forked from sjwhitworth/golearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn.go
387 lines (334 loc) · 10.3 KB
/
knn.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// Package knn implements a K Nearest Neighbors object, capable of both classification
// and regression. It accepts data in the form of a slice of float64s, which are then reshaped
// into a X by Y matrix.
package knn
import (
"errors"
"fmt"
"github.com/gonum/matrix"
"github.com/gonum/matrix/mat64"
"github.com/sjwhitworth/golearn/base"
"github.com/sjwhitworth/golearn/kdtree"
"github.com/sjwhitworth/golearn/metrics/pairwise"
"github.com/sjwhitworth/golearn/utilities"
)
// A KNNClassifier consists of a data matrix, associated labels in the same order as the matrix, searching algorithm, and a distance function.
// The accepted distance functions at this time are 'euclidean', 'manhattan', and 'cosine'.
// The accepted searching algorithm here are 'linear', and 'kdtree'.
// Optimisations only occur when things are identically group into identical
// AttributeGroups, which don't include the class variable, in the same order.
// Using weighted KNN when Weighted set to be true (default: false).
type KNNClassifier struct {
base.BaseEstimator
TrainingData base.FixedDataGrid
DistanceFunc string
Algorithm string
NearestNeighbours int
AllowOptimisations bool
Weighted bool
}
// NewKnnClassifier returns a new classifier
func NewKnnClassifier(distfunc, algorithm string, neighbours int) *KNNClassifier {
KNN := KNNClassifier{}
KNN.DistanceFunc = distfunc
KNN.Algorithm = algorithm
KNN.NearestNeighbours = neighbours
KNN.Weighted = false
KNN.AllowOptimisations = true
return &KNN
}
// Fit stores the training data for later
func (KNN *KNNClassifier) Fit(trainingData base.FixedDataGrid) error {
KNN.TrainingData = trainingData
return nil
}
func (KNN *KNNClassifier) canUseOptimisations(what base.FixedDataGrid) bool {
// Check that the two have exactly the same layout
if !base.CheckStrictlyCompatible(what, KNN.TrainingData) {
return false
}
// Check that the two are DenseInstances
whatd, ok1 := what.(*base.DenseInstances)
_, ok2 := KNN.TrainingData.(*base.DenseInstances)
if !ok1 || !ok2 {
return false
}
// Check that no Class Attributes are mixed in with the data
classAttrs := whatd.AllClassAttributes()
normalAttrs := base.NonClassAttributes(whatd)
// Retrieve all the AGs
ags := whatd.AllAttributeGroups()
classAttrGroups := make([]base.AttributeGroup, 0)
for agName := range ags {
ag := ags[agName]
attrs := ag.Attributes()
matched := false
for _, a := range attrs {
for _, c := range classAttrs {
if a.Equals(c) {
matched = true
}
}
}
if matched {
classAttrGroups = append(classAttrGroups, ag)
}
}
for _, cag := range classAttrGroups {
attrs := cag.Attributes()
common := base.AttributeIntersect(normalAttrs, attrs)
if len(common) != 0 {
return false
}
}
// Check that all of the Attributes are numeric
for _, a := range normalAttrs {
if _, ok := a.(*base.FloatAttribute); !ok {
return false
}
}
// If that's fine, return true
return true
}
// Predict returns a classification for the vector, based on a vector input, using the KNN algorithm.
func (KNN *KNNClassifier) Predict(what base.FixedDataGrid) (base.FixedDataGrid, error) {
// Check what distance function we are using
var distanceFunc pairwise.PairwiseDistanceFunc
switch KNN.DistanceFunc {
case "euclidean":
distanceFunc = pairwise.NewEuclidean()
case "manhattan":
distanceFunc = pairwise.NewManhattan()
case "cosine":
distanceFunc = pairwise.NewCosine()
default:
return nil, errors.New("unsupported distance function")
}
// Check what searching algorith, we are using
if KNN.Algorithm != "linear" && KNN.Algorithm != "kdtree" {
return nil, errors.New("unsupported searching algorithm")
}
// Check Compatibility
allAttrs := base.CheckCompatible(what, KNN.TrainingData)
if allAttrs == nil {
// Don't have the same Attributes
return nil, errors.New("attributes not compatible")
}
// Use optimised version if permitted
if KNN.Algorithm == "linear" && KNN.AllowOptimisations {
if KNN.DistanceFunc == "euclidean" {
if KNN.canUseOptimisations(what) {
return KNN.optimisedEuclideanPredict(what.(*base.DenseInstances)), nil
}
}
}
fmt.Println("Optimisations are switched off")
// Remove the Attributes which aren't numeric
allNumericAttrs := make([]base.Attribute, 0)
for _, a := range allAttrs {
if fAttr, ok := a.(*base.FloatAttribute); ok {
allNumericAttrs = append(allNumericAttrs, fAttr)
}
}
// If every Attribute is a FloatAttribute, then we remove the last one
// because that is the Attribute we are trying to predict.
if len(allNumericAttrs) == len(allAttrs) {
allNumericAttrs = allNumericAttrs[:len(allNumericAttrs)-1]
}
// Generate return vector
ret := base.GeneratePredictionVector(what)
// Resolve Attribute specifications for both
whatAttrSpecs := base.ResolveAttributes(what, allNumericAttrs)
trainAttrSpecs := base.ResolveAttributes(KNN.TrainingData, allNumericAttrs)
// Reserve storage for most the most similar items
distances := make(map[int]float64)
// Reserve storage for voting map
maxmapInt := make(map[string]int)
maxmapFloat := make(map[string]float64)
// Reserve storage for row computations
trainRowBuf := make([]float64, len(allNumericAttrs))
predRowBuf := make([]float64, len(allNumericAttrs))
_, maxRow := what.Size()
curRow := 0
// build kdtree if algorithm is 'kdtree'
kd := kdtree.New()
srcRowNoMap := make([]int, 0)
if KNN.Algorithm == "kdtree" {
buildData := make([][]float64, 0)
KNN.TrainingData.MapOverRows(trainAttrSpecs, func(trainRow [][]byte, srcRowNo int) (bool, error) {
oneData := make([]float64, len(allNumericAttrs))
// Read the float values out
for i, _ := range allNumericAttrs {
oneData[i] = base.UnpackBytesToFloat(trainRow[i])
}
srcRowNoMap = append(srcRowNoMap, srcRowNo)
buildData = append(buildData, oneData)
return true, nil
})
err := kd.Build(buildData)
if err != nil {
return nil, err
}
}
// Iterate over all outer rows
what.MapOverRows(whatAttrSpecs, func(predRow [][]byte, predRowNo int) (bool, error) {
if (curRow%1) == 0 && curRow > 0 {
fmt.Printf("KNN: %.2f %% done\r", float64(curRow)*100.0/float64(maxRow))
}
curRow++
// Read the float values out
for i, _ := range allNumericAttrs {
predRowBuf[i] = base.UnpackBytesToFloat(predRow[i])
}
predMat := utilities.FloatsToMatrix(predRowBuf)
switch KNN.Algorithm {
case "linear":
// Find the closest match in the training data
KNN.TrainingData.MapOverRows(trainAttrSpecs, func(trainRow [][]byte, srcRowNo int) (bool, error) {
// Read the float values out
for i, _ := range allNumericAttrs {
trainRowBuf[i] = base.UnpackBytesToFloat(trainRow[i])
}
// Compute the distance
trainMat := utilities.FloatsToMatrix(trainRowBuf)
distances[srcRowNo] = distanceFunc.Distance(predMat, trainMat)
return true, nil
})
sorted := utilities.SortIntMap(distances)
values := sorted[:KNN.NearestNeighbours]
length := make([]float64, KNN.NearestNeighbours)
for k, v := range values {
length[k] = distances[v]
}
var maxClass string
if KNN.Weighted {
maxClass = KNN.weightedVote(maxmapFloat, values, length)
} else {
maxClass = KNN.vote(maxmapInt, values)
}
base.SetClass(ret, predRowNo, maxClass)
case "kdtree":
// search kdtree
values, length, err := kd.Search(KNN.NearestNeighbours, distanceFunc, predRowBuf)
if err != nil {
return false, err
}
// map values to srcRowNo
for k, v := range values {
values[k] = srcRowNoMap[v]
}
var maxClass string
if KNN.Weighted {
maxClass = KNN.weightedVote(maxmapFloat, values, length)
} else {
maxClass = KNN.vote(maxmapInt, values)
}
base.SetClass(ret, predRowNo, maxClass)
}
return true, nil
})
return ret, nil
}
func (KNN *KNNClassifier) String() string {
return fmt.Sprintf("KNNClassifier(%s, %d)", KNN.DistanceFunc, KNN.NearestNeighbours)
}
func (KNN *KNNClassifier) vote(maxmap map[string]int, values []int) string {
// Reset maxMap
for a := range maxmap {
maxmap[a] = 0
}
// Refresh maxMap
for _, elem := range values {
label := base.GetClass(KNN.TrainingData, elem)
if _, ok := maxmap[label]; ok {
maxmap[label]++
} else {
maxmap[label] = 1
}
}
// Sort the maxMap
var maxClass string
maxVal := -1
for a := range maxmap {
if maxmap[a] > maxVal {
maxVal = maxmap[a]
maxClass = a
}
}
return maxClass
}
func (KNN *KNNClassifier) weightedVote(maxmap map[string]float64, values []int, length []float64) string {
// Reset maxMap
for a := range maxmap {
maxmap[a] = 0
}
// Refresh maxMap
for k, elem := range values {
label := base.GetClass(KNN.TrainingData, elem)
if _, ok := maxmap[label]; ok {
maxmap[label] += (1 / length[k])
} else {
maxmap[label] = (1 / length[k])
}
}
// Sort the maxMap
var maxClass string
maxVal := -1.0
for a := range maxmap {
if maxmap[a] > maxVal {
maxVal = maxmap[a]
maxClass = a
}
}
return maxClass
}
// A KNNRegressor consists of a data matrix, associated result variables in the same order as the matrix, and a name.
type KNNRegressor struct {
base.BaseEstimator
Values []float64
DistanceFunc string
}
// NewKnnRegressor mints a new classifier.
func NewKnnRegressor(distfunc string) *KNNRegressor {
KNN := KNNRegressor{}
KNN.DistanceFunc = distfunc
return &KNN
}
func (KNN *KNNRegressor) Fit(values []float64, numbers []float64, rows int, cols int) {
if rows != len(values) {
panic(matrix.ErrShape)
}
KNN.Data = mat64.NewDense(rows, cols, numbers)
KNN.Values = values
}
func (KNN *KNNRegressor) Predict(vector *mat64.Dense, K int) float64 {
// Get the number of rows
rows, _ := KNN.Data.Dims()
rownumbers := make(map[int]float64)
labels := make([]float64, 0)
// Check what distance function we are using
var distanceFunc pairwise.PairwiseDistanceFunc
switch KNN.DistanceFunc {
case "euclidean":
distanceFunc = pairwise.NewEuclidean()
case "manhattan":
distanceFunc = pairwise.NewManhattan()
default:
panic("unsupported distance function")
}
for i := 0; i < rows; i++ {
row := KNN.Data.RowView(i)
distance := distanceFunc.Distance(utilities.VectorToMatrix(row), vector)
rownumbers[i] = distance
}
sorted := utilities.SortIntMap(rownumbers)
values := sorted[:K]
var sum float64
for _, elem := range values {
value := KNN.Values[elem]
labels = append(labels, value)
sum += value
}
average := sum / float64(K)
return average
}