forked from pfnet/pfrl
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_trpo.py
231 lines (208 loc) · 6.79 KB
/
train_trpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""A training script of TRPO on OpenAI Gym Mujoco environments.
This script follows the settings of https://arxiv.org/abs/1709.06560 as much
as possible.
"""
import argparse
import logging
import gym
import gym.spaces
import gym.wrappers
import torch
from torch import nn
import pfrl
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--gpu", type=int, default=0, help="GPU device ID. Set to -1 to use CPUs only."
)
parser.add_argument("--env", type=str, default="Hopper-v2", help="Gym Env ID")
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 32)")
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument(
"--steps", type=int, default=2 * 10**6, help="Total time steps for training."
)
parser.add_argument(
"--eval-interval",
type=int,
default=100000,
help="Interval between evaluation phases in steps.",
)
parser.add_argument(
"--eval-n-runs",
type=int,
default=100,
help="Number of episodes ran in an evaluation phase",
)
parser.add_argument(
"--render", action="store_true", default=False, help="Render the env"
)
parser.add_argument(
"--demo",
action="store_true",
default=False,
help="Run demo episodes, not training",
)
parser.add_argument("--load-pretrained", action="store_true", default=False)
parser.add_argument(
"--pretrained-type", type=str, default="best", choices=["best", "final"]
)
parser.add_argument(
"--load",
type=str,
default="",
help=(
"Directory path to load a saved agent data from"
" if it is a non-empty string."
),
)
parser.add_argument(
"--trpo-update-interval",
type=int,
default=5000,
help="Interval steps of TRPO iterations.",
)
parser.add_argument(
"--log-level", type=int, default=logging.INFO, help="Level of the root logger."
)
parser.add_argument(
"--monitor",
action="store_true",
help=(
"Monitor the env by gym.wrappers.Monitor."
" Videos and additional log will be saved."
),
)
args = parser.parse_args()
logging.basicConfig(level=args.log_level)
# Set random seed
pfrl.utils.set_random_seed(args.seed)
args.outdir = pfrl.experiments.prepare_output_dir(args, args.outdir)
def make_env(test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
env_seed = 2**32 - 1 - args.seed if test else args.seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = pfrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = gym.wrappers.Monitor(env, args.outdir)
if args.render:
env = pfrl.wrappers.Render(env)
return env
env = make_env(test=False)
timestep_limit = env.spec.max_episode_steps
obs_space = env.observation_space
action_space = env.action_space
print("Observation space:", obs_space)
print("Action space:", action_space)
assert isinstance(obs_space, gym.spaces.Box)
# Normalize observations based on their empirical mean and variance
obs_normalizer = pfrl.nn.EmpiricalNormalization(
obs_space.low.size, clip_threshold=5
)
obs_size = obs_space.low.size
action_size = action_space.low.size
policy = torch.nn.Sequential(
nn.Linear(obs_size, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, action_size),
pfrl.policies.GaussianHeadWithStateIndependentCovariance(
action_size=action_size,
var_type="diagonal",
var_func=lambda x: torch.exp(2 * x), # Parameterize log std
var_param_init=0, # log std = 0 => std = 1
),
)
vf = torch.nn.Sequential(
nn.Linear(obs_size, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, 1),
)
# While the original paper initialized weights by normal distribution,
# we use orthogonal initialization as the latest openai/baselines does.
def ortho_init(layer, gain):
nn.init.orthogonal_(layer.weight, gain=gain)
nn.init.zeros_(layer.bias)
ortho_init(policy[0], gain=1)
ortho_init(policy[2], gain=1)
ortho_init(policy[4], gain=1e-2)
ortho_init(vf[0], gain=1)
ortho_init(vf[2], gain=1)
ortho_init(vf[4], gain=1e-2)
# TRPO's policy is optimized via CG and line search, so it doesn't require
# an Optimizer. Only the value function needs it.
vf_opt = torch.optim.Adam(vf.parameters())
# Hyperparameters in http://arxiv.org/abs/1709.06560
agent = pfrl.agents.TRPO(
policy=policy,
vf=vf,
vf_optimizer=vf_opt,
obs_normalizer=obs_normalizer,
gpu=args.gpu,
update_interval=args.trpo_update_interval,
max_kl=0.01,
conjugate_gradient_max_iter=20,
conjugate_gradient_damping=1e-1,
gamma=0.995,
lambd=0.97,
vf_epochs=5,
entropy_coef=0,
)
if args.load or args.load_pretrained:
# either load or load_pretrained must be false
assert not args.load or not args.load_pretrained
if args.load:
agent.load(args.load)
else:
agent.load(
pfrl.utils.download_model(
"TRPO", args.env, model_type=args.pretrained_type
)[0]
)
if args.demo:
env = make_env(test=True)
eval_stats = pfrl.experiments.eval_performance(
env=env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit,
)
print(
"n_runs: {} mean: {} median: {} stdev {}".format(
args.eval_n_runs,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
import json
import os
with open(os.path.join(args.outdir, "demo_scores.json"), "w") as f:
json.dump(eval_stats, f)
else:
pfrl.experiments.train_agent_with_evaluation(
agent=agent,
env=env,
eval_env=make_env(test=True),
outdir=args.outdir,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
train_max_episode_len=timestep_limit,
)
if __name__ == "__main__":
main()