forked from hrs/python-tf-idf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tfidf.py
executable file
·58 lines (45 loc) · 1.67 KB
/
tfidf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python
"""
The simplest TF-IDF library imaginable.
Add your documents as two-element lists `[docname, [list_of_words_in_the_document]]` with `addDocument(docname, list_of_words)`. Get a list of all the `[docname, similarity_score]` pairs relative to a document by calling `similarities([list_of_words])`.
See the README for a usage example.
"""
import sys
import os
class tfidf:
def __init__(self):
self.weighted = False
self.documents = []
self.corpus_dict = {}
def addDocument(self, doc_name, list_of_words):
# building a dictionary
doc_dict = {}
for w in list_of_words:
doc_dict[w] = doc_dict.get(w, 0.) + 1.0
self.corpus_dict[w] = self.corpus_dict.get(w, 0.0) + 1.0
# normalizing the dictionary
length = float(len(list_of_words))
for k in doc_dict:
doc_dict[k] = doc_dict[k] / length
# add the normalized document to the corpus
self.documents.append([doc_name, doc_dict])
def similarities(self, list_of_words):
"""Returns a list of all the [docname, similarity_score] pairs relative to a list of words."""
# building the query dictionary
query_dict = {}
for w in list_of_words:
query_dict[w] = query_dict.get(w, 0.0) + 1.0
# normalizing the query
length = float(len(list_of_words))
for k in query_dict:
query_dict[k] = query_dict[k] / length
# computing the list of similarities
sims = []
for doc in self.documents:
score = 0.0
doc_dict = doc[1]
for k in query_dict:
if k in doc_dict:
score += (query_dict[k] / self.corpus_dict[k]) + (doc_dict[k] / self.corpus_dict[k])
sims.append([doc[0], score])
return sims