forked from pfnet/pfrl
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_categorical_dqn_ale.py
180 lines (158 loc) · 5.46 KB
/
train_categorical_dqn_ale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
import numpy as np
import torch
import pfrl
from pfrl import experiments, explorers, replay_buffers, utils
from pfrl.wrappers import atari_wrappers
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 31)")
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--demo", action="store_true", default=False)
parser.add_argument("--load", type=str, default=None)
parser.add_argument("--final-exploration-frames", type=int, default=10**6)
parser.add_argument("--final-epsilon", type=float, default=0.1)
parser.add_argument("--eval-epsilon", type=float, default=0.05)
parser.add_argument("--steps", type=int, default=10**7)
parser.add_argument(
"--max-frames",
type=int,
default=30 * 60 * 60, # 30 minutes with 60 fps
help="Maximum number of frames for each episode.",
)
parser.add_argument("--replay-start-size", type=int, default=5 * 10**4)
parser.add_argument("--target-update-interval", type=int, default=10**4)
parser.add_argument("--eval-interval", type=int, default=10**5)
parser.add_argument("--update-interval", type=int, default=4)
parser.add_argument("--eval-n-runs", type=int, default=10)
parser.add_argument("--batch-size", type=int, default=32)
parser.add_argument(
"--log-level",
type=int,
default=20,
help="Logging level. 10:DEBUG, 20:INFO etc.",
)
parser.add_argument(
"--render",
action="store_true",
default=False,
help="Render env states in a GUI window.",
)
parser.add_argument(
"--monitor",
action="store_true",
default=False,
help=(
"Monitor env. Videos and additional information are saved as output files."
),
)
args = parser.parse_args()
import logging
logging.basicConfig(level=args.log_level)
# Set a random seed used in PFRL.
utils.set_random_seed(args.seed)
# Set different random seeds for train and test envs.
train_seed = args.seed
test_seed = 2**31 - 1 - args.seed
args.outdir = experiments.prepare_output_dir(args, args.outdir)
print("Output files are saved in {}".format(args.outdir))
def make_env(test):
# Use different random seeds for train and test envs
env_seed = test_seed if test else train_seed
env = atari_wrappers.wrap_deepmind(
atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
episode_life=not test,
clip_rewards=not test,
)
env.seed(int(env_seed))
if test:
# Randomize actions like epsilon-greedy in evaluation as well
env = pfrl.wrappers.RandomizeAction(env, args.eval_epsilon)
if args.monitor:
env = pfrl.wrappers.Monitor(
env, args.outdir, mode="evaluation" if test else "training"
)
if args.render:
env = pfrl.wrappers.Render(env)
return env
env = make_env(test=False)
eval_env = make_env(test=True)
n_actions = env.action_space.n
n_atoms = 51
v_max = 10
v_min = -10
q_func = torch.nn.Sequential(
pfrl.nn.LargeAtariCNN(),
pfrl.q_functions.DistributionalFCStateQFunctionWithDiscreteAction(
512,
n_actions,
n_atoms,
v_min,
v_max,
n_hidden_channels=0,
n_hidden_layers=0,
),
)
# Use the same hyper parameters as https://arxiv.org/abs/1707.06887
opt = torch.optim.Adam(q_func.parameters(), 2.5e-4, eps=1e-2 / args.batch_size)
rbuf = replay_buffers.ReplayBuffer(10**6)
explorer = explorers.LinearDecayEpsilonGreedy(
1.0,
args.final_epsilon,
args.final_exploration_frames,
lambda: np.random.randint(n_actions),
)
def phi(x):
# Feature extractor
return np.asarray(x, dtype=np.float32) / 255
agent = pfrl.agents.CategoricalDQN(
q_func,
opt,
rbuf,
gpu=args.gpu,
gamma=0.99,
explorer=explorer,
replay_start_size=args.replay_start_size,
target_update_interval=args.target_update_interval,
update_interval=args.update_interval,
batch_accumulator="mean",
phi=phi,
)
if args.load:
agent.load(args.load)
if args.demo:
eval_stats = experiments.eval_performance(
env=eval_env, agent=agent, n_steps=None, n_episodes=args.eval_n_runs
)
print(
"n_runs: {} mean: {} median: {} stdev {}".format(
args.eval_n_runs,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
else:
experiments.train_agent_with_evaluation(
agent=agent,
env=env,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
outdir=args.outdir,
save_best_so_far_agent=False,
eval_env=eval_env,
)
if __name__ == "__main__":
main()