-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathluupdt.lisp
197 lines (182 loc) · 6.74 KB
/
luupdt.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
(in-package :rationalsimplex)
;;;;; LU factorization update
;;;;;
;;;;; The Forrest-Tomlin method was chosen for implementation
;;;;; for its simplicity and lack of fill-in in U. If a better option
;;;;; presents itself (i.e. no fill-in in U, less fill-in during ?TRAN)
;;;;; it should be implemented instead.
;;;; Updates U by replacing column pivot-j with spike
;;;; and updates permutation matrices as well as
;;;; upper-triangular element sequences accordingly.
;;;; Also initializes the values for computing the multipliers
;;;; in the resulting Lu-eta matrix.
(defun lu-update-replace-column (bm pivot-j spike)
(let* ((u (aref (basis-matrix-u-columns bm) pivot-j)) ; the modified column
(m (basis-matrix-size bm))
(mus (basis-matrix-update-row-vals bm)) ; the multipliers
(u-seq (aref (basis-matrix-u-seqs bm) pivot-j)) ; the modified sequence
(lastk (- m 1))
(i->pi (basis-matrix-i->pi bm))
(j->pj (basis-matrix-j->pj bm))
(pi->i (basis-matrix-pi->i bm))
(pj->j (basis-matrix-pj->j bm))
(pivot-i (aref (hsv-is u) (aref u-seq (- (hsv-length u) 1))))
(pivot-k (aref j->pj pivot-j))
(pivot-ci (if (zerop (hsv-length spike))
-1
(hsv-find pivot-i spike))))
;; fill column
(reset-hsv u)
(cond ((zerop (hsv-length spike))
(setf pivot-ci 0)
(hsv-add pivot-i 0 u))
((/= -1 pivot-ci)
(copy-hsv-into-hsv spike u))
((< (aref (hsv-is spike) (- (hsv-length spike) 1)) pivot-i)
(copy-hsv-into-hsv spike u)
(setf pivot-ci (hsv-length u))
(hsv-add pivot-i 0 u))
((< pivot-i (aref (hsv-is spike) 0))
(hsv-add pivot-i 0 u)
(setf pivot-ci 0
(hsv-coef u) (hsv-coef spike))
(dotimes (ci (hsv-length spike))
(hsv-add (aref (hsv-is spike) ci) (aref (hsv-vis spike) ci) u)))
(t
(setf (hsv-coef u) (hsv-coef spike))
(dotimes (ci (hsv-length spike))
(let ((i (aref (hsv-is spike) ci)))
(hsv-add i (aref (hsv-vis spike) ci) u)
(when (and (< i pivot-i)
(< pivot-i (aref (hsv-is spike) (+ ci 1))))
(setf pivot-ci (+ ci 1))
(hsv-add pivot-i 0 u))))))
(assert (/= -1 pivot-ci))
(assert (= pivot-i (aref (hsv-is u) pivot-ci)))
(dotimes (ci (hsv-length u))
(setf (aref u-seq ci) ci))
;; fill update values row and update u values
(loop for k from 0 below m
do (setf (aref mus k) 0))
(loop for k from (aref j->pj pivot-j) below lastk
do (let* ((pj (+ k 1))
(j (aref pj->j pj))
(uj (aref (basis-matrix-u-columns bm) j))
(ci (hsv-find pivot-i uj)))
(setf (aref mus k)
(if (= -1 ci)
0
(- (* (hsv-coef uj) (aref (hsv-vis uj) ci)))))
(unless (= -1 ci)
(setf (aref (hsv-vis uj) ci) 0))))
(setf (aref mus lastk) (* (hsv-coef u) (aref (hsv-vis u) pivot-ci)))
;; update permutation matrices
(loop for k from pivot-k below lastk
do (let ((next-i (aref pi->i (+ k 1)))
(next-j (aref pj->j (+ k 1))))
(setf (aref pi->i k) next-i
(aref i->pi next-i) k
(aref pj->j k) next-j
(aref j->pj next-j) k)))
(setf (aref pi->i lastk) pivot-i
(aref i->pi pivot-i) lastk
(aref pj->j lastk) pivot-j
(aref j->pj pivot-j) lastk)
;; update sequence for new column
(sort-increasing-bounded (aref (basis-matrix-u-seqs bm) pivot-j)
(hsv-length u)
#'(lambda (k) (aref i->pi (aref (hsv-is u) k))))
;; return
(values pivot-ci pivot-k)))
;;;; Computes the multiplier values in the Lu-eta matrix
;;;; by in effect solving a system of linear equations
(defun lu-update-compute-values (bm pivot-k)
(let* ((m (basis-matrix-size bm))
(pj->j (basis-matrix-pj->j bm))
(i->pi (basis-matrix-i->pi bm))
(cdenom 0)
(mus (basis-matrix-update-row-vals bm)))
;; calculate the update row values
(loop for pj from pivot-k below m
do (let* ((rhs (aref mus pj))
(residue 0)
(ukk 0)
(j (aref pj->j pj))
(u-row-seq (aref (basis-matrix-u-seqs bm) j))
(u (aref (basis-matrix-u-columns bm) j)))
;; get current coef and residue
(loop for k from (- (hsv-length u) 1) downto 0
do (let* ((ci (aref u-row-seq k))
(i (aref (hsv-is u) ci))
(ip (aref i->pi i)))
(cond ((< ip pivot-k)
(return))
((> pj ip)
(incf residue (* (aref (hsv-vis u) ci) (aref mus ip))))
((= pj ip)
(setf ukk (aref (hsv-vis u) ci))))))
;; compute the current value
(if (= pj (- m 1))
(progn
(assert (= rhs (* (hsv-coef u) ukk)))
(when (zerop ukk)
(when (zerop residue)
(print u))
(assert (not (zerop residue))))
(setf (aref mus pj)
(+ residue ukk)))
(progn
(setf (aref mus pj) (/ (- (/ rhs (hsv-coef u)) residue) ukk))
(unless (zerop (aref mus pj))
(let ((denomj (denominator (aref mus pj))))
(if (zerop cdenom)
(setf cdenom denomj)
(mulf cdenom (/ denomj (gcd cdenom denomj))))))))))
;; returns lowest common denominator for multipliers
cdenom))
;;;; Builds Lu-eta matrix from multipliers
;;;; and updates the value of the pivot element in the new column
(defun lu-update-build-eta (bm pivot-k pivot-j pivot-ci cdenom)
(let* ((m (basis-matrix-size bm))
(l (aref (basis-matrix-l-file bm) (basis-matrix-n-l-file bm)))
(pi->i (basis-matrix-pi->i bm))
(pivot-col (aref (basis-matrix-u-columns bm) pivot-j))
(mus (basis-matrix-update-row-vals bm)))
;; build Lu-eta column
(if (zerop cdenom)
(loop for k from pivot-k below (- m 1)
do (assert (zerop (aref mus k))))
(progn
(assert (loop for k from pivot-k below (- m 1)
unless (zerop (aref mus k))
do (return t)))
(loop for k from pivot-k below (- m 1)
unless (zerop (aref mus k))
do (assert (= (denominator (aref mus k))
(gcd (denominator (aref mus k)) cdenom))))))
(unless (zerop cdenom)
(reset-hsv l)
(setf (hsv-coef l) (/ 1 cdenom))
(loop for k from pivot-k below (- m 1)
unless (zerop (aref mus k))
do (hsv-add (aref pi->i k) (* cdenom (aref mus k)) l))
(hsv-normalize l)
(when (< 1 (hsv-length l))
(hsv-sort-indices-increasing l))
(setf (aref (basis-matrix-l-pivot-file bm) (basis-matrix-n-l-file bm))
(aref pi->i (- m 1)))
(incf (basis-matrix-n-l-file bm)))
;; update new column in U
(let ((pivot-denom (denominator (aref mus (- m 1)))))
(divf (hsv-coef pivot-col) pivot-denom)
(dotimes (ci (hsv-length pivot-col))
(if (= ci pivot-ci)
(setf (aref (hsv-vis pivot-col) ci) (numerator (aref mus (- m 1))))
(mulf (aref (hsv-vis pivot-col) ci) pivot-denom))))
(hsv-normalize pivot-col)))
;;;; The function that ties it all together
(defun lu-update (bm j spike)
(multiple-value-bind (pivot-ci pivot-k)
(lu-update-replace-column bm j spike)
(let ((cdenom (lu-update-compute-values bm pivot-k)))
(lu-update-build-eta bm pivot-k j pivot-ci cdenom))))