forked from voidism/EAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
retriever_utils.py
162 lines (143 loc) · 5.6 KB
/
retriever_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import csv
import glob
import json
import gzip
import logging
import functools
from pathlib import Path
import wandb
from typing import List, Tuple, Dict, Iterator, Union
from dpr.data.qa_validation import calculate_matches
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if logger.hasHandlers():
logger.handlers.clear()
console = logging.StreamHandler()
logger.addHandler(console)
RECALL_FILE_NAME = "recall_at_k.csv"
RESULTS_FILE_NAME = "results.json"
def parse_qa_csv_file(location) -> Iterator[Tuple[str, List[str]]]:
with open(location) as ifile:
reader = csv.reader(ifile, delimiter="\t")
for row in reader:
question = row[0]
answers = eval(row[1])
yield question, answers
def parse_qa_json_file(path):
with open(path, "r") as f:
data = json.load(f)
for d in data:
question = d["question"]
answers = d["answers"]
if "entity" in d:
yield question, answers, d["entity"]
else:
yield question, answers
def validate(
dataset_name: str,
passages: Dict[object, Tuple[str, str]],
answers: List[List[str]],
result_ctx_ids: List[Tuple[List[object], List[float]]],
workers_num: int,
match_type: str,
out_file: str,
use_wandb: bool = True,
output_recall_at_k: bool = False,
log: bool = True
) -> Union[List[List[bool]], Tuple[object, List[float]]]:
match_stats = calculate_matches(
passages, answers, result_ctx_ids, workers_num, match_type, log=log
)
top_k_hits = match_stats.top_k_hits
if log: logger.info("Validation results: top k documents hits %s", top_k_hits)
top_k_hits = [v / len(result_ctx_ids) for v in top_k_hits]
if log: logger.info("Validation results: top k documents hits accuracy %s", top_k_hits)
with open(out_file, "w") as f:
for k, recall in enumerate(top_k_hits):
f.write(f"{k+1},{recall}\n")
if use_wandb:
wandb.log({f"eval-{dataset_name}/k": k+1, f"eval-{dataset_name}/recall": recall})
if log: logger.info(f"Saved recall@k info to {out_file}")
return match_stats.questions_doc_hits if not output_recall_at_k else (match_stats.questions_doc_hits, top_k_hits)
def load_passages(ctx_file: str) -> Dict[object, Tuple[str, str]]:
docs = {}
logger.info("Reading data from: %s", ctx_file)
if ctx_file.endswith(".gz"):
with gzip.open(ctx_file, "rt") as tsvfile:
reader = csv.reader(
tsvfile,
delimiter="\t",
)
# file format: doc_id, doc_text, title
for row in reader:
if row[0] != "id":
docs[row[0]] = (row[1], row[2])
else:
with open(ctx_file) as tsvfile:
reader = csv.reader(
tsvfile,
delimiter="\t",
)
# file format: doc_id, doc_text, title
for row in reader:
if row[0] != "id":
docs[row[0]] = (row[1], row[2])
return docs
def save_results(
passages: Dict[object, Tuple[str, str]],
questions: List[str],
answers: List[List[str]],
top_passages_and_scores: List[Tuple[List[object], List[float]]],
per_question_hits: List[List[bool]],
out_file: str,
output_no_text: bool = False,
):
# join passages text with the result ids, their questions and assigning has|no answer labels
merged_data = []
assert len(per_question_hits) == len(questions) == len(answers)
for i, q in enumerate(questions):
q_answers = answers[i]
results_and_scores = top_passages_and_scores[i]
hits = per_question_hits[i]
docs = [passages[doc_id] for doc_id in results_and_scores[0]]
scores = [str(score) for score in results_and_scores[1]]
hit_indices = [j+1 for j, is_hit in enumerate(hits) if is_hit]
hit_min_rank = hit_indices[0] if len(hit_indices) > 0 else None
ctxs_num = len(hits)
d = {
"question": q,
"answers": q_answers,
"hit_min_rank": hit_min_rank,
"all_hits": hit_indices,
"ctxs": [
{
"id": results_and_scores[0][c],
"rank": (c + 1),
"title": docs[c][1],
"text": docs[c][0] if not output_no_text else "",
"score": scores[c],
"has_answer": hits[c],
}
for c in range(ctxs_num)
],
}
merged_data.append(d)
with open(out_file, "w") as writer:
writer.write(json.dumps(merged_data, indent=4) + "\n")
logger.info("Saved results * scores to %s", out_file)
def get_datasets(qa_file_pattern):
logger.info(f"Reading datasets usign the pattern {qa_file_pattern}")
all_patterns = qa_file_pattern.split(",")
all_qa_files = functools.reduce(lambda a, b: a + b, [glob.glob(pattern) for pattern in all_patterns])
qa_file_dict = {}
for qa_file in all_qa_files:
dataset_name = Path(qa_file).stem.replace(".", "-")
dataset = list(parse_qa_csv_file(qa_file)) if qa_file.endswith(".csv") else list(parse_qa_json_file(qa_file))
questions, question_answers = [], []
for ds_item in dataset:
question, answers = ds_item
questions.append(question)
question_answers.append(answers)
qa_file_dict[dataset_name] = (questions, question_answers)
logger.info(f"{dataset_name}:{' ' * (20 - len(dataset_name))}{len(questions)} items")
return qa_file_dict