-
Notifications
You must be signed in to change notification settings - Fork 2
/
81T18-GrassmannHopfAlgebrasAndCoalgebrasgebras.tex
418 lines (342 loc) · 14.6 KB
/
81T18-GrassmannHopfAlgebrasAndCoalgebrasgebras.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{GrassmannHopfAlgebrasAndCoalgebrasgebras}
\pmcreated{2013-03-22 18:10:55}
\pmmodified{2013-03-22 18:10:55}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{Grassmann-Hopf algebras and coalgebras\gebras}
\pmrecord{52}{40754}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Topic}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81T18}
\pmclassification{msc}{81T13}
\pmclassification{msc}{55Q25}
\pmclassification{msc}{81T10}
\pmclassification{msc}{16W30}
\pmclassification{msc}{81T05}
\pmclassification{msc}{57T05}
\pmclassification{msc}{15A75}
\pmsynonym{tangled-dual Grassmann-Hopf co-algebra}{GrassmannHopfAlgebrasAndCoalgebrasgebras}
%\pmkeywords{observable operator algebras encountered in QFT}
%\pmkeywords{Grassman-Hopf algebras}
%\pmkeywords{tangled-dual Grassman-Hopf co-algebras}
%\pmkeywords{quantum operator algebras}
%\pmkeywords{advanced QAT or quantum algebraic topology}
\pmrelated{QED}
\pmrelated{WeakHopfCAlgebra2}
\pmrelated{WeakHopfCAlgebra}
\pmrelated{DualOfACoalgebraIsAnAlgebra}
\pmrelated{CAlgebra3}
\pmrelated{TopicEntryOnTheAlgebraicFoundationsOfQuantumAlgebraicTopology}
\pmrelated{AlgebraicFoundationsOfQuantumAlgebraicTopology}
\pmrelated{QuantumAlgebraicTopologyOfCWComplexRepresentationsNewQATResult}
\pmdefines{Grassmann-Hopf algebra}
\pmdefines{dual Grassmann-Hopf co-algebra and gebra or tangled algebra}
\pmdefines{observable operator algebra}
\pmdefines{Grassman-Hopf algebroid}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym, enumerate}
\usepackage{xypic, xspace}
\usepackage[mathscr]{eucal}
\usepackage[dvips]{graphicx}
\usepackage[curve]{xy}
\setlength{\textwidth}{6.5in}
%\setlength{\textwidth}{16cm}
\setlength{\textheight}{9.0in}
%\setlength{\textheight}{24cm}
\hoffset=-.75in %%ps format
%\hoffset=-1.0in %%hp format
\voffset=-.4in
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\grpL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\rO}{{\rm O}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\SL}{{\rm Sl}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\Symb}{{\rm Symb}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
%\newcommand{\grp}{\mathcal G}
\renewcommand{\H}{\mathcal H}
\renewcommand{\cL}{\mathcal L}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathsf{G}}}
\newcommand{\dgrp}{{\mathsf{D}}}
\newcommand{\desp}{{\mathsf{D}^{\rm{es}}}}
\newcommand{\grpeod}{{\rm Geod}}
%\newcommand{\grpeod}{{\rm geod}}
\newcommand{\hgr}{{\mathsf{H}}}
\newcommand{\mgr}{{\mathsf{M}}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathsf{G)}}}
\newcommand{\obgp}{{\rm Ob(\mathsf{G}')}}
\newcommand{\obh}{{\rm Ob(\mathsf{H})}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\grphomotop}{{\rho_2^{\square}}}
\newcommand{\grpcalp}{{\mathsf{G}(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\grplob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\grpa}{\grpamma}
%\newcommand{\grpa}{\grpamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\ovset}[1]{\overset {#1}{\ra}}
\newcommand{\ovsetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\newcommand{\<}{{\langle}}
%\newcommand{\>}{{\rangle}}
%\usepackage{geometry, amsmath,amssymb,latexsym,enumerate}
%%%\usepackage{xypic}
\def\baselinestretch{1.1}
\hyphenation{prod-ucts}
%\grpeometry{textwidth= 16 cm, textheight=21 cm}
\newcommand{\sqdiagram}[9]{$$ \diagram #1 \rto^{#2} \dto_{#4}&
#3 \dto^{#5} \\ #6 \rto_{#7} & #8 \enddiagram
\eqno{\mbox{#9}}$$ }
\def\C{C^{\ast}}
\newcommand{\labto}[1]{\stackrel{#1}{\longrightarrow}}
%\newenvironment{proof}{\noindent {\bf Proof} }{ \hfill $\Box$
%{\mbox{}}
\newcommand{\quadr}[4]
{\begin{pmatrix} & #1& \\[-1.1ex] #2 & & #3\\[-1.1ex]& #4&
\end{pmatrix}}
\def\D{\mathsf{D}}
\begin{document}
\subsection{Definitions of Grassmann-Hopf Al/gebras, Their Dual \\
Co-Algebras, and Grassmann--Hopf Al/gebroids}
Let $V$ be a (complex) vector space, $\dim_{\mathcal C} V = n$, and let $\{e_0, e_1, \ldots, \}$ with identity $e_0 \equiv 1$, be the generators of a Grassmann (exterior) algebra
\begin{equation}
\Lambda^*V = \Lambda^0 V \oplus \Lambda^1 V \oplus \Lambda^2 V
\oplus \cdots
\end{equation}
subject to the relation $e_i e_j + e_j e_i = 0$~. Following Fauser
(2004) we append this algebra with a Hopf structure to obtain a
`co--gebra' based on the interchange (or \textsl{`tangled duality'}): \\
$$\text{(\textit{objects/points}, \textit{morphisms})} \mapsto \text{(\textsl{morphisms}, \textsl{objects/points.})}$$
This leads to a \textsl{tangle duality} between an associative (unital algebra)
$\A=(A,m)$, and an associative (unital) `co--gebra' $\mathcal{C}=(C,\Delta)$ :
\begin{itemize}
\item[i] the binary product $A \otimes A \ovsetl{m} A$, and
\item[ii] the coproduct $C \ovsetl{\Delta} C \otimes C$ \end{itemize},
where the Sweedler notation (Sweedler, 1996), with respect to an
arbitrary basis is adopted: $$
\begin{aligned}
\Delta (x) &= \sum_r a_r \otimes b_r = \sum_{(x)} x_{(1)} \otimes
x_{(2)} = x _{(1)} \otimes x_{(2)} \\ \Delta (x^i) &= \sum_i
\Delta^{jk}_i = \sum_{(r)} a^j_{(r)} \otimes b^k_{(r)} = x _{(1)}
\otimes x_{(2)}
\end{aligned}
$$
Here the $\Delta^{jk}_i$ are called `section coefficients'. We have then a generalization of associativity to coassociativity:
\begin{equation}
\begin{CD}
C @> \Delta >> C \otimes C
\\ @VV \Delta V @VV \ID \otimes \Delta V \\ C \otimes C
@> \Delta \otimes \ID >> C \otimes C \otimes C
\end{CD}
\end{equation}
inducing a tangled duality between an associative (unital algebra
$\mathcal A = (A,m)$, and an associative (unital) `co--gebra'
$\mathcal C = (C, \Delta)$~. The idea is to take this structure
and combine the Grassmann algebra $(\Lambda^*V, \wedge)$ with the
`co-gebra' $(\Lambda^*V, \Delta_{\wedge})$ (the `tangled dual')
along with the Hopf algebra compatibility rules: 1) the product
and the unit are `co--gebra' morphisms, and 2) the coproduct and
counit are algebra morphisms.
Next we consider the following ingredients:
\begin{itemize}
\item[(1)]
the graded switch $\hat{\tau} (A \otimes B) = (-1)^{\del
A \del B} B \otimes A$
\item[(2)]
the counit $\varepsilon$ (an algebra morphism) satisfying
$(\varepsilon \otimes \ID) \Delta = \ID = (\ID \otimes
\varepsilon) \Delta$
\item[(3)] the antipode $S$~.
\end{itemize}
The \textit{Grassmann-Hopf algebra} $\widehat{H}$ thus consists of--is defined by-- the
\textit{septet} $\widehat{H}=(\Lambda^*V, \wedge, \ID, \varepsilon, \hat{\tau},S)~$.
Its generalization to a \textit{Grassmann-Hopf algebroid} is
straightforward by considering a groupoid $\grp$, and then
defining a $H^{\wedge}- \textit{Algebroid}$ as a
\textit{quadruple} $(GH, \Delta, \vep, S)$ by modifying the Hopf
algebroid definition so that
$\widehat{H} = (\Lambda^*V, \wedge, \ID, \varepsilon, \hat{\tau},S)$ satisfies the standard
Grassmann-Hopf algebra axioms stated above. We may also say that
$(HG, \Delta, \vep, S)$ is a \emph{weak C*-Grassmann-Hopf
algebroid} when $H^{\wedge}$ is a unital C*-algebra (with $\mathbf 1$).
We thus set $\mathbb F = \mathbb C~$. Note however
that the tangled-duals of Grassman-Hopf algebroids retain both the
intuitive interactions and the dynamic diagram advantages of their
physical, extended symmetry representations exhibited by the
Grassman-Hopf al/gebras and co-gebras over those of either weak
C*- Hopf algebroids or weak Hopf C*- algebras.
\begin{thebibliography}{9}
\bibitem{AS}
E. M. Alfsen and F. W. Schultz: \emph{Geometry of State Spaces of Operator Algebras}, Birkh\"auser, Boston--Basel--Berlin (2003).
\bibitem{ICB71}
I. Baianu : Categories, Functors and Automata Theory: A Novel Approach to Quantum Automata through Algebraic--Topological Quantum Computations., \textit{Proceed. 4th Intl. Congress LMPS}, (August-Sept. 1971).
\bibitem{BGB07}
I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non--Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., \emph{Axiomathes} \textbf{17},(3-4): 353-408(2007).
\bibitem{BBGGk8}
I.C.Baianu, R. Brown J.F. Glazebrook, and G. Georgescu, {\em Towards Quantum Non--Abelian Algebraic Topology}, (2008).
\bibitem{BSS}
F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, \emph{Phys. Rev. Lett.} \textbf{89} No. 18 (1--4): 181--201 (2002).
\bibitem{BJW}
J.W. Barrett.: Geometrical measurements in three-dimensional quantum gravity.
Proceedings of the Tenth Oporto Meeting on Geometry, Topology and Physics (2001).
\textit{Intl. J. Modern Phys.} \textbf{A 18} , October, suppl., 97--113 (2003)
\bibitem{Chaician}
M. Chaician and A. Demichev: \emph{Introduction to Quantum Groups}, World Scientific (1996).
\bibitem{Coleman}
Coleman and De Luccia: Gravitational effects on and of vacuum decay., \emph{Phys. Rev. D} \textbf{21}: 3305 (1980).
\bibitem{CF}
L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. \textit{J. Math. Phys}. \textbf{35} (no. 10): 5136--5154 (1994).
\bibitem{DT96}
W. Drechsler and P. A. Tuckey: On quantum and parallel transport in a Hilbert bundle over spacetime., Classical and Quantum Gravity, \textbf{13}:611-632 (1996).
doi: 10.1088/0264--9381/13/4/004
\bibitem{Drinfeld}
V. G. Drinfel'd: Quantum groups, In \emph{Proc. Int. Congress of
Mathematicians, Berkeley, 1986}, (ed. A. Gleason), Berkeley, 798-820 (1987).
\bibitem{Ellis}
G. J. Ellis: Higher dimensional crossed modules of algebras,
\emph{J. of Pure Appl. Algebra} \textbf{52}: 277-282 (1988), .
\bibitem{Etingof1}
P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, \emph{Comm.Math.Phys.}, \textbf{196}: 591-640 (1998).
\bibitem{Etingof2}
P. I. Etingof and A. N. Varchenko: Exchange dynamical quantum
groups, \emph{Commun. Math. Phys.} \textbf{205} (1): 19-52 (1999)
\bibitem{Etingof3}
P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang--Baxter equations, in \emph{Quantum Groups and Lie Theory (Durham, 1999)}, pp. 89-129, Cambridge University Press, Cambridge, 2001.
\bibitem{Fauser2002}
B. Fauser: \emph{A treatise on quantum Clifford Algebras}. Konstanz,
Habilitationsschrift. \\ arXiv.math.QA/0202059 (2002).
\bibitem{Fauser2004}
B. Fauser: Grade Free product Formulae from Grassmann--Hopf Gebras.
Ch. 18 in R. Ablamowicz, Ed., \emph{Clifford Algebras: Applications to Mathematics, Physics and Engineering}, Birkh\"{a}user: Boston, Basel and Berlin, (2004).
\bibitem{Fell}
J. M. G. Fell.: The Dual Spaces of C*--Algebras., \emph{Transactions of the American
Mathematical Society}, \textbf{94}: 365--403 (1960).
\bibitem{FernCastro}
F.M. Fernandez and E. A. Castro.: \textit{(Lie) Algebraic Methods in Quantum Chemistry and Physics.}, Boca Raton: CRC Press, Inc (1996).
\bibitem{Feynman}
R. P. Feynman: Space--Time Approach to Non--Relativistic Quantum Mechanics, {\em Reviews
of Modern Physics}, 20: 367--387 (1948). [It is also reprinted in (Schwinger 1958).]
\bibitem{frohlich:nonab}
A.~Fr{\"o}hlich: Non-Abelian Homological Algebra. {I}.{D}erived functors and satellites.\/,
\emph{Proc. London Math. Soc.}, \textbf{11}(3): 239--252 (1961).
\bibitem{GR02}
R. Gilmore: \textit{Lie Groups, Lie Algebras and Some of Their Applications.},
Dover Publs., Inc.: Mineola and New York, 2005.
\bibitem{Hahn1}
P. Hahn: Haar measure for measure groupoids., \textit{Trans. Amer. Math. Soc}. \textbf{242}: 1--33(1978).
\bibitem{Hahn2}
P. Hahn: The regular representations of measure groupoids., \textit{Trans. Amer. Math. Soc}. \textbf{242}:34--72(1978).
\bibitem{HeynLifsctz}
R. Heynman and S. Lifschitz. 1958. \emph{Lie Groups and Lie Algebras}., New York and London: Nelson Press.
\bibitem{HLS2k8}
C. Heunen, N. P. Landsman, B. Spitters.: A topos for algebraic quantum theory, (2008) \\
arXiv:0709.4364v2 [quant--ph]
\end{thebibliography}
%%%%%
%%%%%
\end{document}