This repository has been archived by the owner on Dec 2, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
geometry.cpp
345 lines (255 loc) · 7.46 KB
/
geometry.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#include "geometry.h"
namespace PTools{
/** \brief Matrix multiplication
* This function is a simple matrix multiplication routine for 4x4 matrix
*/
void mat44xmat44( const dbl mat1[ 4 ][ 4 ], const dbl mat2[ 4 ][ 4 ], dbl result[ 4 ][ 4 ] )
{
// gives mat1*mat2 (mat2 left multiplied by mat1)
// this works even if result == mat1 (ie pointing the to same memory)
dbl temp[4][4];
//std::cout << mat1 << " " << mat2 << " " << result;
//printmat44(mat1);
//printmat44(mat2);
for ( int rl = 0; rl < 4; rl++ )
for ( int rc = 0; rc < 4; rc++ )
{
// compute the element result[rl][rc]:
dbl sum = 0.0 ;
for ( int p = 0; p < 4; p++ )
sum += mat1[ rl ][ p ] * mat2[ p ][ rc ] ;
temp[ rl ][ rc ] = sum ;
}
//printmat44(result);
memcpy(result, temp, 16*sizeof(dbl));
}
void MakeRotationMatrix( Coord3D A, Coord3D B, dbl theta, dbl out[ 4 ][ 4 ] )
{
// compute AB vector (dx; dy; dz):
dbl dx = B.x - A.x ;
dbl dy = B.y - A.y ;
dbl dz = B.z - A.z ;
dbl mat1[ 4 ][ 4 ] ;
// translation of vector BA
for ( int i = 0; i < 4; i++ )
for ( int j = 0; j < 4; j++ )
if ( i != j )
{
mat1[ i ][ j ] = 0 ;
}
else
mat1[ i ][ j ] = 1 ;
mat1[ 0 ][ 3 ] = -A.x;
mat1[ 1 ][ 3 ] = -A.y;
mat1[ 2 ][ 3 ] = -A.z;
// rotation to get back to plan Oxz: rotation 1 around X, angle -gamma (-g).
dbl d = sqrt( dy*dy + dz*dz ) ; // projection of AB on the Oxy plan
if ( real(d) == 0 ) // AB belongs to (Ox)
{
dbl cost = cos( theta );
dbl sint = sin( theta );
out[ 0 ][ 0 ] = 1 ;
out[ 0 ][ 1 ] = 0 ;
out[ 0 ][ 2 ] = 0 ;
out[ 0 ][ 3 ] = 0 ;
out[ 1 ][ 0 ] = 0 ;
out[ 1 ][ 1 ] = cost ;
out[ 1 ][ 2 ] = sint ;
out[ 1 ][ 3 ] = 0 ;
out[ 2 ][ 0 ] = 0 ;
out[ 2 ][ 1 ] = -sint;
out[ 2 ][ 2 ] = cost ;
out[ 2 ][ 3 ] = 0 ;
out[ 3 ][ 0 ] = 0 ;
out[ 3 ][ 1 ] = 0 ;
out[ 3 ][ 2 ] = 0 ;
out[ 3 ][ 3 ] = 1 ;
//printmat44(out);
return ;
}
dbl cosg = dz / d ;
dbl sing = dy / d ;
dbl mat2[ 4 ][ 4 ] ;
mat2[ 0 ][ 0 ] = 1 ;
mat2[ 0 ][ 1 ] = 0 ;
mat2[ 0 ][ 2 ] = 0 ;
mat2[ 0 ][ 3 ] = 0 ;
mat2[ 1 ][ 0 ] = 0 ;
mat2[ 1 ][ 1 ] = cosg ;
mat2[ 1 ][ 2 ] = -sing ;
mat2[ 1 ][ 3 ] = 0 ;
mat2[ 2 ][ 0 ] = 0;
mat2[ 2 ][ 1 ] = sing;
mat2[ 2 ][ 2 ] = cosg ;
mat2[ 2 ][ 3 ] = 0 ;
mat2[ 3 ][ 0 ] = 0 ;
mat2[ 3 ][ 1 ] = 0 ;
mat2[ 3 ][ 2 ] = 0;
mat2[ 3 ][ 3 ] = 1 ;
//printmat44(mat2);
dbl mat3[ 4 ][ 4 ];
mat44xmat44( mat2, mat1, mat3 ); // mat3 == mat2*mat1 (!= mat1*mat2 )
// rotation to get back to the Oz axis: rotation 2. Axis (Oy), angle p.
dbl f = sqrt( dx*dx + dy*dy + dz*dz ); // norm
dbl cosp, sinp ;
cosp = d / f;
sinp = dx / f;
mat1[ 0 ][ 0 ] = cosp ;
mat1[ 0 ][ 1 ] = 0 ;
mat1[ 0 ][ 2 ] = -sinp ;
mat1[ 0 ][ 3 ] = 0 ;
mat1[ 1 ][ 0 ] = 0 ;
mat1[ 1 ][ 1 ] = 1 ;
mat1[ 1 ][ 2 ] = 0 ;
mat1[ 1 ][ 3 ] = 0 ;
mat1[ 2 ][ 0 ] = sinp ;
mat1[ 2 ][ 1 ] = 0 ;
mat1[ 2 ][ 2 ] = cosp ;
mat1[ 2 ][ 3 ] = 0 ;
mat1[ 3 ][ 0 ] = 0 ;
mat1[ 3 ][ 1 ] = 0 ;
mat1[ 3 ][ 2 ] = 0 ;
mat1[ 3 ][ 3 ] = 1 ;
mat44xmat44( mat1, mat3, mat2 ); // result stored in mat2
// effective rotation (around 0z axis, angle theta)
dbl rotmatrix[ 4 ][ 4 ] ;
dbl cost = cos( theta );
dbl sint = sin( theta );
rotmatrix[ 0 ][ 0 ] = cost ;
rotmatrix[ 0 ][ 1 ] = sint;
rotmatrix[ 0 ][ 2 ] = 0;
rotmatrix[ 0 ][ 3 ] = 0;
rotmatrix[ 1 ][ 0 ] = -sint;
rotmatrix[ 1 ][ 1 ] = cost;
rotmatrix[ 1 ][ 2 ] = 0;
rotmatrix[ 1 ][ 3 ] = 0;
rotmatrix[ 2 ][ 0 ] = 0 ;
rotmatrix[ 2 ][ 1 ] = 0 ;
rotmatrix[ 2 ][ 2 ] = 1;
rotmatrix[ 2 ][ 3 ] = 0;
rotmatrix[ 3 ][ 0 ] = 0 ;
rotmatrix[ 3 ][ 1 ] = 0 ;
rotmatrix[ 3 ][ 2 ] = 0;
rotmatrix[ 3 ][ 3 ] = 1;
mat44xmat44( rotmatrix, mat2, mat3 ); // result stored in mat3
//rotation -2:
mat1[ 0 ][ 0 ] = cosp ;
mat1[ 0 ][ 1 ] = 0 ;
mat1[ 0 ][ 2 ] = sinp ;
mat1[ 0 ][ 3 ] = 0 ;
mat1[ 1 ][ 0 ] = 0 ;
mat1[ 1 ][ 1 ] = 1 ;
mat1[ 1 ][ 2 ] = 0 ;
mat1[ 1 ][ 3 ] = 0 ;
mat1[ 2 ][ 0 ] = -sinp ;
mat1[ 2 ][ 1 ] = 0 ;
mat1[ 2 ][ 2 ] = cosp ;
mat1[ 2 ][ 3 ] = 0 ;
mat1[ 3 ][ 0 ] = 0 ;
mat1[ 3 ][ 1 ] = 0 ;
mat1[ 3 ][ 2 ] = 0 ;
mat1[ 3 ][ 3 ] = 1 ;
mat44xmat44( mat1, mat3, rotmatrix ); // result in rotmatrix
//rotation -1:
mat2[ 0 ][ 0 ] = 1 ;
mat2[ 0 ][ 1 ] = 0 ;
mat2[ 0 ][ 2 ] = 0 ;
mat2[ 0 ][ 3 ] = 0 ;
mat2[ 1 ][ 0 ] = 0 ;
mat2[ 1 ][ 1 ] = cosg ;
mat2[ 1 ][ 2 ] = sing ;
mat2[ 1 ][ 3 ] = 0 ;
mat2[ 2 ][ 0 ] = 0 ;
mat2[ 2 ][ 1 ] = -sing ;
mat2[ 2 ][ 2 ] = cosg ;
mat2[ 2 ][ 3 ] = 0 ;
mat2[ 3 ][ 0 ] = 0 ;
mat2[ 3 ][ 1 ] = 0 ;
mat2[ 3 ][ 2 ] = 0 ;
mat2[ 3 ][ 3 ] = 1 ;
mat44xmat44( mat2, rotmatrix, mat3 );
//translation-1:
for ( int i = 0; i < 4; i++ )
for ( int j = 0; j < 4; j++ )
if ( i != j )
{
mat1[ i ][ j ] = 0 ;
}
else
mat1[ i ][ j ] = 1 ;
mat1[ 0 ][ 3 ] = A.x;
mat1[ 1 ][ 3 ] = A.y;
mat1[ 2 ][ 3 ] = A.z;
mat44xmat44( mat1, mat3, out );
}
void ABrotate( Coord3D A, Coord3D B, Rigidbody& target, dbl theta )
{
dbl matrix[ 4 ][ 4 ];
MakeRotationMatrix( A, B, theta, matrix );
target.MatrixMultiply(matrix);
// mat44xrigid( source, result, matrix );
}
void VectProd( const Coord3D& u, const Coord3D& v, Coord3D& UvectV )
{
UvectV.x = u.y * v.z - u.z * v.y ;
UvectV.y = u.z * v.x - u.x * v.z ;
UvectV.z = u.x * v.y - u.y * v.x ;
}
void printmat44( const dbl mat[ 4 ][ 4 ] )
{
for (uint i=0; i<4; i++)
{
for (uint j=0; j<4; j++)
{
printf("%12.7f", real(mat[i][j])) ;
}
std::cout << std::endl;
}
std::cout << "\n\n";
}
void MakeVect( const Coord3D& a, const Coord3D& b, Coord3D& result )
{
result.x = b.x - a.x;
result.y = b.y - a.y;
result.z = b.z - a.z;
}
dbl Dihedral( const Coord3D& a, const Coord3D& b, const Coord3D& c, const Coord3D& d )
{
// calculate the dihedral angle defined by a, b, c and d.
// The method is described in: J.K Rainey, Ph.D. Thesis,
// University of Toronto, 2003.
// Collagen structure and preferential assembly explored
// by parallel microscopy and bioinformatics.
// also described here:
// http://structbio.biochem.dal.ca/jrainey/dihedralcalc.html
Coord3D b1 = b-a;
Coord3D b2 = c-b;
Coord3D b3 = d-c;
Coord3D n1;
VectProd (b2, b3, n1);
Coord3D n2;
VectProd(b1, b2, n2);
Coord3D n3;
VectProd(b2,b3,n3);
dbl phi = atan2( Norm(b2) * ScalProd(b1, n1), ScalProd(n2 , n3) ) ;
return phi;
}
dbl Angle(const Coord3D& vector1, const Coord3D& vector2)
{
dbl pdtscal=ScalProd(vector1,vector2);
dbl A = sqrt(ScalProd(vector1,vector1)) ;
dbl B = sqrt(ScalProd(vector2,vector2));
dbl costheta = pdtscal / (A*B) ;
return acos(costheta);
}
dbl MakeTranslationMat44(Coord3D t, dbl out[4][4] )
{
for (int i=0; i<4; i++)
for(int j=0; j<4; j++)
if (i==j) out[i][i]=1.0;
else out[i][j]=0.0;
out[0][3]=t.x;
out[1][3]=t.y;
out[2][3]=t.z;
}
} //namespace PTools