This application is used to check everything is ok and running as fast as expected. The information about the maximum frame rate (237fps on Intel Xeon, 152fps on Jetson NX, 47fps on Snapdragon 855 and 12fps on Raspberry Pi 4) could be checked using this application. It's open source and doesn't require registration or license key.
More information about the benchmark rules at https://www.doubango.org/SDKs/anpr/docs/Benchmark.html.
The SDK is developed in C++11 and you'll need glibc 2.27+ on Linux and Microsoft Visual C++ 2015 Redistributable(x64) - 14.0.24123 (any later version is ok) on Windows. You most likely already have these dependencies on you machine as almost every program require it.
If you're planning to use OpenVINO, then you'll need Intel C++ Compiler Redistributable (choose newest). Please note that OpenVINO is packaged in the SDK as plugin and loaded (dlopen
) at runtime. The engine will fail to load the plugin if Intel C++ Compiler Redistributable is missing on your machine but the program will work as expected with Tensorflow as fallback. We highly recommend using OpenVINO to speedup the inference time. See benchmark numbers with/without OpenVINO at https://www.doubango.org/SDKs/anpr/docs/Benchmark.html#core-i7-windows.
To check if all dependencies are present:
- Windows x86_64: Use Dependency Walker on binaries/windows/x86_64/ultimateALPR-SDK.dll and binaries/windows/x86_64/ultimatePluginOpenVINO.dll if you're planning to use OpenVINO.
- Linux x86_64: Use
ldd <your-shared-lib>
on binaries/linux/x86_64/libultimate_alpr-sdk.so and binaries/linux/x86_64/libultimatePluginOpenVINO.so if you're planning to use OpenVINO.
- On x86-64, GPGPU acceleration is disabled by default. Check here for more information on how to enable it.
- On NVIDIA Jetson (AArch64), GPGPU acceleration is always enabled. Check here for more information.
These performance numbers are obtained using version 3.0. You can use any later version. Please notice the boost when OpenVINO is enabled.
Some performance numbers on mid-range GPU (GTX 1070), high-range ARM CPU (Galaxy S10+), low-range ARM CPU (Raspberry Pi 4) devices using 720p (1280x720) images:
0.0 rate | 0.2 rate | 0.5 rate | 0.7 rate | 1.0 rate | |
---|---|---|---|---|---|
AMD Ryzen 7 3700X 8-Core + RTX 3060 (Ubuntu 20, OpenVINO enabled) |
615 millis 162.54 fps |
679 millis 147.13 fps |
740 millis 135.01 fps |
773 millis 129.21 fps |
809.18 millis 123.58 fps |
AMD Ryzen 7 3700X 8-Core + RTX 3060 (Ubuntu 20, OpenVINO disabled) |
961 millis 103.97 fps |
1047 millis 95.46 fps |
1206 millis 82.90 fps |
1325 millis 75.45 fps |
1434.16 millis 69.72 fps |
Intel® Xeon® E3 1230v5 + GTX 1070 (Ubuntu 18, OpenVINO enabled) |
737 millis 135.62 fps |
809 millis 123.55 fps |
903 millis 110.72 fps |
968 millis 103.22 fps |
1063 millis 94.07 fps |
Intel® Xeon® E3 1230v5 + GTX 1070 (Ubuntu 18, OpenVINO disabled) |
711 millis 140.51 fps |
828 millis 120.76 fps |
1004 millis 99.53 fps |
1127 millis 88.70 fps |
1292 millis 77.38 fps |
i7-4790K (Windows 8, OpenVINO enabled) |
758 millis 131.78 fps |
1110 millis 90.07 fps |
1597 millis 62.58 fps |
1907 millis 52.42 fps |
2399 millis 41.66 fps |
i7-4790K (Windows 8, OpenVINO disabled) |
2427 millis 41.18 fps |
2658 millis 37.60 fps |
2999 millis 33.34 fps |
3360 millis 29.75 fps |
3607 millis 27.72 fps |
i7-4770HQ (Winows 10, OpenVINO enabled) |
1094 millis 91.35 fps |
1674 millis 59.71 fps |
2456 millis 40.71 fps |
2923 millis 34.21 fps |
4255 millis 23.49 fps |
i7-4770HQ (Windows 10, OpenVINO disabled) |
4129 millis 24.21 fps |
4486 millis 22.28 fps |
4916 millis 20.34 fps |
5460 millis 18.31 fps |
5740 millis 17.42 fps |
Galaxy S10+ (Android) |
21344 millis 46.85 fps |
25815 millis 38.73 fps |
29712 millis 33.65 fps |
33352 millis 29.98 fps |
37825 millis 26.43 fps |
RockPi 4B (Ubuntu Server 18.04) |
7588 millis 13.17 fps |
8008 millis 12.48 fps |
8606 millis 11.61 fps |
9213 millis 10.85fps |
9798 millis 10.20 fps |
Raspberry Pi 4 (Raspbian Buster) |
81890 millis 12.21 fps |
89770 millis 11.13 fps |
115190 millis 8.68 fps |
122950 millis 8.13fps |
141460 millis 7.06 fps |
binaries/jetson_tftrt (Xavier NX, JetPack 4.4.1) |
657 millis 152.06 fps |
967 millis 103.39 fps |
1280 millis 78.06 fps |
1539 millis 64.95 fps |
1849 millis 54.07 fps |
binaries/jetson (Xavier NX, JetPack 4.4.1) |
657 millis 152.02 fps |
1169 millis 85.47 fps |
2112 millis 47.34 fps |
2703 millis 36.98 fps |
3628 millis 27.56 fps |
binaries/jetson_tftrt (TX2, JetPack 4.4.1) |
1420 millis 70.38 fps |
1653 millis 60.47 fps |
1998 millis 50.02 fps |
2273 millis 43.97 fps |
2681 millis 37.29 fps |
binaries/jetson (TX2, JetPack 4.4.1) |
1428 millis 70.01 fps |
1712 millis 58.40 fps |
2165 millis 46.17 fps |
2692 millis 37.13 fps |
3673 millis 27.22 fps |
binaries/jetson_tftrt (Nano, JetPack 4.4.1) |
3106 millis 32.19 fps |
3292 millis 30.37 fps |
3754 millis 26.63 fps |
3967 millis 25.20 fps |
4621 millis 21.63 fps |
binaries/jetson (nano, JetPack 4.4.1) |
2920 millis 34.24 fps |
3083 millis 32.42 fps |
3340 millis 29.93 fps |
3882 millis 25.75 fps |
5102 millis 19.59 fps |
Some notes:
- The above numbers show that the best case is 'AMD Ryzen 7 3700X 8-Core + RTX 3060 + OpenVINO enabled'. In such case the GPU (TensorRT, CUDA) and the CPU (OpenVINO) are used in parallel. The CPU is used for detection and the GPU for recognition/OCR.
- Please note that even if Raspberry Pi 4 has a 64-bit CPU Raspbian OS uses a 32-bit kernel which means we're loosing many SIMD optimizations.
- On RockPi 4B the code is 5 times faster when parallel processing is enabled.
- On NVIDIA Jetson the code is 3 times faster when parallel processing is enabled.
- On Android devices we have noticed that parallel processing can speedup the pipeline by up to 120% on some devices while on Raspberry Pi the gain is marginal.
- Both i7 CPUs are 6yr+ old (2014) to make sure everyone can easily find them at the cheapest price possible.
If you don't want to build this sample by yourself then, use the pre-built versions:
- Windows x86_64: benchmark.exe under binaries/windows/x86_64
- Linux x86_64: benchmark under binaries/linux/x86_64. Built on Ubuntu 18. You'll need to download libtensorflow.so as explained here.
- Linux aarch64: benchmark under binaries/linux/aarch64.
- Raspberry Pi: benchmark under binaries/raspbian/armv7l
- Android: check android folder
- NVIDIA Jetson: binaries/jetson/aarch64/benchmark or binaries/jetson_tftrt/aarch64/benchmark. You'll need to generate the optimized models as explained here.
On Windows, the easiest way to try this sample is to navigate to binaries/windows/x86_64 and run binaries/windows/x86_64/benchmark.bat. You can edit these files to use your own images and configuration options.
This sample contains a single C++ source file and is easy to build. The documentation about the C++ API is at https://www.doubango.org/SDKs/anpr/docs/cpp-api.html.
You'll need Visual Studio to build the code. The VS project is at benchmark.vcxproj. Open it.
- You will need to change the "Command Arguments" like the below image. Default value:
--loops 100 --rate 0.2 --positive $(ProjectDir)..\..\..\assets\images\lic_us_1280x720.jpg --negative $(ProjectDir)..\..\..\assets\images\london_traffic.jpg --assets $(ProjectDir)..\..\..\assets --charset latin
- You will need to change the "Environment" variable like the below image. Default value:
PATH=$(VCRedistPaths)%PATH%;$(ProjectDir)..\..\..\binaries\windows\x86_64
You're now ready to build and run the sample.
Next command is a generic GCC command:
cd ultimateALPR-SDK/samples/c++/benchmark
g++ benchmark.cxx -O3 -I../../../c++ -L../../../binaries/<yourOS>/<yourArch> -lultimate_alpr-sdk -o benchmark
- You've to change
yourOS
andyourArch
with the correct values. For example, on Linux x86_64 they would be equal tolinux
andx86_64
respectively. On Linux aarch64 they would belinux
andaarch64
respectively. - If you're cross compiling then, you'll have to change
g++
with the correct triplet. For example, on Linux host for Android ARM64 target the triplet would be equal toaarch64-linux-android-g++
.
To build the sample for Raspberry Pi you can either do it on the device itself or cross compile it on Windows, Linux or OSX machines. For more information on how to install the toolchain for cross compilation please check here.
cd ultimateALPR-SDK/samples/c++/benchmark
arm-linux-gnueabihf-g++ benchmark.cxx -O3 -I../../../c++ -L../../../binaries/raspbian/armv7l -lultimate_alpr-sdk -o benchmark
- On Windows: replace
arm-linux-gnueabihf-g++
witharm-linux-gnueabihf-g++.exe
- If you're building on the device itself: replace
arm-linux-gnueabihf-g++
withg++
to use the default GCC
After building the application you can test it on your local machine.
Benchmark is a command line application with the following usage:
benchmark \
--positive <path-to-image-with-a-plate> \
--negative <path-to-image-without-a-plate> \
[--assets <path-to-assets-folder>] \
[--charset <recognition-charset:latin/korean/chinese>] \
[--car_noplate_detect_enabled <whether-to-enable-detecting-cars-with-no-plate:true/false>] \
[--ienv_enabled <whether-to-enable-IENV:true/false>] \
[--openvino_enabled <whether-to-enable-OpenVINO:true/false>] \
[--openvino_device <openvino-device-to-use>] \
[--klass_lpci_enabled <whether-to-enable-LPCI:true/false>] \
[--klass_vcr_enabled <whether-to-enable-VCR:true/false>] \
[--klass_vmmr_enabled <whether-to-enable-VMMR:true/false>] \
[--klass_vbsr_enabled <whether-to-enable-VMMR:true/false>] \
[--loops <number-of-times-to-run-the-loop:[1, inf]>] \
[--rate <positive-rate:[0.0, 1.0]>] \
[--parallel <whether-to-enable-parallel-mode:true/false>] \
[--rectify <whether-to-enable-rectification-layer:true/false>] \
[--tokenfile <path-to-license-token-file>] \
[--tokendata <base64-license-token-data>]
Options surrounded with [] are optional.
--positive
Path to an image (JPEG/PNG/BMP) with a license plate. This image will be used to evaluate the recognizer. You can use default image at ../../../assets/images/lic_us_1280x720.jpg.--negative
Path to an image (JPEG/PNG/BMP) without a license plate. This image will be used to evaluate the decoder. You can use default image at ../../../assets/images/london_traffic.jpg.--assets
Path to the assets folder containing the configuration files and models. Default value is the current folder.--charset
Defines the recognition charset (a.k.a alphabet) value (latin, korean, chinese...). Default: latin.--car_noplate_detect_enabled
Whether to detect and return cars with no plate. Default: false.--ienv_enabled
Whether to enable Image Enhancement for Night-Vision (IENV). More info about IENV at https://www.doubango.org/SDKs/anpr/docs/Features.html#image-enhancement-for-night-vision-ienv. Default: false.--openvino_enabled
Whether to enable OpenVINO. Tensorflow will be used when OpenVINO is disabled. Default: true.--openvino_device
Defines the OpenVINO device to use (CPU, GPU, FPGA...). More info at https://www.doubango.org/SDKs/anpr/docs/Configuration_options.html#openvino-device. Default: CPU."--klass_lpci_enabled
Whether to enable License Plate Country Identification (LPCI). More info at https://www.doubango.org/SDKs/anpr/docs/Features.html#license-plate-country-identification-lpci. Default: false.--klass_vcr_enabled
Whether to enable Vehicle Color Recognition (VCR). More info at https://www.doubango.org/SDKs/anpr/docs/Features.html#vehicle-color-recognition-vcr. Default: false.--klass_vmmr_enabled
Whether to enable Vehicle Make Model Recognition (VMMR). More info at https://www.doubango.org/SDKs/anpr/docs/Features.html#vehicle-make-model-recognition-vmmr. Default: false.--klass_vbsr_enabled
Whether to enable Vehicle Body Style Recognition (VBSR). More info at https://www.doubango.org/SDKs/anpr/docs/Features.html#vehicle-body-style-recognition-vbsr. Default: false.--loops
Number of times to run the processing pipeline.--rate
Percentage value within [0.0, 1.0] defining the positive rate. The positive rate defines the percentage of images with a plate.--parallel
Whether to enabled the parallel mode. More info about the parallel mode at https://www.doubango.org/SDKs/anpr/docs/Parallel_versus_sequential_processing.html. Default: true.--rectify
Whether to enable the rectification layer. More info about the rectification layer at https://www.doubango.org/SDKs/anpr/docs/Rectification_layer.html. Always enabled on x86_64 CPUs. Default: false.--tokenfile
Path to the file containing the base64 license token if you have one. If not provided then, the application will act like a trial version. Default: null.--tokendata
Base64 license token if you have one. If not provided then, the application will act like a trial version. Default: null.
The information about the maximum frame rate (140fps on GTX 1070, 47fps on Snapdragon 855 and 12fps on Raspberry Pi 4) is obtained using --rate 0.0
which means evaluating the negative (no license plate) image only. The minimum frame rate could be obtained using --rate 1.0
which means evaluating the positive image only (all images on the video stream have a license plate). In real life, very few frames from a video stream will contain a license plate (--rate
< 0.01).
- For example, on Raspberry Pi you may call the benchmark application using the following command:
LD_LIBRARY_PATH=../../../binaries/raspbian/armv7l:$LD_LIBRARY_PATH ./benchmark \
--positive ../../../assets/images/lic_us_1280x720.jpg \
--negative ../../../assets/images/london_traffic.jpg \
--assets ../../../assets \
--charset latin \
--loops 100 \
--rate 0.2 \
--parallel true \
--rectify false
- On NVIDIA Jetson, you'll need to generate the models as explained here, put the device on maximum performance mode (
sudo nvpmodel -m 0 && sudo jetson_clocks
), then run:
LD_LIBRARY_PATH=../../../binaries/jetson/aarch64:$LD_LIBRARY_PATH ./benchmark \
--positive ../../../assets/images/lic_us_1280x720.jpg \
--negative ../../../assets/images/london_traffic.jpg \
--assets ../../../assets \
--charset latin \
--loops 100 \
--rate 0.2 \
--parallel true \
--rectify false
or
LD_LIBRARY_PATH=../../../binaries/jetson_tftrt/aarch64:$LD_LIBRARY_PATH ./benchmark \
--positive ../../../assets/images/lic_us_1280x720.jpg \
--negative ../../../assets/images/london_traffic.jpg \
--assets ../../../assets \
--charset latin \
--loops 100 \
--rate 0.2 \
--parallel true \
--rectify false
The difference between jetson_tftrt and jetson binaries is explained here.
- On Linux x86_64, you may use the next command:
LD_LIBRARY_PATH=../../../binaries/linux/x86_64:$LD_LIBRARY_PATH ./benchmark \
--positive ../../../assets/images/lic_us_1280x720.jpg \
--negative ../../../assets/images/london_traffic.jpg \
--assets ../../../assets \
--charset latin \
--loops 100 \
--rate 0.2 \
--parallel true
- On Linux aarch64, you may use the next command:
LD_LIBRARY_PATH=../../../binaries/linux/aarch64:$LD_LIBRARY_PATH ./benchmark \
--positive ../../../assets/images/lic_us_1280x720.jpg \
--negative ../../../assets/images/london_traffic.jpg \
--assets ../../../assets \
--charset latin \
--loops 100 \
--rate 0.2 \
--parallel true
- On Windows x86_64, you may use the next command:
benchmark.exe ^
--positive ../../../assets/images/lic_us_1280x720.jpg ^
--negative ../../../assets/images/london_traffic.jpg ^
--assets ../../../assets ^
--charset latin ^
--loops 100 ^
--rate 0.2 ^
--parallel true
Please note that if you're cross compiling the application then you've to make sure to copy the application and both the assets and binaries folders to the target device.