-
Notifications
You must be signed in to change notification settings - Fork 2
/
81T25-ApproximationTheoremForAnArbitrarySpace.tex
229 lines (202 loc) · 7.12 KB
/
81T25-ApproximationTheoremForAnArbitrarySpace.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{ApproximationTheoremForAnArbitrarySpace}
\pmcreated{2013-03-22 18:14:40}
\pmmodified{2013-03-22 18:14:40}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{approximation theorem for an arbitrary space}
\pmrecord{43}{40837}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81T25}
\pmclassification{msc}{81T05}
\pmclassification{msc}{81T10}
\pmclassification{msc}{55U15}
\pmclassification{msc}{57Q05}
\pmclassification{msc}{57Q55}
\pmclassification{msc}{55U05}
\pmclassification{msc}{55U10}
\pmsynonym{approximation theorems for topological spaces}{ApproximationTheoremForAnArbitrarySpace}
%\pmkeywords{approximation theorems for topological spaces}
%\pmkeywords{the colimit of a sequence of $CW$-complexes}
\pmrelated{TheoremOnCWComplexApproximationOfQuantumStateSpacesInQAT}
\pmrelated{CWComplex}
\pmrelated{SpinNetworksAndSpinFoams}
\pmrelated{HomotopyCategory}
\pmrelated{WeakHomotopyEquivalence}
\pmrelated{GroupHomomorphism}
\pmrelated{ApproximationTheoremAppliedToWhitneyCrMNSpaces}
\pmdefines{unique colimit of a sequence of cellular inclusions of $CW$-complexes}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsfonts}
% used for TeXing text within eps files
%\usepackage{psfrag}
% need this for including graphics (\includegraphics)
%\usepackage{graphicx}
% for neatly defining theorems and propositions
%\usepackage{amsthm}
% making logically defined graphics
%%%\usepackage{xypic}
% there are many more packages, add them here as you need them
% define commands here
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
%%\usepackage{xypic}
\usepackage[mathscr]{eucal}
\setlength{\textwidth}{7.5in}
%\setlength{\textwidth}{18cm}
\setlength{\textheight}{9.0in}
\setlength{\textheight}{24cm}
\hoffset=-.5in %%ps format
\hoffset=-0.5in %%hp format
\voffset=-.4in
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\renewcommand{\thefootnote}{\ensuremath{\fnsymbol{footnote}}}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\begin{theorem}({\em Approximation theorem for an arbitrary topological space in terms of the colimit of a sequence of cellular inclusions of $CW$-complexes}):
\begin{quote}
``There is a functor $\Gamma: \textbf{hU} \longrightarrow \textbf{hU}$ where
$\textbf{hU}$ is the homotopy category for unbased spaces , and a natural transformation $\gamma: \Gamma \longrightarrow Id$ that asssigns a $CW$-complex $\Gamma X$ and a weak equivalence $\gamma _e:\Gamma X \longrightarrow
X$ to an arbitrary space $X$, such that the following diagram commutes:
$$
\begin{CD}
\Gamma X @> \Gamma f >> \Gamma Y
\\ @V $~~~~~~~$\gamma (X) VV @VV \gamma (Y) V
\\ X @ > f >> Y
\end{CD}
$$
and $\Gamma f: \Gamma X\rightarrow \Gamma Y$ is unique up to homotopy equivalence.''
\end{quote}
(viz. p. 75 in ref. \cite{MJP1999}).
\end{theorem}
\begin{remark}
The $CW$-complex specified in the
\PMlinkname{approximation theorem for an arbitrary space}{ApproximationTheoremForAnArbitrarySpace} is constructed as the colimit $\Gamma X$ of a sequence of cellular inclusions of $CW$-complexes $X_1, ..., X_n$ , so
that one obtains $X \equiv colim [X_i]$. As a consequence of J.H.C. Whitehead's Theorem, one also has that:
$\gamma* : [\Gamma X,\Gamma Y] \longrightarrow[\Gamma X, Y]$ is an isomorphism.
Furthermore, the homotopy groups of the $CW$-complex $\Gamma X$ are the colimits of the
homotopy groups of $X_n$ and $\gamma_{n+1} : \pi_q(X_{n+1})\longmapsto\pi_q (X)$ is a group epimorphism.
\end{remark}
\begin{thebibliography} {9}
\bibitem{MJP1999}
May, J.P. 1999, \emph{A Concise Course in Algebraic Topology.}, The University of Chicago Press: Chicago
\end{thebibliography}
%%%%%
%%%%%
\end{document}