-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathshear_stacking.py
433 lines (400 loc) · 15.8 KB
/
shear_stacking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import numpy as np
from math import pi, sqrt
import os, fitsio
def skyAngle(ra, dec, ra_ref, dec_ref):
# CAUTION: this needs to be a pseudo-Cartesian coordinate frame
# (not pure RA/DEC), otherwise angles are skewed
return np.arctan2(dec-dec_ref, (ra-ra_ref)*np.cos(dec*pi/180))
def skyDistance(ra, dec, ra_ref, dec_ref):
# CAUTION: this needs to be a pseudo-Cartesian coordinate frame
# (not pure RA/DEC), otherwise distances are skewed
return (((ra-ra_ref)*np.cos(dec*pi/180))**2 + (dec-dec_ref)**2)**0.5
def tangentialShear(ra, dec, e1, e2, ra_ref, dec_ref, computeB=False):
phi = skyAngle(ra, dec, ra_ref, dec_ref)
if computeB is False:
return -e1*np.cos(2*phi) + e2*np.sin(2*phi)
else:
return -e1*np.cos(2*phi) + e2*np.sin(2*phi), e1*np.sin(2*phi) + e2*np.cos(2*phi)
# CAUTION: assumes Gaussian errors and large samples
# replace with Jackknife/Bootstrap estimate for more accurate errors
class WeightedMeanVar:
def __init__(self):
self.N = 0.
self.Wi = 0.
self.WiXi = 0.
self.WiXi2 = 0.
self.WiSi = 0.
def getMean(self):
if self.Wi > 0:
if self.WiSi > 0:
return self.WiXi / self.WiSi
else:
return self.WiXi / self.Wi
else:
return 0
def getStd(self):
if self.Wi > 0:
if self.WiSi > 0:
# this is not entirely correct since we ignore the extra variance
# in the sensitivity itself
# again: use bootstraps of the mean for more accurate errors
return ((self.WiXi2 - (self.WiXi**2)/self.Wi) / ((self.N - 1) * self.WiSi))**0.5
else:
return ((self.WiXi2 - (self.WiXi**2)/self.Wi) / ((self.N - 1) * self.Wi))**0.5
else:
return 0
def insert(self, X, W, S=None):
if X.size:
self.N += X.size
self.Wi += W.sum()
self.WiXi += (W*X).sum()
self.WiXi2 += (W*X**2).sum()
if S is not None:
self.WiSi += (W*S).sum()
def __iadd__(self, other):
self.N += other.N
self.Wi += other.Wi
self.WiXi += other.WiXi
self.WiXi2 += other.WiXi2
self.WiSi += other.WiSi
return self
class BinnedScalarProfile:
def __init__(self, bins):
self.bins = bins
self.Q = [] # binned quantity
self.R = [] # center of radial bins
for i in xrange(len(self.bins)-1):
self.Q.append(WeightedMeanVar())
self.R.append(0.)
def __iadd__(self, other):
if len(self.R) == len(other.R):
for i in xrange(len(self.bins)-1):
self.Q[i] += other.Q[i]
self.R[i] += other.R[i]
return self
else:
raise AssertionError("Profiles do not have the same length.")
def insert(self, R, Q, W, S=None):
for i in xrange(len(self.bins)-1):
mask = (R >= self.bins[i]) & (R < self.bins[i+1])
if S is None:
self.Q[i].insert(Q[mask], W[mask])
else:
self.Q[i].insert(Q[mask], W[mask], S[mask])
self.R[i] += R[mask].sum()
del mask
def getProfile(self):
mean_q = np.empty(len(self.bins)-1)
std_q = np.empty(len(self.bins)-1)
n = np.empty(len(self.bins)-1)
r = np.empty(len(self.bins)-1)
sum_w = np.empty(len(self.bins)-1)
for i in xrange(len(self.bins)-1):
n[i] = self.Q[i].N
if n[i] > 0:
r[i] = self.R[i] / n[i]
mean_q[i] = self.Q[i].getMean()
std_q[i] = self.Q[i].getStd()
sum_w[i] = self.Q[i].Wi / (np.pi*(self.bins[i+1]**2 - self.bins[i]**2))
return r, n, mean_q, std_q, sum_w
def save(self, filename):
mean_r, n, mean_q, std_q, sum_w = self.getProfile()
kwargs = { "mean_r": mean_r, "n": n, "q": mean_q, "std_q": std_q, "sum_w": sum_w }
np.savez(filename, **kwargs)
# extrapolation function from
# http://stackoverflow.com/questions/2745329/how-to-make-scipy-interpolate-give-an-extrapolated-result-beyond-the-input-range
def extrap(x, xp, yp):
"""np.interp function with linear extrapolation"""
x_ = np.array(x)
y = np.array(np.interp(x_, xp, yp))
y[x_ < xp[0]] = yp[0] + (x_[x_ < xp[0]] -xp[0]) * (yp[0] - yp[1]) / (xp[0] - xp[1])
y[x_ > xp[-1]] = yp[-1] + (x_[x_ > xp[-1]] -xp[-1])*(yp[-1] - yp[-2])/(xp[-1] - xp[-2])
return y
import esutil.cosmology
cosmo = esutil.cosmology.Cosmo()
# get separation in deg for distance L in Mpc/h at redshift z
def Dist2Ang(L, z):
global cosmo
return L / cosmo.Da(0,z) * 180./np.pi
def Ang2Dist(theta, z):
global cosmo
return theta * cosmo.Da(0,z) / 180. * np.pi
def getBeta(z_c, z):
if z_c >= z:
return 0
else:
return cosmo.Da(z_c, z)/cosmo.Da(z)
def getSigmaCrit(z_c, z):
c2_4piG = 3.882 # in 1e14 M_solar / Mpc^2 (since cosmo.Da comes in units of c/H0)
return c2_4piG / getBeta(z_c, z) / cosmo.Da(z_c)
# From Troxel: <Sigma_crit ^-power w> / <w> for each photo-z bin
# calculated for flat LCDM model with Omega_m = 0.27, h=0.7 and distances in Mpc
# FIXME: need to adjust to Omega_m = 0.3 of our reference cosmology
def getWZ(power=1):
thisdir = os.path.dirname(os.path.realpath(__file__))
if power != 1 and power != 2:
raise RuntimeError("Must be integer power 1 or 2")
filename = 'invsigcrit-skynetsmooth6-false_z_mean.txt'
if power == 2:
filename = 'invsigcrit2-skynetsmooth6-false_z_mean.txt'
data = np.genfromtxt(thisdir + '/data/' + filename, dtype=[('z', 'float32'), ('bin0', 'float32'), ('bin1', 'float32'), ('bin2', 'float32')])
c2_4piG = 1.661e4 # in 1e14 M_solar / Mpc, for distances in Mpc
for b in xrange(3):
data['bin%d' % b] /= c2_4piG**power
return data
class JoinedDataSet:
"""Helper class to combine two data sets (= np.recarrays) with same
length but different columns.
Because of an explicit merge, access or slices in rows are much slower
than access to columns. You have been warned!
"""
def __init__(self, data, extra):
self.data = data
self.extra = extra
if len(data) != len(extra):
raise RuntimeError("data sets not of equal length!")
self._set_dtype()
def _set_dtype(self):
self.dtype = self.__getitem__(0).dtype
def __len__(self):
return len(self.data)
@property
def size(self):
return self.data.size + self.extra.size
@property
def shape(self):
return self.data.shape
def __getitem__(self, pos):
# for string i.e. column request, check which data set has the col
if isinstance(pos, basestring):
if pos in self.data.dtype.names:
return self.data[pos]
if pos in self.extra.dtype.names:
return self.extra[pos]
raise KeyError("%s not in either data set" % pos)
# for an index/slice: combine both data sets and return
else:
if isinstance(pos, (int, long)):
# rec_append doesn't work with single indices
# thus creating a slice here
pos = slice(pos, pos+1, None)
from numpy.lib import recfunctions
columns = self.data.dtype.names
columns_ = []
dtypes_ = []
for col in self.extra.dtype.names:
if col not in columns:
columns_.append(col)
dtypes_.append(self.extra.dtype[col])
return recfunctions.rec_append_fields(self.data[pos], columns_, [self.extra[pos][c] for c in columns_], dtypes=dtypes_)
def getShapeCatalog(config, verbose=False):
# open shapes file(s)
shapefile = config['shape_file']
chunk_size = config['shape_chunk_size']
shdu = fitsio.FITS(shapefile)
extra = None
total_sample = 0
if verbose:
print "opening shapefile %s (%d entries)" % (shapefile, shdu[1].get_nrows())
if len(config['shape_cuts']) == 0:
total_sample = shdu[1].get_nrows()
shapes = shdu[1][:]
try:
ehdu = fitsio.FITS(config['shape_file_extra'])
if verbose:
print " opening extra shapefile " + config['shape_file_extra']
extra = ehdu[1][:]
ehdu.close()
except KeyError:
pass
else:
# apply shape cuts: either on the file itself of on the extra file
# since we're working with FITS type selections, we can't apply it
# directly to the shapes array, but need to go back to the catalogs.
# that's not really elegant since the .where runs on entire table
cuts = " && ".join(config['shape_cuts'])
try:
ehdu = fitsio.FITS(config['shape_file_extra'])
mask = ehdu[1].where(cuts)
total_sample = mask.size
if verbose:
print " opening extra shapefile " + config['shape_file_extra']
print " selecting %d shapes" % mask.size
shapes = shdu[1][mask]
extra = ehdu[1][mask]
ehdu.close()
except KeyError:
mask = shdu[1].where(cuts)
total_sample = mask.size
if verbose:
print " selecting %d shapes" % mask.size
shapes = shdu[1][mask]
del mask
if verbose:
print " shape sample: %d" % shapes.size
shdu.close()
# if there's an extra file: join data with shapes
if extra is not None:
shapes_ = JoinedDataSet(shapes, extra)
return shapes_
else:
return shapes
def getLensCatalog(config, verbose=False):
lensfile = config['lens_file']
hdu = fitsio.FITS(lensfile)
if verbose:
print "opening lensfile %s (%d entries)" % (lensfile, hdu[1].get_nrows())
mask = None
if len(config['lens_cuts']) == 0:
lenses = hdu[1][:]
else:
cuts = " && ".join(config['lens_cuts'])
mask = hdu[1].where(cuts)
if verbose:
print " selecting %d lenses" % mask.size
lenses = hdu[1][mask]
hdu.close()
if verbose:
print " lens sample: %d" % lenses.size
# see if there's an extra file
try:
hdu = fitsio.FITS(config['lens_extra_file'])
if verbose:
print " opening extra lensfile %s (%d entries)" % (config['lens_extra_file'], hdu[1].get_nrows())
if mask is None:
extra = hdu[1][:]
else:
extra = hdu[1][mask]
hdu.close()
lenses_ = JoinedDataSet(lenses, extra)
return lenses_
except (KeyError, IOError) as exc: # not in config or file doesn't exist
pass
return lenses
from struct import unpack
class HTMFile:
"""Class to read in HTM match files sequentially
Provides two convenient iterators:
htmf = HTMFile(filename)
for m1, m2, d12 in htmf:
# do somthing with a single matched m1, m2
for m1, m2s, d12s in htmf.matches():
# do something with the list of matches m2s of a single m1
"""
def __init__(self, filename):
self.fp = open(filename, 'rb')
self.n_matches = unpack('q', self.fp.read(8))[0]
self.m1_current = -1
def __iter__(self):
return self
def next(self):
"""Line iterator.
Returns one match of m1 and m2 with the relative distance d12 (in deg).
"""
line = self.fp.read(24)
if line != '':
return unpack('qqd', line)
else:
raise StopIteration
def matches(self):
"""Match iterator.
Returns the current match index m1, the list of matches m2 and their
respective distances (in deg).
"""
while self.fp.tell() < self.n_matches * 24:
m1, m2, d12 = self.next()
self.m1_current = m1
m2s = [m2]
d12s = [d12]
while True:
try:
m1, m2, d12 = self.next()
if m1 == self.m1_current:
m2s.append(m2)
d12s.append(d12)
else: # if next m1: rewind to previous line
self.fp.seek(-24, 1)
break
except StopIteration: # at end of file, return current set
break
yield self.m1_current, m2s, d12s
def __del__(self):
self.fp.close()
## Common plotting functions
# use actual LaTeX to render plot and fonts
def setTeXPlot(sampling=1):
from pylab import rcParams
params = {
'backend': 'ps',
'ps.distiller.res': 6000,
'axes.labelsize': sampling*9,
'axes.linewidth' : sampling*0.25,
'font.size': sampling*8,
'legend.fontsize': sampling*8,
'legend.markerscale' : sampling*0.5,
'xtick.labelsize': sampling*8,
'ytick.labelsize': sampling*8,
'font.family': 'serif',
'font.serif': 'Times',
'font.weight': 'medium',
'text.usetex': True,
'figure.subplot.right' : 0.995,
'figure.subplot.top' : 0.97,
'figure.subplot.left' : 0.125,
'figure.subplot.bottom' : 0.07,
}
rcParams.update(params)
# colors based on blue/white/red divergent colormap
# from Kevin Moreland:
# http://www.sandia.gov/~kmorel/documents/ColorMaps/
# To emphasize the mid-range, I used a darker midpoint of 0.33 instead of 0.88
# split is the length of the splitting list
def getColors(split):
colors = [(0.23137254901960785, 0.29803921568627451, 0.75294117647058822, 1.0), (0.70588235294117652, 0.015686274509803921, 0.14901960784313725, 1.0)]
if split < 3:
raise AssertionError("Splitting must at least have two separate bins")
if split == 4:
colors.insert(1, (0.7803921568627451, 0.7803921568627451, 0.7803921568627451, 1.0))
if split == 5:
colors.insert(1, (0.71372549019607845, 0.70196078431372544, 0.90588235294117647, 1.0))
colors.insert(2, (0.92941176470588238, 0.65490196078431373, 0.63137254901960782, 1.0))
if split == 6:
colors.insert(1, (0.62745098039215685, 0.61568627450980395, 0.91764705882352937, 1.0))
colors.insert(2, (0.7803921568627451, 0.7803921568627451, 0.7803921568627451, 1.0))
colors.insert(3, (0.93333333333333335, 0.53725490196078429, 0.50980392156862742, 1.0))
if split > 6:
raise NotImplementedError("Splittings > 5 are not implemented")
return colors
def getOrderOfMagnitudeLabel(x, digits=2):
mag = int(np.floor(np.log10(x)))
label = ("%%.%d" % digits) + "f\cdot 10^%d"
x /= 10**mag
label = label % (x, mag)
return label
def makeAxisLabels(ax, plot_type, config, stacked=False):
import matplotlib
if plot_type == "shear":
ax.set_ylabel(r'$\Delta\Sigma\ [10^{14}\ \mathrm{M}_\odot \mathrm{Mpc}^{-2}]$')
if plot_type == "weight":
ax.set_ylabel(r'$\sum_\mathrm{pairs}{\langle\Sigma_\mathrm{crit}^{-2}\rangle}_w$')
if plot_type == "boost":
ax.set_ylabel(r'$\mathrm{boost}$')
if plot_type == "scalar":
if matplotlib.rcParams['text.usetex']:
ax.set_ylabel(r'\texttt{' + config['shape_scalar_key'].replace("_", "\_") + '}')
else:
ax.set_ylabel(config['shape_scalar_key'])
if config['coords'] == "physical":
if not stacked:
ax.set_xlabel('Radius [Mpc/$h$]')
ax.set_xscale('symlog', linthreshx=1e-2)
ax.xaxis.set_minor_locator(matplotlib.ticker.LogLocator(subs=np.arange(2, 10)))
if plot_type == "shear":
ax.set_yscale('symlog', linthreshy=1e3)
ax.yaxis.set_minor_locator(matplotlib.ticker.LogLocator(subs=np.arange(2, 10)))
if plot_type == "weight":
ax.set_yscale('log')
ax.yaxis.set_minor_locator(matplotlib.ticker.LogLocator(subs=np.arange(2, 10)))
else:
if not stacked:
ax.set_xlabel('Radius [arcmin]')