R-category}{RCategory} is similarly defined as an extension to this R-algebroid
concept.
\end{remark}
\begin{thebibliography}{9}
\bibitem{BMos86}
R. Brown and G. H. Mosa: Double algebroids and crossed modules of algebroids, University of Wales--Bangor, Maths Preprint, 1986.
\bibitem{Mo86}
G. H. Mosa: \emph{Higher dimensional algebroids and Crossed
complexes}, PhD thesis, University of Wales, Bangor, (1986). (supervised by R. Brown).
\end{thebibliography}
%%%%%
%%%%%
\end{document}