-
Notifications
You must be signed in to change notification settings - Fork 5
/
extract.py
247 lines (200 loc) · 9.07 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 17-9-22 下午1:39
# @Author : Luo Yao
# @Site : http://github.com/TJCVRS
# @File : train_shadownet.py
# @IDE: PyCharm Community Edition
"""
Train shadow net script
"""
import os
import tensorflow as tf
import os.path as ops
import time
import numpy as np
import argparse
import cv2
import json
import functools
import collections
from models.crnn import crnn_model
from models.east import model
from shutil import copyfile
from eval import resize_image, sort_poly, detect
from utils import data_utils, log_utils
from utils.config_utils import load_config
logger = log_utils.init_logger()
# Read configuration for width/height
cfg = load_config().cfg
@functools.lru_cache(maxsize=100)
def get_crnn(checkpoint_path):
logger.info('Loading CRNN model...')
# Read width / height
w, h = cfg.ARCH.INPUT_SIZE
# Determine the number of classes.
decoder = data_utils.TextFeatureIO().reader
num_classes = len(decoder.char_dict) + 1
g_2 = tf.Graph()
with g_2.as_default():
inputdata = tf.placeholder(dtype=tf.float32, shape=[1, h, w, 3], name='input')
net = crnn_model.ShadowNet(phase='Test', hidden_nums=cfg.ARCH.HIDDEN_UNITS, layers_nums=cfg.ARCH.HIDDEN_LAYERS, num_classes=num_classes)
with tf.variable_scope('shadow'):
net_out = net.build_shadownet(inputdata=inputdata)
decodes, _ = tf.nn.ctc_beam_search_decoder(inputs=net_out, sequence_length=cfg.ARCH.SEQ_LENGTH * np.ones(1), merge_repeated=False)
decoder = data_utils.TextFeatureIO()
saver = tf.train.Saver()
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True), graph=g_2)
ckpt_state = tf.train.get_checkpoint_state(checkpoint_path)
model_path = os.path.join(checkpoint_path, os.path.basename(ckpt_state.model_checkpoint_path))
saver.restore(sess=sess, save_path=model_path)
def infer(img):
img = cv2.resize(img, (w, h))
img = np.expand_dims(img, axis=0).astype(np.float32)
preds = sess.run(decodes, feed_dict={inputdata: img})
preds = decoder.writer.sparse_tensor_to_str(preds[0])
return preds
return infer
@functools.lru_cache(maxsize=100)
def get_east(checkpoint_path):
logger.info('Loading EAST model...')
g_1 = tf.Graph()
with g_1.as_default():
input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
f_score, f_geometry = model.model(cfg, input_images, is_training=False)
variable_averages = tf.train.ExponentialMovingAverage(0.997, global_step)
saver = tf.train.Saver(variable_averages.variables_to_restore())
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True), graph=g_1)
ckpt_state = tf.train.get_checkpoint_state(checkpoint_path)
model_path = os.path.join(checkpoint_path, os.path.basename(ckpt_state.model_checkpoint_path))
logger.info('Restore from {}'.format(model_path))
saver.restore(sess, model_path)
def infer(img):
"""
:return: {
'text_lines': [
{
'score': ,
'x0': ,
'y0': ,
'x1': ,
...
'y3': ,
}
],
'rtparams': { # runtime parameters
'image_size': ,
'working_size': ,
},
'timing': {
'net': ,
'restore': ,
'nms': ,
'cpuinfo': ,
'meminfo': ,
'uptime': ,
}
}
"""
start_time = time.time()
timer = collections.OrderedDict([
('net', 0),
('restore', 0),
('nms', 0)
])
im_resized, (ratio_h, ratio_w) = resize_image(img)
start = time.time()
score, geometry = sess.run([f_score, f_geometry], feed_dict={input_images: [im_resized[:,:,::-1]]})
timer['net'] = time.time() - start
boxes, timer = detect(score_map=score, geo_map=geometry, timer=timer)
logger.info('net {:.0f}ms, restore {:.0f}ms, nms {:.0f}ms'.format(
timer['net']*1000, timer['restore']*1000, timer['nms']*1000))
if boxes is not None:
scores = boxes[:,8].reshape(-1)
boxes = boxes[:, :8].reshape((-1, 4, 2))
boxes[:, :, 0] /= ratio_w
boxes[:, :, 1] /= ratio_h
duration = time.time() - start_time
timer['overall'] = duration
logger.info('[timing] {}'.format(duration))
text_lines = []
if boxes is not None:
text_lines = []
for box, score in zip(boxes, scores):
box = sort_poly(box.astype(np.int32))
if np.linalg.norm(box[0] - box[1]) < 5 or np.linalg.norm(box[3]-box[0]) < 5:
continue
tl = collections.OrderedDict(zip(
['x0', 'y0', 'x1', 'y1', 'x2', 'y2', 'x3', 'y3'],
map(float, box.flatten())))
tl['score'] = float(score)
text_lines.append(tl)
ret = {
'text_lines': text_lines,
'timing': timer,
}
return ret
return infer
def extract(extraction_dir: str, output: str = None, copy: bool = False):
# Load relevant models
infer_boxes = get_east(cfg.PATH.EAST_MODEL_SAVE_DIR)
infer_text = get_crnn(cfg.PATH.CRNN_MODEL_SAVE_DIR)
# Some statistics
east_count = 0
crnn_count = 0
crnn_duration = 0
east_duration = 0
# Iterate over items in extraction directory
for root, subdirs, files in os.walk(extraction_dir):
# Iterate over files
for filename in files:
if (filename.endswith(('.jpg','.jpeg','.png','.tiff','.tif','bmp'))):
image_path = os.path.join(root,filename)
logger.info('Processing {}'.format(image_path))
img = cv2.imdecode(np.fromfile(image_path, dtype='uint8'), 1)
# Infer bounding boxes
if img is not None:
start = time.time()
boxes = infer_boxes(img)
east_duration += time.time() - start
east_count += 1
if len(boxes["text_lines"]) > 0:
for line in boxes["text_lines"]:
xt = int(min(line["x0"], line["x2"])) - 1
yt = int(min(line["y0"], line["y2"])) - 1
xb = int(max(line["x1"], line["x3"])) + 1
yb = int(max(line["y1"], line["y3"])) + 1
cropped_img = img[yt:yb, xt:xb]
if cropped_img.shape[0] == 0 or cropped_img.shape[1] == 0:
logger.warn('Error in image {}: Nullary bounding box...'.format(image_path))
continue
# Infer text
start = time.time()
line["text"] = infer_text(cropped_img)[0]
crnn_duration += time.time() - start
crnn_count += 1
# Generate output
if output is None:
write_output(boxes["text_lines"], root, image_path, False)
else:
write_output(boxes["text_lines"], output, image_path, copy)
crnn_duration /= crnn_count
east_duration /= east_count
logger.info('Done! Took {:.2f}s on average (EAST: {:.2f}s, CRNN: {:.2f}s).'.format((crnn_duration + east_duration), east_duration, crnn_duration))
def write_output(data, output_dir, image_path, copy = False):
with open(os.path.join(output_dir, os.path.splitext(os.path.basename(image_path))[0] + ".json"), 'w') as outf:
json.dump(data, outf)
if copy:
copyfile(image_path, os.path.join(output_dir, os.path.basename(image_path)))
if __name__ == '__main__':
# Initialize arguments
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--extraction_dir', type=str, help='Path to dir containing images for extraction.')
parser.add_argument('-o', '--output_dir', type=str, default=None, help='Path to directory that should hold the final output.')
parser.add_argument('-c', '--copy_images', type=bool, default=False, help='Only valid for -o; copies the image.')
args = parser.parse_args()
if not ops.exists(args.extraction_dir):
raise ValueError('{:s} doesn\'t exist'.format(args.extraction_dir))
# Start extraction
extract(args.extraction_dir, args.output_dir, args.copy_images)