-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
executable file
·240 lines (190 loc) · 6.96 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python3
# coding: utf-8
import tensorflow as tf
import numpy as np
import os
import constants
import librosa
def pad(dataset=[], padding_mode='CONSTANT'):
return pad_to(max([specgram.shape[1] for specgram in dataset]),
dataset=dataset, padding_mode=padding_mode)
def pad_to(length, dataset=[], padding_mode='CONSTANT'):
padded_specgrams = []
for specgram in dataset:
padded_specgrams.append(pad_single(
specgram, length, padding_mode=padding_mode))
return padded_specgrams
def pad_single(specgram, length, padding_mode='CONSTANT'):
pad_by = length - specgram.shape[1]
paddings = tf.constant([[0, 0], [0, pad_by], [0, 0]])
specgram_pad = tf.pad(specgram, paddings, padding_mode)
return specgram_pad.numpy()
def load_dataset_stft_spectrogram(
dataset=[],
data_dir="data",
num_samples=constants.num_samples,
n_fft=constants.n_fft,
fmax=constants.fmax,
fixed_length=False):
"""
Loads training and test datasets, from TIMIT and convert into spectrogram using STFT
Arguments:
num_audio_samples_per_class_train: number of audio per class to load into training dataset
"""
if fixed_length:
return load_fixed_dataset_stft_spectrogram(
dataset=dataset,
data_dir=data_dir,
n_fft=n_fft,
num_samples=num_samples,
fmax=fmax)
# list initialization
numpy_specgrams = None
# padding vars
longest_specgram = 0
# data parsing
for sample in dataset:
if numpy_specgrams is not None and len(numpy_specgrams) == num_samples:
break
mel_specgram = convert_wav_to_stft_spec(os.path.join(
data_dir, sample), n_fft=n_fft)
if numpy_specgrams is None:
numpy_specgrams = mel_specgram[np.newaxis, ...]
longest_specgram = mel_specgram.shape[1]
else:
if longest_specgram < mel_specgram.shape[1]:
# pad parsed specgrams
pad_by = mel_specgram.shape[1] - longest_specgram
numpy_specgrams = tf.pad(numpy_specgrams, tf.constant(
[[0, 0], [0, 0], [0, pad_by], [0, 0]]))
longest_specgram = mel_specgram.shape[1]
elif longest_specgram > mel_specgram.shape[1]:
# pad new specgram
mel_specgram = pad_single(mel_specgram, longest_specgram)
numpy_specgrams = np.concatenate(
(numpy_specgrams, mel_specgram[np.newaxis, ...]), axis=0)
print('Parsing data progress: {}% ({}/{})'.format(
len(numpy_specgrams) * 100 // num_samples, len(numpy_specgrams), num_samples), end="\r")
return numpy_specgrams
def load_fixed_dataset_stft_spectrogram(
dataset=[],
data_dir="data",
num_samples=constants.num_samples,
n_fft=constants.n_fft,
fmax=constants.fmax,
fixed_length=False):
# list initialization
sample_specgram = convert_wav_to_stft_spec(os.path.join(
data_dir, dataset[0]), n_fft=n_fft)
numpy_specgrams = np.empty((
num_samples,
sample_specgram.shape[0],
sample_specgram.shape[1],
sample_specgram.shape[2]
), dtype=np.complex64)
numpy_specgrams.flags.writeable = True
# data parsing
for idx in range(num_samples):
sample = dataset[idx]
mel_specgram = convert_wav_to_stft_spec(os.path.join(
data_dir, sample))
numpy_specgrams[idx] = mel_specgram
print('Parsing data progress: {}% ({}/{})'.format(
(idx + 1) * 100 // num_samples, idx + 1, num_samples), end="\r")
return numpy_specgrams
def convert_wav_to_mel_spec(
path_to_wav,
n_mels=constants.n_mels,
fmax=constants.fmax,
hop_length=constants.hop_length,
sample_rate=constants.sample_rate,
n_fft=constants.n_fft):
"""
Converts a raw wav to a Tensor mel spectrogram
Raw wave shape: (samples, 1)
Tensor mel spectrogram shape: (1, t, n_mels)
"""
audio, sample_rate = librosa.load(path_to_wav, sr=sample_rate)
librosa_melspec = librosa.feature.melspectrogram(
y=audio,
sr=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
n_mels=n_mels,
fmax=fmax,
center=True)
return librosa_melspec_to_tf(librosa_melspec)
def convert_wav_to_stft_spec(
path_to_wav,
fmax=constants.fmax,
win_length=constants.win_length,
hop_length=constants.hop_length,
sample_rate=constants.sample_rate,
n_fft=constants.n_fft):
audio, sample_rate = librosa.load(path_to_wav, sr=sample_rate)
stft = librosa.core.stft(
audio,
hop_length=hop_length,
win_length=win_length,
n_fft=n_fft,
center=False)
return librosa_melspec_to_tf(stft)
def convert_mel_spec_to_wav(
tf_melspec,
fmax=constants.fmax,
hop_length=constants.hop_length,
sample_rate=constants.sample_rate,
n_fft=constants.n_fft):
"""
Converts a Tensor mel spectrogram to a Tensor wav
Tensor mel spectrogram shape: (1, t, n_mels)
Tensor wav shape: (1, t)
"""
librosa_melspec = tf_melspec_to_librosa(tf_melspec)
librosa_wav = librosa.feature.inverse.mel_to_audio(
librosa_melspec.numpy(),
sr=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
fmax=fmax,
center=True
)
return librosa_wav_to_tf(librosa_wav)
def convert_stft_spec_to_wav(
tf_melspec,
win_length=constants.win_length,
hop_length=constants.hop_length,
sample_rate=constants.sample_rate):
stft = tf_melspec_to_librosa(tf_melspec)
audio = librosa.core.istft(
stft.numpy(),
hop_length=hop_length,
win_length=win_length,
center=False
)
return librosa_wav_to_tf(audio)
def tf_melspec_to_librosa(tf_melspec):
"""
Converts a Tensorflow Tensor mel spectrogram to a Librosa mel spectrogram
Tensor mel spectrogram shape: (1, t, n_mels)
Librosa mel spectrogram shape: (n_mels, t)
"""
return tf.transpose(tf_melspec[0])
def librosa_melspec_to_tf(librosa_melspec):
"""
Converts a tensorflow Librosa mel spectrogram to a Tensorflow mel spectrogram
Tensor mel spectrogram shape: (1, t, n_mels)
Librosa mel spectrogram shape: (n_mels, t)
"""
return tf.expand_dims(tf.transpose(tf.convert_to_tensor(librosa_melspec)), 0)
def librosa_wav_to_tf(librosa_wav, sample_rate=constants.sample_rate):
"""
Converts a Librosa wav file to a Tensorflow Tensor
Librosa wav shape: t
Tensorflow wav shape: (1, t)
"""
audio = tf.transpose(tf.expand_dims(tf.convert_to_tensor(librosa_wav), 0))
return tf.audio.encode_wav(audio, sample_rate)
def tf_wav_to_librosa(tf_wav, sample_rate=constants.sample_rate):
audio, sample_rate = tf.audio.decode_wav(tf_wav)
return audio[0]