forked from sjwhitworth/golearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn_bench_test.go
77 lines (71 loc) · 1.74 KB
/
knn_bench_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
package knn
import (
"fmt"
"testing"
"github.com/sjwhitworth/golearn/base"
"github.com/sjwhitworth/golearn/evaluation"
)
func readMnist() (*base.DenseInstances, *base.DenseInstances) {
// Create the class Attribute
classAttrs := make(map[int]base.Attribute)
classAttrs[0] = base.NewCategoricalAttribute()
classAttrs[0].SetName("label")
// Setup the class Attribute to be in its own group
classAttrGroups := make(map[string]string)
classAttrGroups["label"] = "ClassGroup"
// The rest can go in a default group
attrGroups := make(map[string]string)
inst1, err := base.ParseCSVToInstancesWithAttributeGroups(
"../examples/datasets/mnist_train.csv",
attrGroups,
classAttrGroups,
classAttrs,
true,
)
if err != nil {
panic(err)
}
inst2, err := base.ParseCSVToTemplatedInstances(
"../examples/datasets/mnist_test.csv",
true,
inst1,
)
if err != nil {
panic(err)
}
return inst1, inst2
}
func BenchmarkKNNWithOpts(b *testing.B) {
// Load
train, test := readMnist()
cls := NewKnnClassifier("euclidean", "linear", 1)
cls.AllowOptimisations = true
cls.Fit(train)
predictions, err := cls.Predict(test)
if err != nil {
b.Error(err)
}
c, err := evaluation.GetConfusionMatrix(test, predictions)
if err != nil {
panic(err)
}
fmt.Println(evaluation.GetSummary(c))
fmt.Println(evaluation.GetAccuracy(c))
}
func BenchmarkKNNWithNoOpts(b *testing.B) {
// Load
train, test := readMnist()
cls := NewKnnClassifier("euclidean", "linear", 1)
cls.AllowOptimisations = false
cls.Fit(train)
predictions, err := cls.Predict(test)
if err != nil {
b.Error(err)
}
c, err := evaluation.GetConfusionMatrix(test, predictions)
if err != nil {
panic(err)
}
fmt.Println(evaluation.GetSummary(c))
fmt.Println(evaluation.GetAccuracy(c))
}