forked from opendatahub-io/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile.rocm.ubi
255 lines (203 loc) · 8.7 KB
/
Dockerfile.rocm.ubi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
## Global Args ##################################################################
ARG BASE_UBI_IMAGE_TAG=9.4
ARG PYTHON_VERSION=3.12
# Default ROCm ARCHes to build vLLM for.
ARG PYTORCH_ROCM_ARCH="gfx908;gfx90a;gfx942;gfx1100"
ARG MAX_JOBS=12
FROM registry.access.redhat.com/ubi9/ubi-minimal:${BASE_UBI_IMAGE_TAG} AS base
ARG PYTHON_VERSION
ENV VIRTUAL_ENV=/opt/vllm
ENV PATH="$VIRTUAL_ENV/bin:$PATH"
RUN --mount=type=cache,target=/root/.cache/pip \
microdnf -y update && \
microdnf install -y --setopt=install_weak_deps=0 --nodocs \
python${PYTHON_VERSION}-devel \
python${PYTHON_VERSION}-pip \
python${PYTHON_VERSION}-wheel && \
python${PYTHON_VERSION} -m venv $VIRTUAL_ENV && \
pip install -U pip wheel setuptools uv
FROM base AS rocm_base
ENV ROCM_VERSION=6.1.2
RUN printf "[amdgpu]\n\
name=amdgpu\n\
baseurl=https://repo.radeon.com/amdgpu/${ROCM_VERSION}/rhel/9.4/main/x86_64/\n\
enabled=1\n\
priority=50\n\
gpgcheck=1\n\
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key\n\
[ROCm-${ROCM_VERSION}]\n\
name=ROCm${ROCM_VERSION}\n\
baseurl=https://repo.radeon.com/rocm/rhel9/${ROCM_VERSION}/main\n\
enabled=1\n\
priority=50\n\
gpgcheck=1\n\
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key" > /etc/yum.repos.d/amdgpu.repo
RUN microdnf -y install \
rocm-hip-libraries rocm-hip-runtime \
miopen-hip && \
microdnf clean all
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/uv \
uv pip install -v --index-url "https://download.pytorch.org/whl/nightly/rocm6.1" \
torch==2.5.0.dev20240912+rocm6.1 \
torchvision==0.20.0.dev20240912+rocm6.1
FROM rocm_base as rocm_devel
ENV CCACHE_DIR=/root/.cache/ccache
RUN rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm && \
rpm -ql epel-release && \
microdnf -y update && \
microdnf -y install \
ccache \
git \
rocm \
hipcc \
wget \
which && \
microdnf clean all
WORKDIR /workspace
ENV LLVM_SYMBOLIZER_PATH=/opt/rocm/llvm/bin/llvm-symbolizer
ENV PATH=$PATH:/opt/rocm/bin:/libtorch/bin
ENV CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/libtorch/include:/libtorch/include/torch/csrc/api/include:/opt/rocm/include
FROM rocm_devel AS build_amdsmi
# Build AMD SMI wheel
RUN cd /opt/rocm/share/amd_smi && \
python3 -m pip wheel . --wheel-dir=/install
##################################################################################################
FROM rocm_devel AS build_flashattention
# Whether to install CK-based flash-attention
ARG BUILD_FA="1"
ARG TRY_FA_WHEEL="1"
# Note: The ROCm fork provides a wheel built for ROCm but only for 2.5.9 and python 3.9, so this will be incompatible with the current build
ARG FA_WHEEL_URL="https://github.com/ROCm/flash-attention/releases/download/v2.5.9post1-cktile-vllm/flash_attn-2.5.9.post1-cp39-cp39-linux_x86_64.whl"
# only required when not using triton backend
ARG FA_GFX_ARCHS="gfx90a;gfx942"
ARG FLASH_ATTENTION_USE_TRITON_ROCM="TRUE"
# FA_BRANCH is the main_perf branch as of Sep 4 2024 which includes triton backend support, see https://github.com/Dao-AILab/flash-attention/pull/1203
ARG FA_BRANCH="75b5360"
ARG MAX_JOBS
ENV MAX_JOBS=${MAX_JOBS}
ENV FLASH_ATTENTION_USE_TRITON_ROCM=${FLASH_ATTENTION_USE_TRITON_ROCM}
# Build ROCm flash-attention wheel if `BUILD_FA` is set to 1
RUN --mount=type=cache,target=/root/.cache/uv \
--mount=type=cache,target=/workspace/build \
if [ "$BUILD_FA" = "1" ]; then \
if [ "$TRY_FA_WHEEL" = "1" ] && python3 -m pip install "${FA_WHEEL_URL}"; then \
# If a suitable wheel exists, download it instead of building FA
mkdir -p /install && wget -N "${FA_WHEEL_URL}" -P /install; \
else \
mkdir -p /libs && \
cd /libs && \
git clone https://github.com/ROCm/flash-attention.git && \
cd flash-attention && \
git checkout ${FA_BRANCH} && \
git submodule update --init && \
uv pip install cmake ninja packaging && \
env \
GPU_ARCHS="${FA_GFX_ARCHS}" \
BUILD_TARGET="rocm" \
python3 setup.py bdist_wheel --dist-dir=/install; \
fi; \
else \
# Create an empty directory otherwise AS later build stages expect one
mkdir -p /install; \
fi
##################################################################################################
FROM rocm_devel AS build_vllm
ARG PYTORCH_ROCM_ARCH
ARG MAX_JOBS
ENV MAX_JOBS=${MAX_JOBS}
ENV PYTORCH_ROCM_ARCH=${PYTORCH_ROCM_ARCH}
COPY . .
ENV VLLM_TARGET_DEVICE="rocm"
ENV MAX_JOBS=${MAX_JOBS}
# Make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
RUN --mount=type=cache,target=/root/.cache/ccache \
--mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/uv \
env CFLAGS="-march=haswell" \
CXXFLAGS="$CFLAGS $CXXFLAGS" \
CMAKE_BUILD_TYPE=Release \
uv pip install -v -U \
ninja setuptools-scm>=8 "cmake>=3.26" packaging && \
python3 setup.py bdist_wheel --dist-dir=dist
#################### libsodium Build IMAGE ####################
FROM rocm_base as libsodium-builder
RUN microdnf install -y gcc gzip tar \
&& microdnf clean all
WORKDIR /usr/src/libsodium
ARG LIBSODIUM_VERSION=1.0.20
RUN curl -LO https://github.com/jedisct1/libsodium/releases/download/${LIBSODIUM_VERSION}-RELEASE/libsodium-${LIBSODIUM_VERSION}.tar.gz \
&& tar -xzvf libsodium*.tar.gz \
&& rm -f libsodium*.tar.gz \
&& mv libsodium*/* ./
RUN CFLAGS="-O3 -Wall -Werror=format-security -Wno-unused-function -Wp,-D_GLIBCXX_ASSERTIONS -fstack-protector-strong -fstack-clash-protection -fcf-protection"\ ./configure --prefix="/usr/" --libdir=/usr/lib64 && make -j $MAX_JOBS && make check
##################################################################################################
FROM rocm_base AS vllm-openai
ARG MAX_JOBS
WORKDIR /workspace
ENV VIRTUAL_ENV=/opt/vllm
ENV PATH=$VIRTUAL_ENV/bin:$PATH
# Required for triton
RUN microdnf install -y --setopt=install_weak_deps=0 --nodocs gcc && \
microdnf clean all
# Install libsodium for Tensorizer encryption
RUN --mount=type=bind,from=libsodium-builder,src=/usr/src/libsodium,target=/usr/src/libsodium \
cd /usr/src/libsodium \
&& make install
RUN --mount=type=bind,from=build_amdsmi,src=/install,target=/install/amdsmi/ \
--mount=type=bind,from=build_flashattention,src=/install,target=/install/flashattention \
--mount=type=bind,from=build_vllm,src=/workspace/dist,target=/install/vllm/ \
--mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/uv \
uv pip install -v \
--index-strategy=unsafe-best-match \
--extra-index-url "https://download.pytorch.org/whl/nightly/rocm6.1" \
/install/amdsmi/*.whl\
/install/flashattention/*.whl\
/install/vllm/*.whl
# Set up a non-root user for OpenShift
RUN umask 002 && \
useradd --uid 2000 --gid 0 vllm && \
mkdir -p /licenses && \
chmod g+rwx $HOME /usr/src /workspace && \
chmod 0775 /var/log/rocm_smi_lib && \
chmod 0664 /var/log/rocm_smi_lib/*
COPY LICENSE /licenses/vllm.md
COPY examples/*.jinja /app/data/template/
ENV HF_HUB_OFFLINE=1 \
PORT=8000 \
HOME=/home/vllm \
# Allow requested max length to exceed what is extracted from the
# config.json
# see: https://github.com/vllm-project/vllm/pull/7080
VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 \
VLLM_USAGE_SOURCE=production-docker-image \
VLLM_WORKER_MULTIPROC_METHOD=fork \
VLLM_NO_USAGE_STATS=1 \
# Silences the HF Tokenizers warning
TOKENIZERS_PARALLELISM=false \
RAY_EXPERIMENTAL_NOSET_ROCR_VISIBLE_DEVICES=1 \
FLASH_ATTENTION_USE_TRITON_ROCM="TRUE" \
OUTLINES_CACHE_DIR=/tmp/outlines \
NUMBA_CACHE_DIR=/tmp/numba \
TRITON_CACHE_DIR=/tmp/triton \
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/opt/vllm/lib/python3.12/site-packages/pillow.libs/:/opt/vllm/lib/python3.12/site-packages/numpy.libs/"
# Switch to the non-root user
USER 2000
# Set the entrypoint
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
FROM vllm-openai as vllm-grpc-adapter
USER root
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,from=build_vllm,src=/workspace/dist,target=/install/vllm/ \
uv pip install /install/vllm/*.whl vllm-tgis-adapter==0.5.3
ENV GRPC_PORT=8033 \
PORT=8000 \
# As an optimization, vLLM disables logprobs when using spec decoding by
# default, but this would be unexpected to users of a hosted model that
# happens to have spec decoding
# see: https://github.com/vllm-project/vllm/pull/6485
DISABLE_LOGPROBS_DURING_SPEC_DECODING=false
USER 2000
ENTRYPOINT ["python3", "-m", "vllm_tgis_adapter", "--uvicorn-log-level=warning"]