-
Notifications
You must be signed in to change notification settings - Fork 2
/
81T25-CWcomplexApproximationOfQuantumStateSpacesInQAT.tex
207 lines (181 loc) · 6.49 KB
/
81T25-CWcomplexApproximationOfQuantumStateSpacesInQAT.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
\documentclass[12pt]{article}
\usepackage{pmmeta}
\pmcanonicalname{CWcomplexApproximationOfQuantumStateSpacesInQAT}
\pmcreated{2013-03-22 18:14:37}
\pmmodified{2013-03-22 18:14:37}
\pmowner{bci1}{20947}
\pmmodifier{bci1}{20947}
\pmtitle{$CW$-complex approximation of quantum state spaces in QAT}
\pmrecord{29}{40836}
\pmprivacy{1}
\pmauthor{bci1}{20947}
\pmtype{Theorem}
\pmcomment{trigger rebuild}
\pmclassification{msc}{81T25}
\pmclassification{msc}{81T05}
\pmclassification{msc}{81T10}
\pmsynonym{quantum spin networks approximations by $CW$-complexes}{CWcomplexApproximationOfQuantumStateSpacesInQAT}
%\pmkeywords{CW-complex approximation theorems in Quantum Algebraic Topology}
\pmrelated{ApproximationTheoremForAnArbitrarySpace}
\pmrelated{HomotopyEquivalence}
\pmrelated{QuantumAlgebraicTopology}
\pmrelated{ApproximationTheoremForAnArbitrarySpace}
\pmrelated{SpinNetworksAndSpinFoams}
\pmrelated{QuantumSpaceTimes}
\pmdefines{$CW$-complex approximation of quantum state spaces in QAT}
\endmetadata
% this is the default PlanetMath preamble. as your knowledge
% of TeX increases, you will probably want to edit this, but
% it should be fine as is for beginners.
% almost certainly you want these
\usepackage{amsmath, amssymb, amsfonts, amsthm, amscd, latexsym}
%%\usepackage{xypic}
\usepackage[mathscr]{eucal}
\setlength{\textwidth}{6.5in}
%\setlength{\textwidth}{16cm}
\setlength{\textheight}{9.0in}
%\setlength{\textheight}{24cm}
\hoffset=-.75in %%ps format
%\hoffset=-1.0in %%hp format
\voffset=-.4in
\theoremstyle{plain}
\newtheorem{lemma}{Lemma}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}{Corollary}[section]
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{example}{Example}[section]
%\theoremstyle{remark}
\newtheorem{remark}{Remark}[section]
\newtheorem*{notation}{Notation}
\newtheorem*{claim}{Claim}
\numberwithin{equation}{section}
\newcommand{\Ad}{{\rm Ad}}
\newcommand{\Aut}{{\rm Aut}}
\newcommand{\Cl}{{\rm Cl}}
\newcommand{\Co}{{\rm Co}}
\newcommand{\DES}{{\rm DES}}
\newcommand{\Diff}{{\rm Diff}}
\newcommand{\Dom}{{\rm Dom}}
\newcommand{\Hol}{{\rm Hol}}
\newcommand{\Mon}{{\rm Mon}}
\newcommand{\Hom}{{\rm Hom}}
\newcommand{\Ker}{{\rm Ker}}
\newcommand{\Ind}{{\rm Ind}}
\newcommand{\IM}{{\rm Im}}
\newcommand{\Is}{{\rm Is}}
\newcommand{\ID}{{\rm id}}
\newcommand{\GL}{{\rm GL}}
\newcommand{\Iso}{{\rm Iso}}
\newcommand{\Sem}{{\rm Sem}}
\newcommand{\St}{{\rm St}}
\newcommand{\Sym}{{\rm Sym}}
\newcommand{\SU}{{\rm SU}}
\newcommand{\Tor}{{\rm Tor}}
\newcommand{\U}{{\rm U}}
\newcommand{\A}{\mathcal A}
\newcommand{\Ce}{\mathcal C}
\newcommand{\D}{\mathcal D}
\newcommand{\E}{\mathcal E}
\newcommand{\F}{\mathcal F}
\newcommand{\G}{\mathcal G}
\newcommand{\Q}{\mathcal Q}
\newcommand{\R}{\mathcal R}
\newcommand{\cS}{\mathcal S}
\newcommand{\cU}{\mathcal U}
\newcommand{\W}{\mathcal W}
\newcommand{\bA}{\mathbb{A}}
\newcommand{\bB}{\mathbb{B}}
\newcommand{\bC}{\mathbb{C}}
\newcommand{\bD}{\mathbb{D}}
\newcommand{\bE}{\mathbb{E}}
\newcommand{\bF}{\mathbb{F}}
\newcommand{\bG}{\mathbb{G}}
\newcommand{\bK}{\mathbb{K}}
\newcommand{\bM}{\mathbb{M}}
\newcommand{\bN}{\mathbb{N}}
\newcommand{\bO}{\mathbb{O}}
\newcommand{\bP}{\mathbb{P}}
\newcommand{\bR}{\mathbb{R}}
\newcommand{\bV}{\mathbb{V}}
\newcommand{\bZ}{\mathbb{Z}}
\newcommand{\bfE}{\mathbf{E}}
\newcommand{\bfX}{\mathbf{X}}
\newcommand{\bfY}{\mathbf{Y}}
\newcommand{\bfZ}{\mathbf{Z}}
\renewcommand{\O}{\Omega}
\renewcommand{\o}{\omega}
\newcommand{\vp}{\varphi}
\newcommand{\vep}{\varepsilon}
\newcommand{\diag}{{\rm diag}}
\newcommand{\grp}{{\mathbb G}}
\newcommand{\dgrp}{{\mathbb D}}
\newcommand{\desp}{{\mathbb D^{\rm{es}}}}
\newcommand{\Geod}{{\rm Geod}}
\newcommand{\geod}{{\rm geod}}
\newcommand{\hgr}{{\mathbb H}}
\newcommand{\mgr}{{\mathbb M}}
\newcommand{\ob}{{\rm Ob}}
\newcommand{\obg}{{\rm Ob(\mathbb G)}}
\newcommand{\obgp}{{\rm Ob(\mathbb G')}}
\newcommand{\obh}{{\rm Ob(\mathbb H)}}
\newcommand{\Osmooth}{{\Omega^{\infty}(X,*)}}
\newcommand{\ghomotop}{{\rho_2^{\square}}}
\newcommand{\gcalp}{{\mathbb G(\mathcal P)}}
\newcommand{\rf}{{R_{\mathcal F}}}
\newcommand{\glob}{{\rm glob}}
\newcommand{\loc}{{\rm loc}}
\newcommand{\TOP}{{\rm TOP}}
\newcommand{\wti}{\widetilde}
\newcommand{\what}{\widehat}
\renewcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\ga}{\gamma}
\newcommand{\Ga}{\Gamma}
\newcommand{\de}{\delta}
\newcommand{\del}{\partial}
\newcommand{\ka}{\kappa}
\newcommand{\si}{\sigma}
\newcommand{\ta}{\tau}
\newcommand{\med}{\medbreak}
\newcommand{\medn}{\medbreak \noindent}
\newcommand{\bign}{\bigbreak \noindent}
\newcommand{\lra}{{\longrightarrow}}
\newcommand{\ra}{{\rightarrow}}
\newcommand{\rat}{{\rightarrowtail}}
\newcommand{\oset}[1]{\overset {#1}{\ra}}
\newcommand{\osetl}[1]{\overset {#1}{\lra}}
\newcommand{\hr}{{\hookrightarrow}}
\begin{document}
\textbf{Theorem 1.}
Let $[QF_j]_{j=1,...,n}$ be a complete sequence of commuting quantum spin `foams'
(QSFs) in an arbitrary \PMlinkname{quantum state space (QSS)}{QuantumSpaceTimes}, and let $(QF_j,QSS_j)$ be the corresponding sequence of pair subspaces of QST. If $Z_j$ is a sequence of CW-complexes such that for any
$j$ , $QF_j \subset Z_j$, then there exists a sequence of $n$-connected models $(QF_j,Z_j)$ of
$(QF_j,QSS_j)$ and a sequence of induced isomorphisms ${f_*}^j : \pi_i (Z_j)\rightarrow \pi_i (QSS_j)$
for $i>n$, together with a sequence of induced monomorphisms for $i=n$.
\med
\begin{remark}
There exist \emph{weak} homotopy equivalences between each $Z_j$ and $QSS_j$ spaces
in such a sequence. Therefore, there exists a $CW$--complex approximation of QSS defined by the sequence
$[Z_j]_{j=1,...,n}$ of CW-complexes with dimension $n \geq 2$. This $CW$--approximation is
unique up to \emph{regular} homotopy equivalence.
\end{remark}
\textbf{Corollary 2.}
\emph{The $n$-connected models} $(QF_j,Z_j)$ of $(QF_j,QSS_j)$ form the \emph{Model Category} of
\PMlinkname{Quantum Spin Foams}{SpinNetworksAndSpinFoams} $(QF_j)$, \emph{whose morphisms are maps $h_{jk}: Z_j \rightarrow Z_k$ such that $h_{jk}\mid QF_j = g: (QSS_j, QF_j) \rightarrow (QSS_k,QF_k)$, and also such that the following diagram is commutative:} \\
$
\begin{CD}
Z_j @> f_j >> QSS_j
\\ @V h_{jk} VV @VV g V
\\ Z_k @ > f_k >> QSS_k
\end{CD}
$
\\
\emph{Furthermore, the maps $h_{jk}$ are unique up to the homotopy rel $QF_j$ , and also rel $QF_k$}.
\begin{remark}
{Theorem 1} complements other data presented in the \PMlinkname{parent entry on QAT}{QuantumAlgebraicTopology}.
\end{remark}
%%%%%
%%%%%
\end{document}