-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain.py
133 lines (114 loc) · 5.82 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import time
import torch
import pickle
import argparse
from model import TiSASRec
from tqdm import tqdm
from utils import *
def str2bool(s):
if s not in {'false', 'true'}:
raise ValueError('Not a valid boolean string')
return s == 'true'
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True)
parser.add_argument('--train_dir', required=True)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--maxlen', default=50, type=int)
parser.add_argument('--hidden_units', default=50, type=int)
parser.add_argument('--num_blocks', default=2, type=int)
parser.add_argument('--num_epochs', default=201, type=int)
parser.add_argument('--num_heads', default=1, type=int)
parser.add_argument('--dropout_rate', default=0.2, type=float)
parser.add_argument('--l2_emb', default=0.00005, type=float)
parser.add_argument('--device', default='cpu', type=str)
parser.add_argument('--inference_only', default=False, type=str2bool)
parser.add_argument('--state_dict_path', default=None, type=str)
parser.add_argument('--time_span', default=256, type=int)
args = parser.parse_args()
if not os.path.isdir(args.dataset + '_' + args.train_dir):
os.makedirs(args.dataset + '_' + args.train_dir)
with open(os.path.join(args.dataset + '_' + args.train_dir, 'args.txt'), 'w') as f:
f.write('\n'.join([str(k) + ',' + str(v) for k, v in sorted(vars(args).items(), key=lambda x: x[0])]))
f.close()
dataset = data_partition(args.dataset)
[user_train, user_valid, user_test, usernum, itemnum, timenum] = dataset
num_batch = len(user_train) // args.batch_size
cc = 0.0
for u in user_train:
cc += len(user_train[u])
print('average sequence length: %.2f' % (cc / len(user_train)))
f = open(os.path.join(args.dataset + '_' + args.train_dir, 'log.txt'), 'w')
try:
relation_matrix = pickle.load(open('data/relation_matrix_%s_%d_%d.pickle'%(args.dataset, args.maxlen, args.time_span),'rb'))
except:
relation_matrix = Relation(user_train, usernum, args.maxlen, args.time_span)
pickle.dump(relation_matrix, open('data/relation_matrix_%s_%d_%d.pickle'%(args.dataset, args.maxlen, args.time_span),'wb'))
sampler = WarpSampler(user_train, usernum, itemnum, relation_matrix, batch_size=args.batch_size, maxlen=args.maxlen, n_workers=3)
model = TiSASRec(usernum, itemnum, itemnum, args).to(args.device)
for name, param in model.named_parameters():
try:
torch.nn.init.xavier_uniform_(param.data)
except:
pass # just ignore those failed init layers
model.train() # enable model training
epoch_start_idx = 1
if args.state_dict_path is not None:
try:
model.load_state_dict(torch.load(args.state_dict_path))
tail = args.state_dict_path[args.state_dict_path.find('epoch=') + 6:]
epoch_start_idx = int(tail[:tail.find('.')]) + 1
except:
print('failed loading state_dicts, pls check file path: ', end="")
print(args.state_dict_path)
if args.inference_only:
model.eval()
t_test = evaluate(model, dataset, args)
print('test (NDCG@10: %.4f, HR@10: %.4f)' % (t_test[0], t_test[1]))
bce_criterion = torch.nn.BCEWithLogitsLoss()
adam_optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.98))
T = 0.0
t0 = time.time()
for epoch in range(epoch_start_idx, args.num_epochs + 1):
if args.inference_only: break # just to decrease identition
for step in range(num_batch): # tqdm(range(num_batch), total=num_batch, ncols=70, leave=False, unit='b'):
u, seq, time_seq, time_matrix, pos, neg = sampler.next_batch() # tuples to ndarray
u, seq, pos, neg = np.array(u), np.array(seq), np.array(pos), np.array(neg)
time_seq, time_matrix = np.array(time_seq), np.array(time_matrix)
pos_logits, neg_logits = model(u, seq, time_matrix, pos, neg)
pos_labels, neg_labels = torch.ones(pos_logits.shape, device=args.device), torch.zeros(neg_logits.shape, device=args.device)
# print("\neye ball check raw_logits:"); print(pos_logits); print(neg_logits) # check pos_logits > 0, neg_logits < 0
adam_optimizer.zero_grad()
indices = np.where(pos != 0)
loss = bce_criterion(pos_logits[indices], pos_labels[indices])
loss += bce_criterion(neg_logits[indices], neg_labels[indices])
for param in model.item_emb.parameters(): loss += args.l2_emb * torch.norm(param)
for param in model.abs_pos_K_emb.parameters(): loss += args.l2_emb * torch.norm(param)
for param in model.abs_pos_V_emb.parameters(): loss += args.l2_emb * torch.norm(param)
for param in model.time_matrix_K_emb.parameters(): loss += args.l2_emb * torch.norm(param)
for param in model.time_matrix_V_emb.parameters(): loss += args.l2_emb * torch.norm(param)
loss.backward()
adam_optimizer.step()
print("loss in epoch {} iteration {}: {}".format(epoch, step, loss.item())) # expected 0.4~0.6 after init few epochs
if epoch % 20 == 0:
model.eval()
t1 = time.time() - t0
T += t1
print('Evaluating', end='')
t_test = evaluate(model, dataset, args)
t_valid = evaluate_valid(model, dataset, args)
print('epoch:%d, time: %f(s), valid (NDCG@10: %.4f, HR@10: %.4f), test (NDCG@10: %.4f, HR@10: %.4f)'
% (epoch, T, t_valid[0], t_valid[1], t_test[0], t_test[1]))
f.write(str(t_valid) + ' ' + str(t_test) + '\n')
f.flush()
t0 = time.time()
model.train()
if epoch == args.num_epochs:
folder = args.dataset + '_' + args.train_dir
fname = 'TiSASRec.epoch={}.lr={}.layer={}.head={}.hidden={}.maxlen={}.pth'
fname = fname.format(args.num_epochs, args.lr, args.num_blocks, args.num_heads, args.hidden_units, args.maxlen)
torch.save(model.state_dict(), os.path.join(folder, fname))
f.close()
sampler.close()
print("Done")