-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathCNV.py
281 lines (205 loc) · 7.86 KB
/
CNV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# -*- coding: utf-8 -*-
def exists(val):
return val is not None
def moore_penrose_iter_pinv(x, iters = 6):
device = x.device
abs_x = torch.abs(x)
col = abs_x.sum(dim = -1)
row = abs_x.sum(dim = -2)
z = rearrange(x, '... i j -> ... j i') / (torch.max(col) * torch.max(row))
I = torch.eye(x.shape[-1], device = device)
I = rearrange(I, 'i j -> () i j')
for _ in range(iters):
xz = x @ z
z = 0.25 * z @ (13 * I - (xz @ (15 * I - (xz @ (7 * I - xz)))))
return z
# main attention class
class NystromAttention(nn.Module):
def __init__(
self,
dim,
heads = 8,
dim_head = 64,
num_landmarks = 256,
pinv_iterations = 6,
residual = True,
residual_conv_kernel = 33,
eps = 1e-8,
dropout = 0.
):
super().__init__()
self.eps = eps
inner_dim = heads * dim_head
self.num_landmarks = num_landmarks
self.pinv_iterations = pinv_iterations
self.heads = heads
self.scale = dim_head ** -0.5
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
self.residual = residual
if residual:
kernel_size = residual_conv_kernel
padding = residual_conv_kernel // 2
self.res_conv = nn.Conv2d(heads, heads, (kernel_size, 1), padding = (padding, 0), groups = heads, bias = False)
self.convert = nn.Sequential(
Rearrange('b (h w) (p1 p2 c) -> b c (h p1) (w p2)',h = 32, w = 32, p1 = 1, p2 = 1)
)
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = 1, p2 = 1)
)
# self.pos_embedding = nn.Parameter(torch.randn(1, 1024, dim))
def forward(self, x, pos_emb = None, mask = None, return_attn = False):
x = self.to_patch_embedding(x)
b, n, _, h, m, iters, eps = *x.shape, self.heads, self.num_landmarks, self.pinv_iterations, self.eps
# x += self.pos_embedding[:, :n]
# pad so that sequence can be evenly divided into m landmarks
remainder = n % m
if remainder > 0:
padding = m - (n % m)
x = F.pad(x, (0, 0, padding, 0), value = 0)
# derive query, keys, values
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
# print(q.shape)
# set masked positions to 0 in queries, keys, values
if exists(pos_emb):
q, k = apply_rotary_pos_emb(q, k, pos_emb)
q = q * self.scale
# generate landmarks by sum reduction, and then calculate mean using the mask
l = ceil(n / m)
landmark_einops_eq = '... (n l) d -> ... n d'
q_landmarks = reduce(q, landmark_einops_eq, 'sum', l = l)
k_landmarks = reduce(k, landmark_einops_eq, 'sum', l = l)
# calculate landmark mask, and also get sum of non-masked elements in preparation for masked mean
divisor = l
# masked mean (if mask exists)
q_landmarks /= divisor
k_landmarks /= divisor
# similarities
einops_eq = '... i d, ... j d -> ... i j'
sim1 = einsum(einops_eq, q, k_landmarks)
sim2 = einsum(einops_eq, q_landmarks, k_landmarks)
sim3 = einsum(einops_eq, q_landmarks, k)
# masking
# eq (15) in the paper and aggregate values
attn1, attn2, attn3 = map(lambda t: t.softmax(dim = -1), (sim1, sim2, sim3))
attn2_inv = moore_penrose_iter_pinv(attn2, iters)
out = (attn1 @ attn2_inv) @ (attn3 @ v)
# add depth-wise conv residual of values
if self.residual:
out += self.res_conv(v)
# merge and combine heads
out = rearrange(out, 'b h n d -> b n (h d)', h = h)
out = self.to_out(out)
out = out[:, -n:]
if return_attn:
attn = attn1 @ attn2_inv @ attn3
return out, attn
return self.convert(out)
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helper methods
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, l = 3):
val = val if isinstance(val, tuple) else (val,)
return (*val, *((val[-1],) * max(l - len(val), 0)))
def always(val):
return lambda *args, **kwargs: val
class LayerNorm(nn.Module): # layernorm, but done in the channel dimension #1
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt()
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (std + self.eps) * self.g + self.b
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(dim, dim * mult, 1),
nn.GELU(),
nn.Dropout(dropout),
nn.Conv2d(dim * mult, dim, 1),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Transformer(nn.Module):
def __init__(self, dim = 128, heads = 8, dim_head = 32, mlp_mult = 4, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
num_landmarks = 64
pinv_iterations = 6
residual = True
residual_conv_kernel = 33
eps = 1e-8
for _ in range(1):
self.layers.append(nn.ModuleList([
NystromAttention(dim, heads, dim_head = dim_head, num_landmarks =num_landmarks, pinv_iterations =pinv_iterations, residual = residual, residual_conv_kernel = residual_conv_kernel, eps = eps, dropout = dropout),
FeedForward(dim, mlp_mult, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class CNV(nn.Module):
def __init__(
self,
*,
num_classes,
emb_dim = 64,
emb_kernel = 7,
emb_stride = 4,
heads = 1,
depth = 1,
mlp_mult = 4,
dropout = 0.
):
super().__init__()
dim = int(emb_dim/2)
self.conv = nn.Sequential(
nn.Conv2d(3, int(dim/2), 3, 1, 1),
nn.Conv2d(int(dim/2), dim, 3, 1, 1)
)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.Sequential(
nn.Conv2d(dim, emb_dim, kernel_size = emb_kernel, padding = emb_kernel// 2, stride = emb_stride),
LayerNorm(emb_dim),
Transformer(dim = emb_dim, heads = heads, mlp_mult = mlp_mult, dropout = dropout)
))
dim = emb_dim
self.head = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
Rearrange('... () () -> ...'),
nn.Linear(dim, num_classes)
)
def forward(self, x):
x = self.conv(x)
for cnn, norm, transformer in self.layers:
x = cnn(x)
x = norm(x)
x = transformer(x)
return self.head(x)
model = CNV(
num_classes = 10,
emb_dim = 128, # stage 1 - dimension
emb_kernel = 3, # stage 1 - conv kernel
emb_stride = 1, # stage 1 - conv stride
heads = 4, # stage 1 - heads
depth = 5, # stage 1 - depth
mlp_mult = 2, # stage 1 - feedforward expansion factor
dropout = 0.5
)