-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrdpg.py
652 lines (535 loc) · 30.4 KB
/
rdpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
import numpy as np
import pandas as pd
import argparse
from copy import deepcopy
import torch
from torch.optim import Adam
import torch.nn.functional as F
import torch.nn as nn
from torch.autograd import Variable
import torch.optim.lr_scheduler as Scheduler
from torch.utils.tensorboard import SummaryWriter
from evaluator import Evaluator
from memory import EpisodicMemory
from PER_memory import PrioritizedReplayBuffer
from agent import Agent
from util import *
# from util import prGreen, prYellow, prRed, to_tensor, soft_update,
import matplotlib.pylab as plt
DEMO_flag = 1
class RDPG(object):
def __init__(self, demo_env, env, args):
### Create Environment Classes ###
self.env = env
self.demo_env = demo_env
##### Create Replay Buffer #####
self.is_PER_replay = args.is_PER_replay
if self.is_PER_replay:
### Porioritized experience replay (PER) buffer ###
self.memory = PrioritizedReplayBuffer(args.PER_size, args.seed, alpha=args.p_alpha,
beta_init=1.0, beta_inc_n=100, max_t=args.exp_traj_len)
else:
### Original replay buffer ###
self.memory = EpisodicMemory(capacity=args.rmsize,
max_train_traj_len=args.exp_traj_len, # 整段episode被分段存取
window_length=args.window_length)
### Evaluator is used for test trained agent ###
self.evaluate = Evaluator(args.test_episodes, #我們test那年有243個交易日
max_episode_length=args.max_episode_length, #每天最長是240分鐘,最多交易240次
args=args)
##### Model Setting #####
self.rnn_mode = args.rnn_mode
self.seq_len = args.seq_len
self.hidden_rnn = args.hidden_rnn
self.num_layer = args.num_rnn_layer
self.agent = Agent(args)
if torch.cuda.is_available() :
self.agent.cuda()
### Hyper-parameters
self.batch_size = args.bsize
self.exp_traj_len = args.exp_traj_len
self.max_episode_length = args.max_episode_length
self.tau = args.tau
self.discount = args.discount
self.warmup = args.warmup
self.a_update_freq = args.a_update_freq
##### Behavior Cloning Setting #####
self.is_BClone = args.is_BClone
self.is_Qfilt = args.is_Qfilt
self.use_Qfilt = args.use_Qfilt
if self.is_BClone:
self.lambda_Policy = args.lambda_Policy
self.lambda_BC = 1-self.lambda_Policy
else:
self.lambda_Policy = 1
self.lambda_BC = 1-self.lambda_Policy
# self.lambda_BC = args.lambda_BC
self.BC_loss_func = nn.MSELoss(reduce=False)
# self.BC_loss_func = nn.BCELoss(reduce=False)
##### PER demonstration Setting #####
self.lambda_balance = args.lambda_balance
self.small_const = args.small_const
self.priority_const = args.priority_const
self.is_demo_warmup = args.is_demo_warmup
if self.is_demo_warmup:
demo_protect_size = (self.max_episode_length /self.exp_traj_len) *self.warmup
self.memory.set_protect_size(int(demo_protect_size))
self.is_pretrain = args.is_pretrain
self.pretrain_itrs = args.Pretrain_itrs
### Optimizer and LR_scheduler ###
beta1 = args.beta1
beta2 = args.beta2
self.rnn_optim = Adam(self.agent.rnn.parameters(), lr=args.r_rate, betas=(beta1, beta2))
self.rnn_scheduler = Scheduler.StepLR(self.rnn_optim, step_size=args.sch_step_size, gamma=args.sch_gamma)
self.critic_optim = Adam(self.agent.critic.parameters(), lr=args.c_rate, betas=(beta1, beta2))
self.critic_scheduler = Scheduler.StepLR(self.critic_optim, step_size=args.sch_step_size, gamma=args.sch_gamma)
self.actor_optim = Adam(self.agent.actor.parameters(), lr=args.a_rate, betas=(beta1, beta2))
self.actor_scheduler = Scheduler.StepLR(self.actor_optim, step_size=args.sch_step_size, gamma=args.sch_gamma)
### initialized values
self.demoN_ratio = 0
self.priority = 0
self.actor_loss = 0
self.BC_loss = 0
self.BC_loss_Qf = 0
self.tot_policy_loss = 0
self.critic_loss = 0
### other setting ###
if args.seed > 0:
self.seed(args.seed)
self.writer = SummaryWriter(args.logdir)
self.is_training = True
self.save_threshold = args.save_threshold
self.date = args.date
def train(self, num_episodes, checkpoint_path, debug):
epi_idx = None #training時因為episode是random選date,並非照time_order,所以在此設成none沒關係。
self.agent.is_training = True
step = episode_steps = trajectory_steps = 0
episode_reward = 0.
state0 = None
ewma_reward = 0
episode = 1
train_epi_reward = []
train_ewma_reward = []
train_actor_loss = []
train_bc_loss = []
train_bcQf_loss = []
train_totPolicy_loss = []
train_critic_loss = []
demoN_ratio_batch = []
while episode <= num_episodes:
episode_steps = 1
while episode_steps <= self.max_episode_length:
if self.is_demo_warmup:
#################### warmup adopt expert policy (Dual Thrust Strategy) ####################
if episode <= self.warmup: # Note: warmup generate demonstrations, so here use demo_env
if state0 is None:
self.agent.reset()
state0 = deepcopy(self.demo_env.reset(epi_idx)) #training時的env reset是random選date,所以此時epi_idx=None沒關係。
state0 = state0.values
### Note the following action will be from demonstration, not random.
action, epsilon = self.agent.random_action() #其實改成demo後,此action到demo_env也會變成demo的action,而非random
action_bc, next_state, reward, done, infos = self.demo_env.step(np.argmax(action))
else: # normal training, without demonstration, so her use training env
if state0 is None:
self.agent.reset()
state0 = deepcopy(self.env.reset(epi_idx)) #training時的env reset是random選date,所以此時epi_idx=None沒關係。
state0 = state0.values
state0_cuda = to_tensor(np.array([state0])).cuda()
# state0_cuda = to_tensor(state0).cuda()
action, epsilon = self.agent.select_action(state0_cuda)
action_bc, next_state, reward, done, infos = self.env.step(np.argmax(action))
######################################################################
else:
############## original random warmup experiences ##############
#### reset if it is the start of episode
if state0 is None:
self.agent.reset()
state0 = deepcopy(self.env.reset(epi_idx)) #training時的env reset是random選date,所以此時epi_idx=None沒關係。
state0 = state0.values
state0_cuda = to_tensor(np.array([state0])).cuda()
if episode <= self.warmup:
action, epsilon = self.agent.random_action()
else: # 正式training,新append experience為agent data
action, epsilon = self.agent.select_action(state0_cuda)
act = action
action_bc, next_state, reward, done, infos = self.env.step(np.argmax(act))
###############################################################
next_state = next_state.values
next_state = deepcopy(next_state)
###### agent observe and update policy #####
#if episode <= self.warmup or episode-self.warmup > self.pretrain:
if self.is_PER_replay == False:
self.memory.append(action_bc, state0, action, reward, done)
else:
self.memory.add((torch.from_numpy(state0).float(),
torch.from_numpy(action).float(),
torch.from_numpy(action_bc).float(),
torch.tensor([reward]).float(),
torch.from_numpy(next_state).float(),
torch.tensor([0.95]),
int(episode<=self.warmup)),
trajectory_steps)
# update
step += 1
episode_steps += 1
trajectory_steps += 1
episode_reward += reward
state0 = deepcopy(next_state)
##### 此exp_traj_len,目前設定成設定每16steps update一次 ##### (但每次episode還是跑到done才會結束)
if trajectory_steps >= self.exp_traj_len:
### 以下設定是為了讓hidden_state繼續往下一個step傳遞 ###
self.agent.reset_rnn_hidden(done=False) #注意done對應model.py裡的reset_lstm_hidden_state()
trajectory_steps = 0
if episode > self.warmup:
self.update_policy(done)
if done: # end of episod
# reset
state0 = None
ewma_reward = 0.05 * episode_reward + 0.95 * ewma_reward
(lr_Critic, lr_Actor, lr_RNN) = (self.critic_scheduler.get_last_lr()[0], self.actor_scheduler.get_last_lr()[0], self.rnn_scheduler.get_last_lr()[0])
if debug: prYellow('[Step:{}, Episode:{}, Len:{}] [lr:{}, epsl:{}] [Reward={:.3f} Ewma_Reward={:.3f}]'.format(step, episode, episode_steps, lr_Critic, np.round(epsilon,3), episode_reward, ewma_reward))
if self.is_BClone:
print('A_loss={:.3f}\tBC_loss={:.3f}\tTotP_loss={:.3f}\tC_loss={:.3f}'.format(self.actor_loss, self.BC_loss, self.tot_policy_loss, self.critic_loss))
else:
print('TotP_loss={:.3f}\tC_loss={:.3f}'.format(self.tot_policy_loss, self.critic_loss))
##### log data for Tensorboard #####
self.writer.add_scalar('Train/Episode Reward', episode_reward, episode)
self.writer.add_scalar('Train/EWMA Reward', ewma_reward, episode)
self.writer.add_scalar('Train/Actor Loss', self.actor_loss, episode)
self.writer.add_scalar('Train/BC Loss', self.BC_loss, episode)
self.writer.add_scalar('Train/Qf Loss', self.BC_loss_Qf, episode)
self.writer.add_scalar('Train/tot Policy Loss', self.tot_policy_loss, episode)
self.writer.add_scalar('Train/Critic Loss', self.critic_loss, episode)
self.writer.add_scalar('Train/Demon ratio in batch', self.demoN_ratio, episode)
##### append training info for plot #####
train_epi_reward.append(episode_reward)
train_ewma_reward.append(ewma_reward)
train_actor_loss.append(self.actor_loss)
train_bc_loss.append(self.BC_loss)
train_bcQf_loss.append(self.BC_loss_Qf)
train_totPolicy_loss.append(self.tot_policy_loss)
train_critic_loss.append(self.critic_loss)
demoN_ratio_batch.append(self.demoN_ratio)
if episode == self.warmup:
ite=1
if self.is_pretrain:
while(ite<=self.pretrain_itrs):
self.update_policy(done)
if ite%(self.pretrain_itrs/10) == 0:
print('demoN_ratio=',self.demoN_ratio)
print('Pretrain',ite,':','TotP_loss={:.3f}\tC_loss={:.3f}\tDemo_ratio={:.3f}'.format(self.tot_policy_loss, self.critic_loss, self.demoN_ratio))
ite+=1
episode_reward = 0.
episode += 1
self.agent.reset_rnn_hidden(done=False) #注意done對應model.py裡的reset_hidden_state()
break
##### Save models #####
if (episode-1) >= 150 or (episode-1) % 100 == 0 or ewma_reward > self.save_threshold:
self.agent.save_model(checkpoint_path, (episode-1), ewma_reward)
##### Plot Training Curves #####
if (episode-1) % 100 == 0:
if self.is_BClone:
self.train_plot_bc(episode-1, train_epi_reward, train_ewma_reward,
train_totPolicy_loss, train_critic_loss,
train_actor_loss, train_bc_loss, train_bcQf_loss)
self.train_demoN_ratio(episode-1, demoN_ratio_batch)
else:
self.train_plot(episode-1, train_epi_reward, train_ewma_reward,
train_totPolicy_loss, train_critic_loss)
self.train_demoN_ratio(episode-1, demoN_ratio_batch)
##### Apply Q-filter to BC loss #####
if (episode-1) >= (self.warmup+self.use_Qfilt):
self.is_Qfilt=True
# if step >= args.warmup and episode > args.bsize:
# # Update weights
# agent.update_policy()
def update_policy(self, done):
### Sample batch of trajectories
t_len = 0
if self.is_PER_replay == False:
experiences = self.memory.sample(self.batch_size)
if len(experiences) == 0: # not enough samples
return
t_len = len(experiences)
else:
(state0s, actions, action_bcs, rewards, state1s, batch_gammas, batch_flagss), \
weights, idxes = self.memory.sample(self.batch_size)
t_len = len(state0s)
actor_loss_total = 0 #actor loss
BC_loss_total = 0 #BC loss
BC_loss_Qf_total = 0 #BC loss after Q-filter
policy_loss_total = 0 #policy loss
value_loss_total = 0 #critic loss
demo_cnt = []
for t in range(t_len): # iterate over episodes
if self.is_PER_replay == False and t == t_len-1:
break
a_target_cx = Variable(torch.zeros(self.num_layer, self.batch_size, self.hidden_rnn)).type(FLOAT).cuda()
a_target_hx = Variable(torch.zeros(self.num_layer, self.batch_size, self.hidden_rnn)).type(FLOAT).cuda()
a_cx = Variable(torch.zeros(self.num_layer, self.batch_size, self.hidden_rnn)).type(FLOAT).cuda()
a_hx = Variable(torch.zeros(self.num_layer, self.batch_size, self.hidden_rnn)).type(FLOAT).cuda()
if self.is_PER_replay == False:
action_bc = np.stack((trajectory.action_bc for trajectory in experiences[t]))
state0 = np.stack((trajectory.state0 for trajectory in experiences[t]))
action = np.stack((trajectory.action for trajectory in experiences[t]))
action = to_tensor(action)
reward = np.expand_dims(np.stack((trajectory.reward for trajectory in experiences[t])), axis=1)
reward = to_tensor(reward)
state1 = np.stack((trajectory.state0 for trajectory in experiences[t+1]))
state0_cuda = to_tensor(state0).cuda()
state1_cuda = to_tensor(state1).cuda()
else:
state0 = state0s[t]
action = actions[t]
reward = rewards[t]
state1 = state1s[t]
batch_flags = batch_flagss[t]
action_bc = action_bcs[t]
state0_cuda = state0.cuda()
state1_cuda = state1.cuda()
##### calculate demonstration ratio in a batch #####
d_flags = torch.from_numpy(batch_flags)
demo_select = d_flags == DEMO_flag
N_act = demo_select.sum().item()
demo_cnt.append(N_act/self.batch_size)
######################## critic loss calculation ########################
# with torch.no_grad():
if self.rnn_mode == 'lstm':
xh0, _ = self.agent.rnn(state0_cuda, (a_hx, a_cx))
current_q = self.agent.critic([xh0, action.cuda()])
with torch.no_grad():
xh1, _ = self.agent.rnn_target(state0_cuda, (a_hx, a_cx))
target_action = self.agent.actor_target(xh1)
target_action = target_action.detach()
next_q_value = self.agent.critic_target([xh1, target_action])
elif self.rnn_mode == 'gru':
xh0, _ = self.agent.rnn(state0_cuda, a_hx)
current_q = self.agent.critic([xh0, action.cuda()])
with torch.no_grad():
xh1, _ = self.agent.rnn_target(state1_cuda, a_hx)
target_action = self.agent.actor_target(xh1)
target_action = target_action.detach()
next_q_value = self.agent.critic_target([xh1, target_action])
target_q = reward + (1-done) * self.discount * next_q_value.cpu()
value_loss = 0
if self.is_PER_replay == False:
value_loss = F.smooth_l1_loss(current_q, target_q.cuda())
else:
value_loss = (F.smooth_l1_loss(current_q, target_q.cuda()) * torch.tensor(weights).cuda()).mean()
value_loss /= t_len # divide by experience length
value_loss_total += value_loss
####### update Critic per step #######
self.agent.rnn.zero_grad()
self.agent.actor.zero_grad()
self.agent.critic.zero_grad()
value_loss.backward()
self.critic_optim.step()
self.rnn_optim.step()
########################## Actor loss calculation & Update Actor ##########################
################## Preliminary for loss calculation ##################:
if t % self.a_update_freq ==0: # update Actor per 3-steps
if self.rnn_mode == 'lstm':
xh_b0, _ = self.agent.rnn(state0_cuda, (a_hx, a_cx))
behavior_action = self.agent.actor(xh_b0)
### Estimate actor action ###
q_action = self.agent.critic([xh_b0, action.cuda()]) #這邊的critic是behavior_critic,有別於target_critic
### Calculate Actor loss based on Q-value ###
actor_loss = -self.agent.critic([xh_b0, behavior_action])
### calculate q_actor_loss for priority
q_actor_loss = self.agent.critic([xh_b0, behavior_action])
##### Behavior Cloning Loss #####
if self.is_BClone:
### Estimate prophetic action ###
q_action_bc = self.agent.critic([xh_b0, action_bc.cuda()])
### Q_filter & BC_loss ###
BC_loss = self.BC_loss_func(behavior_action, action_bc.cuda())
BC_loss = torch.sum(BC_loss,dim=1).unsqueeze(1)
Q_filter = torch.gt(q_action_bc, q_action)
BC_loss_Qf = BC_loss * (Q_filter.detach())
if self.is_Qfilt:
### modified Policy loss ###
policy_loss = (self.lambda_Policy*actor_loss) + (self.lambda_BC*BC_loss_Qf)
else:
### modified Policy loss ###
policy_loss = (self.lambda_Policy*actor_loss) + (self.lambda_BC*BC_loss)
else: ### Original Policy loss ###
policy_loss = actor_loss
elif self.rnn_mode == 'gru':
xh_b0, _ = self.agent.rnn(state0_cuda, a_hx)
behavior_action = self.agent.actor(xh_b0)
### Estimate actor action ###
q_action = self.agent.critic([xh_b0, action.cuda()]) #這邊的critic是behavior_critic,有別於target_critic
### Calculate Actor loss based on Q-value ###
behavior_action = self.agent.actor(xh_b0)
actor_loss = -self.agent.critic([xh_b0, behavior_action])
### calculate q_actor_loss for priority
q_actor_loss = self.agent.critic([xh_b0, behavior_action])
##### Behavior Cloning Loss #####
if self.is_BClone:
### Estimate prophetic action ###
q_action_bc = self.agent.critic([xh_b0, action_bc.cuda()])
### Q_filter & BC_loss ###
BC_loss = self.BC_loss_func(behavior_action, action_bc.cuda())
BC_loss = torch.sum(BC_loss,dim=1).unsqueeze(1)
Q_filter = torch.gt(q_action_bc, q_action)
BC_loss_Qf = BC_loss * (Q_filter.detach())
if self.is_Qfilt:
### modified Policy loss ###
policy_loss = (self.lambda_Policy*actor_loss) + (self.lambda_BC*BC_loss_Qf)
else:
### modified Policy loss ###
policy_loss = (self.lambda_Policy*actor_loss) + (self.lambda_BC*BC_loss)
else: ### Original Policy loss ###
policy_loss = actor_loss
################## Actor loss calculation ##################
if self.is_BClone:
BC_loss /= t_len
BC_loss_total += BC_loss.mean() #BC loss
BC_loss_Qf /= t_len
BC_loss_Qf_total += BC_loss_Qf.mean()
actor_loss /= t_len
actor_loss_total += actor_loss.mean() #actor loss
else:
BC_loss_total = torch.zeros(1)
BC_loss_Qf_total = torch.zeros(1)
actor_loss_total = torch.zeros(1)
policy_loss /= t_len # divide by experience length
policy_loss_total += policy_loss.mean()
####### Update Actor ###########
self.agent.rnn.zero_grad()
self.agent.actor.zero_grad()
self.agent.critic.zero_grad()
policy_loss = policy_loss.mean()
policy_loss.backward()
self.actor_optim.step()
self.rnn_optim.step()
##### Learning rate Scheduling #####
self.rnn_scheduler.step()
self.critic_scheduler.step()
self.actor_scheduler.step()
###Update priority###
if self.is_PER_replay == True:
TDerror_square = (target_q.cpu() - current_q.cpu()).pow(2)
loss2actor_square = q_actor_loss.cpu().pow(2)
self.priority = (TDerror_square + self.lambda_balance*loss2actor_square).detach().numpy().ravel() + self.small_const
self.priority[batch_flags == DEMO_flag] += self.priority_const
self.memory.update_priorities(idxes, self.priority)
self.demoN_ratio = np.sum(demo_cnt) / t_len
########### Record all losses ############
self.actor_loss = actor_loss_total.item()
self.BC_loss = BC_loss_total.item()
self.BC_loss_Qf = BC_loss_Qf_total.item()
self.tot_policy_loss = policy_loss_total.item()
self.critic_loss = value_loss_total.item()
##### 以下的batch期望值是整條segmt_traj,但因為有照time_order後,會不會就不符i.i.d.了? #####
##### update once after experience (segmt_traj) ##### (雖有問題,但也值得try看看)
# policy_loss_total /= self.batch_size # divide by number of trajectories
# value_loss_total /= self.batch_size # divide by number of trajectories
#
# self.agent.critic.zero_grad()
# value_loss_total.backward()
# self.critic_optim.step()
#
# self.agent.actor.zero_grad()
# policy_loss_total.backward()
# self.actor_optim.step()
##### Target_Net update #####
soft_update(self.agent.rnn_target, self.agent.rnn, self.tau)
soft_update(self.agent.actor_target, self.agent.actor, self.tau)
soft_update(self.agent.critic_target, self.agent.critic, self.tau)
def test(self, model_path, model_fn, description, lackM=True, debug=False):
if self.agent.load_weights(model_path, model_fn) == False:
prRed("model path not found")
return
self.agent.is_training = False
self.agent.eval()
with torch.no_grad():
test_mean_reward = self.evaluate(self.env, self.agent, description, lackM=lackM, debug=debug, save=False)
if debug: prYellow('[Evaluate]: mean_reward:{}'.format(test_mean_reward))
def seed(self,s):
torch.manual_seed(s)
if USE_CUDA:
torch.cuda.manual_seed(s)
def train_plot_bc(self, episode, train_epi_reward, train_ewma_reward,
train_totPolicy_loss, train_critic_loss,
train_actor_loss, train_bc_loss, train_bcQf_loss):
font_size = 16
plt.figure(num=1, figsize=(12, 6))
plt.subplot(321)
plt.title('Episode Reward', fontsize=font_size)
plt.plot(train_epi_reward)
plt.subplot(322)
plt.title('EWMA Reward', fontsize=font_size)
plt.plot(train_ewma_reward)
plt.subplot(323)
plt.title('total Policy Loss', fontsize=font_size)
plt.plot(train_totPolicy_loss)
plt.subplot(324)
plt.title('Critic Loss', fontsize=font_size)
plt.plot(train_critic_loss)
plt.subplot(325)
plt.title('Actor Loss', fontsize=font_size)
plt.plot(train_actor_loss)
plt.subplot(326)
plt.title('BC Loss', fontsize=font_size)
bc, = plt.plot(train_bc_loss, label='BC')
Qf, = plt.plot(train_bcQf_loss, label='Qf')
plt.legend(handles=[bc, Qf], loc='upper center', fontsize=10)
# plt.legend([bc, Qf], ["BC", "Qf"], loc='upper left') #, facecolor='blue')
# plt.legend(bbox_to_anchor=(1.05, 1.0, 0.3, 0.2), loc='upper left')
plt.tight_layout()
train_his_fn = 'lamBC_' +str(np.round(self.lambda_BC,3)) +'_' +self.rnn_mode +'_' +str(self.date)
plt.savefig('results/TrainCurve_epi' +str(episode) +'_' +train_his_fn +'.jpg')
plt.close()
##### Save Training History to csv file #####
# epi_r = np.array(train_epi_reward)
# ewma_r = np.array(train_ewma_reward)
# totP_loss = np.array(train_totPolicy_loss)
# c_loss = np.array(train_critic_loss)
# a_loss = np.array(train_actor_loss)
# bc_loss = np.array(train_bc_loss)
# qf_loss = np.array(train_bcQf_loss)
dic = {'Episode Reward':train_epi_reward,
'EWMA Reward':train_ewma_reward,
'total Policy Loss':train_totPolicy_loss,
'Critic Loss':train_critic_loss,
'Actor Loss':train_actor_loss,
'BC Loss':train_bc_loss,
'BC_Qf Loss':train_bcQf_loss
}
train_history = pd.DataFrame(dic)
train_history.to_csv('results/TrainHis_' +train_his_fn +'.csv', index=False)
def train_plot(self, episode, train_epi_reward, train_ewma_reward, train_totPolicy_loss, train_critic_loss):
font_size = 16
plt.figure(num=1, figsize=(12, 7))
ax1 = plt.subplot(221)
ax1.set_title('Episode Reward', fontsize=font_size)
plt.plot(train_epi_reward)
plt.subplot(222)
plt.title('EWMA Reward', fontsize=font_size)
plt.plot(train_ewma_reward)
plt.subplot(223)
plt.title('total Policy Loss', fontsize=font_size)
plt.plot(train_totPolicy_loss)
plt.subplot(224)
plt.title('Critic Loss', fontsize=font_size)
plt.plot(train_critic_loss)
plt.tight_layout()
train_his_fn = '_' +self.rnn_mode +'_' +str(self.date)
plt.savefig('results/TrainCurve_epi' +str(episode) +train_his_fn +'.jpg')
plt.close()
##### Save Training History to csv file #####
dic = {'Episode Reward':train_epi_reward,
'EWMA Reward':train_ewma_reward,
'total Policy Loss':train_totPolicy_loss,
'Critic Loss':train_critic_loss,
}
train_history = pd.DataFrame(dic)
train_history.to_csv('results/TrainHis_' +train_his_fn +'.csv', index=False)
def train_demoN_ratio(self, episode, demoN_ratio_batch):
plt.xlabel('# of episode')
plt.ylabel('batch_demoN_ratio')
plt.plot(demoN_ratio_batch)
fig_fn = 'batch_demoN_ratio_ep' +'.jpg'
plt.savefig(fig_fn)
plt.close()