forked from pfnet/pfrl
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_dqn_ale.py
317 lines (286 loc) · 9.33 KB
/
train_dqn_ale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import argparse
import numpy as np
import torch
import torch.nn as nn
import pfrl
from pfrl import agents, experiments, explorers
from pfrl import nn as pnn
from pfrl import replay_buffers, utils
from pfrl.initializers import init_chainer_default
from pfrl.q_functions import DiscreteActionValueHead, DuelingDQN
from pfrl.wrappers import atari_wrappers
class SingleSharedBias(nn.Module):
"""Single shared bias used in the Double DQN paper.
You can add this link after a Linear layer with nobias=True to implement a
Linear layer with a single shared bias parameter.
See http://arxiv.org/abs/1509.06461.
"""
def __init__(self):
super().__init__()
self.bias = nn.Parameter(torch.zeros([1], dtype=torch.float32))
def __call__(self, x):
return x + self.bias.expand_as(x)
def parse_arch(arch, n_actions):
if arch == "nature":
return nn.Sequential(
pnn.LargeAtariCNN(),
init_chainer_default(nn.Linear(512, n_actions)),
DiscreteActionValueHead(),
)
elif arch == "doubledqn":
return nn.Sequential(
pnn.LargeAtariCNN(),
init_chainer_default(nn.Linear(512, n_actions, bias=False)),
SingleSharedBias(),
DiscreteActionValueHead(),
)
elif arch == "nips":
return nn.Sequential(
pnn.SmallAtariCNN(),
init_chainer_default(nn.Linear(256, n_actions)),
DiscreteActionValueHead(),
)
elif arch == "dueling":
return DuelingDQN(n_actions)
else:
raise RuntimeError("Not supported architecture: {}".format(arch))
def parse_agent(agent):
return {"DQN": agents.DQN, "DoubleDQN": agents.DoubleDQN, "PAL": agents.PAL}[agent]
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--env",
type=str,
default="BreakoutNoFrameskip-v4",
help="OpenAI Atari domain to perform algorithm on.",
)
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 31)")
parser.add_argument(
"--gpu", type=int, default=0, help="GPU to use, set to -1 if no GPU."
)
parser.add_argument("--demo", action="store_true", default=False)
parser.add_argument("--load", type=str, default=None)
parser.add_argument(
"--final-exploration-frames",
type=int,
default=10**6,
help="Timesteps after which we stop " + "annealing exploration rate",
)
parser.add_argument(
"--final-epsilon",
type=float,
default=0.01,
help="Final value of epsilon during training.",
)
parser.add_argument(
"--eval-epsilon",
type=float,
default=0.001,
help="Exploration epsilon used during eval episodes.",
)
parser.add_argument("--noisy-net-sigma", type=float, default=None)
parser.add_argument(
"--arch",
type=str,
default="doubledqn",
choices=["nature", "nips", "dueling", "doubledqn"],
help="Network architecture to use.",
)
parser.add_argument(
"--steps",
type=int,
default=5 * 10**7,
help="Total number of timesteps to train the agent.",
)
parser.add_argument(
"--max-frames",
type=int,
default=30 * 60 * 60, # 30 minutes with 60 fps
help="Maximum number of frames for each episode.",
)
parser.add_argument(
"--replay-start-size",
type=int,
default=5 * 10**4,
help="Minimum replay buffer size before " + "performing gradient updates.",
)
parser.add_argument(
"--target-update-interval",
type=int,
default=3 * 10**4,
help="Frequency (in timesteps) at which " + "the target network is updated.",
)
parser.add_argument(
"--eval-interval",
type=int,
default=10**5,
help="Frequency (in timesteps) of evaluation phase.",
)
parser.add_argument(
"--update-interval",
type=int,
default=4,
help="Frequency (in timesteps) of network updates.",
)
parser.add_argument("--eval-n-runs", type=int, default=10)
parser.add_argument("--no-clip-delta", dest="clip_delta", action="store_false")
parser.add_argument("--num-step-return", type=int, default=1)
parser.set_defaults(clip_delta=True)
parser.add_argument(
"--agent", type=str, default="DoubleDQN", choices=["DQN", "DoubleDQN", "PAL"]
)
parser.add_argument(
"--log-level",
type=int,
default=20,
help="Logging level. 10:DEBUG, 20:INFO etc.",
)
parser.add_argument(
"--render",
action="store_true",
default=False,
help="Render env states in a GUI window.",
)
parser.add_argument(
"--monitor",
action="store_true",
default=False,
help=(
"Monitor env. Videos and additional information are saved as output files."
),
)
parser.add_argument("--lr", type=float, default=2.5e-4, help="Learning rate.")
parser.add_argument(
"--prioritized",
action="store_true",
default=False,
help="Use prioritized experience replay.",
)
parser.add_argument(
"--checkpoint-frequency",
type=int,
default=None,
help="Frequency at which agents are stored.",
)
args = parser.parse_args()
import logging
logging.basicConfig(level=args.log_level)
# Set a random seed used in PFRL.
utils.set_random_seed(args.seed)
# Set different random seeds for train and test envs.
train_seed = args.seed
test_seed = 2**31 - 1 - args.seed
args.outdir = experiments.prepare_output_dir(args, args.outdir)
print("Output files are saved in {}".format(args.outdir))
def make_env(test):
# Use different random seeds for train and test envs
env_seed = test_seed if test else train_seed
env = atari_wrappers.wrap_deepmind(
atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
episode_life=not test,
clip_rewards=not test,
)
env.seed(int(env_seed))
if test:
# Randomize actions like epsilon-greedy in evaluation as well
env = pfrl.wrappers.RandomizeAction(env, args.eval_epsilon)
if args.monitor:
env = pfrl.wrappers.Monitor(
env, args.outdir, mode="evaluation" if test else "training"
)
if args.render:
env = pfrl.wrappers.Render(env)
return env
env = make_env(test=False)
eval_env = make_env(test=True)
n_actions = env.action_space.n
q_func = parse_arch(args.arch, n_actions)
if args.noisy_net_sigma is not None:
pnn.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
# Turn off explorer
explorer = explorers.Greedy()
else:
explorer = explorers.LinearDecayEpsilonGreedy(
1.0,
args.final_epsilon,
args.final_exploration_frames,
lambda: np.random.randint(n_actions),
)
# Use the Nature paper's hyperparameters
opt = pfrl.optimizers.RMSpropEpsInsideSqrt(
q_func.parameters(),
lr=args.lr,
alpha=0.95,
momentum=0.0,
eps=1e-2,
centered=True,
)
# Select a replay buffer to use
if args.prioritized:
# Anneal beta from beta0 to 1 throughout training
betasteps = args.steps / args.update_interval
rbuf = replay_buffers.PrioritizedReplayBuffer(
10**6,
alpha=0.6,
beta0=0.4,
betasteps=betasteps,
num_steps=args.num_step_return,
)
else:
rbuf = replay_buffers.ReplayBuffer(10**6, args.num_step_return)
def phi(x):
# Feature extractor
return np.asarray(x, dtype=np.float32) / 255
Agent = parse_agent(args.agent)
agent = Agent(
q_func,
opt,
rbuf,
gpu=args.gpu,
gamma=0.99,
explorer=explorer,
replay_start_size=args.replay_start_size,
target_update_interval=args.target_update_interval,
clip_delta=args.clip_delta,
update_interval=args.update_interval,
batch_accumulator="sum",
phi=phi,
)
if args.load:
agent.load(args.load)
if args.demo:
eval_stats = experiments.eval_performance(
env=eval_env, agent=agent, n_steps=None, n_episodes=args.eval_n_runs
)
print(
"n_runs: {} mean: {} median: {} stdev {}".format(
args.eval_n_runs,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
else:
experiments.train_agent_with_evaluation(
agent=agent,
env=env,
steps=args.steps,
eval_n_steps=None,
checkpoint_freq=args.checkpoint_frequency,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
outdir=args.outdir,
save_best_so_far_agent=False,
eval_env=eval_env,
)
if __name__ == "__main__":
main()