-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathWaveMixSRV2.py
129 lines (93 loc) · 3.13 KB
/
WaveMixSRV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
import wavemix
from wavemix import DWTForward
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
xf1 = DWTForward(J=1, mode='zero', wave='db1').to(device)
class WaveMixSRV2Block(nn.Module):
def __init__(
self,
*,
mult = 2,
ff_channel = 16,
final_dim = 16,
dropout = 0.5,
):
super().__init__()
self.feedforward = nn.Sequential(
nn.Conv2d(final_dim, final_dim*mult,1),
nn.GELU(),
nn.Dropout(dropout),
nn.Conv2d(final_dim*mult, ff_channel, 1),
nn.PixelShuffle(2),
nn.Conv2d(final_dim, final_dim,3, 1, 1),
nn.BatchNorm2d(final_dim)
)
self.reduction = nn.Conv2d(final_dim, int(final_dim/4), 1)
def forward(self, x):
b, c, h, w = x.shape
x = self.reduction(x)
Y1, Yh = xf1(x)
x = torch.reshape(Yh[0], (b, int(c*3/4), int(h/2), int(w/2)))
x = torch.cat((Y1,x), dim = 1)
x = self.feedforward(x)
return x
class SR_Block(nn.Module):
def __init__(
self,
*,
depth,
mult = 1,
final_dim = 16,
dropout = 0.3,
):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(Level1Waveblock(mult = mult, final_dim = final_dim, dropout = dropout))
self.final = nn.Sequential(
nn.Conv2d(final_dim,int(final_dim/2), 3, stride=1, padding=1),
nn.Conv2d(int(final_dim/2), 1, 1)
)
self.path1 = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bicubic', align_corners = False),
nn.Conv2d(1, int(final_dim/2), 3, 1, 1),
nn.Conv2d(int(final_dim/2), final_dim, 3, 1, 1)
)
self.path2 = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bicubic', align_corners = False),
)
def forward(self, img):
y = img[:, 0:1, :, :]
crcb = img[:, 1:3, :, :]
y = self.path1(y)
for attn in self.layers:
y = attn(y) + y
y = self.final(y)
crcb = self.path2(crcb)
return torch.cat((y,crcb), dim=1)
class WaveMixSR_V2(nn.Module):
def __init__(
self,
*,
sr = 2,
blocks = 2,
mult = 1,
final_dim = 16,
dropout = 0.3,
):
super().__init__()
self.SR_blocks = nn.ModuleList([])
for _ in range(int(sr/2)):
self.SR_blocks.append(SR_Block(depth = blocks, mult = mult, final_dim = final_dim, dropout = dropout))
def forward(self, x):
for sr_block in self.SR_blocks:
x = sr_block(x)
return x
model = WaveMixSR_V2(
sr = 8, #SR task, 2x, 4x, etc
blocks = 2, #WaveMixSR-V2 blocks inside each 2x SR Block
mult = 1, #Channel expansion factor inside MLP
final_dim = 144,
dropout = 0.3
).to(device)