-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathveronica.py
63 lines (54 loc) · 1.61 KB
/
veronica.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/usr/bin/python
# importing libraries
import pandas as pd
from sklearn import datasets
import streamlit as st
from sklearn.neighbors import KNeighborsClassifier
def user_input():
sepal_length = st.sidebar.slider('Sepal length', 4.3, 7.9, 5.4)
sepal_width = st.sidebar.slider('Sepal width', 2.0, 4.4, 3.4)
petal_length = st.sidebar.slider('Petal length', 1.0, 6.9, 1.3)
petal_width = st.sidebar.slider('Petal width', 0.1, 2.5, 0.2)
data = {'sepal_length': sepal_length,
'sepal_width': sepal_width,
'petal_length': petal_length,
'petal_width': petal_width}
features = pd.DataFrame(data, index=[0])
return features
if __name__ == '__main__':
st.write("""
# Simple Iris Flower Prediction App
This app predicts the **Iris flower** type!
""")
st.write("""
# Iris Dataset
""")
st.write("""
Shape of dataset: (150, 4)
""")
st.write("""
Number of classes: 3
""")
st.write("""
Classifier: KNN
""")
st.write("""
Accuracy: 0.95
""")
st.sidebar.header('User Input Parameters')
st.subheader('User Input parameters')
df = user_input()
st.write(df)
# Load dataset
iris = datasets.load_iris()
X = iris.data
Y = iris.target
# Applied K-nearest Neighbours algorithms
knn = KNeighborsClassifier(n_neighbors=5)
# Model fitting
knn.fit(X,Y)
prediction = knn.predict(df)
st.subheader('Class labels and their corresponding index number')
st.write(iris.target_names)
st.subheader('Prediction')
st.write(iris.target_names[prediction])