-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_s1s2_unet.py
447 lines (346 loc) · 17.2 KB
/
main_s1s2_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# checkpoint: https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101
import os, json
import random
from easydict import EasyDict as edict
from pathlib import Path
from prettyprinter import pprint
from imageio import imread, imsave
import hydra
import wandb
from omegaconf import DictConfig, OmegaConf
###################################################################################
import os, sys
import numpy as np
from pathlib import Path
import hydra
from omegaconf import DictConfig, OmegaConf
import copy
import time
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from easydict import EasyDict as edict
from tqdm import tqdm as tqdm
import logging
logger = logging.getLogger(__name__)
import smp
from smp.base.modules import Activation
from models.model_selection import get_model
import wandb
# f_score = smp.utils.functional.f_score
# Dice/F1 score - https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
# IoU/Jaccard score - https://en.wikipedia.org/wiki/Jaccard_index
# diceLoss = smp.utils.losses.DiceLoss(eps=1)
from models.loss_ref import soft_dice_loss, soft_dice_loss_balanced, jaccard_like_loss, jaccard_like_balanced_loss
AverageValueMeter = smp.utils.train.AverageValueMeter
# Augmentations
from dataset.augument import get_training_augmentation, \
get_validation_augmentation, get_preprocessing
from torch.utils.data import DataLoader
from dataset.wildfire import S1S2 as Dataset # ------------------------------------------------------- Dataset
from models.lr_schedule import get_cosine_schedule_with_warmup, PolynomialLRDecay
def format_logs(logs):
str_logs = ['{}: {:.4}'.format(k, v) for k, v in logs.items()]
s = ', '.join(str_logs)
return s
def loss_fun(CFG, DEVICE='cuda'):
if CFG.MODEL.LOSS_TYPE == 'BCELoss':
criterion = nn.BCELoss()
elif CFG.MODEL.LOSS_TYPE == 'BCEWithLogitsLoss':
criterion = nn.BCEWithLogitsLoss() # includes sigmoid activation
elif CFG.MODEL.LOSS_TYPE == 'DiceLoss':
criterion = smp.utils.losses.DiceLoss(eps=1, activation=CFG.MODEL.ACTIVATION)
elif CFG.MODEL.LOSS_TYPE == 'CrossEntropyLoss':
# balance_weight = [CFG.MODEL.NEGATIVE_WEIGHT, CFG.MODEL.POSITIVE_WEIGHT]
# balance_weight = torch.tensor(balance_weight).float().to(DEVICE)
# criterion = nn.CrossEntropyLoss(weight = balance_weight)
balance_weight = [class_weight for class_weight in CFG.MODEL.CLASS_WEIGHTS]
balance_weight = torch.tensor(balance_weight).float().to(DEVICE)
criterion = nn.CrossEntropyLoss(weight = balance_weight, ignore_index=-1)
# criterion = nn.CrossEntropyLoss(ignore_index=-1)
elif CFG.MODEL.LOSS_TYPE == 'SoftDiceLoss':
criterion = soft_dice_loss
elif CFG.MODEL.LOSS_TYPE == 'SoftDiceBalancedLoss':
criterion = soft_dice_loss_balanced
elif CFG.MODEL.LOSS_TYPE == 'JaccardLikeLoss':
criterion = jaccard_like_loss
elif CFG.MODEL.LOSS_TYPE == 'ComboLoss':
criterion = lambda pred, gts: F.binary_cross_entropy_with_logits(pred, gts) + soft_dice_loss(pred, gts)
elif CFG.MODEL.LOSS_TYPE == 'WeightedComboLoss':
criterion = lambda pred, gts: F.binary_cross_entropy_with_logits(pred, gts) + 10 * soft_dice_loss(pred, gts)
elif CFG.MODEL.LOSS_TYPE == 'FrankensteinLoss':
criterion = lambda pred, gts: F.binary_cross_entropy_with_logits(pred, gts) + jaccard_like_balanced_loss(pred, gts)
return criterion
class SegModel(object):
def __init__(self, cfg) -> None:
super().__init__()
self.PROJECT_DIR = Path(hydra.utils.get_original_cwd())
self.cfg = cfg
self.DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# self.DEVICE = 'cpu'
self.model = get_model(cfg)
self.activation = Activation(self.cfg.MODEL.ACTIVATION)
# self.MODEL_URL = str(self.PROJECT_DIR / "outputs" / "best_model.pth")
self.RUN_DIR = self.PROJECT_DIR / self.cfg.EXP.OUTPUT
self.MODEL_URL = str(self.RUN_DIR / "model.pth")
# if self.cfg.MODEL.ENCODER is not None:
# self.preprocessing_fn = \
# smp.encoders.get_preprocessing_fn(self.cfg.MODEL.ENCODER, self.cfg.MODEL.ENCODER_WEIGHTS)
self.metrics = [smp.utils.metrics.IoU(threshold=0.5, activation=None),
smp.utils.metrics.Fscore(activation=None)
]
'''--------------> need to improve <-----------------'''
# specify data folder
self.TRAIN_DIR = Path(self.cfg.DATA.DIR) / 'train'
self.VALID_DIR = Path(self.cfg.DATA.DIR) / 'test'
'''--------------------------------------------------'''
def get_dataloaders(self) -> dict:
# if self.cfg.MODEL.NUM_CLASS == 1:
# classes = ['burned']
# elif self.cfg.MODEL.NUM_CLASS == 2:
# classes = ['unburn', 'burned']
# elif self.cfg.MODEL.NUM_CLASS > 2:
# print(" ONLY ALLOW ONE or TWO CLASSES SO FAR !!!")
# pass
classes = self.cfg.MODEL.CLASS_NAMES
""" Data Preparation """
train_dataset = Dataset(
self.TRAIN_DIR,
self.cfg,
# augmentation=get_training_augmentation(),
# preprocessing=get_preprocessing(self.preprocessing_fn),
classes=classes,
)
valid_dataset = Dataset(
self.VALID_DIR,
self.cfg,
# augmentation=get_validation_augmentation(),
# preprocessing=get_preprocessing(self.preprocessing_fn),
classes=classes,
)
generator=torch.Generator().manual_seed(self.cfg.RAND.SEED)
train_size = int(len(train_dataset) * self.cfg.DATA.TRAIN_RATIO)
valid_size = len(train_dataset) - train_size
train_set, val_set = torch.utils.data.random_split(train_dataset, [train_size, valid_size], generator=generator)
train_loader = DataLoader(train_set, batch_size=self.cfg.MODEL.BATCH_SIZE, shuffle=True, num_workers=4, generator=generator)
valid_loader = DataLoader(val_set, batch_size=self.cfg.MODEL.BATCH_SIZE, shuffle=True, num_workers=4, generator=generator)
test_loader = DataLoader(valid_dataset, batch_size=self.cfg.MODEL.BATCH_SIZE, shuffle=True, num_workers=4, generator=generator)
# means = []
# stds = []
# for img in list(iter(train_loader)):
# print(img.shape)
# means.append(torch.mean(img))
# stds.append(torch.std(img))
# mean = torch.mean(torch.tensor(means))
# std = torch.mean(torch.tensor(stds))
dataloaders = {
'train': train_loader, \
'valid': valid_loader, \
'test': test_loader, \
'train_size': train_size, \
'valid_size': valid_size, \
'test_size': len(valid_dataset)
}
return dataloaders
def run(self) -> None:
self.model.to(self.DEVICE)
self.criterion = loss_fun(self.cfg)
self.dataloaders = self.get_dataloaders()
self.optimizer = torch.optim.Adam([dict(
params=self.model.parameters(),
lr=self.cfg.MODEL.LEARNING_RATE,
weight_decay=self.cfg.MODEL.WEIGHT_DECAY)])
""" ===================== >> learning rate scheduler << ========================= """
per_epoch_steps = self.dataloaders['train_size'] // self.cfg.MODEL.BATCH_SIZE
total_training_steps = self.cfg.MODEL.MAX_EPOCH * per_epoch_steps
self.USE_LR_SCHEDULER = True \
if self.cfg.MODEL.LR_SCHEDULER in ['cosine_warmup', 'polynomial'] \
else True
if self.cfg.MODEL.LR_SCHEDULER == 'cosine':
''' cosine scheduler '''
warmup_steps = self.cfg.MODEL.COSINE_SCHEDULER.WARMUP * per_epoch_steps
self.lr_scheduler = get_cosine_schedule_with_warmup(self.optimizer, warmup_steps, total_training_steps)
elif self.cfg.MODEL.LR_SCHEDULER == 'poly':
''' polynomial '''
self.lr_scheduler = PolynomialLRDecay(self.optimizer,
max_decay_steps=total_training_steps,
end_learning_rate=self.cfg.MODEL.POLY_SCHEDULER.END_LR, #1e-5,
power=self.cfg.MODEL.POLY_SCHEDULER.POWER, #0.9
)
else:
pass
# self.history_logs = edict()
# self.history_logs['train'] = []
# self.history_logs['valid'] = []
# self.history_logs['test'] = []
# --------------------------------- Train -------------------------------------------
max_score = self.cfg.MODEL.MAX_SCORE
self.iters = 0
for epoch in range(0, self.cfg.MODEL.MAX_EPOCH):
epoch = epoch + 1
print(f"\n==> train epoch: {epoch}/{self.cfg.MODEL.MAX_EPOCH}")
self.train_one_epoch(epoch)
valid_logs = self.valid_logs
# do something (save model, change lr, etc.)
if valid_logs['iou_score_class1'] > max_score:
max_score = valid_logs['iou_score_class1']
if (1 == epoch) or (0 == (epoch % self.cfg.MODEL.SAVE_INTERVAL)):
torch.save(self.model, self.MODEL_URL)
# torch.save(self.model.state_dict(), self.MODEL_URL)
print(f'Model saved at epoch {epoch}!')
best_epoch = epoch
# if epoch % 50 == 0:
# self.optimizer.param_groups[0]['lr'] = 0.1 * self.optimizer.param_groups[0]['lr']
''' final evaluation with best model after training finished '''
# load best model
self.model = torch.load(self.MODEL_URL, map_location=torch.device('cpu'))
self.eval_best_model(best_epoch)
def eval_best_model(self, best_epoch):
''' eval the best model '''
self.model.to(self.DEVICE)
log_dict = {}
for phase in ['train', 'valid', 'test']:
if phase == 'train':
self.model.train()
else:
self.model.eval()
logs = self.step(phase)
log_dict.update({phase: logs})
log_dict.update({'epoch': best_epoch})
wandb.log({'best': log_dict})
def train_one_epoch(self, epoch):
# wandb.
for phase in ['train', 'valid', 'test']:
if phase == 'train':
self.model.train()
else:
self.model.eval()
logs = self.step(phase)
# print(phase, logs)
currlr = self.optimizer.param_groups[0]['lr']
wandb.log({phase: logs, 'epoch': epoch, 'lr': currlr})
# temp = [logs["total_loss"]] + [logs[self.metrics[i].__name__] for i in range(0, len(self.metrics))]
# self.history_logs[phase].append(temp)
if phase == 'valid': self.valid_logs = logs
def step(self, phase) -> dict:
logs = {}
loss_meter = AverageValueMeter()
# metrics_meters = {metric.__name__: AverageValueMeter() for metric in self.metrics}
metrics_meters = {f"{metric.__name__}_class{cls}": AverageValueMeter() for metric in self.metrics for cls in range(0, max(2, self.cfg.MODEL.NUM_CLASS))}
# if ('Train' in phase) and (self.cfg.useDataWoCAug):
# dataLoader_woCAug = iter(self.dataloaders['Train_woCAug'])
with tqdm(iter(self.dataloaders[phase]), desc=phase, file=sys.stdout, disable=not self.cfg.MODEL.VERBOSE) as iterator:
for i, (x, y) in enumerate(iterator):
self.optimizer.zero_grad()
''' move data to GPU '''
input = []
for x_ in x: input.append(x_.to(self.DEVICE))
y = y.to(self.DEVICE) # BCHW
# print(len(input))
''' do prediction '''
if 'UNet_resnet' in self.cfg.MODEL.ARCH:
input = input[0]
out = self.model.forward(input)
else:
out = self.model.forward(input)[-1] #BCHW
# if 'softmax' in self.cfg.MODEL.ACTIVATION:
y_gts = torch.argmax(y, dim=1) # BHW [0, 1, 2, NUM_CLASS-1]
''' compute loss '''
# loss_ = self.criterion(out, y) # include activation
if 'DiceLoss' == self.cfg.MODEL.LOSS_TYPE: # For Dice Loss when NUM_CLASS=1
out = out.squeeze()
loss_ = self.criterion(out, y_gts)
y_pred = (self.activation(out) >= 0.5).type(torch.FloatTensor)
else:
loss_ = self.criterion(out, y_gts) # Cross Entropy Loss
y_pred = torch.argmax(self.activation(out), dim=1) # BHW
''' Back Propergation (BP) '''
if phase == 'train':
loss_.backward()
self.optimizer.step()
self.iters = self.iters + 1
''' Iteration-Wise log for train stage only '''
if self.cfg.MODEL.STEP_WISE_LOG:
self.iters = self.iters + 1
currlr = self.optimizer.param_groups[0]['lr']
# wandb.log({'x0.mean': x[0].mean()})
wandb.log({phase: logs, 'iters': self.iters, 'lr': currlr})
if self.USE_LR_SCHEDULER:
self.lr_scheduler.step()
''' update loss and metrics logs '''
# update loss logs
loss_value = loss_.cpu().detach().numpy()
loss_meter.add(loss_value)
# loss_logs = {criterion.__name__: loss_meter.mean}
loss_logs = {'total_loss': loss_meter.mean}
logs.update(loss_logs)
# update metrics logs
for metric_fn in self.metrics:
# metric_value = metric_fn(y_pred, y_gts).cpu().detach().numpy()
# metrics_meters[metric_fn.__name__].add(metric_value)
for cls in range(0, max(2, self.cfg.MODEL.NUM_CLASS)):
# metric_value = metric_fn(y_pred[:,cls,...], y[:,cls,...]).cpu().detach().numpy()
cls_pred = (y_pred==cls).type(torch.FloatTensor)
cls_gts = (y_gts==cls).type(torch.FloatTensor)
metric_value = metric_fn(cls_pred, cls_gts).cpu().detach().numpy()
metrics_meters[f"{metric_fn.__name__}_class{cls}"].add(metric_value)
metrics_logs = {k: v.mean for k, v in metrics_meters.items()}
logs.update(metrics_logs)
# print(self.iters, x[0].mean().item(), loss_.item())
if self.cfg.MODEL.VERBOSE:
s = format_logs(logs)
iterator.set_postfix_str(s)
return logs
##############################################################
def set_random_seed(seed, deterministic=False):
"""Set random seed.
Args:
seed (int): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
@hydra.main(config_path="./config", config_name="unet")
def run_app(cfg : DictConfig) -> None:
''' set randome seed '''
os.environ['HYDRA_FULL_ERROR'] = str(1)
os.environ['PYTHONHASHSEED'] = str(cfg.RAND.SEED) #cfg.RAND.SEED
if cfg.RAND.DETERMIN:
os.environ['CUBLAS_WORKSPACE_CONFIG']=":4096:8" #https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility
torch.use_deterministic_algorithms(True)
set_random_seed(cfg.RAND.SEED, deterministic=cfg.RAND.DETERMIN)
# wandb.init(config=cfg, project=cfg.project.name, name=cfg.EXP.name)
import pandas as pd
from prettyprinter import pprint
cfg_dict = OmegaConf.to_container(cfg, resolve=True)
cfg_flat = pd.json_normalize(cfg_dict, sep='_').to_dict(orient='records')[0]
wandb.init(config=cfg_flat, project="wildfire-s1s2alos-canada-rse", entity=cfg.PROJECT.ENTITY, name=cfg.EXP.NAME)
# wandb.init(config=cfg_flat, project=cfg.PROJECT.NAME, entity=cfg.PROJECT.ENTITY, name=cfg.EXP.NAME)
pprint(cfg_flat)
''' train '''
# from experiments.seg_model import SegModel
mySegModel = SegModel(cfg)
mySegModel.run()
''' inference '''
from s1s2_evaluator import evaluate_model
evaluate_model(cfg, mySegModel.MODEL_URL, mySegModel.RUN_DIR / "errMap")
''' compute IoU and F1 for all events '''
from utils.iou4all import multiclass_IoU_F1
multiclass_IoU_F1(
pred_dir = mySegModel.RUN_DIR / "errMap",
gts_dir = Path(cfg.DATA.DIR) / "test_images" / "mask" / cfg.DATA.TEST_MASK,
NUM_CLASS=max(2, cfg.MODEL.NUM_CLASS)
)
# if not cfg.MODEL.DEBUG:
wandb.finish()
if __name__ == "__main__":
run_app()