-
Notifications
You must be signed in to change notification settings - Fork 20
/
ed25519.py
286 lines (216 loc) · 6.96 KB
/
ed25519.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# ed25519.py - Optimized version of the reference implementation of Ed25519
#
# Written in 2011? by Daniel J. Bernstein <[email protected]>
# 2013 by Donald Stufft <[email protected]>
# 2013 by Alex Gaynor <[email protected]>
# 2013 by Greg Price <[email protected]>
#
# To the extent possible under law, the author(s) have dedicated all copyright
# and related and neighboring rights to this software to the public domain
# worldwide. This software is distributed without any warranty.
#
# You should have received a copy of the CC0 Public Domain Dedication along
# with this software. If not, see
# <http://creativecommons.org/publicdomain/zero/1.0/>.
"""
NB: This code is not safe for use with secret keys or secret data.
The only safe use of this code is for verifying signatures on public messages.
Functions for computing the public key of a secret key and for signing
a message are included, namely publickey_unsafe and signature_unsafe,
for testing purposes only.
The root of the problem is that Python's long-integer arithmetic is
not designed for use in cryptography. Specifically, it may take more
or less time to execute an operation depending on the values of the
inputs, and its memory access patterns may also depend on the inputs.
This opens it to timing and cache side-channel attacks which can
disclose data to an attacker. We rely on Python's long-integer
arithmetic, so we cannot handle secrets without risking their disclosure.
"""
import hashlib
__version__ = "1.0.dev0"
b = 256
q = 2**255 - 19
l = 2**252 + 27742317777372353535851937790883648493
def H(m):
return hashlib.sha512(m).digest()
def pow2(x, p):
"""== pow(x, 2**p, q)"""
while p > 0:
x = x * x % q
p -= 1
return x
def inv(z):
r"""$= z^{-1} \mod q$, for z != 0"""
# Adapted from curve25519_athlon.c in djb's Curve25519.
z2 = z * z % q # 2
z9 = pow2(z2, 2) * z % q # 9
z11 = z9 * z2 % q # 11
z2_5_0 = (z11 * z11) % q * z9 % q # 31 == 2^5 - 2^0
z2_10_0 = pow2(z2_5_0, 5) * z2_5_0 % q # 2^10 - 2^0
z2_20_0 = pow2(z2_10_0, 10) * z2_10_0 % q # ...
z2_40_0 = pow2(z2_20_0, 20) * z2_20_0 % q
z2_50_0 = pow2(z2_40_0, 10) * z2_10_0 % q
z2_100_0 = pow2(z2_50_0, 50) * z2_50_0 % q
z2_200_0 = pow2(z2_100_0, 100) * z2_100_0 % q
z2_250_0 = pow2(z2_200_0, 50) * z2_50_0 % q # 2^250 - 2^0
return pow2(z2_250_0, 5) * z11 % q # 2^255 - 2^5 + 11 = q - 2
d = -121665 * inv(121666) % q
I = pow(2, (q - 1) // 4, q)
def xrecover(y):
xx = (y * y - 1) * inv(d * y * y + 1)
x = pow(xx, (q + 3) // 8, q)
if (x * x - xx) % q != 0:
x = (x * I) % q
if x % 2 != 0:
x = q - x
return x
By = 4 * inv(5)
Bx = xrecover(By)
B = (Bx % q, By % q, 1, (Bx * By) % q)
ident = (0, 1, 1, 0)
def edwards_add(P, Q):
# This is formula sequence 'addition-add-2008-hwcd-3' from
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
(x1, y1, z1, t1) = P
(x2, y2, z2, t2) = Q
a = (y1 - x1) * (y2 - x2) % q
b = (y1 + x1) * (y2 + x2) % q
c = t1 * 2 * d * t2 % q
dd = z1 * 2 * z2 % q
e = b - a
f = dd - c
g = dd + c
h = b + a
x3 = e * f
y3 = g * h
t3 = e * h
z3 = f * g
return (x3 % q, y3 % q, z3 % q, t3 % q)
def edwards_double(P):
# This is formula sequence 'dbl-2008-hwcd' from
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
(x1, y1, z1, t1) = P
a = x1 * x1 % q
b = y1 * y1 % q
c = 2 * z1 * z1 % q
# dd = -a
e = ((x1 + y1) * (x1 + y1) - a - b) % q
g = -a + b # dd + b
f = g - c
h = -a - b # dd - b
x3 = e * f
y3 = g * h
t3 = e * h
z3 = f * g
return (x3 % q, y3 % q, z3 % q, t3 % q)
def scalarmult(P, e):
if e == 0:
return ident
Q = scalarmult(P, e // 2)
Q = edwards_double(Q)
if e & 1:
Q = edwards_add(Q, P)
return Q
# Bpow[i] == scalarmult(B, 2**i)
Bpow = []
def make_Bpow():
P = B
for i in range(253):
Bpow.append(P)
P = edwards_double(P)
make_Bpow()
def scalarmult_B(e):
"""
Implements scalarmult(B, e) more efficiently.
"""
# scalarmult(B, l) is the identity
e = e % l
P = ident
for i in range(253):
if e & 1:
P = edwards_add(P, Bpow[i])
e = e // 2
assert e == 0, e
return P
def encodeint(y):
bits = [(y >> i) & 1 for i in range(b)]
return bytes(
[sum([bits[i * 8 + j] << j for j in range(8)]) for i in range(b // 8)]
)
def encodepoint(P):
(x, y, z, t) = P
zi = inv(z)
x = (x * zi) % q
y = (y * zi) % q
bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1]
return bytes(
[sum([bits[i * 8 + j] << j for j in range(8)]) for i in range(b // 8)]
)
def bit(h, i):
return (h[i // 8] >> (i % 8)) & 1
def publickey_unsafe(sk):
"""
Not safe to use with secret keys or secret data.
See module docstring. This function should be used for testing only.
"""
h = H(sk)
a = 2 ** (b - 2) + sum(2**i * bit(h, i) for i in range(3, b - 2))
A = scalarmult_B(a)
return encodepoint(A)
def Hint(m):
h = H(m)
return sum(2**i * bit(h, i) for i in range(2 * b))
def signature_unsafe(m, sk, pk):
"""
Not safe to use with secret keys or secret data.
See module docstring. This function should be used for testing only.
"""
h = H(sk)
a = 2 ** (b - 2) + sum(2**i * bit(h, i) for i in range(3, b - 2))
r = Hint(bytes([h[j] for j in range(b // 8, b // 4)]) + m)
R = scalarmult_B(r)
S = (r + Hint(encodepoint(R) + pk + m) * a) % l
return encodepoint(R) + encodeint(S)
def isoncurve(P):
(x, y, z, t) = P
return (
z % q != 0
and x * y % q == z * t % q
and (y * y - x * x - z * z - d * t * t) % q == 0
)
def decodeint(s):
return sum(2**i * bit(s, i) for i in range(0, b))
def decodepoint(s):
y = sum(2**i * bit(s, i) for i in range(0, b - 1))
x = xrecover(y)
if x & 1 != bit(s, b - 1):
x = q - x
P = (x, y, 1, (x * y) % q)
if not isoncurve(P):
raise ValueError("decoding point that is not on curve")
return P
class SignatureMismatch(Exception):
pass
def checkvalid(s, m, pk):
"""
Not safe to use when any argument is secret.
See module docstring. This function should be used only for
verifying public signatures of public messages.
"""
if len(s) != b // 4:
raise ValueError("signature length is wrong")
if len(pk) != b // 8:
raise ValueError("public-key length is wrong")
R = decodepoint(s[: b // 8])
A = decodepoint(pk)
S = decodeint(s[b // 8 : b // 4])
h = Hint(encodepoint(R) + pk + m)
(x1, y1, z1, t1) = P = scalarmult_B(S)
(x2, y2, z2, t2) = Q = edwards_add(R, scalarmult(A, h))
if (
not isoncurve(P)
or not isoncurve(Q)
or (x1 * z2 - x2 * z1) % q != 0
or (y1 * z2 - y2 * z1) % q != 0
):
raise SignatureMismatch("signature does not pass verification")