forked from pfnet/pfrl
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_dqn_gym.py
271 lines (238 loc) · 9.46 KB
/
train_dqn_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""An example of training DQN against OpenAI Gym Envs.
This script is an example of training a DQN agent against OpenAI Gym envs.
Both discrete and continuous action spaces are supported. For continuous action
spaces, A NAF (Normalized Advantage Function) is used to approximate Q-values.
To solve CartPole-v0, run:
python train_dqn_gym.py --env CartPole-v0
To solve Pendulum-v0, run:
python train_dqn_gym.py --env Pendulum-v0
"""
import argparse
import os
import sys
import gym
import numpy as np
import torch.optim as optim
from gym import spaces
import pfrl
from pfrl import experiments, explorers
from pfrl import nn as pnn
from pfrl import q_functions, replay_buffers, utils
from pfrl.agents.dqn import DQN
def main():
import logging
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument("--env", type=str, default="Pendulum-v0")
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 32)")
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--final-exploration-steps", type=int, default=10**4)
parser.add_argument("--start-epsilon", type=float, default=1.0)
parser.add_argument("--end-epsilon", type=float, default=0.1)
parser.add_argument("--noisy-net-sigma", type=float, default=None)
parser.add_argument("--demo", action="store_true", default=False)
parser.add_argument("--load", type=str, default=None)
parser.add_argument("--steps", type=int, default=10**5)
parser.add_argument("--prioritized-replay", action="store_true")
parser.add_argument("--replay-start-size", type=int, default=1000)
parser.add_argument("--target-update-interval", type=int, default=10**2)
parser.add_argument("--target-update-method", type=str, default="hard")
parser.add_argument("--soft-update-tau", type=float, default=1e-2)
parser.add_argument("--update-interval", type=int, default=1)
parser.add_argument("--eval-n-runs", type=int, default=100)
parser.add_argument("--eval-interval", type=int, default=10**4)
parser.add_argument("--n-hidden-channels", type=int, default=100)
parser.add_argument("--n-hidden-layers", type=int, default=2)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--minibatch-size", type=int, default=None)
parser.add_argument("--render-train", action="store_true")
parser.add_argument("--render-eval", action="store_true")
parser.add_argument("--monitor", action="store_true")
parser.add_argument("--reward-scale-factor", type=float, default=1e-3)
parser.add_argument(
"--actor-learner",
action="store_true",
help="Enable asynchronous sampling with asynchronous actor(s)",
) # NOQA
parser.add_argument(
"--num-envs",
type=int,
default=1,
help=(
"The number of environments for sampling (only effective with"
" --actor-learner enabled)"
),
) # NOQA
args = parser.parse_args()
# Set a random seed used in PFRL
utils.set_random_seed(args.seed)
args.outdir = experiments.prepare_output_dir(args, args.outdir, argv=sys.argv)
print("Output files are saved in {}".format(args.outdir))
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
assert process_seeds.max() < 2**32
def clip_action_filter(a):
return np.clip(a, action_space.low, action_space.high)
def make_env(idx=0, test=False):
env = gym.make(args.env)
# Use different random seeds for train and test envs
process_seed = int(process_seeds[idx])
env_seed = 2**32 - 1 - process_seed if test else process_seed
utils.set_random_seed(env_seed)
# Cast observations to float32 because our model uses float32
env = pfrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = pfrl.wrappers.Monitor(env, args.outdir)
if isinstance(env.action_space, spaces.Box):
utils.env_modifiers.make_action_filtered(env, clip_action_filter)
if not test:
# Scale rewards (and thus returns) to a reasonable range so that
# training is easier
env = pfrl.wrappers.ScaleReward(env, args.reward_scale_factor)
if (args.render_eval and test) or (args.render_train and not test):
env = pfrl.wrappers.Render(env)
return env
env = make_env(test=False)
timestep_limit = env.spec.max_episode_steps
obs_space = env.observation_space
obs_size = obs_space.low.size
action_space = env.action_space
if isinstance(action_space, spaces.Box):
action_size = action_space.low.size
# Use NAF to apply DQN to continuous action spaces
q_func = q_functions.FCQuadraticStateQFunction(
obs_size,
action_size,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
action_space=action_space,
)
# Use the Ornstein-Uhlenbeck process for exploration
ou_sigma = (action_space.high - action_space.low) * 0.2
explorer = explorers.AdditiveOU(sigma=ou_sigma)
else:
n_actions = action_space.n
q_func = q_functions.FCStateQFunctionWithDiscreteAction(
obs_size,
n_actions,
n_hidden_channels=args.n_hidden_channels,
n_hidden_layers=args.n_hidden_layers,
)
# Use epsilon-greedy for exploration
explorer = explorers.LinearDecayEpsilonGreedy(
args.start_epsilon,
args.end_epsilon,
args.final_exploration_steps,
action_space.sample,
)
if args.noisy_net_sigma is not None:
pnn.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
# Turn off explorer
explorer = explorers.Greedy()
opt = optim.Adam(q_func.parameters())
rbuf_capacity = 5 * 10**5
if args.minibatch_size is None:
args.minibatch_size = 32
if args.prioritized_replay:
betasteps = (args.steps - args.replay_start_size) // args.update_interval
rbuf = replay_buffers.PrioritizedReplayBuffer(
rbuf_capacity, betasteps=betasteps
)
else:
rbuf = replay_buffers.ReplayBuffer(rbuf_capacity)
agent = DQN(
q_func,
opt,
rbuf,
gpu=args.gpu,
gamma=args.gamma,
explorer=explorer,
replay_start_size=args.replay_start_size,
target_update_interval=args.target_update_interval,
update_interval=args.update_interval,
minibatch_size=args.minibatch_size,
target_update_method=args.target_update_method,
soft_update_tau=args.soft_update_tau,
)
if args.load:
agent.load(args.load)
eval_env = make_env(test=True)
if args.demo:
eval_stats = experiments.eval_performance(
env=eval_env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit,
)
print(
"n_runs: {} mean: {} median: {} stdev {}".format(
args.eval_n_runs,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
elif not args.actor_learner:
print(
"WARNING: Since https://github.com/pfnet/pfrl/pull/112 we have started"
" setting `eval_during_episode=True` in this script, which affects the"
" timings of evaluation phases."
)
experiments.train_agent_with_evaluation(
agent=agent,
env=env,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
outdir=args.outdir,
eval_env=eval_env,
train_max_episode_len=timestep_limit,
eval_during_episode=True,
)
else:
# using impala mode when given num of envs
# When we use multiple envs, it is critical to ensure each env
# can occupy a CPU core to get the best performance.
# Therefore, we need to prevent potential CPU over-provision caused by
# multi-threading in Openmp and Numpy.
# Disable the multi-threading on Openmp and Numpy.
os.environ["OMP_NUM_THREADS"] = "1" # NOQA
(
make_actor,
learner,
poller,
exception_event,
) = agent.setup_actor_learner_training(args.num_envs)
poller.start()
learner.start()
experiments.train_agent_async(
processes=args.num_envs,
make_agent=make_actor,
make_env=make_env,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
outdir=args.outdir,
stop_event=learner.stop_event,
exception_event=exception_event,
)
poller.stop()
learner.stop()
poller.join()
learner.join()
if __name__ == "__main__":
main()