-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTest1.java
executable file
·333 lines (291 loc) · 8.83 KB
/
Test1.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
class BinaryTree{
public static void main(String[] a){
System.out.println(new BT().Start());
}
}
// This class invokes the methods to create a tree,
// insert, delete and serach for elements on it
class BT {
public int Start(){
Tree root ;
boolean ntb ;
int nti ;
root = new Tree();
ntb = root.Init(16);
ntb = root.Print();
System.out.println(100000000);
ntb = root.Insert(8) ;
ntb = root.Print();
ntb = root.Insert(24) ;
ntb = root.Insert(4) ;
ntb = root.Insert(12) ;
ntb = root.Insert(20) ;
ntb = root.Insert(28) ;
ntb = root.Insert(14) ;
ntb = root.Print();
System.out.println(root.Search(24));
System.out.println(root.Search(12));
System.out.println(root.Search(16));
System.out.println(root.Search(50));
System.out.println(root.Search(12));
ntb = root.Delete(12);
ntb = root.Print();
System.out.println(root.Search(12));
return 0 ;
}
}
class Tree{
Tree left ;
Tree right;
int key ;
boolean has_left ;
boolean has_right ;
Tree my_null ;
// Initialize a node with a key value and no children
public boolean Init(int v_key){
key = v_key ;
has_left = false ;
has_right = false ;
return true ;
}
// Update the right child with rn
public boolean SetRight(Tree rn){
right = rn ;
return true ;
}
// Update the left child with ln
public boolean SetLeft(Tree ln){
left = ln ;
return true ;
}
public Tree GetRight(){
return right ;
}
public Tree GetLeft(){
return left;
}
public int GetKey(){
return key ;
}
public boolean SetKey(int v_key){
key = v_key ;
return true ;
}
public boolean GetHas_Right(){
return has_right ;
}
public boolean GetHas_Left(){
return has_left ;
}
public boolean SetHas_Left(boolean val){
has_left = val ;
return true ;
}
public boolean SetHas_Right(boolean val){
has_right = val ;
return true ;
}
// This method compares two integers and
// returns true if they are equal and false
// otherwise
public boolean Compare(int num1 , int num2){
boolean ntb ;
int nti ;
ntb = false ;
nti = num2 + 1 ;
if (num1 < num2) ntb = false ;
else if (!(num1 < nti)) ntb = false ;
else ntb = true ;
return ntb ;
}
// Insert a new element in the tree
public boolean Insert(int v_key){
Tree new_node ;
boolean ntb ;
boolean cont ;
int key_aux ;
Tree current_node ;
new_node = new Tree();
ntb = new_node.Init(v_key) ;
current_node = this ;
cont = true ;
while (cont){
key_aux = current_node.GetKey();
if (v_key < key_aux){
if (current_node.GetHas_Left())
current_node = current_node.GetLeft() ;
else {
cont = false ;
ntb = current_node.SetHas_Left(true);
ntb = current_node.SetLeft(new_node);
}
}
else{
if (current_node.GetHas_Right())
current_node = current_node.GetRight() ;
else {
cont = false ;
ntb = current_node.SetHas_Right(true);
ntb = current_node.SetRight(new_node);
}
}
}
return true ;
}
// Delete an element from the tree
public boolean Delete(int v_key){
Tree current_node ;
Tree parent_node ;
boolean cont ;
boolean found ;
boolean is_root ;
int key_aux ;
boolean ntb ;
current_node = this ;
parent_node = this ;
cont = true ;
found = false ;
is_root = true ;
while (cont){
key_aux = current_node.GetKey();
if (v_key < key_aux)
if (current_node.GetHas_Left()){
parent_node = current_node ;
current_node = current_node.GetLeft() ;
}
else cont = false ;
else
if (key_aux < v_key)
if (current_node.GetHas_Right()){
parent_node = current_node ;
current_node = current_node.GetRight() ;
}
else cont = false ;
else {
if (is_root)
if ((!(current_node.GetHas_Right())) &&
(!(current_node.GetHas_Left())) )
ntb = true ;
else
ntb = this.Remove(parent_node,current_node);
else ntb = this.Remove(parent_node,current_node);
found = true ;
cont = false ;
}
is_root = false ;
}
return found ;
}
// Check if the element to be removed will use the
// righ or left subtree if one exists
public boolean Remove(Tree p_node, Tree c_node){
boolean ntb ;
int auxkey1 ;
int auxkey2 ;
if (c_node.GetHas_Left())
ntb = this.RemoveLeft(p_node,c_node) ;
else
if (c_node.GetHas_Right())
ntb = this.RemoveRight(p_node,c_node) ;
else {
auxkey1 = c_node.GetKey();
//auxtree01 = p_node.GetLeft() ;
//auxkey2 = auxtree01.GetKey() ;
auxkey2 = (p_node.GetLeft()).GetKey() ;
if (this.Compare(auxkey1,auxkey2)) {
ntb = p_node.SetLeft(my_null);
ntb = p_node.SetHas_Left(false);
}
else {
ntb = p_node.SetRight(my_null);
ntb = p_node.SetHas_Right(false);
}
}
return true ;
}
// Copy the child key to the parent until a leaf is
// found and remove the leaf. This is done with the
// right subtree
public boolean RemoveRight(Tree p_node, Tree c_node){
boolean ntb ;
while (c_node.GetHas_Right()){
//auxtree01 = c_node.GetRight() ;
//auxint02 = auxtree01.GetKey();
//ntb = c_node.SetKey(auxint02);
ntb = c_node.SetKey((c_node.GetRight()).GetKey());
p_node = c_node ;
c_node = c_node.GetRight() ;
}
ntb = p_node.SetRight(my_null);
ntb = p_node.SetHas_Right(false);
return true ;
}
// Copy the child key to the parent until a leaf is
// found and remove the leaf. This is done with the
// left subtree
public boolean RemoveLeft(Tree p_node, Tree c_node){
boolean ntb ;
while (c_node.GetHas_Left()){
//auxtree01 = c_node.GetLeft() ;
//auxint02 = auxtree01.GetKey();
//ntb = c_node.SetKey(auxint02);
ntb = c_node.SetKey((c_node.GetLeft()).GetKey());
p_node = c_node ;
c_node = c_node.GetLeft() ;
}
ntb = p_node.SetLeft(my_null);
ntb = p_node.SetHas_Left(false);
return true ;
}
// Search for an elemnt in the tree
public int Search(int v_key){
boolean cont ;
int ifound ;
Tree current_node;
int key_aux ;
current_node = this ;
cont = true ;
ifound = 0 ;
while (cont){
key_aux = current_node.GetKey();
if (v_key < key_aux)
if (current_node.GetHas_Left())
current_node = current_node.GetLeft() ;
else cont = false ;
else
if (key_aux < v_key)
if (current_node.GetHas_Right())
current_node = current_node.GetRight() ;
else cont = false ;
else {
ifound = 1 ;
cont = false ;
}
}
return ifound ;
}
// Invoke the method to really print the tree elements
public boolean Print(){
Tree current_node;
boolean ntb ;
current_node = this ;
ntb = this.RecPrint(current_node);
return true ;
}
// Print the elements of the tree
public boolean RecPrint(Tree node){
boolean ntb ;
if (node.GetHas_Left()){
//auxtree01 = node.GetLeft() ;
//ntb = this.RecPrint(auxtree01);
ntb = this.RecPrint(node.GetLeft());
} else ntb = true ;
System.out.println(node.GetKey());
if (node.GetHas_Right()){
//auxtree01 = node.GetRight() ;
//ntb = this.RecPrint(auxtree01);
ntb = this.RecPrint(node.GetRight());
} else ntb = true ;
return true ;
}
}