forked from aashay-m/image-captioning-through-rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainers.py
665 lines (524 loc) · 30.2 KB
/
trainers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
###################################################
# Image Captioning with Deep Reinforcement Learning
# SJSU CMPE-297-03 | Spring 2020
#
#
# Team:
# Pratikkumar Prajapati
# Aashay Mokadam
# Karthik Munipalle
###################################################
import time
import random
import math
import torch.optim as optim
from tqdm import tqdm
from utilities import *
from models import *
from torch.utils.tensorboard import SummaryWriter
# https://cs230-stanford.github.io/pytorch-nlp.html#writing-a-custom-loss-function
def VisualSemanticEmbeddingLoss(visuals, semantics):
"""
@param visuals: embedded features of the image
@param semantics: embedded features of the caption
@return: numerical loss based on similarity of embedded features
Computes a joint loss by on visual data (CNN outputs) and semantic data (final state of RNN) by:
1) First, fixing the image and:
(i) maximizing the similarity of the caption representation to the image
(ii) minimizing the similarity of representations of negative captions to the image
2) And then, fixing the caption and:
(i) maximizing the similarity of the image representation to the caption
(ii) minimizing the similarity of representations of negative images to the caption
"""
beta = 0.2
N, D = visuals.shape
visloss = torch.mm(visuals, semantics.t())
visloss = visloss - torch.diag(visloss).unsqueeze(1)
visloss = visloss + (beta / N) * (torch.ones((N, N)).to(device) - torch.eye(N).to(device))
visloss = F.relu(visloss)
visloss = torch.sum(visloss) / N
semloss = torch.mm(semantics, visuals.t())
semloss = semloss - torch.diag(semloss).unsqueeze(1)
semloss = semloss + (beta / N) * (torch.ones((N, N)).to(device) - torch.eye(N).to(device))
semloss = F.relu(semloss)
semloss = torch.sum(semloss) / N
return visloss + semloss
def GenerateCaptionsGreedy(features, captions, policy_network):
"""
@param features: image features
@param captions: image caption
@param policy_network: network that decides on the next word
@return: potential caption based on short-term greedy decision making
"""
features = torch.tensor(features, device=device).float().unsqueeze(0)
gen_caps = torch.tensor(captions[:, 0:1], device=device).long()
for t in range(MAX_SEQ_LEN - 1):
output = policy_network(features, gen_caps)
gen_caps = torch.cat((gen_caps, output[:, -1:, :].argmax(axis=2)), axis=1)
return gen_caps
def GenerateCaptionsWithActorCriticLookAhead(features, captions, policy_network, value_network, beamSize=5,
most_likely=False):
"""
@param features: image features
@param captions: image caption
@param policy_network: network that decides on the next word
@param value_network: network that provides feedback on the global value (expected reward) for the next word
@param beamSize: number of lookahead positions to consider when scoring potential captions
@param most_likely: flag - whether to return the single most likely caption
@return: list of potential captions
"""
features = torch.tensor(features, device=device).float().unsqueeze(0)
gen_caps = torch.tensor(captions[:, 0:1], device=device).long()
candidates = [(gen_caps, 0)]
for t in range(MAX_SEQ_LEN - 1):
next_candidates = []
for c in range(len(candidates)):
output = policy_network(features, candidates[c][0])
probs, words = torch.topk(output[:, -1:, :], beamSize)
for i in range(beamSize):
cap = torch.cat((candidates[c][0], words[:, :, i]), axis=1)
value = value_network(features.squeeze(0), cap).detach()
score_delta = 0.6 * value + 0.4 * torch.log(probs[:, :, i])
score = candidates[c][1] - score_delta
next_candidates.append((cap, score))
ordered_candidates = sorted(next_candidates, key=lambda tup: tup[1].mean())
candidates = ordered_candidates[:beamSize]
if most_likely == True:
return candidates[0][0]
return candidates
def GetRewards(features, captions, reward_network):
"""
@param features: image features
@param captions: image caption
@param reward_network: network that projects captions and images onto a common vector space
@return: similarity between embedded projections of captions and images (cosine similarity)
"""
visEmbeds, semEmbeds = reward_network(features, captions)
visEmbeds = F.normalize(visEmbeds, p=2, dim=1)
semEmbeds = F.normalize(semEmbeds, p=2, dim=1)
rewards = torch.sum(visEmbeds * semEmbeds, axis=1).unsqueeze(1)
return rewards
# Used https://github.com/Pranshu258/Deep_Image_Captioning as some of the code reference
def train_value_network(train_data, network_paths, plot_dir, bidirectional, epochs=50, batch_size=512):
"""
Function to train value net. Trained on Mean-Squared Error Loss.
@param train_data: the training data
@param network_paths: path to store net
@param plot_dir: path to store tensorboard graphs
@param bidirectional: whether to use bidirectional recurrent networks
@param epochs: num of epochs
@param batch_size: batch size of data per epoch
@return: the trained value network
"""
value_writer = SummaryWriter(log_dir=os.path.join(plot_dir, 'runs'))
reward_network = RewardNetwork(train_data["word_to_idx"], pretrained_embeddings=train_data["embeddings"],
bidirectional=bidirectional).to(device)
reward_network.load_state_dict(torch.load(network_paths["reward_network"], map_location=device), strict=False)
reward_network.train(False)
reward_network.requires_grad_(False)
policy_network = PolicyNetwork(train_data["word_to_idx"], pretrained_embeddings=train_data["embeddings"],
bidirectional=bidirectional).to(device)
policy_network.load_state_dict(torch.load(network_paths["policy_network"], map_location=device), strict=False)
policy_network.train(False)
policy_network.requires_grad_(False)
value_network = ValueNetwork(train_data["word_to_idx"], pretrained_embeddings=train_data["embeddings"],
bidirectional=bidirectional).to(device)
criterion = nn.MSELoss().to(device)
optimizer = optim.Adam(value_network.parameters(), lr=0.001)
value_network.train(mode=True)
best_loss = float('inf')
print_green(f'[Training] Training Value Network')
for epoch in range(epochs):
batch_progress = tqdm(get_coco_minibatches(train_data, batch_size=batch_size, split='train'),
total=math.ceil(train_data['train_captions'].shape[0] / batch_size),
desc='Training Value Network (%s/%s): Best Loss %s' % (epoch + 1, epochs, best_loss))
for minibatch_id, coco_minibatch in enumerate(batch_progress):
captions, features, _ = coco_minibatch
features = torch.tensor(features, device=device).float()
# Generate captions using the policy network
captions = GenerateCaptionsGreedy(features, captions, policy_network)
# Compute the reward of the generated caption using reward network
rewards = GetRewards(features, captions, reward_network)
# Compute the value of a random state in the generation process
values = value_network(features, captions[:, :random.randint(1, MAX_SEQ_LEN)])
# Compute the loss for the value and the reward
loss = criterion(values, rewards)
if loss.item() < best_loss:
best_loss = loss.item()
torch.save(value_network.state_dict(), network_paths["value_network"])
batch_progress.set_description_str(
'Training Value Network (%s/%s): Best Loss %s' % (epoch + 1, epochs, best_loss))
minibatch_number = global_minibatch_number(epoch, minibatch_id, batch_size)
value_writer.add_scalar('Value Network-loss', loss, minibatch_number)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
# value_network.valrnn.hidden_cell = repackage_hidden(value_network.valrnn.hidden_cell)
value_network.valrnn.init_hidden()
reward_network.rewrnn.init_hidden()
return value_network
def train_policy_network(train_data, network_paths, plot_dir, bidirectional, epochs=100, batch_size=512):
"""
Function to train policy net. Trained on Cross Entropy Loss.
@param train_data: the training data
@param network_paths: path to store net
@param plot_dir: path to store tensorboard graphs
@param bidirectional: whether to use bidirectional recurrent networks
@param epochs: num of epochs
@param batch_size: batch size of data per epoch
@return: the trained policy network
"""
policy_network = PolicyNetwork(train_data["word_to_idx"], pretrained_embeddings=train_data["embeddings"],
bidirectional=bidirectional).to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(policy_network.parameters(), lr=0.001)
policy_writer = SummaryWriter(log_dir=os.path.join(plot_dir, 'runs'))
best_loss = float("inf")
print_green(f'[Training] Training Policy Network')
for epoch in range(epochs):
batch_progress = tqdm(get_coco_minibatches(train_data, batch_size=batch_size, split='train'),
total=math.ceil(train_data['train_captions'].shape[0] / batch_size),
desc='Training Policy Network (%s/%s): Best Loss %s' % (epoch + 1, epochs, best_loss))
for minibatch_id, coco_minibatch in enumerate(batch_progress):
captions, features, _ = coco_minibatch
features = torch.tensor(features, device=device).float().unsqueeze(0)
captions_in = torch.tensor(captions[:, :-1], device=device).long()
captions_out = torch.tensor(captions[:, 1:], device=device).long()
output = policy_network(features, captions_in)
loss = 0
for i in range(captions.shape[0]):
# '2' is the end of segment, hence points to caption length
caplen = np.nonzero(captions[i] == 2)[0][0] + 1
loss += (caplen / captions.shape[0]) * criterion(output[i][:caplen], captions_out[i][:caplen])
if loss.item() < best_loss:
best_loss = loss.item()
torch.save(policy_network.state_dict(), network_paths["policy_network"])
batch_progress.set_description_str(
'Training Policy Network (%s/%s): Best Loss %s' % (epoch + 1, epochs, best_loss))
minibatch_number = global_minibatch_number(epoch, minibatch_id, batch_size)
policy_writer.add_scalar('Policy Network-loss', loss, minibatch_number)
optimizer.zero_grad()
loss.backward()
optimizer.step()
return policy_network
def train_reward_network(train_data, network_paths, plot_dir, bidirectional, epochs=50, batch_size=512):
"""
Function to train reward net. Trained on Visual Semantic Embedding Loss.
@param train_data: the training data
@param network_paths: path to store net
@param plot_dir: path to store tensorboard graphs
@param bidirectional: whether to use bidirectional recurrent networks
@param epochs: num of epochs
@param batch_size: batch size of data per epoch
@return: the trained reward network
"""
reward_writer = SummaryWriter(log_dir=os.path.join(plot_dir, 'runs'))
reward_network = RewardNetwork(train_data["word_to_idx"], pretrained_embeddings=train_data["embeddings"],
bidirectional=bidirectional).to(device)
optimizer = optim.Adam(reward_network.parameters(), lr=0.0001)
best_loss = float('inf')
print_green(f'[Training] Training Reward Network')
for epoch in range(epochs):
batch_progress = tqdm(get_coco_minibatches(train_data, batch_size=batch_size, split='train'),
total=math.ceil(train_data['train_captions'].shape[0] / batch_size),
desc='Training Reward Network (%s/%s): Best Loss %s' % (epoch + 1, epochs, best_loss))
for minibatch_id, coco_minibatch in enumerate(batch_progress):
captions, features, _ = coco_minibatch
features = torch.tensor(features, device=device).float()
captions = torch.tensor(captions, device=device).long()
ve, se = reward_network(features, captions)
loss = VisualSemanticEmbeddingLoss(ve, se)
if loss.item() < best_loss:
best_loss = loss.item()
torch.save(reward_network.state_dict(), network_paths["reward_network"])
batch_progress.set_description_str(
'Training Reward Network (%s/%s): Best Loss %s' % (epoch + 1, epochs, best_loss))
minibatch_number = global_minibatch_number(epoch, minibatch_id, batch_size)
reward_writer.add_scalar('Reward Network-loss', loss, minibatch_number)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
# reward_network.rewrnn.hidden_cell = repackage_hidden(reward_network.rewrnn.hidden_cell)
reward_network.rewrnn.init_hidden()
return reward_network
def train_a2c_network(train_data, save_paths, network_paths, plot_dir, bidirectional, epochs, batch_size,
retrain_all=False, curriculum=None):
"""
Wrapper function to call actual training functions based on input configurations
@param train_data: the dataset for training
@param save_paths: path to store results
@param network_paths: path to load/store nets
@param plot_dir: path to store tensorboard graphs
@param bidirectional: whether to use bidirectional recurrent networks
@param epochs: the number of epochs for data passes
@param batch_size: batch size for each epoch
@param retrain_all: whether to retrain all nets or laod pretrained nets
@param curriculum: curriculum levels
@return: the trained actor-critic network
"""
model_save_path = save_paths["model_path"]
results_save_path = save_paths["results_path"]
if retrain_all:
print_green(f'[Training] Training all the networks')
reward_network = train_reward_network(train_data, network_paths, plot_dir, bidirectional, batch_size=batch_size)
policy_network = train_policy_network(train_data, network_paths, plot_dir, bidirectional, batch_size=batch_size)
value_network = train_value_network(train_data, network_paths, plot_dir, bidirectional, batch_size=batch_size)
print_green(f'[Training] All networks trained')
else:
try:
reward_network = RewardNetwork(train_data["word_to_idx"], pretrained_embeddings=train_data["embeddings"],
bidirectional=bidirectional).to(device)
reward_network.load_state_dict(torch.load(network_paths["reward_network"], map_location=device),
strict=False)
print(f'[Training] loaded reward network')
except FileNotFoundError:
print(f'[Training] reward network not found')
del reward_network
reward_network = train_reward_network(train_data, network_paths, plot_dir, bidirectional,
batch_size=batch_size)
try:
policy_network = PolicyNetwork(train_data["word_to_idx"], pretrained_embeddings=train_data["embeddings"],
bidirectional=bidirectional).to(device)
policy_network.load_state_dict(torch.load(network_paths["policy_network"], map_location=device),
strict=False)
print(f'[Training] loaded policy network')
except FileNotFoundError:
del policy_network
print(f'[Training] policy network not found')
policy_network = train_policy_network(train_data, network_paths, plot_dir, bidirectional,
batch_size=batch_size)
try:
value_network = ValueNetwork(train_data["word_to_idx"], pretrained_embeddings=train_data["embeddings"],
bidirectional=bidirectional).to(device)
value_network.load_state_dict(torch.load(network_paths["value_network"], map_location=device), strict=False)
print(f'[Training] loaded value network')
except FileNotFoundError:
del value_network
print(f'[Training] value network not found')
value_network = train_value_network(train_data, network_paths, plot_dir, bidirectional,
batch_size=batch_size)
reward_network.requires_grad_(False)
reward_network.train(False)
a2c_network = AdvantageActorCriticNetwork(value_network, policy_network).to(device)
a2c_network.train(True)
optimizer = optim.Adam(a2c_network.parameters(), lr=0.0001)
print(f'[Training] train_data len = {len(train_data["train_captions"])}')
print(f'[Training] episodes = {batch_size}')
print(f'[Training] epochs = {epochs}')
save_paths = [model_save_path, network_paths["a2c_network"]]
if curriculum is None:
a2c_network = a2c_training(train_data, a2c_network, reward_network, optimizer, plot_dir, save_paths, batch_size,
epochs)
else:
if 16 not in curriculum:
curriculum.append(16) # Final Curriculum Level, ie Full Training
a2c_network = a2c_curriculum_training(train_data, a2c_network, reward_network, optimizer, plot_dir, save_paths,
batch_size, epochs, curriculum)
with open(results_save_path, 'a') as f:
f.write('\n' + '-' * 10 + ' network ' + '-' * 10 + '\n')
f.write(str(a2c_network))
f.write('\n' + '-' * 10 + ' network ' + '-' * 10 + '\n')
return a2c_network
def a2c_training(train_data, a2c_network, reward_network, optimizer, plot_dir, save_paths, batch_size, epochs):
"""
Train the a2c model. Trained on Advantage-Weighted Log Probability Loss.
@param train_data: the dataset for training
@param a2c_network: the a2c network
@param reward_network: the reward net for predicting rewards
@param optimizer: the optimizer of the network
@param plot_dir: path to store tensorboard graphs
@param save_paths: path to save trained nets
@param batch_size: batch size for each epoch
@param epochs: the number of epochs for data passes
@return: the trained actor-critic network
"""
a2c_train_writer = SummaryWriter(log_dir=os.path.join(plot_dir, 'runs'))
print_green(f'[Training] Training Advantage Actor-Critic Network')
best_loss = float('inf')
for epoch in range(epochs):
batch_progress = tqdm(get_coco_minibatches(train_data, batch_size=batch_size, split='train'),
total=math.ceil(train_data['train_captions'].shape[0] / batch_size),
desc='Training A2C Network (%s/%s): Best Loss %s' % (epoch + 1, epochs, best_loss))
for minibatch_id, coco_minibatch in enumerate(batch_progress):
captions, features, _ = coco_minibatch
features = torch.tensor(features, device=device).float()
captions = torch.tensor(captions, device=device).long()
rewards = []
values = []
log_probs = []
caplen = np.nonzero(captions == 2)[:, 1].max() + 1
captions_in = captions[:, :1]
features_in = features
for step in range(caplen - 1):
value, probs = a2c_network(features_in, captions_in)
probs = F.softmax(probs, dim=2)
dist = probs.cpu().detach().numpy()[:, 0]
actions = []
for i in range(dist.shape[0]):
actions.append(np.random.choice(probs.shape[-1], p=dist[i]))
actions = torch.from_numpy(np.array(actions))
gen_cap = actions.unsqueeze(-1).to(device)
try:
captions_in = torch.cat((captions_in, gen_cap), axis=1)
except:
captions_in = torch.cat((captions_in, gen_cap.long()), axis=1)
log_prob = torch.log(probs[:, 0, :].gather(1, actions.view(-1, 1).to(device)))
reward = GetRewards(features_in, captions_in, reward_network)
rewards.append(reward)
values.append(value)
log_probs.append(log_prob)
del gen_cap, probs, actions, dist
values = torch.stack(values, axis=1).squeeze().to(device)
rewards = torch.stack(rewards, axis=1).squeeze().to(device)
log_probs = torch.stack(log_probs, axis=1).squeeze().to(device)
advantage = values - rewards
actorLoss = (-log_probs * advantage).mean()
criticLoss = 0.5 * advantage.pow(2).mean()
loss = actorLoss + criticLoss
episodic_avg_loss = loss.mean().item()
optimizer.zero_grad()
loss.mean().backward(retain_graph=True)
optimizer.step()
if episodic_avg_loss < best_loss:
best_loss = episodic_avg_loss
batch_progress.set_description_str(
'Training A2C Network (%s/%s): Best Loss %s' % (epoch + 1, epochs, best_loss))
# Summary Writer
minibatch_number = global_minibatch_number(epoch, minibatch_id, batch_size)
a2c_train_writer.add_scalar('A2C Network-episodic-loss', episodic_avg_loss, minibatch_number)
a2c_train_writer.add_scalar('A2C Network-episodic-mean-rewards', rewards.mean(), minibatch_number)
a2c_train_writer.add_scalar('A2C Network-episodic-mean-advantage', advantage.mean().item(),
minibatch_number)
# a2c_network.value_network.valrnn.hidden_cell = repackage_hidden(a2c_network.value_network.valrnn.hidden_cell)
reward_network.rewrnn.init_hidden()
a2c_network.value_network.valrnn.init_hidden()
save_a2c_model(a2c_network, save_paths)
return a2c_network
def a2c_curriculum_training(train_data, a2c_network, reward_network, optimizer, plot_dir, save_paths, batch_size,
epochs, curriculum):
"""
Train the model based on Curriculum Learning.
Start out training on the last few words of each caption, and increase the
size of the caption the model should predict until the full caption is trained using
Reinforcement Learning.
Trained on Advantage-Weighted Log Probability Loss.
@param train_data: the dataset for training
@param a2c_network: the a2c network
@param reward_network: the reward net for predicting rewards
@param optimizer: the optimizer of the network
@param plot_dir: path to store tensorboard graphs
@param save_paths: path to save trained nets
@param batch_size: batch size for each epoch
@param epochs: the number of epochs for data passes
@param curriculum: curriculum levels
@return: the trained actor-critic network
"""
a2c_train_curriculum_writer = SummaryWriter(log_dir=os.path.join(plot_dir, 'runs'))
print_green(f'[Training] Training Advantage Actor-Critic Network')
print_green(f'[Training] mode set to curriculum training using levels: {curriculum}')
for level in curriculum:
print_green(f'[Training] Training curriculum level: {level}')
best_loss = float('inf')
for epoch in range(epochs):
batch_progress = tqdm(get_coco_minibatches(train_data, batch_size=batch_size, split='train'),
total=math.ceil(train_data['train_captions'].shape[0] / batch_size),
desc='Training A2C Curriculum Level %s (%s/%s): Best Loss: %s' % (
level, epoch, epochs, best_loss))
for minibatch_id, coco_minibatch in enumerate(batch_progress):
captions, features, _ = coco_minibatch
features = torch.tensor(features, device=device).float()
captions = torch.tensor(captions, device=device).long()
log_probs = []
values = []
rewards = []
caplen = np.nonzero(captions == 2)[:, 1].max() + 1
curr_seq_len = caplen - level
if (curr_seq_len >= 1):
captions_in = captions[:, :curr_seq_len]
features_in = features
for step in range(level):
value, probs = a2c_network(features_in, captions_in)
probs = F.softmax(probs, dim=2)
dist = probs.cpu().detach().numpy()[:, 0]
actions = []
for i in range(dist.shape[0]):
actions.append(np.random.choice(probs.shape[-1], p=dist[i]))
actions = torch.from_numpy(np.array(actions))
gen_cap = actions.unsqueeze(-1).to(device)
captions_in = torch.cat((captions_in, gen_cap), axis=1)
log_prob = torch.log(probs[:, 0, :].gather(1, actions.view(-1, 1).to(device)))
reward = GetRewards(features_in, captions_in, reward_network)
rewards.append(reward)
values.append(value)
log_probs.append(log_prob)
del gen_cap, probs, actions, dist
values = torch.stack(values, axis=1).squeeze().to(device)
rewards = torch.stack(rewards, axis=1).squeeze().to(device)
log_probs = torch.stack(log_probs, axis=1).squeeze().to(device)
advantage = values - rewards
actorLoss = (-log_probs * advantage).mean(axis=1)
criticLoss = 0.5 * advantage.pow(2).mean(axis=1)
loss = actorLoss + criticLoss
episodic_avg_loss = loss.mean().item()
if episodic_avg_loss < best_loss:
best_loss = episodic_avg_loss
batch_progress.set_description_str('Training A2C Curriculum Level %s (%s/%s): Best Loss: %s' % (
level, epoch, epochs, best_loss))
optimizer.zero_grad()
loss.mean().backward(retain_graph=True)
optimizer.step()
# Summary Writer
minibatch_number = global_minibatch_number(epoch, minibatch_id, batch_size)
writer_var_name = 'A2C Curriculum' + ' Level-' + str(level) + '-loss'
a2c_train_curriculum_writer.add_scalar(writer_var_name, episodic_avg_loss, minibatch_number)
writer_var_name = 'A2C Curriculum' + ' Level-' + str(level) + '-mean-rewards'
a2c_train_curriculum_writer.add_scalar(writer_var_name, rewards.mean(), minibatch_number)
writer_var_name = 'A2C Curriculum' + ' Level-' + str(level) + '-mean-advantage'
a2c_train_curriculum_writer.add_scalar(writer_var_name, advantage.mean().item(), minibatch_number)
log_probs.detach()
values.detach()
rewards.detach()
del log_probs, values, rewards
# a2c_network.value_network.valrnn.hidden_cell = repackage_hidden(a2c_network.value_network.valrnn.hidden_cell)
reward_network.rewrnn.init_hidden()
a2c_network.value_network.valrnn.init_hidden()
save_a2c_model(a2c_network, save_paths)
return a2c_network
def test_a2c_network(a2c_network, test_data, image_caption_data, data_size, validation_batch_size=128):
"""
Function to test the a2c network
@param a2c_network: the a2c network
@param test_data: the dataset for testing
@param image_caption_data: paths to store results
@param data_size: size of the test data
@param validation_batch_size: batch size to sample the data
"""
with torch.no_grad():
a2c_network.train(False)
real_captions_filename = image_caption_data["real_captions_path"]
generated_captions_filename = image_caption_data["generated_captions_path"]
image_url_filename = image_caption_data["image_urls_path"]
real_captions_file = open(real_captions_filename, "a")
generated_captions_file = open(generated_captions_filename, "a")
image_url_file = open(image_url_filename, "a")
captions_real_all, features_real_all, urls_all = get_coco_batch(test_data, batch_size=data_size, split='val')
val_captions_lens = len(captions_real_all)
for i in tqdm(range(0, val_captions_lens, validation_batch_size), desc='Testing model'):
features_real = features_real_all[i:i + validation_batch_size - 1]
captions_real = captions_real_all[i:i + validation_batch_size - 1]
urls = urls_all[i:i + validation_batch_size - 1]
gen_cap = GenerateCaptionsWithActorCriticLookAhead(features_real, captions_real, a2c_network.policy_network,
a2c_network.value_network, most_likely=True)
gen_cap_str = decode_captions(gen_cap, idx_to_word=test_data["idx_to_word"])
real_cap_str = decode_captions(captions_real, idx_to_word=test_data["idx_to_word"])
real_captions_file.write("\n".join(real_cap_str))
generated_captions_file.write("\n".join(gen_cap_str))
image_url_file.write("\n".join(urls))
real_captions_file.flush()
generated_captions_file.flush()
image_url_file.flush()
# a2c_network.value_network.valrnn.hidden_cell = repackage_hidden(a2c_network.value_network.valrnn.hidden_cell)
a2c_network.value_network.valrnn.init_hidden()
real_captions_file.close()
generated_captions_file.close()
image_url_file.close()