From 2d4b0875be76e8e32e2e6b80d5681a14f51de3fd Mon Sep 17 00:00:00 2001 From: Per Halvorsen Date: Sat, 28 Sep 2024 14:10:09 +0200 Subject: [PATCH] clean up sandbox code --- examples/model_server.py | 2 ++ examples/quantized_model.py | 32 +------------------------------- 2 files changed, 3 insertions(+), 31 deletions(-) diff --git a/examples/model_server.py b/examples/model_server.py index 7f57e51..725e1ee 100644 --- a/examples/model_server.py +++ b/examples/model_server.py @@ -45,6 +45,8 @@ def predict(): }) except Exception as e: + logging.error(f"An error occurred: {str(e)}") + print(f"An error occurred: {str(e)}") return jsonify({'error': str(e)}), 500 # Main entry point diff --git a/examples/quantized_model.py b/examples/quantized_model.py index d00b189..d3e167c 100644 --- a/examples/quantized_model.py +++ b/examples/quantized_model.py @@ -1,48 +1,18 @@ -import tempfile -import os -import csv - import tensorflow as tf import numpy as np -import tflite as tfl -# import tensorflow.keras.utils -from tensorflow import keras -# import tensorflow.compat.v1 as tf import tensorflow as tf -import tensorflow_hub as hub -import itertools -import soundfile as sf -import librosa -import math -import time -# from prune import prune -# import tensorflow_model_optimization as tfmot interpreter=tf.lite.Interpreter(model_path='data/model/quantized_model1.tflite') + interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() -i=0 -whales_identified=0 -whale_samples=0 -other_samples_identified=0 -other_samples=0 -directory_mn='./clips/mn/' -directory_not_mn='./clips/not_mn/' - -# filename = os.fsdecode(file) - -# # try opening the file -# waveform, sample_rate = tf.audio.decode_wav(tf.io.read_file(directory_mn+filename)) - -# waveform = tf.slice(tf.squeeze(tf.expand_dims(waveform, 0),[2]),[1,0],[1,15600]) # makes a batch of size 1 waveform = tf.convert_to_tensor(np.random.random((1, 15600)).astype(np.float32)) print(waveform.shape) - # Create input tensor out of raw features interpreter.set_tensor(input_details[0]['index'], waveform)