-
Notifications
You must be signed in to change notification settings - Fork 360
/
chapter05.tex
758 lines (658 loc) · 22.3 KB
/
chapter05.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
\chapter{Complete search}
\key{Complete search}
is a general method that can be used
to solve almost any algorithm problem.
The idea is to generate all possible
solutions to the problem using brute force,
and then select the best solution or count the
number of solutions, depending on the problem.
Complete search is a good technique
if there is enough time to go through all the solutions,
because the search is usually easy to implement
and it always gives the correct answer.
If complete search is too slow,
other techniques, such as greedy algorithms or
dynamic programming, may be needed.
\section{Generating subsets}
\index{subset}
We first consider the problem of generating
all subsets of a set of $n$ elements.
For example, the subsets of $\{0,1,2\}$ are
$\emptyset$, $\{0\}$, $\{1\}$, $\{2\}$, $\{0,1\}$,
$\{0,2\}$, $\{1,2\}$ and $\{0,1,2\}$.
There are two common methods to generate subsets:
we can either perform a recursive search
or exploit the bit representation of integers.
\subsubsection{Method 1}
An elegant way to go through all subsets
of a set is to use recursion.
The following function \texttt{search}
generates the subsets of the set
$\{0,1,\ldots,n-1\}$.
The function maintains a vector \texttt{subset}
that will contain the elements of each subset.
The search begins when the function is called
with parameter 0.
\begin{lstlisting}
void search(int k) {
if (k == n) {
// process subset
} else {
search(k+1);
subset.push_back(k);
search(k+1);
subset.pop_back();
}
}
\end{lstlisting}
When the function \texttt{search}
is called with parameter $k$,
it decides whether to include the
element $k$ in the subset or not,
and in both cases,
then calls itself with parameter $k+1$
However, if $k=n$, the function notices that
all elements have been processed
and a subset has been generated.
The following tree illustrates the function calls when $n=3$.
We can always choose either the left branch
($k$ is not included in the subset) or the right branch
($k$ is included in the subset).
\begin{center}
\begin{tikzpicture}[scale=.45]
\begin{scope}
\small
\node at (0,0) {$\texttt{search}(0)$};
\node at (-8,-4) {$\texttt{search}(1)$};
\node at (8,-4) {$\texttt{search}(1)$};
\path[draw,thick,->] (0,0-0.5) -- (-8,-4+0.5);
\path[draw,thick,->] (0,0-0.5) -- (8,-4+0.5);
\node at (-12,-8) {$\texttt{search}(2)$};
\node at (-4,-8) {$\texttt{search}(2)$};
\node at (4,-8) {$\texttt{search}(2)$};
\node at (12,-8) {$\texttt{search}(2)$};
\path[draw,thick,->] (-8,-4-0.5) -- (-12,-8+0.5);
\path[draw,thick,->] (-8,-4-0.5) -- (-4,-8+0.5);
\path[draw,thick,->] (8,-4-0.5) -- (4,-8+0.5);
\path[draw,thick,->] (8,-4-0.5) -- (12,-8+0.5);
\node at (-14,-12) {$\texttt{search}(3)$};
\node at (-10,-12) {$\texttt{search}(3)$};
\node at (-6,-12) {$\texttt{search}(3)$};
\node at (-2,-12) {$\texttt{search}(3)$};
\node at (2,-12) {$\texttt{search}(3)$};
\node at (6,-12) {$\texttt{search}(3)$};
\node at (10,-12) {$\texttt{search}(3)$};
\node at (14,-12) {$\texttt{search}(3)$};
\node at (-14,-13.5) {$\emptyset$};
\node at (-10,-13.5) {$\{2\}$};
\node at (-6,-13.5) {$\{1\}$};
\node at (-2,-13.5) {$\{1,2\}$};
\node at (2,-13.5) {$\{0\}$};
\node at (6,-13.5) {$\{0,2\}$};
\node at (10,-13.5) {$\{0,1\}$};
\node at (14,-13.5) {$\{0,1,2\}$};
\path[draw,thick,->] (-12,-8-0.5) -- (-14,-12+0.5);
\path[draw,thick,->] (-12,-8-0.5) -- (-10,-12+0.5);
\path[draw,thick,->] (-4,-8-0.5) -- (-6,-12+0.5);
\path[draw,thick,->] (-4,-8-0.5) -- (-2,-12+0.5);
\path[draw,thick,->] (4,-8-0.5) -- (2,-12+0.5);
\path[draw,thick,->] (4,-8-0.5) -- (6,-12+0.5);
\path[draw,thick,->] (12,-8-0.5) -- (10,-12+0.5);
\path[draw,thick,->] (12,-8-0.5) -- (14,-12+0.5);
\end{scope}
\end{tikzpicture}
\end{center}
\subsubsection{Method 2}
Another way to generate subsets is based on
the bit representation of integers.
Each subset of a set of $n$ elements
can be represented as a sequence of $n$ bits,
which corresponds to an integer between $0 \ldots 2^n-1$.
The ones in the bit sequence indicate
which elements are included in the subset.
The usual convention is that
the last bit corresponds to element 0,
the second last bit corresponds to element 1,
and so on.
For example, the bit representation of 25
is 11001, which corresponds to the subset $\{0,3,4\}$.
The following code goes through the subsets
of a set of $n$ elements
\begin{lstlisting}
for (int b = 0; b < (1<<n); b++) {
// process subset
}
\end{lstlisting}
The following code shows how we can find
the elements of a subset that corresponds to a bit sequence.
When processing each subset,
the code builds a vector that contains the
elements in the subset.
\begin{lstlisting}
for (int b = 0; b < (1<<n); b++) {
vector<int> subset;
for (int i = 0; i < n; i++) {
if (b&(1<<i)) subset.push_back(i);
}
}
\end{lstlisting}
\section{Generating permutations}
\index{permutation}
Next we consider the problem of generating
all permutations of a set of $n$ elements.
For example, the permutations of $\{0,1,2\}$ are
$(0,1,2)$, $(0,2,1)$, $(1,0,2)$, $(1,2,0)$,
$(2,0,1)$ and $(2,1,0)$.
Again, there are two approaches:
we can either use recursion or go through the
permutations iteratively.
\subsubsection{Method 1}
Like subsets, permutations can be generated
using recursion.
The following function \texttt{search} goes
through the permutations of the set $\{0,1,\ldots,n-1\}$.
The function builds a vector \texttt{permutation}
that contains the permutation,
and the search begins when the function is
called without parameters.
\begin{lstlisting}
void search() {
if (permutation.size() == n) {
// process permutation
} else {
for (int i = 0; i < n; i++) {
if (chosen[i]) continue;
chosen[i] = true;
permutation.push_back(i);
search();
chosen[i] = false;
permutation.pop_back();
}
}
}
\end{lstlisting}
Each function call adds a new element to
\texttt{permutation}.
The array \texttt{chosen} indicates which
elements are already included in the permutation.
If the size of \texttt{permutation} equals the size of the set,
a permutation has been generated.
\subsubsection{Method 2}
\index{next\_permutation@\texttt{next\_permutation}}
Another method for generating permutations
is to begin with the permutation
$\{0,1,\ldots,n-1\}$ and repeatedly
use a function that constructs the next permutation
in increasing order.
The C++ standard library contains the function
\texttt{next\_permutation} that can be used for this:
\begin{lstlisting}
vector<int> permutation;
for (int i = 0; i < n; i++) {
permutation.push_back(i);
}
do {
// process permutation
} while (next_permutation(permutation.begin(),permutation.end()));
\end{lstlisting}
\section{Backtracking}
\index{backtracking}
A \key{backtracking} algorithm
begins with an empty solution
and extends the solution step by step.
The search recursively
goes through all different ways how
a solution can be constructed.
\index{queen problem}
As an example, consider the problem of
calculating the number
of ways $n$ queens can be placed on
an $n \times n$ chessboard so that
no two queens attack each other.
For example, when $n=4$,
there are two possible solutions:
\begin{center}
\begin{tikzpicture}[scale=.65]
\begin{scope}
\draw (0, 0) grid (4, 4);
\node at (1.5,3.5) {\symqueen};
\node at (3.5,2.5) {\symqueen};
\node at (0.5,1.5) {\symqueen};
\node at (2.5,0.5) {\symqueen};
\draw (6, 0) grid (10, 4);
\node at (6+2.5,3.5) {\symqueen};
\node at (6+0.5,2.5) {\symqueen};
\node at (6+3.5,1.5) {\symqueen};
\node at (6+1.5,0.5) {\symqueen};
\end{scope}
\end{tikzpicture}
\end{center}
The problem can be solved using backtracking
by placing queens to the board row by row.
More precisely, exactly one queen will
be placed on each row so that no queen attacks
any of the queens placed before.
A solution has been found when all
$n$ queens have been placed on the board.
For example, when $n=4$,
some partial solutions generated by
the backtracking algorithm are as follows:
\begin{center}
\begin{tikzpicture}[scale=.55]
\begin{scope}
\draw (0, 0) grid (4, 4);
\draw (-9, -6) grid (-5, -2);
\draw (-3, -6) grid (1, -2);
\draw (3, -6) grid (7, -2);
\draw (9, -6) grid (13, -2);
\node at (-9+0.5,-3+0.5) {\symqueen};
\node at (-3+1+0.5,-3+0.5) {\symqueen};
\node at (3+2+0.5,-3+0.5) {\symqueen};
\node at (9+3+0.5,-3+0.5) {\symqueen};
\draw (2,0) -- (-7,-2);
\draw (2,0) -- (-1,-2);
\draw (2,0) -- (5,-2);
\draw (2,0) -- (11,-2);
\draw (-11, -12) grid (-7, -8);
\draw (-6, -12) grid (-2, -8);
\draw (-1, -12) grid (3, -8);
\draw (4, -12) grid (8, -8);
\draw[white] (11, -12) grid (15, -8);
\node at (-11+1+0.5,-9+0.5) {\symqueen};
\node at (-6+1+0.5,-9+0.5) {\symqueen};
\node at (-1+1+0.5,-9+0.5) {\symqueen};
\node at (4+1+0.5,-9+0.5) {\symqueen};
\node at (-11+0+0.5,-10+0.5) {\symqueen};
\node at (-6+1+0.5,-10+0.5) {\symqueen};
\node at (-1+2+0.5,-10+0.5) {\symqueen};
\node at (4+3+0.5,-10+0.5) {\symqueen};
\draw (-1,-6) -- (-9,-8);
\draw (-1,-6) -- (-4,-8);
\draw (-1,-6) -- (1,-8);
\draw (-1,-6) -- (6,-8);
\node at (-9,-13) {illegal};
\node at (-4,-13) {illegal};
\node at (1,-13) {illegal};
\node at (6,-13) {valid};
\end{scope}
\end{tikzpicture}
\end{center}
At the bottom level, the three first configurations
are illegal, because the queens attack each other.
However, the fourth configuration is valid
and it can be extended to a complete solution by
placing two more queens to the board.
There is only one way to place the two remaining queens.
\begin{samepage}
The algorithm can be implemented as follows:
\begin{lstlisting}
void search(int y) {
if (y == n) {
count++;
return;
}
for (int x = 0; x < n; x++) {
if (column[x] || diag1[x+y] || diag2[x-y+n-1]) continue;
column[x] = diag1[x+y] = diag2[x-y+n-1] = 1;
search(y+1);
column[x] = diag1[x+y] = diag2[x-y+n-1] = 0;
}
}
\end{lstlisting}
\end{samepage}
The search begins by calling \texttt{search(0)}.
The size of the board is $n \times n$,
and the code calculates the number of solutions
to \texttt{count}.
The code assumes that the rows and columns
of the board are numbered from 0 to $n-1$.
When the function \texttt{search} is
called with parameter $y$,
it places a queen on row $y$
and then calls itself with parameter $y+1$.
Then, if $y=n$, a solution has been found
and the variable \texttt{count} is increased by one.
The array \texttt{column} keeps track of columns
that contain a queen,
and the arrays \texttt{diag1} and \texttt{diag2}
keep track of diagonals.
It is not allowed to add another queen to a
column or diagonal that already contains a queen.
For example, the columns and diagonals of
the $4 \times 4$ board are numbered as follows:
\begin{center}
\begin{tikzpicture}[scale=.65]
\begin{scope}
\draw (0-6, 0) grid (4-6, 4);
\node at (-6+0.5,3.5) {$0$};
\node at (-6+1.5,3.5) {$1$};
\node at (-6+2.5,3.5) {$2$};
\node at (-6+3.5,3.5) {$3$};
\node at (-6+0.5,2.5) {$0$};
\node at (-6+1.5,2.5) {$1$};
\node at (-6+2.5,2.5) {$2$};
\node at (-6+3.5,2.5) {$3$};
\node at (-6+0.5,1.5) {$0$};
\node at (-6+1.5,1.5) {$1$};
\node at (-6+2.5,1.5) {$2$};
\node at (-6+3.5,1.5) {$3$};
\node at (-6+0.5,0.5) {$0$};
\node at (-6+1.5,0.5) {$1$};
\node at (-6+2.5,0.5) {$2$};
\node at (-6+3.5,0.5) {$3$};
\draw (0, 0) grid (4, 4);
\node at (0.5,3.5) {$0$};
\node at (1.5,3.5) {$1$};
\node at (2.5,3.5) {$2$};
\node at (3.5,3.5) {$3$};
\node at (0.5,2.5) {$1$};
\node at (1.5,2.5) {$2$};
\node at (2.5,2.5) {$3$};
\node at (3.5,2.5) {$4$};
\node at (0.5,1.5) {$2$};
\node at (1.5,1.5) {$3$};
\node at (2.5,1.5) {$4$};
\node at (3.5,1.5) {$5$};
\node at (0.5,0.5) {$3$};
\node at (1.5,0.5) {$4$};
\node at (2.5,0.5) {$5$};
\node at (3.5,0.5) {$6$};
\draw (6, 0) grid (10, 4);
\node at (6.5,3.5) {$3$};
\node at (7.5,3.5) {$4$};
\node at (8.5,3.5) {$5$};
\node at (9.5,3.5) {$6$};
\node at (6.5,2.5) {$2$};
\node at (7.5,2.5) {$3$};
\node at (8.5,2.5) {$4$};
\node at (9.5,2.5) {$5$};
\node at (6.5,1.5) {$1$};
\node at (7.5,1.5) {$2$};
\node at (8.5,1.5) {$3$};
\node at (9.5,1.5) {$4$};
\node at (6.5,0.5) {$0$};
\node at (7.5,0.5) {$1$};
\node at (8.5,0.5) {$2$};
\node at (9.5,0.5) {$3$};
\node at (-4,-1) {\texttt{column}};
\node at (2,-1) {\texttt{diag1}};
\node at (8,-1) {\texttt{diag2}};
\end{scope}
\end{tikzpicture}
\end{center}
Let $q(n)$ denote the number of ways
to place $n$ queens on an $n \times n$ chessboard.
The above backtracking
algorithm tells us that, for example, $q(8)=92$.
When $n$ increases, the search quickly becomes slow,
because the number of solutions increases
exponentially.
For example, calculating $q(16)=14772512$
using the above algorithm already takes about a minute
on a modern computer\footnote{There is no known way to efficiently
calculate larger values of $q(n)$. The current record is
$q(27)=234907967154122528$, calculated in 2016 \cite{q27}.}.
\section{Pruning the search}
We can often optimize backtracking
by pruning the search tree.
The idea is to add ''intelligence'' to the algorithm
so that it will notice as soon as possible
if a partial solution cannot be extended
to a complete solution.
Such optimizations can have a tremendous
effect on the efficiency of the search.
Let us consider the problem
of calculating the number of paths
in an $n \times n$ grid from the upper-left corner
to the lower-right corner such that the
path visits each square exactly once.
For example, in a $7 \times 7$ grid,
there are 111712 such paths.
One of the paths is as follows:
\begin{center}
\begin{tikzpicture}[scale=.55]
\begin{scope}
\draw (0, 0) grid (7, 7);
\draw[thick,->] (0.5,6.5) -- (0.5,4.5) -- (2.5,4.5) --
(2.5,3.5) -- (0.5,3.5) -- (0.5,0.5) --
(3.5,0.5) -- (3.5,1.5) -- (1.5,1.5) --
(1.5,2.5) -- (4.5,2.5) -- (4.5,0.5) --
(5.5,0.5) -- (5.5,3.5) -- (3.5,3.5) --
(3.5,5.5) -- (1.5,5.5) -- (1.5,6.5) --
(4.5,6.5) -- (4.5,4.5) -- (5.5,4.5) --
(5.5,6.5) -- (6.5,6.5) -- (6.5,0.5);
\end{scope}
\end{tikzpicture}
\end{center}
We focus on the $7 \times 7$ case,
because its level of difficulty is appropriate to our needs.
We begin with a straightforward backtracking algorithm,
and then optimize it step by step using observations
of how the search can be pruned.
After each optimization, we measure the running time
of the algorithm and the number of recursive calls,
so that we clearly see the effect of each
optimization on the efficiency of the search.
\subsubsection{Basic algorithm}
The first version of the algorithm does not contain
any optimizations. We simply use backtracking to generate
all possible paths from the upper-left corner to
the lower-right corner and count the number of such paths.
\begin{itemize}
\item
running time: 483 seconds
\item
number of recursive calls: 76 billion
\end{itemize}
\subsubsection{Optimization 1}
In any solution, we first move one step
down or right.
There are always two paths that
are symmetric
about the diagonal of the grid
after the first step.
For example, the following paths are symmetric:
\begin{center}
\begin{tabular}{ccc}
\begin{tikzpicture}[scale=.55]
\begin{scope}
\draw (0, 0) grid (7, 7);
\draw[thick,->] (0.5,6.5) -- (0.5,4.5) -- (2.5,4.5) --
(2.5,3.5) -- (0.5,3.5) -- (0.5,0.5) --
(3.5,0.5) -- (3.5,1.5) -- (1.5,1.5) --
(1.5,2.5) -- (4.5,2.5) -- (4.5,0.5) --
(5.5,0.5) -- (5.5,3.5) -- (3.5,3.5) --
(3.5,5.5) -- (1.5,5.5) -- (1.5,6.5) --
(4.5,6.5) -- (4.5,4.5) -- (5.5,4.5) --
(5.5,6.5) -- (6.5,6.5) -- (6.5,0.5);
\end{scope}
\end{tikzpicture}
& \hspace{20px}
&
\begin{tikzpicture}[scale=.55]
\begin{scope}[yscale=1,xscale=-1,rotate=-90]
\draw (0, 0) grid (7, 7);
\draw[thick,->] (0.5,6.5) -- (0.5,4.5) -- (2.5,4.5) --
(2.5,3.5) -- (0.5,3.5) -- (0.5,0.5) --
(3.5,0.5) -- (3.5,1.5) -- (1.5,1.5) --
(1.5,2.5) -- (4.5,2.5) -- (4.5,0.5) --
(5.5,0.5) -- (5.5,3.5) -- (3.5,3.5) --
(3.5,5.5) -- (1.5,5.5) -- (1.5,6.5) --
(4.5,6.5) -- (4.5,4.5) -- (5.5,4.5) --
(5.5,6.5) -- (6.5,6.5) -- (6.5,0.5);
\end{scope}
\end{tikzpicture}
\end{tabular}
\end{center}
Hence, we can decide that we always first
move one step down (or right),
and finally multiply the number of solutions by two.
\begin{itemize}
\item
running time: 244 seconds
\item
number of recursive calls: 38 billion
\end{itemize}
\subsubsection{Optimization 2}
If the path reaches the lower-right square
before it has visited all other squares of the grid,
it is clear that
it will not be possible to complete the solution.
An example of this is the following path:
\begin{center}
\begin{tikzpicture}[scale=.55]
\begin{scope}
\draw (0, 0) grid (7, 7);
\draw[thick,->] (0.5,6.5) -- (0.5,4.5) -- (2.5,4.5) --
(2.5,3.5) -- (0.5,3.5) -- (0.5,0.5) --
(3.5,0.5) -- (3.5,1.5) -- (1.5,1.5) --
(1.5,2.5) -- (4.5,2.5) -- (4.5,0.5) --
(6.5,0.5);
\end{scope}
\end{tikzpicture}
\end{center}
Using this observation, we can terminate the search
immediately if we reach the lower-right square too early.
\begin{itemize}
\item
running time: 119 seconds
\item
number of recursive calls: 20 billion
\end{itemize}
\subsubsection{Optimization 3}
If the path touches a wall
and can turn either left or right,
the grid splits into two parts
that contain unvisited squares.
For example, in the following situation,
the path can turn either left or right:
\begin{center}
\begin{tikzpicture}[scale=.55]
\begin{scope}
\draw (0, 0) grid (7, 7);
\draw[thick,->] (0.5,6.5) -- (0.5,4.5) -- (2.5,4.5) --
(2.5,3.5) -- (0.5,3.5) -- (0.5,0.5) --
(3.5,0.5) -- (3.5,1.5) -- (1.5,1.5) --
(1.5,2.5) -- (4.5,2.5) -- (4.5,0.5) --
(5.5,0.5) -- (5.5,6.5);
\end{scope}
\end{tikzpicture}
\end{center}
In this case, we cannot visit all squares anymore,
so we can terminate the search.
This optimization is very useful:
\begin{itemize}
\item
running time: 1.8 seconds
\item
number of recursive calls: 221 million
\end{itemize}
\subsubsection{Optimization 4}
The idea of Optimization 3
can be generalized:
if the path cannot continue forward
but can turn either left or right,
the grid splits into two parts
that both contain unvisited squares.
For example, consider the following path:
\begin{center}
\begin{tikzpicture}[scale=.55]
\begin{scope}
\draw (0, 0) grid (7, 7);
\draw[thick,->] (0.5,6.5) -- (0.5,4.5) -- (2.5,4.5) --
(2.5,3.5) -- (0.5,3.5) -- (0.5,0.5) --
(3.5,0.5) -- (3.5,1.5) -- (1.5,1.5) --
(1.5,2.5) -- (4.5,2.5) -- (4.5,0.5) --
(5.5,0.5) -- (5.5,4.5) -- (3.5,4.5);
\end{scope}
\end{tikzpicture}
\end{center}
It is clear that we cannot visit all squares anymore,
so we can terminate the search.
After this optimization, the search is
very efficient:
\begin{itemize}
\item
running time: 0.6 seconds
\item
number of recursive calls: 69 million
\end{itemize}
~\\
Now is a good moment to stop optimizing
the algorithm and see what we have achieved.
The running time of the original algorithm
was 483 seconds,
and now after the optimizations,
the running time is only 0.6 seconds.
Thus, the algorithm became nearly 1000 times
faster after the optimizations.
This is a usual phenomenon in backtracking,
because the search tree is usually large
and even simple observations can effectively
prune the search.
Especially useful are optimizations that
occur during the first steps of the algorithm,
i.e., at the top of the search tree.
\section{Meet in the middle}
\index{meet in the middle}
\key{Meet in the middle} is a technique
where the search space is divided into
two parts of about equal size.
A separate search is performed
for both of the parts,
and finally the results of the searches are combined.
The technique can be used
if there is an efficient way to combine the
results of the searches.
In such a situation, the two searches may require less
time than one large search.
Typically, we can turn a factor of $2^n$
into a factor of $2^{n/2}$ using the meet in the
middle technique.
As an example, consider a problem where
we are given a list of $n$ numbers and
a number $x$,
and we want to find out if it is possible
to choose some numbers from the list so that
their sum is $x$.
For example, given the list $[2,4,5,9]$ and $x=15$,
we can choose the numbers $[2,4,9]$ to get $2+4+9=15$.
However, if $x=10$ for the same list,
it is not possible to form the sum.
A simple algorithm to the problem is to
go through all subsets of the elements and
check if the sum of any of the subsets is $x$.
The running time of such an algorithm is $O(2^n)$,
because there are $2^n$ subsets.
However, using the meet in the middle technique,
we can achieve a more efficient $O(2^{n/2})$ time algorithm\footnote{This
idea was introduced in 1974 by E. Horowitz and S. Sahni \cite{hor74}.}.
Note that $O(2^n)$ and $O(2^{n/2})$ are different
complexities because $2^{n/2}$ equals $\sqrt{2^n}$.
The idea is to divide the list into
two lists $A$ and $B$ such that both
lists contain about half of the numbers.
The first search generates all subsets
of $A$ and stores their sums to a list $S_A$.
Correspondingly, the second search creates
a list $S_B$ from $B$.
After this, it suffices to check if it is possible
to choose one element from $S_A$ and another
element from $S_B$ such that their sum is $x$.
This is possible exactly when there is a way to
form the sum $x$ using the numbers of the original list.
For example, suppose that the list is $[2,4,5,9]$ and $x=15$.
First, we divide the list into $A=[2,4]$ and $B=[5,9]$.
After this, we create lists
$S_A=[0,2,4,6]$ and $S_B=[0,5,9,14]$.
In this case, the sum $x=15$ is possible to form,
because $S_A$ contains the sum $6$,
$S_B$ contains the sum $9$, and $6+9=15$.
This corresponds to the solution $[2,4,9]$.
We can implement the algorithm so that
its time complexity is $O(2^{n/2})$.
First, we generate \emph{sorted} lists $S_A$ and $S_B$,
which can be done in $O(2^{n/2})$ time using a merge-like technique.
After this, since the lists are sorted,
we can check in $O(2^{n/2})$ time if
the sum $x$ can be created from $S_A$ and $S_B$.