Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add shuffle kwarg to GroupBy.map #9706

Draft
wants to merge 47 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
47 commits
Select commit Hold shift + click to select a range
3bc51bd
Add GroupBy.shuffle()
dcherian Aug 7, 2024
60d7619
Cleanup
dcherian Aug 7, 2024
d1429cd
Cleanup
dcherian Aug 7, 2024
31fc00e
fix
dcherian Aug 7, 2024
4583853
return groupby instance from shuffle
dcherian Aug 13, 2024
abd9dd2
Fix nD by
dcherian Aug 13, 2024
6b820aa
Merge branch 'main' into groupby-shuffle
dcherian Aug 14, 2024
0d70656
Skip if no dask
dcherian Aug 14, 2024
fafb937
fix tests
dcherian Aug 14, 2024
939db9a
Merge branch 'main' into groupby-shuffle
dcherian Aug 14, 2024
a08450e
Add `chunks` to signature
dcherian Aug 14, 2024
d0cd218
FIx self
dcherian Aug 14, 2024
4edc976
Another Self fix
dcherian Aug 14, 2024
0b42be4
Forward chunks too
dcherian Aug 14, 2024
c52734d
[revert]
dcherian Aug 14, 2024
8180625
undo flox limit
dcherian Aug 14, 2024
7897c91
[revert]
dcherian Aug 14, 2024
7773548
fix types
dcherian Aug 14, 2024
51a7723
Add DataArray.shuffle_by, Dataset.shuffle_by
dcherian Aug 15, 2024
cc95513
Add doctest
dcherian Aug 15, 2024
18f4a40
Refactor
dcherian Aug 15, 2024
f489bcf
tweak docstrings
dcherian Aug 15, 2024
ead1bb4
fix typing
dcherian Aug 15, 2024
75115d0
Fix
dcherian Aug 15, 2024
390863a
fix docstring
dcherian Aug 15, 2024
a408cb0
bump min version to dask>=2024.08.1
dcherian Aug 17, 2024
7038f37
Merge branch 'main' into groupby-shuffle
dcherian Aug 17, 2024
05a0fb4
Fix typing
dcherian Aug 17, 2024
b8e7f62
Fix types
dcherian Aug 17, 2024
6d9ed1c
Merge branch 'main' into groupby-shuffle
dcherian Aug 22, 2024
20a8cd9
Merge branch 'main' into groupby-shuffle
dcherian Aug 30, 2024
7a99c8f
remove shuffle_by for now.
dcherian Aug 30, 2024
5e2fdfb
Add tests
dcherian Aug 30, 2024
a22c7ed
Support shuffling with multiple groupers
dcherian Aug 30, 2024
2d48690
Revert "remove shuffle_by for now."
dcherian Sep 11, 2024
0679d2b
Merge branch 'main' into groupby-shuffle
dcherian Sep 12, 2024
63b3e77
Merge branch 'main' into groupby-shuffle
dcherian Sep 17, 2024
7dc5dd1
bad merge
dcherian Sep 17, 2024
bad0744
Merge branch 'main' into groupby-shuffle
dcherian Sep 18, 2024
91e4bd8
Add a test
dcherian Sep 18, 2024
0542944
Merge branch 'main' into groupby-shuffle
dcherian Nov 1, 2024
1e4f805
Add docs
dcherian Nov 1, 2024
ad502aa
bugfix
dcherian Nov 1, 2024
4b0c143
Refactor out Dataset._shuffle
dcherian Nov 2, 2024
2b2c4ab
Merge branch 'main' into groupby-shuffle
dcherian Nov 3, 2024
f624c8f
fix types
dcherian Nov 3, 2024
fa6311a
Add GroupBy.map(..., shuffle=True)
dcherian Nov 2, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions doc/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -250,6 +250,7 @@ Reshaping and reorganizing
Dataset.roll
Dataset.pad
Dataset.sortby
Dataset.shuffle_by
Dataset.broadcast_like

DataArray
Expand Down Expand Up @@ -590,6 +591,7 @@ Reshaping and reorganizing
DataArray.roll
DataArray.pad
DataArray.sortby
DataArray.shuffle_by
DataArray.broadcast_like

DataTree
Expand Down Expand Up @@ -1096,6 +1098,7 @@ Dataset
DatasetGroupBy.var
DatasetGroupBy.dims
DatasetGroupBy.groups
DatasetGroupBy.shuffle

DataArray
---------
Expand Down Expand Up @@ -1127,6 +1130,7 @@ DataArray
DataArrayGroupBy.var
DataArrayGroupBy.dims
DataArrayGroupBy.groups
DataArrayGroupBy.shuffle

Grouper Objects
---------------
Expand Down
38 changes: 38 additions & 0 deletions doc/user-guide/groupby.rst
Original file line number Diff line number Diff line change
Expand Up @@ -321,3 +321,41 @@ Different groupers can be combined to construct sophisticated GroupBy operations
from xarray.groupers import BinGrouper

ds.groupby(x=BinGrouper(bins=[5, 15, 25]), letters=UniqueGrouper()).sum()


Shuffling
~~~~~~~~~

Shuffling is a generalization of sorting a DataArray or Dataset by another DataArray, named ``label`` for example, that follows from the idea of grouping by ``label``.
Shuffling reorders the DataArray or the DataArrays in a Dataset such that all members of a group occur sequentially. For example,

.. ipython:: python

da = xr.DataArray(
dims="x",
data=[1, 2, 3, 4, 5, 6],
coords={"label": ("x", "a b c a b c".split(" "))},
)
da.shuffle_by("label")


:py:meth:`Dataset.shuffle_by` and :py:meth:`DataArray.shuffle_by` can also take Grouper objects:

.. ipython:: python

from xarray.groupers import UniqueGrouper

da.shuffle_by(label=UniqueGrouper())


Shuffling can also be performed on :py:class:`DatasetGroupBy` and :py:class:`DataArrayGroupBy` objects.
The :py:meth:`DatasetGroupBy.shuffle` and :py:meth:`DataArrayGroupBy.shuffle` methods return new :py:class:`DatasetGroupBy` and :py:class:`DataArrayGroupBy` objects that operate on the shuffled Dataset or DataArray respectively.


.. ipython:: python

da.groupby(label=UniqueGrouper()).shuffle()


For chunked array types (e.g. dask or cubed), shuffle may result in a more optimized communication pattern when compared to direct indexing by the appropriate indexer.
Shuffling also makes GroupBy operations on chunked arrays an embarrassingly parallel problem, and may significantly improve workloads that use :py:meth:`DatasetGroupBy.map` or :py:meth:`DataArrayGroupBy.map`.
64 changes: 63 additions & 1 deletion xarray/core/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@
T_Variable,
)
from xarray.core.variable import Variable
from xarray.groupers import Resampler
from xarray.groupers import Grouper, Resampler

DTypeMaybeMapping = Union[DTypeLikeSave, Mapping[Any, DTypeLikeSave]]

Expand Down Expand Up @@ -891,6 +891,68 @@ def rolling_exp(

return rolling_exp.RollingExp(self, window, window_type)

def shuffle_by(
self,
group: Hashable | DataArray | Mapping[Any, Grouper] | None = None,
chunks: T_Chunks = None,
**groupers: Grouper,
) -> Self:
"""
Sort or "shuffle" this object by a Grouper.

"Shuffle" means the object is sorted so that all group members occur sequentially,
in the same chunk. Multiple groups may occur in the same chunk.
This method is particularly useful for chunked arrays (e.g. dask, cubed).
For chunked array types, the order of appearance is not guaranteed, but will depend on
the input chunking.

Parameters
----------
group : Hashable or DataArray or IndexVariable or mapping of Hashable to Grouper
Array whose unique values should be used to group this array. If a
Hashable, must be the name of a coordinate contained in this dataarray. If a dictionary,
must map an existing variable name to a :py:class:`Grouper` instance.
chunks : int, tuple of int, "auto" or mapping of hashable to int or tuple of int, optional
How to adjust chunks along dimensions not present in the array being grouped by.
**groupers : Grouper
Grouper objects using which to shuffle the data.

Examples
--------
>>> import dask
>>> from xarray.groupers import UniqueGrouper
>>> da = xr.DataArray(
... dims="x",
... data=dask.array.arange(10, chunks=1),
... coords={"x": [1, 2, 3, 1, 2, 3, 1, 2, 3, 0]},
... name="a",
... )
>>> da
<xarray.DataArray 'a' (x: 10)> Size: 80B
dask.array<arange, shape=(10,), dtype=int64, chunksize=(1,), chunktype=numpy.ndarray>
Coordinates:
* x (x) int64 80B 1 2 3 1 2 3 1 2 3 0

>>> da.shuffle_by(x=UniqueGrouper())
<xarray.DataArray 'a' (x: 10)> Size: 80B
dask.array<shuffle, shape=(10,), dtype=int64, chunksize=(3,), chunktype=numpy.ndarray>
Coordinates:
* x (x) int64 80B 0 1 1 1 2 2 2 3 3 3

Returns
-------
DataArray or Dataset
The same type as this object

See Also
--------
DataArrayGroupBy.shuffle
DatasetGroupBy.shuffle
dask.dataframe.DataFrame.shuffle
dask.array.shuffle
"""
return self.groupby(group=group, **groupers)._shuffle_obj(chunks)

def _resample(
self,
resample_cls: type[T_Resample],
Expand Down
7 changes: 7 additions & 0 deletions xarray/core/dataarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,7 @@
Self,
SideOptions,
T_ChunkDimFreq,
T_Chunks,
T_ChunksFreq,
T_Xarray,
)
Expand Down Expand Up @@ -661,6 +662,12 @@ def _to_dataset_whole(
coord_names = set(self._coords)
return Dataset._construct_direct(variables, coord_names, indexes=indexes)

def _shuffle(self, dim, *, indices: list[list[int]], chunks: T_Chunks) -> None:
shuffled = self._to_temp_dataset()._shuffle(
dim=dim, indices=indices, chunks=chunks
)
return self._from_temp_dataset(shuffled)

def to_dataset(
self,
dim: Hashable = None,
Expand Down
25 changes: 25 additions & 0 deletions xarray/core/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,6 +166,7 @@
ResampleCompatible,
SideOptions,
T_ChunkDimFreq,
T_Chunks,
T_DatasetPadConstantValues,
T_Xarray,
)
Expand Down Expand Up @@ -3236,6 +3237,30 @@ def sel(
result = self.isel(indexers=query_results.dim_indexers, drop=drop)
return result._overwrite_indexes(*query_results.as_tuple()[1:])

def _shuffle(self, dim, *, indices: list[list[int]], chunks: T_Chunks) -> Self:
# Shuffling is only different from `isel` for chunked arrays.
# Extract them out, and treat them specially. The rest, we route through isel.
# This makes it easy to ensure correct handling of indexes.
is_chunked = {
name: var
for name, var in self._variables.items()
if is_chunked_array(var._data)
}
subset = self[[name for name in self._variables if name not in is_chunked]]

shuffled = (
subset
if dim not in subset.dims
else subset.isel({dim: np.concatenate(indices)})
)
for name, var in is_chunked.items():
shuffled[name] = var._shuffle(
indices=indices,
dim=dim,
chunks=chunks,
)
return shuffled

def head(
self,
indexers: Mapping[Any, int] | int | None = None,
Expand Down
Loading
Loading