-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensor_info.cpp
115 lines (93 loc) · 3.75 KB
/
tensor_info.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2018 - 2020 Daniil Goncharov <[email protected]>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "tf_utils.hpp"
#include <scope_guard.hpp>
#include <iostream>
#include <vector>
#include <string>
void PrintInputs(TF_Graph*, TF_Operation* op) {
auto num_inputs = TF_OperationNumInputs(op);
for (auto i = 0; i < num_inputs; ++i) {
auto input = TF_Input{op, i};
auto type = TF_OperationInputType(input);
std::cout << "Input: " << i << " type: " << tf_utils::DataTypeToString(type) << std::endl;
}
}
void PrintOutputs(TF_Graph* graph, TF_Operation* op, TF_Status* status) {
auto num_outputs = TF_OperationNumOutputs(op);
for (int i = 0; i < num_outputs; ++i) {
auto output = TF_Output{op, i};
auto type = TF_OperationOutputType(output);
auto num_dims = TF_GraphGetTensorNumDims(graph, output, status);
if (TF_GetCode(status) != TF_OK) {
std::cout << "Can't get tensor dimensionality" << std::endl;
continue;
}
std::cout << " dims: " << num_dims;
if (num_dims <= 0) {
std::cout << " []" << std::endl;;
continue;
}
std::vector<std::int64_t> dims(num_dims);
std::cout << "Output: " << i << " type: " << tf_utils::DataTypeToString(type);
TF_GraphGetTensorShape(graph, output, dims.data(), num_dims, status);
if (TF_GetCode(status) != TF_OK) {
std::cout << "Can't get get tensor shape" << std::endl;
continue;
}
std::cout << " [";
for (auto d = 0; d < num_dims; ++d) {
std::cout << dims[d];
if (d < num_dims - 1) {
std::cout << ", ";
}
}
std::cout << "]" << std::endl;
}
}
void PrintTensorInfo(TF_Graph* graph, const char* layer_name, TF_Status* status) {
std::cout << "Tensor: " << layer_name;
auto op = TF_GraphOperationByName(graph, layer_name);
if (op == nullptr) {
std::cout << "Could not get " << layer_name << std::endl;
return;
}
auto num_inputs = TF_OperationNumInputs(op);
auto num_outputs = TF_OperationNumOutputs(op);
std::cout << " inputs: " << num_inputs << " outputs: " << num_outputs << std::endl;
PrintInputs(graph, op);
PrintOutputs(graph, op, status);
}
int main() {
auto graph = tf_utils::LoadGraph("graph.pb");
SCOPE_EXIT{ tf_utils::DeleteGraph(graph); }; // Auto-delete on scope exit.
if (graph == nullptr) {
std::cout << "Can't load graph" << std::endl;
return 1;
}
auto status = TF_NewStatus();
SCOPE_EXIT{ TF_DeleteStatus(status); }; // Auto-delete on scope exit.
PrintTensorInfo(graph, "input_4", status);
std::cout << std::endl;
PrintTensorInfo(graph, "output_node0", status);
return 0;
}