-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbundle.c
546 lines (468 loc) · 19.3 KB
/
bundle.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "bundle.h"
// Resource usage
double getutime ()
{
struct rusage usage;
getrusage(RUSAGE_SELF, &usage);
return usage.ru_utime.tv_sec + usage.ru_utime.tv_usec * 1e-6;
}
// BLAS and LAPACK functions
extern double ddot_(const int *n, const double *x, const int *incx, const double *y, const int *incy);
extern void daxpy_(const int *n, const double *alpha, const double *x, const int *incx, double *y, const int *incy);
extern void dscal_(const int *n, const double *alpha, const double *x, const int *incx);
extern void dgesv_(const int *n, const int *nrhs, double *a, const int *lda, int *OUT_ipiv, double *b, const int *ldb, int *OUT_info);
double ddot (int n, const double *x, const double *y)
{
int one = 1;
return ddot_(&n, x, &one, y, &one);
}
void daxpy (int n, double alpha, const double *x, double *y)
{
int one = 1;
daxpy_(&n, &alpha, x, &one, y, &one);
}
void dscal (int n, double alpha, double *x)
{
int one = 1;
dscal_(&n, &alpha, x, &one);
}
int dgesv (int n, double *a, int *piv, double *b)
{
int info, one = 1;
dgesv_(&n, &one, a, &n, piv, b, &n, &info);
assert(info >= 0);
return info;
}
int bundle_qp_solve_mask (bundle_t *bundle, uint64_t mask)
/*
* Attempts to solve the penalized bundle QP assuming the zero/nonzero constraint multiplier combination specified in 'mask' is correct:
* max z - 1/2t <x^T,x>
* s.c
* z - <A_i,x> <= b_i, i = 1,...,m : mul
* z scalar, x n-dimensional vector
*
* This QP is convex, therefore solving it is equivalent to solving the KKT conditions system.
*
* For all possible values of mask,
* if the i-th bit of mask is 1:
* => z* - <A_i,x*> = b_i.
* if the i-th bit of mask is 0:
* => mul*_i = 0.
*
* Also, supposing the KKT conditions are verified, we have, with k iterating over all 1-bits of mask,
* grad(z* - 1/2t <x^T,x*>) = sum over k of (mul*_k . grad(z* - <A_k,x*>))
* <=> [1 | -1/t x*] = sum over i of (mul*_k . [1 | -A_k])
* <=> t . sum over k of (mul*_k . A_k) = x*
* and sum over k of mul*_k = 1.
*
* Therefore by substituting x* we obtain the system:
* z* - <A_i, t . sum over k of (mul*_k . A_k)> = b_i, for all i with the i-th bit of 'mask' is 1
* <=> | -t(A'.A'^T) e | . | mul | = | b |, with e = (1, ..., 1) and dim(e) = number of bits of mask set to 1
* | e^T 0 | | z | | 1 |, and with A' = A with the rows corresponding to the bits set to 0 in mask removed.
*
* If the system is not linearly independent, then the optimal solution cannot be found with this mask.
* Otherwise, having mul* and z*, we verify dual feasibility, for all i set to 1 in mask:
* <=> mul_i* >= 0
* Also, we verify dual optimality:
* <=> z* is minimal for all dual-feasible z* found with other masks
* Finally, we verify primal feasibility, for all i set to 0 in mask:
* <=> z* - <A_i,x*> <= b_i, and substituting x*,
* <=> z* - t . sum over k of mul*_k <A_i, A_k^T> <= b_i
*
* If these hold then all KKT conditions are verified and z* is optimal.
*/
{
double z;
int info, isize;
uint64_t bit;
int i, j, k;
// get system size (in bundle->kkt_m) and active constraint indices (in bundle->kkt_i[])
// set system rhs (in bundle->kkt_mul[])
for (bundle->kkt_m = i = 0, bit = 1; i < bundle->m; i++, bit <<= 1)
if (mask & bit) {
bundle->kkt_i[bundle->kkt_m] = i;
bundle->kkt_mul[bundle->kkt_m] = bundle->b[i];
++bundle->kkt_m;
}
bundle->kkt_mul[bundle->kkt_m] = 1.0;
isize = 1 + bundle->kkt_m; // set matrix dimension size for LAPACK
// set system lhs (in bundle->kkt_a[][])
for (i = 0; i < bundle->kkt_m; i++) {
for (j = 0; j < bundle->kkt_m; j++)
bundle->kkt_a[i * isize + j] = bundle->kkt_a[j * isize + i] = - (bundle->aat[bundle->kkt_i[i] * bundle->max_m + bundle->kkt_i[j]] / bundle->scale);
bundle->kkt_a[i * isize + bundle->kkt_m] = 1.0;
bundle->kkt_a[bundle->kkt_m * isize + i] = 1.0;
}
bundle->kkt_a[bundle->kkt_m * isize + bundle->kkt_m] = 0.0;
// solve system using LAPACK, to retrieve mul* and z* (in bundle->kkt_mul[])
info = dgesv(isize, bundle->kkt_a, bundle->ipiv, bundle->kkt_mul);
// check if system has full rank
if (info > 0)
return 0;
// system is linearly independent and has a unique solution
z = bundle->kkt_mul[bundle->kkt_m];
// check dual feasibility
for (i = 0; i < bundle->kkt_m; i++)
if (bundle->kkt_mul[i] < 0.0)
return 0;
// check dual optimality
if (z > bundle->kkt_z * 1.01)
return 0;
else if (z < bundle->kkt_z)
bundle->kkt_z = z;
// check primal feasibility
for (k = i = 0, bit = 1; i < bundle->m; i++, bit <<= 1) {
if (mask & bit) {
bundle->next_b[i] = z;
}
else {
bundle->next_b[i] = 0.0;
for (j = 0; j < bundle->kkt_m; j++)
bundle->next_b[i] += bundle->kkt_mul[j] * bundle->aat[i * bundle->max_m + bundle->kkt_i[j]];
bundle->next_b[i] /= bundle->scale;
bundle->next_b[i] += bundle->b[i];
if (z > bundle->next_b[i] + bundle->epsilon)
return 0;
}
}
// the KKT conditions are all verified
return 1;
}
int bundle_qp_solve (bundle_t* bundle, uint64_t mask, int rank, int *n_iter)
{
/*
* Enumerates all 'mask' parameters for bundle_qp_solve_mask(),
* in partial order of decreasing bit weight,
* favoring masks with highest rank, i.e. where the most recent subgradients are active.
*
* If the preceding iteration of the bundle was a minor step (=> bundle->most_recent_i != -1), then we know that the most recent subgradient is active:
* in this case, masks where it is set to inactive are skipped.
*/
assert(rank >= 0);
if (rank == 0) {
--*n_iter;
return bundle_qp_solve_mask(bundle, mask);
}
if (*n_iter > 0 && bundle_qp_solve(bundle, mask | (1ULL << (rank - 1)), rank - 1, n_iter))
return 1;
if (*n_iter > 0 && rank != bundle->most_recent_i && bundle_qp_solve(bundle, mask, rank - 1, n_iter))
return 1;
return 0;
}
double bundle_guess (bundle_t* bundle, int max_qp_iterations)
/*
* Guesses where the x giving the estimated best z lies by solving the penalized bundle QP.
*
* If the resolution of the QP takes more than max_qp_iterations mask guesses, it is aborted,
* and the bundle is repopulated as if it were aggregated in the previous bundle iteration,
* in other words reduced to only 2 subgradients, the previous aggregate and the previous evaluated subgradient.
* The QP is then solved anew, and completely.
* The procedure then computes x, the aggregate subgradient and the linearization error for this QP.
*
*/
{
int solved;
int i, n_iter = max_qp_iterations;
bundle->time_qp -= getutime(1);
bundle->kkt_z = INFINITY;
solved = bundle_qp_solve(bundle, 0ULL, bundle->m, &n_iter);
if (!solved) {
bundle->time_qp += getutime(1);
++bundle->n_iterations;
//printf("trim\nit: %i\tpen: %f\t", bundle->n_iterations, bundle->scale);
// trim a
if (bundle->m != 2)
memcpy(&bundle->a[bundle->n], &bundle->a[(bundle->m - 1) * bundle->n], bundle->n * sizeof(double));
memcpy(&bundle->a[0], bundle->agg_subg, bundle->n * sizeof(double));
// recompute aat
bundle->aat[0] = ddot(bundle->n, bundle->agg_subg, bundle->agg_subg);
bundle->aat[bundle->max_m + 1] = bundle->aat[(bundle->m - 1) * bundle->max_m + bundle->m - 1];
bundle->aat[1] = bundle->aat[bundle->max_m] = ddot(bundle->n, bundle->agg_subg, &bundle->a[bundle->n]);
// trim b
bundle->b[0] = (bundle->most_recent_i == -1) ? bundle->agg_next_b : bundle->agg_b;
bundle->b[1] = bundle->b[bundle->m - 1];
// update bundle information and solve again
bundle->most_recent_i = -1;
bundle->m = 2;
bundle->time_qp -= getutime(1);
n_iter = (max_qp_iterations < 3) ? 3 : max_qp_iterations;
bundle->kkt_z = INFINITY;
solved = bundle_qp_solve(bundle, 0ULL, bundle->m, &n_iter);
assert(solved);
}
// compute the aggregate subgradient using BLAS (in bundle->agg_subg[])
bundle->agg_b = bundle->agg_next_b = 0.0;
bzero(bundle->agg_subg, bundle->n * sizeof(double));
for (i = 0; i < bundle->kkt_m; i++) {
daxpy(bundle->n, bundle->kkt_mul[i], &bundle->a[bundle->kkt_i[i] * bundle->n], bundle->agg_subg);
bundle->agg_b += bundle->kkt_mul[i] * bundle->b[bundle->kkt_i[i]];
bundle->agg_next_b += bundle->kkt_mul[i] * bundle->next_b[bundle->kkt_i[i]];
}
// compute local x
memcpy(bundle->kkt_x, bundle->agg_subg, bundle->n * sizeof(double));
dscal(bundle->n, 1.0 / bundle->scale, bundle->kkt_x);
// compute global x
memcpy(bundle->x, bundle->best_x, bundle->n * sizeof(double));
daxpy(bundle->n, 1.0, bundle->kkt_x, bundle->x);
bundle->time_qp += getutime(1);
// return guessed z
return bundle->kkt_mul[bundle->kkt_m];
}
int bundle_update (bundle_t* bundle, double agg_subg_square)
/*
* Updates the bundle after a guess, guaranteeing space for a new subgradient.
*
* Specifically, this involves updating:
* - the dot product matrix bundle->aat,
* - the right-hand sides bundle->b and bundle->next_b,
* - the bundle size bundle->m.
*
* If under capacity:
* do nothing.
* If saturated:
* if not all subgradients are active:
* remove those which aren't
* otherwise:
* remove all subgradients and add aggregate
*/
{
int i, j;
assert(bundle->m <= bundle->max_m);
// check if bundle is under capacity
if (bundle->m < bundle->max_m)
return bundle->m++;
// bundle is saturated, either trim it or aggregate it
if (bundle->kkt_m < bundle->m) {
// trim the bundle
for (i = 0; i < bundle->kkt_m; i++) {
for (j = 0; j < bundle->kkt_m; j++)
bundle->aat[i * bundle->max_m + j] = bundle->aat[bundle->kkt_i[i] * bundle->max_m + bundle->kkt_i[j]];
if (i < bundle->kkt_i[i]) {
memcpy(&bundle->a[i * bundle->n], &bundle->a[bundle->kkt_i[i] * bundle->n], bundle->n * sizeof(double));
bundle->b[i] = bundle->b[bundle->kkt_i[i]];
bundle->next_b[i] = bundle->next_b[bundle->kkt_i[i]];
}
}
bundle->m = bundle->kkt_m + 1;
return bundle->kkt_m;
}
else {
// replace first subgradient by aggregate
memcpy(&bundle->a[0], bundle->agg_subg, bundle->n * sizeof(double));
bundle->b[0] = bundle->agg_b;
bundle->next_b[0] = bundle->agg_next_b;
bundle->aat[0] = agg_subg_square;
// throw away all other subgradients
bundle->m = 2;
return 1;
}
}
typedef enum {
bundle_status_minor_step,
bundle_status_major_step,
bundle_status_cutoff,
bundle_status_tolerably_optimal,
bundle_status_optimal,
} bundle_status_t;
bundle_status_t bundle_step (bundle_t *bundle, int max_qp_iterations, double subgnorm_opt_tol, double linerr_opt_tol, double z_cutoff, void* data, double (*bundle_callback) (void*, double*, double*), double init_scale, double acceptable_model_exactness)
/*
* Performs one iteration of the bundle method:
* - max_qp_iterations: maximum enumerations of mask to solve QP
* - subgnorm_opt_tol: threshold below which a subgradient norm are deemed to be zero,
* - linerr_opt_tol: threshold below which a linearization error is deemed to be zero,
* - z_cutoff: threshold above which z no longer needs to be maximized any further,
* - data: a pointer passed on to bundle_callback,
* - double bundle_callback(void *data, double *x, double *subg): must evalute and return z at x, writing the subgradient at x in subg.
* - init_scale: initial penalty parameter
* - acceptable_model_exactness: if the ratio between actual and predicted improvement is above this value, then the bundle method performs a major step,
*/
{
int new_subg_i = -1;
double roh;
double previous_best_z = bundle->best_z;
double *new_subg = NULL;
double subg_delta, linerr_opt_delta, agg_subg_square;
int i;
//printf("it: %i\tpen: %f\t", bundle->n_iterations, bundle->scale);
// guess where the x yielding the optimal z lies
bundle->time_qp -= getutime(1);
bundle->guessed_z = bundle_guess(bundle, max_qp_iterations);
bundle->time_qp += getutime(1);
linerr_opt_delta = bundle->agg_b - bundle->best_z;
agg_subg_square = ddot(bundle->n, bundle->agg_subg, bundle->agg_subg);
//printf("z-est: %f ", bundle->guessed_z);
// update the bundle
new_subg_i = bundle_update(bundle, agg_subg_square);
// evaluate guessed x and subgradient at guessed x
new_subg = &bundle->a[new_subg_i * bundle->n];
bundle->time_callback -= getutime(1);
bundle->actual_z = bundle_callback(data, bundle->x, new_subg);
bundle->time_callback += getutime(1);
// update maximums
if (bundle->actual_z > bundle->max_z) {
bundle->max_z = bundle->actual_z;
memcpy(bundle->max_x, bundle->x, bundle->n * sizeof(double));
if (bundle->max_z >= z_cutoff) {
//printf("(%f)*\tcutoff\n", bundle->actual_z);
return bundle_status_cutoff;
}
}
//printf("(%f)%c\t", bundle->actual_z, (bundle->actual_z == bundle->max_z) ? '*' : ' ');
// update A.A^T with new subgradient
for (i = 0; i < bundle->m; i++)
bundle->aat[i * bundle->max_m + new_subg_i] = bundle->aat[new_subg_i * bundle->max_m + i] = ddot(bundle->n, &bundle->a[i * bundle->n], new_subg);
// check for optimality, i.e. if new subgradient is a null vector
if (bundle->aat[new_subg_i * bundle->max_m + new_subg_i] < bundle->epsilon) {
//printf("optimal\n");
return bundle_status_optimal;
}
//printf("agg.err: %f\tagg.norm: %f\t", linerr_opt_delta, sqrt(agg_subg_square));
if (linerr_opt_delta <= linerr_opt_tol && agg_subg_square <= subgnorm_opt_tol * subgnorm_opt_tol) {
//printf("optimal withing tolerances\n");
return bundle_status_tolerably_optimal;
}
// check improvement
roh = (bundle->actual_z - previous_best_z) / (bundle->guessed_z - previous_best_z + bundle->epsilon);
//printf("roh: %.2f\t", roh);
if (roh >= acceptable_model_exactness) {
// Major Step
// update penalization parameter bundle->scale
daxpy(bundle->n, -1.0, new_subg, bundle->best_subg);
subg_delta = ddot(bundle->n, bundle->best_subg, bundle->best_subg);
bundle->scale = (subg_delta == 0.0) ? init_scale : (1.0 / (1.0 / bundle->scale + ddot(bundle->n, bundle->kkt_x, bundle->best_subg) / subg_delta));
// center the penalized QP to new maximum
bundle->best_z = bundle->actual_z;
memcpy(bundle->best_x, bundle->x, bundle->n * sizeof(double));
memcpy(bundle->best_subg, new_subg, bundle->n * sizeof(double));
// update QP rhs for new center
memcpy(bundle->b, bundle->next_b, bundle->max_m * sizeof(double));
bundle->b[new_subg_i] = bundle->actual_z;
// the most recent subgradient may not be active
bundle->most_recent_i = -1;
//printf("major step\n");
return bundle_status_major_step;
}
else {
// Minor Step
// update rhs for new subgradient for existing center
bundle->b[new_subg_i] = bundle->actual_z - ddot(bundle->n, new_subg, bundle->kkt_x);
//printf("\n");
// the most recent subgradient is certainly active
bundle->most_recent_i = new_subg_i;
return bundle_status_minor_step;
}
}
double bundle_solve (bundle_t *bundle, int max_iterations, int max_qp_iterations, double subgnorm_opt_tol, double linerr_opt_tol, double z_cutoff,
void *data, double (*bundle_callback) (void*, double*, double*),
double init_scale, double acceptable_model_exactness, double *init_x, double init_z, double *init_subg)
/*
* Maximizes a convex non-differentiable function using the bundle method, until reaching a value or iteration threshold (z_cutoff and max_iterations, respectively), or until fulfilling optimality criteria (see subgnorm_opt_tol and linerr_opt_tol):
* - max_qp_iterations: maximum enumerations of mask to solve QP
* - subgnorm_opt_tol: threshold below which a subgradient norm are deemed to be zero,
* - linerr_opt_tol: threshold below which a linearization error is deemed to be zero,
* - z_cutoff: threshold above which z no longer needs to be maximized any further,
* - data: a pointer passed on to bundle_callback (see bundle_step),
* - init_scale: initial QP penalty,
* - acceptable_model_exactness: if the ratio between actual and predicted improvement is above this value, then the bundle method performs a major step,
* - init_x: initial values for best_x, may be NULL in which case 0 is used,
* - init_z: initial value for best_z, ignored if init_x or init_subg are NULL,
* - init_subg: subgradient at init_x, may be NULL.
*/
{
int i;
bundle_status_t status;
// initialize the bundle
if (NULL == init_x) {
for (i = 0; i < bundle->n; i++)
bundle->best_x[i] = 0.0;
bundle->actual_z = bundle_callback(data, bundle->best_x, &bundle->a[0]);
}
else {
memcpy(bundle->best_x, init_x, bundle->n * sizeof(double));
if (NULL == init_subg) {
bundle->actual_z = bundle_callback(data, bundle->best_x, &bundle->a[0]);
}
else {
memcpy(&bundle->a[0], init_subg, bundle->n * sizeof(double));
bundle->actual_z = init_z;
}
}
bundle->max_z = bundle->best_z = bundle->actual_z;
memcpy(bundle->max_x, bundle->best_x, bundle->n * sizeof(double));
memcpy(bundle->best_subg, &bundle->a[0], bundle->n * sizeof(double));
bundle->m = 1;
bundle->most_recent_i = 0;
bundle->b[0] = bundle->actual_z;
bundle->aat[0] = ddot(bundle->n, &bundle->a[0], &bundle->a[0]);
bundle->scale = init_scale;
bundle->time_bundle = bundle->time_qp = bundle->time_callback = 0.0;
//printf("it: 0\tpen: %f\tmax: %f\n", bundle->scale, bundle->actual_z);
// find a maximum within max_iterations or until greater than z_cutoff
bundle->time_bundle -= getutime(1);
for (bundle->n_iterations = 1; bundle->n_iterations < max_iterations; bundle->n_iterations++) {
// perform bundle step
status = bundle_step(bundle, max_qp_iterations, subgnorm_opt_tol, linerr_opt_tol, z_cutoff, data, bundle_callback, init_scale, acceptable_model_exactness);
// check for termination criteria
if (bundle_status_cutoff == status || bundle_status_optimal == status || bundle_status_tolerably_optimal == status)
break;
}
bundle->time_bundle += getutime(1);
// terminate the bundle search
return bundle->max_z;
}
bundle_t* bundle_create (int max_m, int n, double epsilon)
{
bundle_t* bundle = (bundle_t*) malloc(sizeof(bundle_t));
bundle->time_qp = bundle->time_callback = bundle->time_bundle = 0.0;
bundle->epsilon = epsilon;
bundle->max_m = max_m;
bundle->m = 0;
bundle->n = n;
bundle->scale = 1.0;
bundle->b = (double*) calloc(max_m, sizeof(double));
bundle->next_b = (double*) calloc(max_m, sizeof(double));
bundle->a = (double*) calloc(max_m * n, sizeof(double));
bundle->aat = (double*) calloc(max_m * max_m, sizeof(double));
bundle->most_recent_i = -1;
bundle->max_z = bundle->best_z = -INFINITY;
bundle->max_x = (double*) calloc(n, sizeof(double));
bundle->best_x = (double*) calloc(n, sizeof(double));
bundle->best_subg = (double*) calloc(n, sizeof(double));
bundle->x = (double*) calloc(n, sizeof(double));
bundle->agg_subg = (double*) calloc(n, sizeof(double));
bundle->agg_b = bundle->agg_next_b = 0.0;
bundle->kkt_m = 0;
bundle->kkt_i = (int*) calloc(max_m, sizeof(int));
bundle->kkt_x = (double*) calloc(n, sizeof(double));
bundle->kkt_mul = (double*) calloc(max_m + 1, sizeof(double));
bundle->kkt_a = (double*) calloc((max_m + 1) * (max_m + 1), sizeof(double));
bundle->ipiv = (int*) calloc(max_m + 1, sizeof(int));
bundle->n_iterations = 0;
bundle->actual_z = bundle->guessed_z = -INFINITY;
return bundle;
}
void bundle_destroy (bundle_t *bundle)
{
free(bundle->b);
free(bundle->next_b);
free(bundle->a);
free(bundle->aat);
free(bundle->x);
free(bundle->kkt_x);
free(bundle->kkt_i);
free(bundle->kkt_a);
free(bundle->ipiv);
free(bundle->kkt_mul);
free(bundle->max_x);
free(bundle->best_x);
free(bundle->best_subg);
free(bundle->agg_subg);
free(bundle);
}