Skip to content

Latest commit

 

History

History
86 lines (59 loc) · 7.2 KB

Reference Paper List.md

File metadata and controls

86 lines (59 loc) · 7.2 KB

01 计算语义学概述

  • 参考教材

    • Daniel Jurafsky and James H. Martin: Speech and Language Processing, Pearson Prentice Hall; 2 edition, 2008
    • Christopher D. Manning and Hinrich Schuetze: Foundations of Statistical Natural Language Processing. The MIT Press, 1999.
  • 高水平学术论文

    • ACL、EMNLP、NAACL、Coling 等。

02 基于知识库的词汇语义计算

Reference

  • Alexander Budanitsky and Graeme Hirst. 2006. Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Comput. Linguist. 32, 1 (March 2006), 13-47. [pdf]
  • Hughes, Thad, and Daniel Ramage. "Lexical Semantic Relatedness with Random Graph Walks." EMNLP-CoNLL. 2007. [pdf]

03 词义消歧

Reference

  • Roberto Navigli. 2009. Word sense disambiguation: A survey. ACM Comput. Surv. 41, 2, Article 10 (February 2009) [pdf]

04 分布式词义表示

Reference

(Distributional Representation)

(Distributed Representation)

  • Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of words and phrases and their compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS'13), USA, 3111-3119. [pdf]
  • Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation. EMNLP 2014. [pdf]
  • Sascha Rothe, Hinrich Schütze. AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes. ACL 2015. [pdf]
  • Word2Vec Tutorials - Tensorflow

05 分布式词义组合

Reference

  • Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Chris Manning, Andrew Ng and Chris Potts. Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. EMNLP 2013. [pdf]
  • Richard Socher, Brody Huval, Christopher D. Manning and Andrew Y. Ng. Semantic Compositionality through Recursive Matrix-Vector Spaces. EMNLP 2012. [pdf]
  • Jeff Mitchell and Mirella Lapata. 2010. Composition in distributional models of semantics. Cognitive Science, 34(8):1388–1439. [pdf]
  • M. Baroni and R. Zamparelli. Nouns are Vectors, Adjectives are Matrices. EMNLP 2010. [pdf]

06 语义角色标注

Reference

  • Jie Zhou, Wei Xu. End-to-end learning of semantic role labeling using recurrent neural networks. ACL 2015. [pdf]
  • Michael Roth, Mirella Lapata. Neural Semantic Role Labeling with Dependency Path Embeddings. ACL 2016. [pdf]

07 语义依存分析

Reference

  • Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun Wan. 2016. Transition-based parsing for deep dependency structures. Computational Linguistics 42(3):353-389. [pdf]

08 基于逻辑的语义表示和分析

Reference

  • Kenton Lee, Mike Lewis, Luke Zettlemoyer. Global Neural CCG Parsing with Optimality Guarantees. EMNLP 2016. [pdf]
  • Robin Jia, Percy Liang. Data Recombination for Neural Semantic Parsingj. ACL 2016. [pdf]
  • Bo Chen, Le Sun, Xianpei Han, Bo An. Sentence Rewriting for Semantic Parsing. ACL 2016. [pdf]
  • Chunyang Xiao, Marc Dymetman, Claire Gardent. Sequence-based Structured Prediction for Semantic Parsing. ACL 2016. [pdf]

09 指代消解

Reference

  • Chen Chen, Vincent Ng. Chinese Zero Pronoun Resolution with Deep Neural Networks. ACL 2016 [pdf]
  • Kevin Clark, Christopher D. Manning. Improving Coreference Resolution by Learning Entity-Level Distributed Representations. ACL 2016. [pdf]

10 篇章语义

Reference

  • Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Attapol Rutherford, Bonnie L. Webber, Chuan Wang, Hongmin Wang. CoNLL 2016 Shared Task on Multilingual Shallow Discourse Parsing. CoNLL 2016. [pdf]

11 人机对话

Reference

  • S. Young, M. Gasic, B. Thomson and J. Williams (2013). "POMDP-based Statistical Spoken Dialogue Systems: a Review." Proc IEEE, 101(5):1160-1179 [pdf]
  • Bordes A, Weston J. Learning End-to-End Goal-Oriented Dialog[J]. 2016. [pdf]
  • Li J, Monroe W, Ritter A, et al. Deep Reinforcement Learning for Dialogue Generation[J]. 2016. [pdf]
  • Liu C W, Lowe R, Serban I V, et al. How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation[J]. 2016. [pdf]

Project (ATIS Slot Filling Task)

Reference

  • Mesnil, G., Dauphin, Y., Yao, K., Bengio, Y., Deng, L., Hakkani-Tur, D., … others. (2015). Using recurrent neural networks for slot filling in spoken language understanding. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 23(3), 530–539. [pdf]
  • Shi, Y., Yao, K., Chen, H., Yu, D., Pan, Y.-C., & Hwang, M.-Y. (2016). Recurrent support vector machines for slot tagging in spoken language understanding. In Proceedings of NAACL-HLT (pp. 393–399). [pdf]