diff --git a/man/metadata-set.Rd b/man/metadata-set.Rd index 4db691f..1ca164c 100644 --- a/man/metadata-set.Rd +++ b/man/metadata-set.Rd @@ -10,6 +10,6 @@ metadata(object) <- value Sets metadata to a \code{scPred} object. Metadata must be a dataframe \itemize{ \item row names: ids matching the column names of the expression matrix -\item columns: associated metadata such as cell type, conditions, sample or, batch. +\item columns: associated metadata such as cell type, conditions, sample or, batch. } } diff --git a/man/plotLoadings-scPred-method.Rd b/man/plotLoadings-scPred-method.Rd index de292c1..dd2bd54 100644 --- a/man/plotLoadings-scPred-method.Rd +++ b/man/plotLoadings-scPred-method.Rd @@ -12,7 +12,7 @@ \item{pc}{The number of the principal component to be plotted} -\item{n}{Top `n` variable genes to plot. Notice that the number of plotted genes is n*2 as both +\item{n}{Top `n` variable genes to plot. Notice that the number of plotted genes is n*2 as both negative and positive loadings are considered} } \value{ diff --git a/man/plotLoadings.Rd b/man/plotLoadings.Rd index a229685..0630da1 100644 --- a/man/plotLoadings.Rd +++ b/man/plotLoadings.Rd @@ -11,7 +11,7 @@ plotLoadings(object, pc = 1, n = 10) \item{pc}{The number of the principal component to be plotted} -\item{n}{Top `n` variable genes to plot. Notice that the number of genes plotted is n*2 as both +\item{n}{Top `n` variable genes to plot. Notice that the number of genes plotted is n*2 as both negative and positive loadings are considered} } \description{ diff --git a/man/trainModel.Rd b/man/trainModel.Rd index de661f6..5aba55e 100644 --- a/man/trainModel.Rd +++ b/man/trainModel.Rd @@ -5,14 +5,15 @@ \title{Train a prediction model} \usage{ trainModel(object, model = "svmRadial", resampleMethod = "cv", - number = 10, seed = 66, metric = c("ROC", "Accuracy", "Kappa"), - returnData = TRUE, savePredictions = "final") + number = 5, seed = 66, metric = c("ROC", "PR", "Accuracy", + "Kappa"), imbalance = 0.1, returnData = FALSE, + savePredictions = "final", allowParallel = FALSE) } \arguments{ -\item{object}{An \code{scPred} object with informative PCs obtained using +\item{object}{An \code{scPred} object with informative PCs obtained using the \code{getInformativePCs} function} -\item{model}{Classification model supported via \code{caret} package. A list of all models can be found here: +\item{model}{Classification model supported via \code{caret} package. A list of all models can be found here: https://topepo.github.io/caret/available-models.html Default: support vector machine with polynomial kernel} @@ -24,7 +25,7 @@ Default: support vector machine with polynomial kernel} \item{returnData}{If \code{TRUE}, training data is returned} -\item{savePredictions}{an indicator of how much of the hold-out predictions for each resample should be +\item{savePredictions}{an indicator of how much of the hold-out predictions for each resample should be saved. Values can be either "all", "final", or "none". A logical value can also be used that convert to "all" (for true) or "none" (for false). "final" saves the predictions for the optimal tuning parameters.} } @@ -40,8 +41,8 @@ Trains a prediction model from an \code{scPred} object ## A numeric seed is provided for the K-fold cross validation ## The metric ROC is used to select the best tuned model. "Accuracy" and "Kappa" may be used too. -object <- trainModel(object = object, - seed = 1234, +object <- trainModel(object = object, + seed = 1234, metric = "ROC") }