From e69bedffbc5fd7fb770c9fcdb778785d35adf3ba Mon Sep 17 00:00:00 2001 From: GitHub Action Date: Fri, 3 Nov 2023 21:57:47 +0000 Subject: [PATCH] Update documentation --- .../notebooks_Raster_awareness_API_17_1.png | Bin 0 -> 9319 bytes .../notebooks_Raster_awareness_API_29_1.png | Bin 0 -> 35340 bytes .../notebooks_Raster_awareness_API_33_0.png | Bin 0 -> 40151 bytes .../notebooks_Raster_awareness_API_37_2.png | Bin 0 -> 11238 bytes .../notebooks_Raster_awareness_API_39_1.png | Bin 0 -> 17956 bytes .../notebooks_Raster_awareness_API_6_1.png | Bin 0 -> 65884 bytes _images/notebooks_examples_40_1.png | Bin 0 -> 22571 bytes _images/notebooks_voronoi_10_1.png | Bin 0 -> 14075 bytes _images/notebooks_voronoi_15_1.png | Bin 0 -> 8474 bytes _images/notebooks_voronoi_16_1.png | Bin 0 -> 12160 bytes _images/notebooks_voronoi_19_0.png | Bin 0 -> 64841 bytes _images/notebooks_weights_12_0.png | Bin 0 -> 37127 bytes _images/notebooks_weights_21_0.png | Bin 0 -> 37698 bytes _images/notebooks_weights_28_1.png | Bin 0 -> 53698 bytes _images/notebooks_weights_31_0.png | Bin 0 -> 38241 bytes _images/notebooks_weights_38_0.png | Bin 0 -> 34252 bytes _images/notebooks_weights_41_0.png | Bin 0 -> 36041 bytes _images/notebooks_weights_57_0.png | Bin 0 -> 475756 bytes _images/notebooks_weights_58_0.png | Bin 0 -> 531984 bytes _images/notebooks_weights_7_0.png | Bin 0 -> 12971 bytes _modules/index.html | 166 + _modules/libpysal/cg/alpha_shapes.html | 860 +++ _modules/libpysal/cg/kdtree.html | 472 ++ _modules/libpysal/cg/locators.html | 1023 +++ _modules/libpysal/cg/shapes.html | 2193 ++++++ _modules/libpysal/cg/sphere.html | 821 ++ _modules/libpysal/cg/standalone.html | 1500 ++++ _modules/libpysal/cg/voronoi.html | 480 ++ _modules/libpysal/examples.html | 238 + _modules/libpysal/graph/base.html | 1604 ++++ _modules/libpysal/io/fileio.html | 644 ++ _modules/libpysal/weights/contiguity.html | 935 +++ _modules/libpysal/weights/distance.html | 1182 +++ _modules/libpysal/weights/gabriel.html | 525 ++ _modules/libpysal/weights/raster.html | 1019 +++ _modules/libpysal/weights/set_operations.html | 686 ++ _modules/libpysal/weights/spatial_lag.html | 393 + _modules/libpysal/weights/spintW.html | 437 ++ _modules/libpysal/weights/user.html | 308 + _modules/libpysal/weights/util.html | 1901 +++++ _modules/libpysal/weights/weights.html | 1923 +++++ _sources/api.rst.txt | 265 + _sources/generated/libpysal.cg.Chain.rst.txt | 33 + _sources/generated/libpysal.cg.Grid.rst.txt | 28 + _sources/generated/libpysal.cg.KDTree.rst.txt | 6 + _sources/generated/libpysal.cg.Line.rst.txt | 24 + .../generated/libpysal.cg.LineSegment.rst.txt | 37 + _sources/generated/libpysal.cg.Point.rst.txt | 22 + .../libpysal.cg.PointLocator.rst.txt | 27 + .../generated/libpysal.cg.Polygon.rst.txt | 38 + .../libpysal.cg.PolygonLocator.rst.txt | 28 + .../libpysal.cg.RADIUS_EARTH_KM.rst.txt | 6 + .../libpysal.cg.RADIUS_EARTH_MILES.rst.txt | 6 + _sources/generated/libpysal.cg.Ray.rst.txt | 22 + .../generated/libpysal.cg.Rectangle.rst.txt | 32 + .../generated/libpysal.cg.alpha_shape.rst.txt | 6 + .../libpysal.cg.alpha_shape_auto.rst.txt | 6 + .../generated/libpysal.cg.arcdist.rst.txt | 6 + .../libpysal.cg.arcdist2linear.rst.txt | 6 + .../generated/libpysal.cg.asShape.rst.txt | 6 + .../generated/libpysal.cg.bbcommon.rst.txt | 6 + .../generated/libpysal.cg.brute_knn.rst.txt | 6 + .../generated/libpysal.cg.convex_hull.rst.txt | 6 + .../libpysal.cg.distance_matrix.rst.txt | 6 + .../generated/libpysal.cg.fast_knn.rst.txt | 6 + .../libpysal.cg.fast_threshold.rst.txt | 6 + .../generated/libpysal.cg.geogrid.rst.txt | 6 + .../libpysal.cg.geointerpolate.rst.txt | 6 + .../libpysal.cg.get_angle_between.rst.txt | 6 + .../libpysal.cg.get_bounding_box.rst.txt | 6 + ...sal.cg.get_point_at_angle_and_dist.rst.txt | 6 + .../libpysal.cg.get_points_dist.rst.txt | 6 + ...libpysal.cg.get_polygon_point_dist.rst.txt | 6 + ...sal.cg.get_polygon_point_intersect.rst.txt | 6 + ...pysal.cg.get_ray_segment_intersect.rst.txt | 6 + ...l.cg.get_rectangle_point_intersect.rst.txt | 6 + ...t_rectangle_rectangle_intersection.rst.txt | 6 + ...libpysal.cg.get_segment_point_dist.rst.txt | 6 + ...sal.cg.get_segment_point_intersect.rst.txt | 6 + ...libpysal.cg.get_segments_intersect.rst.txt | 6 + .../libpysal.cg.get_shared_segments.rst.txt | 6 + .../generated/libpysal.cg.harcdist.rst.txt | 6 + .../libpysal.cg.is_clockwise.rst.txt | 6 + .../libpysal.cg.is_collinear.rst.txt | 6 + .../libpysal.cg.linear2arcdist.rst.txt | 6 + _sources/generated/libpysal.cg.lonlat.rst.txt | 6 + ...ibpysal.cg.point_touches_rectangle.rst.txt | 6 + .../generated/libpysal.cg.toLngLat.rst.txt | 6 + _sources/generated/libpysal.cg.toXYZ.rst.txt | 6 + .../libpysal.cg.voronoi_frames.rst.txt | 6 + .../libpysal.examples.available.rst.txt | 6 + .../libpysal.examples.explain.rst.txt | 6 + .../libpysal.examples.get_path.rst.txt | 6 + .../generated/libpysal.graph.Graph.rst.txt | 72 + .../libpysal.io.fileio.FileIO.rst.txt | 42 + _sources/generated/libpysal.io.open.rst.txt | 42 + .../libpysal.weights.Delaunay.rst.txt | 76 + .../libpysal.weights.DistanceBand.rst.txt | 77 + .../libpysal.weights.Gabriel.rst.txt | 76 + .../generated/libpysal.weights.KNN.rst.txt | 78 + .../generated/libpysal.weights.Kernel.rst.txt | 77 + .../generated/libpysal.weights.ODW.rst.txt | 6 + .../generated/libpysal.weights.Queen.rst.txt | 78 + ...ysal.weights.Relative_Neighborhood.rst.txt | 76 + .../generated/libpysal.weights.Rook.rst.txt | 78 + .../libpysal.weights.Voronoi.rst.txt | 6 + _sources/generated/libpysal.weights.W.rst.txt | 75 + .../generated/libpysal.weights.WSP.rst.txt | 33 + .../generated/libpysal.weights.WSP2W.rst.txt | 6 + .../libpysal.weights.attach_islands.rst.txt | 6 + .../libpysal.weights.block_weights.rst.txt | 6 + ...al.weights.build_lattice_shapefile.rst.txt | 6 + .../generated/libpysal.weights.comb.rst.txt | 6 + .../generated/libpysal.weights.da2W.rst.txt | 6 + .../generated/libpysal.weights.da2WSP.rst.txt | 6 + .../libpysal.weights.fill_diagonal.rst.txt | 6 + .../generated/libpysal.weights.full.rst.txt | 6 + .../generated/libpysal.weights.full2W.rst.txt | 6 + .../libpysal.weights.fuzzy_contiguity.rst.txt | 6 + .../libpysal.weights.get_ids.rst.txt | 6 + ...ts.get_points_array_from_shapefile.rst.txt | 6 + .../libpysal.weights.hexLat2W.rst.txt | 6 + .../libpysal.weights.higher_order.rst.txt | 6 + .../libpysal.weights.higher_order_sp.rst.txt | 6 + .../libpysal.weights.lag_categorical.rst.txt | 6 + .../libpysal.weights.lag_spatial.rst.txt | 6 + .../generated/libpysal.weights.lat2SW.rst.txt | 6 + .../generated/libpysal.weights.lat2W.rst.txt | 6 + .../generated/libpysal.weights.mat2L.rst.txt | 6 + ....min_threshold_dist_from_shapefile.rst.txt | 6 + ...sal.weights.min_threshold_distance.rst.txt | 6 + ...libpysal.weights.neighbor_equality.rst.txt | 6 + .../generated/libpysal.weights.netW.rst.txt | 6 + ...bpysal.weights.nonplanar_neighbors.rst.txt | 6 + .../generated/libpysal.weights.order.rst.txt | 6 + .../libpysal.weights.remap_ids.rst.txt | 6 + .../libpysal.weights.shimbel.rst.txt | 6 + .../libpysal.weights.spw_from_gal.rst.txt | 6 + .../libpysal.weights.testDataArray.rst.txt | 6 + .../generated/libpysal.weights.vecW.rst.txt | 6 + .../generated/libpysal.weights.w2da.rst.txt | 6 + .../generated/libpysal.weights.w_clip.rst.txt | 6 + .../libpysal.weights.w_difference.rst.txt | 6 + .../libpysal.weights.w_intersection.rst.txt | 6 + .../libpysal.weights.w_local_cluster.rst.txt | 6 + .../libpysal.weights.w_subset.rst.txt | 6 + ...sal.weights.w_symmetric_difference.rst.txt | 6 + .../libpysal.weights.w_union.rst.txt | 6 + .../generated/libpysal.weights.wsp2da.rst.txt | 6 + _sources/index.rst.txt | 141 +- _sources/installation.rst.txt | 56 + .../notebooks/Raster_awareness_API.ipynb.txt | 773 ++ _sources/notebooks/examples.ipynb.txt | 1093 +++ _sources/notebooks/fetch.ipynb.txt | 887 +++ _sources/notebooks/io.ipynb.txt | 310 + _sources/notebooks/voronoi.ipynb.txt | 476 ++ _sources/notebooks/weights.ipynb.txt | 1263 +++ _sources/references.rst.txt | 7 + _sources/tutorial.rst.txt | 21 + _static/basic.css | 325 +- .../css/bootstrap-responsive.css | 1109 +++ .../css/bootstrap-responsive.min.css | 9 + _static/bootstrap-2.3.2/css/bootstrap.css | 6167 +++++++++++++++ _static/bootstrap-2.3.2/css/bootstrap.min.css | 9 + .../img/glyphicons-halflings-white.png | Bin 0 -> 8777 bytes .../img/glyphicons-halflings.png | Bin 0 -> 12799 bytes _static/bootstrap-2.3.2/js/bootstrap.js | 2287 ++++++ _static/bootstrap-2.3.2/js/bootstrap.min.js | 6 + .../bootstrap-3.4.1/css/bootstrap-theme.css | 587 ++ .../css/bootstrap-theme.css.map | 1 + .../css/bootstrap-theme.min.css | 6 + .../css/bootstrap-theme.min.css.map | 1 + _static/bootstrap-3.4.1/css/bootstrap.css | 6834 +++++++++++++++++ _static/bootstrap-3.4.1/css/bootstrap.css.map | 1 + _static/bootstrap-3.4.1/css/bootstrap.min.css | 6 + .../bootstrap-3.4.1/css/bootstrap.min.css.map | 1 + .../fonts/glyphicons-halflings-regular.eot | Bin 0 -> 20127 bytes .../fonts/glyphicons-halflings-regular.svg | 288 + .../fonts/glyphicons-halflings-regular.ttf | Bin 0 -> 45404 bytes .../fonts/glyphicons-halflings-regular.woff | Bin 0 -> 23424 bytes .../fonts/glyphicons-halflings-regular.woff2 | Bin 0 -> 18028 bytes _static/bootstrap-3.4.1/js/bootstrap.js | 2580 +++++++ _static/bootstrap-3.4.1/js/bootstrap.min.js | 6 + _static/bootstrap-3.4.1/js/npm.js | 13 + _static/bootstrap-sphinx.css | 223 + _static/bootstrap-sphinx.js | 175 + .../bootswatch-2.3.2/amelia/bootstrap.min.css | 9 + .../cerulean/bootstrap.min.css | 9 + .../bootswatch-2.3.2/cosmo/bootstrap.min.css | 9 + .../bootswatch-2.3.2/cyborg/bootstrap.min.css | 9 + .../bootswatch-2.3.2/flatly/bootstrap.min.css | 9 + .../img/glyphicons-halflings-white.png | Bin 0 -> 8777 bytes .../img/glyphicons-halflings.png | Bin 0 -> 12799 bytes .../journal/bootstrap.min.css | 9 + .../readable/bootstrap.min.css | 9 + .../simplex/bootstrap.min.css | 9 + .../bootswatch-2.3.2/slate/bootstrap.min.css | 9 + .../spacelab/bootstrap.min.css | 9 + .../bootswatch-2.3.2/spruce/bootstrap.min.css | 9 + .../superhero/bootstrap.min.css | 9 + .../bootswatch-2.3.2/united/bootstrap.min.css | 9 + .../cerulean/bootstrap.min.css | 11 + .../bootswatch-3.4.1/cosmo/bootstrap.min.css | 11 + .../bootswatch-3.4.1/cyborg/bootstrap.min.css | 11 + .../bootswatch-3.4.1/darkly/bootstrap.min.css | 11 + .../bootswatch-3.4.1/flatly/bootstrap.min.css | 11 + .../fonts/glyphicons-halflings-regular.eot | Bin 0 -> 20127 bytes .../fonts/glyphicons-halflings-regular.svg | 288 + .../fonts/glyphicons-halflings-regular.ttf | Bin 0 -> 45404 bytes .../fonts/glyphicons-halflings-regular.woff | Bin 0 -> 23424 bytes .../fonts/glyphicons-halflings-regular.woff2 | Bin 0 -> 18028 bytes .../journal/bootstrap.min.css | 11 + .../bootswatch-3.4.1/lumen/bootstrap.min.css | 11 + .../bootswatch-3.4.1/paper/bootstrap.min.css | 11 + .../readable/bootstrap.min.css | 11 + .../sandstone/bootstrap.min.css | 11 + .../simplex/bootstrap.min.css | 11 + .../bootswatch-3.4.1/slate/bootstrap.min.css | 11 + .../spacelab/bootstrap.min.css | 11 + .../superhero/bootstrap.min.css | 11 + .../bootswatch-3.4.1/united/bootstrap.min.css | 11 + .../bootswatch-3.4.1/yeti/bootstrap.min.css | 11 + _static/doctools.js | 377 +- _static/documentation_options.js | 12 +- _static/images/neighboorsetLIMA_US.png | Bin 0 -> 654235 bytes _static/images/npweights.png | Bin 0 -> 517599 bytes _static/images/pysal_favicon.ico | Bin 0 -> 32038 bytes _static/images/rose_conditional.png | Bin 0 -> 35347 bytes _static/images/spatial_markov_us.png | Bin 0 -> 134429 bytes _static/js/jquery-1.12.4.min.js | 5 + _static/js/jquery-fix.js | 2 + _static/language_data.js | 106 +- _static/nbsphinx-broken-thumbnail.svg | 9 + _static/nbsphinx-code-cells.css | 259 + _static/nbsphinx-gallery.css | 31 + _static/nbsphinx-no-thumbnail.svg | 9 + _static/plot_directive.css | 16 + _static/pygments.css | 144 +- _static/pysal-styles.css | 73 + _static/pysal_favicon.ico | Bin 0 -> 32038 bytes _static/references.bib | 39 + _static/searchtools.js | 818 +- _static/sphinx_highlight.js | 154 + api.html | 651 ++ generated/libpysal.cg.Chain.html | 331 + generated/libpysal.cg.Grid.html | 356 + generated/libpysal.cg.KDTree.html | 189 + generated/libpysal.cg.Line.html | 265 + generated/libpysal.cg.LineSegment.html | 504 ++ generated/libpysal.cg.Point.html | 197 + generated/libpysal.cg.PointLocator.html | 311 + generated/libpysal.cg.Polygon.html | 498 ++ generated/libpysal.cg.PolygonLocator.html | 419 + generated/libpysal.cg.RADIUS_EARTH_KM.html | 167 + generated/libpysal.cg.RADIUS_EARTH_MILES.html | 167 + generated/libpysal.cg.Ray.html | 214 + generated/libpysal.cg.Rectangle.html | 337 + generated/libpysal.cg.alpha_shape.html | 205 + generated/libpysal.cg.alpha_shape_auto.html | 211 + generated/libpysal.cg.arcdist.html | 197 + generated/libpysal.cg.arcdist2linear.html | 200 + generated/libpysal.cg.asShape.html | 190 + generated/libpysal.cg.bbcommon.html | 191 + generated/libpysal.cg.brute_knn.html | 194 + generated/libpysal.cg.convex_hull.html | 187 + generated/libpysal.cg.distance_matrix.html | 227 + generated/libpysal.cg.fast_knn.html | 196 + generated/libpysal.cg.fast_threshold.html | 191 + generated/libpysal.cg.geogrid.html | 216 + generated/libpysal.cg.geointerpolate.html | 207 + generated/libpysal.cg.get_angle_between.html | 197 + generated/libpysal.cg.get_bounding_box.html | 199 + ...bpysal.cg.get_point_at_angle_and_dist.html | 200 + generated/libpysal.cg.get_points_dist.html | 192 + .../libpysal.cg.get_polygon_point_dist.html | 195 + ...bpysal.cg.get_polygon_point_intersect.html | 195 + ...libpysal.cg.get_ray_segment_intersect.html | 207 + ...ysal.cg.get_rectangle_point_intersect.html | 195 + ....get_rectangle_rectangle_intersection.html | 214 + .../libpysal.cg.get_segment_point_dist.html | 200 + ...bpysal.cg.get_segment_point_intersect.html | 195 + .../libpysal.cg.get_segments_intersect.html | 201 + .../libpysal.cg.get_shared_segments.html | 199 + generated/libpysal.cg.harcdist.html | 206 + generated/libpysal.cg.is_clockwise.html | 261 + generated/libpysal.cg.is_collinear.html | 194 + generated/libpysal.cg.linear2arcdist.html | 202 + generated/libpysal.cg.lonlat.html | 190 + .../libpysal.cg.point_touches_rectangle.html | 202 + generated/libpysal.cg.toLngLat.html | 181 + generated/libpysal.cg.toXYZ.html | 181 + generated/libpysal.cg.voronoi_frames.html | 214 + generated/libpysal.examples.available.html | 167 + generated/libpysal.examples.explain.html | 167 + generated/libpysal.examples.get_path.html | 167 + generated/libpysal.graph.Graph.html | 1306 ++++ generated/libpysal.io.fileio.FileIO.html | 398 + generated/libpysal.io.open.html | 167 + generated/libpysal.weights.Delaunay.html | 396 + generated/libpysal.weights.DistanceBand.html | 482 ++ generated/libpysal.weights.Gabriel.html | 359 + generated/libpysal.weights.KNN.html | 605 ++ generated/libpysal.weights.Kernel.html | 557 ++ generated/libpysal.weights.ODW.html | 202 + generated/libpysal.weights.Queen.html | 536 ++ ...ibpysal.weights.Relative_Neighborhood.html | 356 + generated/libpysal.weights.Rook.html | 533 ++ generated/libpysal.weights.Voronoi.html | 194 + generated/libpysal.weights.W.html | 1337 ++++ generated/libpysal.weights.WSP.html | 343 + generated/libpysal.weights.WSP2W.html | 205 + .../libpysal.weights.attach_islands.html | 199 + generated/libpysal.weights.block_weights.html | 212 + ...pysal.weights.build_lattice_shapefile.html | 184 + generated/libpysal.weights.comb.html | 196 + generated/libpysal.weights.da2W.html | 248 + generated/libpysal.weights.da2WSP.html | 247 + generated/libpysal.weights.fill_diagonal.html | 212 + generated/libpysal.weights.full.html | 196 + generated/libpysal.weights.full2W.html | 220 + .../libpysal.weights.fuzzy_contiguity.html | 251 + generated/libpysal.weights.get_ids.html | 209 + ...ights.get_points_array_from_shapefile.html | 204 + generated/libpysal.weights.hexLat2W.html | 203 + generated/libpysal.weights.higher_order.html | 204 + .../libpysal.weights.higher_order_sp.html | 221 + .../libpysal.weights.lag_categorical.html | 226 + generated/libpysal.weights.lag_spatial.html | 237 + generated/libpysal.weights.lat2SW.html | 203 + generated/libpysal.weights.lat2W.html | 204 + generated/libpysal.weights.mat2L.html | 185 + ...hts.min_threshold_dist_from_shapefile.html | 205 + ...bpysal.weights.min_threshold_distance.html | 198 + .../libpysal.weights.neighbor_equality.html | 209 + generated/libpysal.weights.netW.html | 204 + .../libpysal.weights.nonplanar_neighbors.html | 231 + generated/libpysal.weights.order.html | 198 + generated/libpysal.weights.remap_ids.html | 205 + generated/libpysal.weights.shimbel.html | 192 + generated/libpysal.weights.spw_from_gal.html | 190 + generated/libpysal.weights.testDataArray.html | 191 + generated/libpysal.weights.vecW.html | 226 + generated/libpysal.weights.w2da.html | 198 + generated/libpysal.weights.w_clip.html | 272 + generated/libpysal.weights.w_difference.html | 221 + .../libpysal.weights.w_intersection.html | 212 + .../libpysal.weights.w_local_cluster.html | 207 + generated/libpysal.weights.w_subset.html | 205 + ...bpysal.weights.w_symmetric_difference.html | 219 + generated/libpysal.weights.w_union.html | 208 + generated/libpysal.weights.wsp2da.html | 198 + genindex.html | 1067 ++- index.html | 303 +- installation.html | 206 + notebooks/Raster_awareness_API.html | 722 ++ notebooks/Raster_awareness_API.ipynb | 773 ++ notebooks/examples.html | 1053 +++ notebooks/examples.ipynb | 1093 +++ notebooks/fetch.html | 943 +++ notebooks/fetch.ipynb | 887 +++ notebooks/io.html | 412 + notebooks/io.ipynb | 310 + notebooks/voronoi.html | 536 ++ notebooks/voronoi.ipynb | 476 ++ notebooks/weights.html | 1174 +++ notebooks/weights.ipynb | 1263 +++ objects.inv | Bin 273 -> 12164 bytes references.html | 173 + search.html | 206 +- searchindex.js | 2 +- tutorial.html | 197 + 371 files changed, 88766 insertions(+), 1141 deletions(-) create mode 100644 _images/notebooks_Raster_awareness_API_17_1.png create mode 100644 _images/notebooks_Raster_awareness_API_29_1.png create mode 100644 _images/notebooks_Raster_awareness_API_33_0.png create mode 100644 _images/notebooks_Raster_awareness_API_37_2.png create mode 100644 _images/notebooks_Raster_awareness_API_39_1.png create mode 100644 _images/notebooks_Raster_awareness_API_6_1.png create mode 100644 _images/notebooks_examples_40_1.png create mode 100644 _images/notebooks_voronoi_10_1.png create mode 100644 _images/notebooks_voronoi_15_1.png create mode 100644 _images/notebooks_voronoi_16_1.png create mode 100644 _images/notebooks_voronoi_19_0.png create mode 100644 _images/notebooks_weights_12_0.png create mode 100644 _images/notebooks_weights_21_0.png create mode 100644 _images/notebooks_weights_28_1.png create mode 100644 _images/notebooks_weights_31_0.png create mode 100644 _images/notebooks_weights_38_0.png create mode 100644 _images/notebooks_weights_41_0.png create mode 100644 _images/notebooks_weights_57_0.png create mode 100644 _images/notebooks_weights_58_0.png create mode 100644 _images/notebooks_weights_7_0.png create mode 100644 _modules/index.html create mode 100644 _modules/libpysal/cg/alpha_shapes.html create mode 100644 _modules/libpysal/cg/kdtree.html create mode 100644 _modules/libpysal/cg/locators.html create mode 100644 _modules/libpysal/cg/shapes.html create mode 100644 _modules/libpysal/cg/sphere.html create mode 100644 _modules/libpysal/cg/standalone.html create mode 100644 _modules/libpysal/cg/voronoi.html create mode 100644 _modules/libpysal/examples.html create mode 100644 _modules/libpysal/graph/base.html create mode 100644 _modules/libpysal/io/fileio.html create mode 100644 _modules/libpysal/weights/contiguity.html create mode 100644 _modules/libpysal/weights/distance.html create mode 100644 _modules/libpysal/weights/gabriel.html create mode 100644 _modules/libpysal/weights/raster.html create mode 100644 _modules/libpysal/weights/set_operations.html create mode 100644 _modules/libpysal/weights/spatial_lag.html create mode 100644 _modules/libpysal/weights/spintW.html create mode 100644 _modules/libpysal/weights/user.html create mode 100644 _modules/libpysal/weights/util.html create mode 100644 _modules/libpysal/weights/weights.html create mode 100644 _sources/api.rst.txt create mode 100644 _sources/generated/libpysal.cg.Chain.rst.txt create mode 100644 _sources/generated/libpysal.cg.Grid.rst.txt create mode 100644 _sources/generated/libpysal.cg.KDTree.rst.txt create mode 100644 _sources/generated/libpysal.cg.Line.rst.txt create mode 100644 _sources/generated/libpysal.cg.LineSegment.rst.txt create mode 100644 _sources/generated/libpysal.cg.Point.rst.txt create mode 100644 _sources/generated/libpysal.cg.PointLocator.rst.txt create mode 100644 _sources/generated/libpysal.cg.Polygon.rst.txt create mode 100644 _sources/generated/libpysal.cg.PolygonLocator.rst.txt create mode 100644 _sources/generated/libpysal.cg.RADIUS_EARTH_KM.rst.txt create mode 100644 _sources/generated/libpysal.cg.RADIUS_EARTH_MILES.rst.txt create mode 100644 _sources/generated/libpysal.cg.Ray.rst.txt create mode 100644 _sources/generated/libpysal.cg.Rectangle.rst.txt create mode 100644 _sources/generated/libpysal.cg.alpha_shape.rst.txt create mode 100644 _sources/generated/libpysal.cg.alpha_shape_auto.rst.txt create mode 100644 _sources/generated/libpysal.cg.arcdist.rst.txt create mode 100644 _sources/generated/libpysal.cg.arcdist2linear.rst.txt create mode 100644 _sources/generated/libpysal.cg.asShape.rst.txt create mode 100644 _sources/generated/libpysal.cg.bbcommon.rst.txt create mode 100644 _sources/generated/libpysal.cg.brute_knn.rst.txt create mode 100644 _sources/generated/libpysal.cg.convex_hull.rst.txt create mode 100644 _sources/generated/libpysal.cg.distance_matrix.rst.txt create mode 100644 _sources/generated/libpysal.cg.fast_knn.rst.txt create mode 100644 _sources/generated/libpysal.cg.fast_threshold.rst.txt create mode 100644 _sources/generated/libpysal.cg.geogrid.rst.txt create mode 100644 _sources/generated/libpysal.cg.geointerpolate.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_angle_between.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_bounding_box.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_point_at_angle_and_dist.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_points_dist.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_polygon_point_dist.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_polygon_point_intersect.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_ray_segment_intersect.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_rectangle_point_intersect.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_rectangle_rectangle_intersection.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_segment_point_dist.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_segment_point_intersect.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_segments_intersect.rst.txt create mode 100644 _sources/generated/libpysal.cg.get_shared_segments.rst.txt create mode 100644 _sources/generated/libpysal.cg.harcdist.rst.txt create mode 100644 _sources/generated/libpysal.cg.is_clockwise.rst.txt create mode 100644 _sources/generated/libpysal.cg.is_collinear.rst.txt create mode 100644 _sources/generated/libpysal.cg.linear2arcdist.rst.txt create mode 100644 _sources/generated/libpysal.cg.lonlat.rst.txt create mode 100644 _sources/generated/libpysal.cg.point_touches_rectangle.rst.txt create mode 100644 _sources/generated/libpysal.cg.toLngLat.rst.txt create mode 100644 _sources/generated/libpysal.cg.toXYZ.rst.txt create mode 100644 _sources/generated/libpysal.cg.voronoi_frames.rst.txt create mode 100644 _sources/generated/libpysal.examples.available.rst.txt create mode 100644 _sources/generated/libpysal.examples.explain.rst.txt create mode 100644 _sources/generated/libpysal.examples.get_path.rst.txt create mode 100644 _sources/generated/libpysal.graph.Graph.rst.txt create mode 100644 _sources/generated/libpysal.io.fileio.FileIO.rst.txt create mode 100644 _sources/generated/libpysal.io.open.rst.txt create mode 100644 _sources/generated/libpysal.weights.Delaunay.rst.txt create mode 100644 _sources/generated/libpysal.weights.DistanceBand.rst.txt create mode 100644 _sources/generated/libpysal.weights.Gabriel.rst.txt create mode 100644 _sources/generated/libpysal.weights.KNN.rst.txt create mode 100644 _sources/generated/libpysal.weights.Kernel.rst.txt create mode 100644 _sources/generated/libpysal.weights.ODW.rst.txt create mode 100644 _sources/generated/libpysal.weights.Queen.rst.txt create mode 100644 _sources/generated/libpysal.weights.Relative_Neighborhood.rst.txt create mode 100644 _sources/generated/libpysal.weights.Rook.rst.txt create mode 100644 _sources/generated/libpysal.weights.Voronoi.rst.txt create mode 100644 _sources/generated/libpysal.weights.W.rst.txt create mode 100644 _sources/generated/libpysal.weights.WSP.rst.txt create mode 100644 _sources/generated/libpysal.weights.WSP2W.rst.txt create mode 100644 _sources/generated/libpysal.weights.attach_islands.rst.txt create mode 100644 _sources/generated/libpysal.weights.block_weights.rst.txt create mode 100644 _sources/generated/libpysal.weights.build_lattice_shapefile.rst.txt create mode 100644 _sources/generated/libpysal.weights.comb.rst.txt create mode 100644 _sources/generated/libpysal.weights.da2W.rst.txt create mode 100644 _sources/generated/libpysal.weights.da2WSP.rst.txt create mode 100644 _sources/generated/libpysal.weights.fill_diagonal.rst.txt create mode 100644 _sources/generated/libpysal.weights.full.rst.txt create mode 100644 _sources/generated/libpysal.weights.full2W.rst.txt create mode 100644 _sources/generated/libpysal.weights.fuzzy_contiguity.rst.txt create mode 100644 _sources/generated/libpysal.weights.get_ids.rst.txt create mode 100644 _sources/generated/libpysal.weights.get_points_array_from_shapefile.rst.txt create mode 100644 _sources/generated/libpysal.weights.hexLat2W.rst.txt create mode 100644 _sources/generated/libpysal.weights.higher_order.rst.txt create mode 100644 _sources/generated/libpysal.weights.higher_order_sp.rst.txt create mode 100644 _sources/generated/libpysal.weights.lag_categorical.rst.txt create mode 100644 _sources/generated/libpysal.weights.lag_spatial.rst.txt create mode 100644 _sources/generated/libpysal.weights.lat2SW.rst.txt create mode 100644 _sources/generated/libpysal.weights.lat2W.rst.txt create mode 100644 _sources/generated/libpysal.weights.mat2L.rst.txt create mode 100644 _sources/generated/libpysal.weights.min_threshold_dist_from_shapefile.rst.txt create mode 100644 _sources/generated/libpysal.weights.min_threshold_distance.rst.txt create mode 100644 _sources/generated/libpysal.weights.neighbor_equality.rst.txt create mode 100644 _sources/generated/libpysal.weights.netW.rst.txt create mode 100644 _sources/generated/libpysal.weights.nonplanar_neighbors.rst.txt create mode 100644 _sources/generated/libpysal.weights.order.rst.txt create mode 100644 _sources/generated/libpysal.weights.remap_ids.rst.txt create mode 100644 _sources/generated/libpysal.weights.shimbel.rst.txt create mode 100644 _sources/generated/libpysal.weights.spw_from_gal.rst.txt create mode 100644 _sources/generated/libpysal.weights.testDataArray.rst.txt create mode 100644 _sources/generated/libpysal.weights.vecW.rst.txt create mode 100644 _sources/generated/libpysal.weights.w2da.rst.txt create mode 100644 _sources/generated/libpysal.weights.w_clip.rst.txt create mode 100644 _sources/generated/libpysal.weights.w_difference.rst.txt create mode 100644 _sources/generated/libpysal.weights.w_intersection.rst.txt create mode 100644 _sources/generated/libpysal.weights.w_local_cluster.rst.txt create mode 100644 _sources/generated/libpysal.weights.w_subset.rst.txt create mode 100644 _sources/generated/libpysal.weights.w_symmetric_difference.rst.txt create mode 100644 _sources/generated/libpysal.weights.w_union.rst.txt create mode 100644 _sources/generated/libpysal.weights.wsp2da.rst.txt create mode 100644 _sources/installation.rst.txt create mode 100644 _sources/notebooks/Raster_awareness_API.ipynb.txt create mode 100644 _sources/notebooks/examples.ipynb.txt create mode 100644 _sources/notebooks/fetch.ipynb.txt create mode 100644 _sources/notebooks/io.ipynb.txt create mode 100644 _sources/notebooks/voronoi.ipynb.txt create mode 100644 _sources/notebooks/weights.ipynb.txt create mode 100644 _sources/references.rst.txt create mode 100644 _sources/tutorial.rst.txt create mode 100644 _static/bootstrap-2.3.2/css/bootstrap-responsive.css create mode 100644 _static/bootstrap-2.3.2/css/bootstrap-responsive.min.css create mode 100644 _static/bootstrap-2.3.2/css/bootstrap.css create mode 100644 _static/bootstrap-2.3.2/css/bootstrap.min.css create mode 100644 _static/bootstrap-2.3.2/img/glyphicons-halflings-white.png create mode 100644 _static/bootstrap-2.3.2/img/glyphicons-halflings.png create mode 100644 _static/bootstrap-2.3.2/js/bootstrap.js create mode 100644 _static/bootstrap-2.3.2/js/bootstrap.min.js create mode 100644 _static/bootstrap-3.4.1/css/bootstrap-theme.css create mode 100644 _static/bootstrap-3.4.1/css/bootstrap-theme.css.map create mode 100644 _static/bootstrap-3.4.1/css/bootstrap-theme.min.css create mode 100644 _static/bootstrap-3.4.1/css/bootstrap-theme.min.css.map create mode 100644 _static/bootstrap-3.4.1/css/bootstrap.css create mode 100644 _static/bootstrap-3.4.1/css/bootstrap.css.map create mode 100644 _static/bootstrap-3.4.1/css/bootstrap.min.css create mode 100644 _static/bootstrap-3.4.1/css/bootstrap.min.css.map create mode 100644 _static/bootstrap-3.4.1/fonts/glyphicons-halflings-regular.eot create mode 100644 _static/bootstrap-3.4.1/fonts/glyphicons-halflings-regular.svg create mode 100644 _static/bootstrap-3.4.1/fonts/glyphicons-halflings-regular.ttf create mode 100644 _static/bootstrap-3.4.1/fonts/glyphicons-halflings-regular.woff create mode 100644 _static/bootstrap-3.4.1/fonts/glyphicons-halflings-regular.woff2 create mode 100644 _static/bootstrap-3.4.1/js/bootstrap.js create mode 100644 _static/bootstrap-3.4.1/js/bootstrap.min.js create mode 100644 _static/bootstrap-3.4.1/js/npm.js create mode 100644 _static/bootstrap-sphinx.css create mode 100644 _static/bootstrap-sphinx.js create mode 100644 _static/bootswatch-2.3.2/amelia/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/cerulean/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/cosmo/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/cyborg/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/flatly/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/img/glyphicons-halflings-white.png create mode 100644 _static/bootswatch-2.3.2/img/glyphicons-halflings.png create mode 100644 _static/bootswatch-2.3.2/journal/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/readable/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/simplex/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/slate/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/spacelab/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/spruce/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/superhero/bootstrap.min.css create mode 100644 _static/bootswatch-2.3.2/united/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/cerulean/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/cosmo/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/cyborg/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/darkly/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/flatly/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/fonts/glyphicons-halflings-regular.eot create mode 100644 _static/bootswatch-3.4.1/fonts/glyphicons-halflings-regular.svg create mode 100644 _static/bootswatch-3.4.1/fonts/glyphicons-halflings-regular.ttf create mode 100644 _static/bootswatch-3.4.1/fonts/glyphicons-halflings-regular.woff create mode 100644 _static/bootswatch-3.4.1/fonts/glyphicons-halflings-regular.woff2 create mode 100644 _static/bootswatch-3.4.1/journal/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/lumen/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/paper/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/readable/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/sandstone/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/simplex/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/slate/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/spacelab/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/superhero/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/united/bootstrap.min.css create mode 100644 _static/bootswatch-3.4.1/yeti/bootstrap.min.css create mode 100644 _static/images/neighboorsetLIMA_US.png create mode 100644 _static/images/npweights.png create mode 100644 _static/images/pysal_favicon.ico create mode 100644 _static/images/rose_conditional.png create mode 100644 _static/images/spatial_markov_us.png create mode 100644 _static/js/jquery-1.12.4.min.js create mode 100644 _static/js/jquery-fix.js create mode 100644 _static/nbsphinx-broken-thumbnail.svg create mode 100644 _static/nbsphinx-code-cells.css create mode 100644 _static/nbsphinx-gallery.css create mode 100644 _static/nbsphinx-no-thumbnail.svg create mode 100644 _static/plot_directive.css create mode 100644 _static/pysal-styles.css create mode 100644 _static/pysal_favicon.ico create mode 100644 _static/references.bib create mode 100644 _static/sphinx_highlight.js create mode 100644 api.html create mode 100644 generated/libpysal.cg.Chain.html create mode 100644 generated/libpysal.cg.Grid.html create mode 100644 generated/libpysal.cg.KDTree.html create mode 100644 generated/libpysal.cg.Line.html create mode 100644 generated/libpysal.cg.LineSegment.html create mode 100644 generated/libpysal.cg.Point.html create mode 100644 generated/libpysal.cg.PointLocator.html create mode 100644 generated/libpysal.cg.Polygon.html create mode 100644 generated/libpysal.cg.PolygonLocator.html create mode 100644 generated/libpysal.cg.RADIUS_EARTH_KM.html create mode 100644 generated/libpysal.cg.RADIUS_EARTH_MILES.html create mode 100644 generated/libpysal.cg.Ray.html create mode 100644 generated/libpysal.cg.Rectangle.html create mode 100644 generated/libpysal.cg.alpha_shape.html create mode 100644 generated/libpysal.cg.alpha_shape_auto.html create mode 100644 generated/libpysal.cg.arcdist.html create mode 100644 generated/libpysal.cg.arcdist2linear.html create mode 100644 generated/libpysal.cg.asShape.html create mode 100644 generated/libpysal.cg.bbcommon.html create mode 100644 generated/libpysal.cg.brute_knn.html create mode 100644 generated/libpysal.cg.convex_hull.html create mode 100644 generated/libpysal.cg.distance_matrix.html create mode 100644 generated/libpysal.cg.fast_knn.html create mode 100644 generated/libpysal.cg.fast_threshold.html create mode 100644 generated/libpysal.cg.geogrid.html create mode 100644 generated/libpysal.cg.geointerpolate.html create mode 100644 generated/libpysal.cg.get_angle_between.html create mode 100644 generated/libpysal.cg.get_bounding_box.html create mode 100644 generated/libpysal.cg.get_point_at_angle_and_dist.html create mode 100644 generated/libpysal.cg.get_points_dist.html create mode 100644 generated/libpysal.cg.get_polygon_point_dist.html create mode 100644 generated/libpysal.cg.get_polygon_point_intersect.html create mode 100644 generated/libpysal.cg.get_ray_segment_intersect.html create mode 100644 generated/libpysal.cg.get_rectangle_point_intersect.html create mode 100644 generated/libpysal.cg.get_rectangle_rectangle_intersection.html create mode 100644 generated/libpysal.cg.get_segment_point_dist.html create mode 100644 generated/libpysal.cg.get_segment_point_intersect.html create mode 100644 generated/libpysal.cg.get_segments_intersect.html create mode 100644 generated/libpysal.cg.get_shared_segments.html create mode 100644 generated/libpysal.cg.harcdist.html create mode 100644 generated/libpysal.cg.is_clockwise.html create mode 100644 generated/libpysal.cg.is_collinear.html create mode 100644 generated/libpysal.cg.linear2arcdist.html create mode 100644 generated/libpysal.cg.lonlat.html create mode 100644 generated/libpysal.cg.point_touches_rectangle.html create mode 100644 generated/libpysal.cg.toLngLat.html create mode 100644 generated/libpysal.cg.toXYZ.html create mode 100644 generated/libpysal.cg.voronoi_frames.html create mode 100644 generated/libpysal.examples.available.html create mode 100644 generated/libpysal.examples.explain.html create mode 100644 generated/libpysal.examples.get_path.html create mode 100644 generated/libpysal.graph.Graph.html create mode 100644 generated/libpysal.io.fileio.FileIO.html create mode 100644 generated/libpysal.io.open.html create mode 100644 generated/libpysal.weights.Delaunay.html create mode 100644 generated/libpysal.weights.DistanceBand.html create mode 100644 generated/libpysal.weights.Gabriel.html create mode 100644 generated/libpysal.weights.KNN.html create mode 100644 generated/libpysal.weights.Kernel.html create mode 100644 generated/libpysal.weights.ODW.html create mode 100644 generated/libpysal.weights.Queen.html create mode 100644 generated/libpysal.weights.Relative_Neighborhood.html create mode 100644 generated/libpysal.weights.Rook.html create mode 100644 generated/libpysal.weights.Voronoi.html create mode 100644 generated/libpysal.weights.W.html create mode 100644 generated/libpysal.weights.WSP.html create mode 100644 generated/libpysal.weights.WSP2W.html create mode 100644 generated/libpysal.weights.attach_islands.html create mode 100644 generated/libpysal.weights.block_weights.html create mode 100644 generated/libpysal.weights.build_lattice_shapefile.html create mode 100644 generated/libpysal.weights.comb.html create mode 100644 generated/libpysal.weights.da2W.html create mode 100644 generated/libpysal.weights.da2WSP.html create mode 100644 generated/libpysal.weights.fill_diagonal.html create mode 100644 generated/libpysal.weights.full.html create mode 100644 generated/libpysal.weights.full2W.html create mode 100644 generated/libpysal.weights.fuzzy_contiguity.html create mode 100644 generated/libpysal.weights.get_ids.html create mode 100644 generated/libpysal.weights.get_points_array_from_shapefile.html create mode 100644 generated/libpysal.weights.hexLat2W.html create mode 100644 generated/libpysal.weights.higher_order.html create mode 100644 generated/libpysal.weights.higher_order_sp.html create mode 100644 generated/libpysal.weights.lag_categorical.html create mode 100644 generated/libpysal.weights.lag_spatial.html create mode 100644 generated/libpysal.weights.lat2SW.html create mode 100644 generated/libpysal.weights.lat2W.html create mode 100644 generated/libpysal.weights.mat2L.html create mode 100644 generated/libpysal.weights.min_threshold_dist_from_shapefile.html create mode 100644 generated/libpysal.weights.min_threshold_distance.html create mode 100644 generated/libpysal.weights.neighbor_equality.html create mode 100644 generated/libpysal.weights.netW.html create mode 100644 generated/libpysal.weights.nonplanar_neighbors.html create mode 100644 generated/libpysal.weights.order.html create mode 100644 generated/libpysal.weights.remap_ids.html create mode 100644 generated/libpysal.weights.shimbel.html create mode 100644 generated/libpysal.weights.spw_from_gal.html create mode 100644 generated/libpysal.weights.testDataArray.html create mode 100644 generated/libpysal.weights.vecW.html create mode 100644 generated/libpysal.weights.w2da.html create mode 100644 generated/libpysal.weights.w_clip.html create mode 100644 generated/libpysal.weights.w_difference.html create mode 100644 generated/libpysal.weights.w_intersection.html create mode 100644 generated/libpysal.weights.w_local_cluster.html create mode 100644 generated/libpysal.weights.w_subset.html create mode 100644 generated/libpysal.weights.w_symmetric_difference.html create mode 100644 generated/libpysal.weights.w_union.html create mode 100644 generated/libpysal.weights.wsp2da.html create mode 100644 installation.html create mode 100644 notebooks/Raster_awareness_API.html create mode 100644 notebooks/Raster_awareness_API.ipynb create mode 100644 notebooks/examples.html create mode 100644 notebooks/examples.ipynb create mode 100644 notebooks/fetch.html create mode 100644 notebooks/fetch.ipynb create mode 100644 notebooks/io.html create mode 100644 notebooks/io.ipynb create mode 100644 notebooks/voronoi.html create mode 100644 notebooks/voronoi.ipynb create mode 100644 notebooks/weights.html create mode 100644 notebooks/weights.ipynb create mode 100644 references.html create mode 100644 tutorial.html diff --git a/_images/notebooks_Raster_awareness_API_17_1.png b/_images/notebooks_Raster_awareness_API_17_1.png new file mode 100644 index 0000000000000000000000000000000000000000..21ca0718fb22d3b5e58193087b42794035dfdccd GIT binary patch literal 9319 zcmZ{qd0bLk+xJ0D%TgaSHFGLOEyt9cr#j()17^;1X=3C&q~`4DRFYF+YUDr}YNlo; z4mltd>PayZoJA!~4QF#qMPKmT_x;?T_w&Aguvu(2d+)W^x_;O1`Yupc;bwfir+EPY z03Xa8dJO;o2C-fuN4Z&hOsVm*tT){V6XyuKU_?aJjWAz;^^J&-fZ&J#r1zOf->`6G za1cZlqN<^M=2k>RNVuMwTHt>UPz?_AQ&W2cI?g)Du@G~YZ~)-A5c>rLJkLJ`0Lb>i zpqK5V^B2cr@i%?%&aN&m({^~{@0WZyC%XEFM1Xbbx%Stjqo*(Xq#)2%d2|_Y?=5-x zj}7wv2o0AhIf(kyvkL{cC>hW{(zv{@f(>QlOoEB-_eOvem|GNh z)Hfyh$$G1VoLd{hnvm*cy>(;?x!wX*e@2LtEMQUcxkx+RpXmZQ?PlM5K+IG!w?d|>D) zo2vGg$CPs7Nb(?%&PU{w9LaHUiwpW%G6?}y^If9UCoh6Rqe2g2=1K(s#<#7hWWsU6TZ<)7rzOOA>B``-G~m{&4JJya>K( zJiVrO{Z8mEUz^XtF=qg+FJyhcRxBV->=%?5f#{!<4T97>3Z2w~l%G=gPxF~Y1djw| z;Tbh5!o#%hw&Cq`O!ly6;TQ;{VC5$s98YZ?`b~E3+8{(te9x1eEMhG9D=I!|m|gFl ztz8=rwGRlGAV}4=lRFo%lUpeV6pK+K4JOOMZ-QVMnWAXJZWF%8_|w2w?@H?sik`K;sLw3*SU zCu^VY2IdW?9lK7NW$%+cid9sHls`?X{xuWG?hs<5^UJR=*2yeW)cfX5(^#QFu7EKo zaqKhs_U(r1hvs1%EV|8Tk}pcW#1xTp`NohGj?POrBn;{EDY7=z+zCi z*wZuOsg|HR=O|7lm%I_V{bAi=P%sK=AP7>D@jkNhiU_2~&=s!-Li715 zRF?8E*`{Y6ylS1MC_y$_iT8;DvXi0oYuBwoUYyP04@Ryd26AG6aIdanC&Zk@R&27G zaDA=`$uTKqNRdIJ34uL;?!XIqA0QNSNR4b~TL$lIA;d>0X#Fvh=!mCYL7as#!*Z+y*DM*r<5}L5IV%O-c7K8%97H?Q7)W%!&P}w*}l@4%SzDJw@Rt5RJ>Nlrdx!30zO|gBsKQ&W2&sWk4U)Ne_pu13v9?+zDNrKA7mu9snd)aG9 zdX%iU6^8R~3HAd^(^681f|5FqNll!{9|$?Hzivs@Q%d$v#kHJ_&cpSlZ11jW&9M|= z0Cz7tD~iL&3`3Dtl$=X(jr|+|;NyH}X-Jb~24sQT;ipR^Gcd z7RTK;Th3Iv>*B%IM~;g&Uqnf6ZNChNeZClnblr}mS2AXo2y0ZkmceCXP1IPz8I=Y% zEgetwZ+4a9Lui}qXBY=KW;TCe&gl{EKAND+xB(M@#Z=B1fE|j3;k1NA%GKUT1NTAE$rnE-U&%ae&f(ijs#V4V}R=4v6DFBlAGk zTXf?|^}xyUO5pf#rPecywF4hZKZ^6rXnq_voQdZdL9oQLNU3+qGIbm$jj1=j0ANn$ zt_sMppC6HFFZ>W%FteC!iEuMopIRJ&ce^GfTJ9YdmM?-z=?7J7$T;$oF@u#_&oRFJ zMO7>b9HXrvu7^Wup0opv4Jg5y5|%VMyQy0DksLsgA>CqYSFwL=MoMXt0=NZt)WbY} z;GuZ3gGqpJ$d!7wf;srI62)QyO`7ZNlZ#vdTnVV1+_pPtRUR#1Ztck5dvZJt^!N#V z#Q|)Z3BOWi>_t>dRKkeZK~EI6kVM!ZTcU^lbU{{soX-um@}Bit`3#O6-oxwAMWqi` z!I8U_v*7BiCG+DkGsb%Xg5pD1k?9M1Ie$%F-H9cAyy)0P{svJMU0JtRS*u^3$QEfJ zkL8HWN&J0s`UDn3kd9=UyI!cPGG;bmqum=PQgchNZC+l##=vzqE?QrX$L;EzWW>aF zXh2-<{H^YxD+b!SDh+NPzCT8*!VE`9*02Tck)FSuk;nUW3Oh!DgL)nDZ8RHzdP8gjOq4D^; z2?KYw3vQwCd%IeQ^8CJ~2(5tRc%m4#On4F@y(Oimf(q2ZE2GAk0XzHHG2?NlOntf# zR>CVE-`Ob_SToyn6g$PXBkD7ra%_hZ&d$MMR+$do2uGN$agT@Np+Q(;e?I#?HH&r3 zl${(EzqVp9U=Xu!TV0BUA3yG`BYDR2Gow|X`H&h+Ay{3$;-!~iz{E6W?SH>m;@UXj zj1@83>%8YAUoC9Be-FI*(QEe)!QD)+gZtpR?fnSpwR+rr-kQjg^dxRWwUR(^HGj5Z4tm+|(2 zp5Pqh$dzir4vDS?=l(I<+wNp4m(gHmwwv{5-mtiz-25~zf?Hz^u?ItRsgS+j?sZ^PW{nOcWH~AB`K8qrAR#zsj>Tz1W{htyojd8M~`j5tz-Ykj$aX2*+Tpgw6o=cLFa6yxd)}VT8eOJV7;NF}z zr4SpwMYz!9DuV=HFs_YdC?&a;q^SCo;o3!gSxzaaA(3|l`kC2%Ny9e>7X>_!)B#1u zmKQk6u;Q)zHDE-)XdDDmQiwLFfAZtCs?1xSx4G-wbb%!7vs}RRM#JB-HaPUVw<3?T#_!1wpUSMgZE0|4oAlnkzwcWAoEMevV~igEOXo zkt9jf1|L~Te3Z4>CFAYi`?C@aCmY&Qgo(lcrlm;a2MhvXt!JMs1kwg-Yqq@&YG59t z3uO%>>V>wBfU1klzt)?_G>j>Tz!Efx6%e>eI4BEaIKc&tZLx?cDxYnT^|o9M*AFq= zFiIZ|hHU$Lr;)g*yT*yq#2|HBj*gCs&Eh z`({}&f}7*D7f~wX`G1`n$+}x5{gtGFUHr)OFrvCm3gJC=yJfv)R~}i#DLl?`z+kdX zc8};7e(!`qYEIbTt|J^Z<(3>+RWu^!iMYXA`QK7Qe-EYO}C$r4sDH%k|~H+`CGB6psrU#_>1!^Peq6EvHhq*4wI@ zwa3n^JnU-4kO=Q~^TCl5gb0odzlYSpnVm`{^ib(?Vz^*A^FqNTpN|jl@d}37`>HjC zFa`ggquBO~&lzUe-_K4g^lXJLKif2VZrJNMjl+Rw3C zn1pMQ$Q4#6D|0@knFUnquxmk%iBv$HNI1t_>sxWaDX}EH3MP)8) zFQGDZQ3Enx@WS)g_-)3MNHzGrHa(8c0}AEd=w-%bjFJmmEexchnozO0QyH~3*Sw%{ zLe9M{2-Y1q`o?Bo9FjvCg@}iw;}$QKv@N!H;Q)=T0Q%Jbjr38)? z*TkKwDRbAv&jdS)V)p)LWI)KoLPQJsFHxU+j06ES_*QI)%S>>+GV@4(?r=xQ2!W8i zZsJ^b(?&3M;&`x)x3N}Kyx{J34*ucdpmg+ILC);~J|wU|KO%vP8zOY$hrA%8tC^YW z_b7vVv!rT}{*?){YNCA6c#o|{o|>B@r9N$Rf;F}76!(>;A6V1pi2}({5#_clk#m}~ zlM9sOFojMz%{^DGZ6jBljEPsoWjh|xiT#pTbu=Z#oTuvoB-ZHl9F!N-J8jDvIux+fly!FM$_#fWwPjQ9`zAMp*8-tVC=lwfwf@M^m?vb^~Mzi`RXTA6q!>= z!}=7h%~DNU3D@WC?VgWCLdnmwz9xm=x)|Tmu0dV+!FvPl{7fXt{av)bp#Ji9I&6Xb za*?sQLzT(O+M!-~pBV&u`1U~B%i2v*HEF0Y@PN}=8a$_>c_|#d_+o#Fkt{z*}h zHGBw!UDyff(8SZ*k{N|+cU_mNEll z8AmfxXNt3~&NDIZujC3#Xp0l9yx6JnE-4-ug2Htq`6p{z?#R45^zVK#$0o=Xxq8tV zZWI%=)D!&WYhl(llpf2*DrbT$L%6bTxRxXdl1@*tlbwv9w-66fQ@jq@LwO}f(9c7R zQo&hj0cI7-M^w4L0u$gAUF&i~-o0pO{_#EFyT<;=*xtL!Un$*V_2()p`}o(~ z)d^ht%)@dSQN~$DQB$1AfZ-@=UGvZH5n=ZUmHJuE5~utI9+6`qqc(a%sUsKRBvX{q zRX~{Ti!8lx{@wqr@cB;*?2iV?5UB6=qmuEbUVTXeFQqgHH`F$?WbNcIBqeso$h0_CIe&(l( z#%-tC+l9d`fNkEDRM6_ZNUb?GAWVZl#hZ~{;{*WOoJ``Z>?CX6h-7;4?HRq}+P3T0 z*G#L^VIC%`{+FG9r!*XEC_5i{=kwwg=Q5V8b%;1N8gMPbhv?*!U9Pnk*9mFEZwV4` z1(9ctz)um6`1)ov#|h*!>mOz}ePjM-n)_YP9-*eS^*pM8ka$;ccjjJ|rFUZDz!8S( z*DnGq8*6G!5ES$Gu$P6m?2~;}?FDP47-KvG4X*RM=_ojAtnrjoI1VvJNzybGP{>4A z(!~b-cqR|zjwH+1FTa9lvo!QXrHz7rN(%$W?}I_9Bi_(`T}^ZYuPqtUZq(kJI;ngo zg)KAv>>|t|jorMz9{u1S5*2m`Ad7Q__ z-C&mfHTrRn<{Lri6T+_06Pn?h7 z?xYJcAi{HJW9USeO+4cHRgy#>PW*LPeNNz=|(nGq2>0$RM^N=YV z0@d1WRzXm4o82cxTzE}$l!>NbRHf-fJ_BQ+dmn8&@Z4yuY2vv1!LZKbP0N|m6KGk$I9rMa`I|Zryr$8%h8y%DmBu!inCu z1bHblL}2r&*xwWb7H_+T_hi8Vl(^1`W?dOiU$`N#iyAx<#$(rb$vc${o zq9CvA^{W2}+{jfxulqUMUw=G&ZOzmVb#2pM>}*a@e~wxd|6=69L;WK5pzy91s@pYx zb2Cl%3S)B<2LVG%&fHSA3!tw4nT~F)ulUy1N>z7D5&~@jtH`7%4$(;eRs@17@*Q=O zOjayyzB|fd3(B+44A|wg%jJZt@6m^V;e7CTAtr&9c^#-_2{g1SdOZclhelUpz%BNa zRtr64hU{X%VZ|v{@YCU1#KV2%6_M+ZkW!qu?BvG>{e{4Ud$6?8A8h$R6o^Z%97WJI}fN^MKj&j z^-<>}%`0;9h7tJ1tvbV=JBi%+8370XCX!ZBY(k1aKq_0Np8Yq6?0iwmOsBK`bMFjj zD}$BEK2GH&Q%^5pc>^%;CL(*q;97xxN4!Ev9qY;Q0hf!7zK!GA(V*OmskV^uwx{qU zwEY80#!IdO_xLCt~=d53a1s@_lh}(ndsJ%t#ohKKYLSDbYEx9q{j13CY-M0iL=`ls0JAX|{d!az$@H`oWl*aw(UUoO8J ztvmTwxBSUN>4Kv&g`2db>Ty(XydC8VTI%uoOBsSQMFl+|YAkx^pP)#|v8;*+m$`3C zua}whCH^K>S?clpH#eLX?2TbOc`L`V$)`b4!u4Am0=8J4HP#A7^~h;?b-5PIa9T=I zH7mHx5I-bX7fW{HsOMyrn@W9IO*o;ByI2KkFj+vH7EwuoE`L5ZF3_?jxk5;r`U8x8_>=y=ajL<$G6ANTarXc+;8r6AkEhsj@*R&781 zwHGrCo<>-6=xGE0JXBuuzhc=qHzSiZbKZd83wh+;KOA$}&y6`x*)2Fq&7Hk0rFra3 z92*Or1s$%2J=gHcw}0Bu)dfNqa!c{#aOlU-@*O+J+uzpGb5$pmfr63M=ZiE3$9E}$!-bifc{^y#;IZql&c4EH~uw2}awiROf38)cgnlWDkrs!GO&8qKtNr@Z? z;miW(_nYyY4Gk%+d=0e^6McYdsiXIZi^Sh@JNapY1WFwI4dLlrioQ&pDaoU4v4wbr zc%E2HeC}PVNz_jr&E*(0C4EncJ~;%)H_K)HAZ6PWnkG^nFRD{3x|sJmz3p@2i9P-e z^@xmfZT?616jxSLbleT_-b;~%|KX0WBUU{xmoD^J35BpAtLG&2y*@l*I! z<+)k@#_OfV_jdq)HTd$~xkqd1fltFl1{bb22;!Ewa4E-|wuafPw zI`-78Tszg{k+0n4A1$}yl{%_cvR_qW(MNcgq%Bgf#zh$X+`4*<_-S%efhOfM1jHO)Q6nB98gIQw zM?gNA(Hw=VcnBvqY-j6$6C4>Qm@#J1fQ*#W8`tKju~cXchLx`z)O#73pZV%LRua*h z1}v#?2o+x`^iJ9rO40^Itv6UB48O|?l|PzK9=s-9pq4a&N+|`m;Oo0J^6pAWej`_S qv;HK(+8)}{c6K)X|1|fFpV^9T0i?)f^>Sd zq9LG|)to{Kz1m(z0p~Fd8Z6)j7V}wQ^jx1to`m+lT0>+MfB+>)e+fxGyvR4VRldgK92x!wUwVB&^ENb-q5u|$_g_0 z`+IEHx%~=3tk8MrZxI2T5SK7{up8){K>?ZTj{!h!g)1s~g2B8lv(A4QJlwwP@&v+Q@$|%R?axz&ui; z0x0zNL6AWzKR;?qQL8Tvi3HHDc;M??$6unwS5*oCoXsH3Sk?B%3h(}_b%9K_ts+A9 z{uqc45g-j(4s^Jxo5UIICLvo^L9>*$V+M#Y1J;W_EIKluhGi-g(U97Y2w$hZ z(RL?}-2g%FPtA2{d=Ve_8?D#T2KHl`hcGp1AH4|7MaE;b=BfBS(3`%|n> zqQQuYOx&(7ZI|*^o~-F|bNRZIaNU0vJRtlF=?!vO4xCm0Yvn2hoJM5RXzPORiWfVM z=SSgh)>xm&LGhEqbY9n~gWPB*xFup8jT&)tiiYn==DT=6D9Q3AKf-m}?YkT)lboD} z|9L*Jh+3w4zL)dZgMTO{J_x=}4yRBKN^b81-L_O>J(y=M2r`esiXTABss>{XFD?Y` zTR3K!e*!v0cLFHTTOB-y7ln`Y$(TT~mhTSelL`(~!w3<(g~#g;xq?fE9tS?R5xeR1 zKvW#r|3=K1=obuF75uBeC<9#O_f5p$>$tBF1j81oj2_#>948d)L4c+o0;8%;bYbzBtwD$a|CnjJJ5W zX{ESH_l+hhK^_IP{mae=zNIHqLg1%|;U2{i8Cq82aDao zz|P^u-%OS00Sg{79p?+!@UUh^{9nWn;Euzktht6Vm}hFWWL*9{dMaD4B%gJg0mX<4 zBqOB;ujdqk4Nb*X+IF;NBBC&x@ipp;I)wwXb`ps8P%%>L56Ksbr566^J{?f&qKf%Rr5 zcutY`;_iMvBAr*3Ufg-8(=!e3oqJFp)e9;AX-e>J%-CVe8R$Z8ni)oX(fxM_9~t)g zUYAKB7&uLm#-O$b0h~>Uj>v)8g7l@ahrH6;K@aqRMu#wh_{gfKOv`bVoQ(Z-oli{B>w%Jy-Xy!4p%QW2lrxWuF{IBG(RaU_OlMQe0&%bRERj zUmhR)t1tU;E*Ovn4w_4K>PztNw>*0mIY*G>H?z@Kmw}-k$YLZA*CSN1Vn;asIu`Y(!n!sZ0^ z0RZ@rZ=Y5BXpP^|-=!+OSG>)p(B_}M-` zHM1@%wFAs}j2ZPR-J6!<_t2Q12tU!d z8FcIw?KG9HTt>c?xtkN7XG8BaDv_#-6paQ3h9aWOiwNhI>Jfk``Axz*`&qfacvf*; zbkIjrw83oVSf0mJT|_^T;=h&u9I}h9hz>(T0av2HA-WY65F{VXLn_3~x7hZ@;{11% zNwG<$USmvzdQj_9zdmGdD^Ai?XKVVp8FXxupY4q*IcGTQ!4cK?uW=KxM{Mb$Yh9Jl zn!!m&H7+mQzggNv5jf9*&i{f^FHb9`*yk!tUKhv2!a_QaIylOQ?z2;mi$D9P#xChA zG0WTh31Ec6(1K#tU+#YX+WSQJ*g}6-mA8~I*2}72frMrQ*gTA-G2k-}?PN(n{5bQ# z#FkZ&_uLPZCS}q-Giz&u-`|3uUa@G}aYHBfNS6*S-_={h%)F*~wQ^AHt0R`bXr~&{ zADK}g!KGJ!!1)4%+!y>qaVR(!2xxP_EH=-&#j~z5A60P9EWGyg`|J*TBv7X)O{ zUohcKNjdGv=R>Xh-WI-CxpF@pWNy3q)G?$M4zM)O8~dD{PV4t3?f8tn)tJHt?O5|nJPLUE!@(SB zMHalWViJA~l^bQ;tA~~%^Y<57KZmu=faz*!u`E>>mtg&`V-0^E|0Yt3?AfhvR(Ytr z#%i>!w%B;291kK?9r>d`0%vio<4Qq~`T}WeVU|pE9LznR=fz%mJv7&PE4nh6^5ftb zg+A6hGB~8tcuDcz0}PK|)cT8XP%X*A?t~8H_6d1*r@V!JQ8#L%3rSfmDv;plt8-?Z zUKXg1%%Ky*C+_56QC0CE6SFPL3NS4se}?d9tZC%PUXDT zsYO4(AIFYL)~K4Og${qLY-U50ek; zSbl|P+G!`pDeVR$J@`Q$jWhhMPxe|v)5Hvy6m*D^WpV*{71Kzo{ zB5Frd@B$-xrwE_KW!CTl=68L?{@s2YHV)yc1$K;RlJVE`@zZ3!l!iMj_@H7fhE7#< z1IbquaNO|!R&B5H58pfXR%+YdF*G(b}A$zJIs22 ze*RCC*&gAmC`tBMmy4G;DtXZK@mb+C${Uj~$rR}EJbDS$`_nkP4)#M8BvMvMx^wjI zPg5EwiCL;O%1KoFQ=b4T3y0`>mrA3G93>T~nQ#}-x=Ove<>dQ7xbme~)%%DB5BA?{ zl=4e9B!@shCEj~9XeStO6B5xq)93!bOE~gF7rZCC=SNC_9RlEnAJa=;lB^HB-jak1 zlgX^gmb}?lXeC;=e2#FAYm<-8@RO6KjVOx6Q7$Rxe^Zosc42h#8Enums`z*avLe|* ziMHtImIbj!j(P0>F`w^JUU8MILRSU<-x@3GWrt0yO#OI<>;}GIAAWl?*u=Qlu`dAn$mIHbEmyvbsMn|! zdp2#Bq;TQAm9>8s%`%aqb`C%@dNotHDGcQfvJf?ClR7lVu+W+^DRW&(t%cG4!G5|x zBRIo-9v{>z1=y}n?khn|uU0UW(|&%BqXtJ#r04HS;}^WnvSw?hjaQR_-51>n*7ZJX zmeN5}xaJig+qUqB&iz3#vx~nHhp95|QlPyDi3#US?UR6G2xw?DwtfP5-a){ZaoC+@ zsRNIoPslfX&^yEx-VP<^GxJqKKwQMe7eF6UL8Z`+17ti@KGarmWxoE7&e0Dc))UKJ zPx6B6W$It8Uv*FX{^WSin8`9}!>@=_+RzsWhi%5r`wjM4B@jK#x2LbL9u7ONmO*{9bxeltYv;2A!Pu6R-;wX!#+39*;G@j(;`od4+6OVwK zs3KEXnMv3{D8(6q1`V-N+`&J!2tV*K5`nkt&86}M67$(^M+k5u)Sn*MU?{8mB0?u< zZkS29;H7##|GtzJl@OvA2%&1VwV^Vx%*$2-4xKf)+&jDYgwAmUe1I!pl}a<2b!*USV=Ks+dU^XqHa^i8(~Ds8?bb zJS5&0-n#BW(2pXalq5z)7NQuXg{nd7vSz0sVYnCQgu^7I5G)LhWL7IC=rxBO7bdjW z12FS=>dkJ+;z%e{5&!w)k1574SL|b&6@^)Iv&^rurh4d}I0`g!Io1a#*N@`Q+Y+L3 ze#}7d|A^QVnDxi7o{lGZCMV@nZ6`4s+NPx^Si{cb0CX$5npu%&cr3uXRI{t6ghada&93;0VqRJnq&>iMH&G-rT z@Q1&3U16JkZRH*P)voj`R(i9??S)!0ae+^_(o~PMWC_;h_s=XQ1L%asCe#e7VvLZe zIDLoNxA(ltpPO4Q1o72=ZLIn~WWI__O8jmkRVEdST!-UGyJscw=oTZFF(CGK7$I+^ zjf^&{QYPn@UBb`^Q|LJqbOzn6p*AnLjn7PKtG1LAlweUQpyKPLYdY8xVUi`>wyRGTr6K-}DQXq~*?kC{zWuW1Q#k8u* zmv3jp=@#56u%Q2#^0cy>?M3;R)&(0EEDyG>^%fLFx?6G_zH5-idfrQh)ZC9$yQ*7E zF-M-DyZfUBhF5I^9}H7W(yCowun)5Xj~!%st&{k=5-Nt5KL__BhkM>$6bhLVuVm%_qTSN-@`1>-#vfa0j zv=k^*#DZ8M=j;VO{Nms;LqVk{#$eo+k-rhuDX+A`gR+~#`!P3PK(1sS_82Jt58m9k zM~o|Vg+>{F_174&GsGT&nXg$SwbS`lsZbwJEr*H@Ra~z3A(oUeZF6(>-;V>Iw!_C+ zx==(Nsh$mY;kY=>#`8wW$Lf7XCuYaRq#_xnqJRVhse%XDs`cfLAYaOP@mMb;@`;8` zvewlB?(B=YCE<+Qc#<^!-5Ph|H)>!Fx59aHv1Ty{Qbf0C}~mt%eY$6 z*!b&6>X`uObciINd`3IRhOFI1=uYCHR9&yI>f!F^3x{hDA;hQ?&F@#)BY=3b#YzF1Nje`y{)D}q|r zVm+B?{e`9dv>LAku9=gEMbm0IZ@BH?Wp_G zJ-dX1{yAG&RlP>M1!}Xgc)lS#3D=SwcS8+MDA;HX+MaOR_I^9dlHj#GEq0cJOz8YM zDk&wIE$)!_LVqF8a&f|V>f;@EY6o8m+hMUwsJ^xDhRLZ~tx+EhkxCbyk_j-Ikb%44 zUdn3Sq}99{LwZ3M`{kYEo~TsMZ7Rk|F^OS>7gv2y@L$6Z@%+q(%~@)$i(B%0gYhOa ztY~*1LH+l*p7`RS#PFAr|B2ZI79@-);7sR|#gP`sY{gJbJKQ0QvI>yQEY?7{`6$KIru23J)fl~{qqs5}kMZ#Sb#rnkSO zbg0%>u((YryIiqtGR9lACj)PAs<=?5pR~5y2K6J zkI`dvk_X9vo3=8(Wy`#$4IF58S$(H~Wcf+_do#t!%jlSAoLBxdW&HK?ZzIDkp8tw^ zF0O=4u-w-U4xk2w{yYk}%|q7+;qI206i+RXyD9C4aN5mx9qW8>Wb5fV&tRKG79%d5 ze4ru0@ACVKTvhBm3k331p5{Yr!M}<6!(%?n?>ImhMgI$VR|4F0`^Acf5%XEr#SeDx z?>+CA4$9J{TP1sox&19M!zXG9?kAwiCLB?dcF!7@aY3bvbG+CCGoy$8Q&{21QuTlS zi&b=vGbIlUcUbphJfrX-$gktcp+C}p7<>|3eXZ=Q0was%z`n-1Uk5R3ntsA2#(*)s zf$3yrf;fjXJIlWovsl7eZm>kJz<0kL#LM8QwLl-k=c7^U0_cK2ifaFY??`{z@H>x2NA;}~$G)DHsr0UrO@1T9C8 zVfQn#QF|9w=0klD&IEr#Ty=?3eky>rYb((!PlE&AR6ZL*Iq_ug2ji=E=Bdp%qpaym zjr4JdT6}M=>SNN%-a|WnSUo~Zt3X)=fm)(8t7;QHdbrJ39^bu=W(>G{c*8R4qVv#I z`Y@joDuvOX5(0$rqRl(H5uPkCz4%n&|41HKYThsP4}z05zWTBj2$e6%{VFf#ABb0r z&2(r1ysx^4QJAa_OtM3+hTCFPxUn~8Oy>SEQOm(L&T2KC(@8Mru4oo}S!qsVM=~&8rI3TDbU@= zU;M&h|7owclY_MxH_rp>VeFZeSZVu1wSTPw_2oZ$(euL{3+h2B zs7#kScq>UJfkS@>$5Zzo*Q`*NFc^tlK_2C&lkYyCYLYV$20Qna-Zo@(Dglz%s6G=W z4~82-A*2tEam{YIw2>T=4IDFT*62R*9s6Zb(dDE%xcp{aqIRyNR2u8#Aqt|Sv}R3H zNtR5zUSG+2MOF4)HnhT1OKh^rC3;XZLUfe)_^~bSng6Fy0Li?g9 zot6FsZTh01ZMg0l<7|cY1Iw4USypF74MO*pU_YA29}FvGx~WHoj6@4JH}($Pr)KpA z7W&XmK*V@I0^nUrQu$_P&mAXSLB)n0I{`X*L2c}QfP3@I5ij(q3wK5bVa2Kc zG{Wd^Gr8G?m>;mJ`SLK5!+RLIYqb*r-3eHxz z<4u)Tf;Xy=4-t3UFFkWB#MQM^6_^iiX-d0ps1$L-HtfSIY(nh3kE8zo2_^!ZMo?wqQ7{hho4>t8Lpx%dBO0`B1V$snPJ4| zU{YblXU2qOJJ1@|z?x#&p|e&(*a$EZ+Njuql<3spj;cxFhaj5_ll4V0seRkSv|)W6 z8r#jgE?mo`Fr8dVwq-4S6BVgUo+axhWSjkqrjW>s6%2CY-rw0-gIfu zZ7IyU&!h5f5T~#(+hYAaEN6s7V36#4I;DnX34R@3#74^q@bJv)ER)Nd?z9}C=WoP> zd@7irqDIUSiLG{^s{CG+N)u(*bb{jdvC`qRI(=T~gjU@Wy>Py2kkk|{7U{cSa{+)>r}?9#wsiGf)NZSot|3;J=@{)xCQ+| z;z*CsW|H6%JAIUTRYutQOrBn`iv{9Wj`BdF<1fPzpv9pfVv4HC`t=YW7SSf?X*}CY z^L(3+TTYM#48l#DIQ4~%&y@PU~}{S zI#ckr!ugfZ878c()$J-KJC>?>80ETC2qbNf`}>mxMMV>%nx&gAU(n5JNPg&@d@h8cN;4h;%-6M# zeIh(y1Spe-1C2&6pt^7Juk; zH-#FfEi4X@7$O){dKZ3G*HRqKikCsxaCfdx(N0eFKX_vho;|pKc0$E(g99iqax_db zcG!@tGaU5Z&ulOOKS7jrAv!Q8AP`PAH5hos9LJvMlVA-g@Fdi*?PuI5!U2C`T}8b0uU* zg&A^?_C84h4oU5xJm8+_5WN>>wkQ5@n8v!r5>v#DbaQ23QET%$#+auq7qSg$Qh{QR zh^vZ}{Q%yHJZy&R+c(>=ZW+U&55gvS@Aex;;g$F23g!E;$mLE%o+yf&BRS@^^P*gP z_sa=$TSyBgW_}D3f#8n}zq)7+Wy~D)iBur(@Ei{4}szFWf*H2PgQy)yoL8GtNE^s`N+yU=86Ku064k z*?qhwh6m8UaHrSFGE_^mv-o?HRSac9U#s5PffEy=tJL1V5Rf@X0Pl%j!B$_--{n>= zXn=fw(O>(;X%+w?7ZkQB;@I`sUqidX3u%sq%haJG7q&QmY_-d6*f02O^)z1!NLdaC zitbybXGi#dA{*zL2UXW5lpHZyPYCXE=$0SrCH|U@adDdGtrDzR+Nh+7Vn-^zj&C|# z*tIO=MwW^FH-by6wXpwvV6JC!nLcGV2MQcHLHDCbgM18JW4f7npEm|14PX3w4&5(Z zr9WgJ1!fX}PV@-0Qdt;P-_QPj zz@Qv!T@N*|9*pu0+-@PyZ;X%C8&*y(oOs)Jilq_D_MjQ0W3$~!u$r**-nWw5y`RlF z{TI&fc$ZcH2@-??=QU=<;xfYhtJRM*?s1e7t&LPnLgq6Z5_{bfS;oeWng&=q9uMAU zp+7!KXf8?(T|U#(HjE~qXT2iL;(4G<>;dQT)^*#G_8S9dt`U0j=h#NnFR>~K`aOp) zK5?go{OBdi?5A0@21g~A10|qf4~oV<3uK>Vt200Rgk-w@=z3hQJ*n&4#f*4^P`ns{ zz8(U?9D)mT#i~&MK<~{kIZzW zIuUbkCnfJ)GC1hiR1AJyTyzeUQwU;(X~JcFzYMQPrnP=|l2;)WohUgjEFN3Wg{Kp^ zvshsLY%fZwKqH-_dW`O07>QuAdIV^N?jsGCr4b#kCd+mqYu6U83nbUs`~c>M-6wjN zsYePSQz2#uzp^4IjOv!yY4G+UzP(- z9FZbeo-Z>X-0)#Z{ZtEwzV9vj1r~nHelE-gZJT6BGlZGnK2IN8V8zcH$uWAR`TTM@^; zA>6kJPLf5*R z!PT#`I5_eeH9yuWIGdwqGIJfU%%~2C%S3L}M9%03>@STqNsFlyQgbH=VtiQp#F1ik zw{$9`I$4Iyc-oFW2urHANYs-VxU{*3b3F?3uCq%jFlY}E6m4xY{4xG1jTxw3PFPTQH}yfs(JUKZ~^({YN(nmewS2ETV)O`lG!RH`x7&;J1x7RA3u|&i|@+@>!n_QD48rA;86Jsx-4*@Q~JS*8?O|T4zd#xV8iF26NE$a zI><++STA|`ELAd9BGNTWfsT~9M7Qawqu3oZD{;Sj%;j#LjH-b%>yD!zVS27-^-4y& z1P@X413CPN3aDr5xL7oN4KQWti8BoK#%l)c9dQ@@UI$>h^0$Z9O<#DBZ&V#^7$r;h z5U%Q19aUUYQGZV~UTezq$c5a>4}>eh9lD@T+^6b@H*C!3Mk{5C|6f7^EWA*O`j3+k ziIDYMi}s%C<%x!V4gR*21ATNw)?Km87W=Z|e9{BBtxblJeA!aqcZw-OvB-Ha?o!)L zD3E2u?OHo3cm-~>HzvHYv9r=6Q|gZuPWgubLNQ7DG;HBZh6TW$~OaLP)@P@D<)`~FK2t5EQ&6}CZdtUtulZ%25{4)`aL zz&h2X(ui(&Pu#1^(ynU%7@h1diZmDD2sd}#F|myqAgwf6#mP87cSm+okI5sUYJ~qlyTjW0T#SciX~?Q^J<8I| z-!421vNApXgspii&a7AIV7=x?ZNM{Zzs%eIXrRnE;hnK9 zD&`54LjO-ImhTAGuSx9^4h&hY`q-gTX1_!Xm9Unle(AX`bNG#X`6oj<`k9er!_)W! z&*hYQ&04G~wnQ=7%SZ(i-~U_3Wp3MA1h62B0V?XUE0bkuFl_3i1;wji*F5uft_-yU z)fLc4YeSyiAW2J;rXeB15GPWUXG)oDotG^<_$U=K%>6ZDx#*Hy{Utw0#KO5MeUt8W z@!O+!%bu|I^%QZ^Dy`lp-`sfziNeHEJPND9$G;WMjn2UB9W~?*#r?v3*pJFef1s}# zs3yX9A;fPxisPy3mrXuIFX0o7KK{Sg8-a>bFsJi5;?`*oMXtGoj+ZMcX$aqqw)63N znZM^efIW@pqm-To4R?;f#xhTy%AK8ec=+@edR>t?{C+V9l z|8)?O1>LkJz7G9iRdJ968dfcrB-CxdGSw?roscw2_W2M}fYaHA-xt z-X?JL%m*`5gWw>7@D6NThY8}_ogS6gwOQiVs>&D1i<)JqI{ZXB$1wjfA-qJ5ex^W6 zXbLyQ!>Kpqf(r_#T71ZDW&kVvX@6G4TTEpy zktczuWL`Y-_`!90;B3_?SKlTpQ~=&nrY;=YbT|)avNPp3#6>u+yZvnX)=`YKMZrUH zi!iG1{L+@*>{@rMzVH!)2aFjCkWrtF$yu73DFf2n3(*_V-G-^FOuedOLYJIQW=W|e zb>&M{odNk`5+VO)$edh|no2gWP5Vn0fFvmo-7#66hHQ~3-!*3g*d+HQ4s!whXvMs(qCa3ec|aHyxyabMBz^WG+O+TV`Yp9OS~_D#5!I+As=8LR=CC}%DaLBi zK>SOOc2C}|w6=ERkq&r>K_`QL9|0F_`R-ntV#83A7x>2gTCuUJv7}~-Rj{Ud@HfAz z7?8!4sjzFB^gzxy$!b$FWSe~trL-!yM8a%yB$1MKUzB(0E6io4PDPIY8E?adFMs;* zkTXUu{PRJ3G1@|hya5hB{MY=aJLWUWm6d+cZ7x{2-WKu32$n74Ji+b+K#@Q0`@RC; zxt7$cBMwuGRYNDG&Rug%iFVX9|a@L&R)XIxSH3Ldz^emQ;S)-8r|K-M`*`ei0#*7m5zqP6|;+Gi?5tp zKB-hhq6O`oaAF(2yJ?7`rs|>U*_}nwOm%RWn||MI#qM5B2(!#q!skA9gRcX=RS(SC zN6o74A(a|Z=@|}i5|yNE#(;AOMn@wmtnKO6OH25iMD}~gYuIRhZ3FcioGBZ|Nlnvu zYvE4wD<75paKf)v4YRhasp+8@&FufEdh5vo#6M5u7GrVgrp+l2D z#Q!h(*FPD2+IHohTYf#CD)^r4|3=g{@Y~nwggQ(yod9EV zQhsw7?bVJIf3IZ z|Eu(e&M)4U^+~Mm1>f*ewBZn@7DEw+&IIeP#&Orz+*kM@x37|n{dLh}uR(oCU>(ag z0N?<#h48jh9!wGz?q8DVb-L^9KA&DbhMXzAZywT?NE7Xw#CpEN;o6<>lJ@a;@6pO+ zP8B%a?i6DTAAzY@e9?)^MFiXMG!RYrq=0P-Ez;dA5N|0Y+cN*Sv3CAD%mZ&~Z+d3u zK5W0S?GGt7ow+JZVPER!ko94BLcl)#b7nGkhQbd z9HXT;p+APg0e#y5$-#_yf&38(?Qpx#=DklG88ol-fOmubwip3rt2yKZ!h6DiISxt# z`LHjCjcw+Qkh0j{pIbe}syS`A&!UCH{GWc^=F)N6$X9hvaAK;tW273dMTh zs$}LYQ%QAl;oOY>C}ED72?58oqLlv%a;arU4sPOTaNja2>NaR80HqyC@K9nFU-Ov1Um#|nEkc>u%IId*`H*yh304mT~AGjOZ@FOqR7Vqt9X+DTTpWtFsSt>Hfv7%92E z4X4BT9N$FgH?|pU(NdAWVDj5>1FkX)!iWYy7xWl8rai--H(wC{OI6X21gTs*R7mXo z6`Y8aM$Gw;S_vvU%|c%x=8?&FkT*-f6$_PSup9$x2~snbqM~aKD_`MSm9SLB+FFg7 zc(uIWbbA^A6GR{Wa(%|%cHXFaIT9R*(+vkxU>Qy(z$9>m)(i0EO=x1fO-*%O2=zVk3Bp95Wl%Ps3pvn;3cV|Glg&oaiIwb7ti!H1K3tUZhF#n^{=6?SFK7drx`E`3cB516r7187+pftald1gv_HBxAgGQX&>lvn z{o76cuzCr%lEpY2H+%-Io!fbX$!hA0ke?5M^y9Ngk#R~g{+mttq16(`$LrP&({ zqK3B+52V;gS3c5-S4=y#$_ER5H#=!F=yGF!i(HAobD~jCS4I{8JsXZ(<3B#WnP6U zUzh+l+5J9}2R@GXd}b1GKgIH)Opa*|IF7i4)JudIb9wSb>vm)Wao7pboXSB*e9~&P zvRv|9&eT6bEc!6T0#FvtMDU>Zx$Xiuedhef3EhE7ToOA6NadY6%`Ge;4V`Kc+Gdhn){0v~NR~xcP`WdeTCdO$l#nC{4Wbyxk=V8C-5>qNQyXb4Y@Dm;?C*V@Ke(-D9CW`*yRVPkurF4D zHzV-0g(>WhQoi~A7&o(jR~yaYsk_Ty5OMGaLIqu~JwDYjhY-LZ(ayyq5;P1kMmaxmFkZ`2z=rcdl&Ud)BVgfa`x=zNd?GkRO9VT856r-MQP39r5H!i358XwG za!F-Q7c#!U%HbGz0^n*ya=?wL24UV|`@vR+RIix-aGGhB>J)0Lv2;Tm(!&Q&y%D>DNmwy%`an3GAeAd;X>XK$=_mypj5V?M^lDEbs(#E15GBivAl<&$#%`G0_} zuG$3I7$yakj@xDXc1OiOW5!6Vet&GXChtoq;ZAH)W@&aADWmB>y}do}&tJlBzd&yf z_VD8P_u1|#)4>~cb93wV%HsHy`t#%TF^`PB{z=fN6%MiU#<$umqT6RjIr2~ zjbu+U6cpxcJIFm~q?3l^7!|SoGvS_Jxh_7!*TeE%0k;5Q0yxB)ox<$b z#yy8@tcD#iY21E~4MZ{2I4-)yu^mABxj$x%j%!(KnOLs-!KV?8tuFZPG<~u{kk$Ib zH?LoaFb~xEbD>zU=y>S2{zVwl&w( zM59K0b^BG!Q0lMthw|H53}so9)0W?wJ$D~ZGd!j!578`^9l+J40&NO;Sb1suO z=MYT$q*+Iq8)~@0VrAcV%HYdP%2F&d2oz7Hs;wx6&eG>yZu zk5sBg{;tamc zjHl<#RKngGUiI#^>^@r>qvMh>#U*OEJvOKFf@bIkY8~2BCG#GI85@X|8GBf$A)}AV zJx^ez1Mmz3OoCCb-(djzG0!I&$7@kt>3=!_&Cr3WVfyko#uUA1J~tLeut(>Fm(OT< z0)K1QEf)GX4S>mO6uznlHJ3CU*{CZhibUl$+?1&+R!!zhc}S9em-cCro9%Wd;ltGK zv2tulHApYvbBauGHU=35hQa3sXCrv(b>BAQ=EtoVr<0paVC(5ZC)E)4HH4gg2OaC|}4YWzgo-`7IO$in0j2XL4n)+wXlLWE~-g;`Y9sR*I*%5>6d)J)2ZV#_k`Z>|GL#6! z+xPb1|Mswf5|j{Bpf3di8_0M|zo=b2t|-Exo-&IZ?!Xh6)-9Eqp(;aeI@lK$4oG+| z4KHeJTNSAhH+BB#c@&&iVx#+0uVUcr`{_H-rWa(7p6xXHxc4t* z<2U7F!22Eo>}rrE-B#=d|8TE8$f;rqJKk>3{F^Tu%{8Bs`cL5oEduvu@OgtA82>aH z4;i1tam?2Z^F#%D-zysN(#eo=0Nf|!I3b!1HhG=vvTD@%G&scEblyq_;3R)zP3or# zpRem)vY#C;)lN&)LO*fM1(NQC`ozaanGNC?5Vu=vnjuxWF5v#Kk6%u4ilGRVA11uD zV5&m92rqgN`#*HORajeX*rr`dp~Z{4YjJleuEk1lcXxsnm*SM-7M$P|m*DOe+}*V} z6!`Og{~X86#>^hOSy^PQ=f1A9kyGVPxRSBUkX>5i8ij`d(A2mZ3MB#pLRq?Ge z1wGS|>;Sp~2yS6hZ*(uxu9y3b&iFhs<~v5RLe09UiS`JYq5-oCZt?YUP+unc&UWJV zr2liw@Yc>oU#5hGXOEX-sKztUn z*M1x9B43$;D~5KOK?elCFk7|A22FF9m&c{%h;0LGLomo{R)mP)T~@MWxolUMm6_ga)`cc#*QQ!-T#m70 zn#<(n#@jltvPbf=dZ+YT6nv7>-$5C_SyxZm6FXp!I26sVQ%8V}on3v;Je_eCYDwBfiTy1Wo-VK0UoyLG0~%UphD1}|@k|HuvAx;?>$&+b4yndU*#6>1I!}8HrXjk~oyCL<0jdU9v*P4@3 z!B3CA>FZ9uXRTryo0vZladV-hM$lj6^PzF#JL{8AySib0rt_L@9qs*D`flL{eS{Za z{~yO3q=@HfzoN@tKd;x_kv$Q^T8mV!hJb2VF5&-S(2Fq4$x5kt57_?^A~re7+Ci3* zs?Ypc{wT@Gr3=0h?eO|P30;>^Ryogw=%+=9#7CUzf-=rDez0`6N0?L`NlNK z;j^p$`Id4~4m{B9zL=Ivm}RxgiXnn>-p$3esic3-252p<90}6R7#!q6r6+QLGXDk; z>z7r_$-K?{r=%sJo9teP8?02-_wfOkUi5(xt7tG5%;-Fa4GshDEnbpfrzh_~IiX^H zdQlbblxu;2_9cUpa*SLgOh?Z}kT(0hlWju%fV|=xlFM$;SzD@r`7cW}why2d4b!n1 z^#Sij*b8Yy({lQhc1KI^XIwUs4gZUc2#LZ9HcN^Xb`R*!pyy0Gy;LDfMp|L#A4oBd z85$Qs#m`zyavHFUKPKg55M!K@x=JZT`bUu9358JN=)q4;sSMyXzh;e-zzjHK(NcxK zwE}MTG1@zl`(xpiWo=2B;d?_e;SGcdlD-FY_?d4JIUPak%U?sJ zbcUXs*FD9gjA7Fk-@(*1-`K<~4gz{#NK?>05s~=}{OgO_!6ymkB`jg`-VMnkFMs`a zmKIC2qD&l(n%(t~v^|T(rJzLm&1JO3HBu5M?KaK}BxikBX9`LYzX-F_mf&3vTXWhd zMBmDN2^&fl)tH;Gy_ra0hA%c@-%nY@(6t_bvMK}aer!Dvw9S_=_5<|0tyYE{_@{%0 z*Uh~XhMA#eRLaohtIErF!@I5xao;M;zkRgaFCRcYudcQPf05=p_yn1savZsEd-~FK z3-@CXAP_kX54MkJ0y4KeET~9l3u#~~70m=L@EV>9ZB%zi4invN2u-kPR=?cQ}GryRmeOk+iRqNFM^DEbRZ{LE|FD2~N* z>%$d$$_~m>NPgOL&d|;bdpl!fBR+SbmC@8%E8OlCH930udSB$+16P~e8{t+sIP!3n z7^8c9bk3W72&jwJq)O#C+;EP?DC4-hVVtq0XeXcPQ8UwSMj0vLFpg7=fz83 znf%*J((QMGlXaBfNoxI~be~G?5V~f(Z-I?Q(pf_ALM&x#A0YaY)LS8)x5e$TN9-Jf z1g#OPAOCSX;~NJxl^?H2?Q&PyzQXBSycm6-(<_MkPIN;ZsJhR!1CGD6{NA!mH4vgZ zPVm9ff{;l0U6dn6+hyXcEo-Aa%kLxGnEiAsmd!TR`Ck)qf{pyZ;|S3>mJaKI{@UmA z@E;#@xL;ZPD_Wr>tCmS>_^D%wx@hy7t9FqdkqyZfr!NQD_Y23Sj`ppNylZ5K#tgRR z(g(sElc64;TiNZH;zXdf5LO98rXr^{?7!Z@&U?J`UD1S36-u;ZhnmUCjPQBc?+XQa z)o;sN*9;16Hdk%PUe5R~&O}Kt$2fLjw=<~hRRvQA0rWXxFc229|0?T{mRkSRhWXH~ z_VEka6Q-o0(F^7E$k^y_T^2j710sg|@G=n|c@j5ES$3+bK9U0tFiyjmFWII+JjZd+ zyQH*5!qcxp{q2sQIS!9Gfh{ube%MtTU9)ztA9GNx!Bz{i))Wo4oj#nLpZpTa6L2e! z%S0QXL5fvm40BJWMsDy!359R!sQ!9g{yXbnaD7Ol!gv>e{J`McP3)_2TN{x@ z?)e+$!Bjj`B5L$y*@LGb3DNsq)la4jjlyL^U%3C7rHL%{a_3+Uvf}(+ z-{CePd=3V2@A8~Czk(t$%`F5_>JF8mVS2&rGmA)64C*s9;y#>dbp%7hH`O+WucvT7 zf7kJUQgWKAE zM1Q>zTu3*HH2c^6QVI?8n$#(6?;@In7Nhc9>mt36k;@u8P1D?+WC*XnoF4`93N`82AufHJKejFx{SvE-|6Y;S3nG#xK5s%1%4vf&G$1H6%UHi6hjTTP zywI%O+WER7_%DB~;l@ack>BjKuIwrLb&rY4b=vm;#_jIJ!MqJCAC`~0=7Gg{*2+0O z>$CmJPq>DNo4K`@1H2#cw z^r2s$^lCdP=p`w{v>%Y@M#`m_`k;jz2_oy?F0<~>%vDehPW2_Fu9C`DX4MXTF(6If zqqVa3qY^}WOrw>3sfR#15DZRx6t^`Amu=02vR~8Qum31JPAi;&Gc*!mTE`4R@Ao-x z;W$SMx_&1vArxo8U(H~Sj|YgPDucCBYu^{F5M1x(MZ5I}U_B(2y#@p~`4f7fUE;mH zr4EpSVgHXvu#2(`Ybeu0mhDZIL4h=sWtt*6?Mr<5K|fh;GqAg(sI0gfJ*R-aU6P~Q zJGU8%joE@*sC@&L^8{3rK4}9`mI^X79idYGl-63WrPZDrEP8X?K?eSCsY=ANyTHLJ z`Cvy!>KvQt7cREk+I6~h-V)40t0n()qSywas|!E$3hD2d3}WHjTL+BpU>yF;z*8Rz zu5GNr7gnKnRB1B3v^JHkG;R&Y^|N#6MAy#0k+fw?KYS$;QW-sxh4nLs>yZZcP{t#6 zYJ8-QJo7dV+gycv*ai7AMxz5S-ixwQkzZH8uuuHz{QspT%6UK) z`QdHm;t5~v{qws1)R9b#8CM0fWP3R4+^@>w?<6;hn>T}B=8*SqzASvr#WG9Hx~Fm3 z&5#m)toJ1gJBYI6x;#pAtyyHwGWK1(MJrr$;kZmn#;PDv5BZGjY||urTM!VKCDJ>g zW!R+|`gDt~HmLqM!NJ)`5P^8_M69*8w3&!6iiFTjnL;n zXXj40bwq_{`h5vPAaiPt=XG-(g3Giv8p}|FF;|B8)7F3QjuwBEC?$qs@CG>k6_q8q z{tLs<7hIGBFbz4+Twos*LJ{?+Y2H9h#x!9Lw|<4x{5R^CHQK30WrxWok@bULW5}S; z5s&g6fiedJ7~mfS4;yiB>(g3xQ_~xsq_~4ZsvwZV{l;hVKCO=#JTVeqO_T_+_fHAk z?N;1Uh2-kOG-2Ncf1dS8XM z{}vHrB^abtt=r&HhwzjnluwZw(!J8!8r1_YsGm1o!(g zuB&p|ltctnF3NM_k96r(+SYpPoBn83-|oy5gu|$>XOp?G1|ZOY*1RC-+{arV`7jIq zogot5VeNq$(vl%1rxX=wmDtVH)KHR89!C;p&U5=j{xs8 zOhll)uuEmH$zl9YU4>oMl4QY)@*AjyzBECJg2VVjy9<=?P?cWzje7ETy!l|l5Pjne z-3J&lP~}!t?{CFt=6Se}2SbZB^eL6-;PjDDfg?Y8fm7`9re>is!py9KzKHD&=fe5{ z0o&PREBI!!Umd7T9uu`pd_QVx{j!7-=IEkLfPiF>uyqB5qc6pzdGsmMDD)AaR^^Ks zt`-y2l=bh`0^VWu-ZD5AS7+>M{8F7b8>f`x9)*#1X6#^<)+!OmH+)B%hP9F5(QV~D z`Gemj>eq7_CSfklSxWa-nkojUU-11SkiBDKTVN)U$}~lo^6b63nL{7$!EW1iM;tF} z%|c1<`FUTXiH^ND#a+hDzujhomCfgQE-H>CBUt z7r*zu8i%$dwIj=hlY8n6=s{?^5|-)Q5_bxM>+aI&M)IUwNq<{tqc~WDlBefCWFGsd zcq`>z4hlrGdY90`@P66qYqC~%?EG=kL)wYY#2cE`YZJnnb*=9e75~)jFr>R!_t?6+^5BE(KF;>RhUn`(R^a)E3e~0}<2o1Y@#; zD!i2#C^zBHs|6E{25$GjTMRx9V#w54 zk2-w2KlIzzH4sYloZWf5BeUl`BW%7f|@o zI)=+Ku-%8$an)T$bgzPbK8!4X=nI*s-%=Q+rk319RlY0Mk&Y7hXDr&xITh^G>_J$% zFlCG2pz*8d`PW*b9uhNKUM%B`2cm(XNF%6DVYQZ-&7r1FZ%425imyd`?cL_v(_(a~ ze{1)E8`ZhrJ-)X8G4sr~!z@Q*!J`j!*7nv$`u#G&nxV&)=(>^Cu#UQ!_$hKM*puDp zNBH>94icO)J*3->hx$Z0Yu@beu|UJNXlg5y!c`F<#`nkV?t6=tpxJi8{R#B_9vyeL zmFm8`>3lZ6^aFZV4$uf;ddK2QlC(zps{pDB@74%s%?n_GLt<$&zptC(a{y@t(oPle!@UTnzw&zSCJqhYu|Dl{@#3fF*5RHQd2yS*c8x1LKq;68E>}h5lJxVL@|M2vN1?Uzv5nXRZ z8%>J&Tnl-%`er!2L~U$|`JGSxcF*(N5a`q8=1l_?`OK+(^aS}v8JfkeyGpIrx@%H{ z9y4e)J3owHQ*;F0>U&0do$1WZ`_B5GU}Vvs_tz*Dh|jnX?N*u2^mke;@ntO9ApX1a z=cmfl?v2!_%=`q*WW`Xeq(VdN;q!eVGk=pMuxY4T9MLd6r5WCSReo_+_^^CpdfXtf zH=t4e5;DHiYd@T;%iGMb#a`|y8t6j1x}KIf2LS6fw}sX(YqM1gN;#nV-(=9h-rJN& zgal2y+!jJB80aqg?Y2|?Vo7(Pw(ZyNLsl=g37t2=e0cc|yJshw!dTNGxAg$iK z#&Oo?*_w3=P|UKkJxn|d>nDc7q8_g|j^F4!xE11jsA@f{DW|^ zqo7p87xq7FX6V@M^buKxGLSQ2@S3H|_oGd1oBY|Qe6o8@ke=wWo)RHnq{^;^E~(-9 z0xMv8F%SWIRikfbKmdkHGg}wDwcN2&nT>f7`q{Pxwz>1)PiUMA|)hJZyLe7qW|)pWA2;R{IjRL zEoQ@{ql-(+frPM#lSWfxJ99N#>Bjo7=_)1hFwd=ZU|FKvpJP-%S{WiV`>tTv+XJjU z@%K|Ux_YHh!GbLYdn~e~;f}DqXYX34dvH*NON6$E$0wU0P3<4N79LKbkr}*|Q`yCK z`s+un9aVG4K1(OE(wP6D62pU?v1+gwi$7HC_lva?j@LpU%%u zwY%`i<>|VVrJrO@3>D{8H%PglHPK{hZiq z`d%)lAQ_8lZ{Hm`X9o5b#ZsV4@znU^44eLAUh-eom-#0~w0(X+GDcXSz7PU<)ERds zb_oSm_pP-qlpQ;<`m}w7ODr4fuYm&O5#n6i)+FxaA9@uVzU5ofNLpH2_VEw&l$^Pl zO$h(9L|G<<`Q_jzavOxIYU`I=FJuR7hANm7DrTo`rB;vf>9sb8tu{L#a+)W`xKO|; zTh`XX8R6{LmlTUi%f}ZZA5j;SW1hVPzL&R$!|{&~tKjp4QU8wKIdbbd7mMV%$*%`v zSPd%vNGU1$wDxt$YLxO=T1iPn*SQ4rvnG7>Di0@`rN-A}P6qs2I zMS2-^nftgZ!9|r50~NZWj^on*{oH49pZP0Yz)9vuasqW=h_0*w&W^i=)ao@qaP-E_ zD(f=={|-z-DD~bUgmsQW?Z0ud{nX-=fKK;KZlehY61NI*<3*$#qiQFDJg$<8_kHJ^ z%c>S-Xe;pd?ZHB`^U;SpMHQjs5vw(nvp6oL6`?Ba;l6a> zNT8ZxSX-kf$$_xEK7VogP2xz0yj*cRr-TBKBD|x1*MiXADE$lJG(+Jf5Tcs;l>EVV zy7K%%c$A^ABGo;Z9T8F|^n>jf&~&V@$^!uElb55h3z)JsGW7ByH!knDc$gf*PVIaYF6D=Gm|V9;PPMyf%OVld+fma(iVSBISt#|oslaCq*M&(|6aK<;!bv61UAq# z@ydzZY{iMa%%$DkCK?Xr^7`;S~i%*{i2|fwEC`ARtGgPzL zKd>X4JbHa*R6UVI%63d){#MP*mC;T%FK8Kh*Q(q%(kg>7(X4Af>M~Y`Jg)rHjeOZd zTB&Oyr+G687x0KL_K)-*G~mwZAuiyO?-3>7xxn4NFQD^LpVgt-Wq+xu+1oTMdt49< zTv4{`|D;V%&a8-*iptUoY^Z9sazlZhn6QD|WX1^=z8!};eX&AaJ~vN1(eAClTd_4O zOZKmIm1*}5fP#fKLe0XI((G^3$i#3zqs+3vi7vLh&^q782+2FBNp&DKmzAkR3`K`D z8KV4aj%Y(#h%Fepjti`(!SF;Y3fugi&B5Af;w33Y{FhWhnA?P?_7F)+P`^9EB0OPu8hiK&dGL$`G>;XM7G7Ee?KyxCKf27d%f z?>y@kvz!TItn>$uQwYgcDoRwcNH#^c`*TIx$dW3mW2!!E@wLTe=#q8%lP5E59p51n z^Jzs?Yw+L7_BJfb2k1ZucIu`p4JW2I(uChb`&(`euvftIra}}m9 zA51`Q8Vxnf7q{yiI+~Pg-*+Q5gd#STrTbWLZ-Wl7D

iRpC3FTma@i25P~*eFOXlcEI)N{37q>F#P*03NQSHitUoE{lmkH zbgYM(*H}j?tTFn`c9^Ryv)pBDzw)Qe1;Z#);*xXv9MHQRVV}X0}Hfo6lm( z7gnsD39otc_nrWAhdEr-z0lU#a$8$)^f@=zvR<)lhfyKPwR{8eqkQhP^MFuP?XZZX z`BXODvh6i&G;E2)Zaj-_T8Z@TxpjGxKgb<~!WEDiQw)gq@LO5z zu`^6@_xlGXdWi(!RZ7WCQt>(FohffXPu+(P9i<1;W!9Wb^PrnoGglUjzohesH%@~X zTz%Nf7P-+cF2vpUacn7UpQ&i=rlIth0D4+gj;x1W7S$qOV3>K4@{hXrGtl;|x=fX?Ttg2j;svN(X>4K{vGjq&l`|m6k>- zx~|E5*fu9ID0c(OZ)d;CCX5omAgX5|?;p=>X{>%Ca9Roe#FWTfm*#4Vk7BrWQ*cYe zx7*=N>w+kd0GyRd&z@awlt9gXE3eVkT6tnYZ!zH3?CnP1WuNA{3DSwKYq(E8R|rR1<~)F zrz;0{hT>HfytoiFgwOnWKP_9uy+Y5km zFrQ1r6Nfn|Pfm4y$~K$09k%#m2THnSY$&Md(CDu)y)gzKrQUM~el2GbF+BQaEA zm^D{?w3-?l=1EODz57+%^_$Ci_)89|{VjWC9M^G~v6Fz4Uc)4jyhu&1u;0|l^}1_a zSR?FdQn(NTBresARIU&}yZd9z5TEp&ROooUX4Uy6-55U^ZOmieWw>Lr%gj5ZB%04Ft#j@)gm-&kl*oXGf*anh7U97 zgf3a&V2&~V{2w=lmZ9`WHaR1ED>N^O(L}1e7DXzQE|5SeYtmhF z)|LmdM83J&hMBiW+@^n9bindqx5-X)R26UKvC@-~e5qx4Z4HGSP5eLu%v z_*Qg~Tk1Z*xT+t3GEFMJ#~`k!Nc8|$QosG>%@I?nn%Re|W{CoOiBF6Y_n|?p?+Nr? z2>n4vw+EBi9U#7ao#xS2DaXoV={YPif!lV^xW#!xc6wh{Dlvq@1|g#(BO$alVy|~# z-`fR^+j$tRf#?_Hb@bQhBXwHCTm?q)yy_IJ8#+DR* z@K50|p{^Q!^S{V>XER=`Z-Qn2??qq$QYaC!(+APQGAGOgzNZ5*{&NbLhWg!q7iZ`g z`H4Q~Cy~qE$=oMBy>1za1F0Apic&uN+}89zH;*2vH(ZD|jilduep+=Aektv{90OSC zpYYH#dmItg;yJTtxho}93x`o;NdV*i@n&ppACBW$dVjeFS#5tiNGCo6;&CEL(tEEZ zPL-6Ue)_C-dhSSv%HtKOP?nZNTD~B?jSRF~8J;iZcvFZm>^Mg8VHVsT)R`s68A@Ie zDvp3U=e<2;Eq*E1CC$Ytn+w7n`>IUmm*rn2iYGQ@PyG;AsE!f>zV*{j?DM0~yP3aM z-PhDEEF;HE_~^>k`QEE0;2$f=_dnc+AH&4nSl+Uh$I=3KEd+r=Jv=dwtL-s#rqcaZBz7e4fW)|mYlh}-zI1iJ0`PK-MEwIKI^p^ueQQ*H z10B$SN4yi07|S%To>PB*QAdCm@f@?g9m$=YRPZSgkBfFbOqmh)(7o1@v|ctqEF232 zlCV+E87p&AyrCS^;C9!PBEtZ6u8pR|^!_gm8#I5+1(r6GT}|aYb1Ykx(clhqt~FZz zN&ci4S+aio*`eVOq?7Mc8K$$5|5`)@EJ7EFZt=lRNj0`gU9V&P9B>u2BMBbEFxt&C zB>Nh?P0mr(p1QWypCvkX5aVS3q%g!mnTo0Sml9sY)CNR{_Kj!nw`}hKzh{Ti;+F$I z_;gFT*W3IBP8I&aPsce5PefPLG!eaa#O8UZ$Kx@m-->WXi)eRukqVdk938zQLkTrl zP`EY137EIqGrOGSvAdUTeWPp_D&@LjS>g;99ltt{-W7e4qi32tQdvO=Ry2P8tP@F6 z%y+l|@YwR;fk6zIY%duBf$rFaMA#Q}i*sq`wQw#t#U{ZZ&In z;-oqAdjLL=qNXngvMXH11^#trpoNMvc-X4fQLd$;bQG)ZnQy3GU0}x~2iaL}mQFa4 zJxT~u4^DF@OT_X|H$j!;o{NGd+K~kWco%7BLc2%@^-}7BrUQDDr1VmTUiK8Tn=Abm zlLgjaH<`{H#d7&TT)Eg62sg1ix5PU1xk<~ZDnoH0r8fco1&r)qw3R|80*9vOg_RP> z#rVu`>_C*v66UThlUYcw6i5m!ZO?2?FlrBg?VGik#hJ zJ*Qd6ctvSKn2T9Ka8 zCn0}AFc$_nh(m)6iQZgd@LNT+e(m-*B4g4Z#e%ERh~a7nP3`A9#w(a1WwRQ-(sSN_ ze%WNg#^3S5?^A6kYEH(#z!EY3nuejjzxCj}F%lI}vsqzLEMFBvk0C_dNZCv3hq=aK z36`0r)@tGOF~yPJ*%=F587x>yZCI{CGpzo3mDj+o$tuGhi#xkqF=zv<(oZWRSHF_h z9#3JyA#UyK&I;9Uhs#DUHtb#Z0}XJo6k1XK7OJjXMNPvWm6m#iXNB|8lmfk9kKx+A zz)ZM+>j*s|=fH#AOYa+rC?l!Hd8g-y&-)h#i4*(0e^vtV1c#CB|LU%XsyrtN!`3=H zPnZbe=|%sEP1C?@^sANd6zI`JO+E`90OtfX0JK6iss;K*5AXM5%x(t0)i1cM7c?AJ z-fklz!xdr)?ZEo^Y&PIb7HDsAe>yk=?@_~4+t8I|{|A5XdK(WrC62+H|1Y0ZcW1=g z0Txd`nN^;L51@8nZ&)pnhZTFQv2um!0w1F3aM;eMZ~w8^-{El&a2V*IMTP9f`9Z;9 zfDF0U3_eMb4V*iFmrQld(A-oywD8qPBY3w-#a%Hpy1i-ToTQR>f1Yl?lc4;kpC^j|H~1+$qzVf?sxgn9(r%|+WE23`)I`O33ktE zKd63^Hi?^MAK-vF+bU)3MIqwqxZ91jf6X%+RP=wI87#P-y<)r1Qytrl%9&qx-s3Q>g6{IR-xG(40T0_20LhqR|kImw~@M(GX?FF@0KI z28Pp%dG8YPwk-T*jM?gdht0q{VT@{MVP`6=>XJzuvH&^3`r&%jrdP?W#~Oe+aEcP; zkXy}y&1pfWtc)KUskIMLpeDS2 znRVCg4AIgiQa0duJaN*EUQ)nyEa!h{%h%`l7{9maGtaA;Cr@;*AKnSzSuZr4v67x~ z55{pkE759qkSG2$5FdJ+ThqPnn{u}#C=bwn4nf0Lx0#*Rjj3;)QsktzUf^Rti-X=f zHgK45GIK=`5k$YHPB$(~jpO;eqRyPP;7X8KVfUy8shr0AUb~^p(ICXs-`N2Y6V5R& zkvd-n_(UVOt;7K;@PuCC&zbAnj+?_Ljp38B!S(OCC8bY!{Lt2 z`GdSw_)lVR{%Fg9%sQDesg|v$j|)~j2HK$F+ash)m)G6IyicMln9a9G$hv0C7;5bhhS6!3VzwCLWi1c9*9 zm=<0T7E24uODxvv$27axpEb)DA7nVC$*hH`D6ML}(>HYO-B|J<^O^iYS?u=}S|itR zZ2ItJk5%?%ba21729;K>;FEyc2uCQZh@`HGT}o=ME&|{;)56p9^PJ4`S1C`RiB(g; zMzra3-hpm?Yg(W^?Uv40AehazSd-FXo(AbSULcvfx1OLug>@^tO0?%({%d3HkNU?8 zu-E}2DUSH@vv!@w*-tUnQS>{i=d0^74MfTuzev zR+p|h?32BtH+n0E8BeD2xu=_u*|1!}bmyGOV9}J9GGjOu`-H&p-joz6r?GJ5EUa@> z6bxr1bD_m3?;PiXAcuf$IKB9UFG$svyt1HS%15cCFR^rfdROkAn!0+>V&@H0bS-g^ zE3S+9WYNMr^fgjAXpC>&+A^{-Eq0B6@F%B5)|{E~oJJXi6s*3n8!U>DLq##Cn{~QH z?GT`V6j5(N9X+>!W;|+$!{sSTWlQMsJ3hfMz`a(rfaZ{TF97TVe})xHNZ2LH6%5ttV#K#oIe8Sv8QZ>41K^MEpKEnYZ6Y~nE^O+y`(qH?GT!Z zNrnGj+u(?vL;6tUM7Vtqd5##82CmA7G)@{gajyc;c!%B2!=<+N@idq!{>>k(r8e(x z?=2shgG$f5(CZUA?i35owZGb2eKuCkkPJ7i)14mbx&@{dd6@7MMO+b$YwCiOjbZg=W!^uBIf z4H|ZCJ-IdZOlfA^#MVYCZjTH}SxocSy{L<%sB2S(p#Bu_Q0MO-7r4@308g&_rg!9a?ggt z56V30OReHpFr0JyGnwW3v)u>kv2}E-A0$T$+c!aNr5RCWZ>&;1CD;^76yb@TZ;6k? zc;XPlM#SNn{ZkjMQcD#!1WJY}KdoqDKIfD@o@sKNg<6AmG!ehl4MuRi_b+8t+bu-# zY445#aKHo(2B~?DeAlycjEkZyDs4~X^1%ZGgqM9(u*sUn(V(BmsHHmiS=@!egobWhhe8Zw0NPGxE- zDAURd-qQmVRw@uA58nl-w9xlD<8UnKwoOc(I_HIX65@;3_VoPZ`;G?vDwrKYHsjUn zcj)eXxUWbYhl*jh=sg*c)-rb$(ljvj@H%z%)pok?jt~prGzEldFOm4Yd;DsSc^3RD z@vz1Gdc7MxvthT|h~>|RWxQ-(KTV@kZU$VIqwoH4MX2=!QhUlP;)mr}h4BT^axf;}|Az?6+{eKb zq%T1>a$_oAfo>?gO%Y{)R1E9JtOVsA14O-g0kcB@0mQ$5Ua^{EFBIxj$?N~b7K5=J-eA}w^Wp_c7v8znl+Y)WOmB*BR3b2Hafo2|Yd-4{ zn{R=NAEx)KpPZ05sO^-I*b~TAty+fLM}W^I;u*esQ)?&L)Uk&g#fZ6|p6R@W)9yQ2 z`KQ7@lb+pAvTjxZT zh&sbTkMr>-_>n^7U?rI;gUCak(5F};wG~rAq-k}ums9+g(4AO4^DMCMU10$Muh5^G zJ#ORo$@=gT*=cs$o!iQeR8A(d4^l-&qX18$|l>dajukE@i9NzW_b~ zx=0j1uRD1>H&|~@H=}bl&=J4oL|7lP)mPoRR^erv3m5h#X4tW~he;E)TG-YWD&R(R zyKQUfF!xQ9%DN!9QtQ{j+67%bJzL%y+3?eovo>9Ke>Ww8o_Iv*P)L0K>pgQ6A{u~D zkvwRrJOn>BEBxUS-4M|rW#mO?)?kbZYzgO}w^?f#n=s(84IQ`A z;vlsmSfMYg@JITUXiamIVk!u>E7|lBz+J@_0>u+E&caJskETshnn>K^fhSEsoh(>P1i5o@K})fdn-uJLR^~#nNK+8DZvNNapkg$UL`2E6**n1Za%!miHsPP& zpeFlWCLz^zh&o&9Zl>|f!t>=q*}c+is*YY>nVB+@wsdf@tXl&Oc9@#At;+ie7)(M+ zXM30nyApmJrXc@YN~5Uog=(*UYd1n+_H7Pdx!}5 zM{vnd0IS8v!%C~`9zTxU4Zz+xKNK=w?_wcbtc51K>^iAL^e2hNb5Ts5PEFa}SNR&# zD^ul6GjKf0@uX^v=jHDKur|eF2SEWxi5Otkgvx7UZn0}eQ27`V$q0RFdrJ@C zxmi|xyU8r|f93Sq$C28mAywy9kJ8UyHH;c|n$jfk}76JXqwVFW>Xyg_y%% zH8(Hd|Cc@wOme5N*@5}Ycqxvlwz(056@vf2!(Ogq0c!iT+o7XQjt9#OhS7ptSB~2h zL*ThnzKGR_k3E8O$lS+$D+XmAk{;OG*`X7|X@|Doc+bC^qtQ-SXP#s$fh~In;Nf-IpeIHT2R~95qs(r+k|N& zqhF`--#MAfT2F$#iN0a|t`D>&nQ>OCUcnI9b0w^cC|av&{tok#7NV)-d``gs=+ut) z09!7BtxV>cM0`mFXy1jn3)4~MXwJp&^8F2eJ$r{C`mj0O3PE`28V?YN)+Lm)`#{=%#gcI8pBidE=n1hVJUxQh zV-Y=aeSw6~nySaaeLNkvUuNbJqRuCzI--{PvR{ncAHZD72UKu`e_@-a)%W_`t$9{P7JlH z*XS)i!jnY}TI-HbmT4ephr0}>(gmY7pjjL#q%K1D9211^MP)Bnmd}aLv+jjv zM>#p;uE_>r#2;AgT#^#LT@oUai!j-O(Tb$svfralRl<>``Ez~Ag1=6xey;lv3oD&D z&$eon;_k{FD;iDkRLSh0C5MkJ9M?DXN1vZm@`0zl3tImB8*KC z4FCb39w^^kT34#i0mT06wWx>E_2c9j^wH)LC z>$ge%jNPCyOFNgMMq|pRdDwajpw$jQQ%YGj0e^8bWykkRp+EVl+|(18&GAv)AT<)F zwkwx(PgRjjdaN`d%h##o`&D%iSz%CuN+PIqAb!^N@cg{%nYOr#bT==)rzv{qRc-Pe|yn(PzJjuOOHRIn^X+q#lN&BelUa`WPc|U-JQyh?b*HbrIm4k zOw7C#!eYT*SK`5 z*v%^a@vO$Go{!+oNaL6J9wrN@$D))U(uM20)K({{YR&#nEEe=@Rjx33BtbksBeSq~ zk{xaO;lW#BZH&k`{sdExs%x6*1z*IJYs~*Y`ucb$UQE=x7mJWg;7WIaq1Ube^{DCR zT(tKt&xqN^w3USbG#0$%I#aPCNM04XqbD%Qay68Nr6Epx7`c+~E z>8r7upFV1C?s(%!Pqbt8hBWN`tf0Qe7(~KI$3(N22}}H&mzGuU*y`kdjv8_K3ImSg z3Pf~2C(z&Nt+-N&f{gNmE9``q(0K~@NsVo(;CeQW zoMHU6liB}LddE5{)<<)CsogHtt3C2GjdHs3rWqb-&S#uS2ALoaSQ**UxK&2)RAn_N zr*~vg+qL<-RM!5;SCznGmK?UD7Ck-YbIjL{|qVAZJ61>XhW9^b;sT&h765=bGP%Yu#6_K>S{#gJ^W{wdpB{cihy7wLuDX+4gRA%r(y}d!u4`NA7Wq{wso4qt$=cp_`i#_` zh)Q0%nbD;aUaeeq_OE-Np+tSh4v{uE*boljhyzcH+vBr)voTco|8;h)K}{V|I1h=B z@CwL79zm{yqGDq-#f#7cAr2r&Kt!;jQ6plll|*b25^^IBB?tu42}Qv2QUT*=K(K&d zk}47`AXEfYUeO>>q!I!)!IGpGwbLK{*Zp;7c6ZL~*`06B&Yu0gZ?Fg2^4wV>X3OR5 zC#Cs__xR-Kj7t{Trps7v(%8Yr=2ojZc4eQdef{Ej62qrd-gb5}?Rwwtv6}qW<`!Jq znK@|*955oU++GX%FWkl&9eFqU>gK+^ld^?m0~O{u7E{Kna>FvL(lPh8I>v|^%&PmT zs=p))Z>DB~jZce)(7jR*<_^Zx1t)rjRc1?g@J0NMClIa?!(oM{dt;r_P6xdPG2sG+ zWk9SG^K9#uPO$izc>K=q!lt+5yj%g}ekwPLN?s3)z@N*#+<<9o z;fS@+=nBvqOIep!3h9uGTChC_4=^`Dm9fyTM@-js%J^2^|}TywqG@ zo&-%!4pe~_95XmKb+pwv7mx%L>}5?3{X4#vk;V<3qM=I2Su9=u8l?;gGjG0e<$4k@ z+}QAO%0(!#E}d+$GTH|Bi~jIw)V-M|4^ujlv&=V=V&=0Nup3K4eW-QR1wqBIy8E~% z+eF&4gzRRQV85fj4(9-p&G?J*Yb zQ;d#553dJgYk+A>;p;(9ErN#WD$z)s=Rk8*tw6g zBYFu-r6#(7bP_B-MyV2K?z>rd+{0*H`CQ|tG@=YWsfx1`4Oh(WiVtaw64W$W>RJCN z5iOf|fQ6QE@OCn?x~6KfLd>lfb8Xc9ETX=vE6JXQq+Op3(9hE4`V*Rg56ZIjsa_K- zrzI5*@Op!k&hm|W-?bjeUXv!~F41kl73>2~7OT!#>XLBtDD_Rb%t{zvFbh^VWEwk9 z{iTqt*lWwA30A(1h6|+If!l>-3?4%k4on5hgBLvQcy@>q@2nbK7Wc&+E&F^<)#R9u zqD#~OcgV;TMBFiBVx*on>!he-;Dk-7Y|R~zUC&>xZBvH!`O6T^UC=O5 z{ZY!b2qAuN-4OdmW-ZK7`I#+-Gk57v$2}lZ-B-9ECVg;vzZ{gOC2;#__!6|#dz*m% zka*Bw`Rw7%qvjkZ;EbIbtj0v+<_F|a9qb>9Nao7j@>Q4Dt?2G~=&s-GpfIKuooMp4 z*8RLXC^=UJ28KAa*Q1O@{5hs}G!lDvT>vKbcjyyD)VStI*=IFth=xA|`fKU%ivgn^}783uf@y4t0si0JZ`vU1Z#5%?I){yOCL#o4F9BCu}} z$`rPMrd{5J?!tT~o*dae>YC>cbNoI!ndv4VQb#2!kp&b=1(e&UqXh9JALAzpU? literal 0 HcmV?d00001 diff --git a/_images/notebooks_Raster_awareness_API_33_0.png b/_images/notebooks_Raster_awareness_API_33_0.png new file mode 100644 index 0000000000000000000000000000000000000000..e0f07f93f237942449d68680b3c93112dd68cb5a GIT binary patch literal 40151 zcmbTe1ymGY_{U9(N{J{f=mLU*fOKOlodQdq;Z5Uh^n>H5IW|n2_2zmbQ%G z5-?WxuR&;?sQ52?qcCBJXLP|&&wq^HYvg)1@{u*2|BN(6FggD{xiN?^yn45}Ls!j=6hzdf+)_(AMD2pf=hPa?=*qZQpOP4%!y@R z(3akn>hT+A<9;HUrh%+))SgnAN>i?p050VZ_C#%P~~2S`-8SVheoIvW`kTxLTlqj)*KXF7@Sy~9BkMQ9w1Kcv!;W# z)Ir5k=z0^yB}nGLy{qt|j4~-pqCtBukO)B<3FZzO+5p_gYj7)ps7+eXmI)L~68!X9 zNazj;hJ3#ofl-7QLfomH*q!*D+!4l>FsDw=%+Ls+zpQyhsNFUA=6U$o4@2m!0q0i(d?(V@r65=WzkU`$%59S!^?XiJxBDaBwAimg!u*RzB2G)GS= zLcy{blpFG<<_LB1WbqGXa&oeB;kkQbTp(=X@0uSARwasH9xAwU5SH9e7%j~uJ0}1t z=ANZ%NSG+v(*~xH_q#tctQ!ll{1PO<pLYk!#~+XP06G%2wrrU>x4x#0ZASB;S8s z{nI$y7^_`l12HBYBdbkF{4K%P@fCV`jKYXO8=v;@@GZXvvZ`^m5tcErOxC=Nt^L(@PYN2M+Ayva;C zqS}dN_1v132Fi^qE}Jhx1@R06jT=3+ieNPRFA+Q%NSzp3y*fpxX$s*EaX=2j8Df0# zn7Q(x&V(R* z9zd1@brl)!?M^98=_0BPAdHGpzldHS97v!f((inhG)1pb=r-^+s`?L;0%1>(huV`nQd8?%BDqEwRY;PyJG&yGB>T3i z=7j_CDHd(_JVbde3Y#G~x(qW8C`62EyR#^!OCejo;vY+GNI*{V5G_ILc*72N=T&Vc zu}K;FvS2k1G1VFY%m;T|^nyJ`yaRfY#&{OW!E0|?-}w{p2bBJ9`Tn{+o$>qr*qo4( zTImb%lE61? zyvH}KB}Hl?wUM{19pp0y>=oBk*lLW1h(*T1r^ zF381Lj!?2HGKY73Fd`?Nqtc{x7<&G)mw2hgf1KI$d6aE3Rigt70|z|W#<$T}LG8_r z)N;&0sk?1Zc`16T$dN(G#cltDdwFCTw(T8l$JB?-beLF0R~4`@;}_CU-8z6Bx&8dL z`y9CJ;ds1{2=%NrBcWVW8pIt^-r}+%pt>q$<)mhFZSR2%1vXzW@}2CQ5S8^6II*8o zZ`|sMe$lKhtdwc-A05>uEO<{VCkWLP#2jdq%t@F)V^@n zLx~^r$+K{eXa1#d1ak{4Ci(mO<-#57Mnl9%e03j|VI#M{T1zpi5uY1Rn*1in0<>jD zr4Q^G>)_I?jlTZz6JZo9M=rcOL~&x6WJqp{AhI8GSuwpzsLVmd=0~H2olQyyVPjfg z9NWPdM7SL9CA(08@XOAX*g* zVaujwY}stwoEWTAbonxaRfgS1!a5aKc}uZ3CJF4ckwMnVGLRFmkwY>1<#Yrp+fm7i z@)uchjD@l9NfE6#8kW2KSr|3jWaB zE@@fp<&#F1!1Zh>mS!VAw6ae%74HLFFds`>IWX(5rm~bwG^Vg+gn^*;zCNJdP!=8O z#Uz`P4D*&ba*cQgFUzxa9cjn(*hhlIh}i~x8H1;T*up97RaFmuHrF%~gZRPVyMfW$ zLG(VfPNcN{w^z~2K`#+L!tJ@%BB5>VK`ajfj%oP}!C3_AgmG`$nq&O3&`E5(7qKLI zDqA!2Y2XY=cY$^4<5hti6T$()22aP&neP&Hj^w9O`&DaQsH$$39bTI10P#b>K5)Me zHqMA&VYCuKy)G-;rc073zoqY?vFMZtG*=*29eh_)M5JiXtH{iTJ;z31Lj^@Qp{8mf z9KoaNxwx#2zS*AO(QpN>tmXexbV`IR^0P0sHSvbCB29<{e6A#e$B{5ZQ{>P$J7SN1 z>zkR?9=_+BHbp!TzY4gJ)70dKDf5PwB8|pfYPhS`$?0>D2)Y#`fmxuRq6WD@5z)sY zH|v}xF1x^lhbL@}T2xg6L5=FLPCN_*X&b(|PAlOa!Uy$K4JH79P*b%1ez zxHLPiH#Tfkw9M0Kio6Q|yTnebv!z+PqjL=3t1CeN-RsGuh0x?iHQ= zDhK5dL(7CkAeI$(VGTFEzwKR$=@r}TcYOkrcOf#PY=6XJqK$N?_fguqJxnuI0lM0? zRc?Z35aiC5_Vq;0W>hy2Mx4qn_Q>gS>#o)6*DHGDD_7uB`cd1_Y>t=fm5S+*Nx6_U zw{k4o0k-trTxrFwoC*uU?M%#C-P_$m)<$!?(r=58c3#!1L9j39`X|!fGIfnBxDah# zRi)v5F}LT!{^gB1yb7x}S|4c+6A>y~WsXUUvn7Jb6<_R4W7lVyx@RgERC9Fi;{`o} z71o2{U?4!%5ow)lynDcndV`mhV_HRjhJ(0S3*r5RKZRq~;?-5as!uPn6h zj$fSAlltAJR!r>V&}x8P+P59?VHe}~euP@6*B4y7CH8*y!H5e{8B|(U5UB$ifA(xey;piAa z<{AYI{v>#dpnyWO_wfQrV}U+2?STssMNDx1h?$AfMD*^f*K<3q!Z(>d&g;eWq@a1x zo5RnP=YPLD6ptA!G7S8hi5aVzd9*b=MC9ZWm{_OCFteE{U0+x{6q*N%+FQ7OS?--@ z3iEC2?$PwR1+sFyh5@rQi^X(=44ZehjYiA1p;?^=*X*8S%yF_+jt#6a)z3&`^9o1ioWsmr|~b8T+q?Tj=Jok_odA(NyU+m*lq znzFiS`|`m}5H&l!o1{4Uh%RQ6%(1K@r5v05&5SLLI7h9H`Mvq4^j<`D!d&QDLncq4 zWek&jcSrym`2xP;1-+Ul*FxKz6fbD(-4c5}%h&z{zs)O{%bko851X*tY8LDFR>G1_ zE->RTEbcedM+ZFc*3W1v@9<&fSRUA%u$@tTbpIpY$je3s)2h%~WtVwb(aaOt7_Bcn zAIzT!9Wj&isIqZI)TrA;blcP(?MfocHF_Z($tPzm8&(Crt_vsvv&C zeaaXu>k$R%N?15z;Ee)%yH!Fr+d*=_kLgE5^^=QBMr56T1e=V*2>d0i_~?I0tyT!4excyPq{XN z;G|&h{!7 z2;GRTlCuOxnRWPCy4uqu$*RU8&tN_emANW-z^9RixQ|EW9X7YkVLNsKQB69;4vMoF zmL}Vwf$PLT5ETb9m(3P`eG+#VtJGW%e(GlU;htf+JS4=sLQwqb@-kWaY&&u?!MW=J zgcd)1L|=wyb-|u3oUf_@#?~qi(KfPw9wn zfs&N#D1*`N!M*fzsC697KY11_?0zgbmX7Ef)#uf3_J13;RY@S4V1B=NGPF$yaTuSr zdVUL|no|KjPtV|-`j{F{i8{Dxb6J`*V?IPVFcML12r*PtTdK$xKfB#LFCr@m;9JrR zt3rHEyQg5#I871ALv2qGgj`!cjh>TSD4TsJq-y%W0Gx6uT3;bqE zHxrgxzf46sk{~>{%&^Qk%#Cf+Bm{#i7Y#;#ii7u7m0?$MCcdj?1Lxwq_j_@iQ~fZ+ zhon$nc&6?}YJ+BMIo`7>ZJ}Er6IT6#8nXCoM4s&2eE;DQcn%yBTq-ja+9ndHh^Q8Q zpI6JIfVYn4T2dE%rjzs@#JVBAgc{uiEz4%;fY&;Uq2RfNTr?1O64UHu=azHbfn&*t z&+3siagq@mI7`x+7$5*HB!WoELe`b)Jkk&oafjX^h$tN-1|be)wNL%k>j)GWBJ~*3 z@DXwEhI{9k(jpfSYxhIwo~yHPyH($Z(6(?y_3eUTCR0C~1pG15&gYJXR8^to@b{Ft zHsML1Z0O_$n->J~&-bOwjAbp97odd*QB)>`FB#!WA`~YGE`+sRjJ9{g4_J))km14z zu;pjYUsAAS2T8jim-JBX>+sBi0{P?hvZr)GpE>QNY0`bCM8Ay% zUsTFYcQZ~&&7u`FKJltKT(F9bDhzONL$5#59VAUG45&5!v(04zc`B0-UNr(987^n` zQiELgG6XZ3a(AQ(m();VkL3P)&u`eixU_yQ+Cq`~tujz1zWd}ehS12CrN zMD-bnj=J*e@FGIsAzK_!A`aCbt~hdDd-m-GvFvhZs+2@v-GSkYiH3j1GMMtEo=30x z(DPH?GO?y({hkMZobQJj!Ea`7F_%2>eP2G1Gaq%cZi@CUwzq@M%LCVxE=GsvNM z03LhfzJwf(rl}&FxJp&gHeTsbUIy|6LJoU=kpS?O)q4E|8K;ogw==k=e54;#bT}@I z_F<~LJtPGjiPgG<3i+rV7+!F+a8=k?)o8Ws+8RM(kYg??25%1t^Q79yy(`J1&D0Nmlb^;L*&2yzJ_?mzV9sqBr=r*v`>dL~wM!SuRKd`jUGGpI5;{Us0CwP#=H z!fEb-Xu{oFM*pb(IvVWTd6AXJ;;4%~j$+L(S~maJlj%M@wnKb*O2;lsWl)yiU*l}_ zdpvBc`Pu#Xo-}n3+;nxMOj}o1OJ9Gu*Ks-N<6cqr(%BQm9NbXXGa0P<@$5dP(iHzq zTVP{7X@l>w@pEf34M!nC5u)r0FLFWV#bPW=gJCf~g&pOZS6m&*5sI+ys0o`Ncw#7V zye$9-rE-d2t&GCcC9YTH<>j%$6@Kw=Ue(*%-$m8@x|SBGCP98B(J+Z{z;@jg3%wd3+6%2YlZLjB_7`pNK7=0w_*B$rp6)6avY%ElKvrc61!{#pYt>eQw zCg}yAw^wLo%lQgyv>*DwhHqFNNMGcw4ry9|y`HBZf~}HFMT?2(`Nk>&*p!?Ch1NxNAe2 zQhp5%BR}IN2Y$%gg=cQCyIfqkg@w17C_Jlj4Xzwx(1LXzmr$*vNEw-QH#fBF>>}p< z>-g*AElEE7h78+SiCS|LddD@cgB3K2shUlC`4DYy8uT}0sx6XAv( z!#60M`@B?9?%xmWbYBKPjb-BMHm}sy(Yg8tTs`(WS@}QTmWbcI$R2V}tfhA3RA2gx zWQ|ZvoVUB`GI};~i5l}@eGD<}=VG3my`1iypgUL!6)8*z6Rb;sG*un{5LI`0Gj9Pk z?(;dRwES%CL#soc?&Fo*iu%khR8(kv^0SiW`zOlX^_b0Um*AR^aki@zu#OX!`me{yZ7 zZI*Rc1|scUoOhRCL4wN4dTf8KW#WKJ7KPh+w~`ALe=MK^sa!NKoJ%fmP;#{~-m<8Fqr3yrm^PYM|a zRVJCzRPU&A0kj9qMh@WQwx{Vc-OVeq_E4yR2g+I$pqdvx*p_F~hx$GI@2wf3Ed!gr z%V*!%hcs4K;mWe+b)o%XZ7KQ#>et{RvKg}A`uDqsxu9Z@y%-y4^5V)(-0Cfz@oh(~ z^tPHm?xNzn{huv;s8z{R=Gi{nFigT-T8ae}R-Yrx+lPwjsKxC6A@@$ui8Go^HI2RExntF_j)x z6TtBNM>Y%AEYEKLog6tfoBJD1*W$^AfEU&;JIQCH=YXxYIEiG@GB z4*$HfIKe~U+s!TW0KuZag zD&Ulgd)8yM%nropJC{pshFmwlahfWRtfO-WxBj>`z9Y7?aswHkfMga=maTmr_93Gy z@?ZgSON&1jS`JglW8+?Hygno(CMvP~;;`@(WO3^%g`I@naqSpdf|8m%4*p!rgPHs0 zqR>lHM6k<|?Cimz0M~GF!`J6^ekyq^19pxd9gFzn4X&;@M$i^i__W?SL|^Xvl{}@P z#V0EjE|pfZR`HE5f;k9On!86p1}yQcJ0j^dhvyk>rH?=$s;TwB$!i{h!L(8D>aJSk zx``_dBJWG}b;$QDN&`VQU2oiKB6p$v54yAFP-X4#2V4Egkx)M{!Y>ol$`u>m5%!XP zU4r!@Rv^#gUE_gOJ5Igz=?dZP)-nli;2u}H?h-k`>Vt>YnuwRHI`f&BLUBRuWtzl0 z1ySuCY-_a1L?h}3xn#hqz7cFf)WOGwxQ3F}VW2?w zUrTF_+s#4kcnk~@n*9!7A-C&r)t$%dfVf+wj?znCdi{u7@5{$=;Z3jplE}ep6^}0Y zU{#9vs{1xSZ21YFO|jvI9n`nShjR44MSkw_ru|6a&9@P`%Ml0lK~Du;uZ!2|4PWn0 zXcI{@?sd>s?vG<@TUlk@}l^MC{&2tKfZafExxS%ft ze~N?iNz%N57Cgk$T*6uC^~k zJVH)G`MkUHsz;*XsF!c_oV|fDkU3&T>;)^zzxuIwC+WnwZCBTN*!E&smge1M?WGzF z%HNTbBtKBG<)%r`EsKl{896%&dVEAY(cnfov)cJl5=XjHT%_YxY<{WVx<18z^Fn_N zlT=+&=kyl;68oulZ%g%qMH{n00x{B1LpX^c^l79)kLKV>^=4u*ojEjEw!k8v`EBNo-x9nGsH28>UpU@@v$OznAINtwjM>aec*iykr4fU zSMtIReeOcChuKv1c3c3jMxApshEqcdPnF2=q8gp^O{cD?k1)Z&s$2Bnju&aX_XT~} zoVuW&ruMdjN?45N;U$Uhd#%WRjiyTXl#JiV#^&DiPj`)%_OIpv#3S8NBQZyS!#-za z1p^2JZcd^U@ZK`F>`HuJW-mVv^;w(DFABOl?G&%T7E@+_xV-7L`)k)rQVj$TbRxRC znVQb=yF^-s>MqSm@#3~VIG=KbfCxEQ;O8jNCE& z%dW0Y{Q2`|zP(isrmZ*4)tIT8)g`36p?#;i3aTra7WsR6m%Zza7 zn+d%HiOR?IWmmCNsM!XMidEQn4eUZEU;l?|#IHQHH0KgP$Q`R1%KV3Hj444zS8^9t z5OCt9dt=uv(E;qGi_8>ho~#O?;UL3!o%i%^GwP1tx?KiXoZiYd%xxTqyu3&&kBT=C zs=iqlR~}cgslmv7EEXc;!WGIVQT&DyVzI7Xy8|85=^h9s>i+H<@ z@#@#t#e>~Ll(3!-)`%;81Wf`_ebmjuQc2$~byeUsSh;W!hX7o?9{ht+wO8^H+ zAv|^5SV-Mp;7$%)@qz~E2l=cb%Kedv?xEwGr*u*b#7sY2@B3VM|NcD~1n2REv+Q6J zQkUqZsQ1Qz+nQ+GA}j#2%E-X2(FQXw->*9I^gt>UGL3hVj)J@s20KyT3MV2ERP`=U zf%bgn6;z6$&=_uT0O?@nXh5GRcPw?td2>d-*cyyKQYoBx4QcZGQ)?NcFExa$$+6*# zOTMxI@9M4X%scPEK1*`+)4S`3P=N`PZ$4E1FBX5simR)Vi?&eURkFe1&23g+fP&Cr zwVSx^Tw5(b8hfYGm#A3(L=3Qm@kXXx}GoEM?z$5 ztp5tNG)bz>f2{ru>&d<=PdI4j{(`r(1ZLIHC}bFXgTkmpy@-HWeB&nDH(iXht%mVb zV)HM{yAf%ENMPw}0T<3t_W!CGl!mOt-UXCszfS1<=aK3kec17sSJ zE2`52}+`7ZBL7p9PX%OQjuwR4cvZGw|Ug zf7CmkR>!{MjFJH0FxMZ)|BH#nYrBVr8*SHD=gUTrJ6=c zHZI?6XmHrPKkPj0#1x`IazacFEK+-Rl)R-GGt-A$XUF^_kDE%k@CgI}viF}t2+(U& zSyvPcV!D8Vt@advG-+mfc~fPv&z*g&93|RhPIirbLOS-*Wv3vN<+YSjW+8)J9)|2J zU7!ETn=D&;v2M7rKhn1fEy6{Ag?xLNH&yjVQ<={xF_Ej+H@ywJ80`mWDa`(XaTD~* z9-Dt!JOQV2G{Nw@UrxwLjD+1T)9U%jaOC^eXXD(e+{p$$%0M$ z&FUSfWBdHc&YRfYk@+vyF#Lx_^xOp!4;4Cs%$x@PIL##88U~;kGJ`GevM+A{P{8xQ z$xL4zK88xNf|kMN1)<4|zi#0wgXK)U07&>7M7$Dofk@rlaVBj2i&w&dbO!K+k~Opo zcf~G1YTkSV{ux*kB-Y3_b(bn3w%3luiE-l{_f;7}41ilfcN#~YMYRKQluta&Xuhof zRLJTAVCNi8{=+RU34?w>Oyt>41Tx8;_ult%ozeHjL7=Ve{zC|e|6a6x13Tz0=o_0b zV{q>+&bLlKC23jw=yD*)c%Xg|(2SzId6CA5Y9i6Br0Z}@BXQ&7Tn}f6l*Vx{{lV4n z=FryJAJ4uv?$F#bxRwL`E5^JK6#=-#wyef`Yc=xN-IMc5A47Qaa|ip`RjC-9f+bSq zIIxycRTlZ@sO>DyH((*~>Nyo5%A>M$LdN9{wsC^kJitHIYD>#XmPYb+FNo8K;H2pGT=Fq|%8hH#{hpk~e&^%0+ zr~>?XB*K0%4l{Pg(G`hAs-W&w1BU2gWUiB_u5fXVHJeiCug^z0liHR4AX56Px3YU0 zy04%RnUJO81mZ5UCy%~tI0#?=B=WVPNqhMFan{%N{l?dO*D^g1@j@sSrC@evWaRkd zFH{nhEY>;{e}bf-cHE16*Awlp4$0GMzzPH+Fun#!M?tcPLvz#~x{=$|$agfXO`s7= z96+j~i}avQBEfN#O6{$-Cc;bgmr+O9Ykn&Z&tOp-xga{x>W#)lqm{{FUZ*bnrpuI3 z-Lh#=?|!De_Foh7fZS}Wv9afdvEK^s(02E!A0frwSoH zcp?jyCe+SD>1sB>@b|wU0;IH*!Sy6eI>@w)fHaC);^ZPkxa^!&<1NU^pkH)$3E*Wa zs=4wIGHWAQEc4^~52Fbq8{@Ryt9tAkh>z*$=8@5AY0}1VJjN*7G}k}1_Y6uy6B8L2 zto+HfFNHLLLBoWLzfGcBOJM6Wo1$-kZ5EPT+NcMh3D@18ov=RYPtSUJ6C}O)ODwy7 zjtr=me+s?U-|9hIZD>;A(j=G2TS;?o&%Qrn?w6)Y*>gBy~ zdg+k}8^EqUkTA_d6vldVriYFxxLk{SZvNn@yeXaB&3&dPu$Ojf3$ zP&RvnfujPkl6j?LmJh*My@7}8|y0Vr}_bxxw4Lto8G$^~kd3jK{; zZK*@~?iDA6BZ_5)=iLkM4ePcr);x}F2w(~6Ik+0iCsiCyniqUMV{d+fe`135l}STf zlR&-pj^{LQO%wMd$+Ya=uaP{Kdwnt;-tg6AL!sK6QVK^7UA4sEc>3X=080S$H>BTv zNJvq<7{?^Ne*4Pw3k4}F-AHbQQ}0Kz{{ktjdpe=w#j8rr;@8%YVU9rWrMk+3zh6(4u%(l0{dlEcdz!t`i%Lu%3~F2m zr1f8YiJ~wK4^2+=S$bxwDv{)NT{3N1^#qf1+nbb*6U6Fgca+vBvsrQC67u8}EX%Ur zEIatT<4|Aw4J^Zq9~Xu6NgY)e^Us5q^)l1-{rRxUTkN?wg8cn6Ih>cxNJq}SH1)c8 z%Q^Eg0*=|jjJ|AI4FG`W_L<5JPXd-m2aB(%a{vVaQ9Iz4rEJA!R_Y2)+pD>)ySOB$+anS)67sirMh|}uo{_L z4|&tY*qae~XVRpi4pD#sL^r&x3*;gY7@EuploPEsR>)>ZL*g$@EjP}BiZ91sKEAon zO3ozHgPs>~wYbJ4;mW>vWA}4$af|}n)ghMp*@un;`TBtHq*AoJh&HXZH`)7y_-f>< zDZslP2EZQR$@wF$yvq|Qvnj<t;|=r>*1t(qqQa)~ zyl0J%KwdD8K-o%szT|m6Me>>8xDnVH&4XY-;qK>PX+VI=FLR<~f3SUXi%9PUraOwqsR*zG|dG7(`weBwvsh<&^na~<_ z$hz`L?PG|1o(&9gBmVF}!)83JpF4sw7sUZ_hlSj5bBcAF4+|aR1Ocm!rM2-IDbE3b zSRYion~3l|g3b%|m0HdK4^8nCT%>B_jD=~>$+s3@^3DI?F?CTJ!lepw@7W5KHZXnP0{Vy-+l)q3p^JG0b zYf&QE$iL9|u*({43q6@HJrn|z+X9UlCS8_vRs_OCwID4Yp*%V&9F7q!LOB5o#t(RD z&Z}>RIDOA%`$gA^ja&QlsrxVNdX6~&h zDFA>!W}yL}1?OEFZ6CV%$ErthOKbAs?9qM_p9Zhh6C4azd)K+_kT`6&@;bHwn5>O< ztxV4FuCwVR@$u|3i35(9Ff@rDGmlRE%ChLcKxw-L=-vNNy8lPdh4A$cfWJtuOE~1# zS3!W3So(y$sNJ(T!72RNfDCbXwVky5Uqvg*NzTpdnZPpBc_*WuXS`Mo+7Nyc>6~f= zJ#`30inMI@G+-a!03c1;Uy5;F?Z%;TwYQXQM?h92y>>qaa3FDP-RtYCSLG0+W!sG50ZLj zlmWEk3Ooi1J6g?KEt;H}9_2QCY^_OU0oTuGfq_#L3?mei&W#Fi^%3QxSClSGL<^5>)u+|hxj_XL*nye?#N zgel&dI9{}t1qX7N)#zot`po_BnDB|w$G~7eylOf$ZkBP`{dqV}me0AMP#ZZiE*~~v zSou`sCD%`}p)sZLiI&f3DDZ%v`h!*^u39aBBY0sZfEHeP=7r^yU`!ky);Jb);H*FA z>h!y*;k{B$$)>4TPxtC-=r1?)tWe#|PQ=>duh?v0g7>`ZSoYpP2vn_?SZ#F-n$;Eu z=zjB2=N|t~npb{*9VKw^$0}>1Pj_+_J@S1yuDb6fORbH~O<;y_ZXbpZPFQWu`%C(C z>HA@~6#b6&Y;%S^zL?grG}HzGcC^<{qP3rAH+XG-wI+X5zmmS*79%daWFp(@FYwwqPEwTwEodGAeVlZeNT5rcY z7+oy%KAA7!+MjC^ojshZfSpnFJ9&z!qd4`MZd#qqr6v5c?+&ObI;p93XVvWH?STBJ6ae^wq)}0?O<8sv;qqi0( zb;ush?)?7+-yVXe#T0iwoW12bAy)8@4`}&YA9(na$-4hB3*b87Rnk4xwo*Em~ zq+|^U3p3lC>z$|E>pnE{_MD6Vlo?vvxDWYf2%T}TZvQ}EKgucREBpC2a==~51b9ml z(45S)UXv?8+q%+Z(!ii^0Jnx?2#1hpT%BOil6%2+Gv^IpypvdqJ5jMu&Hy#Qfh?j? zwm7IFDdZoM?i^&dH!>zZ9}Vlgg8qtFAzx6A7)+A?c*>*|xf>^pTGLL2cIHpEIb*MI z*Cwd~FuOd<_gJ{(i?>_x{@i!pu-|#81wLcpl8@eGm)U403}YvNA|Wjc((R)dQf08|Tk}=>Fs(Fb7NT!^ywDS=P;i*Lx3@md zg;9TaD7V1pf9Pgh?Uq|qUga_Ys1;yURr1J^`U?oa2?N1bPN1h=oww4aS27rcKYfvH z=G)R6jjxMwDyfnQ`X!bY_M`Bs#{66rP0Z)+ zvMetG^7r@zZ$9AdjQrBLcm>1->quzwbkKA3d}cm@d|EZXF%@AXosx zUlQXCd?o&%=#7)Ue%x>p+CKkd`8ZUcw`P^6~PusO%n~veUg8_uSV!%c{!g zuVlrp|A|3-(;xLov2|R#2gosx_R+p)?wvJ!+(=uf^yX=mo*&CA+VQ68?LyW7AEB$` zDGO8{Or#zkTr<`c4ta1TiQ`0|WZL2GDo9gF`JVX1zl=Dm2?9`Ogq?*PGW5m2Y`7?t z@n1%tl&(qlTDi_u()B+ZorVt|8C@IxUW#}^yd+h}{{2%qjRDO>>vZ(kWsnh5u9*#T z@x@MRPWZ1@>(76XRVlv*hfmW$6i|wV_jm1Lg)KvM_<5=;bg!q&oL#JXqSIngx2)Ht zpu^OLjTyt?%$-Z~Mv~!9`t+`!-SdC<;`B#n();6XN-xApcmYWNhq~lvX`WSk`!Tv& z_S`n2nMv<0;2wB~V}}`_-J-TB8D;a`;(q{_>MS~Ef*2@w{Pg~>BlD%kraA?K0wv=0N9Z^ybDnCSj4(E#&YhoeE7Tp&+Necr!xx-MHl zA85!e=K|05fMQN)LY~qY6Eu&OCOWT*ofSF~95oI8^;M^rySg_fnr_2wBAuHs=pm0Q z5=6c8 zPa8a8ITd!@HjsFy z8C4nZFSU|?U=Z11eaxnO>0hKv7f)IN% zgusar)yj}Kyn-N>S2zLvnj%o+_~ZAz^K!;>qyfrWFn}R~D}1c#T>i_%vw*HAHt_JC z7QY0X!wT?m3U7T9kjsI5=?HUxv;#Llm?E2*?%nRubJL_AVJenU0!jR1{C$V{%a9b( zPGY)Www1xVBuNcRWQ=q<%nxiIZ-^ECIhoOxIyreD#BKzv^O*D1nyhTRdK;+sEF6p(Ns7Izc;sX9<7^{t^)X8FI6u= z^~&x6sckN2HA2vif9e1Z<8RaZl9po^=N* ze3Jnut|))93n+{`Q;~gk%U{;&m83-aGM>rE?k(LHQuV4|13n?H2O@wX?ww%K!m4!V zn21O(og*%50|mKwirYRIj2vbgY48XHaFB+Atr#vT}GtZ;9A?`_`$#~pX z;O>Y+ALda;>COMTlPF%7^A|(1bd!O49M0Xb_~Boj?$NyI+}CElp1P1ngmkGsBuQ16 zHx}UUx0oAt?GC{s75LCo&;m>@qKloi)miQnNGqyMrvm7ah?y1Pq?gBaLav|QE8%^Y zeEnJh8k+EU3-g;c4&J@9FwJ|d2uD`OO#)o>_iz5J&CB-Q#a~_Ox{&2C)^Sh0Xe#4d z9gZz%3PdtJCGJ zYpek0m0L=%9?1_6U$N?&m|=P8_Y^7ILWWX339>9-p`8Ev^Vv}~5S~6Gc;SNCOGV>x zyCnoB=o)(zTAide38)Gd{ML`z6$oeL0{term}~PGwGfSu<#=1iA9X7S&aT_Kqf#WX zL_Z$#46B|7OhMrMv!C*MGBQ=G{xs;~IRVz(<=?*h1zpF^t7-x018XJ+=SuWa#zb>= zs>X&i0gh$?#>rfS17+;e`&9yOUWH>FPJoi;{E6Pira=|f@`^VS0Y^NODFSe7vkTWV zJOS(8ZfvxzwnyFUq>vTIcKet=@8Tt09z65`%zOrb`uPAp)Gw3@hPzS3KeIPi&mj~BBEGF30nDV9yGH=*_ zg}~%4rto8e|EIZH{qkI0Z~%;Cjm|1KRLaX#mKSgBWJS9Wi@plzhfV!KYNx*Fku2*@ z_;)E?wLgI2siCFSv_!bor);&mGAu6-b@XQOlSyLPk(=drReSonj0L5NKM3n3myi2z3vm3-~0&iwsG3C9L{vbG6gmPpUsrH(rfr{KY2 zS11lnh0K!Ze{;#yxrMDRuk5A*WX0adqzmy^gmC1b?jU@0QDsMC2|%p>x1NZ&x*6N= zQe9Jk3;b@kfs)hUy>OiRi}Phe@t**BKL98z|NPOW=|FD63l3l;a9QVOtbq3%-YHRr z)dJGWTU?F@DpHeux2~MGR(-U|0a~L@{}xcDyg&D8P>%dB4Vs+WwK$#fjjmeWY5M*T zQ_j5aLjkFt9`~n?(n)Vh)8LZuVyf3^xecxkC-!HpNBRGUIeSWH%x7Ti!+EAC;_Or) zss6uWqVk=tywf+VqH+I|rIY*%4uLlSfP`!OALsNxjF_oCk356ihc`C=UE%2yabDV) z03GZFWQbEZ6b1~Dv*dEP<$DCcq1l1-d5I=+L<&&!0k5)bWc=7>SPdv~Be?(nRQ8nt zQLSs+gn+1k0}9d#C@7^OT}msdfOLs;4Itg3h*Bad(jw9^C>=vcBOy67gOoH#_xG#; zjJ?l!-}gH|j(g1-hP8&7=ee)@iaQhh)L)2@*TSj2b2>ZkLTCX7LIzkA00fx5En{)e zqvJ>&lu}Nwim!cp2q|?--qb#69~gLj@O)PD8NoyZ#*{Vn38v;d_O$*lO0zBi;xxm7 zYt12Zx|Xa(rH5_8omN-&N>&Fh5gh3@8QrQjNk>=T!dQR>DVYU%?JV(R zqZD~wpqNkf7q@_RYE+$ppQW+ESJN}58qRumU4h6c>8mk$ZXjM={P>$9$=!X0*@eXm zgI{(S83hs%WU3_$G@!bO<^4W=lRL%$7q<&n-N`;!Kbe7LL9IvU?V8MuHw0Pyvrl|| zETq0z`B=O-w(lX3xIYA$V5Ci&v<^@rs<6%Vd%=EXj?N&_zRJt8Hh#H7`Y_!pE4n~3 zfc&nqviRt~B%PjYbRl6fOy_BQBuZzdpRZ($&Y8I~sIYBa1Qd@kSZ6f)w;FiPz-Dku zux_n7u%gNpm!B4hX|Wo_r`Ts+9`f@O^S=4vDO~0SDop9K%?U9?9=q9fLGaI0xW*?} zg`azcPu}N6z%^2|X1Fh%p&<}6`qn2=n316`T<2rVoQNVP`H1ix*ww)%BLtP}<3!w@ zGFzJKhw9F>6|YgxwDk1UjEtr}$FO^i?oAplyc%;I0TJ<3pCfyo;J{Y$V;J0#4huvJky2u@$nAE zlEQ3r^;@o-R-7iI@jU7q_Qb8FluXru^^TA-5ctuofS*eS<45DN!G^U2SWXW7sn4YA ziaO#2e`7)?m4#oV;Pc|+9?_RHbz{E9|0V?!esLPV zwBt#0&)V@n(IR*sTt9%4Nk){HV?n3Rl|R&IyYXlDpJG1Jv1(Qd5JntIhTPk8{vUS@`swHRZz9%uA31>-wOhMPF9jrz3Mb}cNnSkx8iF&&curC-u z$CXz5GtsuWbUqZU(iWNs(W0j^KX4(O$ez*%{{to-aA8TRLEqD^HSbtUGjT3QLMTwM z#2oYX0JaTqXlYVFx^u{(S$DyqcLBqpfxr1W*asAf&32pK8LkQx|6Yxt#rIh|uN;u@ zv;Iu-;s^55LpkSfuy-m1IQ0J3d>)ZnK<90+sNx);7vAds!! zo3{_QvDH4|or9|K<>3y+J2!eDo5QFrfq2KJx7BGc+wTxXJzCbxnLF=Pw!sm!lz+Hs z732UZ9w-!<4%(U)PTbI)t%Uf=T5DG71nm5}&TRKtf zHA`P;%+gL?IN?)u*2hAD>JuYeJ{dPDm(Dy0KPv)W-2Lz*^ zhTyM$qkK>9d5y@ot`vvGE)}eFmd$@*v@KhlNd$gXGChGPkfvhy{(7ru({YRnOX6K}& z4OqQ{}bbj&kG@$cZEu79~t`EGhT9GB{E&Dk%|6w&& zy5bi1?sq$aDuejirpv_3x#BT&np)90FTBu}2?BUWS^ZoDjhrKc1T z3T$wa3(&1@_6cx*DQ3)L^1fBU#qg6}vUL5(HMoZROPaWXb=G+ver;`+SzkF|M4n#th{(yZbH}L5(%;> zLNsGYH#=5PctcH1ade2abu1iF=WOILGSL@9x07zsGDZ;>@kLS3BLrn}lDBGp1xZ8;0TB$gne8v&MpZ!dHEyhA-Gr-)U4Dmli3*3>6iJii!{)^~;B0$Laycfx(a zQk*3sJh`aP*%~BOinTu!ja_Y)v_58i%>ONcs809QK%uLKnk+g=^t7Orj4H!vD9QYj zZL8$M{K=&hTvhY{30A0g1E&I4O@0*E=W;v;1zM=0cSAF@A^9om2iO(wZBgDgGjuv% zBDpQz30y6SsKX2#CJ%sm1Lh-I$t0%tb%Rq`}d zy%N$gvC^io!YP)9Rx94+4ol-k6ubiIAWk5CgeT7?u60!?>oDL!m~>uw@fPUw2;EmL z)GwA36|n5deoXQOpdMek4%GOIQpy2lXipCVZo#T8sUw1~+8aV!5C#jRR2exu|E6l| z2+viI>|!J>0L1;Q$36mafRqH=?^JGhhbxfW3fb!l;)=EwdP=MEPO2B=`>*Tb1X6^C zNiyNM6FXl^Xbz~LP=52h1)Df+dTkA~retr6sP8+a^{H3yQTnxM9J`^~Bi+^ToZ)AZ zf3AOh!RHK4vQQ_9vGu3)a>);NQ-G<&hpr9ff^iK3Z3=|!{zusNkCRimCYm~ZUtQ+d z?%XFjzj}2C<-J*@0(wo(XN3!MRPw z6W^UVV+H6{f}?TeaI#24Z&Nm}VHaSFHe6UHVcLE@iZde(;#>$plpEw?`0elj+wFg) zArB2&A)lF6`%tuJEa>UVKF>zh$wWxSLU-wrd^bioAjz1Pb8w#HB_ zhVS=-g{Z>crH+O7eF_K^)H>scas5`-hQOZEJ5!q=Y5sXp>G(a2J?}}6o|2mx7GVM0e z1@#Fq2u99f#Ku6+VJxy72`)Z$dJ@imd%16j3qkACrN?_JVdWT?YLCr$z4i`8!vp*K zLmd$IKJyczMx_oI(*N^6y;8b)SU?(-7JA5)#??gly{K=`9j}#(U~4a9L-=bG&)(}Y zs-b;;mkoeh;D%!(2P+6LSoH%1@t=s;Vb6^KQvLo?0f!IwODkJY&yesPLTK|jx=79b z9_JLO=L=-Pdg+7m0Q`3QNgROTy*x)|APX)D$(=YLWTP%4#e*=tTi~25bQBCCOe`w8 zeDK2*Ha${d38u1!hd>%J*av9HgT6pH3?*!>TGx4$_u`7ERn|1CF(B;kdC`S`5kNFP|C49}wDG9k+ab!XlvAQnDE)s(?Fz{U2W zotp0H$uW;1Q@ZCkz`;hI$orW$n)8~j;#3}6DdG=Ijeh`{S1*ok@kM7wX>$wH zqhq;)NQ?$$M9bpsQP%>TsB9Pb}-3XmruaHH85` z>5Y~xsuWV{)!kD=%x-&AYb{|r| zkh$fN0b|49>oVzONj=~EV+L&)5|;YPh0{LydiNN?_>L*qRXkeT8S8uD5oGmAi`t*O%*(VvNe{N+~wh~7gc>vw!4|R@l%uJRep)Hcb;fI|0TEH8mJaEUk(NIH}>|utk7_7 zy^EX*)zMaeBdmv#T`1bJb1cYvrS5EVhx0cipJIm*=jDC-yeI;&I-Ud{=jRyvlbvoK zIK=3apTAX`v|~x+<@)>vC@2BSK6%YdmN5t+0{;V&hZgIedd~Z8aa#O0N84(mEerye z{!l-*W(uXI392~crmd-U`J~2?7@4wtZtHG`5bKcvQ{OcSMYam`N?S#?E|RnhU*SW2 zGcjKeRjR-g>0x^h;Y2$#E^!33>4s~gdvkyzvna!f*5Vw*WkL#A_EFji6*V#rRzro{ zU{!&>Lp5zw?aW=|w5c%bqd;hDg&dlJlPN>9roytTOouO-Ma_8`dHT1$7J4}cvc^}F zvKsyxZC0hJ%s?+H58A_v0DViZa`?}qi85E3T$+>CWpp_4-wJATU1&EuSWQkPeErXW z+?)m#Vqx5{_Y-8i7_Xv9Ruq07@v{qoX`e8gIb^W(NHNcVt`q~amD8nuNmY3>&0qgI z0p!vvM?Y>O)pZ;y03HUE+OD=_Qq4y!N6NQyXU0)=xd#3+SPEBGk3cq_T3cz!cL3$8 zjmc-FL~8@~b?ilB!_)uEq2)${Su^>Yj#%9!vpG48Ye&;vj%-a3xS&95Dp(pg{r@yr z{trO>8p0E}aOjthl3jkB0KE)MSGe}S!tFy6^-qKzzSfjJ%2x*TJ%2&*=P-zu1($Tb z;FpIHU~-^mYXv0%@Xi1OnD`;ow%99%RGr{-jA%x~!D#?jtq)J{7O6rsswF`BG}dnU zmpH*z)LbeMTm{H4wjwjUfU0Y!5?J+XJE33aP0}%ZbQ!6|~6b%|4J|f(jwTGWfd7F2_(`Zpa}k`HR&o1#D*tl_mtk z!DDu^ueo^VMmJUaO#=%cInse%H79>|^3z4FjrA6uG?4`|}O+uz`Bq@et1uw$_Dr;X^JZB=%oBSkLjFZxmNk1VT-~##*}> zUt}i9Lhq#~VTT2@3#NOD?r-#WMGItb9%9_7m?9VYVdpGAk|3H2Cs9u-xaM6~C3hf_ zI(zf1nbpbrpM~~!*lgO+i21K>1fpZZZ;$VVAVy`-krqzIB)%Me%6<+NgDJ$$W%gdO z3uwuJ%E0tc=0EkG!(V5nQ0akB5=xbFd|P9y6tG55e#LFb{cr3 z3VxGl&i9q0<9{!MY?h-M3R!ogHy&)khZs5x?Rrqz1gkG4(upfE%4P*06)ZJ-aYF|^ z9)lrO6H+I%AM-FaOAkgG0C^?Li(RRLGKqPGifG>JFK>;8Lmy9E5*?3A0G$u4be`~j z+zj=sKH1tZ+9M(xhZqU1Jp@wKQe1WqMV>`*F<;jF_#lnv&B}?@7K-7-YeTidaS>vJ zd&W?1jn`gJDqa-ofGaE!<$6j~5(2NY86GdOzeN5}chE$0Te`}9|8s{rGQkIOc@CGm z-@7%@<&os@aGz!0bt)Bf30@wOl7SzZ(}RGU&UVL;F-!PgJRxZPg6<7q%O?h85OmtG zASG<5iQ>K#T2s0{gx^B>%Hyp*CRwIU=AG#=x+ba0tzfFNZxA%gc$a6tG^_pbq8cOBRxL7UWjnWHl$Db+~0^=p5#Rcxs z6Oetso+fM!09e+kIbm3libQvSOs4-pgb~uezEyb!j?SK%cq{ z^?}{^GXW@Hgf`3Y1AAyJKO*K?<|Ex+qJlSE^np>P34sC_3$$7|VRLcht1WJ!@uF9R1 zW{bXzei6u{h81G|s=(Wa;ra(8NQ}u$%UURfy40oz+sBW}-wfsdiX-2ti2{@t;<9Q8 z9G+IXvS!-S*jnwL2u0*Xa!{NVQ5By8#vBhqssEC={(X2YZo@=(`5Fk# zxdDad^!}8;&Z%ghx0GYG4W;E^GDepq3`L@-{9sIXuK%pVWUB>QOO^doZJ%9Xc};*NNLZ`)apv6%KG$i`N2{e5RG9P$wn`jTgaLUJwGjoS8(=51PXsd5$E1 zfjZzU1)^BK&YnXvsaNLUZ9_3LYwN~?9yKq|?8kU8ZH4|iy4fb$M6W390Kj7omAUG*xAS2iEAq&y9#FHf zOU&B83XkFryA5}oKMwoJ1=c$@&SyAYuDc|-F!2$yBbwN!OGE+a zOTV_)Cvf5r)7i*9tvWSWKeN<^&TU(46qlR=GF*7Rwed*k2)N1T=2Kb6CC9*!7i^;n zAyuTTgf+fW*S3U&w;oP74lqxuI+$fyfoUiwHt?>V;={^N>H-}g!1xuD@eNB1L^g_L5?3Q-(&)=ls<$D;9=s0!Qq} z(=+$8bQPCt3T|mV&NjU}sR^0|cUXGEbMx?%ldXK*DIzsv#&%6YKkCXn-n5pya=z_e z?hwH?#R&<-wfKf-(&B(u6)VhuV`x24E)ge8;%FkMn*thsI*9}B;x!?a4dV{;cQTodS`SQ4=naIM|U%1dWccHr} z>eiEA!rtTp3BJy5F(AF>i*Api>#YI7EI>l^3*sfM9pS-NtycExkL*D=%7C%h7zlbX zT3@_r;d`in3rqM^x*k7LhMMZ{gAh#?8JnRA-RN(w{0`K5j}z z#>e8~zK&`KUL=6-PE)&F$gFsiNA&HjLFF?!PX+jW%I6!r*rr+qzdolWv|ZldnP`fQ z=}hktlf(G&j_iuq(HP@nEvtQ6dW79{gLZdGFn1t?b^;RO^!_2|g%q}RT7PJHq0}58 zu%#U=?`?B^JAE5$QXRJubnbIc-~a(jCunJ8FuP2Y8g~F(tHX7{PQ~W_BWj!J2Cysj zu1r|X*DUH1tI7Z9I)rm~0v_`X1<*^3-Gc#zZXSc3$=g*j$uW7D87$N$5lMG8v_SG< zqJIW?sMpDPtRQ#rE--;E(b}^G=WkKm7WXky3jrXts1)YCbU$cx%eFZ~=yc0hAj9io zuYR57G+1c-)^!XMm{Zte&kH<>{iv9`+}&y|=@j#O{~H*5^jUJK&=mrMm<<-9X`}9P zf8my{9fV$VXd%m zAh9*prL7xzo2&)}@qCUzJsE{}C@;Jo$Q64&3I{iEY#0PBIzK$ueH63k4u6$;xPJt-6DWH;dIl!Xq+teD!gbPX?#kMw3{}Uih z5}Oy-%~l;b1clvh1n6Pf&n#i6g$I>eIyY+j4^ifUp0+gGoccm2*qs9`bmIm{jT&o( zg~}eW0wR-xO8s3dcrYu(ZUWfE7AK6Q)H%q+EcrSD~Q0O~x0UI8(vL!K{fgw(1&f_iAInFwHY+3U zdmDHp4D1)B3av~S?`6BXwYiGAWxj>XjY{^ch%&XFABF<^o966f3O}lb7;SYC>6 zGehVO0Y^Dtnl#D>bqeUI_`QR+sWi%ryzaUZ){OwJlh3{rt9wB}4j@p; zsiHIes9t}I6YO8toV8&x6|OJYCeL0?-if<3w6CxL1Y3STZ?0nHvTfiXtZ3me*;$*_ z72K@S^H6e@i$TX-fn)oszQ{xsJsjOe=ee@nIH#AO$;!fn zv@pzIZGEZ23tLhVRD0woZE zB%+4^lex?kwdURj-vQe2KtN{WLs74gnG%4x^ESvP5B3Q+gW4`MvejJ>#24Co(WJz- z?Jj9>_x!+rB6fkCP5qm7l(W!uZ*7cN_mSfHY%=sM;OB+VDPx1|stYQ*W|H1DY~Aph zF|qs@hH@n(CL^p8j}r~!+%dnlfGqH__sbnWJTr6$tQW=7;n~K`R7u25BJePaeehb( zs+7-NJKywAp)7)q=7c=tJ@i~!S1ufH0O>`PCJ(#-4iDv}APOWq5u-4kUAD8L9JaY- zGc-cRT+5%R=jm#_ieC1cy>Lb#=s(c40Jl09&oZ77cmrZn7k9rh+fJTL-&jfEGraP1 zd#4@Bjp}y;YOYv)I}p?k<(OUq4azu~9;mAe(CL;mBL;o){!CKxTMZ&tvEutBca0bW z^eR`%7w}Ypx$)fl0Fy!uQBLp#0IvZ(nll9m*a#szZ<7`a6HFY~E5_h;%y7^_%D-)o zm=q!#mEgZrtw#)IbJFCSjy~NM3m#!aboZK_uHZ?GE{R-T;q00wSh_*-+;_03ALO3` zit*nP*FQny4(1@S^H6YFmvn+6@W0A?uB%Is``5drdMzX7_0Rdi&JPwLmVp@dS94Sr z{Ni5+5LdX?WFZ2OoiK(a1pC|sgi{Zbi0&Puwq-v9yNo-JKY8V6x}^X|{wOi*o70!EAGBc<-Rzsp`qA z0KHyET;$Fg+?E!>Hls0@wQ09OwY{0nT zJvNaZH}V8%%q@?^O&06l-YG>!MI9-0iAv1u&RCf>9pK7x%bwd|39sv@4^IcZ){W~H zKcFT7x#*U>;&4%rsAPGNtLo~{Dk<%g#%Er}-qFMOgVyqC!IVbqd;8?%?%~XUBivk` z1RBzJqF$bDURWhZK5bxLqcM3@QZ}E68WMvYh-r5Q{QX8Abbm^6!Fo~grKDHoiLNAI z6luAouP6a_2jIwC9pyA4SE$vy`A*{j_ncbi9?_Al(|7dS&&GidW$EIsmD0Iy3r3kA zkAB-|#06+GX)o5j>)5)S~_Q`x6YjuS!$vL9onn?+sRHkOL{<=@H;sTynR6Cu7BA(Z4-IPQS}f z7h((o)6_!wytEfxml(mbrl+St5xwFBkGc8G!*j%c>MY1nz1SK)8fc9|O^qO5nvN_M z@t*O>;?4_x20u>POhY_2koiOjCwR7I>ha`!?AEz9BE&cM%4V9q`b?o=Hc46=!v{i7 zXpX@bqRzQF$OY55!XP_p6|`vyWP}wxDkG0I{w*!x#s$)nB z0nP#EmpA!TtqhZm^9p>9@5aSVIS?V~f>#|hoB^@9Dt`eZqh(%mFfxK*Ul#`UHIO+p z+^vN`T~`!FiMs|h7J=Z$g850vw5oJLwpg9>Uy#l*H#X7r6wqxzH@7D`mf08L4uCITZ{9 zcGZzaBtP&N9R42Jjre%t+A2^G0;Vr8h<7=?`R@6aPM=`J9LTb9fU<1X<6jRkUPg8h zIL{bCJYLfMAY(aMu8^*atC!Z+lfyC4?mqX6yUoo)MHd^H{q66Fdbwhhy&&@DdRl4( z@VG(4ENneWSKH-hqRB$KW`5Wwy{=vTL3>r7wLwt-z?!BxP1#NPaX$8W{k&to!$R!t zONCN5Fhg#n$KQM;Wm=Yrv!`9JgmcaWuWZ_>zjMaTC%|`5833s-pUUQOughB~CVL$# zbARQv9BHP>Wt&d44Y)iz%|Y`j&!+Ua==%kI+4RfP%*kCKS+K6um@6~pc7uYGsyr50 zNkDG-{23}$t&5uS|x&mC7gTb6p9g*xnO9e!|EOY+pgTh>=s_ZnOvZ0E=ShK&* zVhoB5H?tW76y7k{0+FF=b++!n;kPEGOBOr|mit`ZpHzx`ke9Cy6CLP%)&ykYTn${? z06N{K+^zE<6%~|)I6L5nEEx}#xENXxa{#J82>Stb3|VlMydn|<>v*7-99SIt3G~4% zOVHd4{DWq;U#Raveg<)b+3IbOVEVDE-^FOxS^^`71-YnOeY8O97X$RLK%8daI>m?x z!&-591JFU9mN@y*d3lUS5OW4L^^59^oU7?>rkF9!oE9kJD6OdzlN_(glR$x1y;5 zGYVy?E~2|SjuXIxLE?J&Oo)bR@3{H|+90o@pND+<2Wb8BF) zZK-18!^-=O%9&BaiOf=A9Mt(z?#OxGADN)iZfdgYt`+Xr9p{ zOMOT}D66;Kh;y8k4H7armY!63vAKuX*AhKg4Hjn`CT%jc_%s;+5lMILGR)zv7g9== zg&m$;`Oyjpq_-Hm<$h-jozS|yGA>tU9a)X1XMt$J3D}59oQUtB^!I_E!>m|^vnw#X zxvy5O-QPs1Cbq+4YFqsH3PfT$OEx;mPPCVdPrV8JK|d}S9^3d9w;7Wxi-8ud09vSu zZ`;*f9PQ052n8{vBhcH$RZG;O)e2az#uRLK!|uzLJswZ~@bHaihAVv9M;L2kpJ5sz z&o-s*6C}-^Si1F4aWPrd9sX@!l-9S_cYpM=naN(vI|?%C`QzF-EI4Ub*cifbL>Vcs z?_;Kf?Mk54DsG_lR92Z&QFT}$ILtW2U|69SdA$N<-RTog)wA_)l~{dWN->E#pHxU2 za%^`KSe_u8!9ns0<4CMas&3OHl#l`#tVPeee|Yf1piY#o>sYfS?&uS-WUdD{U%O>R zHxh+##wR6R0t+;UaDnS0_)MQZ5mS5Hmvy5zIeD=w`Ryk=qxoo*HUuK3K8Gm%P`UDK zbv!vPvIz`*Adcg^<^+~@5Vl5s#ue`)l?LC`nbSq z^1-gJW4ZA_a1pDfV37~h8jyDKv*h?Ap0zxHEbeX#&Dl5mE6f zN2St&wZ9Di?T)R&G!eB~18De=9|d?-M&NuuB%b~&a#%YHWERz?pVP8Y-@*PTq0V-HT8E#5a0{$#S&0BGgNF}jC*!0%EO79r zG;qJvlU_df1AEY+?y%8M_y+$Sm(mNMi3Z6I2eYFtNl$gSvK$=me>Py2559iY_WZ%| zaK<2%XyPFc-bnrrLje?NkyxO3VAjx{`Xy?`VzB$*--%m*J4_zx3Y#K{CUM8!Nb%2* zVW(esU&U>AI-mxC1Ci$vj{#EXuknoi{Vl^N42w=k>W>Us_C1`G5&;xjY;P|;&9k>^ z6XdId)AT+8k8l^5{Cti|{lJQ+#XgCdRh71;&g1bPR{T~ThnTY46a-@>2jL=`FjSNA z^!AS842!9S;Q}iO1*9)*`Ub*EiRWIIwR{I{M;2l1@xrue*$P=o$j!V={7TuMYm>D% zE|gm!w76IR^th`-Udk|~q^Bo*{`|SK#9;uwvP|~7!e0|w+MW?f5hf3j&dGmXmo5`6 zO8f=Z!78O#-C{C&4pjNyaJ6p5PrW`lJ5V1cN-F|0eWK(qPT~G$GV1b1$u!@$*+2r@ z^D4FRAp?!e&FwWS3fO(;&k)NXuBWPzPkd`SzoOvx`551G;)R3$w&soAa_U+DI5bKe z*(J74W3o{!Q=O&?zyFv#ntC8GSyOcwqf+7QRJ{lQNrY~wtD^|@RN-*fgalU$;b^bc zwXDvPM+1uzI!{b;m+^B9NZbJWKDaWc z6!Y4rnJ#Id+dQze(McmI68is~TA=@s`Paq-Ol=~)1+jxhzAi2%E~!rGU!gP;Yq8$8 z)`g$I(-uyqk&j^G%mmVTl!A<>bk(oY8lnuqMHCy0jin4lo6@E~%Kf8crtL}(wl;Vg zyab-c1f*|o$Xw~WqG&TsQe(%Ue#%0nJThf^ba9H%Lm>0OQS5TFEz%<*HWksx;0QZ zBb54x;bo4raBiT=f5rZ@wkzsBcjF<+!Aa?fnIdrUS{B2vt_Z=nsZ*+d21TeQtf<4n z4MxepfOt`F0NXS&p#}3xB}wH}F_U}v=8r$Sy4*($3}_xz8$3`U+y51MTh6+495i<7 zqd;SaYborY(Swxh=!SMAghT_{|>tr&=ByxEgr=6XdG|cQL_T^Q#8_PinZP1DhJ?5rarS zNJs}fYoN{|QsjU{cLxU!ifpV!W>1L&t6-twK4du=TNLG_8oDQEr&U!aaqO}2C8T>) zKN-9}f!8<7Y6`t|i#{$Ma6`^{&s~o)*UHO@Lx~FGYm@gcFo4Axj8kaoKQrFzH0_e- z$oZR)@XF(FG+VG9by}EzD6!8nNz$wQ67Uot_tB^w)Yj{QTB%fh;ZvUx=Y_#QhWixb zD-I>j4{y^dOA+bY_3u4i0gz+tEsIHM`Lpezp8BFue6IL$5Q}iD-2e<#<7~)NkZ=U^ zV^s$^7#O{EG$OkWsTtYbSra#)gCw)O0&jf)@&)Fy{+ut6VnSX^@@q!|ECz=HpZn&L z5teW*paWO;JqayeU^Zoh?`vTelA>u`D zV?9teh$z>a9-M*)b7$57EHS*@;d&{ArUHxs05ZpBH%3mRXqHLeJD*trnn_Hl9uB7| zTd&KD=CVHRupI?Tbz4I?_-yQNb_f{XCmulxOFJX;v)j;*kPG`Rv=l+~cbfCX0S(b( z3cpmd=0FRk22}on+^4+#1CN1N=#cb3VR|ugPMIpod+(-%gb1O#oGR*33n(!{MUCa$ zNN)wP6&;$qeux}f^`auKENzWD+f#3$w#!kNv|6VY?HOntzy0XIhPb(Blx+L{awYia z5}=iprN|E&`~ZD9aR|Tpv)ccwyKf>Mtre#*t>bP!WaJhs(jj2fiB)!O=1e|~=>&bO z4q*il`<-krnSX8+EognUph+k~-i;c{&)C~EOulY7fCj+*@|w`)=eDX{$ch>b-C=xp zp}F;N@9-V#I89!TY+B$a8NJ(7xOV;@k%*Pc36sy}KT@oKrb7%w4m=j(Ww@}>HQD+- zjbQ(d&fwb*C&nJtlyPA4CVC5W^IJKEe@=Yxu@#H&09K?ge>u7a-iAZEvYi86nR7YI zx~Jn6)V?brP~#g+SIkCu6s-(QS9TcD$A3!=Ja>BhFJl)7S7fxgR4~VUhN|`Niaz@J z?sA8HI)S1o|4o)hCxEZ%XNRKv1ejIuOfmZ01qJ-61qxws_?^GmB1!i^&L(}5=ax{i zi+nONx;qSCjfTDFSkd9xMgtE3KDVG_X~X4vP@(soFBX$&weql7OGUv1NQA*YkuwEs zQTcyp&g7s<{(u;7G_&HI%*(-8h0X3(++DzE?Ogc=YYun;L*3nX_YWONOMe~!I}$hK zRerv7_ij(D50nde3cbOLNCYj1IS}~|+97Te-1Hb0`){!rCgo8W`hU<0;jK$|A!^Ts z!u7T8H>hPt3k~n6E(*2QjT?l2{JJi` zo?-qGIBiaMXlhX>{2|8LFWkeD557lda~N1jou7Yu$a#k{pm|e?Y3Jnp!OD23jk!ksE>uWuQ?E#+B)<(BD);Bqb$D zPvK!;={Kl}5lcOC+Fb=jD%exon7822TQ)@!pl1JZVDNnJ`CruLVJbEA5GQ#LHUAaW|tOK?(#urT- zFSN0+J25k_j!C4jzKIxd9r8~X?%y?A_B#9DR8!9L;pf|*!TIEvNE`Zic2}K+wg(TV zjBSL*CNkrsC81PT4#p?{TQ!w|m=SZ;*)16cNrux<61@pO6mm&kkOs%{uTQLK^}de2 zrMhcSyY;*R;cZq?o-(c2-rbDLLExA=P3bfHGL*uwF4zc~B3-(96?iZI6)OKuB+USr zcFd8V4C{=oz|a{m2^%?|feJlzS1Dp~i5`?lM4h;@5@V98I$_<6szl+yhI1V>+=3UNK4c}V{z@=zm&dtqDa37A-_a}k(%-2oWeSitv!w8cNPAtkI% zIEa*KXY`xSg}RqK90Lv?)?kl@us zq0!^Gn02M0?V+jxq9*Fk0DHklDA})Y)j{HyTkB8Qtoouv=1jH~aTij|W%b>xpvD8{ zV$^Lffeu{IWAmlWg0#rfp@z<|_!xc?>Ay;&BMoKt z(O^nuLg5apc0GGB^oim0p9S5r1I0}V1p?1w?in#Wyg0l#5> zzvM)Ic=PB}oq`yOLSu2GCF9Fv%v7bu&y?tP);*UUoE{PdtUb8t{4TbCKP+}`V! z{OUXX_R(h>}&Gh@IFIA+J_|?!K1YfwAsBW|Ai=FpWdfaxY_MGL-J2zQKE=q}i zdiwTWJoZE9vy~^#2EiWZ?7-LRuNK+6nG{YA*&FYbKb)K|nw;gbaA=vGDw~}3VE7J4 zW9wTP@5P5Z-_KAF)ylV=((>HCE+Eht&A(e>RzK=enncgZU~EKhs)yRMM}gy1I-AdX z*6IZ(1lx4)UCcq%M66g-r*82#&dkxSO*w8qs#}A7!YU*yEJf|t6N!uNzjPG};q3_K zt?EI!2!%{8rLB3qFieX!<(#73b)jjo%pu-Tkr2WQ9JCUXpdp7j-E!Ezan*5qg{*=- zq9{je`}6*%3RT#r%-0I`Uzp5J&(1JmS4E9(Wj+5H_UKH^rM|f9PuCQ3!!;SCwd?{M zd>>8>`{W3emQ$+>&(D;2mn41LGe=LC;j`ZEc&Nv0CTE3<;*rlC_G-B$?8lV4U;5$7 z?N=Y?&8Z8GCzzT0$zceI>d&@h<9c)1S_LN875d8La?6SMM7iRoNQdPsPixJH8+8xT zYEt{M?CE$d&$%-#G|O$e+*~N4;h$Uh_N;D1<`t9K1XXv111(%u!kx&OZi7LEY%Z0~ zEywk<$#qAI))MAEJ=GyWK`ud^w%zh3?e@9>KL&>UrYA-}n-g57TP||lRwH`Lbo(BK zIAx(gn{K=FROT0Ob<+>j)wC}XdVBrc5?&7)`ds)-$D}b6#ns-OskJUq{ZN^s&vT}9 zi6neUElHGC+`~{0Wm+o=W)74adQDb1Oca{+V6QxPxuKX@^l*aTflkl2&8ktd-zJ84 zZ{)fs_j53?gK{5E#IOg>Y5OYQzilnNY#JN!I)Lf+tG))Gbnp*TY8y=?Rrz%q^=<|I+Q=HEjJvq=87_T9hU|A&!+0pqei7{vHM&CK3v(53T@tOQ$#|Fhbm z5dSwst%kQGEdBkN8NWaG=gTWCXJMER@=tD@`BJ>BG?TlVhJxTVS?$S4FuvgZwX6aG<|6xuIWw0F~hmWYruI~Pi_ z+Nk17Q)zCC5V+MFCC)W@F{JM(VAwRrO7Tkv#Y<*T^TVx@j`2uV zcl#H-W~fCT)%O6Q|^rn ztY>dfi4~6M6~g}Vn+~ftybXO!e0-TLPSRjmCKcnI(Lbg>kT2AT3c=-l%fl)gWopL3 zixbDW%89+s%}t_@*L8MGxzUpsYnXKvNfx~1I_RSAr*>!m6K)T_(V9bg#|BOcsp?X6pDj1~F`4Eu_;R$a%=+{a=li6xthW!@J%nw`aJ7X-kb*uP zwH~`Slf#@c*cV~wE<4g-C8C?L$&n>JkwSNNtEh4`a%Yz|mk`Q-TQ-r0@(v}X0Z z+)@yykia>se<|vmDEtzfesS;TYWv%oa>5M|1dZ>B`nG|>)#F?(dVT98oE@%_s&{{K z(}uFAwXZD8XQ>}W#J1PBC17*b`kg=DRfdV6u2g}dI_B9mA^82?$s3ZJm+%LuE+gxpQ;>@-Wk;Ax5v^O8x^jYhnS&+q9;t`e#+F0)KFo`l)D z_b#xZTNBG*>dMm=-u)J`VpcEZY|EUCts9#@dC=hyBY3N`l4!hag`3sI^#zuA&E~wP zs^e~$AiaZ^N)##rAL{XHuQ}v=LZn-Kw2oL~rm0iXailL<@icPT7ejx!CmJ}d98Rl( z8-j4O=pS(lR9epb;xK-TTWQy&cORy&s^xX5qRuDNsNXp4O)PbUbZ>t2bocAJ6p@?i z>O=eI;i6p?+n)Mu*5#7N6FL=$6QFfw zp91za#Gk=tVRoEx@Dg9UQ{oN`|6&?Fp3}khH3R< z*5(k*mKc5+u4}wkBEK|=g*t7z-G^j&l!+sEwBI-|Qw%xwhw%L9wX&owNV#r~q~*3wLb#nnTs@dI2Jx zfA6yuKliGGVaWHFn58_lR8<{pE3Z0DiM7Gv#B@7oqC)lPfi6>+t(}ArIcz&zwZ&1Y z`q?wuaPZuZmA1B*xOFA8iDpUMy{CJXhUx9VhIjiFe!WjR6(_?4ju*}zt~(pozTg<< zw-CK7IFU|7j!l5QoRU>~2Rt=Wvh;geZGeAJ1*cDfk5R;C^Mz;7^_Y3DQ9EMY|A5GZ#02h6)X>au3g``=J4`bY~MgX!5xXK23_~P1n9l||9oJVA@v*@FZc8diWQplN{(t1txMKhS literal 0 HcmV?d00001 diff --git a/_images/notebooks_Raster_awareness_API_37_2.png b/_images/notebooks_Raster_awareness_API_37_2.png new file mode 100644 index 0000000000000000000000000000000000000000..f1da3b53b46f492e9658aaea0cd98a65bd738934 GIT binary patch literal 11238 zcmbVyc|4Tu+xJKdm9!ybsVpT+H6*fS%aDDSp^~u^Gh@wCks@J`bqFInX)M_*MP*Q9 z%bs8?%jO)72{XCBE_j?@Y`P4w~I@^Ap{SXL*4W^}T z1cB_bfk2q_S@wcAX=?9;!H*nD!vbaOfk64(_OgfQ-bUSX^+35g-4XP*_d+^(xI-nO zl9$8<9Z{%zNO>tKxBo66>EY!dB^7bx0BD5uo|YvN0y%Ju{+|hwl6C?DId2S8zh>f_ zHa`@M8bo6kmwE#*H;6AdwNp8%c08I920@8Mc?WC^@l2eF5BGDt|KQI#2uJypuAN+Z zQ|te{RndG14quHJizqK*F;SU49U8)^armGCwYHqE-znvCd}Vni>Jqk{v>p5Oaf~#~ zVQO=E7Tu#`i!VKacQ8frsdCzTlm2 zXfv3>yE7F*Tox$am8UMZ;lUpxN0N<`kBvS}aI>-KMJvM=-R z*0&&u6``XwELu+V)LcJbG`?KBU}d|=XBwv^)HOW3;KOa#LnL0BpyWmEd*8%!KypeX zDJe0#iTi&~?e8AwgVNIAk%HEC5^QAf-OQDI9*B8FW!Z|~?~vJsTZmMG>!aifvn*g9 zAukKNxJzq=;0lfd5}5RR?QIDw>SUMXJ_XnTVXO@`c`?aSH*5w>jio3;+NQnQR;M58 zxIBsBOq7&*QGV+kB>;=8Z?85Na>J~YXm^1HJ$$$OepD}tG<8T)b_%L{JN)>^)Z;BpJa1c36G7g4zTb564d|etFeS>oDj9ngmeW!CqS8k@Me*k* z0ye`lvo{UtbA^=8OF<(foK_B+l@1s;O9lkvx`C zoAyS-O@W2K$Ku{a+4sj+{YIa0X-dR>$ty0_Ei@}Ox_LA8Qu4DA;RIpl@oT?cH$RN5 zW_@*qaKNGNf^(m%S(xgzuw#103m^TQ7nAeOVZTHSxBSj1<)+m1+7!+O&M!E1@jBR) z^z*soU}xjo5N9@eIkq~330g*(2DhU2upp1!0IlrP3u=rwmg_RO7<~MTU*^(>yd0x* z#W$<;`m6QWO5IF!TndSJ5wjH~D=R$#N)3fVi5NB)Y1DDkugW(#n^#$BmTyv!RmHv{ z04*x}dE5OVxh8qQ^`f=nM*AM=Rn8nnL zv+W0>xSEBqde>)Ep7i@3Rse0?aervHd95>h2nJ95>ZBbQm;NLE+1%i-F@NBYRRGD_4Lw z`jt)=-6{FcbLP}m^%OeYH(bPe{aEx;(4ae}!m5h7(YP~KQf?_`B**tT9TI$}$`<73 zuimY3Mhq_+-De<&!qVIVkK0`S_f@2S!V{-`M>}tW{g)~p$@qp3m_ex->s4G_P`aal z0>cX14(ZazdGQD=PkYnHX&~cyK#Px+4hne@SN7tbGl0j$+M3zuIs+ZV#M+ti&oHoq zgM$>(6-&pbkcg)NDl=Mi5K+-M93y|p8w~C20F}l{dmhqtq|61px1=%~l?n@@)#(%e znRg^c{_<4Xa_wV7CwF&mK0dyn#0O&MIU}{zr^A>GdD$O^%WztICZ)=H?UA6C9-^)8 zaSEL7a^k2Rir)TdNt-Yxna@%7{&uz@%=wY5mw(QGw>iRs&7)x={@SAm>fpoyjUnH~ z12toF+#GH-1#OFdPbme!y*SLpIaiZ&&ZCCszSL0kje-)7iP1-O>&EudC^|*DL@#6W zr*)$aE8lPcD6To5+A5o0E1J6~rO>-*r23S;@Xx*mN}*=R<`l;-=(dJNGqEE2?B6|k z;W3!AX*1o0?IoCFLc6k?)4|$bFGsW}1&*7it_TRo>9j=YQ{j4f-{}i?+bx*((w(+p z6-Xxfr6~H#DYI$=w6N%uP^^uEJp_{?5ND)*1wd;&OABJ?z zWG?Z%v=FDlKNzyQ46!u6E~$UrqsV!i&(30&zxeetk9#UJ2Iz2m@kbkQSC&;!q%OJ$`^rrA_fEyhc))R`c~H}0!-yALeN zG}AF#5a#dg6Lp!=HBFVPKP^xp|Dzae?d+Q9O06QgCi9%=Z^OcH_yLFt!A;rGzx-;x zi?Li3Nkhw&Zon$f=G%01uFj$-pVhtU+Jx(_(3jw_arHx#Pvtd<&fnU)ETr1wO^?C) zhMW*Po+IF1Y`#39CQq|Sku0U#*9A@5)+pE@XMsGi>>$92W1j%UmU;@bdB&!o@&w6?*ZCrAv5L#O1P`H#p_Eax3B` zSfutyr53THz;Yj5Tc|j{Hr>o`CS&+7;kP$yTIAO9l4&+X8iH~TW(gB0^x}g+)NO)Q zW^~CXnev%TyPI3(5@S)6!vj7#)LSx(SG550zv(M7%8w_K%SR?54_YoBvnJ?Xu)oAz z{|(z)Io{EwyU60B;tU8yDfrE$qu{}2nt?W+_Zu>^);d#_EyG8AQsR{l_sM9E zo7(4_XwUW(8)q6AxVcG`op{G`1;L=OZ9hYJy$EfF*V)aj*cVSEdX2^mfPd%xm3>@e z{Jo2ey}FxX;datCrZ4nzyZigUx||L%97|%Q3mYoQ-f6gii1M3!&@RshZC}ZZkMB-q zl;+pU?TocnP^q{_*v$pl4G>TN%Wv&%<3s5FIQ?m3-Fj`ItomkOPeq`9bX(GS+@|xt zv+35CJ$d)!{b67(hwBI9zIpiclBuumUBC5A76yl2&1JplKYEM~ z9KX66>dMRU*A5^ix-I(DBi?1xDJA_22Tr(eFT5+syfZXwWb!Ze$g+rE=(j3GMxUQ9 z8XxOL!5FM`M&}KzjmNxekMV(^#4%n5FQC~`J?D~RBvU;<1D;{X@&(<(xjuA z7(laF1}eS*>>$smBEB20$#(PkT$$z)}CYGUr?##h0clOjVKPd8E&lq?fAOQcJCfJ-i>x$xIv zyZM;5FuR%`|A9arXPX|MwP_c9*RI}D1*o)c;=~S*T^KVYso$3hZn!ry9kK|-on zT~wUEF_yJTP_V)u3?iB%QlnAlirDSqfbtLW4X=Cn%x@=^X6`a-GVrnZ6)N$wO#O5w zh2q`VdIJCA1!tp9p4ikLo4hG`r1RO$%190JbMqN=b6L1)XSLBhHgLewA%UUj1z}bg zUFV*+S&~UsziQ(@GsKMlOT6BfP*mSDH2}j-3>Y5#WA=^=+fiq1@5P?7Tuoko=kmOK z^NDOTf!Y(0kR<jKLuPGWp#P4eRMPrgGzWBoTgd7QNuP2a7(bn<&7j&$`QqMkiF2 zg8-Ee(#NO{u^vw&AqH^=P} zT&aC~p#ygjRqLhzZVdt4{@Nh=CR;|~c0|cXVaq~+gM_IKL$Hm1zM-3E;h4*Eq)YA9 zb+`aw_=2&7iqPFl+!D48*2y=T7mY4JmUl^k7hhoE0Z2e9X|_?lH(&#M?+<~PmCBY;v-%|iN-`^+|I=9xkSk}I)y|lR%1TDi9U4(3kWq2}ruD_!7 z(VLKaUlDk*ix)z( zZHtfw`P!=yBx|IdUADs~rrUAaIVLv;xVnsQ-Yhf`n?!2FBypLHv?{XBD^QN}EpH0I zFo!ynbi$GyHmo_Ge=OCi7|}^_L5RZoC7m*HF82%eu+*dEi+g&^?D3XB-sf~WHR?PB zZI}ZFsz7?pOr_G+1+u3hRH z^4O^diXotK)6bBuW&p8*SWho)W2D?rZSggM3~VRrgE4bU)k!JRpi~+%_X=rvG_AI+ z6hvGsak0CM^c`ciw?gX{hI(G|8wu|Up8#rJ^-eicK2nqu{k}`hsxIf6U%KbP<8%jC zy(7+)PtsK?@{8MFqP;7B$TJ&RlMA){^z{NK-A;Bh zOdqQcOn)mWm=cj3j(U5RR##ZEKjAh*K(f4kt|-(0%{W^FP{PT{YzjKRuEvX1vAVVN z__-B2lncJJS%6Jf)y|gZoy)z;9sT2JD3J7}W($Sg5xsuXYsUfvAR&+$cCC7Zw_c0M zPj%BvrzEr|S0+kum-hLtuN?^BhlGT1pNz3O7l$EsPKB7AqZ4BH1u&&knrj8~vUe6hhe6 ztw{69TX*gFxz>;5sPCdr)pX^j&cNzK^H2?~0I#;$^(*-Pig@wB#^Z&pA%LW;_4i5u zu&e&eZ!0A)kSfWP!VW{VOLdD5g}Op3^){@OVGZ$)^n7BedKul2%cr!9-GI*|2Wah;Sc!I)L&Ev_olMete2C65{+dR<(wiou^GgX!A8|;g(Zp|!}h~M&w<@zW;Tob z^piH5{Suhay{-?`*2{l#L|06PZgaN+-@FiQ|9Z6fXmf~ZBT2As(QVJq+J6}5!nS^M zSp;z~^tO035IhOYtbqmjYwQ*N$}b)l3{hg6e-Fz$Em3evwZ7F#3gZT*3yqj9rENL7 zfpW`Jx*XN?qc~+&#c&&W_O+4;=H`-_qCTEV4nh~YUE3B6MpZR<|``QNrxw8LXEYtLqU-%d?%S2CqL0b$NLb-Eg4y4zb9c^u_ z`ukq)f&O-O{Z*UtGbuj4BpuuNrUd6bxm6;PL?@OLkF2j*VcfoHMES`uVw*y8=w5P% z{^!|rH@2BmW3z6IQaN`FYg}CF+vO@>;-6=edD;h`YQQh7#&CK#8Ke)bFp%RJ5#wqE zZQ(%QK9lRE=`}pjlp>q|vbM78JZ{O}l)n1!&eD;mCR8=nl;gNSl9_>Bpy3)ygeEC` zfziu*I_qNfr^oTX0Tauc6BKYw8e|e24W3x&;B=CSDSz_Jt<`7?RUk4Rg>-!t1P^11 z00tie9?y(S ztDbBYIlyyNcH^k0o--~FoB8RuP7M?|p+e{4OdavTI5|IlCLoYcq#U^$>E#jTb7ZfU+X z&cSQ8{xZA^W#ttWFrz$@Fp#jsR{w@I-}<-pqFr`!NB=`kLM~_p1O#Y!cx?Qhw5o9K z7HCjfCO}uW*BTqM*1i*oM&Abx6liy}>8D$kK6~|*52{h%5_1=0x*~bEY4D|Sm_Xs+ zy8}JJB#z62Y-TRvG+XssHissqgEp#E1GiH9mfNeR-VbE&+!YHkfaMrjRk>sLhdl(; zouHkwCCQ4Z6p*%$RyH2bu*{+dGdSBoHISjw&h6x=&lu%De!fqAYCq9Ow)abMplUb* zo86!8F5y_fI%$DZPG9N|{yq}!ZzDu@;2rt)Sa!x_r;9IEaT{#MZf$w2nTtyyBW^SK zB%pG^J7AeeZ1)dDnc0M`VN1ikDop+Et*HXm^=lF6A>bXHbSQg@lQ*u-E0}4|z8;z6 zOW3wUI1Q^_mBN&dt@7Br6>#3L&Mkp$ta=V(Z_}*f(CHQY>yd zUl>hZNLyLvgGr=eJ8>t}{Wg|LKpa0bn>LGXuRrY+hx6Gmpd0+Z(+(eYe3rDB^5f!& z*BvM`?}5Ls`CD5*TRn~osFIm}bL_W#CeWaDhV#v{2 zSXAL#Lf2cXTphiGJB=OOZYncHOL|=T9kbW__SS!CbS|p7Z%Ee~TzZPQIMHU3xSeHG zVzQz;qA+~@tu=8TGkl7C5_VOHc5^41&C^(|L7f^Ih8b|eG)&N)#+3LQWudy29cg9`6T97nGt?1E^H_YKMP|1i!@C02ji z*-R^WM3nLtS$zt0IrQ=M+U4AnJ+onUwP)Rb4E1>6E@N;lIOTW9~(Rtyl1YvDxocuv-9osW$vN$o6LY&0s( z_32d~8^Q(wdWkYyD2@8q`D60Q(l;iE#{n(2>M8)GDsHM)(z)h*0kh=@0ruqUg&?f{ zp7y=|%c-w-lBod+>6MN?(a{Le-gHWn)FFTt6Xpdjqo1OE`wYNgQ zYI_YRCp!lh%EVIB^Bk)dg1M}MX~h7)yEv(V6i6);Xv_<)yIV4hB*qsE`s8c`ZtX*^ z?o#2{v-+SG^H*}XWK7q*f=x!2y`dbg?><;OP%3}*8`7uwncXTo7q+M|;8u=JFjQdL zs>M04Y~uGGS{v;=infveO&X5bX$eM|0iA+bX`4*#8j9;Q-yTCX>YN++J9eKp&&Ym! z_g4naZ)Z>wt{D76DR5{1Vm2Z0hz}7jc=}3 z*>Vi#PH4LPhgzJlr#CX(iK^SCZgZJFbNn!)tWa)6K6eb&xd((=tk`=336KzFiw4g` zdQ&6y)RV$$=`l6PV7)5wo5fN#UIi(yZv3iEySQ1qmQh4L#=8=hQMy_iA5mNER)2^q zk~)@?3zDv9!!|$fhG=1W=6>XQY&pkmkDqZMzg-%YyDA;eyz$W8hKf-Nyk@oRpbrk0 zvMEx*K`CIBN`rSMH5+yElLQp-8nd+{-(;1%Ui_652_2;Lvd{Enly)adVsrcAT0pwj za{s3+cj{6k^%uA3^jPOB`m3W)LmO7hkX^Aug#xso)RD>f`O)sHE7Se%fgYoB1#BCg zKZ5RbFsVGLk3Bz)SN4O+HZJnXJM@$R9b4HU3D1W*+#qHxlRzw>A>?w5y6^$X(C{B0 zo6{sod1%+6!bN4g#z-~QHH!Ux>dA-CK=7j~W_xy~Il%TCheOA=a6RmlkDUExZg_7& zretPERbA(zk(jfQn$gJCbRV@RE_Ibi2@FbvB9h@A)2(i^tKF>~2ICi%wyytv0*+Eb z4vTR{QVB#3c@N56_@?N&#@2HKK0$a(YykU=Emzv8&pFeJ%WplYiLF!Q3;~-$w}6qA z+BCy}`6!#fh1^24PU|^&`+oJt)~CCH4r9rDy%%>#7{sTOJSSiCpl-8ivDHkM+=Dzh z3sOAi#hD5L=&(m|sh%o26?(h)>hlkm%pWlug%@5uIL<95D02{mblh5r7Rtqv32(xcJrGoDuvAXQ4P#6@6A(&5Rue2s51uVn-~_${A?wbsn6P)~J= zlD5i9t`Kx`lK)anbaj8~HSHz&`vR^+msUpJU--AQ_He5in>qts_Q&7yzw3Y<$=P}z zSK8xzT{6?jl9yq9Azcf z$kq3I31$MoUWY$7tFy^Y*mOaI(E9Wi|Gtqj7bd}XUVF$3u8*u&q1G!y%&1 z&pgcE1NDp)!py$?1+wOPM0~($BDP1wg?TKF*hHS?UF+*5l9DI5m z?ewEcGLCKI|CPtnW%1knII%s$%VP1$tGrL3h2lYCK&5cEg>BcqS4$%MO2f8Z?+ux@ z0GeQAKEIPqSFZcrD?0g*3e^ondml>-T+g@))$oi8Ilanwv)tZJ~ zbYI!KuT}tZUsXj+GkY+^beGX1dV29bXs>z9k(pkHA2{8wYsZ<5{N@eNQ8J+Uu3KXu zYagv4BPcU>MCMiWl|W==O@AyA)))2^7G=)>?t}L!{d5Nd4);v zWY+PR8IXUxcERMG7|1JL9}lx=y?e>3;eIv!&^<>m3;giYR`E4bH+i3ibm^vElJ~W6 z_NoQpSKqsk?r_Aoy;`S3$ z1LP39?mCb-Ws3aNtCvfSm)ZgeI`6*wo~i_=Nj=3kb5%26_V-(XJYb`a>c^GRi^ah= zDpG^;dwO~zlm#oxt*^|X=jZ1+>PxqwzTo7D*w}uwV=Kmwm5E2{quIYgoa4c#vc|G1 zo3k#b=iRdT05+@)oY!m!hZRKh^F;RhWLxDBjDNo~MuW>hLXofy%+zvJW~UmW3qZQ8l3}?JCy}X6Vtc(p**p2rW+QDgnK%9I(0J71iJw8tOLj$adtZLTiLga!&6Ya<0 zfx#n{>^>v11&dCw?X}}zVD(3MLAEpe`Iz@r;WqwXtKu+t&OH9{52eAtkyGSDFlTpn z{>p2h8b8!j>l;N(`DS6{h7(8c}A(*SE#)@Tu4!xfCd*++@8$y zVcO4x*81_M%ip&In4ZDPEKE+nACb*V&nqs=ixL$} zN-TroN#KIbqbfYt1FTFN|k)p;UOI-g6l4B``T?SHLoi+yMP=DMB&4~FG>lS zfiN(zjnI?YrwtAGOnAXpm-UCnKXWi zX&{v__cFQoY~X#Lcj#DwU~_6frztgJ2CP5=z8!%pjhF0*TfyM`VIb`?eA;Q|rJHR6N{9Sgg4W2D{p%Dt5HrQTMY}xcoBj5$k-Bhm;&oYt^YS544NU{&V(U#8T`@8Y~r_=PvhqyQJwp z&ko%lRrlPwnue5$mt51b5_NiY--fx&xo+=<&MNkO3{~XLK*+4T&H&OPGhG=qM zB!YrVhFkP=CN8z0w>=~k=YvQg#`8_{k$F#Buk1r&_<^an%{3D%$?esAMkCA#IHv|v zQq*WOZ?4RdTDuWKiV*fZ*>a<9uk-o9M?p}0i!k=WN7E{KQji%n{iZO75G`+~{p{mt(a}yz~E=0{sgr<{xfI}L9JgE9)2@EP3$NnN+ z2}7;v?_+Lodx0wNKDcbKERZIk-eglRtH z)=`Q^*GKy_kI}SQvB02i0>9Bn=h-2IcNWt9I+?s`9w_mK`k2>4yeAY{QoG}I64+y* zv2Ew-8PedRoVJFN2NsImjtDLtY8|feUVFXV&jNc4XNqNgGFHf`1V_@&6$~KE4dwXY z1C5CH9CTG%2|R5@uTXNu4NDGVmx4as+tz7xrNU3;@4)rd77mooF27q8Zj-^s5ya0q zWm22@EfJUB6GSMsW+SOlW`!PujQbWxEXS{381%I(ql}~G5`#Q;REYAV!AADCUq@tq zuGJo@+cFqAFj)z+GNi6Agv`2|j$A!)+40@gULl!6kK67qR@@SZ+fD144UdY910AYr zgewv%gVl*VtM#eldtd_3JJ-iA?L4A<8p4>ttnwRdFN;1em&&4?A{(vNw>sge=@FFr zS7On!aQS9iF}}sB7nS<4E1@{x$RLh#+0(LRw^|=RWC~tM z>T{Hw{Pi|Cf5asun0q&1$XKv|EZ|p^p5y(00QFzD3AdH^tfMa7w?x*0(h!)2o_dMu Ht%v^wAZniH literal 0 HcmV?d00001 diff --git a/_images/notebooks_Raster_awareness_API_39_1.png b/_images/notebooks_Raster_awareness_API_39_1.png new file mode 100644 index 0000000000000000000000000000000000000000..3b5ee670d71d0a77142c1ee6d004d3ab6690954d GIT binary patch literal 17956 zcmb_^by!u;_wJz)1P(|yD2;STw;^(Dk?b)+ut@nM`>d&{4sj zOsNh!un};R(RI^sv~=?@b$JF+GIevZb9A$_F{6I*%*EBl(Se(dn~jT=+S<*{$yJb@ z-TvqBg?Cg=an4pn6PI7v#5D4Zy_&)?ldL}UhB9rh$T0+w^b7$_QkLFsd*xr~c z7dHvwo#%1`yH%Beg}UV*lyF%B@dIq1uX-6eJolcNS!k`BsodGA%xG;jtkCH-8Y+Ak z9!bXBgTi9FPkW(EocIJi7>a)9P7-(0;pO#!w7H@jz3VH1b)Wf49isX4r2%*?jS_Vx_j(A+8`!IaCcF<=L}m+Nrn= ziHV60sY3R`$v%xSbnF!wt35|w#DxFnW&YPy|Mk<5l%1w0Cj`n60`(SrNJbybcu$f% z_Dbmexc$OC$z)6#Yz!L94K*Zqx73VpMNhgw_+RK9Q^WZ4lg$xYa4$$C!=FG1kzSKu zh{d7PsJoQ}fu3Nr+4$o5gy{x#(Ji&t6`?HLw;i#gMR`a^fl0q0Sr#D~>GeBV3i#a^ z93Bub(o_Gq0)bw5SlGQ}gOw<^>rm)F2FF&dwG}If=2(;Fu5+O$7&P_Z`)y)^#DEZ3 zlTaOP*J2w2&4W-M{~DY+u!Wpu`LW}OD|vWO7x);+>#-KFjt&p=RB6J;zzWHF9Jey!;2{ z$F9Um5N>>@g6gIGrFc9@TZ&>$c3<<%886ONIs6u7Yj-(iJ$`>T7(dcHZpf~sScOzG zp!=Q7so612=4;_W+{t;Q0Ep#C`r6MXWQ(l(N*Kp9X#52fU8r^FNv&3Ug!CqvgrQ+c z!mN2V9S0vZ6-jeVf3GScOWj1ZhD_#}79)44RMvh8c#N_(&^3aDv#3>fb-LZN!bQfu zsilDLc@#`!OimyX+JJuVF_E5Oq61<8?7oLxjkZ0p=SDD&@hHyyA!As>N8d*0VQ7od zOz5+eca0ya2rx3(70TWnn}+M;K43w7<9pN2O4^$fcb>46K%7*eXPC=EA;iA-v>eCy zA-cJzE$%$yiNNvHuwf1xV=e+a#mQ1=0txfBjYN05t-@qDzl;?|74w&%mX-ZpDZ#~!-d!3V3=}3PPwzNiF-j_RZ5SyMMz3RJ zeE9R)&iobCYi{}8bY?Nq`#&bvwU-#Hm{(;7XFz$vX=lK?vb~hC zBe6@{?)jdH2NF*A;}SdVy}l<@yR7Kl3t^%j=ka`sBjILxGR!c1Isv<1$V>Uo!@t4N12MPwViw| zktKBvvD6M`+`a_eE63O!(DA-mV?(`wg}f~HZ0idXRNnli<%;jgwc5XJM<9T-oRjCJ z;DC$)TaR;Q%bw@^=H<*sTgAbD?b~-}%JZ{qY#2&Cucwp73uKH8wp=57N4d`I$2hO> zkHjcxtzbQ%4gYrsd1(x3?zj`MH3B~aQQ^S-J3Ugf*_F!{rGX8~E^OIG^W6zx;KnyU5{q`rQV#X8)FtaHYCtPg~}we=kfq zC4409i~bmdcde!?YwCC9=pt2w5#B|Zb=dlxlg6hrqL%gbm;WD*E@<(wcyh=7X~=Pw zJpMb`?q{|hm}c(jZw6{!wY$1IhO*+D_Rgrc2DG}m0s|WPKiq{IkR&H=n@e2vy;d4Y z{a!C@BD+b1x{lwj#UL2ro%H_a`?vM4cv=x}kE)o9+x|Lz--ryanr8*7_7y#E%tR=K z{KmSqUu;7>FR-1Px=zQ()&K@?f|C|B!A(+yA%646LbxqD#PQ!*P8{giI^k9llYpxO zy-G^(XA3%3R8ro%g_wwlXsBGj;i+M0`Fk5Yu>~iHYhi3xbPJ7k>NrDsp@j3N9!OD4 z|Hjj=jPf~`&;o8ur^95m=DA;i4E2j?AK1rtu6K=FDFSej_8oJm*3<3nCeTtm?Qfox zoo*KFJ=pLRD;AD1wi6B)^L>fRg?46G?JydW$LQE392+~iH58NTcI1koI<#d4Fy&5uBht6 zDZR2;^^Hh-yOryw!tEE2Ua_Soya!c=S;<4a+1R@#zimrLk-A?ttL2gI8n$9J7-i-? zAAiPEIvG{lfI;MK`<%dq>$1_$pm3r9I^ETfJrh%%7PJ?qgRf^OUnv|JSP*5o7$VYN zZR%e>u|{m`?T$n_P2SUuS!f!5OmXKFG%Uj5N@w! zRmRp2O)1jfOVT-BNp+<+|GM}f!^s2T##08j?->>_aL(SHDfDdV{Az%BvDd?a__;e% zeRtoGsVL}boKjM!g>|+-6G>*Z%In{|YUC9{VGCn9w(d;ML!)~usSS#KD#jwP$aBlm zq0bX(gaiwI4n%FPSGtPBqgBnBjaN?Jkn_C@{QMn0_G zcZms_@{h0i1D_7k4Je%c5(JB8Yxkd*H0 zxrV3LnqF?SV)#^A2>U2j+~1sd6*=y?d?gRc2!8Py6!Z8g2^vH6z+Ydwo)CKTUD&kl zN(p<$S~`0!Ehmk8m_9n0hP;>N3JX2N zy*wW2KAjwklWE4H&%x6xZ`mdHtKO&f<95V&eAngi-lss4myKS-PP6TnLOf(Do7cNh z-U-}OacC7J;660(T?l(xEV;2R;B{TdZk4kYEgVydMJ=>z#ftgZkcQ?ramy;R+qKxS zk=t~$^HcUrR$@@I%!wwcM3kv}utod(`r)+QgzOV12@GtyxE&pp%HH?bgIvyFdY7{m z7*l#(LDRd`E-#esm9xp{+(#`~Za6Gl)Oi->^wT0~Vy$OKxBKPgVuA1Jpi)x27|+P2 zi(OnyYD}FC9!{$tdKCMJlu3_x=@5;)*F#%;V{b2p-L@8JDgjn)Gr82|_KzozCP{mx zDyeFklN-y<-{1+wW%YJrvcFiJeJlQh`qJc^C)^TMk5SS6BS2$VZ9ig>!OH-&r;PIU@qIn zuWD{>Mu=-O&jF>T=}b}(-u0QTOhg#c=Y!&P3UjN%FQ$*1QS-kS>`LdKCFkSlUNKT1 zy^2Fp&uVi3kVvM(b`th=_gfSIL=*0ZQZ*kKSy;F)Iq{rVGXq;=m>OSdB2%at($Ud< zBb2FlwS6&Mm_$h~oEqpI`Si0h!O*sE-vG{KYkW-&*VjxU&t^dakJYe*H0fXMHnE5| zu3zKGYPF(OZcal!VfEL>`u-S{r$T-C;K$ly){37=z~h4WWDh5#^%wW!otqo2-G2T) zVs4_*GW%$%#2rX~HzEjG8kxXj6BX`N-%5kxO)8@M<=uu$MkWGYZLQX2!N<5C57M;p z|MI^F5rsqc4r4mbHCmne3`y&FTd&UX$sOc74MTS4tfKphCg?#JtK@DpOi~coX>La;L(8cd@WWdtO1b$uWT-}hOWn(t9AA>wEdmQHv7dK? z=2%M=LsB#hzG+@?^suNUrWmA7mMv?*zT|Su3#`e!Omb%*>>tH!(cbFT!RV4(5jAJz zGkU`Iujq7#lPYdNJ_gssJ%!4(M$3Zkb7rB1Y9c|WYGqHl?eoO`NvadtvOB|L&V5$$ zn{;zXtfM$9YxhJmtEiW^{s~XB_9d{N#Kh>}jX$WmZp6urF=_($!9gWFk=;CSKlcl4@M7gEO&N9GXh`n1*A!xAxeHFVkdvzZpX(zco3hMwt$pO7`$(p zg_APU*Mk4G0ddRLNB8w)B+WNPmfC{nvX42LwYoL5`b2ETzMXP(+~@ShKOw2D-k0YB z!Re##WsB#-=*YFr;a+tc`Dk_U*mOO3#}n%qp<%7g%rFMWT~KAyAr?_3^zwC9Ijt3B zy|{1d)hs$P2u(M{h#bw!iLCA;V!Aes=>~xNWh&0B<^zx1T%5rq5RI<;OuR(&&*td# zJ;NQ;e7xQ;gm>qkx#1JS`DY>cX0UUw$Ov7HCV1*$@D%tJOhtJ14?!`VLL4uTPlcLK%J3Pc1vd9@H}piM%6y|J zRkX)f7?4BOlJ47}5C=&;W^&=SSZO;#>0LP`QOj*gypG2-Jzh8{dDJjb_bp z4(b#}Q3`~24II=HJid2ychKcpL5y3tsQ@=9DfMkkD%9)^l(u!n8)6KpLhFcv$eXuo zV=SWF-;$&MkNM>wiU$4ibW8H~_CF$4>7iHO>p+8iQ(!Vi+GByxNrrbr&f z3nvOS_P|c+7unXGpO?6u#;m~^?R}a#zO~m9gmD#ieORk3#&phkg329MN26cbk6DgTY-Q_w5R-zA+T>97Lj(5Q z8GS}SY)S6?f#-s8#67-wD^T6&p*QAdYkV?3JEv8?zLPh^tbihUm`m&4FKBI#3-}t@ z7kkoP0tSXruM`LonMB_Y>%!bkQQBO5tsK~~>^~n}d$}I_AY*28oNywDYaJ=Q7Fqa# zB8>Pwo}9;TR}@evcI^&jZ%(|_CTPX$5tu}IjB5tI9_60sc5M<{>!={VXUzRveBYRR z+LNU0%^S$Y$uC(R(t!RI2?>dS2|8T5hgwM37KR~TuQEOfo->Q1C!aEN+AFqI#A&Fz zq*RoitFj6Ih@p;C8N!3(IxX!^)-#ng++U$ntdzNYi?&uZv~dD zdm(%u!?T~NLWr649r_Kogi;Khhhib_XBBOKo8^IeUMJ!$j}r1uqlmPI8!8|J;6|@h zfPUdxM-nZ^xN(>gaTG_A4l96lUSmJ`hO>DwDdWQWYae{s7eqqWuS~TnZ6)UE2-C-0 z{AnL;)uISRM<#FDhi+`#LwI)|X)oo%Y3?=d-lS|*85hBc!B^X@JKZlpV^5z>QO1*^ zzpo^t98XlBhC;Br>bKU8p0X>KV(hZnhU7l-CR;I$4rlcMfN&_R;jQ(XP^}aqr@j3ly!Y`AmBSd0`I{(u(dvC#T7|#C z@i}3938T1;Da*$(rYZFtGoJvq0-KJSkDAf9@c7c{8CRbkfv)~ee+xN5+Bv=Y0}((= zTQq;?*!yyaif}zFfwJGYnG&V3w2DAq+1vR|LKypfI7w6tNTMjJ3dKHj*?<%pv5Fy0 zHJ(qtR+=wYX=ychAHycJ{Dud$6DH!?-NuDGC{Rp+QdK#G`{tdiKnw~0|Q9qAD8G79B`ZPN`Pre0b|-N z!8yD9xT^@lzutJk#pl6E%hk((sP4}7vMO}!u04)!O!HxhOc&fkuv+8D(Q!$FA+;== zoeP*m>Cg|Ve*m;Un5wuN9|G{~gAqQU3ho{p&#&~uG`WJvkkq}qivq&$-c$Kg*yFY^ z?=8{}AAs)vLFT?-&f*HnfENa2y&IV1;mkoDyl~zvEEnd&O{l>8gS5T-Kw(l)wjW+L zPv^Gba~pWW9Mp9lvsdAAL|$mOh@Z+F42b}QcfQ?*@!@X!nkhKbg5ZelfeBVG8;)){ zV4YBr)CW!O%Iye&JDpqwI;;s5IiG$Lg9xqc1#&){g*Y=w@qOyLWY9=gyMHqy6H|3_ zaHCB+YKXp&UOuh;-E{TM>dR3Dw>j+8(E2y|tIUSGrN|u~##2EJS^>txY1@&$KNO=P zi&XMgJ{S`RmG(z}I%+#I;5TeCog+RHJp9x-5<2Ihvh_^d1XZ+{vA^bv0tb&$`|kYU z%Xzd&J|?w&lYXami@#^sN5)$> zxYEZbV+`FJjIh7*E%7^&_x<{zGEoP1Ps|WEIMHsVJ|rmG@3~0vbX#)EKTEt>ZOUbY zL!}lSXVT~OTKa~uraVgBSI_HLN;;faUnf|(3#_U#kam0S^@^PCZ{J}g75xO@ObDRP zd;cdYldo&e6g_;2FI?{=_|2}g58yiORP*p(ZH+_%L06uO>7TVzC9x;U9`AR2&uYB+ z2w@wfvUL{#AUP_0`F}@U%X|+;!r*Al??zkT_-kfeGr6J2?{gZSki65A40-_A1vE9s zofeE6%tw>$W*>150ka~2Sx0(Nq`i~b^AR7|*?XSJbe942cMw*%RAihPOx4zc(@#1I zu98jL;a$(Dxz#?PD<0-_OO77J)CqC&G9VSC5=}*Y}Ae zho7(NkL~nL4NIK%vqYA$$?)?>Q$?H+tuN0{%)I%|W9klPE&#<4Mx@wJO`o4ALHTkW zy<{x2-+ws64733sxd?}Nh9F{^L_1XqyY6g&34l+GxQE%;?O0~!+c0?F4k!a=Zj-z! zeS4ccUjEn=pgxQB?fXo)M;UW~Dtnd+4_6XNh~sU^!4pMa+bx{Ci>SV%>OuP#O4KZ> zBr2-zKHp@cp1^jW2|2uprjzH2%zaZrDHkC>n2)ev zWopQDhvP@=#h-0i0}4rZ78**<-SyVN^a(JUgpCBt$B(v1F?qoJiG*fh2^SIkUQ}6#_koShbJ?Km~1b1zq<3|y5{s3 z87eQKwlAoz|H2<%EZqfOu@D!(waAau zq7f?_)tQ@nW1=5~_CF_A=`yz7&yAS(a3PEDn5k+scnyRS{Wo5`7S@&8|AhWZtFWuY zXX2wJisRQaCo2i!VOhGo7Nf0R8?DaemIng8TP8rsL}w>IM1=hKalk%TQ9(Q(nj1i> z4JvM*^&XXXG?P*h{-`rUUl>tAo%Rw$LCa8AecHoaV!5cHxayLj?B$fJ)k$%7snEbs zTYH~)F~PIGuVuGL07IDM!2CshWF|s{${xe!=v#V}U*Ejdp5lkbQ3NoZ^4x2hs^?~! z8vogecU>@38uG{6+O~#@X=@?@dfEAG554chsS>tDS^8lI3xiLih*-2lOSC;HrEP@4 zrd(2>hw?uAT$?)noA*@&0K&k%?$nAkX;ljs!OE8z4p-uZRq?(@rHIcLtF-EDE}3hO;H%|B$H6Fp??Fa&VS<$DxTOdq-EUyAOVxIYs^{JZQDGquYju;1~;3uGJ02&=fG zR&RKm0-VxdSZTmOCwNe@;r*KDiwWS@p92wLX0%~u;w4Szq<nGbcXdz$U@b%n zgwmlnFK43|v*)cQz%9}f-$lf;evZXW%{!>)jy`~*I3^Zi-;s)E1HXNBx}76rt)2WEl2U)SB>6 zH_)X(df1O4-DDJ`>M+h#V7wPGl6T%Gk5R8lgAgsf9G~>$fW< zEWM)rL4gl>#|lK%z+gC7B9{_Ky(Tx;R~@gk(EWc5HGb0xQRx5ajn@Qs?Y}DdF|(%v zt#;dnzxK1Tu#E4trRR05$hOE$AK{J0wIj&qqi6}}Y`(aW7WWq4jObk9_?dOn*~Ico zO8=Ti`U*=sRffo9qM+{vg+m+NIRV;*X2J<0dRP)NaQvU}J&OHfU&{5pDOTCM1jo!; zMG$hWbMemlY*>2=Qx20&M;CjTgr+LoW5?n*dJ4~+{Q3O&Sve)Ts*Qs+iOSfu87rik!3xLen7tv~g!J39G^$M{& zExoihE0O-Pl&!L=I%)AZVP$g9BBd>9`<)et99va8nAIGC=p)Ey*qw5pR#$B)?4wv) zA_f^dEm}s>y#Pd$InGfQuBSjBnnM8%%Ygr+V%vA;M>D=U9QIHLsS~SC4eO=F&$ae` zJn^&6Q+tu4RaM@34}^)b9h)WbRHjDQxuTvG-!XFn8xhqjsYqljOG4WHw`l1F;`a#^wLF^bnKNSlGf_JXJ@1Y8%T{eP^CXKz zwbj)d9Fq9jT3)2#RK=Z9FUw(`FF90>~f-Y_r|mWeHOM^sHr zOd0=6e8d~_$o>ylGH)T5&T%V#()r;C5Rr6*Sb0EX1!AAzR%a|~+i(4dG0}u5i?aZI z7tOMFa2S99U_dHPoQY4fXwf^uA0^h&7^r1mWI?>|2=G%pHbV*g3ZQ*6?xLt=Ps7KA z6NZpcZ5!!pMNCp0x#Jd!09MHT1E@08s|vDR_h&1finu9c?NQ`7Y1#ZbiOkedAjxPHPK3n{uL-9UK0U0ZY7l z@7iSAS5(T#?wVP*`#XQaFI@sLjrraEl!#MDYHU80iJ^lPGT0(^1$& z+)v#2^x{|m$L{L7vx?j*ds>Hk=)kLsV(a>*{YTCFy1k7KgyHP+r8VlJ&n&mb^5Wze z(w?IuY0r?r+qm_Fpb@;*KNh?0rP1Z8IC*!JsQt00mKZMSp_Y-xfuPAZG6P9F2F#)0 z>a#k3{xMMZiIYpxfUmr~d>PwY9Xbe5Hy}oWWPRNYN@0aIs%7bC&l7iYp=|*pAUf}D zj&--O#*~+@__A}&CNLg|_HDPvJype}*ULGvxX^TDkmj|R`GehaySEi5S6e|D?n3p+ zkb!Bfpmw|Ru8)-lA9oaGeF!6pWfyL`kn4NKP+5ZJaWwltoeCt;UjNl zRJ*x;+El+=>+Jt9d%^cM9A+5IsK6dSL|q}9jPB#lnT~K()U6A-`QS%&X@r9FDjFVj zegGfabAPP=40WXIxtPJI|%r3Iebc8MyVY zEbU`K{e&YO2M=jl{NK+5O-JKpGm6;DXJUQ=Rv>Ct&TV+ryA(UNn%8K;*jD`lji;gY zUKjn}VKiT3^jwk{>+8@fhS8-l|H`Un{F&NyLUHLrGQLk?3!@o<#wiqCZnO;3&1(IQ{Q93yzgnU zYE^FgZY|9Xgj*++4M3hW2N>IzaDY6RY9t-z?`?`>o3TxHkoTAuC|+m|?L0U-aU`JW z=F^GHC&l&{D>xY+%h^KA{)PH_s{)R1z6S8*py9B$5c_*oBI>h@=^Dn`16Cxr5uXUV zS40PYDWJ$BSEg&OoR z-;>_f0g~;0q{-;|X8gG`VGK%r9tr?A&BvDnONX4xEqNp1L;6Yw)#=H#D$qdZ8WT1= zt1QUd4lgM)1^XW*dBUysI|~~lG&MV>_Su>?)K2|k1((y5mKd+E3L~^r&0f>kh+Zx! zjPHGD_*h-^qYT)r{0Abg{1}{WbT)ehq~ae3QK5OiYY=^QHYm_%_J$i$z}%tM?t6oI zZ!rR;j9y3xw2<<aFMNV<(NyD=a zTaT?iwyjby{bluk(NZz5Ht#5z*y?EeWlu*t#1t6_ge_L`JHl-j!lbs$PJ^HL40rXl zu7F6UaOwxt1!3bADH~JbU+ss45N{uC%Upb!0K)GPHbLr6>jx)JV>0D?KYth18*LQ| z&6Q`w?y#n{0)+6{62*h4&QG)S%)HvN)nExloBVJogN4sjIaZX4&GDGel0F;sTJRZM zar&bQX&jJiZ|VoQ^NP;C0=mPoKfiyw0cQ)A3=(fyiDHP7O8tX>oKd;csn#~7Z=JY| zl5XdWyKv4pS*ioAbbf=xKe+~Q9SV+$;;WPx_EZx^HRK?RAz zR(;Q*m8d|*^wi)ovgBVbiAW6Bx5Fwd+%0Jh&0$cjy6|J%W8aELzZL$$7Db0VI1tuh ztvd1KDBSGvqc?Pw!^!|KLlv_H#v_l+g(xOCH zZ6nN9V(d@S*dKoHe3;)AQ3j+3>8trEcLG7Lbf~(umbt3_d)!L_X0Dwx&YaMJJ%p%( zZqMqzu;vGk4zr@c&`8)V#QDr&?*!zY;T)a!h2O(yj3N?QF;$xAnBqXNFctZ*sP)mO zfo^~Qki3qM@l=z~N*GB8xJwM5T?DXOmYyo4P$?b1lq$DrT*pnIsTho=?XO%KWIp^s zP%gF$SH!4Qcy~B==tq!d)u4UP>qIph(1B@LvD_u&XtJF4=ouB+(Mpp}YvJhHn!2t( zgwo)&X7})5gg9~g%P)=7{U64d;fhzHJjylF+Iwcy7dunlg!|s6LxI;v_92Lv z!WB(4;ey4ze%Qo3CrC27t9wPvPeaQUG7m>u6F5lPaPrTW!{o?(mr?{bO}-M&Hf+Wr zl;*(qgTNrmTUJ^6l^oBlf^E{V$-qfHL3~&D8JLs^DMgfx);IsAUv*B&0_m99&%^RnWq&*GBLcuv6ywqV6C%mm6uI3%g zIHuAT@8;o9%9es3rHqSuLeK$VIdH~TTTJj$-(02OS5>}V2-9*flTOALL@V>t^}AbM z5}86^1b|q;C_-tc3AChymiX>dL+vggaAbS?Q_a8Au%n76y^D%)XQm<*l&Pc=-FaX>pU6pIYf@olTO2r{_@6}6)Xwa$2dq{}8PXA{@{ASxhpmZ_ra)$Vcfmm`|@A%le3#KcmN`Z~|* zX@;5Ibit)Tb?;LHljsX06QzM5gkS8khjdZ#`@8DH>AaW$u=%aR3nCeje!N)3IEsDA zU2mj>mW@502{R+L$cO!iK0bY=`^}CtE9DC_FIpiTm|A1JbrlPF{!qE9`N5=69^fuCs;Min_zitYgel`_*mo^|0;$jK zbgOpd-8ShDERkfUga zTr!fp%Qbm}ii`*(8oP_Y(+Jqt;p3g{+RuEKDj`%sB6vw?Gl%6F0pgHH;N+?I*YR5n z*Wu{~TrEVVv#+Dd*akU(u6Ul6?BcaunzxaT3^3^+!~uCP92%H2ATK=!mn=!{mmmx= zYp4nHn9YRd*JdNC11UoXvx`w^L#jB9C~#OCo~5wc4I+Oo1L)ebUP3;i4qK*YrO5}3 zFc%2-!{VTDyEhFmEw0c)gi_E@a^X_sl07_LnnzR*JBOh(m3vn7g?afgr`V+Dc5E_> zIRKBc)6h)nN<8N&LLEE>I;a+EW^Jc;n~1IfPelJ(o{gwI_~XPHlL;6B$gAX~4dmQ77R&ptbBCfc7+Q%*bL@7=OVp7Ed5rWLd+`x$ z;l*Wx!*0pUNgf8xE`g*S_?DNJZtd!X572>!HXB{vFs9bN>}c6e+QhWtN=$TJ6;NDT zt-jcDS@Ca|YD{riJv!m%8wYuu?_MY4_R>l1_&?^Qyu%AL<1q!MBDce%z~mZj`Dyxs zuaL_-RL06>sPPLM4hN90znyO46quq4l6%wA(jt=OrLp7x@rxHZ;ZNlCH#M9ZnNU0g z7Lf*@k0MoO?kyc(a-jBd%IwuF*%O0&2MjcS#l(qg^|kH+O{~c{w}p2y-7i>ZdWx0B z<}plEwl9bfSP3QbF=*HjIS4z@9#2R}kKz#*FQqFIurOb#p5+#o-X?@P_*@f%V+ie%)yH5l0mpN6Ur5dj+qC*^GT{E=)PVU*oHb2coD%ni6& z5N}H^&81`B+q^^6GBNtVG3WQ9r*5at!Hz%4hxWVATk?~QQ`D8gH%Wb-wm^7(qdrFg z&O-D9F`TyqmDZ)=Ial7m{&UZoNUH~UK%W!@?CzdsY3UOzlK z&$df*3nzD|_)+tZLxG=}rUY8qdfzQ3aMOmksa7!yuU$1E9>goQKEsQ?)XgrT!;hE(6Er$zX9E?a@OMkEv;cna?;Wr&kkGx! z_Ih@>6JN|Jl?X&pwY1>iEWF?Z+Rf1;!o1_OFl-0D?KW@Hq3EH?J`w-9SgKLVs3CSz zhXM1gkic4eBu2 zl{ek_>8v=~eCLQS4{JYs`jkuWUcSHSz-r1HSt-(renLiM-TPP+6VxJj0Ju}co9K%Yo6Y{JxBI!3Hv1Om7Pf-p?S-ytb7g` z^nOxN`Cq{9rN?Hj!hzGv&m5QI<1=psc*a&|wvMSee5iLnaG3zz$oyApVmPC6Z-|uh z7=euE;zpLWTGC3Ev)8m+BQ`)@E7ich+Lw}>{|)Luvgu)+d3?%l|B2CeD|oi)StyeA zIM3zjEyhwfp68ATKVOPUk~KYEWu0yCLd(S#xL9+2GNVXe;j|3G+&Rpwah`$4J4OAP!< zlGmSjK*Ffpf2)3Yxr`XsTlE`Lq=G?3*9{*xUGVDt#++N~D+v{dRKogyq*j;rSjC1L zY+V??hQ#GA7FBKo`oT|#D0VqxY`X_ZC$8^zODEhFIabVtyb~Z{Y%K$PhTGC1qo>`z zn{dM+@%$stFCazM{`nfo<;E3;aLrG%{OLs{?7?X85I24IpBF^wJhx<>BYzKaHsOM7 z#eAqf`)KDnL-c!)^?GG}C3@P5(WcKe586#xI$4UtWb5;9^+g7`oj^BjL;=#A6&d#8 z+a`^8fq_7k2Oh+Lw^+4}%r)7_-SAvdrN~~;GItm7Ewmwp^Al_%RFRcFg&p8pj|YTg zRegU5Uz^Y4mnv{d@5UpX`tz%F-59pxXjwf4^5>Xx*7IJE>;)i9^_k8NxBfLnQ5_EWrFGWw`>iIQP-iZ3uh(N7o|_iy@j0G?YT$dD=i` zlWrLWo2Wo|Ct`2@V(PdVQ?5>GF5(l<2q8i#yn#ApAv|^Y(&s;umY2<%+_$t#ho~`A zQd0B`C1}#DSss-XC&-)&4)H*|-QtdV|M!%mL ze2Zys{&QgSGOvxkD`Q6jbfSA53#LblIPm`h0@0ewEc9~c{EMkhh_pD9x|w^t;?&k*wFAAbYKot?3v_}jL>O`fQ+kY7@w4eh_9quuPx z%tXgWC=;@rBZ&Z_7QsOtkQEWpGAW*t9MCwzLRn-VZMkw?4CO%zfEMP}7u9M7G8M7G z8i)_0QC}o|*(x>0PJiR!8g~2*>Mpmu)j+yrTIBLuTt!N|o5HPWTXr7|Cs*a3P4z_i zbhJ}j3F2oAzUaIeH#G(zfGgWKRr4bz8FZZ(uLjr`*ASKq@gS%(GtNV!%I5s#694bm ztx%*w4WPN@_kaMWT*r2|D#p=`pNU+z^(l7b{pFnTcMvzC>ZJkqUz;H+04ZXaA2P9H z^QXB^`PBD?Ay7t4=WYAHu-@9hC%2QAU|PpER5eQPiP2-u#yIO2vS z-j_df6J28HL_|%y8T5yP*it!l>RJr1jHxrqj6r7|uDh9j`**SsNG^@KLqf_%M%W3K zjuEF-mVh;6k(vMkFDJeQfuJqJELM2XGzcQ5M1Xn{CyRmy0R) zL}#<9`ouG2O!^!h$z&0AF&N{N@_DOc3N` zxrRj({7IL*=Yb16DoBFd{0h_jAZs!uVGP$n(_0!dptu|P>~L&cAboTzNe&ME_#lF- z=F$W-93=H8>_mS|t39hwkxm9_rrI~NOePag5ZN=l#SHR9 zaviKDZO{M!v{l|G4t7&j0V6~k4lbwEq@$USGnQpO&c}p*d!=uvE(wR#VhI@5_Qifz zPjT$CEVXF<65M^59r2A~PT0 zV{|rn^LM4POLz|R>JlAy=v4d)qXg-M8~c1femqDiiIvcQjBg$FX5aNBO_Z|elYc8R zgan0l{cT<5S~cq+@NbjMw~+P%H|FuuzNf0Hs)_rPRSt@o*9X^JaD6YGSK)-H2jE+; zmh!SP#mWB7M+&pmW3NRhi#WVm_jF&)PI)FgM?pk@W81f?=qM;CmzW7|>+kJ{ZC0Ey zDu}$nova{4NA`@Tl@hQgbN%j_8MxIe`lu=U|6vg{fGLvUGr>@>nl>Gp+c@;EWybDL z{oX;%Jhtn_FleM{d7)sv?6gd-Rm(BtHO``A77+#wJ%a9C6D}ATf-r5cT*TZZBg`8i zI>vYIwFwq{F>!so>Iz-KEPH|Q)QA#TcKk}cULNpgjA$Gh=$shhp~(lnOa;hQcpWX$ zw(!-vHJEunJl7D5H-Edj+vz!MUsMc5fJ-2+oLu#y>DhwRd}!K0Q~yZhb?yjOArtA& zkDD(<9S6!j^`_(L^MhobvYn1`p4gc;%YAq1n0C|cL3!FK1uMo`2W*Sbf$s{-ro_>Tx{_I z2@f&E4yK^p8SF=Xu{kRq?BLJ(X^a|U!SHtTC%%}}gkUIGV&1DgX-aT=NWiajs|urk zY(GQ9&&c+_Otd{|oIufyUh&|MU6_01=dp6C)F<%gEdlU6o_}3OL@7KE!Z8?%77YCm z4BZNbN(s&#i_l0nL6_e^&9sZwQZZ;=^gCSSK_zw7Td;$n4R>gcF=%*bq@9b_WF*56 zCBrGIEBgiKew^<2JGfq+|58NXzem$kt-N(vsNCRwVelvhy4*KKJQM=Od1@F(5)37% z-gy}YHG6J1%|Rob23>aAUU;iL`Htvc3--61Ta;&xy@}hOAN$fsw?UU5()3(URo~>8 z50%fM<|kL2A?~3-vZqekQTMi{PLd$o$nhA9v=CWHeviWiq+<<&4AVgvuJypAL5`xSY#u+{`9qnq)O1Iips244iZh?s|v4kEI{2c=tFrn3Z) z$8LJZP#Bu|g4mR^fm;_5tQ5iE%h~C-anG#Aof8hf$?XfsV}!;B$G(CvscPq^%~*|_ z(W%KUdC6R)7yG{;2WAUnC{<78r)*n4`x>LGA)BDW9#(mh?fvu()4nI!f=&G)Bf}58oPg$7NDKl+ z+0*Rz-}-T~hVqJ`ye+z&tRDeij%h0dnu_RYgw9E_OVV!s&EJa1iwz=-v1nyYH8uvh zB;4_jp7I)Yb{cy0;XE_B<}o@ao;Vm9un818+y=XQ6*DIx&>)B~=Ayp($39HO3EnjU zCj&4kUS5Vc5J@H@Hj;E;RS(IEd+TH@Y)k@5sOQzXd#$j|5#KfCwF(RD+tdja22Cu4 z7%erL3j66z*3nTDRPypp$51tuw-;Mx-@}zlWTt0I+Y3pO;qKP$(dsP0#B>G1lpk9B zzI>sLnH={ttX7g^dM?!F(cQ)#yqDX$;UzDBW?)xcFas-Pq@N+AL5@jZaPBuP ztXDEzlcq-o(ua6T{Q{%r3Htu@)Q9O^@J50&L4f`HEL|`$W3b$>Q_3AjzVAWD&Z&KV<@ngs zee7?F_M6RSJjUCogdD^WOxlwV#DwN7cKA$=K41@DN?u4eF++sRjN{y!chIc;(Yhtv zyw*u!X73$e%R+>sb-%Y$w0~+#(#pHq)_w@Xs$MfjtRmX^^PnDn~L7tX>$5b1k3nz%~o{Zx*gyCr4ni!KXj(wqwn~Hs^=9B+8!#byV^fY&#*Ms z{F>!^k-D_m#q}H!Y2|qR6=mPAbYH5D6zg`)#?tYvYb9+*q{{)g$D&PY+yp!^c%cMb mQ3Rj=%ljq%di%t+7?v-#q7=8{Hh5zTn_kN3y-L%a6OHpkv;pXXZZTvw!qnmp-E+M56XkSZ!X*8%_nGXTI3 zxn2Qr$B z0+B3~!&V=P|CyjzUSYG4zGmh8Cg|ND-36Gm z=oawr7y?q_p`P6r%X}CzH z0>SJ%9iq;^o2g(734jZUAfv*uq}!CTLT0dQAXpzl(h}Tm24)hf5lWc?4QvL35ATC~ zM?TMMf_%>wwNKlh);Qf$2~12qFHCJ+KuFqwr3Cf&?ErDt9mQ2UqEWJxsdS>P)~^Wr zqI0jKbi9nIHP`MuQ5z;70SV8H0ir=OM9VMn zj!E{_YiS4?nWWt+XJfU+)UWT{4&o%-^1IQ|ptp~?3piFBpN&&&?C1d7EkiR}fi#Cs zyxqTEx3S_iQc8Q~G?ZNM%q~FTpdd~>zgy=;Exb)bGur>YDhcgfnQ=sJei{l~^oP!8 zosKT3UC`c!MIxKd7=YK{Y{0n&21}iLdjSvu3pW?ffR4G#F$B+(8rk5Zi*IMyKIN%X zt*e2CIz95U=jAeD4dhAZc;$=O3b{+puxA#*u1);zlJdMnTEL*4Oj=(~GI zALrYRP@tNZz%lFHy^AK;rGAh5gOt>0OOV)&#aQ6?2iT=$u5nd+$`pjrv-=$T_4<(% zu(P5gQN^1w4!HmWmmR109|-_MuqSHHG}YQP!Z_No6C5igAJ}nv1U}ROj+)NaD6(&6 z;#Jnpz1V-GqVm?5rXP&L-w_1bx3GbgbM@VAV4>cL25>zfU^FTnO=>C%T(zST*JUwVZli%)GQ} z)orUQy^!vXIfZ(Qg15q8zxpRzv2l~=fH6yZ@0(@SlYtIKNfLQ$I-Y6t<3HAzQ4f6j zOZ)XgXnH*$K3`|VH5o&7D;Cz4<8fE8%7JRB~zgo&{t? z|6zUJS^+Yrnzl-{1`-{T?-k(Gu$587%erG+=e*TQ~Nt!eETMv zBpin1%<2_5+&Vm#V7hbWJF0JF;ivZLUa+Q)dc&{Dx;aS9sSY}&cW|kRzhQN&ATNDk z(y?W%M5@HEYuMZJZ0|$q)?VkA{$cYxeqsJ?HptoY39_dW_mM3b#KxnEODBlb_J!et z-rAFxBJR_3^8Lc;6$d6G-&j~6Mu(1p0OUp~I3f9gRq8O?Da|obX13Y=+Fc#&ZYbG= zNGx*%1{2^88#BpeD)CO$q=8JOFq;2z{WbE0j*78trBc7PL|lEj$xk0U81CxC!__cx zb3^Cp2J)VFG=(6xBN=*Hd=+o12jdU{Qk9)_of;z)d!8H?wKB`~jA9M;?wPZiJ3GWRCPc=PFeP1-am@+g$5&GvD zF^@tZ;;))vH?{|lO2JP|_W7#f|9ONY{FFyD+hO7H&T|?CrRIruoA!7-@_WRO;qJqtwpK2yt#Z| zNFc3tGpFwJ?Y<=0g_`g$4!WxKH|xKU2DhFxwqng8bE)JG?ikqxF_K!we8v8WXES9W zGZF4}Q}mcpikE<(r(B^(^>f3)l}dVaH{I^93=}-=@u*hv`lmSJH#$na4jhcyo4o^O>aIj^)*RzIM*T}?id${-t?_wI#OFdJmxD?%7vxDG5m@7tFAKXTr-9X1VPCc}#B3v}3#3qk=zBBn8 z?sGC*M?fD$PMxVDqY3ALNP2c(^H>roIEV#3>n1JSj4(HQH?+&Q=3X1c!sxts`?|uQ&R0 z*vvNF((pW2!A^sj#fwib6Q8a_i((QMHR+(Qt$O^}=@me+A*gwSnXD1H3Zfq8dit?0 zkptNE&t9*25P@6?V$gEaFQ^4Ul>UOsC{nXPb0*beH=kvjA&n_%B4)tC{!LhJqTH@M z`yAg=<9nU)THe+q%2W%Op&NsUuROxERIN53gYjKL>ti_y&JFHF*S8ILaGQ9)o(#f= z$_&1^`Yv2A!eV{v$ALwer`oz%(dqS`gVP`SB<%r}qIU`4&uS?pa>%m55qCZhdDeA0FUw8hV_v(xxZKa8OZY=o9~mXs>FFWJ-D{J8yG4G93Kom4hKA`l!0|v+9xbWI`ZE7n55tBA` zhS&rJU&^ygkyo8XI$ps`MXRIeRH#&Cp9L`|wS}E%JQD!2fYlQKUWkCe1tsLvY+G za}ol}z83WL60HkLnK}S_mZr{48%Vv>m5WGyi}p6&X=K+;hI{Ql~>;&wzgdv55}UO#1+p@IoXxkHcS?x{&J%dKiE)2FT>g}Ygp>~eLh z4LfzN^Ov!jEnHvB!v-K148|xDjvQ4sdZv_rB_3turdu8c-Coz-SC;K?)UoM*QE3tC+xBX7< zG_7i&_5B_#zDL!CO)%+c{fm#EB!64;XrI_m(nMQM6XuU@i*H(w!N>E=e9IXh=x%Bi zkLEm?k7UsN8CJ(Upn&P0o>O(9>EVN0JyXxrqH&{ZU0>E`Cw-n@hY65lf1od=4!;h6 zsYGXD@={OBO+`yQ*dk@42Aeg?@n*c_p1vC?&?DZn_i$~_C}ZVa!aSzaC6PP)2@}lk z6_gnaEH?T= zLyF8e%~zwNM@H5wTZma9od+jBhFb34(|Rhr;_Y+b+Q{Vnjd3J!pbL~Ocw!j*Xh2-j zb%wMV^_sLTnI}**q0Q|4pMt3$8>s~26M}R11Mh7FeG-^>v!vdMu*d6=!r#$L`%Md6 zenUutAlm}**zn1@9n!1L?VB1YMeKHD3D6`K&c(KIYyQ>2ca{3N|Mc&BBt0nIYlWr7 zG*`OVKlZ;0?)jlB5!%G^zkB`9cs|hCJZ-8A(q(xbJl17hZ!+ z7URZlNvp}T;03k&-NPuy;cd{tAKMjCuF)Jvv(@+Q#%a8>689S}N3z?=w}W~wu5byy9ljai zasR}h&MWY%9!asb{MCWy+0&lSL1)y!%UyBo#SGY6d~~X}!Gb_sum;KFH!}PlX`)NT}j?$$6Ev&Ji-}J!OYy!ytZcTjWM|1w99T>!>6P`G6M|kgC zL$i<>6Ol74uBi2Fm1;-2h{TzBME|%@U1mk7t08wW>YYYTI2i#^CY_O%m#~zX{o2zl4Mnc?gLoyo?DI#W3nk6T+Xhy%j8p zeQ%;?FwcK~$j&KC(7tpmfmN{GMZC~li~_0IG;m;N+mh!_n$u;_VA$jEG;_mwc7J17 za^=8L+nL54G34^raS77_1!Aeb72t*5{cV>|Ug#soS@fg_{%SIUA<9kfZq28*%e3iq zOjYQavKU-el=Hvy9vxWcfa2JZm(+58PrSyw6g-`aG#z zYEyo_nYo~Vmu}WuK={R-5+>moElfllTsdJRXnnYjv?!obr#Gp4g*TR8voD*r`E;y4 zYS1`i?(GvKM6r?HfoVFzj}a{A@0HUW>=*DRvn>%-Cu>8d7puJ<&umti(pT4ey@SGX zI)$1heX4B#l+df)3>})f3^)?(i~|>?u)s-#TH~1_;CvJh_Vm*@cLf3!`q1#U{fJ; z16?Lgm7n#lrL1P{!jUhoIF)a#@nL%918hJaVxD|a3~$x~oJ^MW&iLlyyi6Soc%@il zjJJqY+_&PCJI9%jBthHrY%k}cW-OsUTo)-PB#nQ|^I1Xf@ig;&1K;e#0Cqeq)sfDl;#O%fg?9@ajJ zki5323O;-Ym|oj?g}VmoI8zevyCY50q0D0T;#&QM>SX)19djV|X-({~5$;L|N0R-u zfz(`%V(}oadiKxo#F_b#rFbnqoyIf26eqXwAv8gkA#GBD!658KN4L-8D>dtz5GQ1Y zz4(}#iMMlry$EGLC~4-sKV&@1#Tu#8&8=nBph!9U`9z<&nK9sw)yDW2P1F#9bUpRF z1$R}Pj{pi1ewsP1;h0IhydpB<>qV;*Ga}knc z?RBTp0IDshnbU}%z9*CcdJ$=!U%q18bni3(Yi4H9pR74EJ5SGTon_p#8_O(a=dNE# zEyR>f4<}t6OkPUXX|j}X+)rD|K#Szv8`NW0ea0uwoR{JN4O-W+YkUjIu3{7^njCzo zIKjXkUFtDIKSNI>4Ly#j9f~xqq-Kx|V5|4_F&mI->ed`wveN$!fT?3Q7$pw655Vmts?pgN0?o8fO zN`>eF;0bMZ&G@>Dkm<6k2SeeaEUb3JJ8-Wt6J_hhfEo|Ki=1G)E>kgo{1twSiPbXn zvQk-7e8e3!iP`P@Ab-?2bym+~(aclg2Df!QLgH!sSA%mT+ zFb0#a8nyg=9ufpmO&6Vc_B`}6R1JP*Km20YtW{KBnd)oa?0hcDp!QZ9YiBvr;t;hz zIe4JYJ~#myoDdPOpU~KGYQ7Z_Q?+inD_SsO@O*+IdRDwsGYwiJX4(j>^X^; zw+ClGsSz94Odr@RPHjcvSlMylProGYL$VUOD~sij)}x0$8UMKZAN9$m=tzORkn@{C zUa+&Hbezh-56ULQ+0gC12$RT*mkf_jt}L1tQ=#TD#>#W)mDyt1q3KgH|JtUZz#?`7 zKn-k80a>EOp3FfmrC-;lYeCw?l5t50AYE zdKB6W^*l(;)P(jq!L=!xE?3%qvz1;Y=+i+(w;8+mcNw*0^7Zn+E< zLIa`Y3u8`tM)5wa^1B&YOEt}sBe#>uY-8A&4~|$`f4w*dA7~`V`S?ZMjXJ4r7DF)` zE$=6wvJ$^tXQH8RD@dTB$4H=9glsG^CzGV{+&TF?)(dXGSE994qLnol02D8W-~lpy zj9rO5u0ghGI7(ZNPg7j`mKUrxC)s9GoT0BwJ4cBMNgOJ9d%MV5f^EfsZg5v$-vhd{ z+nKhj+I(tl{UxTN*dZ%>ly_%$su-(%;^D_N@>?X^$yzk|M5i;&g>0Zncrfa^N!)t< zlsC?^s9CQPVJaFCbK4ixlGKnohJb8gio1yOh+eQEQH&iA0nQv1uzw{*)0Yv|ZR7j= z=8-tRW0IhDeroI!A02p1++e1*P`=iFg0|~(H~}|jnv@dhv%ME+JC95S8&lB_xt4Mm zo@sT5Ht8SBBm35`&}cqK-kNp0SRHYUduE!I*4Q@9`g}<13}T*O@rbY@5a?i<$T*V6 zYcYHM;x|`NVAMs!v@ z#5yT-HNrr=UQG;);NU1Zd$dUd{AR)iU>=Dv|7}y5IM^Sp5~}<;S6n9^l@jXJd)#6} z+7umL3qyy7^cL1B^LY`+cZO(!OocUru)0R*stNO5iPC2V52hUn?1Gc;`hNi`R*x$QhLXhgz_ByTQU0wp||^6Lo0_3i>e1AwrRx3|aEn|9__SuKlhQ5H`{Rg{Eh>vqPm6SZrmt9yLrfUbtEyX? z1ED#{m*|x!>uW1_A4GfTWx9T)%;~b-jJwYk#edxg%SJ}-=`-eez_0i5i+?N4Qh5gc z!zinfAh+hQckp2XGYcNxut~?PoZYH~hyTbygDZG2PaXGMMNr4^wK)71BhlXGwOwm{ z)~Gt2jIbxMQyzB@;u!tLT(pK+i}p-nwIcOJ8m?_ym6Dk&ueOS?*mu`;#C!{~Z)373 zseM#p7ya%~IY}Y5llDwcM2?`KY7G&d*)&hK`wBXwwz4S}sY5Ur?B?wO+0#~e(RaLl zOKP|r?UDt*)ZDU+M00!@bV+-e{5~W%pqpK?392K?u%n+^WbXDn_`5R8!k4H?^jIsg z*bSU()-d{%h_5xBud3+Bf34>U?z3LHkDY-JwXql3y`zt>(8l#p&R?SUpg{Gp5%pCA zp&c8ftiRs8eD{C;HfKWf$oU)h)+Ms+lNkJ!IY$2t3Cy{unz@U68XY??UaRygn%^rn zRz6D<*fY@6`r(M^_Z)tnNwxI?`q6>uMg{Vtt!EvD`++BmJ<6}ZFcyI_(SuSe>yYV9 zU)VjlA&3lHyI=Cw;4BRpTEFL^b;jcU%`%>kGwMAxJ4R88>3*2+?_9%RWPk0a5}W}x zOEd3y-zJCK{?|QJub{O|e$oK#Zr_U%l17y?2&@WphX88u=x)QZ&Mo%2BTs>WjHn!c z;e=%NxlUU#vX)-i2hs+h>0~qG=21e^JDeZ+?r2uX$=pYvLi%yRa|VnJ?IlHEbVvgW1#$# zlYV|~GbP8W*5CX4l_+{Zi7yS!Fcrv9$RILQe^3w2`|h~~Nvwa1>FUtp{Bq;)PWr?ly4QhLZBmw%i0C=xj}FvK78gDb8% z7+Q7Z=el&$VY0cVwf63I{r_OsAZ zfN%jCucxMBv>H{4Jd#_w7uk!}qW!SiY?W?!+IS~X!~q_$?O8CA@F+Qb+R~4HR6jkr zoIRI6)k-~o_gmiH<-H1l?(#y^1jWE64Px_is=&Y|jzb_3CY8HwuuJ%N56w-YC>MYF zfBvUv@!TN$9B%(5utsSvD-Z_DCftz#u=qOyfC+z<$zQ_GSb$ZX?Co0FCfxDG@$!(< z{|a7Ovnl?WEa;3X=q|u3SYrX`HKbg*1658RbK7|8>OaBS?{o+eG@|CjfFwL|-%kvG zvmUJqI42fd4=g?g7zr1BfMh%fRgjljx!o1i4Zh-0fw=lpSUlQej*b2mUfjVGUO5#7 z+4HI?4k%B8s=k`38-v=)HV)sl`#dtJ2VynL@}D?-x_PwN$uUksqW}HfMx9k{l1FCdO5V*~-Y=h^H4FhDfdm-ra@=&4L z1kp_t(k<<}VAL0ns_@a*#WL;zRziSw!V7cdE?ulZHtAz0WxY^!C}DS(N@wteZi~GPstRG z{fU)VG0Y7DMOzAEu}kc6EIBGq^;q4HzAr!I&z#74Y1>kay~WvP>N#YxKeI$UQ;^N+XdJJo(U>KVMS5wlF_dr;&$ zOt!b5B>T^!@gsNa6I$6a_r*f3vFH48QGq(@N8N1;R7J0NMFq8jm2=5xD64LDqd85} z3(XTNRN?oL=3d%IESquI3j*+AFpfuaf|qCFZ4sM$z#y=Sx7vJG2lk}upu>B0eQ^)S z!eGfAYqrhFzY4wnQx0)F?zmFs+PWm~E1??iTapBPHS+lSbP~$lqqFCYeEB1@+xx~TCCO|;kEjc6-# z#QewB$+=OPsu9MDR7j$`NOMn3uJ^4WO9nSw9u%K>beqa94D7oDmt_9Ky+(kzOX>YN zT>j+JcVN>2$hx-32!grqP~lYkQI9gm%;KK>r6(>(Kuq#bP z*i%TaV66z3o#ZcBuq*)1Ef`q56stGX1IKul)+o-|#03P{9k?*AIhH2YKqDCn;*G7# zUnZ$H1ScQsfUGZ@trQQGM1Ly0M2h|#nKvtIh+l7Y;ZZ><+|BYRA+u{&behc}KW~04 z`=B(Hu76zgmx5IGP?&t0i(!%48UcLp&bVECmS`P`!h5>4-KlRg#V81}!R9eg%N%O2 zY2Y{sNtldh{IU!?b~ImceJFT}RMC876iQrDjA@7!ADcn)lcVCsfjUno}mD3Uy^v30CE zx1PD~3Hy}M`0gv#q__ONHP>4q3?5#6rAAm&j`L?xA3U|*_lC*g90lsm7bXTpukkAD z83~IH?)o^1s5E$p3Te<~XyyH5?4RGNp0CK(PQzZACtO_aR zvksn9EZg;n^OH>wGej9+E_QomGF-#Z-fdF_YY72w(f5sFGtIYgaDZBXMcy&&-dhjF z5(7?jlbduvz{K2w132*df3DB0!_liv_TwwEi*t|^5SsBgs@r~Z(E*4_pDM-klM2e7 zvSsnQAm{>yMtvTFgQ2 z2T->KDz6Olpq0p_r167DsvDY0L@0FZbadp{&09>Mj2G{8_h&t2W(dk4IZ%<GY3) zK{Q@5+m~1-tZsr@NMGworCRHC(RntOTyN!dY(kr)=y`s*O-nPq!=QNxN5)b-ddeo- zCF7ko`w)bly`u^JSXX!hiCK}o#amyh-Im`g8H2fnj$Dow6r?&Sp?X-tFYKXGVD7Ec z4kJDijYZP$**!h>Xf|V&`=ObTxblFQ!Tx1S2Wj+4;XWJja*Ji; z*6jk4FXf*eHmP*m+-b~M9w++9N_AimKf+Oq9^;`$x{)$wH|UKOl^gWT=b=6;-q!75s@ueV@kAh7Ca#ZEC!|<&T4*2JHt~il|qOsh0RO&fxkXQ3rk+M@ZLtukoe5yrNot}t)@QY`b{p(1soOo4^ zH_Cle2PQEbTDFF$#_HUZg9+$s-sZ8`5m2w+r zlXlal$wP;GnJRHQjV~+ko9`2p&@8G*Wq#yt#s~~41k)kor!44E$p3jy zASs%2`B|2CzD0R%%sgy1Tjw-P=O!^@R};eHcyuZ^-+|ZXsa{RJKReV&i2Q4Onbyuu zHAF(;RgX*=d*BRi<-2iWhk#9zY5y~8kf#T)h^n}zozAiJY9}smT zhGYfD+YJgFk%815@jwPX;MLC1p-Z_I_jmGUhI2ofaaQ@%rtLphz>4oO8=iPBmxe3O zxX>{Z{>SvGaUkGUhp9@r(cf|`RDxp=OxJhx0Xraoyu)T+HS+2Zo^(5Lsj{)y(vzS- z(D79@z2TDep@kS!BXw=0+} z9DN-v^~D>;Xp@lc>|yNnC$c5;cu}fR@DCO+_j@k%ax2>kn%NPUkX%Wv;n>MqdgS2g z$@LLi-j6Jj6v(}@+m~A*U+zU{KTcSnQ>)0~kz|_lJGm!pilBFk9;_7K92Fd8O_+F4 zC!w|HWoKPVS2k|eRCABqxu|${ZAgD^@ucg})U@yw5vH>w0X_}Ad+4u5IEgi!t*05s ze6sd=xQxH5?<~oq&$$qVE)<|S9WRu0?F(VcqU1Q)iWyk;Uhj6xta5%;b!$IynTT*B zUFEGd`jrO8Fwf|bT6F~6SuMJ&Uo<7$jpb+?kHlLN)%-w^uIxBOYJv|(linhZ((>bZ+UbK_&dFHUUia%u zKtIi-jU2VrF||WAF-{E#FL_Yf)K4q5-&n+jtI0ZU23_(Wi;*m%XRI*=05*T3;u_9F zHzi$M`D#}cThfQe`Ulh|Z+@z#z!sLU4FDtqb{Pb_{IR$l4*1z+5+XKl0+;tXoQ8f{ z5j47Jv{7`p)z7(I`5Y-S>(dmmsZ-3e=QX&XI609sbfu;J)}kqaey$Dc?D-=AH=hHE znYbBT6;I>HoaE!Cn23LiG%f?}1kPq?X}j5RU^MUsyg;yM;?+KY$ZDP&Or1KQ+d^dO zPv_R(hSB}Y)}6T;VmXs~?7Mcw1D86kW20}Iw`)wq9AjkyD&@&p{QKrMen()~fhKYRGuaP_+9FI>8L!a#A z#d2naPU78h8?*YU_oN2ylrZN%Fn0;wY0%Rx!X?WSV5UE?FYzFfK~f$^G{FCv;TU}zBC3L$dXA7ylki1QP)4)jmfW1w={;n3qp3y+%E9OwBkmA&AsbjE5 zAMu`TyGer~ag6uKJ*JzdnDKGM4>m`Y1R-hdHzL$Bq1Z-%7{=FNNjn$ULb$ zo_=E&*gE-`j(!a~=ks>s2wR7gi(L|Ga)c?ooh{BF1BgKDn4Ivi9$3j>s=Z{(;#RjU z7>$0M@cuwlu8E))Ceo8Bdxl}SN`Niz-y)v;5 zaX@`=pK%fY6<}*dYm>i=SC-vtyi9)8F>DM9QD=9mOk7gdnZ4DGI8Qw|6%8L$zi9c zN^qHDCmCKNX`WMOn^w^SuRy7wBl5l@0?3QZlkSV4D-IMg*^jH^bbiqqSN8XdCC5`$ zebw5;zoaEF%QdB2X5Py=P1Xh*4q6lqouUFO!BKU?H!ZCkxY*Yv za?B1s5jU=CwhnPW#XO@^elN4^YtIkmtT@sFjj`KVXzxh&SJveU7o3(WD@h^y8Hxx+ zYVb*-57@%izaTc)9Ph{c;3*?uB7y3e@Q!qK4tr|UAsI-|er;++n9V0~X7Zi4g;UE) zt-Q+>v+F%8ohpy{VOW|e+>&=(WGSfZz#G?mw)#x}rHK<`xNw%X1sQys&BH4zVz0S* zn{>TU>)uOos}*5Bg@z7)heu0IgDIr>=!|hVeJMSXy+9~-VVUZFGPirNpD5RRcT{QX z?FLhEw>SC$d?Z@~4PCDKYjdAP?Y55Z8Rbz?Kua+WonL;BtF6jsg)i4D1P6X*_)wFf zhX;@~JZqm+F`8%T60|K|-RSi**@H~JKDDT^;NNzloImmyJ?ZXJkH(;-nDWrZ}_IpGW9#fKc{i~bGSi+v_p#PyjxaQ(GKL69#~&;qbiF?&u8 zI->w8fF0a<{;yn;q^JMNH{AR;P#8#=3M6ojhh6S29(dtFRvN`XQM2?!bfxLFc^XLbhS>a)D`Mz4VA5?)IW@5z*B`-ydhvOhsv|)-Qdw^iKif z>t%roc$3M;;_3^pP^uZX=zX6GuP&dT2G%nVJ-k*;gVV#~~0aVvy`kI zjIi3B93O08w1b%b5*~fz;F~GTBoN>xzWrz=-J(UXuk2ooLy1FWd@aRr9pMP3Lr0uf z!~U0h8+Oqysw+VYJ%W<`ey9%*bmU<}$9}>FJRq6i^BBQT$kxbTIspn47aiIX+HQj9-*!>lfkBV`H?z>Pkicu7ed-(0Flo4O=jWC7@6-;|05 zUYLHTm6>BTle)2Z?=ktoJ~MYty!xK#(oy4_ zC#1+6aK0V{V;!z&jyfd*THNn2{FNr8QO5h}d>{}|LF8NnYmX^p@;dSz;3C)o0T(li zW$D20^3+x`e}4ElAo(P+ZM^wkfg#(IC+rn?I_dk@`Vqs?tbltR3}DZ**VF0*jnfE| zCy;YJp#3_o&=7-sDTCB=o%H;^KSD%EpD%=*b8;Z@jwScS{`>r7UYEd^K+JWZ{Zk5N z959inQX~D>Kb=vEm$U{q*b8K*4&+n>+LKTF)W9w`{~6xq2ML4x&ids!PE9vvARX!I4(76UrCLd zP|;Y7^$M1STaP8JOjZOlzWZ;oF>XIKQ2}{tUgm)w@zGI-|>1 zWUWt5({PHGw)GtwK8hV#+Y?3{Oee%!49G&EnslUk8QQn9kf)~8q5@ns!w2QR6|7^; zo!^=}l+naAs2NxdU@}lB{^15-2a287s;a(OAaUFYAK2{vCs<(iJU^9TL9OUYo}25Hob`;h7pENNh=Q7Zk#iL? z3pJOIKxfTq4xNbdg>M1=hi?zctZtjrbnW_KWpMi%jD?eunV=VQVYh3ZJr&$Al#O5* zR!3#19ysaUpK=4ix)Hby8uJK7D{w5+Z;87dou0I=N7}1_TRT_j!Rbb-j@C$TN9QBE zx$|iPd7~K{wFqM(_}&u5pVQOCjGbzQ+=eAt+oS5jZksFFA9!?c13S<5v&~y$3bSPv zs-*6K#0Wp5u|)`b#tslJFL4?i&{x&%sNPjcl~POp-sZ$|H1fqkIzxl5o6XE&`AC(4QU=SHH3{#$y6 za2<>WBd+)<8~pYO-s*KTj&@N(xzgQGp&O??&8t}tu{XGPn_6l{2 zT8iTxb5!yVzyg8=w`_t&sDF-IP!tieHzcpqG{Dc!mcaM4nKr|C!!p)zLJL~lUVOK= zuR2ZKo6B;1O}HOZKq}nRiNDs`zndZ&W284{!ciuj6mgl6WDv7!h_2CvdykRZ!nDsY zTSoDD9dG^WTu&?21*kB7s$VVK;$7Rya}CmpL{Zfr+<%XG3O>v#6;`ey1~Ol)qRmE- zQez|&H2rdrClD93isd;-PM>GH;@7>Q{A1huMfcgi6tOOGGLnBe@;`y_+(BDLjZGr9 z5-XUOPV8zmEoP~G)8m+vQ(HUc0*N|w!H2(oonbGUqo$6}|I2||r2F6XO=+en`-2;V zsFA;4t?+T+=cU#yE0#ZDhi99L^jc#RmZcTU7e_L?>a*v;zq3*$EdMt@oa5EHv;tx) z_^+a9RlHTHs9yE>vH;4%0if-AN7aZ^CmH^?Qp^>nyb))POWShq2a=<3H*-{-;P^t( zL+KAy<@f#YL_VrRubminy@MNkc-eeLQ#e+n^u&z|Y^P{xlPXF(s}>#Z?M;0quP@Nw zJc}En>V9G8=Hm=BSUVkeJ9_TGOHayy6;m^n8z|1! zf7ZrUXxFj$#*M+DGHPqlsi*7M=Z0^K)!jd8$IZOX+$^4Chx!;ZKR&)k8Y4ole4?av z{>tPsKP}_5^+mIz-Ujc-!OU?~i;5oD4S_FBXPj2#b5`?7RO{VnwJ;$$!z~{)Zy96s zw9(r2$4`oE8f!f`REiqW4&T@x>4#^G+(Q~O$8O4}e>@tFmE zv`foxt#g-iXHj{6o%21x_qr=av5Cv^hoVd{6P@G|(wMEW#+kyQ@=^zkrNkHshffSf z9+^#_B-P+)uP>>pg@dna@nF}@-}1I8v_;sa5t*G$n(aPsyml&Fgulg zavN_o9K(M3&joiqflI|!z!i+!vxYVab{hxI(&13?IPjxHFAo1Q4JBFGnMZf`G!5}8 zB##`5!^a+hl=b%Dihr%ou9_&Al>fuOasxqyT_d-~$(7i{ z1z=Gdz=fnSfFEOrscNzMl{s2vh4Yd;<6!NK((pMamm?;;ou9;q%2!I~@DXmb(6}qN z7Y{y+#hWEvjQZ|=rGoh1xpH_SAAU*6@u@6YFZe~;gB{Ql}VR2(?3^E$8d zd_Es%Kx)v~hinUDH9T`(BNwaqz3SDsJc~1pUoM(?aGiCe0#XedY;=v;SNE7%1~?cW z(DV?4%D*$iBP0^c-Vk+eNB3WgR=(Dc=g?q^f>ckHioKPO&9)b!m-En~4I!?AU$(_V zcJ6*hP@Csk6rmB}9^NlnOpqxz;e6-ZKdR^`W9BE6^yONX+X4w@&ds^tF(nyO#2nMR z`=(IFzOD0Ro0~AT?oQlz=a=Xyu035&p*tc9^y=q03X!vpyvDcjZ&3@Jq!YcG3;K56 z?>vPsfL7jCi&fwEQFD14NpLk|s9q;qo7D|oIjX6`y6%NbBMfu9Vyj=Z3X0BkBBBp9 z7Sc`QVLOHk?yP3j=iomb8Bepe8Z=RIx3ZB&(|##82#Dfaz{SvHUdFuJ9lgKRVJhPDa-Ot5<@z} zNIrA!mQBuN9_ts4cDO>*{jYMNEt}KHlJ|K0T<2y@_d|xsTQ=o0KN{_5&ux;u=zF6f z)xS&2WwdSeFhEw3u(^q`(rz2>Yt0d!Vd*EzV=NkN=bFIbR zBZNNFc=`@SN{OX|x}iL(xaT~vKSyPB0x>rk+0r3p`jy?DyPFliT!6a6QJ!+u7MF`{ zmdcVnJNsgHSnMGZN>GQc^X(z3vr)|uA$yuBRo>P|`d%6?3lTMvgGxT6TUjA|pr&v` zJltZLa>%rNN2~jzZ<-L>@EUDrEKR40?pcV?g`5l3rH&F^sgHdGmD`Nu_jPBsScDX@ z9b1nGdyE*z%qRRq3mfsZL+M&n7Aaz?iP{CGYG?N<)eiMDX7%3?7~5`Jj_7Uma9yjS zM%nLQ0cWW*J1L?4&!2T9wYq~cB;o7k8hO-wX)f35rc#Y0WqACmz1(#hzFh4WG1RE> z)rSrD4_vVr!nhVGNCcXX&r8|w6M`4unlv^(ED<4+g_;dAGmvXqMM^#)5K6PuyGsT` zeEz8pcrZ`C1o#DzD8T)ee1&GoZhx&B6^56OMP~~eOeox5R|LYf4t05{<&Vd@* zlMdqk|FrN|6@cFOm$Jw0#mc+o(_qU+3t*+3X#tK5HJ|-5piq=zH}{`^GKv-hXSARL zb}lKN1pvE<{Lc6RgQ1-LLQ$ka_sZ}9%}w96Tdf~Jxw_Y>@VWPNoo4OoQfII8ouq99 z-;cKmqA%!9-8k*@b) z(Alq#?3=r~fI8NuWZZ#-Cl=JdobMO`4Kp{1$Fm11uuBi=2YCUfnrO(YTDt7mo)RsA z|IuncD=3yQEbkmBm|}{y`l9+kf3Pcm2ayOvXL7)X!?k;Rl}E%i8n&F~ADeVayiB16 zLbpBhu10O4Xr?824&|}Sru$p@4Cgy(Tmsrth~0D5P()F;AWo7in|66km)D?R4IZ^y zNBX((I_lYq>!oEc?YD|MdOE$HYoEenV>=Df5Z$Z{O!{l$!-8JrA$2CQ+m-Z7PPCpz z`q~pp@U9w{gjj6O^EP(kMN2n11dl?8wZ^T1l49Nd+kOMh7IM;_YyVueg|9Td>N}Pw zkwd2O@T|*u0g6k@;wh4SH5zwLP3T9k!p~=wa0;kyNR-T{V#LQSB0^GPu4efJO%x6~ zq*7i@+I1eCW~QyPV>VI0L&Y6d-dFX&^75+*o*#XTmN~SmZKUv=oLLXPkfBF}Qz1nG z&lfhFO>$T8Xu8h(h#VP+bIYc<>h*`D83>|hw2rICa!6dkj3jQ|l8?gdO?Gs+kGsvS z_8O(hWk1gLJ?+rNq1nH3L5K~P|9l+&+!M}&!F<&ghe?HG71 zR-w7UY~mKUeYQ)d=1E#n+0=rvDgHixtE-TN1#(k1${@Jp1D4^8xgWADIbHanx74FN zO3&zljKOOng(3u>yeSK?hm^Az)Sl{T`5Xi=fhiR1Ec9QcNfG#7(PksinfmgdbQ|?levT7!(0|x`Ar)b72Og<4AD@+fcp&6I9@$5x zh-8JBD{xhczR+@4-Z}q4qi@7A;Q7zYYvx0I)>?X5M!xXVFk-lAz&l`-#ZnI*e6Wf)S zmq~P3J2_chN`okgXoK>&21TM*lJd*pYxc3alxhQd@`lRx#bo)e*mkGP%=ro~nJvz& z`=bY3S)|DzTaPHZX|;Ho8UlYM^>aS_2g+3e>troWu@?75@^ArRoy*8Vq zwYtAq+=U{E+iQ^AC39xue~Kutg3}$7ATG`MLD_5hOTfJ!>Oc~f1GOrBnOi&fzryhbIxNN4shzc1PCH2(Wf`|H`QT|wf1 z4@hlnmZH(D+Fm)s)ADYEl>H|{T=Q||9RC_w4J`i4hE?+HNYxPVufz5~(NsPxe=YeX zkjd-vJ}UqEXtMC;5G3ZEsUExE6}Fv8y8IYoD9wwi)V55$d@Y2xLph9KMP7F}o{s_$7YH%A|{@=F9|< znPPpm;7-_UdbdXCIv&AQ#<9!xULaZbz!oTi9bM5k0laFOO39(vhchU!hdI_>b#7(} zRA1M*eXKYyI)6wPI z(j{XDwZDtBNEoB+UJ-)sWy5jvuGR?yH@Cd z10{L3!%4Is!i4Scn$TTsfQE9N12A5~)vwy0D0vU^ z+n}J!99BM}yJ8L%OhJ=Cw4eo`dg3l{*oIz{YE-$_`c@Hy{DuB6avj;smj}uAr`CNy zb*-Njlp%gB?W>pHFPt?1qS}lBj!UcFt>`tzGH2q8vA(879QX?yS8>kv05uV|P&kN- zg1Wx1Jw)G|XYdNu3!9_x_wzq!YhfU(yV!J=tgd1Hx0$_Q{>F!|rF^H>cYrA*IN(h& zzl|B|YG7;{IZocSpq`|7;KH;&tv-SK~7^TOBc}}8UoX_}afn((Zn6!~d|e z>wuOZ8hm)6iQm3bMZlEVVY(*ahsr3=<{hBX9Lgp)?E*vRcHn#uXDBP#DA)M_KjGIh zKD_>icFc^SxPuO=w0=s$bBx7 zgTTT`!Qi=2>CXIO;_QC+qTgLtN`l(l6bR!Jd+iz+M>St#bljl&*p|<~qj^8^nxG) z-HnC1f+$2Qs9L%Q=mtL+?vk;EP7CBUba#zh+-j4zXBGGK6@m{)Yb>0>x=!Tl$&R@s z?{k!&&s_;#Do>MP#8>8~*a=IE+kY{<-8cOzd67MIj)<%2MZ?2%XCH57$=e&c+%z)P zG;v#hHNE@Un?pZKz<2d}c|ir!#P=&@`a9{P^V!%|<(8g}& zp{dyZP1V(B)q|sN|6-V0mUxjj{}8uYn?u1;R^cE^WaSMQ?khEBAAol=Y;tQ25noMz z8mG|akI8t3@#m^Yu?yb(CRVg;U9Fa9o!5_vD6e&MtrzgIsk~*4JF$1h?JzfL047X8s`2;4h}Ee~o8>E77$;Tpkk9E#a|$q0?#2xsVeYI8-6MH* z`bKu^+dIXRh!%6JnkyxxQN+xkVXmiZ6>|F-jT@W%nG6*oVWHtOpZtiBzIQCuCK?Q4 zAiorKS59g%6-ECnjNG50cEC|=tZlGu+7-UD=|<)>uKm1%B3ej>oug*tti8Lauo>1d zU^or(f;Val781$_i|xqUxJgAHKG*+h+WI|=u)^&-TZgH3+_-2+_`=2_9GCkjc|7mq zh=xECb0sZvc)zs+ohiRAFcmT|3_Qv({LV123#AkPk*b(s_ z4;%Q1NXY(kDQD433^{%K+4Oj#vus0vd&A;sK9VRui*QwUa@_#aB4de>^*OeM1r15v z;cSS{Af-lhn5K%RIx2}-sp%v7!`Z~_?Xph z5pG&@?~Z=jq%~^m_gX4?Y^U89g;qNuCeE2EfRrRN4EKG+%KTjNlYBBhi6rXLl9-A`tB3}akwxTp_izFSK$HEs4mYx@Pte8_Kl4K%|E{LIsD*^K zQ=QODxT1_o9K|{f=mnT(Cn+d0)z!rI>m{^BQg*x>R^v1mCC%6i zYYtn>Vf0t4a_b;AEx*cIimuv^+|^o^+YwZ}R|WHeC4idm&;zUlw$+@v=MhPL_15yO z_mN4Arby;!q=MLmvC_rvz0c54vm%xD!g8x844m`McbE+Bd+ghwx$P4jeGOg~6a7Y#pyRM< zt#;GJRlVjbabVq#dfCysR7UbZgtxCUa(s09J$#jI**lEac;v2h4n%^x?IatDxdl|R z`{ShAR!>C7Rx>Y)#w_Uv6!HU)Ah7lkC2y8kjltfoXb%w_!!K-*(jYCSEXJ*`r{-UF*nvV^wVviV)LNrEvuTZ!h z@L0=eB&O5WnTacaf5;-*br4<}A(4jQ&z-a$I2W2WdaK?M!`$svp&vZWi4P`BvHRFs z2tt}yG-)OQ^g zg~jwpleC!zw|ru2sM%Y=OUs_XUDfFyRFv9%RFv+b3jxxMW$)S^pHNj{2!4K%bgzBO zC!$V$X1(v=L2M+2#FN}F$VWV}e&4!@>GyBotUgM(ZuYz2Bx9MhrISs0N&5UY+vRqg zZZ(DU?mOR*hasJfB3D0(Z zFjg(fv(0c?=9W->-H;YR>7Oo;qDw(QExrzo5mo8Ucz$XjRbj@PPgQf(yw7Eve?j2B z6Elp9x<)$0Ab~ac?4=DGa~1FOMnlysub`f@dD|D58?&shXOs+Fg20d}0+Z*?E^fL{ zQjzB=LY(W)r++k5yroWHsi|1%!Pa^c-v;}#^mVbCLn{ZSErq<|<5@(I`1mmkibMF* zQZ_R@lI#6nLAF;^urUEt>Z6a`XB4EsSDnBV#s58Tj#Fo*z%Lzi-x=^eSU(5&E#OQ5 z5W_6`4?Is?bLIVC4Ta&|?ES>ze>3v{H(5(4Dj#|mi6t|n0m9e`?deDKhK9W#MIyC(fpi@@f4Qwh(3Zj%NNc5@4Gk3@8tze1hd>H zjD2t^uD`s)MU$-GiAkPJ&hVJGl*lvlIuc84vGR#~O5`Q0<`rX`@60GXtn7wqj5`2} zpKez@d0nZxY&PtK)E2wLG1wxnWS=x>qew9QGH@%*kss!tbDLqQ^3!v+fysNZwvS>3 zH9j&#c-45aYP;amW30VYHG|3We%c8MHy7_VXyT`lYu1%3sJ`b9fm?pec)Vnk%d){w|rG~rLc zu%`$dh^zRX_ZN*H3kAGE88!!+=FhLZHLwrfY$dP(cE3z09MmnxNsAMgj-?GIX>`^9 zdgN#49pmg)OmEKT{&yy+?r4RQcdFo#Ijo_wT~HfMf};jgg{xa=TunWcxKu(6IxDJ2 zXyH#n1FaZ=A5RvG^&%5=z@`@iCi97TTLtWK?|9fmxG)Y8uU1f@6U#1rz=^b9wk*{d zG36D=IUPi>U}sg=tbcQ3z`$5<-j+UZO-a4C07f0SIo{`jey-AOLFVmwps(LktIydc+G5?$K zSglcMHS0*}G-cykym$$&fZEI!XqYscJ+p;zKSt6zjMkC$s~phl$;$Ehm6Tpa)Y*Jt znICaYON^dROdHE$9{%R5kYf$16Lu}#C2UQs*_9=ccbBVleuy5EB=*ZIvzZJ&zSFcZ znf}_Wp^s~5f}s0r7qk(^n$=#@+Ih&n5?Vt5y_9O?Kb=H5F}<*dtS7?D?TYj{!bdN$ z+0trvZk1eF?QDgrE{$biyrk_WwVSPF80e!OevN5v&@LNMiO)(41Dm78Q)f_@*f_2l<(DN6S?z(OTY=HxeEdbgg~8HWMtQ^g zrMa$5X_es^UQjaFqNH|gxn|Svb83tAU_5RDczSUA>5A=kUhq*GY<-IP0b)E$hg3#u zCrOG5T6dAtS0R4KT~ak6Fm});#X~2S2mb;`R~(tYrxJtW#$}xakoIH_^t~8dqx5T; zV}E-}){#q$qz1rGI)D-%6B-HN-_Y`VxghF8AAmc?x@i3A(yE8yE-xRMW-$OCnS;|C zpQ~Zwo38dqcrt953(m)#CtW~Sa4LVKnqOGjK2k7xI}Z^QUf!H(am&a@Z`A-1`Ngwd z-@xeoH{-+~qj>Jy9m0Oi%glNEV-5zwkA)^4ox^(Q`KjuA{;1$(LufltI($*5x&! z$<|0+cTYhcG^+cYSmOCnf*P?tn-vmjdXUBbK;CcTHL^tzuHxOZ7FCfrTKk9h2LEvj zNCjzUz?GD|Ns?aVYRahSqGHlN*$)ZQJBN;RCXHgze<(Fz7|WO*@!CM+itHLr_WN4= zSTA{%`5T{Ozv{W{m)#?PC}J-ms%IHam&MerIOd09Ft$mr)r5csu+D zRN)&aS0Ne!YbVxIfx1uGsg8Kc+r!*{bM?w~0Y%;lg372I)Rm%Xr1p=VrOTg({~ott z81`e0SlUx_6)voN^TEnx#e>;lyeq8bY~7KZOxATumW{5TYaUpC z>h~&Ssz+^n>hHH0gPzCl_Xqs6siaqVVhMk(>%-i3mpjU9XqwONnN?uYn>X}x^{FBS2;CHPFpMq#?(*AQe5rwwv4y}6RR&0p|Og!x&XVUXd6R6%pJ_w;;H=v@t&8BE;b`g0*V=6+ndCLEjJnH4o zw#B1V&Rr1+snMi7=T?2L?$9AIR8GGuPg!%xpxC8xW9g>68?&~ZTuhfOeW&~;r#Zu3 z<6i8ZH#h)O=vlxI0;Q2m1x;AR@%3XzYfIb`#zYgxz&$0Y@jlS?!*BaM1}iM>F4CO; zBws$dsmAK$`DuiPPM0H>KPa#7hPn>4n{<2loocE@lllPAzm>e`SH1ytYh-Nd4r*Nf z^B)5*c*TGMt%|R`$-T|pE7$z($=4r(P(c`gh3?t_YAnxdFE$a$e*c=k^>?MCmQKul=uk3*LsiS=tCW&MAabq`*DGWfkPPYwo1SB~^U9H!) zt0j!+%|@Cx>U^!{9=a(8ZM}ndtPU>!seUnf5ab0jiNPcJ@dDZ2Y5#>2?yUYaiDUSY zxN@?Y4Zs(TW}}>8uGkoob8GyH23zjdTLGak3tBUs=8Z`Ssm7gi4_7qAVkX`%997Mu z7agUnZ7!QFj7A+oBmV-`7IF9!{_!jzuN0W7Yx4$M44r6MDR&Zd+rAkG*41cGBYFgQ zTy--#{+5r_LSyacNBxQFy@)+?A>yZa=?=8)`I)PLjQCzHb(1y4;k0@VZHz}I>7+k} z<#d?cyF|Smmu!RQ+}iQRO2m2vtC^lVd1XpkX!B@qp{Ew|()h&kGK7UuFJ#qDp<^X! zaQxJcz@5lK84Z`n%e9|xBM{fKJ@eM^p3C%&4<_zqrMUsu;SE2Y2(t=wnxfHW<7$o@#eegRdy#C*wb|8XOde;J9_Aa zwU*9rS)JnN-ta>3DeUZ0_+KutR=QnY>T-N=p&>#%)txBXS@q}5rJV~rTOJ781s5vsx~v(nKi$nptYP~B>X4hI zUYbhpF}LmP*9lI47>ULYXb9OXL}}MY#`Rc=TnXhBOW#Xad*lkOnM(ES*L<7Z2{ubn{m6Xio#b%1 zCv}vpBntW+TPKi8<}$|8j)<*$aE+6X1TJQ~by^zh|AgJ?(Imc`um&-r{fHU)}(DiXG)sAtAQDpS-eBmdUxB|2c?a}IZK8L*Fk zVe+@SLVf@*vh+fh4Uj4V4ue1-=RKql)YY>;`R}zARIdQ4(i(x8LkAG&Fn0Ctz4Ku< zsN4F666oFmaDB%d?1w8!Ab7=21PSV>CH>PP2hh_J!KzxO^WTs+`f)L)TKxGLdgKY_ z2rufbY~hXJ4~?S|ieIMZp!ub?b^+y^^^eKe2&gZM`_N~dJtDJem$bJ&JF0+)DnG_0 zq*CH^#*$K)^aZYEy<1YsJH}dUbyM}*T_BpaNZT=I5FasouW0JvLv*%t(Q5l*lz?MAC@?g*{hmG^8&r?si6N#V|=S( z4&z(EL{n|eqOqV^|0?raK3+6ZV`QsDU)Aew;i&8Avwdc+A*K9o$4Cv~O63X39aifm zc4?8e?mJ7J)zXEU;a`#U7uXTgP$LjP;q2Nskna9_fsj!lir=`;YPRwwxcZW9 zS>2!v#vQlY>?ulxGuf${2${_rw3oQGeg$>M)6T0f3TjFoJ}1Q}HEC6>#axSJZVnzbEO(J>ZQ9S?-F3cShQ6#7k6%K?E_4Q#B#N(?tDbs zoT*3NRl2XhkDJ|htzT#o2B^7y=rCqhav1rF1^qCDZp_)f;-n@i0i5`Dm z!%sBC*qjBLrd|MN%MzH!#C2jb(^M^2JjA`d?`>8|PsL)Bmw(1->Xvb(Xl|IDIpw5h zZ(@vhe5NRys_`r*o4lzevKb`T!ln(O(qh=6tHZwJO-`b(>czu#^L@&$&cDN60r|Ppp{cgIC)H>OMW&RqUl#4h=?;3NYaqKk2j| zZ1e$j1ys{hTj7HqHZh~*F{Hd_+=5;IFBaP0aM`7X+4nZ0(V+aB6#)6-j6hMGZqael zYb)yx68b$@a6~~vPX9Lw8d!4wCk5?GS@=43!P`?*Wg;wk4B=^E z1UZZjrOGH zs<-R>0yzaRX1-k0cv}9rHc=xIHJ~@5vb=vo`do>!7(C{Qk22?&-dB^CLnQ8ee|Gu$ zh?ux}lWTc0*nSVA{kRo{kOlXNO{_EBfs{<8Gna{R?b;Q|QF*)f|YPT%p zhA%|vGXvvSQ!|gO?qck=h)FU0*_d5yq8so~RmKkw3+*DN#Da7K< zvbU#-%V^z(W`c<17;_EcCt1GUOR!lN)+DQdBAQv>b*Zy@Vyya?vx_tcfvm7Vyw3n_ z&A!uQUtG<6R7~0^!2`hiq-48s_H1$5^Y#^G+eY|U+Kd+#1xnUDvx#j70B|W|DXOv2}7&oOr!WcW5O){@wHqzBqSxeoctNBpiO1iKysE!z%Ku;> z-_OX|m~!1%sJ6SSknO4DPtddYV*POM9^p8Cg^ti4$Dp&33x7ao7%rS|WjqVzdc*7G zhRXqo65rae3{<-r6(co+9fwa{{k$y2K>c zT2UAPJ&tE^2dcnXP*NfR3Nq0FhxiljO#U2XRj4jL79Ju9D!V;je_URlg(c7)RqT^e zng3uDoUrS^|0&mhy4xK=6T}G;X1vS3EF0h`QOKW-xlV?BrqNC$GM+bKtX~17ZXVes z!Dh5*t}Bbbn@vXV->XCb2^uE-B5P%*x(*mYVafv`Yg-Xoe_CK_*ze;z3jb*s-Ys#= z1caW)*Pm`;Ad_;-KV?4uN~AXNd6^Qg&%=#)4wv-|m!EUK&!ZUxHHf8zMByw%tr3nw z8oN|pZR%0L;QHN4bV`~s;lXvU;;VI>Sn(wsE%s{-ZZ0VbS>V7nwbZ6>GyHXH*K!_l zzDQebs}A8Zw=}n_EotgAA~}?{RMtx+c*heC%KJ>9Z+%0f4nwIKYEf@z0b-b{smuH- z&|NjJL9qa<`t7IgmBmfBbZypXzR%%>DGL@u!Xx6Nrybpth-t6%I2d!dCtl1+ao6ZA z)yKWva1SOs<5F$v8; zci&>#sI5tkcd_3WSOHxQ6>-$E2D?p*hceqUMcy84jV9>7IXAA>rlSn+g(awe3Gxit zgese>=A%ZWLd&}O>{71A&}b3@VKgO96%4zOtHb?l-M!SE^-`_WDCe>@S|`jVVSDqL zW7r_xyJtpM1zeY7pM2%yEG8N*kdlgWu(MB@b;)8NbT5=?S4$`4sGu~E3OrBm%ry@> zaOyd$fQJay#iLlv&Pravx^qMyX(%xxkbsnuFy9dA9;?~xKMs(iVwii{ME($Oi0WP$ z0vgzwdY>Y6{)ApoJcR#OVhV-96u8HTV#axqdnxtxLBPU76)~9>m-u(!vm#zm2kwe# z?(+SPZoGQmw!ZGKb|e+7Wy-;m^#2V(EBt```xSlKW_}LR;|{X6;v2z^XDvVY+(re* zLkj!C=(_JCHh!^N5* zz`_PcNuxArjz)&{MwT$wQ18cC$*gwcjusiKTf1$ZW>daipdXJLiE&rWF&yP%mV|{% z<0wZgvfTR4O^^q{R=ro8tCcY1m9hFG-XErYItrS8K1kIB-*y-w6jkKl5`0wAJLwTd zXpPvqQfI6Cq&ES-Nst;m581rKg+XdBqU6Iq=l3Fu`E`w+mbgnjQ@9q~)j~n%Gv_|G!{qXuFobQC8o^r#a|G_B*iFZ?G!{n1n*t zobha0c4n3E&w9KLnXSvez4fgHX{Z z?qfTG@ID(*g#tI~y8DRxH-Z8=#;4r;*v}v&*J0jU(g=Km|06Z@^;-wMp1o&~;VXmA-ZN$yN4sUZN)I!T|1cmBSMPiKhaQ0#;PO{{D z2u~U6j`Pjm@pYt$Ewt@gW0YBPvY}x!DXNmV&ciFhT zHH+INv)I-0u&;IVy6#w}_*RS*@(8_u+}S<1xzUcgkst3dU1sT*`FuO0Y$Wn_QY>(-t;?{-AP(4KA)QdcZ*$r;=$A`b3 zs{2ft8>=#CXpmq=wC}74w;fd-|r7?Vl{m-XPhr`gVXVyxUMfg!~IAK*(_(Z ztdD>)%FK)@yFHJ3CwM?<-Kit9N8Y<`SiCWK3$mVAG(uiAfHu+bB*p_Wb2zuYvj53Z zFxx*o*Yu>XQLmPzDU$5>DGLfxwE}CocsRe(AiEGMWSYKULrL4Q2%fJ?}0a2Pq% zcm`WTloPy8_2)%@5}4r=k~}xF3QSo*Y0_s!UuuE;bYfLJ>4N`cS0TkZWYKT>cyAi8 zQuDH#whevQ`(Oif7h3?-rt4b;1-W=@lH2s-U?$}-hrA)SS`?$*8W&J>y>uV?p<$bx@20u zZ1EMk(m7cD+N7E8u&3^@`Pu6Wlfl}Ys2W_cFIN_pGbZ$Nq|xrRkh`gq5h8Q1 zs%vBV7e+d*YLOkbHNr7Xu>WU|PB65@`~lyJ%p+MbK?w&xH=G({+wkWw_pdsdtF&K631*%q7A8Jc`oU*85nK8>)#5EIbauv}y<@+4O}5t8Th}+Y@C z_h!QkY5Y59L9k9L#C_UXO7tS3!!|aW$ow8bwP4#sgfA@I(^z+J>ZF{7jTgow!ij?$ zrJ9V|GqVo}Z(coB-4=;vO*bZd+`IB2+*02rvQRRnHq&+C`Q`2lNOO7;ML~b{;Xe-R zH6vLuo@onH1XP~%lPA;bh5ICLs)e}GgUFZ8Qa;t6u{X!3nS1lZR9M)})7`Tn{NNr@ zr7Quioa>xy7_BY0k2QB@4Ov zxrdIxnkcfD+SugO450ujhy<^fqS|RFR1Iwh?lmKXxn5Rf9>uLZT)88bLStB3EN^?= zm7lruJzsJo_*gTuaFAlFM%05JZRPC3$EN#o43@JucztAB=?hRwb;2*3__l+70c6)o zEm;?t*ehrw`4Lij5UrLl2EzSR%Dl+^nShza47hb{$PvwM55lJ*6&n8*vcHL9)&4`c zGc|Dox7UD@Y4*nOS5WvgCny20J?x&bFZiN*)$NeWt+5$hbYk5b@LR_50}izQSc)MK zDG|4s}iq6~v>tOSvQL4xuKaLsvx(+=js|IbT^~!y_J%h zl!air;b0cj7fiRlg+{%_1Afm!CTn+5v2h6W9F~B&Fsj^^gp{Vcsw6+><+J(tmoj3`2i9792m2+h8%vU}UkG^j%d&$b}+7$IaX+g=T{sBw9+hA(H#T%)Eb+In&S6EfB zG3#>ba^R}pwC5GKHA~izaR})izEWO!SA2XLQJuoQgcE%ch8K{yto?*I`}AVPkmn#P z%fK04ANX?do8ReDh+YjPJyv+^15!6cGE&*Cc_B_r40fMw!{VHpkA5E)-wRs93_= zIpe7r5I*G?ZkGNOCvRTO$yuSE%=j7wl_}I%f+{3q^f*iwByMPNM5lxB_?qxcGwlnZ!JElFTdhJdvA|1 z?Qc~TB#?%p`Fn%}g{cqA;Jm!8wxGO7n8q*olKBx2&1=o&v{zDzl61(!x_=G_U?uZd3@*d@N z_OQ=dKHIPP2eveQBMv zj^ZmTIr6m8GULpYaC($WU_=hGM@H51?bby_TXEj66m1|a;ykxQrXyeY*u{i7T{q?m z)y({&w2gT&i}QRrZj19Jc8LT0-X5#hx@nh<`n+H09wZD)w``h*!1McVtBSg;X4u~6^ynE%MhCZr;7NgK+IWZ@!w35u7f-oKA6J9$l-j{N$ zZDKuwtH!fr#U2sye0$Msqf)WQ2Y~Jm-|l?~#f&My${YnU#cue&S1Wb?TPIz8XrhQ{ z`|rTIU$qS13YxyQD`)mo_={^)X1o02Di_PQ*TW=>*ZN~TYF=(Y>Nm+w+OAMpn(BgE z0LE@FRq%I!ZI~w>Kd54>tFA7y*aix6TkH9C>Kkfv7L5pBENw{Csy8oi8*)m_G&bM5 z9;;V7p|Ld) z!KF}!;h9+=NoHwsCDpo&PZG*llL#+G(u_^`Kp5i$=I&Dc!Uy_8#{gbWxX7Hk^q0tf zA4OE67WeAwGS#F7cz@O-fv1quyxjdO2Hr-+v|uM}l<-Z0xuuTUd$kEQ;#tPVg?^}X z9R(6oq}T?|dMq-*_nCW53_<2V4*5P|I4`%JUGMQ&@#N_|yZKinxW;&*__F;2fxc{5 z2j^!`d8u{>W)bTTvPt0jP6@iQu^ZjK-DeLawlX!?2MZ%tp1?Xj8AlC2a=S}>TccC2 zHu=w++K<8CPb{78Kw9{;{f6{QoL&@<5F|)bCwL>eU+J0BVZ;?^xMJumuF# z-3AdZyG6NDlru!&gPP(o2ZI<0Cg!>V;iUkmYp3>B{1~&pEaeZ@vK^?~;n;&qi=rp0 zsG1hYq|BAUzj5S`}do!UM7K42p+jbL_%AB*=g{*t1pB%SZ?b)Kl3 z)Y6zO`t*+YWu>9GOB>-pBC38%?xvc{$gEnBiH`1N60Rp4R3kdOi=VD(VPAUnRm@i8 zYt?Sll}tqw4L%G|Hj>|1g{hSLu{hBsmQB?iBv$HGma}ZjXM6o%3U<)ZP(6e`d({omH5l3y-=ZUti7vcB9o9+U6kj z1xdZZk+~$ZzT1^N9Dp*?zmju$=E7`Ts`Xomm%~EulE)2IOsK;=1#R#o2QFRK7Px~xbbq>zLYlqkMvS#Zm*@Q z=l2qER&u^Hf&CB#v3ofF=F3KW4}Y_Bm`fFCa!AlkvwTBSd?No{>eSvWzn6S+X5_)>165=ixJJHLyiOs0G&|k~iHFff^m{6+Tn| zMu0t4AumCHofB1K=pqV-t(o#sRHogPKmO|vcg>|qzRw1y-yK*OzdKOe1eaE%7eJld zD2q4Zvc>nDfnIP~%-3yj#T#3b+VIM8jCb)IVNi$BIv#K0%Qd5)>^N=P&w{2*KNudA z6P`;dAIZZr#i$VP1(^QZy{S0JaWVe91`~L?GE#&>C!03!Gr9VUZAsrSb3?A~-DXX7Q*K;5V zNiBX%%HQI|o(CXGR`o}iRI-|K_V1}Zcckt{+n;pEi1$gYZJd*e@mqRvz)Z@q1FuO? zV)h=W``%@IawZf=sU3RrPrhf(%e7Du;x>hJyO&EO@3bO3c?WJ9xy_%cFEo!HKn6C? zaigmJ};|tU+W~_7PH94)dzLj=b8kDeH(P!;Qp**)` z2bs($#k4CJ%I*+-FZ>gQS;WGr?me%4Z!A`P6il zEqNnW%tXG~*s2o0(s?4Y^y1*ajVm9qrwa>b-tz#{#RT~4s(~v}P0ZH&a)7w*jB%9t zpLy#yQE;ui)d9^IL9a?0ybWbw`A?)EN)U!@dDA1F0=OGGQKMkhQMoq$`Ff$ivO^&y zCrfUwz%*X{DWXvC85;z7>7csvxeM4%F`MRPP8|S{S>u-?fSP^)=!sdA>J$nqZNmrV zbBG5EHJ41X-?uB(gJi|thOei)3s<-|5n36rS#~{c0&g88`}H{Ses}r_=Qd4o)%keT zG_9~qZA~?H#qb{47%5a3%(+#MHB{6ca`u&V*?2Quf52(3*}b#0ai*S;EgJpa+x8wj zz9BGRX)%1begCoaUSHy-+O|q1L?Yp_3CB=lZc(yeUXWwKb;}D({bCTp7oGnXUQ5yk+|@U!u{`J=g9$w)}1)=2R;b|0cWU{>9(X4lqgW4)xGcTK1y_@$4A8U;;Zl9;FSYz3b zJ@O*Vjf!D9Sx4=_T5YHGK(iTXre%bbC}c%9A%B?C7>(sigz|p5l6q1*N2`QRzPIty zp0GGxvH!qLH1wD(Hx+kjbm%#P%&bCh@V2GXJw4%bcD-m%*HeIW=IBU_C{k&ER`9#G zsXx=fNf&M}6Kj@o-~RWglK{z^gpsoE7vYP7bxipx^1@|KGg2WQ@-=1Vy?qbe@2iK_ zYqm={M>r=fAS3t22Z#k4Vc-6k8)ba_f3xDaJ+4`D z+Sd-*{V(_E0SW?$$7AxpU%cf}iphzy+iSeu9rs(^fLUiU>l^!hN=0=~7mMGq(58)V zXo>&#^V5el+2&I2xys+vu9<I0$`GKX6QTwD4Qi%&6YUc5P@K$Z~Ix$gM{gT~2u)`oRW^(GP#_IleduMZF4SVqEc~j+Te~?d2PFih4?gf&M?Mld zUdOVI%+Dr9zLgp8yMr=2i|@Z@5{t6)T6~X5ukO}TX*Q-d_j5^>QbLnV{nF*WxmgHP z${m)CC(I?7MSzJIVfSOe4#*X549Zntg1B_7VYfK|?{RB>wRawGN+-y6a4eQO$IT|z zcrUI_{qw2gTj!H0-*xz)TVlx@fod%=I_ss8_gTZdcIVwuGPdNlx$B2`OB=bVxse|T z_E+m2J;nj^IZ@n#PWfZBYyZ6XS1*nmQ6@Ac#WN=BO!uGN?Nu5DKdF55b>7<tHz`&K$XFEMz!hu32|o778V;+{b5)!I*dD zS#3}#rlXA$t8<<#^&C83F}oa?bHt*v9o=Y+sp=FVvdtq@3tbdz9DMhhe{{vV;^!^O zQM@I#SoDX;dt+kb1EVOua7LZ(Hs@bQvYqCv>7JaC=}{Te%F~atg;701B28K{m{E)o z6tpWzgD3Enq=Bw>O8Sd7q$7%;m%6t`Mf)B|p!&q6eSeVc_9`7qzDmOGm~>vlB0H&V z?nw}y9lmLlLn_(p-i+fh%P`ps6QChq{bL|3n$l$>Cw3CIa9ANcG_Q;=)B1s)ilQ6g zQxngOaG`n+TA~a-Ca?H%SN!D>wwYVGqP6)HMkm|HQHH0f{of5wkE>V%myAzW0+%GT zk{6c3G`b!8^Gq$sX=*Pml$xx2@}$entnNGkJjo91*R{VTyVKVPq%$b5%&W?LOaS`k zEx6Z2kyyJAwlAwd0CM>$^q3q}^52FqYgRlfH>rt=o>ysrzv3GZBLI(sIy3t8UK7(* za7JzZ+Vuj73I1%p(d{vW0+v~kd7@ri6$Ky>!qz~HWb&D>)-&H|6yT0c*QAV^)cO_; zwbwxj^dT!a#DHnyFHNuA4@E63PdjWR|Mp*ey9D$a5`usXeSF>7TG6^KPz0_$tJ?P3 z`W4D>kODA<00&N~Yrn-`nqUW2$Wzja@CB_P?!UA94B)9R|Ah_syCrr90toltpd@a_ z=!_X%{g~3{pE{kCE%L8p0I7rnaOCjo$z7R$RK)sBxJ?HS9kfSSy?4341!Cg!CKy>Hchx9 zGwu8#OxIB<85LjkrR3F~lj|>UqTVz!-DhlK1EO4P-g#8}KjPV48VNXmUgvwXyi?rm zcyXphd`F*|aEmMx6INOu?0wP++QJ7{K3(4Z{IYbak|dn!F@g;EWq z8_Uc1!ZLUC(0}z4`+Bk8O4C&6Jn;M?Z+wvV2-qk9C>W6`wQod@byy}T#r=&(Ys6q8_qwmyAP=+V|c** zYcuV`D+2^OTAptmuO__WpGF+1rYLoDceAA7WP%xt$b;?I3Mjujd%Ry;RPv}P(Gy~` z?Kq%IZK8}czq+tPKMKDp0Q0laWm<-3{|F0y()2^X+;_=TKq8A3p-)*F;{zF zI)km8FtNi>_UG#S2A}|bgBMMqBTA}B9}E*G`=i5@HhxaeD0L@HXZneC>_Uj?v)r#+ zvp!of>f&XhjTjPWY^z+}x-IKjpA@1zz#I*xHQw|G_THBs+RcAo#)+8-5n z5X>iij6Vr0=i8sg;@kf!yo2o1=ln*+|0|6ThevZs_^*?KlaZ+IB>0%dkQ^pDNi<2jzs^mZ_@jr9gN{zDNDB#<%8z6F?4#}{ z7b-D7y?jDE*BCyjEohpOrNl~tfQx4d70(uD9-hsVjM&G@qz$}X+cFo-1YZcgtRsx* zPXV$%%BqMXlcCWxmXG&hP)?JdP(PNhZ@G_USugD8a%p{##!r~tp4t7B|>N~ zIfG*DY%zwi&u`F4l-rA&vD_{dw(cn%9u3$zot)8zBi>mpmnC+a(k2lpiIkM*(24Mk zd&HH>nCrL?PEgE0-8*{QEf81GU9b<95C3IVtjpglX`ERw!3l@UP52v4txt~-Oz_TA zm6{K{S@mRmy^d|g??4~hD_pmljHS$PF#IrED3v&msuU@nLRI>PTRz;K=K9NkGAid~ z3KbVOERhds9A?|vacR_(&R6l@l)CqSI5Xr#K*PbkFO#u=+5qaDn*eKr>&xt1d`p12 zb6t>`p@ICz9O3L)1dUDjlYgNhMw~-`AAd?bI=AeS5}Jrwaj)}61l!F3?-Zl;|G*d- zUp=b(mnqWK&f$K4d7BY=k?Ffn0dl!jOWoS?*Dj?CgsRbH#~{uW^91GsaYO-7G#!w_ z)b}yzjDI0Ig$`v2NEz>O4Yg-~PDxJ!A8!LF9bbhGd^6bBA|CVPexLKW!PLay_`S|z zgP5BR3^>T^UROyo3Ir| zR?kTm6j~-W4y!3fX>7e)hS4G#oYLeIk&Uw}Gzgd3!MYt>$Wb<@flJBUlR@_#aKCV> zn48o}vt{!-N9Td2K%G-8vfXBOPPl&duFt>XCnv5`4v?*r3(oF69@c?K-v*HGn+iZ9 zX7ko3p$?Er8bh5o)LrU5VlV2qJ)D|Qjv|&#DAH{&{E3E*8WI2@=)a(~!G25%g@W{n z=H*?yX_}4zy&TT27ta|bi2cyE!}iv01N2zvu#;K?^W?`9G#}5u+(5nlZJGbM>tdWU z_{;%qznGdhcF6g>2}by)90(lTthM(v8qmqqGS?~?P~$^xL;*&lyHN@y zmnFX;zwRob?u%)Fe>n6eR<xuw?X!svwvVWO2t^?7f+W(E5MEY&n|J@||E|EBL|LYZeX$pPYTL=Y(u3E}he8$AO%TFBRa(C4ic_{J}v@2t(ZoSHP!R3iHGr zbO5@XBt}2#m;e}Z9N*!^&nkc=Y>N*bb@NRS9fpGiPKYnx__|B=ZEiu2xp~fHdCmg9 zA8HVQaot-IU}JDEtI}0Kf{>Mf1YE0V-U=H)ZD}h}*gO?9&R5(Z8+%l71CTT32Q@ne z_7d}SgmrVyTtGplG8^wesf6==zHb2WWxxFN{f4wAa)j@i_ttjW+}eJpRaxNTX(SBf z6A7v{%C!#W{&lS=d9pmA=lL9HORWW1^cW}fpt(EqS|BgV3%pj~CF9$d)I1(SK68>+ zxWofjuU5@LK!^Ag+>54_6~i;70fKqh!U4L0A|8rS!0!0`?@&bEEnCoeA>hT++V+(w zZRT=4l)_Yfk-zgbNWRX)Wf#o>iXTtbfP+2QQ#&uAh^~Wq%OD^Q$(~Np2*L}tX>%q6 z@NB}MRyY`A9_r%4(}3Bk<|_n@@(eIHx*CB4{<;#rsLLOKYNIe=vI!*rWa>1iVeYxv z%JKK|%$Gw*Na&>osJa6=X9)$^lw_dhTk{g2`plL49-k7z=I*J&J_@&|)dgFZk1uF# z+8#TITv4L=?XE1tdWnq|RvD~Z$|RRQ>XY3*vl#KGN6bmMU)gBcHl(T6on0?HuAQA* zCvP*X0lLZLiJTpsPdjvsT!f(E)`fyg=cPdjVE8z<`O}rJA`Qz9zg29m-_xl4%f>;E z5b)&V6URfG5^pirL+`YPG}^tY4W3nRn1PPfN;C^kF9x+U>I`R&{t6qkgS1I9f|PD7 zxO6<5fnVacqJSOx+D5%wK92dAn&$yRe8eDUVG@2x;j;tU#dqO!t{0)t3Abs3Mgq5F zcAhhGACp5){AhfeFu<1RUxwjxjPsK3FJP3dc&jeF;#?(d+o6yzlUL$b{6skLO^$2L zEDCh;2Gn8;y~1dPV7gvBnIhxqE#Q*a6S>QBZV8G9odB$hvW8wJMm|>(C{rrNIsc(t z8XcvscjGAX3i$;6u=;yg@3WlXI$DYwIiB;6g-#9hIQXnPcWT+X<@7-fU?HVq{T~0{ zUBHM9?r>|#JmWtGfv^8PE$^zlf=JzH@4|3kG-ad!-!_g;^RR0$GigqGb5(mz3aICp zLy;8V^rbPw+_}+kbpH~(AUAicYKDjuPHM=Ixt8~glT{F=I*qRumOtpY_%F7wN1E~= zbXMd&Zxd&ipwAvUjC(t02xT8Ng`K_iOUp@+Vr3An8oXF3RiW%Q?13zu5eUd@+OnB8 z(_4&P+D;X{Kmn&w-*H9_*+yia5-Nv1Ab)yBzS_|OPBEz;j$J2X^u7N~AY^H%S)s#i zeIh8rNxy}un%OH;lcPxI<@c13t#1tg&uYAicsf@@KGj8}CNUJu@8WtuHQks~YL4&s zlVQDDk5L>bstSW6RL;Ki{(4QlA|lFdYo2P1UWe)F@GVNzEBVKIFPCO@MHJ%oQKW4jJ*+LVVkaNh{)lI(R0{wQ~21Tvh{D_5!x5+B|9+S7L!5#8zkKNtbD()dAJ} zd!HMFIPW{j9DTOpSCdLAF2n*&}qdL*-Uf znBOd~pn$+~C&#%vNMrX->3AiBsbKY1K~O1>6c-`daK|Je;Vjs$-(Dc#6w~k)4r$0N zz0L9P$D^Q%k9aIx^Q~~M8NUR>uL&M58ZJ(1v$Jz_6tOEF8H?{;yJ(nbKw)AC6@`>A zk$d*?9aN0Zo;?!VDWxD>e<`fG&e^eOY0C{C-WVVs&srKfY3+6o@0wbcaXYW3-3~yr z@?wH?vUQt9DZjd%9Rv=9Q7RLe*baP{`6>jOJ&l5h?6}(0pnfqcpf4+Oa+}G67Z^fH zIy#r144u~YjEn9LtxZ=ozq`WD!`r~!3gQrA0$cJz_fAIf&paj;o^^`E2KLq3dUDis zd{NZFyZBZTz$RR!LJ!^I?L0_OJgySxAC!H!mgmn$*=-k1*vto;0PRL7T&-ilW^2i% z;YtJ-|FQY}0iXFdYO#CISa`qwPuvTvWS2iUaY<|6^@K-j`(Ca(HpPE z*wtrZ3o;)QxMQ_Xb%dz#Zl-EN@{wxRhPbksjAXG~_9XD=sC3Tsrx9va@17aGyic)G zF8QTy>>-aj)vn~DSx9XNFKqTL z@6+rhjx=4|jm{FShi1W;W-qAvr{8gG`pFZJew)EP^61?|=_5rAX*L+!>}G`SIjbJL z(k%~aQ#}Ppy)E!Q1j5NKmD4L}7R@iA1?R7DyvMLi z*$nz8_~i+ql`8ZDpWd7%0Brlutm(iq{`4i2<^MXtbR=Y+J%03_@n1InkGDu%9?V8F zaXGWO$0=;g^-7FSnJgRKmRE-=S3eaE4EV*(;;2HG1Qh79gt$Mvo91U+*V{`9bsX7{ zl3V}Wl~lRhF2r0x<)2`gYO``VDIJ9!xz4WL2c^p)e=-^OV zX--eR-$CCsP9D>4tk|^AQ+&E#+x?xs5VC@0PM+lOV$(Vow(K-pLfp=qUs?}VMoJ|v zwN0sLqor|EtvHI3^A%n3EtiISr^;VihmW3**d~IlhN^>m(#tNOB0jIt=+_}Dq}B>U zBID9>`iwL{J%8YJ&Bt}uiICVnWRp(jw?GWv8GOA=V>VgywFi8bh>(&8?z?wF++{oN zbhnTwJM0ROuy*#wlhBmt1`bn?m{A>IGc&ET=1Na~C5f|aw`+avelA@E(WDz)ti;i0 zjTBCu&5n88F3*H|qc;b^Kf>u8xm^hfk2#p6Bp{t}=7!Z+q#Z!D;Fq|h!w`Awh~z;Qu(0b(=9Djif@><=So`@OeH+;TncX9 zy%!xBsJ+lGlhw0g9MF?o{Z-a@E^l-otj(yx|88xSuSfej2ZTC)9QYsBS=f8XR^%jd zXc$%PZRsy&(7}TKo~Oc;*)^ScZ%lM%m?KYA2f((EPK*fy(o2DB4@~*Q$zJ%TPeM~K z92|Q!*OIbzm*)lh-p_yLNsyqi4kuuo^kCZyh;?!1SuqN4x$^h`O)`M61Iy0wQv2pg zw47>w$*@TQx*SCAVDD0c_?L!(tHca*^-bQkZ1m*yNs>~I+r8skppxF+K;#8E==T*T zd(wBfz7e$M%Otz6N^b7RTl(rirc?#i)J{MsF(a0#Nm@bB?O0OaN-F*~Fi#g~?t9Q$ zfpNZ82VdFduRlB5_JUcP+aFN)O?-c~*ZA$9ZdTaKGBzkx#EPT}psw&YYX2JrS$}O= z2HxC8EtTx>R6GWKx@z&3+4>`s3hk*RKH_}kN_-DAduJXSR06+hF&TbJE}6KUQNf>m z#2}XQbOfnHqwHf^wJ!uR5K+Lwv$A^sR8)BF6HKw#k&`7Rb46ceBjRnXs(EW~cBfs6 zIOK7aVBSTOy1smsFUh%5(pcRCipG1CT`X(vtV}VMS;aeh)uIwIdKUZ}KN_-<^`_}8 zqdjm(9c&dee;Nc=){+GYesUt9m~=v{OjAd=MUHF`LmFGk@4VD0Y+Eq`;0S@&MA`Gbu159p2%bfIiFNv_dDtdmj+ zJPR^P*$t`zp#a9mF7KHyvcIP7(Bh|PPm|p;v=+K|MXV>Pf5VW%llUP-(xA zeDn(*bv8s zqnsor(Yy>pxZTW8rCL;S9VP@YWmdQg-E$ODMjrKfGZ6{RfMe7xQiI4kVW#1i2Fzx4 zXYu}?4>!)l7sroPWN>6ChL9>|I}j3K#S}wiSGS_Y+X&-uu&~|vF!|kZrBrg`kc~xN zTqO&?{nO0KJIT!-7tQaw1Wo^V)lHrq`_lJTy;R;k_mMqXg8srt9MDSgQ(~^d0$V@( zzUdgFOd4e?fhy*W!7|7Fx0?MwV_lJ1VKp{poVnU-?1B42f(;d1tci>gbzX_+3gv-; z=+qXk!@)&|t8&=l{#rZzvS9T%iZr6VrF)b6Z{^&y7b6@lbj@W-GTR5Phkzo7#d{}q z8cA4I@eA+fXkSjSZUM@F1t3Dw98te0_M5&NZbqON_IZx^pU^%?FOuU=a9|YjRu=vz zt6)l97AyZG!Sx;#I;U<(VF{4-*)1Y(<}v(v5)$_e7IwH7-8crpGnnRVV{_yc*2Bk} za!&hQ!{NIj1$5FMdF~mdj<1Z6_I^Z`$WtCkrX1#}no8HB^~KB}I6#m8;bQLV$4977 zqMN$G>#w{#^Lc&?NiX15waAr<#1}=7tVLneeJzW8k5c6<$c6_O-XT)4+{jidb@u6r zCl&Hqo2sofwH=tDH6tc&5JWxERwY6Bd~dtkj@_xqg1i+X^ZQjo-q*h(RY;z!lj%z> zsn%onOTVb!mYz%2~O+np6k4_}${KGGBA3|e8&YE5@fW}uhreb;&_eL zjW5>&uxTHaZL8Okozuamu~K6Byqs5>JSCBpy+bw>DYE{f_GG~6tZQj;{4@5I-2`}y z?W&Nw0Eke-`#9Pz+mJ0T%2+%eeWcY=o64V0yZ({&eBoix2kM0`*3~{NPB%)Q1`w=7 zKe)$;@H(w0r{H%DyUHR|MNf9^<5Y zBVW#FY@fMDzAq9TYADCxo6OxWVPaUnTx+5)*ng8plt^n`vn zG)hD!-PagcO<>KhesUbw9vT*N2(mMSDE4viwt+W3<26mE&AWj$tls%m8oF7Lw$M^Q zm(IdgOqhez+ zzcgc5qBHl(#nD*X6$A?c^X`q27Rekw-JU~32j$Nw&n&2~j@mFj)#?~VVYf6=TSt=8 z%@>YEVj|peU&9{revW^hwN^NVlVW_LxjtmiTPq^p_Pq?5YaCW}h-{)>NiWh9I!&%m z7K7+g_V`K+qUC9DSw&9CwNXp-f%4HqY<4mkhTaZT-*}m`gsECC%TPsrRmqt+8W!jYVbcgFS$6uqCs3ESVhDg!g^r9l@1T>V_)*fbg zF;7Rk3zj!qK!n0S^n=m3rXKd|GPjftF+65D-2)^aB}`tg3;8Jxz%q^Y(C)T z%^q+B9SNwYglF;9JRdqN33M766R(rkVtgjlm`UE#19+j~ME(+BN}~pNW)S^c=iyyM zz6WS^o8IJDKYtu|$uOqsVO06YhyqG$->C$nrv2)QIIkBh=y&yjhNqIHqUjZuDFXdt z0M|xR^Y#%XF~YMSvceq^@zV;A9W)E-r|yrJ<^CRW@G=lE5xgq=F8JJRy3ikN8mx)E z08@vs&&5+qC1?0eYiAzFT;Pwcbxt!^O=>EoDJ5d1&aL`wWrfj=^*9}X3@-e(Q@hSz zCUq4;Po*iD58ZAr^RjQbrg{Yq-D3A!^VH2Af*hj!u+m(uH2Zr74{;J#sjJAH3B768 zhsnFs3anVgEOnm%#Ro|>?(TaamurgT@mP3E$N>OCa;ZIA#5jKdaxpqITkPBRV)se9 zC$`SyOfPdI(sag4n#JusC0ePlJO(jO4=m{5rIy2pvOeeV;pGp?fKFMy54vgert9# z>7$#Kb|9V|%EjXW_5nUg2tr)fkUaGLwKlE=E~uG{Hz4^%YFbg=ig@6%0CkqV`fV`^ zAabJYM2OVoA)Cv$?Pp(=dCCBxf70JK2>)6G&mM0cnNh&D9^a?L0Yx=);c@NK)KbDV z*96*jLZMbluE-?GOaR#YJo1(dCN9?P<8U_#S_){Xt~Io$azl9da3P|5QO1|J0Igr8imwF$Tm;m^~C(K;qe z#|g$IZIF}3WK$pm-?3k$O4`*sufKed7Uf$h+dsMO!@Ki)UT>>{j9g&U+JE2OQ5PC6 zlys>nh>$@tm>+Cp%`c%Z*woK*RL?FX?Z(Oj>c3^pKFt2ML$+QKA(p*m`t;Igq%vxI zw)c5O7==M4%`@dkrdoCUaj|={)($7t+fvVeXFyMq(6%q zksM&0(t{kPxA9;UuX7XG>=qLHDPOSrks0k)R&=^s9OHAEZ$LNdw zSO@=u9@nt|74WCRPc+$GLf-CZj?B9hm6}xYFB_%Zoo7u%`iGn0iT;FDJ>B6a{)OFZW??T(jPR-I;d7ZQ<>@w8QsE>SGC;Pv z2tD2cr3NS+&aQ6T77OeYfr>fZHYn7nn3w5fb{7{H=c&)S01E& z2Y}C)InSA2!bRwoh0dt3Vau&~Nc~yL^yu9iaidj5`#TC4NNjlp)5~woJJ)P1 zZ7~g*Zq>%mb^Ko1M{AOUPXtlBR2C_71V@q>D*ov^#%0h(4WnMV%i?k_i5W{LJXr_;`Q>>Ct`B7Q-6PQC@= z8P>6G%`b~i5|%Yq)8?AY!@7DL)v*tpi^~{Nj~BmEOd)lME+|NO`=TV1RUQMV>7?&_ zuUX9SzsV8Ecn{p3HdlV@N?g#m{VFLS_}G5kA2;vbNiDDGk$qi#(yx<9-r34+?e8zN zJz>q7%Vz9h3+%D-A5q3xt2uj_6SV4|IC&*R9EC!>7(4odJN@n5QWomGKaQ0(yVc`A zRPQ=y2E5WF6Sy=J`VPvAQ=JxGn~1b@TUhIF`}DuQc+D}a*_%sG*xg3Y_s$7i6FNHA zXv5<2-JIH$rZSyL54YgxgE(cd>Uz*Ck#UPP*I5?eVoT~_TE(f{I{Z$)+rgbZtLV+z zp$>6xD4snXb}0Qfd3L`&w<3~-I@(U2=gjw}s3QvtaD1i`6m60-h=p>^golL!2trJS zh)ndff0BBg$fr7(duF|r;JTAhNXMV$^s&oOK7K(I>+gc|&gv9N3_3SHIYH)znL1e|*mk)MEg?B{=@x+H+LqgC5lG(v%Ffe3*;)kx zm(o}lBr{q)$QNC_Ifm{I|1t+PQ?*(H;AZevE=J=3ytsW;sl5Sot^**Vh2fik-aa5o zYY(ToJ?yp>^7TZ2{muJ%?r1c(^@Cfp?cl^74lDsBj}FR zXiBLVGGpl`F$j%GVOXBXQ?0+v1L#Tsih44}E+OdZug9H>me=*`gX*eJKjuxDv$eh_ z56PJtm>krJj@2n{JcZQcd6ttAm*={_RO!8QGOAzKT+M@jIVU^y{X?VXz$np=m%a7w z0cYJ#^}p@)9;bi{&OLnhO>UXf>{9lnX#rW;>0Wn>F*~xzLFq-=sY@u}Crt(%s~RpG)|G9}jCIVy%OU19Wzrb};ww)EpwPotLk zi7kr;BKyUIemV2RjGIGH?)Ed;%8y^!zuJ5LM9x#jc&BoMExnNgeyg|VtlOSyi_!U& z)cV$;SMZd0S&unIA~B-MuNW*_$VtNb!qZCkHny0haKu!7U5KahnR19JG>_zbGL#rX z6pelUu7HPwNWqUg-Z3p60j_K?mF`C82|B^vCH4QrmDa-PSXf)<2xfq?;}Xo$(VJBN_SZc2ex+5PuR zznjSTIwYc_PEI=N-2vlXzF&*#7OT`_uGHC&x@kK3Q0CI+)Q!7qV;)PGcXExs`CD-e zmb*^-4DXEOl^nU!N#(t%)qhkiNb=J;8**1TGC%S$co=XpJ5diC36I3uU7Q|cDckrK z?-_Jc=>Osv6-Y`zd>Q^^U262@`q#yYjcCxGkd{Zx!9h<4AZApk`d}-KK%Vk8blz1{VWdtHpGH* z{vL<h!{m|ekvMiL%=kaQ-2~?vTKq%-QA!S+r6(vI#bky~l#!E)4_d;01 zADpZCt!8LCHS$n}A{+9}pZuMPNI_1WLb9_@Z^859t6NQ8ZZr16*Z^g>Low!dy0nv6 z*ve8fzxKtD+XCMpIMZv~GTG+g2xoCgPr0j?K1U>k8b|AqSLotO9P@gS2-x_-OFTVt zAB<_AAN(84pt%Ecb<2KV*S+ylV-7;!E#gDZyb&J20HzM`>?-u<$IfagE>RA_qFrE9 z!hS>p90)9@zZnd|UDAk=o{g1v4(!GS!Fk?=4Rk{%^K$*D7q6#iCAHCoX3YR2mzcju z^7P~r<(abi8xCUM_$haU8X$qlGLz1>V!ofE6WE$z!2U4u8BYUtEBd$Aqvn2Oi6bgpiX0Hp z0bqX8*1l8Ave3yMYTduH5DSlffdS;o^`u4^$7G$d@OZFGlF5tNV{E_(eUkR~)0XlhG?A_SyOFj?{kB3aBlSm&jEg5lz2|cb-qcVkFM?>()zMP;L+<#56A6@mG5sluL1t5FzP)Q3_vJFwp^kCIv;1@sXrszzd~UG z<)B33Fq(G!T<@DTpk_J2B16r zIp~L6K;O>_5VYD1+DipMeXp%!YHroimpEhk)Fc}>{Q1@hf(2QW)Rg9UDkwkF?AUbK6S7`Zxt!6vntf48Ijk+@ySvG0Ai@E(ANK7-Fp zh|Y?Im<^Q;hnzL3vqnCj1&dChL@xOrSe$re(7ay9ZMyUsmi+`x-Kcn!ax{d`i4(LK zXBZA}2FT3nWW($zCy&D3b8BbBTeWBT$cpU{Mqi1u;u ziH+PTgL#`WYmZGO+^z9_9`aIo+%(IF?sFUE)f}S3?1&u#Qh=$D z=&Fbh-N+hKSo>blc8q$}pxMwOy~auUhC-pKI=zU&X&;TUsnJ9i+uSMbRd!bp)T!lbJA}U>4Qkw^d zae0l5Q4Sv#6I>{)sQ_Tyx0*!+af*K_!c`<+Lz?lkOz*?x$b2%xmhiz$zxc#SP7J_` zA`NN9;BtlUszRhvuMF9Y_x?_E_g5eMO{w@uvby9nqL+4Tp{%~=`lNo`C z?l==figDOyMUW|VABjX+>Gb}&iTQ8)sbvfS59PGg|A%Y>nA|}B4x6B0KWoHPrvjrqU_?<=WFZ+Th|1kElwQClU`#serZ z18CoY4|S&%-P@z|iRLA=_L_%;wv7x7aa4yS7$V@ulYC`k%&uG$R}kbz(`Yk`!pqvX zRgwANs8);l!Wz#>EI}}i5}9Sxpg-`eV!JjrN)u(^HP!Z%7?IYKIz5SD%n)U&wH$MLEodnA7m(9B95`zD26DM_xN}hpI+z zPQ+iDg&_QkZ9X{Sq~SXERegR0NXl>f0Jl`w_GSF^pg@_&r++l%MqT!*y-(O!LIt;P z?LKk2k^z1JvdCJRYb)~DE%QGZ5ICLMj-Ti(a%aNz*EStb1!LWr>65oNDnfF=^gcwj z>Gt)-oz_R}C&Zi4M(w>!EMvI)y-NrJ&)XJs%j%*RIMeq%x=|A!2t>x9r9vwdZIcg zfWS^`<6V{>j?q)$_Vsb?tRRjOvA0a`LU++xjJ?BJ7ziP&)PA80%)YNlrn2)gX`aO( zb@wg%Iu$&H4;=jRL+6I>`G8aTl&INm=ycp!cj2JOk>P6h$7pa8dQdv+HdFo>&_siG zZ~$IB#K0`&5RIWyZ{Ch+Zu#->S3yEd{k(3TsRVV_1!2bp8;gZyR8MmwZNaKXd*7m< z@`!>aio$Y0gr1?^m&>!X8m8b;^d7y&L!XK$3^XAfuc?7Sb)i)|b)Sc>a)+ov=CQo2 zE5b*2SMc6bJM{RgXNcg+S9}^Oa$#B$moZM3@wZohnQaIJ7OqWa1$ z%f!Id!(m39qFrmpI+}MNE5GZ0I8{|?q^5?g=upRjmeU9HtI)%bgklzNGW5<5Hl)+! zj>5|$U6o`NMx@1BCUDP+hqJi9#OxJ*R#>Yp*v13PlWrIy!|&_~NGC^EKZ8m4dCttK z&g2*+y~)n`67$G+jZr!1)yDjLTI&13?{BxOHzr?x)fI&3FzQ|0$`+t^y5M@}@j`MB zA+@I^aj%m-Fo<7TV@|%qTfAW>D-{uECSn8V%QL}D?2atGq|b9@Bj%G^tP9gj?SMPaDz|2 zQN(oLCIs_a!ekZ5i@bHt22ydeDf0M#ey))Ngj{sDc1=KI7>$IjZ^GUN-^?-k{tx-i z9cm!4=&L{5vetD?9VlidOr~L)Zw>Hn1^to8$XefJ6B+P{~h7%iUHzH4P)^ zb5ITFq_M%fAb|$7>mG(5dK15wrSo+>J&Fz9$ji8VJNUSS%hE11UvF&pSehA`c~sWp z>1`alj^n*skMkOJ%RCn~E^&cV-#b`Ox9!xmq;fGI*p%_6{!CkXny+xTa&66UAfQ5= zF6gZJ*=={v?YUX^f#97Y|7X*LN$SO`92PEQ6<=NDvhUA3ReXji8hYoB9K4tr=g1}h z>c(Kcg@{cgD9bGi5Mn-55xRJjb$HdtDY$J^B-VNAXI+s?8*|X^uekHlVo`>(<6g~0 zt9X#<>>MM)&y|I?z(d-lxx_7}QlAATt_m=k>)W*f6~}}`&*nvpxKGW?K;8cEj?0aA z8`;B*QB(Y*>$a&8Mnjs;^Z;7A=Lin;!p0%im_FBURVb?`>$rbpIlFwp+OfDkD|tA} z%~Dbl<(=d-nB`2DoIbo_5ybrXxn~hc*LO{D6eF+?u!L1BT5`rLsVQ+hg% z4`xa!&9S4*ZJD~(rKcgM>P4O{yPAB=DN@Pmi!(-C&*QA0CI|}ErKTBwS>%ZYfB1zi zoLea?&>#;z`SP2WM1+V=3}@Ox&?e^{wYu*kOPTf_@osHZ*F%3DU-;A$!wDNr~j;piKtpY4JfT9 zydb=PZV-uJgv}uNVP1gUCrRtY_9Z=!2fB{0AFlrq@Hx6#Dw4Cn1EeUf`rx6-tm?bM zK&0PqB1=~HTwIr&8i5x`f)Ec{ze z&|^vvP%(+}ynGDW=1iJI+P+6^ATQ9_7kxJ+lavdz^2=+-+alOjpXpsAoCn4yX)UD|R^`7{46nA$+k`Ziyz6SWqo@HCtOxv|)7FXC1_&^evU70{G~WhbG(g$=Tu z{P?Foxg)}~qWd0D7`@9im~z_cR)~rP%^E;CvF(U_b|$O>>Iv+=dZF1!+(-z7+Y{}_ zTupJY)}B~oPe}%@1|`{C)O1+gipkRe6RlS#?UQu3p%QEt#UrB}H(o*edYt{m?AO ztMm0{`#LfFUh8OvFS!+oZeTGi?{#I|xK}c=uIu8)&AJ!Y=JGpztMB*o`2GI){e^ox z?z!)K-s3f%W9J!X0Cu`1v;*g#;vm7d@1!!MZf>5F=b@<491!DIc=|7+)yy0BF#S7> z6-G@3Z)}fvlHPUN>Dlm7hf?mj<MF3fuCllW@34Pe^w*( z3EcEb$j5xHl$mhki&ZNUuHRYUZGyZKM`Tt`iYgsY-L{I5^I*MA;`?g4Scn4M)7onl zIqhy1afm;OwofP%M%%OHFQ&hJ(|e3So_M6BZPCPKn~HriRW-e7k-d5}|H%=`>sxP> zGT-+_r_XO*E_WqzNDtlF{p%H}W%R@tg9wagB!lNfbkY5)lpq69pI`NxnV6y-XX{_J z$<~gewQp+Q!D$u5TZBUimF|M_3bD?V-oGBj0l_ zro=rKsayN?y^`L$V>j+4e#*6`bBm>~ z0Lws3!#)&j9ktS(|2p3{|a&)il7{`Ez07a?dFR_2ATST|FjRgw`Y8o5Rv`%GfJ<9*V8Y<;ACC zhj7Zm-iLEfj%bvo-+CqYQY`-@D0^s>g+2dKvG513rWlALs2{ioM= zUv7s(>u?eq<}s1+#mz1C*T1Oag*l}_L>ABpN~q0ms)B{ndcNOe#uS;KXW37fAcs~n zR1QEfE#0shXPFQLOgtROzauT%@stZQo*N&C3>jej@XsdRIchKmrkcsGU!L!e%_RLg zh$%3s-Pv$!@Z4yYF1H?guaFp@igr`wI_H1U-mSH(va0aHmm9c@KIN=;LkC@ETgygs zE(;C*eLm$L8nw!Uoel#x+QtU%fe$(><(ca{w+ROT++~B(``}FXY1W7wykSY3zW-xN zVPaZ#r!1Rlg|B<(Z4kM2wD)TkyJh%d%e;6&I4Jbd-C8i8u)ZCbH^PA%xnKA)>x@85 zWyiGGcEWpD-wlUp8F+S$xU+9StG-7{i78cddTmlUKmO)2UM3*B*4Ki{W$P&AL^kJY zEsUB$_T8tHxEZ?$OF*S4@!PlLdmcTx^xS{(0zS`JEl@5%cxB+4E)J&Q&i0Yp`nvBpZ@#m*@y_5vtYzTBd)uaKLDP$O(WYj3 z&ngrH(roUi$VGgkh}H{xcLx<^m%$qaJ8-7rLW43nO5J(Kgm^SxC+I#+#$h{{PQOU@ zRcCz+^Zg;moptp5JJ$RYugs?W>N)LG-VU`7aLq~(BB zSTFe{Xh8JlzcW-F58{hHSsj|7$n*_BF{JN*_D%K9*F8@QBDY^a8lI#P{>1#CEI)|* z*m0Ryc#%zH%vU#P{@RTrPPILi*v*)M8LoM?B^%bVO%Nan`%L$Kcb2ZlgAIh>Jn7jW z#CoQiqh35~?6m7?@m6l`P9vW_f?X8pwPJ@>dFD{Znyx>8R4tpceT}q2hIfz+%%f+X zJgfRTc+}kS)te&4ycp{&!77pY?&qCu-opa?0fW!ko;>RB`&$0_Yq=~d;w@+GQ>wmO zXrq}l@982IT(85RRLmt4SAFxp2q(>n!^#7li@LciYyx;K9MW-EFu7UD^wad(12@=+ z8`;q=0k!jS9AaS%Pu<9m4MM8;XWCp*R4-zkH^ocDxmanacwk=-b<9f+j-)gxvrfkh z!QjdKTM7%vq)R9XZ9#nEhjCuQD`qR9A)&@EZ-*ySMoUDF{d2Eu^4=SFs6athn?~5X zQnyF;yi=>I(y{gZt;P|PE$Uoh{9Xa0<^wO3`H;;4g0@NIYQ;Ql8A8OiP?O#48@1R; z!?1O~%<&Sz$~ZPZfw1K1s01U;S#p@pVO?j8EFZ-lSQJl@{x}3>W=~f*mQ-AT}m)v4j zZcoj#-_zk&EHL(!cLRh3B`2>cI1d#lmZl4d=Dv_vz)3`cPb~>+ciUoII{qUofxH}w zeLgk+O}H5S(kIx$D}(v~60o9-eR1^1_nqKp9WDLiksbB1MU)^%%_Qv9u#d3o0-9wT z*Sk0Rqi3$B&Zd zTi2U8znOQrz075nu=pm}j%##SC(pItEmZYH9A_b*)l@46TgGSd_FlRNz!*>EqJ~Kz zB+Rh!{IQC#O6sORKk7bT`>unYV4K~B8USn#bl&z{%w)k%i&A$)fQhpxi&#-=4|!|g zTHwfd@9L{Yg{CK7@{Gwnk*1s=Az-3ue0*8vARx+|;Rrwd8OwOFb6Y6^MaQy4DW&Ma z)qY&>-}t7bFp$`yUSX~HK1)C{A=ZU|$Ai4qImxvC9oxCwGBrF}qwE@kEqF%b6kqz=3Omn}@|u{)!JSZr6eYE>9FisDIidOj>r@pd_- zXI6CkDA`n{mv$XD`oo3fV#?Q#?UiceN0YH8Jf7KdbELBl+@7<2j(bv>V_}Ra^sMNY3aqzoQMKoEX776a z#&;_i!kX7Q?IEgRXCN3BOmh_28(wZD`|V*9Z!d+zGEp1Ke!G2++h-d!E&2t&!3PO1 z#M98zYGc-X=I(l2wp&0@<`uOc6IT}pYQ{Tw+olsInUb(%A0*OyIC4t9Qi{A>d@7@S z%i;^pxwlNAYrgd;%AxeJOmTLcd^vPg7P^!O1QUot)t!NE(SHd_L`!b&CD-o~)@#R|_BN&8C={;Q4wbFV-RbbEuM+Ud@+MQ|6bil_%+wghVc{ zn^e;HlACjmCq4FsH;rtzRBEGefe@dA85UbiiSQfrgSvAY@n$V^pkuWWl|`!BtuU1s zSZk46qjtWsFu}j>R)&@OqS}3-*(Nhax3W!N7@Rz(7yOx6OsbGMEVyyfZNITvt?nPS zr-Xle2DFw_zxL(EMu{z356rxe6>9ondwFS^3zZ!Aac{FkPBO%q;W_&Vn27h+KR$G# z>p@e>jTX8OC*O{0LLCIN`F3W(zVvNvHjVXR)v%dZdMpL4 zXR)3Y)bGtX)J>3jw~^T|qU)qj5n7zC$-# zyZfW~XsT?tgySQMxr0Kd?aB;~^7NU=x0Ygsu9p98oYwr;&HVbUO{d`*_NJwV29%+b zL}X6K+4JM1Y4RB$u*Z%RGQJ%6jdNoYwKr=hJ|y*ib@)u8tc?MymffN!eX)fMng6!s zNA9_(si|5$y|) zK%FmPz)yDecHfjt$;msqka)oW++0qFEa)YaJRW#0OYwd8_@K@H>$Cg*1@nPeV)GS4 zf@9dv1LhE#6n;tzB^=C+i4w5*B;$_w&2>H-9J)I)=Prc6%T&7EC{VRuST-_~iJnpsZ~{L^H^~U}k!c z5bqRXVy`9lA$6n(pt3AU`i8(mTS2`IU}Zn~{7lfxR3gZh5(rVsIBXeVb|#YY;+G1S z74o4=u*vzh_P@zntF4g^!fj7d{6IE}B-Ha@CJJm3*6zV`4BME9@SH(^mA;@@`GBBS^o(gF3aVFL9CfGX0(~>$Nsj@I56Hjx-%E z-6BWqGhw0ti^CK5VwF-t*0TcYduI$fF9|R*#-}e}KV&*v@eZAW@>P}7{qW{jrGjCq9ZG6>k%`QvF2cg`~tQP;7={O;X2_@>yY56q!yJKyqK$n7QI>i+REm zUF)1F{?y*>ywh>BVhU?H>DTz3*F|&^q>>L_4Qoq2Q~3#6lJDPe$=!Nx%Pe?T$zJ>W zVlPHIl7~03R_A3<;2T~oLb997t2?*jh^V^cb2FVMd@g+yO8feJvZm~stFV2mXk~KI z^P=#%^hC12{tIQ%rCaa{G<0M4NG=LYu+a z-HL6F{7;H~mjSQ3xC9&7vZ}tl@!N|~X=6Ne*-!1xs>;b8ie1v}O2tzsP-Cuw?X4YZ z^x?Ouyd$RqLFYuf%S#KfN3nQ&Na={fYc1egU2^TGT>>yaEqCW!Fl~T{Oc*5nZD; zULAM5zpM}GM~p+p$Mzr&^3TR<`+gED9U(`Mrm4jc&jEaJ#b#4|bHPJ}nL}DUUYDcQ z;GjD^=)e-f^1lXe0o!=NQ=bzqakfpnOs@5QvTP3mAyt+Z`1G01qa_!=rez-$TZWX8Pt z&x=g8JUD>@ES|?5nbh*#2L-pMf#8!EVc!txtaU@cDmu<=9^_GG5PGY?_Zn>bvGKqg z*qz^c1!PvAX8QvnkjQ4Az>YCm5ml@c8i;jC-+j~Ir|U7iH<=(H72*IO1%S15NtPuO z#QHFdwwzQ3vK_{u6RL=H_!xs)WVKcMfOpo(gta`rQpb6?zco9QVUgt_J?I%ar&_l>QL_u2npP|I$*B-xG0$S3XBN*i zqw{;n2dh=;C@=6;W)wY-Y11mc$AQu*kjqv$*0bDeYy9JJV4L!sO$*cKI`Sh+RgbWv z?GtyMpT=;@3iw{u73ZjYX*AQY0lNbaP<80RX??Zji%3eGr&M9V(G+vng&v=+b4n8(SVMa!2tm!yu@tsoXQ9q77n6+=^rXGCW|Y*2h_r+F9F@$u(Gi~Hs{shmgr1A#~4GoV2E!6bcl{X2-A9<67 ztZ31=4CBpo`ewTwd1cbSFwbFAX_AY*p-Abx5<+FQR_yW@F0%aP_wVPf_oHP#1U7To zsg3Hr47w6AWgEMgq5_@^;NgQQZD_DX_%hWnVX(k1b7z+M}12ogAmS7V#F z2<*9kAQ)d}GVWe5k*O0C2)XoVqnI?uyeMDyvO%MN;;P6-pHFGpfe-y(ORNv^$Wh-H z1t6l9S0@=En#eJ?3SiE~2vJ`TEenco6D^1jaV6B!-0 z=j2o(<0=^p#JVex<-370O^0tB0YdbOY2CSQSMH%_Du3!wnL`4Fz^aJQa4hrhRuCd# zmUKAaE3r5WL`5V44aYG!Y5$xl2LM)H=-gT1Hmm=w*ydOrsA#h~#!#j1H3FG+|64;v z7(5@ZWoY9dk#t~!5A+1wj7TLOoVW#mC}x~=9o_q6cksDTDOc_K0;_O07>_Sle{aWU zCMf=allcfJ_zy091E^0nOdz54q#0^*-OgQKcx3Ohp;tsk)KAj!LBt@aC>k5c^5uBdkmv2CP}Ym0q^!_*?p0-Qog>;&h#YexW^Ip0{RNx=k3q1bm}~ zCoZFb;Kxy;cVDutJ#yU@3waywo#S*;b+!?0Ul#8daoHhA@k4H>eA}GkeaZR85&cRF z6^;2r-h-b@=+Ca5PQKgd!iU99voN#A;Dlh_Yc;#6)HhyRqcb31*2dYlCv4ECXo-At z{IyP5dxaSbzV4phhZ;pY=}F(%!WN2xy}VxW-;4|I-W8>yd1jkx1zkwhSc8<7-YT`a zid`#_=Kxp5ssN#Z&6Hpj?8ttCFJRC}Q92@_!7S&tP~VeVxPJ}?c@}Vv5}6k!uNe0j0{fA~`!<%W)Kl)Z|X#3=KH zjB&{vs|h8CM4zwdWMmbkBB5`MV9h8#2$NN{ubLLGY{1LjofB`?D!VQ`E6pP;D9c4Cq zLLE`&w0b_dxtnefOIOfqpOKEse4mmeoL{DgC*4kY%x^RU4g4zf%|Iw#p5UyYryfW4?=40U=3Z@4w%OlNHf+;yyuu-TKh7 ztS4i7XH7b%M~~>}DhAgg8y%FR7WiO-Hd2(N!jF#h^R)ZI+$uM7u05=uJX+!;O@6_+ zQhHiQi}I{!_v%@nV=AgMQtxGhN5Mn1p*(GUzE(DUr7Az3Q}>XJs^oXw;aL9(!(T-l zuecGj=EH>2I}IQ__+)~$>#5LZ|E{BhRm`y<aL{E1t1B=JnFjhzzzE^{=`Q`o^o%Ltt#ASSIMo++)kO?`KDlf zT~;#WO{IrLa0yT5nMOB8mlyI%y^Do=|9SJMgu>-T^7*b)Mm61IIs;Dp^D$8cRw8dQ zPXG0URJcvmoMrAJqitG$H2&nH7I`pyx$`$w&Fuw8OOr~*-r-H+_J(kk^_t8t< zDZ^BKSarE{Mo2DBV%n5BR9otR>I#FXN?viBH;KWqxMZ=;XYUooH`QL_o2@FnRX>{2 zvivz;zyQR*`->&9JS&;;k1?8qNM#9PFG^fc*7Dmub^YS;D(3}x&r9Lcxd!~6^=3|4 zCkF;#?70>Z+dBM>sh{6nxe?vn{b@PgpjUgA=ft+_xG&1(nb8q!(nbt!BmIiBr- zJI7ZSmRO828!wk`b8j-OTRbnmu- zjL=jRd8=i5X={r5jibl6=vjq`3D|h#8NyaM#X4A7r(5L(HrPop#NLHpn43!rY`{G#GTT{@UD+=vfU z%R7CiT)jy~SW=6EeZbi=!sNGqm^bAadfBdWK~BKSd+B#%-O zyLD55;Bg-MVJ!XK&yKSMB{OP$eSXLJ*Qry5C&}zbT z+*jZFLd3{(GLi=Q$-jQzS`~6a{ui&ndqZ*h)lc1vtsQM(teN=VesczxPXlbL-|*=(7#L4xG{;_O2bL&U+))!5NK8+GgP+pb3j-B5FhA@k-&ksci4 z4{#nmW$iEKSs%o0r%;+2f}Jh)I@(b&INv8yLdht0W%7z;W1~$_&Rcs+Dtb=zt&e@- z6P?|qI6{Ka6O)uM_Pqehw6@NR zI6E;x!`I^w^SVoeVRA8luQXHyanaq#!;&8T_tp}Btd%FZ^C!dWg4=6$mmWBQrHS!t z&f2CzD2TR%V>3@a>2g%HnOKz}N&nu;Y&4qG zL`(A83M=}6o*pk31ZBRh^aHCMgT_!UY1Wr4edlUkU*BMQE-PsLf>N6P1IF7PG8_VX z&KkWTKHsR30a8Z85NcK-h0#*h+6heIv86Us0B*CqBiv3pahR4ZR`vs~-#>2~?^ z0)%|89X^9E)^!^irIXxNEI${L=)YlS5vl5YXMSHDoT#Tbu<`s&{jY4m zzg3OM|M7Hd!&`)3>FSP%ldQ;lAgEETd6UsOO4hoj3D4{&dzX2=Alb30%`cm!zBT|` z__jg$@9uqTo4jvI9bX5x+18ve`zEDBM@GQ%xF7lqr>(u5OWOwG+J`#b>U1+kV{#S! zpS9(IW=AXDx|4Uj*+vhX`bK;A1QUmVH;yGtsT7p64PK4q9}LiY>teI>m{r@EQE0BL zdh^XK;}*PGl>A5<_HiIVwQ(0WZ)3*d?2E#&vv!fU=nOFS5o@Pg8ofyD9+HpMray)i z_o+D=vgS^u&Yqh}CV$M!gAe(|M(4lO;WfWky&uOBhO&FQll;_sDyo1IG?BA&h>$lZ7pr*U9$K*W~R>IQgoc8$8{ zF8tTlg3cV>2~M2KcWbBfW}yw1Sqn7g++SyE?xcNr`poW4+OWe#%b=BpOx~`lzHo;_ zGMu^5BQUDzsVvzmJeQXXn}pu?$zH#|-HjbJ5{sLvBl{#uB_r>g6)<_>>>G>QA10WL zs_DLh0xpM^cQyH{g~~X3P;TKBr7X@i%^z8vVA*#5)>X(Z?gy(#XI63Ql_0I0EKuYi zcPg7VtnvCSs9MxH!_ElHFhT9HmWB7wimrnxAhlK!GjkBsyRyCiGlY0m2XM}g*{Mem zTmGe`_F(MXOkPCO^FQhl7eTz)?}S_8nr*D}58eMZ@{j+Qp5)55tz&u)RKZ#}^!l*G z?|hs7d@DMyrF#Ja ziBe0Vk5%8yBhfn>Hl&_yt7hQ?_6_n#>UY>xWB;^O4X^Y39>^gXO~j(eLPr!aH0rba z;tp&hAah3n6jf78-Pn7l-%NRh1l94^%p)$!7&iZxfo0|}_`hXz2Oaf4Nja4{5zt6N zw!B%P9OSJWlM8TCWBgb7NsqppkQy|KSF=IvPfbU79k;)x2kw1Jv zOcE$_+_}RLTA7t=Za#^t7f*t;(+k(#PSjt{q+9|2D4#+$O_|}PsZDl!fB7T6d8?gOClGzxI$sTVRIrdb0^EAiX(J`ZR~LNY%v&OVV( zFZp!`deenWhY}CU2(31jf{dNkS)aF9rNOp~{4!e^Ma>!e)o3cX;mG*zdsC@`xt+XJhA>eqD=j$949v|Adcs3}Yj?&LJ=#~O5%yP?qfgNYfBBfh zXwOZVxq9?rv`B`8&v}&<@VWd-O2-)Aa|+J&BL-`&`)DL6sK`4H2tb$S`S0CEWOWAD z?_h|_u*IRyR2F> zul0bLp4+Naf6p}z9j?l^;@z@0Af3ubz{QsF#4pe{qpGNch_E>*` zKlbP|r~fBy!}Tw)(DDEO%Oi}RM76m`JCs%~bVZdc zb`Z0ssaVJY)bmT&6mlg5v{@(AGRb}LpsZ9!~thWLUTFrE>fARXNu{orfF=dr2`_w10i&|Trq8AFL1lQdm*`d0i+Dwl-mhe znFWbN8dm!t2ryW#UM++sDOZ00R6@3}LsY*WDdukWk}W66l=Dnad&rif(nbOxf&Aah z_hPQJ;l)5vyH{_o&2w?y?aROJxP!G#jRBy z5VHFkMD1?ki~{h5Nj)1afmikwvVz<2d*?~a)gG?R*Xy%Vi}zc%l#^Fx;mJ}PK63TF z_)A%PtwkL-?^q1N@GM zDuDLoHQb>Pzg8_(VE+`xcX~PqP&@pf^y~W6qh>ZtJum=R9Gg%A(L0U+s3ZSk#UGS> zV5hGvf}BFB=0|8Ea))}*^MOGC&~O0LGt+MlxI;WIhYCTLV*O>PFVD|?f6_oVWK`KJm=8T(~dx z(ioNKgLjqEV)+)Za#InqX;`rGes}+cG~W+kA`6s72EPRmYmMgl8jgi-7S@M|dGxqQ z^F0JWS?^3YgjA1pH3W79lfjv^0hZM$R44!*2>Y+}LIkv+oAoPFzRo~w>WEr2^M~f{ zd4?W9x`hi!u7@|=49Gk@A$|#Vw223OZ7&Si`-(hY4@f$VaqChz7PvE1edq)K`p_iF=zmTC-6;8^O2 z2?ghzGLl@oa~3ehFXST|dG46{6sXb;EYVgxKGNU+sjF!O|%@4gEFf7**aa$6}NjRvmp|LY4KF7o}PjPQ|a z3_c0E&F_XF1|dtQfPKU(`(4Sd0+i*F!FV0}a`Dxn&!C9OJ>X>8Qp*e6~3lbP6ONuKjcqKQ*`UeSUWI$2!A< z681>ddi^v2ikxh8FUV{4yvtGwDCH#3S$I{ImnQ?ap+II-FP#i`N2mh1K%m};I*|e4 zXE<(pBL=%f_rXcphYyC+aF)EP?m)Dlo1e}&J9LSk8a$>2|G}_U*oM&9Yj^gE56!#5 z1M2sB|IgAd=XjSAF!!+{B|P;TAin}xr;tuFfF}R|jW@4fGy44!_#^7EP4)O; z!VzU)Z&a(gl?~He&kMEH<-u@*O83EgwJKmyIQR%UrH21(YY*NI0slKrYdwaiUP48n zoz9x=_c3}3$*d1E(OQN%wFpqQ}FAC7X$zpG+z{}llKt5~+O4{dy==}TCjk_QI@+|<;){!#tG-~R{XC|jHW literal 0 HcmV?d00001 diff --git a/_images/notebooks_examples_40_1.png b/_images/notebooks_examples_40_1.png new file mode 100644 index 0000000000000000000000000000000000000000..a19610e39bb8f8f5fb319cfdab4f0672b070b22a GIT binary patch literal 22571 zcmbTeWmH^2yDr$cdywGnF2UX1-5~*jL$KiPmOyX`!Gn8ncS&$}2*Dx2b&BuIoOS2N znRV~1)hwXty}P=0?YAC#iBeOMMMEY;hCm=_@^Vrd5C{|v_{v6v2hV6dy>kNJ_}!%S z+%%o6+&s-)-$9hk-JI>6-0a_5kbAsy{qWw&k&Bgwm5Z6&#?8(7g8&Ar-PM{ zN6c1}RDaLb@>xH3!{I_5`9^j1p;>ws}hP33|*9s^!tIXU!HA%a8+(mqAlMY?>Z z_nIgzD(vS(PS4*HJGcHK`8yNYf3qp|zh6#4^ELBa7)-6OwV0~?XHJG^y7PirfDn7W25m)q^{a1~q~ z&zMkHJ;Qf>?P`j{aomLC3tnxQ2yEJXg0CX-3U>TU3U_3XzaM39SLmR8QGkn+nRZCkGpK)h61$Q5D%DEmvmh>uk#4E zEXEQS5BdT$r&ZCRMT#G&ExsSj-z~}by3=EHl95JNri;*RfFPg#spa;?1?_G=)1mZ>g!N#Y(j#Ds(L8%JqkahHM&D9UNHjSdAhhBN4s4 zyvX0Y!7J0LXxXi?v$ai3P7eL`OO5^&a^Jv!#d4zqiD0JVpJkk|8@GUXP!C9w4bV9I9lCIry9m3a++MREnFcTLk z@}~9@s8vpHPyUPtcU<@WFYct{HFZUQ#K%f#4A$97wr5*b{H`;P=>21@nWR-9t#k_Skb7S&{ z?3>iOSs_?i*;-oDf$gt%wSMmiWUDB|atK|oe2`O8lJfO!bGRS*!i0s79|11V&|6NW zToDp7zY8pE92`So9TgSyj^`(zv~er@2DEIBW06 zyR2fx8Syq7{cWuyBw9B1dFak&GH^=v!%;-*3#R4YZ}x=Asj3d%T^?pSm^Qo8#1r!e zCnvuuC@R{@_FU@@hC`{go3GSKcvqwMRj2HHzc|<8=4{jJW;5b^gsG~2QM|)#U&Dr* za5=xa`hK=-lMmgzgOuHX8S&~9l~SRzhg?CD#=o)}=T!!7w|r?bgXz*K8gTU`z+_#W zt|vrB+J#&Z5)z*M9c8op_j^2z!xA21_Uo&-oT6fHG%geS$G@cEj3A0GB_d`SUafiyv zCGBmlbBtE=Qm`#iQSe#&ij*^}eXbp)WO+?XyKT68Y`7(;ZTF+W~v&}(ue zNmigyP*hYmFo+I^KO_rINWh>~$%@1`@q+TXK9P2GWbL>+U@F(IgTG$$sXFHSus6{^ zRjBA-D*A7XtE9ZVZ>vA%Q+j$-g<;dyIPbcYhQ{Y?mFdS}8jFYHN^NC>l$8cT!}X8mCC5O@k9A>tT(wt*P7j)mdr1Ak_`aIo{(uxsRoGA;Ynpz6O9 z=qqVGCDAsZm{&Gx`PTc;P&!mq9uZZ<_M=|@G5BnjOcs>#R=d-6`nUyGm?{VU7@wzq zM75)bV1|OgqQ1GVO3fILTh1^E{)w@(;o5LtMJLNb!+SO}Pe+aiMfdl+x_rpl%0Qx= zY3MEES3B-aH4mCGJou={-c}5>?$wZ91HaYnvV_fv8_d{al1MoyZE6SbZWUHrTVM|y zxIpiE?Co(G6ui$OL9fZL?;$K$Wq+7>Yku?BjCBgxcB3NE%wnA!HR=KmqBZ;aY^CWv z-)GGzFfz4|ay17Sz3h#iU$;X}p=}wOKY4muS?pG&W|6?VR6Cnu#QxbwFwRG6WlQ1l zQQ4*F?{dcdt^6kp$uA`9RUU3ba?5MwcC2Px_olT^KeE4Nz`rVN5E4+4LU?PAm5@3f;!;9rkLw6l#@tN@sBVCZ`^3jen4kaXQu}pjkpc@}7ZktZIpV?1)RREDwUq*0LV`B!^tp*zIe;hv&6&CCS6UJG+O`YFL^5d7|H$FOYjwJe<7`?3Bf6*%& zu~jKvk*eNIiu>_{r4>p@f<$!Zx-bNsB0TbUDyE>Flm4y{DQ%Eu?q`(0pA|P~nx6ic zv@_vpa73tH?eXz5PLV`OUpdVKOxVA#jCaHr&=0n7M};v-cyQUa(2c%-6;SAVPd%eS zIY0e|@Kf7yFxWj;)1>U5(UlbxSdXT@7`*ZbnPrJ|j`AWXmXaTqe)KJZRrPfzmZ>w0 z{X@>GFxFdP3SKF)(Vy)b}ouc*{6jTW1(@a(TV}A;z6ho9Ef@FhgOWN0lN-V zv2h=&;4ax!O)&KZI!?h_W9GI->{oA-^ViHAujJj`Khwc<5rjl;ljFHyM)5^vK8?G~ z^%xN&uzPH?eYr%OXUp(?{Ks2a=<6=}DKccy!cTM{?fAz$+29x;CN28AM+eUtWXUiH zqqEzt#Lhe>dV<>g@gb3QPlkOija5}APOCrf1k|THtNau6rthQp(J3eH{IGaP2Jd*t zp%GO2c-rR(F$Q_UmIs)Z-WZ}Pi@y34`JwZRwbzgWnEauRSkA1WDjENG!eI5Mu{b=- z=n;hM)#Z#N`=_)07p8k*p~4gfX;1;%96bplixR~*K_ zb8!!@m9GHJ`KnsY`{cv7zPO1wMM*fh8aK1A3^1tq@#I6MKpGMjGNI67+zKx<^!fx@ z2pcI;5P9JWcOh~+mlAk_6jb*--r&ww!|9-v0PfkIh=M$A|^@lx` zG$mT4Yyn(%_xS;n{~2XEetdX%@D+M~_(ve>?>qRj53SI&vU@CmOiEd}B2=*@0gx|; z^^W$%`7+(AaDxgNTU$n2r8EeH&-aF%)aQspDT5mc!tS&tDI zO(uuWm3`aO-65az2E^9ZR=|VSaYrHw&u}XGd^XRBuvr;a*;#sxoA9teEg&FZxv{TL zs-U3YYe@-WEXUDe9YT6~dfFQYgUrFZ&gXkkSU9-NVY*!Vd7s1o0*n}*=XcK&o7;Yi z$%&C0NCziGmZ(34uZaN!#3CbeTJCV&RSM20j=E!SSpud6zrysdlj%RBu82xVPY>|T>@b--%p`~2@AK)i(f>HV_^(Fdqp zzpK~KFfhxHPl~CmVKVtO!pJBnfU!DO^^eA~m{ z(S^2;TvlUgP!Ixc8_cPxscMUUWThOT+ak+%*49*PY#3bD6ZH;tdgZAs*io>65&T(g zy;iPD8r@ACT|LzK7@CVfI|y$%4`(0|^#fkyE?FQsnZQ!7-UjQ9(^_o1&o!lhK+EDk znS3np_(t@*H?rTt@LRL`^V6ft@3C~NWk5XOvsEH6L~bAe5s@HG7HZGErl-J4-Ma8r zke8Q#fpU%Zi_nD{QBzYIkU)jP;D`tWUteE#mo2HbvmTU}1*@g?>gsqog2!%dW7TuL zfyDY`r5Om1#-FYoxD)_t)o@J|4culjZN)WnU+4 z*xyf4hlYnQkrMGb)*siI_re2;W_ES77#S1OYv|M-2Ee@K)5C3}A2Kqsnudl&XPq++ zOpn$NYq^&qU$C0BreSfM7K)3F9Xwm6+tmDXt=(tY_o=L^<3LR7B!ALopfs2e&_=n| zNn2V+6$;$#pPmnR>rHlni$Z}_6c>FZpBPE38;caO{hK zGlc_e7XNz+)@UoEB!3wV?RYanvr45qH6g*-gFe)az__FNwQ)Wc9*Q%08T9jF_U@50 z;yydrQ@9kuUIn`I7sfIP0AWdPkiT7qx2Cf}_HPYO_HQWc`JD@-=DrS~dx)&&ZXdBD z?sJQ4=TI9r{he2&F9Es%!GBaQy2VWO@PsRky*DlnK)a#+%XE0w#Ik3jfaLP=<@cw? zU1H-#tR}G#y4Ai#%D6g7a;a*127bNvZrJuHymac5py;;dpz>OSnb%4HSYft)9p&XU zt7WgxpW&xq4Fc?Y!98cro$4ec9QFqkqo%|P5*m^-%;@Q{35q@T^?t0W+C4p4aMPZZ@7<^ zZ|g-T@ZP^HN4np6BSa0!#AEj6UiYb}1*VlisR(s@{iWC499$kyj>+0*O@aC?7T%Rm=Y0aVTmFtel4fSTGWbsdXIDTo!3ZX_hgq-MAloA|g5r4EzvF zR12&Km{i6r5@ZSwX&hH$tpQvT?F{OIY%qykQEh-|ibalsIm_8swvxK@u>cSp&ec?CRn)sg1vh~ng_$ZLKRf{xy>sJ(cfP6KKrX}F`uwM*X98TEY!YY+5*a@Q$5=e@ zx$Wo~78g$=WH*YXqrBc0un+iRZrOt8UJtsQU4I7GqPb3zqF@!)?GngGYi@BeW4BxM z$Yp?`B2ygG7HE6C9G^~!R{Ne1$%O+CYWC_|!CULSnEewX7hzgm<^Pin^tX%X{Sj9z znJB5hzyI04f4w`yNiIhVHSxJ|NhBkcT?nnL{DPL}-Mk60#f%aH zTavqKSYtC7+1Mfg766hFyLk^RM9kM$h}8QJMcds$S>t0k23h?2}=~`c3Z)D-%z+zxvpl4)+wnX*0Iuf_Cq6KQe+{yOb{Cuws z_Zz{JxC?LLdIN{Li2Q7}nhrV|YKf!bY56FQ@Vy)#^r)z)$b^KZ|0pF}TU!9VK&2~% z?@t$R=O>6rSXfxJCOl3lvb|92Bsx_`_uT)MVmNE-il-RBZQGd5;PS@@y9b{_nQQ+d zbR`T0pHf(u1ObE8zR_=YYhK(+(0v=Hg=c@+6 z~9*PZfFrC}MAF*I*DqTNG0$@b=5Bz|kY(W|Fgp23^wBH|dzf&!26A zZsy^;8Z%z6#rxKSEr3Jf0v@)>Zgx{m*)94a<3o4Z;l5nzwVl73Fq%WOHA0{;eut%| zbD*Z70FYga`(gFFQ9SxD3P9z7hG;S33JD2;OC1u0L$?)%ZxRT$;&0!+RXeSVyeKKB z9ru<0QBtJ6y!bvRB|+)2Et>dUYL^=}p$q$5)sxIGFB7e;tz8Msv-&vc(yHLjfD$5c zq{7Eg8bY!P1kYfZ{O$tzBuqj=TOa$CACrwgfsT@xm>9TNXHCV*itf~YiI>7=8h`t5 zZ~2OWo?c9TxItwrLF5h*J_HIw=uE6`yHc;F2ff%v)Dr_q@@vx=z|Iz)(6;pM4q2ZQ z`E0W^Or%NhDn;e{S0W9OE>br8Y8l!(A|wYG++~Gf+Ry%;T4V!u;z3hTgf#odvG_wj zVY#pdL^%XXhO0M{Ui2^-+bWy)t@#`g6kw>6J><}UbDRM(N`cdBZ(j19ON@EzE3ZB| zmdggjIqMR?rw4*%T`~C995toL(uEj7wUof$gmdOi208ABMBWMoTkdoU$ClC!1{|v5 zttGeI!+_z+3A?SXplxv6qbP#iFmixu`eoW!%QvU?Zq)d?fq+Y%xkvtGEPg$VE|*!xg=bk_R5yEz@xtca?-@%7iSJv z8FQZzTJKB;^nb>*UJ19|33+Zm9W8m9F#fKlskp7LEMv-Y2K>sW^8H~wRCi+J@p5Bc z!Hf!&iR;XP@`6Xv%wk@>jaI!VtFC8dc#^Q4=og!d@eUnEYPrtxn&tCWiPA(d@K`oG zQ2Utf->s1Lx-M>GZ}}H#2c}C`pfefq&oYl8ALy>UqwnaQzqg2{DQfJD{NOm!pk)hd6rCffn&57S5RzV*?kgIuGiTO4ot5|19Z7!P$ckaf_o(-oI$_hf1)?!ghggNO)x1q-SvN2DknTdRk1d&L%-dwW3W6$|~@|bP1HO zeJ+JfPHqX@<}+f(o%ohaD)bPHIYrn(xCfpUbK=~#|HPhx0S$q^HnQU@= zi~sjoGZ)*1xTEOJBwr!zUNjGYo5yO_=VXJ@R7$%+ry6YeUq^0Z5WGi#WHiW;&SDn3 z=%>L-Q%Fm}i1A?VrWMiA?HBR|cw$i>`VGXXX+#caaHa@R>eh@tEjRa&8+Y*VYpca| zsf_L3?*2z~+@<&ypU>*KWmDgWt;&5V^WgOz(f#h~nhvUKkrM3%ysN5XQQG_GXqbe< zscAq1k+%zAL&?Q2$2pZQ%`K$EqNdd>d&+X29}EL{3M}r6F%=Z5(V_2cuGoo3EBdz3 ziq)LhDR$jB{1w<7FL{F2Tu~GL4w^x+kctT_^nLQkYK3kew!hxi(6HqM>ro^_nE0M^ zgv0i>>K6~;CQIsu{U`YHFcj-Bt=N9gi|)M-vSI_%w6Z-h3w?AAr^&6Oe;m^>wEp#FQS0r zeSzmVckqiHcrkrx3v7r8wTze>G?H3@bd5!+8(QXQ3busR&l+Jk`3@8Iz*Z-YNf7Kv zPBzHnO?TL40~C(dB(;S0Qd5!@*L-+jdIGr$SK@u$r<36GGk&0=v6Pg|S_W7hvV6t- z0{x`{9zjMbl0E(758wQPnP5#g9s;c0`QIXd8IrtGzE>BF;xh>Obkf1!*N@H8n9cJ3 z16jubj%ii?_SE;o(n}d)I>s&>WYQBMO%2=behm_lwba!Eu@PWnYn^97tkBVWTZ&~R zr;^hpw2?1R&+I>>zconw%%`F54#RfYN6)YdP~5;RHj71Yn<0yP>$3(w*q+Y_WdY-` zko2oQSIx)z!y@VS72hOnjw~R1j!YdYhoz&a&>SW7tpBY!`?>RA>Pg3{+1@SFP(_KP z$vcvl_Y7p8RleWRojWHTT%=?fXm22jNL`D^87<=Waa;>ExpDTyTU-9JXy4k|gzBz6 zVSEtf#^z0`V^x$gh4zM&4c3h1@}p0Hd(6Go9DmVik&aVOQIa&T1AYu2(6=6nj$KKA z1Fn?<5999k@4M1`CqQ!vxBtak3Jh|1;k=;ARt{ufJcMHT4DeWb!(lETk_4t-Y1`31L$r!-UpndgK!P zX)2x}S9G zD+&e%B-wc4ZjfCu=S*jJKhT<)HEtzpcsq=3zurLtJjQ;2gsZ`?%m(#{hK=^`FMqt4 zxsn*dq5L0yZ(Qt8r*T=Mllq>C6AOFS|FfP$dT|&EI_YxcVh5&iyc>R~g1bb@gEe`L z^m#2iOxvf>lD-z1DgsP#SDt(>;>dpDhc7kPBAQXX+7rRcC zNnCI+H1Iu_uK52K-4B4szP6A5*uBooviMxS&29tN^*)XB9dZh*arD#Uy(IwQKepoq z&z|m2J@5Ji^1E$hZ2fuKb}CF~uhe~dd*#c*K?xhW8m7i`QDdYA?mp#1hN&$&qNe#d ziC-2L<-QfHF1l`h4Xgg~>8aClN?KYZFkoNd;s$YqgLfzA;=-9OQntI~dzp@zQq4?< z%r_2%=p+I&2X_BASCQ3~m!fPtdwfr@MBoEzVE20(XVc8r*7r0e<+GB@W>U|XGy_-Y zZSU76?V(W?bvDu(hjBJ>aDnyO@`Xhtg7>|-@mjw6!lb(eY+e~DDOhT3Bq>TP zk>`gG)U>pX-sM0J1J*Y0G9EE;?9|kpE|R>8%D`b&=i1_#A^3Ph3{{f(!z;Et^47|I z*>A`REG;W($V^pVi==ZwYaq?r_78(h&1R*zIUjIwd_?c!PA0Hg>#j4L#PAIifHN!Q z?JY1@Wx8(v;(WX83}FGWl$?hL_q6RFIv%rLpmD25!^buv)f1hV6&B-`SA=l`SMFNeRbg(lPtH zGt5HDMoqm_q@%8{zo=YMd^o)8I<$L5#!QfZCF2;@u>Ax+9Zzd@jbc4oZ zq2+^%5w{f@lB|j}$rN&#ONSncgXLgKGUbj;i_E>}JGYX;K7!t!FqE42)3irx?L?E4 zljAwOgmLVIahOpVWIBLMO%3$5gYmqCE5;j-7iwTE2jh?Byo{~t*}?6n2DH}mwCWS)m!oos&78YsA5O?g7|7{za&7_S$(Br5}^!ZlRsLc!O`C(7= zg-iP0 zGh||;uVlYA5sT)q4y zQB4Vfo_!RA`ueBEI0*@fY7j(ubG_K=d8)ij>a_tSbk+q!f;4ynf(X9^hfvlFO=N&y z%)`FbRE|7GNQgc_F!AcW{rz9{+D(}z#^GgL5oCrne>3)%MPlwQtiT=ji-_fik#Pb_ zp}{K+q*qhuzU5yfKdfhf>~UXj$w!x@E`?*m6(G)Dw*j@M8h{WK5dFU9!jR6Fu5KA~2Q@ws!=p}2#Kt4<3* zCaCkZ5Tf)#&B)+nq!Gv&yHI#8WiF5!Qy3T~SBw}#Rr5NK+d2=iff4>LwP41Eo2s}C zy_MA{D6+LNqjIt51&SH6il5o;VBHxY1}!{C3ia=kKZ`LDB)9Pgx;kR2JKNnFnM$SRJ3f0GwPUx)#v5_m$ zTWqXYt8l<-S(b1Nf&C~LW6?R)GSB0neZvX1y}))a4oF8`&hU|B&n`dm>~PWJK%^&@({k z1(ah35RkY}UunY4-rPBpvYqbdCz?&8y|Xu#*9uJ4OhHOjl)Bm2q|kdDgoVsW3qJEz z7WZzG>-cKr99{V-WO!47z(W7GWlKlz%I_0h%XH3x;C==QWE)cZSFJPA=6Mqk$Qxr4 zD1TzX7tLZ0*6TZ;s``~-O?TZdEZH+@!@V7+e}0x6?Xo0pIW#nW^Mh#RIB6;;mJ?Xx z>gr`q9*0C5p0Aqp`ZjZ~Fhx7)D(}8YBQFukq(cZ9?pfZQ1rd`R zrPzTbs#`D}UuPd3%lCGefmFtx@ft|ek!Y7eQq0hUE{T!SFD&81pp?0*5qpnTMb(#i z(oqmy8=9I!h$U1?!D9-@@G9|_TZ%AH@X#saHGeL24gLNqQ9;U!^W0#vMRF0BPhYKf z^xn#7aHYJ1n z7YDmh*glMeJ(B#qjg-2(@Y;$;P}4O}8Z*1m_5Ra&2QX1P|ACOKZR2_+QS=y+_9;0V z^#E*7K29&8jLf~|W7}k!Xbo@ME;jIF5*sum6+qJFs;&^IUmKmWe<6Bwgb3ctoy?pr zIgZ)M@w+-NGL5S-&P6Lum|n|1DreP<0C!3i`tIg68QB0vX=*otWP5k0U-~Yq`kTIW z#rQvBRp_fxpQ8C6+`UE11H8F?D-U%A(@oJFnA~$&P`yr;xnIq4Z**gQx_J;o_kTV& z_pKEz9^DfYh`38WVt%ZJr~3AAE;mi1kw1xA2e%MV+QV?JM{t&Us$zK~>S5l^OJ~kq z_vSt;)M7r2>4)BTyKAj1F{jsW*a#xvk{m1bx(JrqQ0v(@EK1QkayW0i0F{H^lX)&#dEjWFGc$|KrYg@ zds;VXAAW*YRz8$z(5O3#gR_@c@K#p0-dk&y2vpnhQ8XTcnoT_@k1Tv0Q567Jb8Zg! z-Vif6k7Rr}o}}u+0lMT;gVT>H1dExq3Xz{(c?m7IH8}+HzO%$AmSF#}oLxJLM^HS9 zP7uspy*e=jrywQ7ii+~9_^=xPTWd?A6n(FrO7s!@6@fRBHkM-b=rxa`&G75j3@0)6J_<;KF>zUd zvq0l#ey+_;MLj)jaT~?M-OL?UVxeihWod=ZfT!x<&q#1ez?bNAF^k=_ubErSYxq8C z)BWwTxO)2mmwD9z9>7RI?cxxg=? z4>Gcw4e2fft4t6|bg#xz?_QuFMWUStb-xt{IQp9-hf&a3Ou}fB63q(b>RrnAFxc(rXkx<55AN>;x!v+gvfrt; z?accNOH-ngJ)0BYIVr(dqJrh>@b84t_OfI)6Zm#eWdBH8-)S&Ta*OprnKQ!CULZ+S zbjLm@?9C$_d?%ZZX75nlP^Rj=?Q;@^e6# zjI=M@G7RxgmsUa&9M8>`nPbFuQlvD?9Lx1(vU#^dyPzAh1(`1@(w`jp(r@U6OEPV> z`=}jvEcltk^}g8aR;b8f!#&QFRmiDjhb|i$aNw@lVBx2$RCJ5 z=IMUL2RB@r0C{L?`bBCPkr_LX^`kIxH=?*mh_|(!*v0LOpV&S{_D%`jgD7;u(ymv5 zUo3DiG3vrLGFfo6%HP);NB`EEp*>x+GP&;Wq<<7$mUs+G$Iv(yh9e>NGxRgd646a7N)MacCJJV zJX|}Q6sIQrP4O%brX7TOluXX{u9}nUrxX%tq+?A+^n{eR=D8?%aPnz{B~L#vXHrY? z?>5}9j2hemSlGQGXPP#KR{*vW8%JDjG?@z&^{o?%O|_41l|oMTCAE^5xgx%A31luV zPG@`?cIzIS+bTpP9c8wYkNPAT#lJR{kALbv**WaJ1pq+=Vkh3H-VRNU6XPsfPWX@R zD!e=im#T_0gJoeUer`cqlG2aEQq3lHt&V3OI;-{1#Kkc&{1n#e-@nRz-HnKEJ(G-0 zBG3kr&xVFb3D)UKMv+Q^7*!^kBdvlUGwQ?=@4YJlD# zMLh4ItKGnEwiclJRcXFK#UB`9PJCf#gD8R*Efc6&_ElzIw&nz}S~o4P#G2ZC4@q|7 zfSlSLN$StHHXLuPtE({`nRGjwM!H@zTJjRZd-w0P*9i455D?T{J9lmGe5c)IVa|dc zdh~r$7z8ThI7xN5_ET7B(xqSvjiMP`xP-~pY?yj!KosFh_@gEAay&deBW6iI_YOR)m6(i7ofz!;B zk!UB2a}RHRn2sI#<0F|AAW%P5k7K?hp!S3OfkB7f#7Wb-^bS&^5})9|L)3=M}`t_b0el{+w>X(+Ki=Lu+bB8QC|&l zx}mR~cSxG5ChY)`Gw~kD&hSL7nFE)+oh5Shkj3Cugb1i=+VHICD>^tX%RjIGgt>48 zfooc=-`zYxKfTX!{P?)wJL2C^u9c&qM1&c>ufa1wK6SS`NG&<{FI^cr}Hgzy#qT>WJ{?qoG@QdWRCKUX7yj+4!I zMRkdCQpC1I${?vLUXV-I;cr0=XcZg;ECNApZVCU@g9fk>EwaM326LDV^50id)@`N6 zI&#Df?R(u!@6X8(gN!5quFkRnJQBXI()jsMLj(v!W^E zg=>b*dRbf3eh%n}%msnJwY<%n!E!I77LDb7QIm8~xRj2qQ{UCu9SeE9cVl~kx54&z zKP-TST%#fl0(ll*`o?TO`?2O+)e;CQUa{{7*&2q&z(;Xz^R;G{xw?pmsK4z=@l8hA zFF!1k@K5!A{Z2smgoH5uPtjl6Y;CaGqd{hX2ru4T*jLbx*vB(%sqPNqQttSilq4^e z#wCEfr|7l-Dj{IvW3NfV8dT$Y0Fqy_KTcytRjuNOD%A^BZ+|!+E3orp24yEPGW7OX z`=cBO;}Y46AX%O8O)>jRlpl1>$-cVYd6$`e8ZUhAI7!fgS}r=7_1k(s!#7$CUG7N# zss_4?1|uxw3fN?%Zq3gJxIvh3{;r4NDx^%i+jBs&c&!SYj9=5w*>)r8ow;o+ zp@l4k;BCGXXhwZ;AzPgQO&MfW$R$l!ki{xvp+ruq5DANLKQQb<3`*qSZ@6tWz(Bn7 z;Fo`X`BtlwF!NwbUtj?!ek1N%z@USZjZafsOiszKJMs@E0K<$zyX*$*rJ82k!1_H1 zy0be;uz}j`Ozg-HIR%ymh$aBc4})_DYkt3o{YneTbFrwOXzIm%I4#Ebk!rW{tAo{yo!#YF(|;D+W<>3jkrwaV+B;Pp*~z=?L^>g=kDU&mm7K< zTc%CnC9l82CJ<-!H6=vGZhsme0(4D zB|(3dTJDs)&^v73b1&!_5!V9Kxs6TLgbhGnO3Jx5$m-xNmI52;&N^DTdK)#4mOJ0_ zQNC^6;QQKb6J8bJe1hkp4N~h?Pxs^^i>WXq356Pwk1t&wbaYe{6i`4Kvuz-(vl^F> zk@+Vo62EQW+xB?1>_B?|c)c#$>HoN~xfwJxB=-`YiHnP8J0SbRGPqPM)7?X$gcp7v zAxqw+7!Ir#NlIT1)}qT+sTXnPmtlBQKr{V<$_deGwv>gsLebg16%HY{(|7@OClCXP|!-WI3^!=abFU#dp~m{ zQd1iiO*N+4m=Au6KF8AK`eI+N2LzN2KK{;hIs+k<%~7__KF|;H(sD9L7C;O+Tk|<} zKTB?5)!Gdr%XuA>`X;*@a4dq?#|eFDVzF^ZQvTY)^=Pzh?$3bee(zfboozM;PK3C} z7=;qi?4}s0^bJh7AH2-HMN7U^3NthVh#2s2KyX2e!i;BiFGlgOZ7HPpU($P~U%U6E zZON=H5Zo<#LXjYWiHX0b(LwAoc-gTP?d6aErT_nM**^P|p8yT#22`-B`EY{;Guj;na;I zeh1OV?;bFI_gm1*shARa|53t;JHPt-+7*TP4c)G}giq>JmW(CK)XC|(YhD$TZl&4b zT!j}%{VofsSXfYMXlgph)6>x*fR4Cc5TP;fi!-T;&?$4cs^*Q~K0Dg!&;!C%hoE{S z=ntCgUB|iAzP$NuBND%-z3B-fc|NY04?-9OWFH*bYand*Yg>&?2(nUU-PG552Q5m) z5k=jI?Zd(3g~WKgxuf*dDozZ>3IA*G$jK!aq<9IzD!g9xG|e3J2B|1@6BCg5m0}+- z<4ivryUXPdaf<*oi5B^frln+AZ51z$9H}eHI{R@?iF2ZVvqg|OZ zjXV9FAZ@hJ@M%mTtlG(bO^`b{^=@PWbB9G%BAG0j2aVpnu3tJ#rAIPXqj-7+sMMcw za^f!!=bKu7rkeUkft-wFp3ObBIYyPx#@8Suk1tE4h#8DTcgvoCzBn;K91Amm>3Q$kYUpYa>v6C@LCMumh5IsKRNyV`F zkM@ID;S4uH=J-FVhpl`W&tj1Ye2_f?KFQH~CmG0)vz&a`=z@Ct_N^IEg`0%dKnOPa z#WpG}&Vh!Y67ylYySu0HI+4EIAdv=XlC-I#6sdw&*rlF{ymLYv*e|^+>u9K95{$O) zlyz*3*udJjn=)nG*G(k&&L483a!eS=2lh zi@0fP1>&bXRf>LYGOoWQ!PS|yyzb`&jaB^s)!%#^uKv?V&{oGaJv?cEzuxAl$Hz7; zmz4(qbuHP?Z%)YJYW3GB1@rmnGO^Li1{=2_Xo3O4%^WXv)*tt zz}`Q}l7iv=r)5nBG&aHvy6839zmATM#(ecEG@Z-Z;`Z+@3DVCzAS%K~$%RTEs!;U& zgh4JPz-{o}NuK{^8VU3Uf`7DEJukf{-`ySe>?BkJn&jnZ>)=M4a%7{5pm6TLpRY|Q z@)=6KQ^*QSh$|PS&&{OPO%_iyzm2cPj12NP}ec(*5%Ea;K4$Lq5_qMnYFKN%}9MaZDFtz;#~P z5rTFLH;>5G5u&;+4r@29)~lCJwsF71U{C?R1!$6xM@5D-PKK(P!kxUvhA&(ZcxO4B z+!3k1+@z!CbL%r)eV2gbu*8mT8p5!WoX`==&6=$?_uPoMMr z0L_8XtMI3I0S?4;d9C`XW=@MYQ&4=Cz>?#a8wvcT;t$CuFD>)IcTY&awP@w{$5;bCm&5^x+G>eG} z3nFTNG@B(0@156-7Ar(0E4(f{4ZU zhcND?j8CN6s2f{%CI7(WyX*B4OT&n@iutOewU0bd9-~u~#Tu?bAr2I>9zS7c%1**q zsJMpt@0@Cn)Pww*1yGh_m1N$@$wxLPY4k@Odf}k9bcb1xpzmpY1r=wYAC}J-b2rTd zieRc2A4oBIc5cUl8uy%|=UdnNjs6_Q`B8WouMq3P^482656z5hx0fb|Yyyr(nGr0- zbehq7^B>q*X)!@Jzyj#h40QiUC42K=#`-enVA#Lt7Wh4%TfTw&Z(tkl=1z?ig9KA-hPlpcu)1_Eig&xII(babF#kL+6<8F4}#Cg55uFJiwWZh&C7jF&JNvtGR2 zbcDP%-&|G6YhhDB*6Gv(1Dda%kA{0XJ+1Wx4;fw~>G*ox>n1z0DJXbc0Vk!cl?w;_ zQvty0(7}RHQ%CW=FXng&X(N{%oX_t+I7uR#+sd&G}PvYlOvxmjm1G28@g@RhCKtYdU`-36R_0%(|EXv!4%wV z%qxPj!KQhi7f|x~dLIi|T@P&Su=i}*X5%V6+lQ!~N%ziG>AyAp{NBo_%nZYN40jf}j*BzA4&_NRn=B))$5rI=7tS zqrO7wyAhdBNlS^UIQ$lOiWBL)KEV@52KJGch{qzX`;E^Ce>dLb^Y)LNv!cm)*0_XG zySuoJ;jBq@kg7-o&6^k=#yz>9rUBlp4mAC1Q(6g1JcM-{YggTqFHl!^PkSwI8vw_%osi(Q=FwJ3J7mM*1_NyO)1pK@Jdtw>l}J{c?k$4XJ62ejHjKr)TOF2hbkYub5qKAi;>IGXGkEN974 zSex^%EN63BEK}qo>vtJH)HYcysy7LYTbgV2Nd23DjwuG#3@|7*M15+jZ)e_te+qFd zDh0IAyZif^eJw1I-FIn}Ls9k{)LDrGVXT-z9Cq?C1Q^(s+7TeQf}w&a?tXAx|5a|H zqWrM<2^n5c?v!HnZ)XvIUiSJ~IN%JTxH8!~9Uw5CY6 znMo7P!`C?hag6)p7H2r`q}R`WuE``nd;I^eQqDXa%C`OEQ)J(wgzU+dv7{$sFC^=r zlzoY^uNnIg*^)JqM+{1mHA_a1HGA16$ud!BkbNmMW&54;JnwP5@9*FD{qH^;X6Bx` zuKT>M>wA8`A9!kx&Mp1cj|~jOCdwB)N{fnqag5E6H(XuiFhe}o<=dq`B1P<{CMROD zK-`4=`uxe|Bu$ymk$3v;cgw)ZVR=SvJvE?ts)cPQjUuoknY?!~{4)DKUBu~B>93CQ z7&i$;;}nFEwbbx5YeA^JhJj#!jg;o4t9zgKN_x^9FI#&qvAGjdZF@6ysSAuSN`lLf&0>lm)M_%#!l4FUY?*5$b^(JuZx>C z9V%IK&)*S4=K416k^Z~*s6cpmo;!G?zr1!vbZs*DIG9GWVy&A^^3te2!>mNGtvZ*B zOK>E-Kl8pfONiJx%(AnWH4EgIsa&DyF_bq`vr$vxzL4G~>sBl51yB#{W|xiQaVGlj z3?I5}LdPUkUrV~>Zh2>0B?Qr-sW@XcOp*b0t-0?u-x-6;)+rROk0v}FX*7>0w0t9kbDs!C7t>>R~lT z&n-!C+$4S)fd~6*re8(yI|vaOj<5zGtHFGTXGo zwIgrj`PbfVZNUqIF~m=4CME5_VSx0TITsZz3lkHp>~Q3mG5r`xLg{E(58dLUO{VJL zrH%hH%Dm%ZhfNrQU5>Wcocd^Yq?}VWrjIMiRO&7~Gv?IyP%PF%?#~RVjJT-`IBAYL z<0?qV%s2M<2)U(OM;u2ApJP>?fx!FJv>-0inkhX7dS9_HU~nP^Q#|OR(?Z8JhwQ0o zS%j^2`z=Ta7H2czm(?tgdnbp!lNHxEQcQL;-~^$CtDnjGY9srDE&tKH$!qN)WJ;86 za^Dr&!1Eq~uU;=Ti45lbJF-4D79$6xXjJ@9YZ5GF%AmRwQ9Ho*0a9y^wR0tMl< z5+U3Dw}p+W=TeK}_zyDz&OOAAWn>t)0>69|HVnm@x7^zrAu9l9Z0c1$H{5N98%*$l z^?kgrLt~>!Fy9AQ3fg0}et+5u!eUvWkKefapn(U%j;U=WA+XbgZS5F4yS?W{=9KU4 zu$jkuGSkQ-oek@eP&d=ClY%O8(mX$z8@B1KAg`^ge0EUAoIdK^VVeT~2_v`gE#w&! z_OBK53X_pE+Ak{i>V0*+57G|FJErP)&|Q;A1w|h|=OeeZ`#prvHt+=^!FdlUyQ;9g zQP(|CGL!NMkL;ldxwz?s^_4vlxM`*=qoa|N2-Tq&h6DMs=5w$~u-?YhJsnEz-iWeBDf3q=ak=3d8Pd2v}x3Ua-w#9~_#(W7}E`q5L6J;L#c z3ZXA)9_F22x&f?N=YMtzU}V1!_B|Mv7_?Jr-*K|3pT<0=7$hRon%gCGw> zj7B72VgQU&PI4Bp2dg-o6RNfdq^ivUb3L8tSNUL#{g)?|o}OMd%OGer!;Iod%~8L@ zZ)-bpm<&{xe%l{E2$;)GFj#Gg4Qd0$j_ce&_k13j(pfzmHVAGuw0A<8%FS023nUaX!1sbNsxN6`qOWxrE%)mqmAoRYBs; zBjv5mjR`&VT(cOcq?c5adPJXHRl+@_5TrIYF=ciw&BI~Mz*nMJ@fa?R*S97MnhO_39Y7B!Lg)g3r5N+8H<*7FU!TQqoE4 z!zrJDWPEMd9;k8o)z$0(+0llaA>QlreT7LZ2Miq!b^6;P_f(8*M%+K6GtWbE6Cgkg z?Xjobzj!|5qbJXMK-e}#<-1NoHw4cjbTCK(ZEbA_P(aPAZ_-o3d+X~yQsBCjX(l^d zZsUlCIyshZG6&IUUke+aA`uY{?jlof*=fR(5m*|i*cOa3eWR^sQ+@SjoN~|7tL?Y@ zK=gz{zR1+lji+U=qJx7a1(hKUITax-W5{%9P{;hwmz|y^<96lO#2#)<(h2q3?2R{G zv(c^7)l-6H=c!|#MsTRVUaDwF#o?0R9zbCi78j=jhdodlMZh;69sFbNq7rjzVoudDR`EQuv zowXK1@3}(!x-Yu3vr}AJx(k?HY=A5S;0Abb1>lb?JI2fBw9SKq6{+3;@ymPs`LG)| z0#AX8+11&%9u64ytg8+7kdcwWJM}+y8sFX9BLcnzW;npU?g(0Jc{93T5E8*H{f=Uyq7E>mFG@=8b~>~|_A`HUNe<8q%6XUk zu(+!h7Tn4Fsti!{s~o$9Q7A4BF?2_36zwlmk`sAXad>o;1bSs_oIv< zFHrZ!fFs9+5PhKYXG#hIY3C?|%^8|*kK;znt*sF#r8VIDjP5q@@y=!$be)x#4@M=- zk$)>f0yjnV*GxM8<#awE&USG_TauEJ<|+KDV`pAAI>g=kH9MlaP&;bti1>u%RS(ax zkm3x020{%GH~gKd*Mq4UUb8i>rZDb9OQ$qb)d(9qaf48EmV+i|6^e}D`*&?5z*ZE;+2qsAQ&WZv}1i0~E5w|0$Xsa`AL*AVxxPoviB`O-bfKeL9 zSBRc=&KueSUG*dkXSQ0Hk~|j^PEG8x@6t0(}q+3Z6WP1ddulyp}L5dXJmb z;MLG|Qy33eolty!y_5*;Ds1mhLQjtaVhnl?*`6&ByBN#c-xSMKDay&=rHR;s3F?X8 zYo!&q3HjU?`nf|uRP!u`gS__){p|CYY4^8 zgj_mCMolQoH7fvfdHrKRdEAdd!FOA+Y4d}A&|-1XW6zT)A3a-@lh?Cj{M+#q$=6kJZJE-RD5 z16`%dmv_A0zf?b$!!fZ5*mHf|-Em*CT!qn%&})i*Shp2RI5 z%ZKuLGfP+qN!HU#-0(xg{By09IisL3D)epG!n8gbs_{AWf7Imv>hk+R^wb;ES7uM{ R1GpEVdkL*op<#db{{U9^Y&7LAfePscXxwymwP9IGiEg-fgP7d$wo!(oU zQn*++!mRD>D7e_T*tl6Jtel)2gxJ~t`vx|9$G7a%c+w~k2n9qzT0+w`b$8y{;f;1O z+0wc3A{ru%I16DWpL$C56alSne)a6Uh)B{;kD6KA`uI|TgzZw6gqyF*_uZQ6Y01fo zT)YX%xt;MRzv@>@MCQ|7qZLmyodK zHl2w;2B+aX$GVA7_&jx=V^9!{G7wKJXbc5M60HXl-BS`R_VNFIPZ&e#H?N$&n5nkO zV++8MMDK-X_=t83*07&7G@##9+e~H`7AkCWp;6{$a&*=u9tjiup$x=H%50(k|L!`@ zOWd6e5#^&1<$Rqw7-oNsR7DIsp)We1^&+PWbytp$DFcf&`3#ro5pG@#UJ^itAQz9# z-ZT4(p{NZBmOWAvJLLo`hZYMR2*Phuk8L#W$&iL0i9-&ke2r8@b`v3ndb_n?v&H&a z@MZ4K2}D=)77Ga0pqp4sEdxgVeym0#Vb|O)7Cjb5rIa>R7zn6*G3yd|dWX#Fs}v6+s?J z9zovkm`9TdMU!d0`21b9zp!&OU&JGD$<;Sf}!#B>}IB>B2=-nQ}yR9 z4MQ&rM&%1M5Y}x+D{yO$NonLB5+0yKCf1{8%b_2 zzaD+%&uT^FUM$C=Fa*7;AdAwjPoBVix*HZf_XxwCg7^E}qNkj`{E(ZDvFpXMGyT9~ zX`wV(v(?wgi1<@KZE@}9>%v@x(bEPw;Kv0~JI|IA zdXG6#s5JV>W*cEje+RW+h|hqqx1ZZdS+X=$@W=?+&2+|XprjFE5tirRr6A-OQ^kX~HN0BEwdHf5E!gof#{n{Zzx$IiSBoaY?^@ zo5HBp_}!BXXg?2+qF9kNSKrE*->Qa(P-W3)Y3D58u^m0SA5){K2MdOcxBoP`7#pO^jch-o&+lfYDyE!A649qar3;p`}NKJGoSvt%O z?WqLAnv`x51oA_N;WwGNd= z%*jER+O;7Qw&e2|{<9MQgXt3d07_YPHIjB|gcMG?p_Uj?q77+q2=%9~94ak22nF6z z`}?2bIc@@G-*aUT+f5!b#gn6ZsynP43Ph1NKk59Llbiegbr)As|L{(q)p*G#$t=-Lrz^Mm z`0tuzPR=7mH~IhqQ7jxCpB1PWbY5Isb#(@6_ih!-+S@B>Mahs6KDjcf9JsG!V#aki zwj{qzNI=57$TiL#wN4ee7W8c55+EV2aM6!`i}dJGU8RdK*X)up_TRJ1kCmhEFh9w@ zL<^D>ELKbhu4=V)8L8H3WOE4ZHY@rv{Kcl7| z+-hZ0AJms9M~PNn(R5xUne~-uB5NyYnjkbVQ=QS6OP9bieSBN;4YBhu9x;k&kB5jz zqm|WW5XE1EGyUs4$NHk-MIX7(W_`Mrceg9VY2U_)Xr8T)NobhkUC@+SY|PY@yeqv` zM{9F`f{jfXn`vn{jfZ~PVtLHARr@F)M93;E0x@H)WUKZ}cD3~NK(!Hiq-;P%h2qJ{ z@DCNfpmtG#G^P4h6;hrKIX~4Sbz!ouP+aYnDZZ}*>weborJw^iGGZ#ui=I0c^v zjn`E*+9W8_3KU=^n`XDryU`~puZ$J;K}ik5j~prA!cX0co}!)n@jPI84&9V+t2NU# zGUIv-%$0sH*L-7!zZG7|CX~QF+i!_+;*L>LHxQ@xjgW8l=6D}&$~QYaDF;lE1g7*> z+whOf^irVB(h4@Wze33k=sy2Fw5W}fDiW+bE*bIoCS^yup3BQIye=+yehARk@NwM%D)_YlVJ6Trf z2m||Qrrm??`FzU;4lj&83}&Rdzevx6#ZryU?nrrg@#~k0s4=~c8-MkRk|I{#)X7P$ zf+!4N!m)At(K;8A(o-yEoKR`$Z^{c5&n{ArhahS`8WmIl0RaLZvhn$54Xt>D6l`8G z-~rqcALZ6&gnIrmxm09GAe*a~YZscPJA>Y-J~!jf5B4mk$_U5HEHCFId2uEf(OF=^ z@mbyg3nGs5or7bT(fK)wt<^U|tgab+A1~b`-wn&{%p_aWM|by#KM-2tAy)`DHMQx# zp&s#^6ThK0*>-M6aY;5l&s%UgQf$=|kA1r;5n{V3O6m-y;p!?`xnA zyvJn)WgcPBEew|a=-?ydtpB*7MgY#6dQ4P5&!#0vGei@wFg9t_+TBg`Ing7R?JYs1 zEJk<-Qbw87wmP~x!`S&$@H%sr7RKh^+?1MWnuqeP&nedHgZoEv7KcC{FB zb=rXoBJgBs(Q;Kk_rRdu1$SV8#IA-1wwst;Q9$demW0_iS$ZXqgq3Uog+g__ zULiwb5-#mikF_^kFYe7(r*ePI)s2US6H*_zzSHKhVAt-qWUkV~^>4KkNMj}s|B?a# z+F>gCZN{yvR#d?xhL!z(P*=QByLS+ikI$<7$l>*^fb(|@wn;+;_zZhO`>UXZ1-`;Q z28Muu+u@y44rs;b{Fv#7mBBOP5i=ZwZUR((rF|~=Bp5vYuX${5dq}X@P0JrgMEyx_ z%OfKB8`NG-SJcJAc$it8fGGCxBj4!g=p0slTjZ+0QPb1Y8MVVlMSin_Eh~XZ$o?kk&k#49zot^~YZa zEObTK%$`I%-rNGuv`EHJRk~HM>+(1wr@kIp1uk3Ir^^YjvTd2-S!m!`-dbb-#qANF zuInRHYD;AVD56h02#t7FHwJj-_DIzeE0~1R$OyuTy~SAD^pqLKFzQ9>SIPITVWbL=tv8lz?nOMn1Qhush5wIu>!qVjh5!|`G0rf;`CO|~$y^!2J z-sG~;?js|L{LtymQeV%fOgCg-nqW;XseFcaVct<{WZxP|tbo?0QmEAPSmK+c5qU|S zmnO$1uCvQv4hsRj-C~p)>Ht0{oXmfw-3Z}B*loL|jA3Ax%ZKku+HMT=Np6`}=*DK&|R7u5->R+y4TBA+o1OAtK^Q z@w@h;1O^bMc|n#tEQG*8U*u{0>*|OZm}fOKfr~(S&VF6PjU3?pbs(>3;fH7Kw}6da zKrm?g`m3AKOU@Xfk$GUhkIQP%Ta6RPEY>28IqHeiS@6xCprbes>$9PIR?q+{l;P?4 zJoGo64hueb_w%B0tRTr~wQq93nQg;rswx|cLmlr4hUb(koxcPiX0R|NC@!CDF++(Q z!zVDyV+7L1t0q~=>~!`V*7g7<(#4}>;Q&jxfF&p&20t9G5CRSgDS*X~t*@a(hiJ_s zwhRwLPTUP9_*je{C-h2@@+A6!bvOIi-+Z`rNAy3Sftsl&#uI|XeW04Ma(Qer>PeWY zj{NuDY+6OWU%rTLXV!wEXm0p%Z?3%-CV|#wH{B1)bAlpDy%(vw`RAKrFsLt3!P z+uu`P{e-O8UTJxUKR0VOjzD>CHo#5BY!;Db8Zn>lZa>gjD{uGY$&;nE9+hcO`x|pGkzGd`vA9UmOy()}WK!B2wbpoQ? z28eRW1ckGpThHpWZ)+>Uw2LhX8JWLi?BEr^_E&~`vK}vh*TX=~h2L;PmgUI2pSG|U z+}$cc*ezD|rS(Uw@SL5svqpp;$M;Zyb^44s+TOclmZ_$P|9JGsUCl84`tlt1s;K%? zR|y(2qIzQ7`EQc1&JKgu2*%sDsqr<>&Fr~4lc8oWv()5&J9e9L!FJgx$;yJqnfCT% zI$GAh$L(%x07o7bkp664l6auvEV4&0KBON1yI3^}@DDK{Z#faY9n_a$Sd*6N&@1d? zL^HI5z<;A1q2Kv8iQuR_K>L zNUj27^D~EWV+S?EGM26`xmfv#_IJ*T2E9m%dCz*xQLe5)lt})5aubcvzFkh6;ZDXO4jfd~7eK)`Mj5$`<*+YAq%aI8%csoL$7wzjz ztkpRM^opcBgfR&sJp%Bu{^P=&X#vrvauhf%^ci#hqn9LO+jBo_SP9rBiS+AuqO6?o z9tG%bJA!KT4RvQigx&dhv`K^?C%?PL?NozX4v1}9cLjQlq}sDd>(X1MLQSTr_crF- z#qrZWJQ?VTzm!Q^7ozgp_wJ+ zeZUUn|MatLlUm?W3new$g?o(KawYxl?uL*=-FTO0jy~rU`i@#M=R<3?c;TD`Y!~)>*Dz#c=&fej4~XAD_fR&;a*+ae*4y);l1v-40`wG`!8b_=JUfb?E7$lqUPCH$=tw_q$2HR zX}J(|yK`LiL@K3(gmJW>8yOJhAhuNAn#}!33l*{&l=U-`)_e29;dI*zt!B49`DNVPS7GwSZJ6cgDp0@F;1WpX=hHpKjQ`Sj*!` zDn<+X7Cp+6z}KHW5fE_!X}lqF)G~BR2}7;^dx(%-yT4T0U6MXA6O{f z2;p6;--_!0*>fsyJ9a+-R+p$JmcJX>6nGYT=uh?s!MB17J2~aHVn0*C&nWXDxVOhF z=9-(y*4Kk>`*b3ZO^~jxF?`BqJ?BAHa}uKN>^y;zkbJJgQ@}q{eU<-bi)S$XmPFL( zIiP9kiBcO&jwS8g@<1wZ>gaOFa6^^zX&|^?lR=5Pb7h@-yU=4Aq=buhlHD*De|#J! zQ9|GVk7}@AP+ua<%+Dvbve6L7`Ke%lo)jXRBjI*Qbm7TNJn;c6^WuKvB~)_WIJF&T zyK}JFjT@dt9*TE&aa&cvg-}v*wD(}Y@yv|fa&H1BS{qxkO$K~!@7={M^Bd>-^+~aS zccy1XsNX{we%@TYoo29AcozCNA{x8Z&M3YT7N$@#K}A;6T^B$HytcKqB_k!pK4-UW z!~XOAlLFVq*JzKtT!9Y zj}JiT#qM<2unGI!|DjGiLkrSZa9lo zW25NUo=@Px)bbJj2U`|Z$2pz zZz#DD3Yzw@af5)73!W#z&kFk}b>mbDMiv(%fxa;?0Ou4X3(~SlJ+$;Sv`=;C7BAqI zC>T|mNpp1gL8$U}kHA$yri|ajieXejgY6uf@!(k8vh>!%p{bhU9Fw*(Z`Ata)H$o5 zfb{m3ba<-@C-CLP!ug#DfDzMjPG#jeITpUC>+@?IEICfjr|rL`pB%c9^sLeF5Q#Vm z;a2HUkG(^3s*_{KlHGJlI-j=l!ofN>g%83j-1|NAv@m{oOsax5l{!f|yXg*HR(7Ig zizSM$%JH*G!SeZ{2hP!>05ZFC*@lBQo4%$`^zjP6S64rEbmlKaQTTI#OgO1Y9K(0?r>eUfy;X2dWf=7~1=TS}t4Z@Fr?x1kHD>V)6;z zcK}4JtTk#H@o_RfOz57E0pZ@8gKusz26bt$It!X7kzu;!yuwbjp>8@#nAAQ^OjgYE z?=ko5G1on*O@%2d|HcWAq#`0s`49`05)k&4HoamGfj$cr5O_Omm49#Q>S<-|-~h?X zJGx}nD48%dZSxnWfYj7q?7vZ4QrdioWV?+6ck5EGEP1;4&Ha5@RaN4vYx`EKF)18A zlk2nbpc_TbPQW3+Wn3*p=;cinD=vI@uyU|DtS%t@$%-e!%8BGrfbbRHmJ^wi(*Qmc`u_dF)_1BOP}-2iUMqZn=jQ=Ur*}S z!U~O~a}`c8e|i+{ezkRL{N!7i4{-=~v*F2Nb1Ow=Nl83nhWXINg~0Z^$|L;9#TW?pShyxr1@X&tGOn#$Vr%@-QC2%uP)Z=~eV) znW|B=Y!2^M@cct47lXx@_>}2zk^LmS*Z3g5gy( z9gJ^J-5u@n^*kKg^WWUQ$D zXvg;YwXFxv)sV#V z*h|=MB~U|K_M5MDx+lj-f=6_wR*P$A231*hCTxS%3x8i8H@8;~H6bV31dP#I1dVUY z+Sq(>0sa`u{md=a$AtkZ|)&a zB!9IF4I*A5(v`!NzhE~Rw1t}J1*%3e0)PGb5*E#VTrvPt;5*Xx`z3`jHIg`d_!ixS z#AP3m@WSj@S2`9=_ZQ0Acjl>_6^io5(SLc(0>C5d66^}Xm~=QVeQLN*2b>DUmTDr+ z8aDVkpyk@wajDoe^|(!MY{DCrknILZKsBf0=y9QvUP1*Iq22tu)+VoxaS$3}7)>`7 z`22P>%ZGpCfQ-b?y@uqcqQkPTL3uA64|lGMyoTi6-9V z}@Kfcwy1oW|7O6nm5a>PSltXS#9A4@s zVUi6Ipu0VH5D*q{Sh~LWTZtW`QlR$w^;e(EFCcB_4fIKQWUxIurzRmcybxO7`vJjw zjPju*j97VOXJ>vjt+OXpdX1n%3<4McJo&1-FJgYLvo)Y>>F@NzTIC;B?SO0efG{;^ zATutZG1l@nf)U{c)0Yr(0nxXJ@ah+|$3Jc`{g<#)=%0bnq!;=d+1=evqdUH9>b(ky z@C6qUv6whh!tXDv*ST!g(~3$WR@Su=e$CPz5GTjMeME@aUoQwdBEwXRD$TQtwfH`H z8opLL_Cdb#a5tW{5-s8e!zUdaI1mVd^200uy4%sO3NBPEa&PF|A9 zlb2D5iZ;n=iZls<(xv8Rb2t!DZD+CM4gORB?l@O&Ry3AZoIK?xrd=;6y7M@q@$u42 z$hYGDMHHn}n0~_r%H9HR%W7ovk5{ ztIMUW)IsLqH)=cEeS_WW`)ZAMvQg?uY4OmgPzrZ@7Q4%?Z; zJ#f!pydb}lWLOK;0m60^iQB`*Lx73&8Ny7?3QDFNpIhLg4{|i$8xwm~CYL266tw~9 z8`Ku;B@2ic&Sk3ZNBE#f>I=d^3SsTfuw8P@%Ogir;q(E#Bbps>W)nr`g^!83?{`d- z?!H~5o>)Z#07ex3CdgqhKB7DW@dAl!l*^}8(EjOh>NFn*hi^Rni)E(?f^q$8SK;9F z^x1>!7i57All2Lb>7NG8xmGXXMlxQv_40X9Ir$qqU_pkWad3eA=3Aix;YqmY2z(hf z7>y*rcINh*Ls&Qhw9A1V6@+@W%OOin-REaNO{~79NT$no8gq!a=J~Amc1=~niNP`y zk+LB=#dv<=5Vl06ZAYyLt(ie;qR8yhJtm%HdJIQcq&2scD9N6zt}fl0jm>=^SftmO zW2HM*+u`cu`j_YBIhX^G0Wlq;0&gvO1NLYd56)5^AG-1~F_EYzR=z)UeKJ2!dT=R( zgY_||VGc|wU<3*Gym%DwR4)1s0=%SJt$k;?fR$t}WW~2S{gysUi*VzB4dssdq5Dg% z4O8nzsqrWoTW6X6$5yDHZGj^*T$_pa9e20vfB3>_%C?-`h3{{$hldXk*bHx2&vvg} z41>M%11y2`bcOyiiwNcJ2?(pY6BN6}iPoKY7H7e5_Y1`)(q#v_waL=?FeFsN>==3! znVb=@v;EcnBy3O-L%x;V+8G8njWA?ZpMr*$^WTD11}@uInlP?0N<@*x@0;Y zU!-ifR7g_@_gm55)0O*X_jifMY$r-e%)|4yw5H|IldCqHWO+Za^?&PCgUz*Pz%>R2 zyWm-K@QfjWlW|@fK9J?vIU`n}+kV#6PCr9a~;m@VJwUh}0|{S5uOlwc33Ii0~a@aC2G45DTi$4g+g~ zcj@gv98dYIC(zSU`R)zgk+ha36FwH%4T0$OUvgk478Y55#xQ?U@xgUG%CrQx*d2x< z4N>IE#bJ?J(MLtTN$*naBT()-S_2jtzYoMe)@4gj3<6$ntA&xTo@^PdEVWJ^t$g(7 zd=%8C5ktyj@gkQSOqdTz6$Qik_s^#3SW%1a(YrYM%!@Id+f&98W8M60MK`2$`#*F9A$2AE)eYK z+H?1l^o@f6aQm-olM61 z7I^CF(fZEj=5Wgn{`pY3m6PW?PEBH2xoeY}`f`(Y+ymDpB}&z9E(SdGv57lQHbY@Q zRWUDOxu^!V%kLkmX97IVZ}2WIi}Ui3UcP)avN1D+bt$T;>8kd+8dRTihPB7KC_$2b z0PoNe+3yiBF&}6vxdPFZg#}`A%8>D7>8=}pf`@1Y`pv&JxAXw@!v2{LIU^tD>L(vH zH?K-`YisZOQmA#~#=XRry2snzS?pYHFH`y%T_KwzC2Xhz{EK_hYK%j#;*^=4P4Mn? zTgp{v&8x{JBJ#A|t{{eZy;IL@x=VbZ?h2BN@0_!8a!{_%@MTd4 zvaxUeqs}43_tgC@BPS>K8lEt=?Dl9ZTN{wXkzD(pzrj&zpds=rHf86Ohbe)mCl@qy zx8I73`?qSfv%lfmfbj)-RYO^xIs|-trTh4uk(iGHOpI%fdo)zV8p#zcEM4KlS(7Gw ziR&jfvN@wePZ59P}^3 zz1EFw!UwneZcgbu%rZk$?|!P}Ypx4+vC>lfB~3N*ZF-p@WkOB`|Q8Tid7eA%& zi={q2ss|2^&59)cD4wO3S$>E_B5+_ZwYxHyU9Knc>%;1^bXQZDq0?|`xD{hJ^cn`a zClR;W&JtTqB`4hRykBp=;q?@4G5%pZkZh|{f2Nu_nP_hDnw2t_1F&(><+My!l4t)s zd*LAPd)9N#n89zTKtg~-*3GTf3a*P;Zgh5s55H*+^TdL*G~XnanSmHM-&ds|i86Kl z^_-fT^YVu zXdJF)fYN?|`DfgdrhA>y{?aFw7E}dO24BA1>}E2$EZu+RJQMPzgWN~K$lOjIN0jp; zG&~mnobc{lH4#u^7+6`;j*o%v01kn`92L07c5_h0ib_+xLPq?MJ4yrzMztpz=*RG9 zv+vqQqpW+~=x}!^-#Tr+tZ5nGsvt3X(JIWj~9%1x0rA(i!2P~Y5F zuO#8>4Mm_Z7^rH?Q)=!=7cmN%tf$@S!VYp*Ga&tacN@MZ@Re6^dL;&Sck?X#@&%+z z3&zF>#^N}j#vJ{PJ(5Cc>Ad4S!j_jAOv_Ii&ar{CqWS%1zf?}X{Apmd z>)G`F66jR`du^Mko~>~AEE*3wJ0lQ2R=xwHJ+LoP;jjg<(`9}Ho^WTjLI9#)mFd1J z!|YpPlT*s( zqo4Dp**rodv_D3L(AS4@rS>Qe2qV+)(?6~oP{n?AmH?-EGC&Uj7W=nC)fsv5!umUw z4zE$&>wLt!nFP`d|1REh4Wz-2ZlXN=VGs;l9Y?O% z_Je|8#=vr3?2~lcCuz@5(%Dd=WC*+twK5!XYj%#k=`Y^h#>9jSSUfrr@uHMan)K_} zE}ip$C^+mdoHp!a>hg?og=3mM5lX`XmxV?2`MFBLXr&!PbhI3&FiC1%AxX#Wb$n%T zI9X$s@;NqI&yVR;fIO&H?>))4c)B_x>$Sa<9~z9~vIoK0Pn`jegD8@N2)j8 z#70CKNkxK1{VbFUT(K>P7=NBP-TQVc>LwwDVBJDMYYwPzDC?WElB=(lm8h(&19%tG zo*;v0X=xc48Iz8Wl?-C|8t;4wa$`;3R?mF6I4A;YfPq7L+eFDw$+j!ty76ugJ)coN zfnE&X@f`xIJhh`~`RCQm5pn>Oq`9Mv?`K^cI=Xthu#)jE);PKM$@|wwP^?#1UrAGC zpFP5)%hecadqg&ZE#qmGLCp{IcKPgzjmg*>m{dv@_ z0Pjxsx#Q*GX$SyRz98M*M5c=q+JA64<~9n9$uLh-FVsKtuaY;%X>Si_mj?rDVBc$j zJ?5RU)MeRO%Obg>^gnDS$xAi`6!UyN&X00{14Vmk$64etkWDqtu}{8U|6?!HW?V^! zH^*gQF9r_YB)q&vMrWM8y`T-@U)d_idpPY-JsLE{_+#lJVDMgo$PAku8Bp!wz*gh7 zk(?y$EA3Lx2oaB_^5U||cc*AU{b-K@9E4z%g;$;r!*C`M5@nM^_3j@^QLJOTTLMl| zN37z2vn{xx5!i-XMs+7o)7>^w`mWqdCIV(_yznjp%}2p+i|bh{#y|wVR>~XQ`f##| z4JbP5FNbCFgMRKsy(65LO-?{nps&bQFSL>%(k)lsZ1xWh#&$Sdu`jn@tVulK)-D|T znp&l>0Dy%!)BH`7t*>OaGK^i`t-F8==PE$(T@a10iuo2jFt z;{*z2B?ar%l7Ec6IYI7ARlz(I>q~H2kX?TG(U>I|a7zP@6EMDO%*DIfL8!fu^OlV# zS4!URRnfRw(fBc&e9G6aAp5`CNa$^tW}?C?*&kI=ycA|iKu5*)#&|n)M?IK&$%{qm zZo4o%g-|5ZZ0(CcJijE2KV*9`1RVzsPh#cq%*-%AI9cUB*I=XTF@LBu z5j{Oaye2wobmP3^4;yw!Hf;N`MRmRlu%$yYWIeJRTBT_YCW%3 zcKO+w{UXr!;fda!5DGZ1$#ForJfuPI_GPUhVB0bNkqmn(i9V`GkQ>zAjy*yCdo`$$!ghaw(BbsE={x0nXXuk8>l(ch)U>qP z-OSpVd-VZG6UvhPThVUlEIMetRUr;Y7oRzQ#=_F|)-Ta0Wh~1{|7;k>@Cj7kx3;5L zkG9KP{-Ur24D{j#h7T;<|FG6g%#p$Y8F30}Y31FZ99nEf9*ca6mz1CwVeamXGY-%jPfzV1psUrqf+DHP#Ml^OSjJD! z`{}eM2D0=AXd)WXPbKBGtgH2`s`YeACb~rV&;6??rKuVnL^$3(lmn)P!C0 z>^WSACngfa{Dz>{crE$?%77l-dpEJCtdFI_2`SSudlD+q*}fCH-_cn;9)BQ7wW`VR!%#@ z22)dma3nviF&sRml&1S%?nm!b-*oDriJy~XR3Je6KL}n*mM+%oH{1I*eY{#ow8wo=yrGetXVrxnw)AFyRr5;e6QO1X5#=cwVmow&J5O={&+x8AM7c&p`K-o% ziTVV?7q_O5BR-SId_b3OwV?+8XSgNd3F34#OJ z!thw%0N4UHL}Q+YLGxDn-XPHl7dCi#%zVK`4go@@2;{0lBbMjO z)uJEg*+)oJsD9K~*dDx|B=xunOgVK<$#p;Z;PvxB8$SVJ*54tx|2Co)f}F?3pe+FR z+wuuNtvCGikNipE%(sXrK~e+x^P4x+a@*(1dQp1A(uK1gJu{i}XB20?#KxoBu4j{< zaU(dX&5F&h79makEB9_<+h!1Z<=bmaNOR(kFR8s9`*pcx2ZSK6=zQ-HTCg&sI9<|U zcdrNCz^9V==ryCS7(@;60tMb6 zvr^&Mfv`l~35~g&_k1|(t)dML;XEVrm4dvF;3W6GM_Xct+yrx;nL$J#P0R*CD@kw< zF`Bb|p^_?E@Bt}?-;|`1Xq3$2ejq2gB>so{;XT4Op)@f~*gW`n8w8>tqas}@Y3%?1 E08PYFPyhe` literal 0 HcmV?d00001 diff --git a/_images/notebooks_voronoi_15_1.png b/_images/notebooks_voronoi_15_1.png new file mode 100644 index 0000000000000000000000000000000000000000..92d621c120a6a5e26a330a501b0ba51cf7bdd2fd GIT binary patch literal 8474 zcmZ{K2T&AIv+gWN&ROCLlEWfdkl+%OAUWeMQ6x!Tauh+5NRXV7yda23PK!hV36hkY zSr#NC8QyyDeeeBMuijM6)J%VUx~EQ^?&+TIMC)ihB_n1c1^|FeO;uSB06+-r{S_fT z_G))(ffWFEJQdXp2(d>X;fpBjGm)FBsV4xCQ2#qYKj(w5utI5siU~sB^(Df`%EK0L zwnDhQaz(syu)gPQ>*49(>T*vMA_@@`yl0O zv;X7-McLW~^>uV)?9k&MIC~d%zT8Ot_(_s%j8$dyB8mSFpX05)Mn)L8ubEfet;TR#g3) zE#rmhL;CwJYnq|veGJhdsG7``+u1qdqxyZ6*WNE* zGsN__aUA~IKfzmmqd~}CM9x5R%?Rx2Pp0Ae3WfSa_X_}ll&B!&g&uH9wn(E$sMZaG z8c!Y}FHrk?c{sjzP#QohE(+ciKaaPRQ-GsJ$o@h;E)dNj3hb)`r?|d}$Xo*cF#@+w zd#FSaZ|~4fz{I4?+{arlGK$ig)DFs!xCxx$gr1gRw3z~3m6W|zUYvf5AaVYtidBvy zTiP*wT<1UkE5D2;WYm%u$6Z?AK$#pkV+yUV!1P6)vf=G>8_EfDOoPts46o}pP8UERT%5UiX=rA$Mth(t+`DgZ8=meTwb#h(|B{*GFJ*JY}Tug;ca~=3UZp z3@gE(Kl#Y9s{2phmod~g7^bBfRIKR3H8duJ6jeR30%K!C738#oS9#TfknmocRI`!s zczEq&UN;WH7CarwKLa*d>*`WH-IE4ziMHU9S7F5vUmRI5z4s% z)N$4`89+dR!=puOant(4LxhOH{b%Q{*Tc#ds;nvD#W#O_=4y?j%a&WVY~YGxPUi_8|w>wU=_7+E8J?slH)yH?+1y6m(+a%)Aq@K3AM1v@^Ccv3qhYLgchL@H9^v>iW!9$ zm+JS0B_Rur#}c|AO$ur2E`^DiRQ&Y>FX4&6Use!*=^;=dCH-u9cF zMG{c#R^OFxPC=yXL~Q9M#zwe&I*5DL6vo!VQR2IBHqf$et1zOzURXywUdTZJmSJ8D z!;|w?5iDM*ecsAY(q|ZG(!nl-*27p5!0_Zcif>6s4865h0y5l@n-O8NTsuAf{%!#g z70G%8k92l_-u^nu*U0es^X2Z~#ZS*X6Z7oUF63A`7PVQj?!9bAD`^i^y11(yAbK#5 znc<`XTQOBTR|sJR=IrJXhq@M`JgJifm$jTD=(5ik7)d0b}!JfPS?z$ zy2Q%7Nw4jK_x9hw-Vb59F_aNa6y3Q=saO>q#lng3WG?~tRW&HjA61cQsgw}W)82;g zCwvT8YcM|bOfl*ycZ=npdcKM1L1OhJDUcD$qqvMt9afj>xMY`^KGF=%qCUzL=dp_4 z&9v9X-2afe)2{-o&ChE}?AJCD!rEo8gB{g>I3>{`n!<|=7@$bs=!silYw29|azD*y zOFz~*ICzxT)TpH8y!W`N&g-LOc{y4*4l}Dj5bD^Yke~#tAFsOK*XhZb(_H%bu|qwP z!PF=rn$z7o`&5Q)M5xHfy>Uxv{mS9noF^X;*^*8x=&^xFHc_ykcE=!Jwb~(FPN&;% zFn|J3TQ#Q^1p5SC9k-OI#m1}mr)@C7U0o5anDLaE9riJa>~^j9K13~bnk7$6gkx(y zXDWPnQU8=8&}CRcWz>Rvi6yiTbOoT0gL}RV$1I{;MxZ?oUif&;_NfL{7pz;5R(icK zLbH`=i65=?=HtIiEn(PZb#|i{2Y4A9x6qC+s=rx2@V^l9L%5& z_*@@b=B?RRwP@FsEj3P`88^-iR-!OVZD#!@n@1WN0Av&Fi-+<6bL2}WfELJ?5Ooc_ zZ#?q}V{x+@bItgchPJV+)sXQ%57ufo{*osXf=CM-vI-RBSc+C5QZu|OBzJ?q+61`&*$-_@wDQr(CMBj8vx&Ma2Yk5as3x zVVD`J&7GrZa=8ftZw`HkF}NJ~u(K45mUmbk$@*%7kxclg{kelvUMD@70B;@-d?RZi z->KJ(=KK@JpIRvDoWm{G2X#Te#76h-CKodoJC*D^^d+Ze|}}?(I`o`AwbNF z65~@z(CfL6P_iz+icnwecQ49MiyE|!)$4Yl=laC)ik}p2yf#&wQ?2r7YQQ4uOVYjf zvLZ+QiXR#c&RDj&LN1x=YD%W7QSBI5&@ z_T3*fTJ20XV>xP?Vwy2QP$ii%+n?`fnpTLh z4-g9>M#9*(5o}IVZ%LfTODbA8z0FKLB6>K&BX*yM3rg0v4-yBVbMe|VmS1tmPF0c_ z&yarg63TBXG1NNyTM$WIFcIhcZqqY0_9=AFnoN=^*EHpxSHVd%g-E@9MoLt?DTFKe zw+yjRBsQBffE+WI$N8Zy5iiYE{;oq9^XMBIeI>LjOGu(M-r*OI=34&_%e_G4W)sJ0 zn4Q1Vc8Oz+R;u){a+n*m!8NMSuPFH=Z^kcvV z5UL%WqPQC7w7RNc;$gp28D*d6FIF=Uks^LlNkw~{V8SO3>2?XMl=5ajs&Y_Te)OqQ z++aMaO^e-2#@7YKi!P|qv4`1nSjw-wXsaRN5_DeqQ~UF|w$JwR5t$Hznv|j7uj#U& zly^b%jWhq}5p}TVGG(dea6Cy6nv-t|&ecvxHzG+Efd#sr&PxfjkWV9)1R0XvvEYjZ zQK~1;NYXkRooHPKzQb=4j=PbiF2cpj5$`f)|55OqmE)aA<+Ptbnvz1tKdf<<18-hd z{!YOj{BShxck2_WlcP&TxQrkKUts&1@|dNvGaEflJj0^q%zoO|$tEJiic|XZJWO6l zSH(a|>RRrN`2D)2cf5544WpK+nf02#7uuUGbi=QBEk?JA8&pF`OdTr;waSfNe0LvA zjKY6ckuQADcsM63*n;lYObm0X-tXTad|XSb0{{8n8Q14FeWAt0ZKtWJ$V>LTN5fO} zZd*SW0@5HUy4+LKuUGqCPZ~Zh@|O#4ZPs3?{ql1sm=tEPI8E21IO0ArZ!J~-N#d6T z1pY}!zy+))PZjWNf87J*hJ*S5Xlc)dNQFKH1rnfgAQVTtO4Svu(q!LE|2!%6$U_8G z;WbcfQ6#<-$qT!|2dbGE5P&QGzBUl-aCT#s7FkDqY)Vw$)MPOs6lFzINvy-K(Xj0) zB%VMY0ONFOCGtOce)k#S#U{|&v);05YyTgbb3DdD^zXF#UD2GV#=_64YU}b^=+uJHIhOA6W0I z`J)$N6%~XK`LK%Wuf8cW+xLn#r+ z8~MbbgSjHaovLY_Y|t3_C)aQk2VIMf1bgja`DHse*k z9ZX4@d%`}KOz+Kla@Mls5-YT&H@2m;NHTt(rOMi>ZJC(8#0ZQ1LhFsT{H*6NseUYC z70<;2;rNPO^#+v^W$gY;&I9l$e+`m(!monYIx){t{I$yVQ&k^RnIb+M%) zJl}RJQg04NT6Ei9R)fruaP_<1^@%|}9~%Do=eN!G8n(8syri}7do^s+C!%LtbD!u# z1wTL29c{5Jj~L1Eqf2sNecOy+%_(KhlH{0GNhjGp!Gb!LB(A9mZ3W->z3!K!SS32< zi{m*nxk&yUS>Z>+OvK}oBv-ZD>}}ZCee`#Z)CU}F&vsj0Ylp~a`pyV8uPU}}G?ukj z3ow(k(R!dA!ijC3ZC8!RfsE}7d~gs=39tB-38C*KKIbSEI=ucRfBY>!|3mP|)WKxB zyUsM&*{<@;en)IiMR!!Kqo+60Yx9sf$VJ?<;D-^=+npDt^~?5;nFySzTV5)&X_Pbm z-4vrSbd!Co*k&zZR?uBK-(NiIWuU-padDuXN{Z@-H@yUJ9G^^ZR#c!e#Ml)#?@&Z@ z(`|1XLR&qG{mHmQr%IpJciO7ks_DZtioZ|%8Y)%S8&&gxZ3I52z4Ej2kR!ZrRLDpZ zdp?=UO^~@3oS719(L0@zLovU!r0P*p{9P7oOWN^byw!tDU&|J?`Hu2U@S0X*N!(at z*K|H_C=HN%$IXA>c7ftCh{eOt#3;-~+~$K`8uxg2U|`8p^y@B3KM5x(#qDo$WO?g# zd$?`*%J{8?^yIrF1gbIL#5o#XYv!#>Ac7NneVJ(uCtX3ljsqR?pe5Wg!Q;dJKsQc8 zFZYf>zxsI5uNGf4&3^=VyAVJw1*@Ab69b-AKy|779)*I-FiN>yHU#vT>xrHq@!CR{ zlBXY_e0j^6DaPa9#MQLo8b%J8WI9wI!mdOC{JR&UAVE+g7o>}ITjI!lZ$AZgdUUY`;$4N&u z7VA-Q3Z*}6zt?>}?bv6G-gToxK(2Yl`A!HMEm?{7Z4k+um9`v4L?0= zK^;1hc=z(v3mxC*Rw`Hn+!Wg-o;N#o^8==7_00zw_pS}U$||n+Dg6@Obg$YIi89%_m7A(EK~n0@tiX9Zn7w)Lj-9cdY#CB z3okJeOk>=qftwd!u(x?V0tP;Q>UX;7}sd8nV8(hcH!7fUab-h}OTz+%h4plgaS z51TYqWQhu@OcTS_IHdmD9vLZP#f>%>E4aHj<7JOh$3G`G??hGPr}?QO<~#f6Hk-iv zOB;t!w9G4b9}%Mx%OU>jjiu^9iPCiH2S5L&WJCbv$cI zCHUF>af5!v_YfEV4KGP4a9ER^4y1?ZTLr?$hG~VU!1_!rT7$@}ik7CW5OUY8%Nmo; zv#V{biIf7;)tHZ)1*eHsIGcql!;fUUH(AVA1Dsxb|0>HbowL1C-)QeqbuP$@E*`5} zIWKDz`LvNF)JHo}Y?rfcrl?((FS^E$J}%f)oQ7(FannTXhLhXD8m}JDrF!bB2ug?46D%?uD9elh@ zmIsgD)u{7T&si7I%IT3C=&JXdiTpZ9#4vg4HKur~{M>1Fe?#dzTBG{Dvg~D&H$Fh1 zLh@Gs;wrIAkivpY#E!!@wj$rNp@)T$lwWEPn}1U@-Zt7?6)}ysyfo8p3EQuq{TP)^ znaHEEcKoX?KDysWWzCA}JSj@H!znaCgBko{$o9I}=DLV!P~hdKQaFV>Bdr|KQfhR- zDNZBQ(Dlx~8~{FKsR|zT?noMa^C5@{{pIJwsbaq&xLB4o*PnjF|4K`M*7Vh$4``?H ziaZESV{#0A%ZC2)@IjW$v)Z3?){Klih?(MH=KHA4d^8L6_Bjx;cKC?)m`IS^uC%G9|>hbg#Zg2Wanh&o(u2`?{mwSFVsALn=HpJ zh=2E+#JKi*I%E;=w~EJeeJN+2a~NsRGpDA3je=P4_N#$ZSg?{q!5)tnUgi_kvAUo4 zi86Mbe+t_wNiCQNLQ3dHn-QvTb5cr!QEXnkAqee)EP~;*$9zS*D_SJ+Ts0)G>z)W0 zcI`S+^-=4j{c&+9@S#Bf|5-tvf@H~;I+srv(;{_8#X6H7aollMndZ{;FzeZNr1GH~ zt#U~F(t1~HlxO{lquU@#W_zw4;q|~WGsoD(d!_ikXGI@6gG>Bym zV)5Ajs*K0Xlz{r#KPiHNnl|{N{aS*z5iA^=5eYQ#8sFEa#;i9=5M`xw!WP5pAKNwQ zRF=;FtuOzqKkA9nNps6OQ$t9{p^{^Je^Ns>Ts`bsDS?X z?(6JQLjKzjR_gK|G97rDU0M}3OcSe@H0a{xENL~snA3W*tSQ(cE|j**>@x_O>*43w$jFHQf^V-8M%QikRfJhn(!UR%fE4w*KK<9gqrR( z6B~clMFr-CNt%C9RRV*SgrBQzd*8%I>DURm9!Old2rrsz#q6<=@uB=rqX)3Ve|GN|o0w^5;V1K<8NU`m-RoLO z`1{*>CBT>F!Y_4IXOel)wB;{Tec17uP9K1yn@RlTk4A;^g4trZk2+_Ev$*R&r^mN% zv^~#N$m5$XA`cZy)mDh_DHC;dHasvlE$^OFqpIkg5&Dot%Z`5ywHDG&y6PR*l95`a9%FG3k> zXUOf|Tf2|m-bNj)8j?Wt+Sn9w7p&Qrw+gE#G3klba{lVG+kJ%Rgff<%p;6&I$YLg@ z3i`_GT+x6zXurm2G}z;d?w z)c$1PF~~!meE1LbsQotvo-wWQ5l_SHF?5gFD5%ye8SUi7%CMA9cv%=iM zL$-o(89npA+M|3dl4@M$smwm9lfL1*WGWcvCSreSd4yB2nnrM4a?#!J97(kA_9s+< zlH_4ww>zj}B92T*@Qe?43hVD*k3FH-u$ESY=bb`J?>{e=0lu~|gCCpXqm?MaxjKr9 zKNoSUtQt)>iYZ)t|67k)v2GNl>}=cQN3U1X)_wg_Rb9cn9o0tmYJRHn!?A?Ih3baa z&slX{Drt5O?U??pngC(i!~m7Gn&oYhX8cAm&8wt>>)EL*$MWd5#~Z&ymQb(H^R}IW zj}vnz)Y7119{`t(##1P8T8_~G%}E93u`w)1)dW~XS1@~82eJC@dfJ7&Js%SeocPYd zEz@{r3y=cYYyr2tq1$gmEC`l#(-uW)KJ%uA%pQJil7BE5KYWGefn#2*M3e7tDKR91 zLaWO$WL>AX7040r8f@>_Z0C4t~D8j#WP4eF0ww6Lhioz06;l{GfN6~~Pb6%SlVhYI7Kv4qkA zo4{2rQeI-uiaQWX9sYd#Yn!jv?W7>B_Hz`LH|!b8=VcF1c=-Pz7ZoQ=Asil{(606p zed#+(eQa+&;J))zu*@DTbqX{#^x7R5Dhpe{qx$WYQLj(^-w2OU;Fbs0=Ks)^YnJ$^-A@>f+eTY;NnkuEV(Wle+Q@XE9!k$HSY z_HV~&Y*b8t0j(7Y6dtIuHqUWb78UqZdG{GzJLN?3c9!zmEXU!}{(jbU5ow{T@|r)@ z`P(R2(V_82Z%^MirK>@oY7yvPu5$kEJ2wZU$}n+2JHe7t4K7{!hhJd3sQwdRA;!^Z zBk5su^jS=Q76?mK#vw15fg4e1qoN1(<0=j`+dxO(82k5h=;G(35|yr_V;PZ*kZFYIjw z?J<*i5pwf2e@-^Ch~WsN)$4fZ_JsnB8rX@1pQK+B-6MtY2Z~u4qGErERECGrEXnkrJLcN+HP1JnUIl;xw@f37L z9_l3&@_wrt=Zp@Zi0)@JfRqp@ul1-Y(WUYLfw}@WWGFg=%i!c8UBH6n=GqTXA&bEY zjbeGswebik6XWDYHmEjwB$wXI#o<8`s(`!iZP=D9BU_+58Dc!?WayQT#5J%!xPniPXo=70vv~;0D tclNb4?9!(c#r=P%`Tu0u|1;QbDS8<<3@4+8r?GAUH5D!8Dn-k%{{@d=I|%>) literal 0 HcmV?d00001 diff --git a/_images/notebooks_voronoi_16_1.png b/_images/notebooks_voronoi_16_1.png new file mode 100644 index 0000000000000000000000000000000000000000..0d74c7e353108a8bdd3b41ce47d23fbea0a36462 GIT binary patch literal 12160 zcmZvC2RNHw8@Cy%C`Ij2YSgaSTN|YmwQJK7#H<)a>{e}6#otz=s9n28sM?X(YO9sn zBli3r|M$J#@A|Imb0zWQVK!?S@Gz@Ut$>Pt_3H>jtNjfWkc zi;btdvzw>0<0}qtI}f;{n=6Nyu$VAdki)^#(_L0X3;ldj?T4 zc$={`>;KVq#TR?J0~f<(G#egXnraQzI7Ck4-6c+rY5Nqzoj;gUJ5K+ytjxkGC80a2 z_H|2Do+hem^DWDxYPmZ3rllc1sJ&4o(4G6eGC<{K?J1VZ$`q2Pm@+k+*C8xu`i)Ae_LFmQ6(Cn@+JHLqk$R}T6{ zk`RLBh%!Ly$^$Y|Hc+P!BtaeFhhVEW=oaw&&SYzVT$9g^c3mYWCzb*1Uyy=3OX4}J zgm1&JGmwk3=(anVaJdlnt_oF%tukoLe)r)5^B&F(?|LA(?>;Bz0WX8}0y1rq4cw%l zSl26a3{t*;zplTNHn|0@n?`xF%XydHQKh4nQ98^cJoUrQP=lvQXWXEe<1-cP3~L)J z9t{nRsgoJx!Trd3@(j4zVzydHQ^-cJ)PVDCOuq|2L<#YKSzU>b^V%QY|pR?@p@AltHc>;l~COC+? zqg%+$$5u|J+c3PRvmL9W#rn%Q-{G}tXjXPahFT4aD*JP7?ftQez%b-RKk^SM6&xlU z7ttd~2D&AX(vR5jkM~$6Ws#Tet8YD|a%D?y{AO7_lFst=uBshXRnB%N*;1elh z^z``Exwb?VW_{cHMdN>N_?$X{k_;qJWG-CoG|}%oePpRo;L6%Dj*yg)c*ajW>CA?~ zF)*iFPn0h;pDc!4(Y=H`_-b7lniX)Q%Ae#?YT5E$!|vOX0`_q!-EC>Fbyl+XL#rE} zvK`4nN*$NS?2Eg9Ce96Qsi_wPrwDz2YiVnL_dlkVbUqPHjnUy>d8DAADx5;nCR17G zAS&bg2@#mTd@|2*#^;UM(@c;N~PbBNDQ)-Rm9pKUd=BE@)q%x;HU&0Z?27n7#H z8}9W}^jBl$=~OA`owRYc;4eX(5Bi{o0cEs_JGwh3XB|#j!5_+zMmyx;YtFK`C0DKkoz-hvjfJrE9eD)+2yi;k@ z5pIIqIK{F<`;#?)*R1`7^lxUQQ(Na|*P3Q(aA$x?B`l=^AJcv|jYlhsgGpti&b|2U zSXCU$IV7sRMm3#^C+;PhYI?Nli@wB2x1V7z4i#2#cRWzB%ReTm?q9(9EfLPc(g& z2}V@tTE>n2$yk<$UJ$RY6$kSbjOgC}HZeYo2+=6xUXvmYvy%n%LP19K4K}o*x z^%(rqR6EKTk&E#JeKUxP;}8d{OT^WZ;ugBwUATM~PN{DZ*oRY<_ADBg%qF zK2J&&%9#}UdNe+~sa*Td_%JGGlnL*V&$Vs^u&n~yhYW%p?O`9J{c3tn zPR>krR&aUEICROt#FkK4Z?8|!3K?q>+Nolz1NYtBy}jv^P)!CMlVkH}PP*nG^=H$v zf{z+@SNDc5$_l!2KFkq}pnw(b>2KHzNDGacu5(ij(0xXCw&hz_LdIZ8AK0caXNOAD zhnMEA?>rje_dEd0d9X&q3Ma?Q3cBJoN9@)1(i+(^GSU6XslDUpa7Vk^Otad|V5_~i zG|B{P9o~4B!lY81unI3{Bl$Y{@W+wz7(>8Bpyhc)^QoyO^l6J_p;3u0f70)UH(X8= zFYmPik$}s4@O23 zZN)6*@yB-MxspOXr#j2n)MP2v#BIgcR2Ha-9(r%jw7b;LCZEiIb`TYvG$9X;8T8`FaWXP*j z{Z4yb={EnwdHzaqD_-zZjz+=bGNUhg5A{m`vCser)hKw#pCq=j&j_m}TiF*+(ugz_ z@T@=p5wvvvP%M>JxWD$`?M<_56f!`<@mSI*dc7m7}KF2F;@O(71hKsG)UB@HKxQE{-X3Y=+?y!B_v=xe^Jz~g7NinaTs(3TDE_Wy z$X-{1f6V8+r{4VzMA zR9I}JISNZUnbBxwEwurm8HWhsg|%y$vQnZ1_Gs5Uc>>ukpBIiSd#Dtv6V2xkjM8qvN0d~?MMlbd17usisS)2&o;~~f1>ILcZk`D%Sl?T zp-9S29+*P&$O^cgu%0j`KK{6*26vCAZv2z$MAsliso+YjP_6Fi?p|)qS`FlcBHY|sgo1I z^IWEt*yCU&Jm^>ix=}7z4v&Y22h@t|AIekn-Rr#j`gIHOSB@UQu{dfJIL`TPP@pqp zw7!TwmSw$MnyKHh884egua9lqyR!4JbXcyH6WB2-u&Ai#-|=hF^)*hOW!#I6l9z?<$&^LOC+_vye$O8KG_ zU%h!JNK0{cZ`ZiWl^t?Zui@rvmn^Xh`Z zIT&fj-?(PoVmT>_41#ZOEi*ZKZk|o@6{eppvlk;q1Pzon9X#jB8||0jTuW|0Y^%V> z{4<%jS0zGNpE@}PxlUmrxYGT(^76ZBS=Vh5mIbt25UM@Qt=etAIwr2%{%~EZ)TBD8 z)~O!FWLR^!)7tBQy*sfxm0X5Kzx+8>@f^o|=YoU{dG>_mbkP26zn;AMsinWSYtz$O z)2syk;#x!Rl{glkCG8f=c>aA+@@EBlwqmK$u?hE+#C}%3;brZj^Dsz|>bq;W9NPqU zn#(NIvtFeM_kz{>%{ZoVWukwr(IQRWs3rN-mEDc!-zi!IPOTBjy?q|oedu7gocS=v zuO$i|OBTR{|6Q!lArjrSw}M6#x~!uSZaU0bv|G;T2JJaeLv485Sh3hZ_fst zw~CU>c>bmH-kQR!jWGYN{Bw8x@T1S1OxNC$o5%X-BkfGtzO|8V($L_cq1u=@SL=Z^ zp^H_eQ;w^c$!_?YHlG~@xhrOIi0_tBU!I<$m-6_=R+3NIhTVh4jL8Aon}R+Xcy^~NwyY-!^e$G)EpD}GVgxW zsGUzZALwf`OsGd6URuu?e1Mnd-F2(@y>WqdU_Mxa7WW_ z9*e&oQL_4lJdY2_`Lkbf`8w-zAgEri(+x&`8Qo=XOwVvO5om0YscTZN$9L!_u`QTk z;aE5lIQ@@Hwn1Mvt__##qEJ2gH`}aaF^*?Te3-w?;Q4_C;CsRLJWFEl^7T?1a?z3k z8wUIny1w-ue^h2B8K{UR8%7kF=Oab7vjaw9jz~F?H)jXM(ucz)U!?ZehN}E#RMNh@ zbT(KoBbz(Mom{P#`>gd9Y9b#p)cBrn)%zX{VNZ_ggMJ=(vSM(%mufw>h)@nqoOf5ZYl0094z!s~Jr4S)TEe$r&0!zR82#YReICV79Zcb&1R z+m>hU&W%zueIv%Il-t*&YokV2z&`J#<```*tR|}vWwNwAT)WcBOy^_ZSTC!)IU9-MR z=oStBl{BBV&R6HNeh2c2jG6G!=>0X1x)-8&fT(pY#qTUNVtIP8B7c(26eCh~i$5>b zs-l6l^!c^)flpzbH~Y&E`&N){+PRa+YsbEohdJonrgs)S3da|^2(?VtIY+gmIvxHb z$2s3ZJw~$k!Ja<`o6qBhnH6J4)k}t5^PT(N$Osse6f}HyHJpp(7}dyYh|}eb)sW|Z zk_WG5Fn$+k);aqZg*y8D)FkTZdO^$UnwGJ*B196Nzjv!ts@U!RHtFEr{%qlYzgD<{E<)H(F`{QZ2uJC{{3>T6aIHOzrcXiuwXwQ=b`KN_hv(JX$_l;AGYK zli~!n(bNyYa^S?lEWcEfstH)qTf5##pEamND2JBfjy|7foE8RqDSaq*E_{hdRptL~ zfVC4XGAfb3zQAV-IG|fU+;W~euo+%kDGUAU%a$%>)wVi7FSv$Ny4tf^^3}C$Qh0xN zHZ#5}(H$D6vA1_Q6IGy_%&F1hY4msN2_v)5U$ERW1&r5o@u;q^^<72hSLzemdIgq{ zPj4)V!$iq_*9yWmr|5)~THY*uSha9=eTWQ#!91R2x2z-wHNRSUDTp=ib{|O1vw{Mw z^!ntD=454cSsBUu6I(XgkBYK*!l)YF@4FY24+k(yQ050VzpSNh<0{u#47%}7`*Rxx zJwOWhwLE~}5)(&yA$JiR|j?yuLb z!eX|Pe4X$sSW;0A6A0kIII-byMFtibk9TrA&GB4n@~H6yOrf;La>84wd|2}{)tVA2 zh<}d}{|InseqdvEp$>i*#~d7k zjFsb8kQbrbc{_SKg3D#BC^m>1NS}Bi2&xgG_^9!oNW~x_J_fRuf+lW`g0GGw`BBRt zGjZ*B3%{$D4EVWdqvH&|h3^#ZHU}GgV~CH|`Qy8`3a_Re87Z9FuIc~WA3Gr2w&RwGUjGV2q_B0REx!LSy^3RjVrcY z0)Ix*s7+Qai5pvZjV&S}5L-$tLKIKEaKzku(jOrD@lEQ(dnYj1VEvV(bAv;t$J|g4 zTlT9rho2O!O2+(tR4WDeDY2jSbZVYa0tv4S`u3dr=>r}E62|*k$D0d#-N$<Jw z3Vk=LcB%p|p>-}zpZE6qd!abI4Cyz)I*7$rUPn`lT|Qf?4<%PX6grqeSg^PgV(W$s@MFKlGBj zgHL=sE>4)ugD#bR9fz%+qcd&Cz8MBI5O8`Z>WTjIL^6G4%Bf=UlV)y$n*TA|FI-(! z(6x?CfZw+~iNW1beI@J5v*^k1D?eAO5P_dXO9?9j&M7m_CuNXuPfsEC%fDOlXMbmb zglSM0g%l!9!buYFOpj#KI7vfglms}xvuG%bSlimZ%RX=1XgC}%>9x(`AqOKCX|mJl zNVPMh`${TW+x+Lx|HLhIF7l1RXvuQ}2v*~fYo2Kv71ws&+s&WYuXZsqZ+Crx;HEcO z2u2s7?g1JX6Rl1U2_no7zFx>UPYL7K6d5lw>jokT!m;&!3xNX#|EuIoxuE1%RqzMH zQ?<-5k%5{xuZoVxA}t4mr4~&|7ERlnDP{w|evu>}lSD+IUULW$Mjshoyk1ypvuksK zdQWoneP>{na($4k#Jb}!?(uifl83jjVe`9_eLxqADAT+{Owv_c8!#oy%eO53)}8^Wh_A$obOgGh zFE{faVOgMbu@CMhKmbBmKvPn;=RhosFHG)jMG4da$iwDnvoZd*2!g%Ds4Nrf9BoGQ z>&bI^pWc!&vD0SBZ0ZDC;5m8Frg(KU3Ps{dyv+(c>w-WqCnlat2VMx3H}9YMVh-iw zyVAUL`>o$3`4#BBvV}b4q<%K89G)zTg+Y&q7tSG1G_OZxjyHirp=~sedsWp%XN)M? z&>I0un1Xcs?BBHKm6nRBw?L} zkx$j=0FIcXg)~Fnhw79Wt^IlK#H>}*;0wY_>Z=)saDI{|4&&~_2K;pYW4++Z7K?hp z5FQN#envbg`l3_`HyJ`*@zLs;k;d3${9t%A1t{$`2WKykhUJ_;ezZ|$M^*44Su%|j zsN6j8B?D>F#&WI;F^EI@bp^eLQ*TJrX}69HeazPLYd8Rm*uVaUV#Ek%2ge>B&I-l?^66 z_o?o>?2o7WSvYc1uiXLe|Er)i`WO6iQ=X7QfG*(*$eo8jzW?`;R!z;90w}i&jEge> z$ZeBHKcf*Uz$gn5{%4hlRi=Ysu?T{;S86nlM^zCA(V^{PL@L49!*Tn;b>;1?PZJvw zVvL28-Tzs7a6@qUX|@W((OigmS+c|@b;#M%c56mIt53NJJY;K!pPX(cNdzW2`0>)> z^{|O}O-;R~Wf|;eYQ%xgDlz&H^yF~5 zAxR&3Mjl9bGF>-8pE^kcJ<3U)9V`@kko$tPXzbp))NXPmtaz0nLj5{F1!n_3$FFSc zHv?*N0lbP>0cDC4=*1j!TLXOC1>6K`=tc?qpflI^&)rB|Nf_AKt+aJ%5;5n^r_de8 zTuZr+5`UgU&KynJ+hlx35IgCU_8~e1N;`{|M)VZOhuxUte}Eqg)U^{)k|Z)PQ|%ZzGbxsPvdVAS!#b{dA1>>Wh+hJ z<wptM4hnm(x~4W|N0(j@c9zusM=z}6Dfl085B&J^`sfT{Wf$( z-GJ((ZMhi>XsgAHeWg3ecb<$$btLyaKp*KbZ!Uxv%JW<6=MnSWrN@e4mQ1e!!5%9C zv@t(OoX|JbFa7;yZ9$};3!}r!;)sKI;QSAV#T*L4S+eTgm6U5uUybntKrhqdU0^msV~3V`ZPRHt=_^+IP^=zA>VD2&dd(G%mu5E)TQG$t*;VcO-l-3Th< zE~R&6bO1z|JT$bOjF0x72958VG>1Qw%NnZF7E$Wg4;e~>&4uw+vz-P>LANbDwgLn> z!+^3JL2e@mC-iKHNu}mRzcN4!NChB9u;#)0)K0m~G5@~|!U_Ekf&Bv8Dh+mE_={le z86sb{9EL#c1|Cr*{96&aU8X}j0RHO&`VJqt(Rm-Bh}U);u)3if_moD(&7Y&hj)U{E z5LivGm^L*=w_;*dIhuBr38sG+jH-VDYHJeKU+`&#|=P)5=c{i6D;yKWA7TP!RkBcYl3nOz6K6W^7_m|zW=M+;1#vRH{dRja=1hgJ-h5;3`&`^$l-~qV~N@3gC zC1c-CS`)N+TUy>lsNcvoAB@qHU5j==c{{KXKp&mCro^0L(l%_kXJcF}f+uqzn@1185GprCdH{XYPBD_pV>$%$r&qku_;x^>2O}TAw|hcH zQvQpna8E6oF_@u8<3V%3S#-n$p{m0>sLhJt<6k1iguEGWz5-ppo*^Ltq8SzvUW{!lHl?mnvCIwKRigbPKmf)KIzdpOoM?S++h{X2EkCn$_B$skfLQxyVI8?mH$!G|)>?pd_sl{LIEs6l9n zXaJk2wsYWvjfGuec+w_AN^f-RB_G2BYwvyzF}Oo9;6-~XUx=zJQ+c8vy8`zxlJnEu z$O_Pyaf>t*ui7ZB2es%TawCs_@~uAxyKd05Zz>Yrn9PpHz|=!8hR|OMW>fNjj-rG= zKz~ZGLqP74c*2LtO-kE;O~Ai{uF+#&8{ok?z?=)xlHUceugXVQxz4CdmI_1oTg%wz zJm4ZA&mjJg;lYEc+cGd#aZ@6oDh`uKbN_nd1IU4gKJ}jtnDjuaMIwv9-Dfs{VlCFiD?^=othUqJI9$D>hjL%hm%(%Zzd#52sjSsLEqmGmtKo zdVy)mbmJ#e5T}@UGAlW1Gi6}Y1blnI`Bj&{l~^?)^e8knpmghGV6O_e?p#T>VW<^( z_6YvvhhNK6o+a_~myqx-jT-VJf^1OWOyJ;ueUvNcDl@eJB}jbnX!p&6*h1aO3|zx= zV&1g0Jm8M)jWxANwA>bPM{g1S5GnyWsI=*Y=6wfIlz0=JJFGxw5=+oF`eX*1Y?f^E zNu!|0HpZ`IToS_()dGN_S|v-+VKdCjAMK&=)RsJqOYCk| z_%f{j|0q}L#%qhXTG+42?xuj9t+p+^rKKf>&z=pmWQssC2B8!Sx2d+v5l@I9PtUq> z1Yfx?wmaI0T`KDF)fTaE*6h<3A3Ptt=g*&eQZRIsz95zM{r+6i>{sKse3+=9t{@D6 zW90Da(v`UMoD+}DZy?42k}KQe0y>w`85MwG$0zz zW<}bXx)HzxkwXw4LLbcD+zugfe&r;fEujB$+a?7=^3Ddp>P#lEJ@}0l2&aW)Kv9o7AW$E7&i|39YmHfbH3|c&B0wV&llvM3VhRW-t=HZ9dh!?zJ5xBo>%V}S z-8hKa2k)`I1|@b;s{hW|zpb3yIIszJM;94s#>Cv&fDt1>(4N@%kgR{&jkc(_bJ(0BKJ&ne9TH@z8D(!e(r6LuhYoKY%Z%=4W5kUg z(NQzr`<8Tfyp`Ug)-?B}L5VUXJRTrnYJzvzJB3rM^kx~w+l{6|H{5ukC#wFEib&d+ zhx`dl;%0N&z?>WA*+q|q3#~agJJf&`frfx;rXhL48}N8zKt#b@Dg9L8_g~zY@-H=| z)18fuel;k@nT^m+Ch^p@qSPqxIqFT1;~nDF)!D&P?RwekT}1&^UD zLAhHi)ym^2f{E6x3E%t|5d_Lr45%MQoSYpw>;a%_q1|6G%DdT%v_nd@xEyb1lq?&g zZj?GCd?Zu|0HObjuk1rGmXsF)3wbUdl$J95XHidsn}V$fuMlyVdCD0|QANep7rGye zKL6{I|I}Iojf1l_pRJss)4@$4RzB#K(W7(A_#hz6MBJgIeEj_7?7UGwAScP8D%n6Qi0hy#6?N)Owj_d&AtEB;<{}3W2F{yrq(HR58T!AW zU>P58XBum0cd#+YB2K21ck1{QQMfUf>ok<>M9nzr)i5YiZ}TM)on|eHLOIt1#m2!E z262lI_bj4;S5KuCNkJq80=a2u1#n{@YnX7`$3ZWLp<3V-L4N4>fLgVXUaNXXvWvfP?oxpyLO2ettar?}u>PJtIwQ8$yg=Lr zaNUJY@br&NpK^uZ9XzCatJQ6eJMxqlhlJ zw@yfRE!xmuH*%8OhhzVnIFy@r_CUAbQ(ez6uq%m_>&!Fm5xpWBBLe4`{ zf@#o=rU;Gm`RV3+d*{3%a66sfN(5Iv95GfEOM*WDprL7R5$EV&)GrehfGQ=OA-;%% zZ;v7hy=A=7=C`rtvobysLz#PCZ3VO1(Lq^>6F*Ukw^+Q;TaHRIE2CdpZf5XdXvo<* z1R|o~J~4H-w8?wHC)lBr6PbVjl;9Iu($=+%b8o~+bMrk4bR$jMJoRB-sbsb1h0%Yh zDhXb?6msM&CvkmL{iH1uQk<)__#e`a87jeSLJNfT1jm#O&%@kBb|+6x?IZWGu}es{ z_8Y>>gv(mPF3wFqizhmO$)+Wq(l(-P|;#$$VA&KVjzCnB> zv$^`=<7i$N5 z3Jw+y7EWf0&#tbH0<5h6_XR8t&Q`3{c#`l?P!v#dl46>kS;w7Tu6owqzwg^A!ec0q zPN91J2npqqWlt1RY)<5x*KQWywhLzPWqi;6p6$vZH*wKIwsIoJ&mYU_;)^4wJQTa_ z%ILoJd)i=aZm!WLtp)t4+A4Aog%}PTG!~o~)X!{DmL4jppbl+G`8nT-R>U3y(bdPb zTc2(ZFGDdrDGaA@i8otV5K%nDwg3Lz3geUXcBG%g{NLjmK@x%f|9e3$&Ks1g|2=<~ zyrG&${_ll9OW?v_p8wsT6nV#ocOXiM1!tm;6_S=Dq{W2PcMC6ejudqMY0B+Y9Sg36 z0x9;Y>FVG6*MZlD#RuoYMh5z-;RP6Cg>Y=-!YCEcf6Ez!hZh^hh1(PiqNqd)GRBA7 zMCFK8Lk>FE#tJ#4n-5UN3h@`i@(rR`#evJWp5bYvKzhxkK;jIdUXz?q0)g>>V<^>$c4I-mw&MH=!pX_o9`oOqK*!in8Q z9R&PE3UbuI3Yk$kz6?Eh)y0O}Y!9N?v0F|(?-c!69|)ELiN6%;tCSj=!$T*1Z`~99&9^@cZ#18l;;T|Mk^1B=gq+bUt-3Se^?>`7T z!ra9i@VqmIWr5}I>4tg%3zIT+(%Q2SDF5B34((|P*Y1J5fc_8f`)!UFpYlmqgC02w z%sZD2#2|_T=z`k|QJ4VO!u;~va-Sz8177PWkO(#qd%7j3kzR?<--}_P@MiyUfHD%t zA<+`U@>jwNY2MavdaF$+<>WcjCSuI{{$d@vJC>%BS0bE6<;8x##4+#Z6BM6i5MhXFYVwes5Hv3#UGg z%iiKbso@QUqc|nD--dZggNq@c?)*$jts$b|KzuqqfI(^h`KSj|O6@71J`!6EZ(U;A zcYUz|5`Zn`^Z{?6mOheF4ezy)J~B7PMMQYR%QPF&nr#sQ96f?+WWilF8BaH&J^|b& zycm|Ithf>ULBYy8bQcwpcs>OZ?FPBj!Vym{jm@V3)H@e7Jo2;2uZ2AhR2hDzcey>- zd02PtJq{>A@x#L1*qtRuvbukNEFyr93#5;HHLk%0*G%}^M{YGdvs>5Z$IQupg&Qgn z_>u&_QhcVBN29b~1?6vu1?OQ4%>uQj^tk9Q;wp0o)sK6GCR-f#9t(~V^-g$${M5Ce z^!zzfcKL)^^*?j>NPgvYxKrrc1V!m}DGpY<#jQe~R|g8~AKh&dq&5*4Xa)3!>#ip< z1@sf)1uZO*Tkkh8$Ac)|5Wy`qn3J$<7Oyxyl8vU^#tjnNK9|0adR8y1d_{h!2 z$00sRLsn`0#gMSalGM!9G#!=DaODq*3Tix3WTd=~!S%*%&GBO+w5}e6O;9j$bXO?;=nSF4Eo<&0COW#E z99ehWmPE;@yh}xn(%rL&{rU^Gx1R`|N{&pKVs8G9YTjswp+nD+8>gsf{p|#Va&OO4 z+tBcP)6Ibxuf?Y^2!yr>x)>HEG^nG))Y7Wt_V+!*hr+3;Nyn@(OhM$ZejoB$mGj3> zL}ZhDj;4EPSaSybpfF zWn*dZ5rHR=!uDtW^ZSyy;oy+bU316U%p^M2{Fy@rX6F3PXDMl!Gj@);0A2M{L5Hco zOY+LD^q=o--?g4~q@-SoV8%`of%7&DVHKI=p~pi(K~-8jK`bfy!bL(tx`MHKwRO>w zk$$j$Fy+FKfkBmk6xf5JqXVfvqs2!|H^>*@+LDbl$(|K;I^aAx-eX>F?Ehk1U|o($7hFxrO-=)H0I zP8EVETv3B2I~y9}6-hDSdX3|Aa*i}V&Y5teIIL7p9q_sAaXwn5TOU=aA6J49 zBQ4=_DfjTG!Pzwk{5d&-%!_!g)>LCpa-8Xv2sX|5J9Z**HkE ztlmmdi1d6@Q`BcJe*KnngiqB^%#Dpo=H}trRTBE$FFfP{PduHS9<{nM7v8zd@Idc?F~Lif>JsB)28h2zv;4x z1b^x{?yz;n~^N*1!VpY5NUpx7L_-+EAU`=6#f5>InQa?>g+_XQFBJnx|0 zA8AfbSQC?692xi_T^C#!Img-~C@n+;1balphoD;xe4qY>j{;Aiz>SMb-O#w}u#%dT zB%`eSd$8?84`g~8hGjvhzh9%Wk~t|Q1sDGuerKQ1-g;=-sw;i^H8V5Q#P^9k@IS<) zk)KabV}l!)l@chQgwl^E*Nnlsab0cnz&CcR; z3hd}8K;O4kJg*?r61hBi9X|fWk$U?&lzNTt;BP(Jx(#MKo8T8S?`3&4wfK&XAgfeg zTRKT9?6)EvF$+iA$4hCLA&I7(H;r%x8XE2C7)=9of&{W8q1P2gD)I+joo@vMMe`c3 z@dgG)RE}T+p%$t;$BPtll@=?=qPD>NcWNg*_g| zjuWND(J8F^iv(sD=+l-~RYKmbaWf@G%W00~nvO^FkF&E}#aFgD2;fR4_rEhx&h|zQ z-rV3GGiDpUK5}rmI^ah^O(KWt-(snV=Cn+;ThoU@c#iSAj`SXWS+6)^Wo)*l9l?Tf<{8mjYG=x@k)0j0Wck45I! zuYD~Fd_nZ6qL&P|X1l@q`_$t=Pco({wyv%&!OvV7q|0Ig##{t>Q>E$IjV3>6CSvLq z6izNYo%oLN@bFyz?!W^Szj`X=E5h6CuujQZ^ABhb?+IFe{%mG<0y;4-pWB~MVZ?mb ziP#-u6BEk?vBNwyRbwhV-GQU)@863`zT~;KXM?M!War#a+i`MzePlH&2Ec3{goo^` z5|hT%-kF-I+57Di+DW5(l3ruBZ)udsPqLD$!!z+MCu9u`SFOF9Gtu+iE|Lk; z_33|~)1q2itsfrGrWY4;W*?s$e$>GDfm!!~;y?K!c{!i8aVA#6xVP6on)bG5%hHnU zWrUK`c-i>*zn#NE{Py272JAaHWU4b!k;+!k$P&62 z@8h{hO`W;A@&$0oZg~ZA)^;`{>l_)jh#G)((GihXO7B*$(1su%XO+;_HanaPE=6#{ z1OUWu^}0j^$6Z`oYo2+@rK;UGx6swoes7`A$hbRj`;zzuLY0%{E8>4mNUZqgP17?fE2?|_n-K=Fh&qCbcC;j$s6Uea~lC4z!3&d%XKeu%}Awabe2){nT> z)xfNs-8yX#Vj_o0s6A%m6sb#D7AKA=a%W^@(5EnJGNOYUrJ5wk@`oB#^Ld)`zL;fS zFLbI3#~>=sdx~3|5zhabFrO!8oE1YpR&m|>>#taiUw=gJtc0GDNZ;_|tS{L#tK=>0 z)9!90Cl<0e-JU)Q`7TO)`QjVHU{FuZ@7S7Es#$K;m8c{z#&SqRUv#d0mfCBGu{Dko zMbNaBocw+W}*21FkDXSH2CTv~OXZvx(K(btKpA zx$^?2n7-2!dur#Ao8w7-4vA#{LUgQ578ygR9De_h08yhJ`M@8lr zBtpc$goyuuaKk|-|5D_rcUFCQATQJ`FYGglaW2J7k#A(j`iTIYB45vLmjz~+>lJi~ zO83+39X=ikyoH52()Pu6i8*=6mF-z2lzD~GWSO!3yYCQ=w$hKWMrROT=os5 zrMYJ3PHagPhmK`gFzV8!sOah0urX@h3H|3FEr1|jvkU|9S%sSL01$A5u= z_WpPMud%vSv;f>CP?zvfSv#+LMMbVZr+goivUI_3b_n>{*N27@iju;}S-w+N@JrwF zN@INSlYiX9`m+!HyaefxOmfEJ%RM<%Zn{-@d90+B$0c7jCmQCunZ*E@+|c*;i8pW0 z_y?Xe?VEAqhC&yPq_H?01;~6~E(5--^XViG1TIa!>#dM)IZoc0M6PRUl4c_!MWV?k zN0WyYqi>L+?sB8y`RBA4Ci6QPat$NQsung+xL2 z6*8=Jwu-$X^qPN56{(+g_FYq<$A7s~jn<#fG!Jb}7Oj*QhK4-Fys z?%7c5(8oIO#NWRvYQ!k^NCDQW+7@ne3Vd&(F%a?(ZnVG0g%8z-uZcwH zR+Y51B@|HM&drURTkYHW#I2sbL;L!3OdBzDUpbHN5r+{Eg^R>aeL;cefx-~UjPK2$ zeeO>iGH7ui&j4DHnlVYPcHh_?O4V_h?EDXcSy~qJx!HISAhfe{UvPdTjAVfp606z z*1Gdwud(ZAD_F}ffh=G}fV@;${eUfn9U~3iR;FSue_>xuQ?qT;>frPRE4N0iDVtYK z1EL%eKJqOJ23mAsf zyFBGn)`Zu?g8(~8{l$HU%79R+jiwwMk-3dc`pAe$UH#?f&!6}E;BkT2)Z+Ij)6kSt zoY&KF!dE5`mz#pm>i=3t)9~Dd9!Q4vb<)P|bE7xcH|Bqvc#Tg+?;OvOJAZ6NxbO@mmvUDWGmw9+C zN!g!TFFlgeEDa*{<13;auN2 zs*qpA#K8n$QYP+n+a2O`tSuPWLjpLtilHI4o14rG<6@FuHF*BwLS}42mz^Za+M&B6 z6tkrDo(~>g>gsxJ;PaSN4KEJTU4gFqe;tv~z%^btRm{ay zR&8%;xfiy0qNQU}e|R22;~WdH_|6Uz&k7Pr41ySv%kAk-vb?cFkloZz+A2*dw$Qu*D3lM2)ns6514-dVq=eWiK4nU4+u#lV{t}5D<=iCH@ zudijwYD6PPx#Pxp2CMW$#cOy?c|Mu&q|pvoQCh1?EZW8~FqG{aOhN3>TIS|r6cy2m z3~K2f^!-Fwx3^(IaWb$}FJ2qs6Q;!{T{50^T)t-}DC!6appY#M74w z!h{oH+^iz06vm$=>p69;?aXb(SuK9WL$bR?22My8I?8L@e_Mc-s;9HJBdqS#@Hia6*kfxF)693 zrDYcAmH-rV>=HBKp^%WqX{f7@^oKPA$hEcjLt_O&p%nrS=@&pIcqrWC<0TqY46qDp zOoET9d7}8=sT-Ko(1kM?%GN}Bhlim`lskz$NXn)T*fN=TLVRg(dXL{|UIeRPsHaX3e|ndzGqaWwxd)P^IU2k)goqu_re( z-w}C!78~1RlviN#$lCMne2aj12C#5Z+2PNepPv(r9rDY|b0Q*40RN={(nMQZp&ar} zXU@^;Di2qkI^yLxJY-n-|9*T5a<)e-CR39NJ*{H4wwXv zjL0yv`izWenz8L9B_*lYS93`ubKVWs=byplI%Hg24Dr3u8r$QT$PKVtfMW;rX{o-3 zot=F+TTryPt}f!wpRY0QC)XWiZ}mm~PZofHz>?_gshJ zphC#}?91~lfdu5IoYNucelxS_m!6rqx7j~o*EDBdtC1*iYyk(f7nl3Lq{ulgDWJ;h zx>&$~vNY?7kcnXogK?wt6k<8Pak8|mtgKPM_vhf`EJP+(4(he|bEH>RZX^H8l6lEA zEaMvqEo;qx%gZ}(kCs1+|7aay9UZCaEXnHVSjh97bak=J{y`%lRT&o9lMI6~3AC%A z0ZID5QEmlmYy6ZHC1ePauL$e&vjF<^X>h_$IX?oq4M-oO7u$q0>U^N*83XmS?2*`q*sdu7 zeT%vk#>&LxE6~@Cc@_Y1s@rXGb!i9@Hwo%RIy$1#ts?0(jMB=4r$4_ZU|J; z!e1Csl682EFp=ejU*Q&BU5&}`zN)ax|4YENr+#$w>d^Luy2gy6mzUDAgnsAmcU&YV zfvA^~=T8k>N~-iBE!iCSvXlY5)^@^7Q7v>!8H1McYv4_Y-uTM8T>dbKOL(Jl`(vd9 zXnGP(7w$KGu6J}m`{h}Iuk|ic6N4dt~C0+87u&w zC@AuW2jNCe^kk6of`ZhkDa1N>?*jkKvNGg1u@Mc4<0m`Y8M(Qe7uzE9^Y*IR+L3bt z()2rp<>d)=bw4A^N3U^ZGe$qvE)BN$+zwS%g?_fR-JUMe5S)OT9$DyaXppr(y-c7a z>36Y`P{H>&_5GkUp3vZA`}iz!`r9wAyj+WsY4_uUa!IGRz5O?tIB$NRn>o9tUrRbn zu&`@@yo3)7@Q>};l$Zaxjm}qDsDC&pYzFj0MQ|xSImAs^fPR3NyGY?n z%JJ2LBj4cRfhTs9g~P9i?D**1jhAP=1J|zx*~y2#&DDm_&_l7=gP(o9C+}7SZlH9bnVlVXz8OxadKvKdhQBiG{h1@L?dnq2&=4FS z7yRNONJ$23(5Gy=DHy5I|kvt1_S=P+M5crH|vw3FgxTzLjk?aK^$t9vFDH+IlGhtYPG}B=g*l zY(zgTGmX8y(L$-j&CGCv;^hJYSiPSquCMKoF+(yb8E_X$%lPZ8hOOEv6fLawvCyjD z&F<$)a?p0Eezt>n@EDw>4s8QKMYB3|+b+4C5+zVQ?oB`mkg~RZcX{bvZ4^M7R2B*JJDswlUSq5qu1%Q7#{zn8+_3{<*j~nWMZjE_5S}b8dlbTOws&?hD0#M0g5cn%S#^|Z2F!qakkzqWnz+0soQcGYphO>S2`!Kw_ig4 zK1GysE!zCA;QTy{V4bkNborSUxBvh|nN%f538gqnA74DfiBT~%f`3@n{ck9a90v`d z$&pNJE4{vXX2+8GpycVmMyz#nCe} z7qzuHWtuU+!Kkk_wz9Mg8jzv`O0}g6I-PQ|$fmCiC3vP`=jX072Y>6wp8fsI;qmv& zSk;GHcpd`#URR}vDU87``-W?icS3IoXJ*V?-TeO3%?@4Cj~Gy=Rd5^|A2+U#*>>g! z!td5_f|+&AVVNrZ@Yom)5!x}6jI_ZTyZxGX+P7~4OA9HFm2YCLE9ccx(+B}<4i~&* zz(cXIApxAj(%d|rl=nASz{o#;2$q5!jEv}riHEC0Gf#;(pE}3@<_N>|AtLpW^zX{p zGDW?=|63PqCd&oKkB5@4bvBXyZLA%C)IBG=v95(r#k~pd#il;S>GcI2kXE|KfD@~T z!R*=^<*D*=>a9$NmjP*=R_zS_vc7o6UERVF3W7EsVd1Y++KNg_)Ig!i$dJoYMqFBI z1s4I(%V^CDB9QL}2H;muy*hqN0c(I4&ey+-;V>My)S^INyztxuG=U&33*hnETDIUd zk&*2oOg18C)iTYgwpf_F5BaKjs!0E{B~I`N2-H8$g%7AF5x6J`0q!QOt2^1-&z z+|StVHX$2MjdK zTTW32CHjJ0IZi0aD87K}BV;CQ;FtCH`@Io#4-5*T0#3!{Wj!Ls>`@kC&Rz zq4H#uShdC#9m}tGZ@-s@4_#g97v}YddwB_4Sm0Y9C1=8SjBkMJqJPJ4o>E;M$Ckke+9m)_q$!JL>+jwV#Lfu-s|D3(*+T=n67Wj$=L6QM z&vn-Jr}5cqX{E-I_`%wSH??(Jz59BD`z`?O45++b8L0>iE^h1e*^pV-+ebbyBe_JfU zv>EI4X%3{YvrD`6U7zOnv>(j>pn?FM7vzcWk<{U!a*TOxawUTUh*a`JQL%TMl|QYh7NRnCcokRS-I` zwX{~XnddaM=1bPhxp;Z|K~Iq{`e3#l5n}~xO<+qg0-LdTM^T9YOgCm0mdW4#I;ju_ zP`xdDkkwUYup*o1B=`4H>53LR`dK?S4TS8P);+C}FY3XxSRh83C$JgvtO{#P9mvad&62Ge)i=^!A`ihNKpIg}I!7X9L zQ{aTn&JqDdnDHa+?(VgdS6zH;k4vNH1>9JNaU%i3-xfM1T1 zowTUmWZ*E1no~o;#DrmV^sTe=6&Kf=b!S@|91~O1_=t$1ogKWwnKIh)UAgA+?bya0!px&x_VA+t|c!T z+SQL1`V`+)m9Uq8R}`qv=(xDN8Ebl`FL`Zkl!vid<-tIsaXeXG(Ql)P3-;la9dlaW z`IVBJ@*DsT|DT(vx6<*>PPpr^FpE6k*$n6teA$-=*U~7c@6*SNNRR!1JIJ1?ur1&m z+)IJ^cGVK3*S>ut`1K16c%D2EZkb~FIXCIkj(au)`Y0~0M3&$!qkNHMg^=Kve$a31 z?1-a^zWx1sB30+nH{<*jIyw%szU6aaq1kQQk3&g{jS`@iIy)-@iO{#a7X=pf){(Cm zEHDg$MD_8P(EiO*$7Y~a!lIOye-D~*zQ0TAJwJy6#21vto#rp^JCnssGo)_Hu z)x^M~=H<%Iv))g%xtKo-1))6P8DHJra&XN;WXSz6Gws5E{UTv8dSL(>!mqAd6;Aze z(=uascanBLs$G|nz?G9N;7H4fi4hOQx(QtmbAssN;9wz9%ssM!LYb!N4^5}PJE;0y zPZ|f;{9L@bc`YrHH(rSeuvA z{V{ft>(fasRrr>)mKKNj+WzI=12x{EI0gI_bOdTTm9CzVBtpm5;#Ti#yUO{CkkN&A zbuV(D->Ipou|9hHh?R_5f}T8NcOlT!8!rKt3ruD-Oi`#F_Y0TRXVCy$2YYNPm{G3* zMT2{O!}c44mtN71KBLFKqv@g#6HQ-$NT&744+z>-bLon^pqfZfQ8irM4e5x`PWj?# zGUM?<(uf!V;dJY^9f+wvGdOG1)f4#;y~`oqbS-PjZ-rX=V@Ms$*zl&;*Cjka`dg^_ zJEWCRS_bhDn35pZR9qqh+8s5(Rxp7jNlT)~~ysQy32qPe1SOD@F?vHE>HLu}II+>N1#Z>;aPduVEbq-%UTurVKTW;n)=`o7FV0>#WGcZEy4uFr5?kpU! zDrq`$^`6M_L$A^r0EF3c>-b2!`@wBq5kEYr=UW-ot|J=&|Nj2ifXyi|c+(gJD*=ff zG&@pW|6wqZ0r1=cquy&Xl-KjH2$GcfB_9N$goVjVJ_=qv{<8rk_V%lQ0*~U*aUoT$ ze=k&2l){%i^Uo&Zb@1<5T*UH!m0!K2DZf}gNsOZ+ySXnfw;UWIAJuA8Pa((0pX1_o zo1AgMFPTYj^vOj??2LLP^8ADqvMxh{H!-lHh84mJZ3HuY3fL;wZEvvP!S#Lnynpgt zfzi-rx+xf4AX{R}ky1GKN3~+ERP)E!++u+|1NE#WsY>{hEJj#JZ~W-h)lQSy?sujy zTmm*W-_+#-~{oRG;4Q2-X5xT3j3$8A&oY6vp%GoSW;7%1G*$##l}P?_3aO zv-u**K!eR`t|5ffi@mt)metA2)zoE)J0QQAQ z7n-}ze;uf6CT1b~+i%Mvkv|MLcP40h$^t0w4P>?QUi~(5L7p9KmhgwZ)7aR}cE^*t zIOLg2uP2K~FJ|Mvp*-4*>D73^%>n}+zFO!m!H8*eDkr9GHX1Q;3(Mr33 zWs+FU?^=bY6eU@n`_GgZFg;4=7&$oK*+&|){kMKbhlK>N?byx^0Ax->BX;rBn)UTA z7xxcMWK7LwR+fxv6>}>gxvSfLT^6owCq?5s4Qr-lRDyzOK#{C%*a4=A@OxbYwiani zOK%QSTqO%k;3z4@fU*u0&+oIX{$5t*r_$c3UbagA2b(F&Kvh){FdHrsgJeX8!O#YR zlguxqc%(nxy}{VLVBWlCb=my|iO)6aIN~<*6D8>7;PX*fd-M44{;6JzO`Jm02&d`!Yy#5uhRPbZSG-&(9;l`FeIn zRaSbYXZ%P=Ns$7vHIf*N7+TcME~H!t(3`|R&SC4EBv5Mtvm;;Cm{cKWHI}TVr)hQj zlU6D_QPY=1XGAz46Sun5T%K=|0V)@_Jp>teuSiJ<4E(XNvE+#aB-0McnVIdDH5Oo{ z@p)efd3i-xsoS$;35&d>pZV^KCS~ej70szS#Lrlmm#URUHL$3=_pMFZ?I+15W>W$k}y)?)y;%gsIcvu*c?=EU$Y zEI=GL%sffTi5-CAEHAS-U+%T1k89xJ>r5WH0%%+~_4zhtnnov31XdqG1fd#=`p`y| zO4i~VDF|i-ywb+RoX8=AwiCRhKd`t6H9k(Z(zFk(jrJx5Mn%Uc@HK6tMi2lSF0Q}y z1JI$ac*Z%TTs;3n$;|epS2Ge;E14e7!HSV?>rhRlCj-Nh$U7xT4Ryv8AQc&da7cCa zt+lOfT2ah^1bwmyx*zYIuVHcVS0EOM7mgGIq66MH?PV~+w0Mml4Ylchp^HPG&%x3NMa@+G-1f>q+^54G*pgWy0 zOwLFp?z^|A=i~q;keHhrr_KPde9YRZm7S9M)~t=4rpZj?+Lysj2ihYpOS(O=DMq!frYbkR$m_#h~pg{VN0@)0q^zb$b>54n*NiL?V3P> zEQkcq;2>{bzE4V^eAn<@@R1d0-JF~wV`F?GxtK|1HVe)kBYpdNd#7u0NC*pwA~F&Z zsNQ}&YipnQop&Txg#xo{GspQWr_V1cx`%@?yA{O57%c1Ys86q1up>e|+#cu@r1Z43 z`tRq%SEL~PS6OMRqlwD?zYO|Q5nrZyNrfNt z;bGOpg#2hr8b&q76nebrri6q?S9gE<%o1}}04soWrLCPVRs$)itfc%Sr109Hx8>O? zrlbU`p+Q|2qAjG&j1O2bpo_F3xmH6N+sfg*{W$os#CY zjgKOgoM^hA;ZB1?iFGdH6|RK@r{&oCrm{*-r18TCf47?47R9O1P-0LU{2r$%A%?#_ zn}onlftBWfpZAvmb`t$jnIxE%JA_HQ-_p1{Q4xXx;5CSrM%_GT935q;t3v|;SUbl` zIspq0zT#TlA>c+1gv17Ge_rv?Z~c2866e;M^)G!Lit0e)d%SnFVv9RA7M+wq9MvO> zIqncGcfK<+DrY^Z9$J76GNr(s0om(+Ciy57Hl}-f%1~T85Gp_(5^SnTyLJmqO`XL{ z`Ou@H0#V}nrU=qu@$O%HK{U7V%liIs!i@oSYvOoU<4P6S8~_@!l4UVYE@bqZY0mtSC)B)jsQ#N&uYQWt&0g(CLzn?az2O1wB_FG#p{r%6Cl`T_8 z=sUY3gy#qnZ$*r1j$gZoQKSZAd0hE{&O-a~gnrPOkDL1|NPmL>wVmDmv|&qgbv1m7 zyb{P?g02)_wadah#>UP4YisLCx@FU_X~osp(-W%Q&l8mp#7f^5c`Nztc|BZ333*PA zWDA~6|9;u3o|u-j(gxE9#5SwkJ*xQCH1z55wl@3U3gz&FEUt+HIWioKr;zfhJ>li0 z*5Ke_K;|g((apdbbdu4KE5Yjo}CJJzHdPor=XMqM~9A=mk@-b zj2_kuJ!wZ;8JXh3yDvxs1|PgX_nY9Og!1rLic3-*sR>$vY%ncKD3vZN7j7t(*><}* z?)Zl?O(|T7cbTBfug4vhAhrF&>#z-LWfiSCsip1uGb9k+CjgoCq4 zUKM<{O(RK>dME`FFtWk*SXl+np1}z6JJAa7+cL!6y_P~pG`~{F9(xAmL50MW%j8zR z?le=-BZY#}0#T)BJc3lf>e^4d)rE%ugk}dhT1yvx3k$b)t%d*+kTD00M_HnOBxZ{= zH-t2H%e@`oj>5`H0c#&_noqTb&9?}|#HOpJs6d!7H!roe75e7dp7Zm#GA1x^LO8o9 z@ITQ%PkKuYcfhTQL6OI9)D4p^>_5ZA!l;>C_GT;!=^vLeA|b_f**gsZB4V~6IT+TE z1ZqfZ=6MF*fwSEKaI78qWciq-7-hR9rl2Xt9=vUJ;s_!zWDt?8*JWvVWr+g7ZlrXd@u? z*K1m~&h5he*4x`YZ^5CYBnA;gHm|Pefu1KxMdj^>K@uatSlYYmjE(ldz|2)4B;EUe zvH)jtluU^J-En1QCdDOmQ#SR$67Dq~j+oBT1wAD>bsi*GkA3+2#?L+VuWk(AiFTtE z;ehDbq>T$WM}4LYDp7-};W3N*dd1DR0z5~QD_m>-+8Cch|X+OojhZwUZX6lVyABmd#2{*i_QL7eqbgV^eT*ms8e#Qfz z4MM11UI}JHJC~NEXwu)lEsu;c6}LZ<5GcIYtxA=ZBsn09)v@`KSz2wM>Nl~LH**LI zMa=Kn30ObGWMsfL3j+Ak@#c8K#7J<{S~GMhIx9;EuM<=TX>_Tc^|H$0c?n_egJBMGjC3=$ zLiT~6p7!T|8&Zhh9B)5dlTS`hv*_uiS)v<&)1+#&{%yWDz|PJMVmkX6m|nPMPoCsA z#tC2~bffP09~2dehc9B@9V9%fu0l#*1u?45*L~aT#&0)Ms#7-#-;>%vt*}-p+4DX!Q8*t!S5unVDW6 zD=_~|jq{Q?tqk+?j4Nh9D9qHeh1U*77=fXoGAk$uN95^T5cy-L3eTn_%lAkzY9LXW za(vvpd|#k?Y|f^D?u=6oHWmg4uQfEd4imV8(aFrp`cD=Fj*W(nPV+!V%JDO5*a8E? z4)U7SxV?t;JPe5zAvZUp$Qf-Q{rvuYiE2e72+x9E8eYjv z4ZZsB-QCK6-s#Y^ z=jVPfPHAlXsP(DSvr`#_?LZf{w50w2X!^>iER?S8qavb6DcvDm5`vP_-Q7~sASDfg zAPv$YB`q!8E#2K9Ez;faZJu|1e_ZS6I?6rw%zBH@6JvDU45o+q zKNc{pMan-y{XcVJn_}hS)y!kq_+Z&O8vV9%a1f-S{w;!Wa70J?PA>r@4)pE#G8_d3 zCY4XE$HtC9W$(H7xpAd4;`uje>?g>5vhX82Vly7 zK>FC{zuikyVi}I2_bF_1_B%UUg=ID5QXjjD=}KNmDOgg{b_H$Oy`X36Vxs@}VoK6H ziH6HcV@hXxYwLv2!>Kgk)Psan{66Vh^#5$@5CllQ{+N~oE*2X@c+S=P6t%&zTl21%zj#Iqmf!JlDRxe$;`;jj?(P@O{FffC%h97$wVtxsAX$ox zTK^XI2)%f`VBGxu`(#7*e}D=;MfjGIqVMJw*x!He-#^W$WFdqcYhAvSw;w-#RP>0K zb^$Lf?`-2Q3H{VB?d`#)Ox4=1qb?L?cEuY2OVq7Rn^u9Ol5!9dK+k%^QDCE z?`H$2uUGXUl~em5n#a4Mg!S_RNk%5+e$$dOQ%#<_l%pfX!-sT3$gk0nUh>_1s;i64 z_#8=3Z=tRcZ{W2M`OAS(Coi*1x#O(L`OOdMoD~71r*jOf8hk`VpKUpn3o1gE3|`U2 zJgfIij*nl5+M70_@?%6LbI$0XWMb{`9M|mzrY6HeZI{z%EV@{6pXNU~uNYz^K^dB1 z@jhU>@x1lhnCjQ7i)!tUWzz>4DI0af(W2>@P=)1^XBVeR7t$*#0_*DBqq_}aW2vU* zb<=;z3)vQbiF~FbNY63Wr-xoAQE+(Z*&rWUOZ-_MFRlkfxD;xIbx{%4JqsGV>Q=^(m%B8AWoCT(wJv=#Ow6rNIE@Myr^_vlsSN>tBhC$FIPc68ccou1i8vlU>KMsZAF)yp!Umlu9;!2nh)@!ekSy<4 z3AZt^rAAi5cRoGMplF6#P;f1g;Ejq_55;b9a#Fz1P|QJnf2YtpGxISR;Rns>?*@&_ z_9N$6kY@e(^(!D4=g~m^qhjG_Pm{4)f{49vYeQ#Kq7sf^eNYvqS2vvHBXlvM%%10s z{a#E(ODg>G_N}Co6MsyMW9s2kG`WR^1w%KtsHrKIm4mGh3WBue<*1n@f7|3YFgd*h z_NWRfBqoGHl%1_?Y`!LFi90%i((DzU%wJFI$Gq{cXyQP5{eqlW#)_V5L^gV`ZT2lk zLd^NO?cKCfZW?(f(ChBLFn!)VI%@bL(h|g4Ik~washzF6AnQK%jg8e+c=2Ieq-ZUj z)APRPzqoYWPv0KaHSmRxnd^VpLm3Lrsi=qu4V~JP9xQ$1bEwH^?uduo!%<$|HMep2 za|JKdH8w6gLL8Xk2FyyAzsA1SM>w$w+Dvz1`G5aJK|NMmtF^UbeYiEn!>WOrnW+*T zqY_l86mD8FI@VTXgdz1}|LEfq5edT1)g<$;Z$(+Ejo2f3PZ91D64xluMV%r9P%1Po zgtwK1b{W0183@r%_7_zWaJw`fHAhj*!K`*CjO)SU6{U&-o$AN#C_65qtzE5OQ~8$G zg|^OrQJ&W!ZY*4@)ZAPbML5z}A9|g;@eQm8H(AcNyi+&u@*;sR6dN~jygn4Pfr?uc_Kp0$fyHlPQU#7 zOI%gwvk$RL21I-*IGKtGFFmhWWo!OQNtM1Pq(YQc=6_MDE0ZNNK8}q?=zbU?XhiN4 z-DRY#?5n(0Q&ZSpN3~z5!r)tjNJL2Z`a>*)#|rAJ2<|EayCFqLJCUT6qwh4YF1poAq-R~o2d@%B**PmIudZ^? zCGv9qGKS*ZNgXtS&!LvT@a!(iin z6i0Jf;4IZMb#=bbLS(Y-TrW5rDZ)aWMv7!T zw>v5Nr5e9x3Sj0sJF@{%QEHXCkgYAPhzMDD)B0hWBIQZ!bC&=&xA#XElqV;>rtB(a zXv`8gDN=$s{H%SQ3 z1QvW033}&fN$~P>!r5nFkWQOmhQ4w`**IcSexyfYNI6_BCkRH5pn-LvBE6NNbhKZZ z1*Yuy*w|S^<~`3NqZf8fc7{>-&I|Z?i6kGB#7Xw5=P3JiY@81>Ddk@#c?GO+-ryeR zoL4;B+Sd5+`ebsRxNVac3II~xSa+sW7r~*dYk-)T7@5V@V&(p&kn7g=_Jfq~_{$RR zOpkT)H)*4cmk-ZnBaB(;Gt0`JrQ0Ud)MWj|QN7vqLTTIKc+`fk>UF|tMx$(!VJVSL z3u4f)z(6vn!a_&3)ZBtZs017d@z);6U<7~rUr-P`@bijVGeMFngx`~ov~I1AsF-dy z^j7;Pg%A;~mDGRA(rPQ}Ep)f~dj&6e5n^xgH*FrL$;atm<#@Hk*mxve@lptwVV6*l z?9SgJ&Lln9(hGfKcXD*uwF;Cjmt2acu&k{0>`PU0^#UqY)vP^N4`A8eGi*3G)5vRn zuNl@gHYUo;V@rE1Q7{f2egbYN;@UcO3te(O2)dk8slYYYR?@e#gUZc)hlYb#K2%oC z!~8n?S?+=B+@z%&z@arYh+REOCAGC}y}e5A4HTg6qoL2s$Po5l*p-0jpg9SyuW(GeN_Q|GprWfrxe(~RhF`A-= zd-(l~v5U)-aIqh$sY(C-)jX~ITsva^NbOFLXbcTbP%;{Fs@VaT4v1oVc)UE(LPe!4 zHZx7J%7zSwBowjY}OF8yX)UxVa(5?m?B3Vgqq~>QJ4l7zwBc!#MI%sgD z;B7?D>R$&e(8e8x+FU(G{hwmx)6c>oiLLGUuI|X8$;swW0zGoh(|rHy+*MkGMK;=g zN<;&u@lq2fQ18oDldW|{p~=$(6;FK}H19Dp+jz6e7pR~o{g61Eo@ZeHxT??+K8cl8 zSZJuoiXB#89}XyWB=B=3Ui^1_L*o8>dYWDD(Pw?$La~S)d7n6p zVdiQ%o83O&?KzGaro6n7D(#(@5uA0;6pF(6ZxGdr8e&wXs;25%hlgKt+B7(=v9N4T zt{)cH@q`amJ=?)WF(}mlfZ#_)#?}-*mN0(iqSHk4Cn}f#K3CZrj5RSP<_1>llET` z@<8U(KMp&kC9Fao9@L?sCeNpG=**~E*EJKRp8l>13p5{kPKN$fzucPj^_l7xV%k%V ziYDad+?*V;LLImDUYRmzN)HY&&(GUvrT$Tsr~`KKnu}}6hI8Fzd)+g*pZ}I~WgE{n zuLt)$Lhqe~R`BhV&eaV?Sa|r}IqK95+t4hbo+`VNPNI4Fm;QbMID{-O_uBCu>(tJ5 z9~``pUB3ra>gYI0hP+*f3x7pS%%67s4f)^(-M0jSX6wpi^Fwg+#TAnQ`}xcaJuv-#8561n<7q?DY#bj` zK0kP*qjQ}-zK|E0E&gSIF*Vp*nyMr29li?#lFz4!%|GQ64TPsseZq!4626Ec2){I) zoNurB#qv;IiFK|%$ycTD{`5j0$B_KR3``+{gs9X53DfbHbB$E=^a)#*Z>FZEOpWbU z4hTz1S38Z!bQ}fHaq+5yd&Y=Mdl{k}$B7|hCY==N zj+hj-iAJC9EY!IqhcE}{izCB}i$byRzA_#^b@xIfUP1TNi-Wi7mptgnOT{@J+lB3aa z6L7nHp0jR$r+&`|dYu3!BAE`m1J`;9dhAFmOc?!nT#xR7q_NwyZT?6$JE^$%(zM(W z6gK)sD`cLHx5~q>lR_ooN`z_gEos1rMj}VN7|8wvq@*|v4bkpe< zy1F_R6^uKE_Km!oSYTuNG%wSz_=~?eaQ^ge57(K6QjEL{gt6>X;^Yxuvav;|){Ok9 ziHr?7cK7}?SHh-;Donc=N{e(~blF_{d^$?pWGGQsoWTq~p5at_vsyG=Bz*{6LP5|d z_V%J*Udq5gkVQxmR(Z}-xNYR*!SPQwTM!8a1<;9n7LJpEg9G!DQv0txSg=b^=C8R~ z7UZ_dgDmX`2oA+xOo4oo<+Xa~kZIF9^^E#@?h9?08Q0dHSy-@{mcJSu=MY`DfTJ3# z^fQOXmfN``l$@D4Wob$A?#mTsSj*x}sQi}fDQa(zR$iXk9o!RV15y%_#s!>hI^OW$ z-D6jIn%{ksG8G$OTp>r&g)<3~2(6*elR8oP7cAd5G)mCT2f6vMO)cDHj#!xW{Fl6r znB!|5KJV{evcEc(Pt<4DW#AjjFclFo+^h7uWCj>sfG&nS%GggV#yE*|5naIleTZbs z?<6c@sW{z|9s`!*@^bI78X4Q-@4306Wz)HAMU}vSlfK^A=}(+L?3tXJdgthfn8WU$ zm4&KcEStJG4(V!?M@JbPe=dxDR}hmaknXTn5zZ>*C<(ZB7wuf2)&0GT);1wzFBRU| z-5vDBO0dzsg@3AZ72{yw@n*k2hYz%uYiq2o*Z1!XjT3sW9j#yvO>sX!VbbFxkV6aY z)G}~$L#gHgmw9_tn(4-izVV4TTP~;Pg~%*{cIiV+?d=R|MV|M>lV5A;rI=V*MeOWY zm}G?V5_1luEM%soeTj`Nw5R;n(Vi@?sQA51nmtB%p|{sQvHt;+UKlSOvr2w`@AAi) zjUB$3Om|}8$X!UyNf`bR<2<3iJdJ}#;w5fohB9$ns(ih88yP_tH(;d5&Z*`-X5O^^ z+|=4y&RoX$NkqoifptTuCt~4z!sPoSv$G;DE{v3v#%I@_6&0~~gwndqNvOkP=-!=} zCza}&- zfB)14AnmgcKc!R9i;1On2-*GC%^xS4o<{t;(|}hxEJhcjs4&zCYnhbvfLVv+A&k7x z1>QAm@OwQy&+l#ltr-Wp@szMlFK3z;mT;f(0J2Ae3k1y_4oGxq0%^52KrZ*NIXJh)fl;6IP1FS`X&SDzFFjjRqq)w zG<5k>IWq;nSgW8mzliydgXYFR{I}^jO$ID1{QO-*L+GR;ISkUYwakcABUC*-YzUtt z%h-iw(=s!WL$gBQ+E6b5sfS~5g{OAm15q&&MNNEj2`@YYLr?JkR##(aY8o^;b)DXj z8&|rzy9fOH=UP+q%<1pgDEmux2mh0khHnVAib`#(b|ux-or8l!(cRC$Q!%tbH)3~P zuZw2xXrMsHLg1%NmswYLGn$1d#Ru3kllNO}=vzd{&$a!gnrgkSAI(OHJ726e4)pO~ z*OzI#3+#PONJt!1L{U3FX=pDsAz|UpDM`Xgm&b6&Y6Q&exGq5|r!w+Rzol3PW z`fL_e>(nSgik?weNK~!u4c$;n%WFwvfT$@~SIf=Rqyn3>lQCnu1l!Ka%L`JT6cdCZ zLXm1Y6k!HE9iyZ$bPnU=vakj)CKbhEPCENLqfgM;{$)gt+;xf9IfaqDgQoU+s`CahNal?jI9ri~%;PI@e&>3kaw zr#|;VvihK`?8rCM&O}`uH@l=H;`@xARM+wGInT<+9|&ba6R1Emwh^ZZ!Mps(};x{Mz&ALWF|@TZ!t#`SJHbnqn0AkIwEVFm5rK2VMR9 zN1l*i|MY2H{E1&!fWY~6bBJlci}T(p4c)W`T3V2Zh`LM^8{By-J@+ez z^lqPhyd?fuixteCBZ?6N87KP@%h(u7HU}k?4>&si{&5*_RNEs*_(Kf)~gn3*NGF}dHmyG8Nwr{fa{GJpO&>phLimEz;( z{vw(#wZWa6pRaFg%TUO~{d?iB5I*PkzwF0TQ)GaY=H?~*%+C)cSci6k26O#zT2K+_ zuNyXyeJd9vSd5UOhIr~jKfdBMcSwI8x@bB77r5whWY&BZb+-h#H-x39uqR!zvtY9uEM7sjp1#_MeGLsEu?U!Prz zon3b^{1Dw`S{k(&S)-d8gB#M{&{^x$ggPj^ScyPk0`nKwFf-}U5LNXK)Bzb z-H_=1*ZbQ5HWC8xRAHo(8@pZQk z?_T1LeL+Kffbbau?@#CL1Lt~TxO9M(NILQ0;5fm|VQ{CVj=;SoHu#o=a z2U2JjPwwFXD=Y1Tr4L(%?AFCl8iyiqLPf=wN3#c)N)7Gg08UjJ} z&vXNEm2+PvI62>3QGhREYNqrZtJTo(tHJ@s|E~oY4g{>HkmijrUCf`;OWSHfeSxBq zm)`!Jm#g^K!mm2=@=En(;wsZR0x6ZCt}b^hWR{llXE`S4k56qlyyUrJskFJ>i?>KF zjP)mVo}5%Sa&zP5A!Zo$uBqbzJp!&~0eCFT0WvKqF83U zWiTmYGcz@$vmC+vzBw9)H(f2GUckMGDniT4JCRdZ$j=#(q84N2G|_o<^t`6FD19gz z0|~+TY_AqzcqIh|9FOFIb>!z0Pq2fN|NVRa{ks7teIVI7^bsegr+9>QMD+r{-DCIn z$x2FmSg1(?=P+UP{8m%bu9Sk-Z^I&jcor7M_m;ftE-gpX3M)9c6gQL}z=%xB%><<2 z;OF1^M49v&k`z$3?wHJU@4_?U>I*&K?QVZ4BrtgCP6>7phES zs|ua*iS=JIR$vAn9vn>kAmqSB#N%~?@!&ya*MORSIm90j{L<_b&zyqVXIj1*9c`*q zlfuT>f`#n!XR$r>su#URnEae;&-fiD?$eLSXP3+m8WGOCPd_*RxlP>a>rb!1B|8By z+>(QUf2G21ng7cEMI!I5dTlzX^B{b4QyOAaQSu53a>mBXIRxTGdiqvY-}BTKWU5}z z?mS55t8Xp0(0i>Gg_h_gpw2)=MNMMAF?_6K%bDjG2P#)vYC0mq*T6kDZO>3^mD=n$X z6k%b4x1bmxBqAb<5Z`m=X=0&M0f(SubT>J`4e%>Kf6}sinYp=4tHbr`uix~|Z=XOi z##_keZr$EIk&tu)E&;8LhKFHX@3m!+HU&?=j8ewh|?b z+F(C9Au2UXMdhcdjfhpB_yg}2z8d8UaZmRpE>E=hi|KbSs}i>QhRKfNm}3{$y@JKc z8PyBkdtS{i$RFOMB$6LT8Q~%!yiBN^n%0EBS|mFUdD^2c?ksECK>JYK#3YhY*h?cE>_r!JE3rV({#R|Ei!Bz=sJkf4K_-RRi2;NJ+HH zW}R9dS7(MFKdPEq?}%pSVZOT9Dg6?H!SzX)Jm*1!htJ?G+g?ZWyS;Q}SvnO#IR|^D zqlSJMA)x8XYI^+PbdCBw&FS_)Fq zq-QoXSbC$lVcRP&g^*+U0j|hSqe!LYy+7{QBWGt68H#V_sQ(2RHm`EMd;k91^0E*Y z_oH-zMHh}}m{B0PX>c@}uR7~Vlv(i9)H+}f+1jYMk~GW)rBen}(TyYlzqdF!u-|Y! z!MI*bO+v#j|LBVFt%iooLS+X`_FzdE&IQ*)w51ZHo>oWu%t!0dV{7H4pr=z2$sG6XqlhkHj z4oQjhnai@|M991u{QIARahR!9{E_`$i&nd^eSFm=alk#Qy1(V`8DWYn%UF~_T zGc+8~zEyCslU{J!n@3i0+GHrEWU&>o02{L_`i06sRarrYtanIg;<} z&j6s()clR;m6!ij&V-GaQKP?x0EtgNKJtGhG8NO6vAx##S|#fKaXH}0Kh?g6`017* zLLA?R<)i<*muDSKBto5na;q|tW3M332oZ7qow4zk#_O5exbgAe(FxAfk@^p(&onG# zvp)|F`Il9mW>OMq>MgXdtvz{vC_DW)MY&vr+-QDkidphsX?}iCQj!cdPRD>U>u+<) z#(nBrg702eHq{Fpoj2h(Je50FSk>c68L`$YwazD7LI76g=53~hpS$y|tqJzYbXk8_ zHcvuE4pyLf!jce$rZ0;qum`E^k~X^*X@>jk()k|xtKxVPy`l|hiTbMn7 z{7|~X68<-U*P=jqe&+69R-wyvm>8E(!o^h>VBUSOg|e=9E~Ewx?ehTic5kPQ9Y@V z@Za`!JphM9AXE@RQ8&GiYy7;ojS})o=1O6}>fpex`a>#nPGwY_+FP65O@ItUQssqT z&91Lg%jZc6TgYUS%V?{pgg5`PvldMG?h4sfN-bt5#qw9pDGI<5JFIavgcy-)xVedr z{#)sLu^!(SkM!`NB+zW1*9U|$JolF%F_9!)0dA^iK;&Ryq0H7z9ZHsqv-Wom$o$;;tkVIk0W|N%j>D>>EGMQOMk^l`Sm0Oyy?ul@|24&+4zvf;|3e=)!mzo z5`V$?iSXC^t^5{r!}=#a{sjfbfbgI8?(ZYzE#00uHpCY}&{J4V&7{@1fr5qxK(PVM zzal&6hR0uv2}J1=&R^E-s~#ZjBMUL1*yxPs}7P6LD59$%(jt>OW2h=79{(oeIZS8 z=gl7JzqsH*?YMV+U8%&Et!}Yp9DvbPqA3#{Lph!uc3jHE)&lL2ROGCz6lM~_ewWx0U{oVAAh zhN+cRT1fd9&0z>@UmLIwMG$COwq5#2@@Jp$&wf?QChz_QS73%O$m?(JS3NX+@vIAb zZ@|0gfnJ>W3${;aXYuNbv4?^o$2C>2g&^lh+BVhMH^y*2&BoTZdEweGgdsmGD;Ta5 zoIqhg2%>6t+7%BuZ1LO4h&8Pv$f~Fy%e|VMo_-i`_$fn?Rz}7OjS%X?svhqjtUdP=sb%Lx593aeEeI5n0@}V?VhH~ucXSaKzN;; zwKX5U3|3LSs{cs!z~m&wi)Vx8Lesd^^%#I7%vrZCPIhd}uK#&QBJdiih~Tl9*nAns zs zs!pOW(A4kW2SB5wZ(@R+(AV1*JTY9j8`rZswR2?4D|_<)y;xaW125Po!BpV_CV;y?UAgZsG@CRO z(_jb^eI~KJzHnn{{N?;u%*K=KU^zX6{eka$%lY-coid)DWFIg2Bs1{~Dk2XKa_uMn ze8DH*0n(kt3`?-YH?3nC*uP!7^MeE+Hq2CvCb!)n|K@}HR%Sr~r~VEk#`3{UIaAq) zKT>nz%1cP>ijHtkU=Pq_|Hs_?lC#y-E_Xj$TpV@xSmn$qK*cSV^DAd(=zeMFjSC%% zsR>tC_o3ao ztvk`QTWwSui+6s;G;xoD!l~MEGY`+D9*Hm19`1}FP}^0W;selkel7t`KNoit4tgRE z0Hwg0wiXXGdlOa8c=xO#b*$S*h`#`D$QKDM3D^VY=Xc5OU*oc+O^=Mqx+#@9*;CQb z_%nX}`U-IIx9|?~dkC;7yX^CeNp@qUUh^6c@Kj#@1G1diT0oK}#BkBLOSU zB0M?y>{Va3AV-!AYLL{_b&QwHa^qS2w*k2}t5^8Pz5QWBlg^9EIdRfd>2-Cn2M3w} z+`G9^eRQe>&>TUWh7rZA`Gp0`$7)nu;sz-tC4U-LIfonSTV1_{5RgLw$OezVm<@;) zO&r-7?=ds`>Pm7EbB30PW|mmj3cJS(KB zAZKe6_h}wfmh^@Ow!&yD1cMeIPz%DX%S2Cq$m4Rr`)^aog6iOUcRL=CvXJwOjk*Pw z#ly!ykMV7s<|0yyb;mty7ISn&p{Fm+Ml|<@Al#;-qnF{t^>R+9$I*6-8|3U58!X_6 zqot+wSlxY;Vu*a*6&0S7pPvSyE{gWHwur$Z1FJnY6mdNO7z=7L&1`Ms6;Cm!7hnSc zI6O<(7_nvyL1WTceLs=pB_v#W`^%ByCnhShqRX%@s|8uk{iF>-;e_D6kZD zbs?Qe!+9P(*&hGA$Zs=_fc49Avu&H<@BT27irm`QDD?A2G6Q1DSV_x2(+{|E=x z_~1~*{h(`MubqHD(iV+U1<9xBrXfBi=FQcO5InB47}9W)x5s2zp#!^5NmEnE%?%CG zds9<)L7XCMwXM;26B>%8s!9d6OF2z@FWr!^c?xPVmmM>iy$8g0fMKa?;xD&{GE-9q z9v>SYUA%!(%q^*FfUPQwJY~RQP#TZnDQPa* zXkzdkY9y6&$+NPO71bsZ4}7FnzrbMFvRX2{a4V|0PU79M43c-k>=8jBp+{q5GT9AL zUty@IxYn}XmNjUn~X z{d>f`7sP#i+Y&aapY=ayX0iaG&Lvb=j6L37&I}Yx>wGf2NAyK8CoAKHa*?L;5ji3O z5(2pC8~6IT`I95sb`H;fsaLQhpa2;KL%x95t%X^A>?8qITIb~GXskn`76S|;s%khd zak1~jy~V|Bi!D0Zi3S!HjI$B+x^?_SHgw8Gw_hjpZp}p-NTST5;^Q%L^R!H@`SRu> znGl*=uP+xeGlYfICSvyfd+MdG-GhU*_$1KgJiSHRyUA8PVDsBs(u33gIy!FlmhZvv z{8gMB|0Qe2uqA*-u%@WD{K%ja8mf}8+J5-`J5!?OGLY=W#bQP#QX3mC+n01Gj7Y?U zsN75w0_4OFaqZ12={`G2>>zzA*J$nBFa6GC(q{F z)4VvaZP!sma$E@wn>YEemlP5k(k7U(c?5ej6H_tZg)pRSSXnJmXK68TOUs}r=*-c% zHW+aQmIVf`udH<&e&oqQhEAMiKj59bsN6tIh`J*gR@1IQ>GluBn6EIi2%7K`-H1jwgh`%zY4XCDLP9dw_)&rtPSJ#v zZ83-BlELFq%Xxhd5321mOIFzMfTI}o>PY!+Y$#lL?#46CsDlC|K82)X{qO~&M#v+W z)X&a@N=lKd9L!$QN@TEQAKhHr*n*1lS)?^rp%Aq1vYXGvg$@#vV7-2heJ{(9oA@6cys;C;EampUD~p>urLa(q zO@hh?6r*r3Kb@S+S2@-Ij$6kQJXI$kB;?kTMb3f*8GpSz9q&trN9=i11@&?{$GW?D zWV8L|=g-LU4yo4jRiBTH2$`0b1G|{*&PZO54CQ)f=S)R2{tL8r(7gEjiya;7$aVFA z4fqL~r;AdV7!?vRM4vr+B#Vkl=v<%k+=&OGs8XRk<$O^jMgOxg!VNe2heg4ygEge1 zi&wF6)IW=C0M%qOHUyqKX?0Zt?iK3g`Cc^bskA%&V~WW;QoeXM9&1oniWaCEau9q= zA$gDisxxI(j-jzksVdXoA4@>oX=gv6c^EH!rd{V8N-f9N^ltJsr9+Gvl)91e@t&(I z8la=IdG7f3_I5f8ixEHyXR9!3z3ElNGZmrTc=s}&mFMblUmvgS+=z0|(bF$u8N-$9 zRw)yv-Eel1rRDh7Hb%e&(?C95d+0g`maps#VJR`O;Y&8dJDU?!3ud{#KYv1_c^i>& zY9PsE5k4-QU@ok7OawGo6IdC@=&zhCAzEx);s|VHhtLw;`uTKtT*=d<9^BRAYOc z!k6yiItMa9!MMP<4+64aDQpbkZUuU}e`yEE>)z@QT426%zfzE_4pxUiP!V!(h;Wgk zVH~@s2sh-P?6R`^p;=EeOF(4O9fIM+bLP%xXWynG4S9Z`pkQUSOS!u8VM8%wUZ~Bz z)|o#GUg*f{q#oGhx}0Yo>w^z^SHZPrlI;%PW$jm!I)r!hot!-3v`OC4hP$%f)4QPH z)srWqvkliV_JK%&^+OMv9YysPRRXB6u;8T=Q`o!`qDvdzZ~sdf@E>r(B{rk_;Eap! z7#kCF#~k?k>(`{mR}zp7ORT8S zb#)VZgOjq0Uhj$ZSwAp6U1-#Nj^1Ya4Hp+V?$a!z$2joAT5Q5XvZxg$6L%7A&c~c1 z+^2gbc0*Vaj+*WjPFYs*>*W{iWH}|JE!Jf@p|1?C^F=EvY#}g4(9v6@>-oTxVP%Dy zH|DFV)!NjQfLHvkZT>IFjq2(~jK3C1vgb53pulK0JL}AzOiZ?hPD`?M_?VFBeE%Hv z4cCF67yQcgbl^KrNNlsQNe|RPDsFCqYHi{hC)6h*sB?4IXYTiU*No>~H^oGp)RS>w zb9sAnev5bMuWUFrf$(*Zc0x86-S=6Y!Uu$?$h^E=Q3^TcgVa7C7%?&V{B92ddEc(Cw4YK)Zi5tmKFLfIRYQ3)nEjC|~H=;6=rB(I~+PDGLkg<6}l}2SAeY zrxrmhP;aMYdu2*G>lP7I^EhrcmXr|3^)&zeYY2KVww!;aC(V34w_E%Qpk5BWpMWQz z6}TUFJChwiO`paV+s1QcWGm{@s=9eypoa({a~)(t*uV&F3UT? z-s+pXkiEFn8sw+8wVR(AnxU2X{t%#ow(h za0L3#>F@>z1Hw9miEXZsR~{W5-5#p4c}x#RgMb4A)*(I;{29)Hi;Mf2nPYV)({WK$ zczLZ(os9c`a6p!m};&|c5Z4y6!KCrQk($^&8uuJT|YV!K58@#QS zpkottbbQX(O!_Pk0Xhh_!^FbEGxM+_#husKe1|Gb1Icr(n~wJdN=h*Ao-WhSu-{=V z0vL+a*GK~mt=^f37!~ay-LBW?o5pjY=u7NGm|EN}sWlp|INrR0b+LmH&lpgHBw452 z?p2i_s*U3wP{(}OQ2fcdxO%TCUi2r=QEgeJ9#@=T(xgR6adFeXe}qX%YW>QLAQ?P4 z2?1x#gT0uDj8p6}=tUljdyexR3F)MS` zKyuth_(MS^Wwq;j^51z)=ni979eTGE2M3anV#Z3ja2Xs@eF@du?X;mw%jWtgO)A@G z{iM)PmxF@?7_okom1!TXiz~-+u^s?;0%lfM_t0x$i-Cg^uhzlA)4LS9oE(`WF3>YT z*uUTUlCGhvYe0*jRm;D4>Bo`RZ=)HR7-iVlj~?SN9YNwfdCf5wJMMV!#3pJbyZ`ie zkA{GXicbq(;vYZ4N_g42A026!1aa$C5P;U28O!eXC+Ij*r4hm(I=hpY@gz$0a77)Y-+kLe-( z^PPTZdHF*-J0mbJC$m2L{S4j~2i^$`jb~1AO|?QFIt%3JdcvvHSvh*AGP)%>~e*P%r*Y zJ{=90rV?TrcpO#kGdo-NQo}z(Q%JRtd+51SCk(fVh>Q|pI*eqXrQrX8uU zTU*f}2SvN;t8RyJTEcOc5ZdzcX+)PDv;>iMIdP=UK%;U)&1to5Ww5RU#H;(J;URcU zCfwfY>no@a3j}NGQ2p~rlI50?N+%?&GBf|zEskgAJ32GtHawp2MncfKJl1XZirsDZ zMkleK*PP^*QSUs@ODz9Ct(uGF(ozZ| zcnwqbA0uP%JE8*K&-@Kj78m8hmHrQjEwOmbBJH~J5TdiKuU z;anC^oq)Eu=C;B8|7!t22m|=pmjY)QcIoFB?`J?=Qo0Q<75!fAsf1PPG+i$Q#IdvU z+TJYC_j_V89NqNvbj}(9$2zsoEtUZ;(y%_zHpR8K7nVIr6AG9N6@38G7x7F1Yy8-a zo6laZU-qzXx^@rC8c_1aAawqLj7)*a(wbVP}0kriZBCy6W`jP!8;YQt;qfbuSRP#HHAmv>To@uxT zuPv}nx733tv1fH{y1cgnJsV!f_(PgrcchC+&=0O@4aN1Nak-azJGW9Sy(7l z`=rT|12jXC!{?o=b`CW`G-Q6FjZ+}oXf=OT3QhZnnFy2G4{%PXZh|L?BvbM8zZ~Czr7@DvS49B<(}0qwrKQm? zrYXX{lNYVOIW9+TeIKddyuAI(ymyh*NIGFIOjEG3@8%VbVf^@&i->z)t>9dd2O||; zY@8ZMl#Gm4m_T9T_U{ryt4mpJqPy8UX@8&k>C=GcWX}=MNHONj5_WpM9ripb?;_DH zEQ0?YAO3ZS0oto^_zMDy_^TbPl2H=!I1^*vQHuLI4<5uTSxDhvsIAIkAAjDIFbx^77DV&oi~O7Ay$AMEKkipUY4jTTF@s z8oju>x@VyNdc()}B{euz$L&}ew4aMQJ*=)bBPZ`tv8x`_BP@6O50Os})hn`eY&pw?XoZA>3CTSjmT% z*9=TyhOAchi-K}3{iEs@uLFGNNG@F}Jh##I&)s2S{U+@SmkaxM*4$it8d_TJ!*hTk z;1OA*77UxlYaufaJ{E%0%iY_DHVx6+QWeAK6q#z;)+u8!B!kuhO8@c0X{y!y|~qN3a0!{MBTg}GN?yGuSxRC>A!j{||F zB95sotZQPN!hgi=7(2}vY89t2?_{cSfAe0-4!^i^j}^!ymN9MJn8IF0z*_poZ2VFoFIH$ z5RC&ylc?NsPjFE@sn7>dMlfKdj>ST|cIXk# zh}jrF!;sRUqF8PIFV*q}8_sEbghgcFQ@4zriRJyMsOK4_hjg;p&;O51?pa;=+Zikv z;q>J%Z}Nkz>=bZEiFkNyiGEie7y|m<^e?JSUBv6zNOKw!=QG36f4RPF!g?V)+>DB` zU3MzK;K#?C9Gy1GDnuYcodti+%#5q1mYZIVJORim-y5x9VE0hL>;!sDKyyQt>3Cl? z=RmxPdHLC%(t$ZPr(DYXVjpKC)y22C;u6-5$w@1orDU)f)BM;ps6xeezd`cXV=x=AI8z)J37tPy3!ClX8s;z)na1z;lTw{_SNWE z)u3@*Pb@%tvOP(g_V>YC(t+^#o=-DQxX2CBdBIpLh##AQQcSDl++T4KK>wELF70;t zRx}$kNldSO{g4Hec9NM?xnv_lLp`0Hybd+fO4zwTdi?yk5;B|!1E#gLFT8|z`!ml1 zB;s7}BRON}{wsBfLdJcf}M>n2F z?CjbZdGwgmdzaUc?!lA%)nsM=HQ4adLhUs)?BJBh`eN#$dzPSo>U$5_$@lzQp?))R z+E6jK(K8nTv-{q1i|_Ih8&t>CbIOr^pP+St*^8FQ{uwByfHVC~d1wSNjg~(uPTW)3 zV{*TGdnbTS3!K42n>c1RyIz!mN6u#rYSnd5!#hIT3{WTjOMppNuwY!+qF*QjFC@~$ z_pMx%<=*Hn5{6iqhpqe9x1_ipJV)xJ7o1#J zae2sbc|;4wzi{RTDXCz#wvqsO86C0lhdQFrkC@CpCO0}5M~>i5Yt0USG7qt`W!jUDM?3ya&8UOco4f#o~WSu${URyl6wI}-1{qVn8# za+V+K1bbtemwar*_zsdF)~j9n)u1yBU*d4&%9+3pdvw_ompxaZ#s}VSqyJLq2S88a z-XQe!%PUkgw4XU6_QZYKPboTUwQ(2H=R5VH~(F5kf^9mDsW1<=Gn_U9wWU7%u7PRg_h873j*{biYZ@>!ek+bq@~{ zqIN*WIi7`u_k&<5uHD*8<{KiXn^S&JE+i)34=&MQxVyUg%(7#Tx|QJV>@C-m$2Ca_ zZ6YMZ1FZ1$U&xSp+^IHb5spq!-<8Y4d#@d3@HTcS0HDh)e(QH4(^!kuC94;j=^j3kDl%$n7Z2Z?b^Sk@zA`GSt!w)j zqyYi~($Xaj(%s!10wN(H-Jqm&35b-mba%J3fPl1sba%rydEW7z;W$4W$i45q*IsMR zYhDrDdGJ{#evb195=MuBLY!2Uu7chM9(j9i$q(<-Sz24CEBzBI-Iq4DRR&)aqlz!^`6_pm<^ zfyWenm&+NRg`?w?I7I@4PK3&;%i7ytWDi|NnK7QCAd0Zd$*to%6T~S%9Iz)Iemyg8 zKfd`f^CK?|hSdRiN2`Xh~ety4pW|*heHeiq#u)*TE z^UxI!6jkm&IA|+1bqvK&ITtca)aGJwp zj7ynP&p;wEc&2A1;l)DIhN|knIL5?;7xQEOJuW+shm_#K6&I_h#Zs?v7d0W8m@Fr8 zJEDLM-0$BIzWCV6>RM~t&b}2bR7gQM?Z>~XbDWY%YyhW%)ble6w}0ad-uC0Lvp<0q zlU8O&kUV&%`uuqe`omB4&H}>ug<0i?dwyhs8WS`-Gv|>YSdvZkrdsA;#|y)trdj=+ z+o!dQ^_Jy@xG^F8!3(=r@5!-=s+Lgj*f;I5?}DwK2;>(S8e#~Q5PXi=ZKgUDIK%PK z)-RprS}%!Iv$v-Lf!mPit%-WX-$o&2%0HdUecjVo1Q>(ECnru_#s@)URQRzl-apvy z_6})Pl(4n6?KQ@X`qUi)*;johRUhR|Wnb_IcN&RiC{k0!F1;6dT?0X7}=9OXEddJGT^x$p!rhEWBOg#68VumusVh?TXi6*;c zbQeUm?ffcQD{mOJN;N_AwtO zct%2-hJ_Qdw#DoI7Uk2DrTRWO^oU(yr|aun_4x}?kGaSx3`EjMShNtNv*LQC<+_Ua zY7GSL{1Y=KCQPmRPb2!&ZBe2N2fnZr+KOIndnYc+%)4+E*JO6GbY9f$Dh|3j(FdHm zo-e0PUGwS{uw@P(rrxd--x&*Zb>a2(ada5L9zh7Jnx-9DL}Y@7kx@p+$qN^Q9r?BE z$>i%peJs0#@?o*N89*54(21cnvVFT~LRtI{jpdQtTVa@tYIjYV!3^Bvn zzQ^-T*DuA5!SivAq5bt|_t_1m% z6gj(Kz^R*1Mvh|u&b+g*h&n#5Bt%Wcj-}mK$o5lZ`bus1I$^4eVNP;1Faa40LsCzv&2%rTKMk@zEj^R49;1NhE5tX=b?Kxa-O3c+dG4`OCk3%;7M zeH(f9^VIbfy=-YyQ)_2Pt$okkMjIVH6Z%FO!`0R{1!8(h__efurWPfsn!1?bjdX?imj|IKhfIi)Zs}i7 z2v`+SQtlX+4~&dCa^#4%+fs=`dGYQY(TA0Od)IB!=!PY7R&uY#V0skh& zc)lHA{@a3(B_R}Q4`|=O&G^I#E6_On_?QGwt_;a^MNz)a7Ubr83-$t?eHu6TEJGO2 zJYQAMU76fx^nU*89Bx}RnHFEQWlFrNcH7Fz%Fd(eqp z4e?>e_G^E+b;1P;9uCp=5JoR{I=#cJEZ0R_DgDxw2dms~A7jjZn*pyzb&Xki#%aae zBhd^UODhVt=1wD9VHWkY>?PA%s=?;#?w_94ZQ2iv4Q`+CUdKmW%+$Xkhza1q3p@DR z>Zq-K5m7J?WvY;?>y5ZFX%wh2g}~0Myc~0;;r!m%m?PWk(=91Z9)d?}4l8^oB<3xR z`Z!+Afr4-Rqobp#9-r0jx^w8MOAQmET_?Nn&b`72>itO9Lbvb23nMG+kD~?-aBjf* z?CJ{mGxHdrAnttJY1>lW?3`{*Ev>~i|1D!b2{C%?rKO1Gfk%v2s^YseLdkdeVPFzV zf{l}*y2HM=-bH~OV!PBO0gQSel(lwryixyBCR^jYYu~?eQ4p<{yYqf|EEPl@7>QOs zU0w2Qcw}Jx`q0q#%`XrlzH#RnEWVvKkZ3CN_?vY8PnIBDEIXSBHgGc=f!Mf8jF3(s z9)N%}iA!0gnrik-`=88lzNc*$IdNEGV_P(1)&@sVOEwqp9^dPdwXhZ-z=nMOe!juCv>@k zbgKEYYin8QY@k9+V~14S5X}ZTg`rNqrRz+?XAYDr^@AgJ*Mz~99f!JKUIXMQc8 zC|}l=nZP3oM6)qwVF#Mtmy??^zFkmZjZV5A2)6!JA}kOU36}5^ru#AG*44F>p|0^V zzAv}nx5xa8y=%@Y>0uY%8{|KP+q%3*0|QU^Z?EoNWafm8)Vim2J*t87rf;F#8${L9 z+;O9X8WOxMeoalC`cq5xE~DQ6Bq)!lm!=5u&(8SV5AX9g%$dws(*Zn-^;}9R|Coo! zur!9SJm!nx>5MsSsaB%rwhu4X?JWGl%JiEz<4b@oV9+=O}NX5J_m8)@+Gn%Z^|;E zTau{;W=@&1jI*=v~^YDTAyz_rSHwhsjqXix}5U2j?_*jnXm7mnwF+}S?uJ!&${MSv@n}tII zVY_~1W$|iH0!3VS`_8U+k~2>@q_du8Da%+{(V_a&(w)y|?nm{!U2_1Z+!%K!<=PUH zXpi+VHR9>%1bdaqq}SLX;4c!ST6fCFn^v;cWshbx7)R;fEw;H^!o(H5{!<>gwU@I$^__ zI=^nR8R8!lJ4b!`#Q1zGsWv@59V6e7A!nChC5ZfqhqBC4=_d^)wj-{_#s?Bp{#G`o z@mT)d3v4mDaVj|@)wg|JCFGd>z!9tA1ogKXsJY(RV^XSE$v2xfSM&4V{1<3U47+mD()?Rn>A)|6 zK>LDWO;)q89NgBC{jYcig$QaJe4?X`k_KH#qvk5aS@5yLNh~4g&g1XovIrTr9}~j_ zhW;)_emK6uDx!KLP7(VFl01p9Qa)~S! z@VAMJfBof=Q7K^QuhE05Ajm28k5%#VKBp~rJT5^)uq0MaUf#DnT9w|e+DT#bhvE{u zz<(=xLveL(c}`2KYH3-p>=35Q7nS*`IRE|9aE1`fpFYM=rHawUZac|Fh;jsp$LNh! zL;j>_Mi9A9v~AQGuTOi_n*HR+NM-#Ws4z*NeFA6pm6fjW;bbx_?S+|IoTqXwtHQf6 zJ#Qvm-^U^$aBGb9+#(EXl_ zk2mlr_ukjh(a|hqRaM^rAGqbC_0>b82!eMW02_UYr-R{2PImTP&9KFIYd>`}bo;Ca z(_xSk9Ss2v15?Y!tJ7cWQ$Gq+chk0>pc#NDgT64TKY)u886Rj6L}%6%@GfD%>%1}Yd0?;&kFmN*> zd!(IR8cZa!MjouzJMZF|n3RQ%eXqS~@-RUG|L$Vfo!ZoX3qu;w%B{bDpFnw;HlYDM zB-lsRsdVWH+uH8Sn;siwj$n{Si<%yb20FgL2>Rl}+jVutslNG`M2Pm)J2>(d7Z(X5 zsvag3gep=Cvf+U?8#Aj6wQw97c}epR5wx4=s0a`~*tJkX8vh0B zYP&Pjrxn&r;s-y_x$sqjoVM$&MT@2NPa68Ka-FLOWnnzd{6hKc;LrauHtrXXQ=rWJ zMZ_1s`|fK=30+d?Z9v8+0%PhgPWxP2v%1=4iy!)JSNac;n&LMS2CkL_-Zt2Pz^`>< z1J%UDu42lfLi>S5CC3tLt=)3{*)Li&Ao}yJkt4y-M*Cc$zRx*$^7*64D!z+ za9~4*Sa(l#B0CPo&Fjl*=m8;{tSwDv^$kq>0Erg5+gV z$#OtK1~`04M4dE=!e}1J-IZ7RRUdX{=vt9jur0k#&{@`NtkN8$+y9 ztRJum4{#%f>OUE3tyes=0vInTGX;PdF{MAa7Ea0V#rLHajZ|+%Lxqc3!`D`e$ZF6rBUM zksy+XinO3L7njWrAloD+?)()VIwP3&qc^W~R|z{jlX-WySr@(W0%D>~Q?K>3nR6W= zN(+cd>Ke%peZ6RD+057w^YR`eJlRCJ&tEY9@QG3evm(S!>U=UQl{GAvv%9(KlPIDE zpqc)a7WgHZzNZTw)>MFt)PC?K+1DO3R=Tq9tu$$>D>f8~Uf1s6dG$|?o}HiHN0byI z_DU5Y9A!o;lknmF{4enu>BG3g>yHCjTt^ID&Nxg=+|4WbQ}OHh(k4{&i`vWz6cQQF zNi`V+u%0j+xv{!6zG$AWj}c66F|$lBEu~oQi=t^_=jQg?@2z&(X>U&NuyJFzP>+%VsU~D8f8^0 zLmS-Z>V0*(;XZiwZ>ahy$gogX$i0rg#*RV+Yv-op-+g*kUXNr=`f%x3Myz4N%Wjf;bnW~yVi^kHg-_^_-juI!w^VGFsh1IO;< z_wCFrZYuUYx6^hdsIlI9dEE!c5%u@kVA;^y+im&fDEfzZQRB^F!$IL~VEVw(oHT5f z!x=BHZcHG*hJkUpfgCPfT-IO1jV9CKhJvHSBNr z0v9;%o;_w&**L+FNhqBBu(ClhJ+w+mFejMRo21M4xZ1}1v$~Fmy?yrr5)N{jB6__i zxMU!_Eej?rZsge3mB+D`BE5CRUb#3v<#gxp^f{7(Zw`cW5%OrLlEb5;+Y`lBF)?I& z3D6#U(5wO0jlSYp~`01NnwDocBM(&>>+Fx}>O zhySjW)HMEksNo&nYj7E_+dx0`XV2Me4F=)?MMbO#=KP+=8}1HH?}`Vu4qdhMs}}4g zBP9iki#yE<7;%Xq1RFl8#`W+4#PS5x)t&fISnv^1k&(S#+vFiKeu{$FF)~7LI@IK{ zRw^NvDeG6e&bSH>uN%{31eew7225W z>|yTF3jj^hX*9Jj_toN8TSi*>u;GQVaJnGmRwOkw9co2r@H5{8qV2wn`uuckV#qJk zuWXhd63u+XRl<5yQ`Mp`sL#?qr{%QY8(Ns~4&1-dhXN>pK~4EKkoZ}cHJGThL&^wg zOson0*BZ}DvK0IN;nU08G?JijMYAwTa^Pxk4UdV+XlMukk2hzu3vdnh z+(Qv|kzjESs$>_C&I-q*Vkj*uYinx*KV23WQaNRck(u|qyO$5W{E9=V}`kI%_xW^YpmSdyEoDagTn@r#Al*AP=FyP|mTg4g)3nY>6y4 zA2?hz$Ea$P5a117KB_X0pEDw8!n5KGe{(5z;L=&HY9wfSVo>ZeNbLL@PRlW3MEFvZ!FfmJ; zkhRUe;z#mTKTVZnM~EBssqpa=fzkeJ#BTA=&hVxq@bn>cXPy)Nn+)-ETT#==;g{Q98~YnmcT{cq50@uYP#fdO-p6uDj~)x3cn|FQ$Bj*hF}YA*R~UB? zie@mw>P7UW$+vn#k8SKa2~pn?)c;@~$|x#w9I__S5>Hk5uv8q=f0m1YUT3tV0b^aaO87xMExs;!CDq0Wj~3 z%MF=IYQ*N011zRt1FkXInCy#5XbA+&b>dL!1?v1!8D?~ z=j_b0x6j1EDSH>)@k^=K*&fmIvPu0E^ZK6Hb8mV^9Z(uBxB0g(T}cR~g%17tW%{`j zc#A_gdpjpa-ac%QiNbkCv%I{~;O@HO15?d<=i+g(QWdv4<3$F@_{MrJM+!rCRxFlR4H7lk<_Vi_RySW zDLZEFY)^LVKSpH53nMC?7_=Yq%q0ntfDWUm$ZKj!o(UEdY)KavgC=52qwA01x8bp} zE&=4%n)2?x0_l9IJX^1mVKvg-d#@D5FP~r&n3+L}@r?QvpO>^w+L0(X_u$@6{jL9) z8X9aA2M40>!Bm;$pPj2v%^{1{3vf4u7@)hkX3o3*M*Y|7n`~aqkFv^wH4DBB@w?+E z55klSQ@hZ1Xuo^d>7b`bz4bdWfYFzy0y#h+kI8)&lUwwcr%cj9TF*^or674QOyL5wq9>P+OG%}zzFm8 zgn@a9rnnMyc;NCOIjW&YTznyXrQxZm2zgTyjLA2io=>XX5rmM-OP_&K0i+jTZpX!< zbzW4efO`{MKKhhgpC%e;r<{@Q|Db3 z^oLs~u7HpRb?<_;l%SOrYgzKSv#u4@%SoNTZDjq(x@7a-9-3CjE$L&ccIUgbY>dUm$dyqsXFKh#&><4AYCxA5vM3qoOGf(ZKg z--}~#-~KJ(c0S_xncK49!9C)T5Z0PmCoEK$sfD>4MFLxc?;1J6lsQMg)c>xHa~x|N zeeqLUidumrQ(l!T=L8-UqJn&Q`@qR|&PTR>d6a03?~ z^v%upe(h<5#?6B(+5dfpx|RA>tco@*KpXdrctS+rM;tjgINm;35e>5z4o5{wc`TF%ka(LaP79S1+L7zi-9s*Co%+J!VkP~e%ra$&lM~At*`B0;J_L+t{C0NiaUY*= z|1J~a9~!qvHhj18a%^k>ggb<;rc}uHeIl7o-oN+i>PAwcg)-MsRh62WE(VOkYU}@W z88O2lU#gwMgqH{*mOn*^NDNzG@)5GJvcmoRxily}y_ypX3puy9J+5#c41?`$~>AeIa_%n|4lTigKx9BT@1EVqa#C=QH^r`%y5W6|m% zvQ5*C3=78HG|Hppzwd;9Xi(Rr1P8cty&d zAz~K*&khdgrJVB4r{{Xy=1gk$Q z>I1!&d#97Qk7eilxz|JYt^}@!czKyi@bTFa6Mq!SQ47vBUEf0#S^88W(Ojw#Yok0RRUmqZiGyP@EX~;Q zk5qUu#B6_aBiAM`BH^$BJ5T^UMd-0t*%adAF~`2Yf6osMYGvgs1oQl_kD|Hxo_6!j zpLO-!-58kCfrV|XMqjQa%xIXPeOyhw4I)ckl|nNr@9l3azQTLGIju-dn_Fnbg^vF? zPy~2E&jtpr-FcIB+g=A5y#%-6_~Bu9-rK8qW%)V3Q`S&r^Y0lMrV~v6>RkMU-#47j zc`pN;$DFA0es&d~Ay_;^lO8%8m9^u_iYk8VkU08a=>P>Nc|awgs%|lCmZzBOfKYhg zezeAMC-3{srl^$*%;xkmWp~R(`O9U;{Cxb=HFv<8-g?e<=c)`n-}(l#3VQnf4>wmb zuFM=5Ay-%cd9=Ry9E{2p8%z5|T5lYYmk=ZTr{2St!ltWIDYsdNTs&N9zwqGQ>g#(X znbrAqAPjIt1-W*LAY$z)BYtXHT2j1O&Z`!(mURb3wOIGStZPlr>rL5IuPDgI^$~il zruJ^|wF5~!oiZMm{w+5w@V-WO4JW)?%7)b=+0S_QKdD{az@O*iDBu}i4-PZf7GovJVYh>~6H-~IQ@w9E zQ2nDJsFi6A#48!97RY@N(EgDt5a> zl89AGS_boXt1jQ{TZA9lR^PL-7)_M4?g%}_%@L!uE@mT4_%*st^l>PINv`}h7XTlC zPtJqF@s6>48+$N!LC84hSw_`AtYx~ooX`BdL^3S9OTseD2aKqxX?HWL?XGPn_*_;v zX9~xm5;!b1$5{>`M)769miaR`$36buh1ZFj`(XYac>^6CoKK%Snfq73Cz5e%y)0(% z=l;dS`gUUrbQ#Wdv-!#+B~`&PF1H5?EcUl}v9Un%V+Se$b!@~^8?o2fgeYlL1<~i7 zjOKJ3Qzb2xjhg)|1JPdz)Q;0=H`#1#+{F{I`(o6hWcmPHHZ_$$eku-hc?aiI@vIS( ztbZEFkW33t#LXQEAUqz+Xh3erAUPET*>C?xv0?HlX$6T?)Mr8=$s_4kw6wyMbhGAo z$xLTG-WXy!Mq4LZ1mRqZ`=qkj;@sTwrfdNiL4M)kF`*IjLivUK%9fnydtihG6y!dH z$uZdX74!2Upa?HVLBJrg#xW0FhW4$#0L=cQP$A#QM)j$yqwX*{L)ZdJ|{oB zvNAsLwLr&Pi?^ai^=6vev7$~l}6^G3*8+^iomo0asD!3whm9$2n~k4g(ws7Rjr|+_Y_+y2q{g;d zS_21ltYY~fGC3+g*Bm?%KTE##othF?yPjJnV;@Nlgt`@~ znwv+>Qn%GNn86=U74_~q^3pVkm#C&tVSsTWoD|2u!)oEAbaQ(cBq~mi&9i6c?3fH! zqws>TQ9(grqvVIIda$fIY9A%PhiXC6vu-*4aI8Xmu`bEbR>6Oe-6cN1*ogDZ`n z&H?}P_f)Ir*@7R2ii8>OJ#6IzXY$Y+?YR-2c|bs~1~qMTy80$F9{$=oSG>l-g#; zudF20I(CuszdXhKCOUc5rD|NKrh7ljF4&h2DO@3zI<(X1@e@5EQX0k|H!|rs>pVbl zooSyvJ#T=x@v_oq5X%$u?OS%z<4Z$(z>AnzS$#&$!4@baAm9o+{Ce+FqhuQALu~=f zUB0X1Q!~bw*Cv>;>>hK&z9vpiJC)Y1o;JG9x?=B@gynf(ObjD^xUKV7;W!sa6qKm3 zbQ``-md{0)u}L%4^d8uyf2PEJ3?AZkA5m+FbBz|2azo!2dndaSdnHCkcbpV}4hZa5 zE%nQ-4Y$Zj5PVHS4~ZreBO%IR0h7nn*2# zB2C(Sc_iy~8F!N+a^S>W!DVIDxaKehq!W<+1KdW$gawmfm7J8NlkEr~x(?N$uSkK6 zXZd7X;cLQ+tSkyviq~U1c`ol`&c@&ME~yN}mzKH%p26vuSHextk%$nKc_sKVPP-5e z^VL0j9rJBLr zOYrp#*~Vew^VfkpO0pw~=d`V~B-xAnv72q_7tO6TW(Od{c62Zq*@glGXeD+bPLlk` z7&kDTfE)YAl2umzDGNVCc6K&GdF_rM=nF%by%*GUZ`*H$P7SW^*`)@Cv2Yoce#N;x zI;~MP>DnKdH$I+ZEUm5WDbyi`G&LuDHo+6aP@s;FPduR6<->1$RH`X!Yz(GBj(08Y z_7te2Pr(>MOUo9JCULdcmnPJUQvdQhqme5gkIW`>32B;vLDJv9tG~zjtwYl$5)+a= zI}Xa8#H@cWDA6qfSvn~oj5M!2nOFa%i;^z<>yd$l`V7^dB_lww=sfWHu+8X&v7@8^ z;i>`ckA7k3$ULrqhSHF9@-=hZBOSy2afnH1TpVVgG`s00E)ZV1yaAc#c+}pmF>KZk zSNE3Pn=}fUj;`oS!};7?xw~2Xrxx12KKmpAgEQ@qxGwueMq4>26sjKTg^vw@?*aOk@4OitAPdud$o3AOw z7DSPV6Z)#Cb|xpBqhKUWjg_Z|YE-o-Vpr<}Y{m;W&~-KPMCkIG!buCwYI%*>!p4|$ zlynH}Fzah;?H0)<78alah-g*xl{cl;WS{%=BOLs$G0+EI3T2L`C7lz;*;%B}?bm>*ZK1v4_EA5q!tj zhomnb@wNlRMErpxoZAWJPL$}#7-2*yOCy{4Kn=F#-Udw^-0&;_1D1s2LX4qH_tQ6M z2jk>Bl8%asPu%6d`*D#zAC`{YH1!;xJw?hbP|Z+QgRB`^G8-=khsf;gL1WgHJu(cD zh)$zBZidTtWopm5J3w5MlPGcVrpyW7;DF*kVfp)kvjb%E?d{cOmRrzF5rt)2Pzl8e za_sMQcDmBX1wzBqbcylK?HnUE4jc4HntFP(S^eg0h-}|z+3-B&J3-wL3cnN^hYBzb z=nd0qYR-b@YX=X?2qU`XnQDTy3q^`w1NHWwUd6&bClHvh;~6|@Hth-6^?~LHBeqYX z7z+4(P5(FAdc!uJ$p?0Yd_Jx0gURj;jA(z15{%5vzlGo!C~!%zs=ZW@=lk2KaD$rA zZTm+5>{=fYNkD*~V}Vz~w)AUUT#5*O>OUXB z7SN#SRaL{;Nlu_Y&;A!xOxR5@gZaCae^~tn-0U+u0p)h00P~EuWzkGcx-P`5H8%{XZijL}!U0D~L zNBaQPKNt#25Mhi@XsoYs2I;5HkqtNy#=keOUe?pndcmEX0FiYSkD!rUnyN&5_E2DT zs99Ld|3I_8n~Is8J-FL=d27-)?ejJ8?FhAXE?H=q#7Un4^8-W~vDw)iB(E7c@xts@ z2cJ7|d&=Lpg=+-35G~3qq*wZhPl-G^M(cWoG1J$(8GuT-X_GMyDnczxIiNUq>iI9I z_S-KC>6;VX$UlaI+k3Zn>2d?-vvM52oj6zi%wdD(vqXaXr2&)%VZp(6Q_~77p5es! zN1kU#qs>cK=kcTbNifd`ZAIEITEJ2ewvoP}1o{hE&tCkOT;vpSrq00V+QxGhxwA70 zqe6I!&@sY1@907s0IGw$BN=kvIA^*^pH>iuD?zOf*pOaihgMlcUSFl(bfcdttx!&W zms!EAr`EL>Bb0k^QDiZ(q{y3)Osk?!nbV*PAf|8{c%Y}r*M42yG|?_Bhtat$OsTcD zN#o*H5)u+1%Mn7-OKHN!Ij+FpA7rD_)f`{c)&1x+ASs3q$9WA1t{C_UMa9*ytfZ&8I-UZ~m|IC-uIdG$z3+VA02InH{CY#gH`L}I!W>iW{%g-~tlO2>x9p@*xTQ77@K`0uh3Vr!&x9V-f%W|P zwg#n%kZD0PIah zHo@t_7rE7=qsD(MRiMwDjrrJ572vfymm`^VQ1NQ5 zV4S94oQpxv?O1Zx5KenTL&SVX)L3abd;6i34}n9gUDnlq_cO(eK}Eq4?gQ?wRuvMFfkcdp|&r==MG=32}5t3cp=XoukAHyUz?j z6pSKWc*S{d&YF!&J8o@kV7KaYx(V93;u}11a#%gYE&X${b6QmLpA)P(cB~tii9PmOtB2QR;p_F{68(HV z%+BVJoJYHq_V~N7Lx9gigsr8B+kkk3oAm-`Twq~76Jf%I(8pNCp9Mn?mx5& z)UTd{15*Cfka+zIJlZiFOsXLYL@pkl;L+NS^Fzj!EiuhPdqBIi9F==tKLoqoOBh*O zGbnvV{Y4IiT&m{@AqZREb9pk3xnj(De0=juf%?ndT1ZGpR3BYb-}8cpL{i8vygHw6sgX2JV=9a%MF%={30WNw`1P{-aoa6&HsM!%XT}TF^Ox_B02a z=d2tHHW~$TE(ESvrFET1pT}Z7GVIWapb3*mV1(o}L8WI&oVG>Z@z`?VJ$ymb)Y~Fx z=-`*~E^CePfp_eV2=MmvTZ-=^L~Ze+28V<=|FC_>&7%NazZ`v>5=`WG9@VDmvdKUM zHOj*V09J=`josQrUMzP6Z8gOdGmT$d0Iw~9ZXPu){i`2|UzGHrx6;$YE1)sMkq>NE zOKZgSP5kf8x1^A73?*}GYd#Q_jimLRD6PKK)jfUpuImK%$iY}=$G-H#J_Ub#9MfK- zK+lv+n0N+wzb=3vj>cK`_}B{gNWdO}S8#1z>L)U>(=JTBR)++JIy#W6ts5o0Zc6;MY(>LZ~su|&!kE8X4bo~o#1TXOIG(`GSY=;8{Gfl;Z|mDg*=rZdd$ zot91`W?)JVPkn0&I=5YrY&C+Lq9cfPcIeREv9vD$9Z?QQL)LYxe{_eXq?Ci0la>Fb za|#@~Okpculy#NfYi)gp)cnwPgJ=w#m@QUYJM_P`lr zB=YiQP=&>)V8;7Grz%6 z3C>{zG@=>9+o!Kb(-DI1AV+}pXRdiizn-27v}a)EoF@vL5uNUK;(D4cC>nF{^UI3) z^BSMYFld0IPCf`m(pL-Jr521j&XfI=k)@YIc zwRJ-`%=hE7vczC?03!lkn}&URkE7vv7B&aMe8;Ck=ueY)raMXTk=qcJ&Am#8+Cv%0 z|Bz;6oPt@$UVK`R?D)ACN3VWYvdG0 z?p?jX$vZpko#kxAR}`zaXU;#4+@EzWeIEH~oOvNfsX_=1;ZN`ptVPhlC9drW~qLZDg zzZi8z7kKgO>G_Y<_h7sF>xz;Nzi+X*Kh(9f-yZ*a*BFd=cBJG<{j|8J!_qdC{&4v2<=95`DEux0Ya9(EE${c%6!&mcN8%L10bW7 zRbjuiwvLX*FqcmYx?a9E4Ev;Ga6_>p_4bQAFEj=tQ&ZmGOQ;F-bMmAk)brbyw1Csk zzr2hJ3J*0k@!u9!;|C8W1<}V(Rfkr5+C!~@pWt#vSy>suGm?oqd?awIc2`~IR~p5e z#K_?mW@jhV)-pHfzt*-ION+jvg2J7$y}e=Y?d??=*@L|T=0NarGr?d`J+^Gptz-SM znU)p|cA19+ZdqSwvE+6YT^|>NaoCFpq9?%0b2{bD?Skv&F@S%ZokLt&w;@U!rlKDA zre@6n5fM=zh?V@1-4+1@z!%QNwUj0j61z$U^KqD$xsg8umJi}v?8*HS^jd5l+&-qh z7j3*y%`-ms9DpG(^uy8Vbzy)8)}9~GrT zjWyMfX^JLu6(0Vyv~*#v%f92DLR@m5p!u6uCigvSO7dlA#xEHe7+M?+lFo~KE zI*XJDmM0fP9l-pp4FX zQZ6?Z6&Hi<9H#pJqm9xHTZDlW!u5F+>|`jAW%c4%Y2@W-2=|nI(E2)(JKKk+I{zgN zih%}ZcSIVE4jUBWFkHnbuf11$#r*nWpMkMz_m=qfbm|)1lTbuSHBT|a7UW4SDoec~G#j^+!rrv#W`;^$X~&T#eMHR1={ZBBx> zR<8uvXh~vXU&hm&UEcQT{1iqSaT{b5vjA-^18a?p!A& zlWN1EE7|Yg64N-aUQ|`rPO#R57H1_T-#%PludOjXjd`>rgZ|KZ#wArHhk;PW@jT** z8&Qd77r>@mjvFH?_3xT^r-977n%W#VteHIic}D^YV6YxYvZgHW0CVs&1^AGlqn@K6dcw>R6fkb?j4PQL zx8yss^*-Xp*`>_aI~_0{X!X?r8Uma~%g4G_9FG8`27iy7T2~vMn)P+&@o`=nM`J*& z(iA^}6Rt+n)E7Gge59t!WG)at0EPyqy#2n>1@|Lp-=V;RY0}ivht4HiY@Agnr?S$8 z<==1id~u@*@?To2U~7Z1GHCQa=FzgMsg3;@Q}b9a3@9+~1mp~$AX4YB-CtR;25=PCE*GM&Efsl{ICX_MZ_3)3wtBYU-SB%$;7xzI)*s9#tUIjC z%xy!rSIeQz3c0^O?BCk#_WR=P?q1$ppuBvDEcKBSL2_ooj^3TIeu)3{nSkq7Hdohi z<~m#9C}#|1LQ-LlHH-XcXpB^%EO$&@X}5Wd?KjGB!b`5JnR1`S?h|8RVCK z=+R!+A|JUNWIoS&9(|j9M(5`hcyxKiKR>j8qwAf}+G@?sJ(pg(e-X5Vie1mhz(B>r z6VcT4bZ1uQd+9z4su&_<+k>9DNO%9$1tmn6T12+jUP)zabfVYBQs zep7sj`uG?}N=hoHxf$j+F-wa+wl^Mh$;re_yfd5jGc$(5QlwMciPW(I+C>5OmXO4e zr7S1b$pz_zT3Y+Gj9_6zf~?H;P1w%v;FsA!lyp{&E`u(EhU|Nf%gcI2>Jge(g?#(< ziZQi#axXJ7cB8)K3Fh{L0a&1P7XKo_n!|Gk=lPdBJiC9-6|J}M@!ubvdJ9WSLjYvw zpY5vey`FPy8F^pHwT|U8!lQ4wzT8z-vP~HqLr_*(1}8WA zIH=BOlyi^%?w7w+C90 zQ&50krI4B$roaEi$5lg!Y<{;h=XvS3)j6z{kC%NjprM${5_S2@%vmbB=DK%P>&5m< zIyxMG(wKz>Ym4`c1YA3k$(3eOxJSUZ9^>_J3GD41op3IX=QRC|KWShb-wn}TvjKI2!vH5D~fm^ng79Kc8 zudT2D-5A3`o12&)usMz$V&&)m*uy3yCWgta$2B`k2%fBg^qtze1yro8iF0%A1%Re?L5R5j-Rv1ubAeAhGTG$SY}?RFqA;*uGH+*EY1Y zjO-G(G5c4upr#eab(+(B&peonFz@p73yUOya|+$}bf7Xfv1e?NCjK%e5qk6`EU8*TCN9VWO`W7)shrh`uj#9b{R8D2x4j=5%FMcSdWF}w-?f#2?aE%97Nv1G~ zf|H5Kr<S)A+Qu=<%9 z=NVJef$LW4W%b+o86-Cuuph0S_Ep#E+}L1&FmVPhE(BFoHhArAYjweq+}Pee29gpc zBUf#S1Q>%EZy4s~`dZ%Q3#I+s6L{~~ep;ZG>lo(av-kk%M|Cx(|KeL0jyO4o1$1Jq zR;tkGXp48IR0^Ivt=wXbuV&D2iFX&S&hY{DN!gREn8Luuk)xX9IoxhunAx0r+G1b4 z8Q~yAL{h(*1>;Y!f-_2YKGeSvXU>gsJq=Wd7) z+eJm?NZ}Um>^MQdEg2E-o6>?`qoeX7?d+*zN=?#cP9b)Fu@g1up`heffW6-K|p{X$;YP{r#h)Bf3`R9e*ZO7sw!RfBI zpxl6eWN0pgMBN_GQ<$4x{ye--iZJW^%ffNZ!2}G{z{5^XO^pvU|Gy_vSAoAcm#7!n z3VVkA>fq`5+0rg)Fh-F9ningIgFbE3iOftAp|L{+&S$T2z*m=8=fMoG?gPy7iLtQO zN~Rk}@^k)QWmo-{RTpeOMM9*MZUkv5>6R7{5CoL&l5%Rc5u~JB8flP{lJ4%l z!@YmO_2CB};=J#>&pxwf)~s1ennKL1v~YO#h8d8a&2gPWMz>rgBg&|*_iE>gjIQ7C z&!Cn7zVZtsWOBsm@lWKvXBNV9f6JoNium>~Y-)88N=r*6-;G<637kcib8vE7H};1S z7u#))L3;`K35HAA5sgyT)+Vn=%P)^kg(>*?85i&@3r0oXjgxL{vRr;?L%fyU4Ys}! z!o`(4I;k|c7~V~R6XSSomjg5dtwDz(1Vy>G2R8G;-GSSd@3~MhFF<4wK3I6XY zHU81u`6F_Q`l@fPfCh=aKc7H2j1&{OEx+I8Tg1ydYS>i;}nfUFe1u zDpD(!ib@}CXjpOXaYGpmNw{26QqjFAOtLkIe8Isq!NEs*+q4ZAOG}U) zxcm~!Njju2EMF4c+27BflbdU6;PjietM;>>Guos&ymuWR8O@FnM5 zTE>;&bTqTG`;wS=57b4$HXSG!`c_s+z{HP^dE4D{7=V9L5T>e%myob#;65d-rbgP{ z?$%_xWz!Uh5s2_}GHBAG*$Uc+-BJZi)ZpE)v%}wIxUQ!a@u|N@_-cj%$fotRT&wIU zJo_5n{cEO}EZ$cUInNWXRP#Nq_D{{sYS!)j@p~BJ#V7TlEyM|=HZD$1xyP7H82F$Q zp)i0jy|azo`mou1WqNLOraJr&N; zB_1+vidNEK3C!B0l@${oBCQ&MFtCG#=TJ?PL+^zgE8EZ=ku=Y=*bp8xv#y&`Qv zHFh#ojKI|Xe$1iu4Fn>4lr&jW)9T*sskzlDpD&@eNAE!EPl)F8aVwLZ>=5i}O~Z5M zq=YoGzlS&GAW0MQZP>J_V`kn)_l4Zx_;|QDrC0$I6?fIg*;$N@O<&C76aUuve>c~s z^v?^ysghxB)0dF5MpIr}`zc0XNKd>q8Sm`NbZF4w1qk+~n{wJIy&Z|_Syoon&dJH4 z%xM}jMIAIn1rd1@kNOB;T>SpMF=#G}5&lcZaqvJ^xOE}r)A_mD^Ein=8x|0lnYHWZ zPu-sZTi>)=(t20$1^Z7i;!FI0^#DHo?ipa?8dC@-Z`IKD3g>rj9QgY;c)%5$fZ!y- zF1IYZ2O`>pB5^uRn??HxMtSke;+bI^_!o-0;X-Gt2AOgZ!Qp5kJ1YlG2!> zAd8^QsWtP4toGpG2&gYY@~h0t%TO|@d4+AReC4F{-Pw0xO-2V|$bIQA@#Bhb-guZ- z+``qDmT;7`Jkw@pk==dN8*^<$!f5}fWnDsa3+<3b3($*>R-$Jq zrWO{icUvrSlVDt2@J&vZf?nDqy-{K0!}`MmnS}Io4Aa3>dD;&jWMSb9N}vC% zSU%qSW8U}4ZEioec*e@Wb|`34pu4N9l}hF_*Ax;it|M)Kde3spBJV|YW20X;hn%@N z5+`STS059~`Gmn|amviEU!!_oqc=31cK7yvZM-QP*pZIt6mvc$eHM+Alw90qcxn7I zDk@6*#fxERrW+pc6I`~AIy*bV-iG2!GP5hIyqvGl{_n`)$1F-8}Tn(<3VGYewS@CA^5Kr6=zOfs={~`}H;EmFgBe4AD`Uun!A48p@xxV}!9lehap%>8!T`HYE$1t8Xs)6@5%9BUJ(2PTZ^hs%4=s;WWA-Wui6 zF@(eJ_*i1giBTpuskc|N?B}6k0jC}{M+0}AD>TC2s~@;AA0N+tel@$!PU#aVuB7xt zT6(x)YzGACz_go3PLBIZCZi*Hc^UEIlDwqCNP<~`T2PR*f-kT|lvE~{yZ6tGXZ(y7 zemt}PxUm;O@mL>TaxyVc)Jp3pPqg{@pook zGXyI0f`UWPvr=XWYvwvyYn1wG7P6(kd#b z3&$LXM^p@rR}>Y8TqvkMu)Z#-bUN70Ra(!CJ0hQV-~$&x;13v7sK3|d(yyA@a}m!O z#)13~_QiQ*yI+e0b3D+$35eW+#G^yo%R*-wKg+~^20k#L;f00M->jb1Dm~Qs?>`bH zX>k!{p!{83Jvlg(WhIc5mhS%7;;;HFItRPubtjNOSBA2=Kz96!YoQIH&NF0wUh4gi z9w}+DzE;RGyG+ zZ|%6nnAFwD!*t!ZVob7?hn>FAO#&r*_)6$Q`ua71fOu1?xcF;z^--INeuWh)?_}q4 z4~yTm7K%wlN;GBb^1+NKd5DU$)(ka(IUTwQqIrz`rT_{$zA)mPqx+v zt0!iiAn%ldZShJ$fmTpU+O90Lf|ETYL=s*d6wVJBinAD`_acWOC8gq_YOgPH6+Huk7*0C^RfBcOso>8qIJ~g$ zfD!vNJ}+Adm(0cVMdH;z_L9lM|MT#z0ub{gSvW{}+DvD{0*dPObrGn$;cvu?i^XYT z=J#FJppr8)lM}Z?p8wJYmZLQ97i#s*@27fPx6;JSjNraU z_3k2O!D!3GdtqoqO}>3RJT+Shl^C`0i$1Ung*5d{PM1HmUvSqe}d z!^LN|wO=+oThCdNpC1fB?`jk+L2niwI0ht6N%L_as6Dty9Q5;^N~mzK(W+V+SRm zSBXhPV7=;jaM<&$uu%96qfO~YS?)5DQ(f5S&-dKicJ@bvuiJx8`BO&A#xpKY2D7ys zr?$CjYlX7P%GUoVD@rH|I6mBNg`TA03pHibEQLamIdao_2*4K?z(3@N$QhlO7^1C% zUs1@=4AI!kERVfGBVXBmzJ-0lVob302BG{f>e0pb$k4K>ZDT{jkN*DB=H~r@7N+oN zYc-jn5UFw69*xxA4S~=ou9#C$0IdS+^Xq!bV`WkdWCMfi=S+P7Uj)j(+df<%A>I_h zq5d<5B>x8wH&%}$yt6l>HNpx{Lc%CCTnKLR4?(%uvV>KbG{*r$C?NRY<#W{H>U}FP zN_<_J7qPSNx5i+y85Q5$PN8$EDk+Z zM$Fh4WGQ2jExbPaZErJy&S-u-C3MRB)0;kllDmFZdY$uJR!K=pS($lLz>K~cc;DU2 z&!>OtzI@px>f&u>MFbSvrHLA0R8$9dbpEOuhjrfc3$}T;?{MqZ*KLiBk-Gavp`R?g zbIPvyKB3)$3wX~VzdHBKWC=*OJB)uyJ|o0JfztKsS5;6jCm`EtF-*!i`OPTADVb%N zBP$;_Z(|`qvh^(rP6jWC8c3{YpP0tN~9SLnd)+r=J*nI zCPPERsKi7ml~LESpV$v8M)6crUc zP5Gj#o^}`#<<(x~JTaha%c|9d-tzEpmwrhnJu`FXw$sq)GUrAox*Sj1#=?RC6_sF4 zPFJd8Hf&R{C=d^wc!F{hRWKO{ z_w_CJ43O?$iG8m4YmtnGc?#qs@Dj5h9OzlL+h0>8cDt^LWVHMbEH2l!t|&5Q<>?+g za$k3d1@H_Y6d=QrI@GHF{_PPM+F~@<-0^4^{n^E~s{k39V6B*)9p7rd7Ru#rYaelY zPgDq}iTU6U)kg&dv&Lj0M*d5Nyorf5rWLpxTr2GkC^oEjn}VQP%G{g=I1|B|X#t&! z9fnE41tN2_OmZS(t+)(~#1M8?8%}T13f`sXWl`47j}CPhgZ0CZdFxvdv}Jt;rXTIw zP9PV(UDu&Jq_WcNdjWBFob)Ssc|8+aFC;A**Ys|OxaWb{RGsyA)j`_9tSl>=hoN>CM+z^$Kkf^_1S+1TD1{6+UNWwE^cNu@9RCv}i%EX{h+? zKEgCa(591t1lU2G?l#G)P1bx9Q;1Txf!eJqEqS>84v|L_}O=Rmgsx+vn>IA1L>jn;{nnHjwfRYFF?vMz%)AkHTA(J<>Y;>Kbx?n>6Aeuvo?u7U!Zr30Mr-|PRL zLlO1M|54Q-h?OTMqMXg{<6)q6#NZ#FihZMXf>C#f=xxhS%q%@Q*LVt2Qan=nfsO7F zRC`7-eXnmG1Q0@o2qyh5O-t38Cbs8k#i&xfW(RE${VBtWinw5;%gow4WXbSTGPjOY z-XoIB6Ic7W(!<22OLn2d0OpNk3tL-4<3o#AVt5{pw_l<{WItTBhDlk+&fY&0}$4fOUw8HF#VdG&RRM4A;f)@|->F z1h1L_V84Z@q+}06S`Y%{LdX|s;1{88w%6=s9o{`P+y6swq)R)t?l3%l`VavDGe5tk z`TX#mSa67Y&*%|BSZ2js0RJaJ66No&zx+<|9WvN&GbPE($l%x_Fy_@0H9G+uPpwy_|Hk27M1_jZ04=0ac@rA*^q102H(hzM)l9Q&-o}L3ck_g}3zc5CIM$+1a#{CxvBY z;ZhNQ>6m_mX{f~leqfQdyfGTzdNXAjT>=h~{-OXK8FYy%fd!FNc-$ZAx6R`c#H)YI zd$Q%jJA$uYbnfqK!~Mf}zd{$&y{KMEP!!l$R`$~S))OeP9VVwGfZ*$^85kG?Q`4Rb(d|i7Oqt<@gGx;bO(R<1Jib>%oxj^yKy7|OogKv_krgLM*^4s2 zD=9am6c*l7Vo)U_xp`CY6AniMj&Njj!8X*NlP@JDo!Vk?hh7U;O>%X0@wn-^3y@iG zZGOVI9vee~IEfKRS~V56ygYCS5}Ob5r%3l2vTM5WaBx!9S52QmW(d6)MNQ4_y*)8t z@xpr*diwTxOgr~dbjp^F?LN<4Bm1OsWY8uIY_&)*cK1+1jKcc*9HFe5oN>%j%2%YT z-w0wD^^e3+Y^`CwyyWldrr%ei{Qibck!}OPug-M``0P1Sln3+0HxJFsWbEw9p=a@A z3QceA0q2?zg$K3^>H8-V`_r@bYR$KZN6lz^BUyA8jffpltpNsldU3yg1umhKQE9v8 z7)kp3=l1r=A#$#jj{VyM(hDg9LOQ5+65_LXLPE2!a5gP~vFN}zIeqk-Y@jz(ze=NY zs>+6^GOB0fmBPE||Lxi5Lc#}Ssx=~XH~i18ty?7jRoiiJtK}=ZK>(ImH7$GtXGzTg zC7dN_n9eWwlO-%I4}bMdFg{K8gA}dDFZJbptw0DMu?)yDX2J9Gfm=I#-Cb{@ zqoTla?eSgvV@^PVrNmFj70`zMlU0NqBVe1~EU2ikC?nJT{> zA-o<2a_=hy7~FWnzz&1M%BpE0uZm~LGd1HuwE^l8W*x76@y~{=Qg0}uBIDmVu=<-D z7=!^mM^dWJ7I;%oe8%Td)8_qC9&mr-%N)EwDuQ*?nRfGhZ)0Vvcz}l(Ow)$Nu)JIm8s?Z@D-yv$Nc0H6HxM7p%_yMM zIn&S&`AAh2G*#^JiOq-$T~)R%VA00z$TldKoR*&c^TvjxLoF)wGl8R(4A$LIU{cNf zi8)_6nBtX9jiyj>r#~V#0>UXI`H63Z13wkXR!zxS?`knHCVRwH1Z<-0C~y=MSqUX{ ze}MKA&jdh4a&S<)y80_}za^s`F5pnWkzjA0&DIe?6TxbvLunBc!6GXvW|69{Y33op zfV#{W*aBa_5(6dXmo>I1hmoZEkF@jiL{leDV;6($ZbcRK2d$7vaSbRbEw~e1n3a|2 zic&tNda?4asn+>dR$xD59U}f{jJ6P(S9P%+czDCpg^sk}1*@;oH}PipH1X8j|tp z#jS=(F3+FnY5z#{0!o1hZI_hK5RVs4_uw6p=e(^LlI8#8LPl10bz{_ojmTtet6oe` z50KWs_dyd#adjj0e8}SOMOOivUKE)}tmro-vp0F0rI! z>jzu1ykYua)Mv-aP|`R{+^Pc~O+O2$R|;SSCYDW)_94S9Cw)cuo-p#&{OsZ>rAK-Y zD?vvhlq4A$K5=mYC5v@KZPlmAJY?}9RfWBqxt)JArYuysxGhbh(NdF$GRw#2E zLe%fyK01~$uVB(5yM*K~_=-l*UvJ#!QYCOv_6 z=Ko=X+3sWHdAvu&^!`p*2uV{bH50KOF7U z&&3L|Y0-~3jry0m<9T~?30yMG`ZEF8Z2eaVz!ZT*k%aDE8fSaEk%i?XrOd{8iv?F? z+}H3LO7I38Lx&#h(M3|V)i^#d=mG*B0V7CPUq2xbQ@G8x&|;faLCFrMKK!L#CYkTN z1ET{81~MZf4TOdLUPiT(JJQavqkA^J53mFLVv3Zrc6o15YVOuR9>F~S!YJJ8H=2Sve=76Y@p((H7nq35dp zGx$&CeE)va+i_Zd6$vnV%R$ehM1a~5!=^j0rVu{=;j|<)9<;d!+rW$ zW0spazfWf##2FDE`v5{(jq@&;m+C|Gdb-nd^9E3I0DAPQruyC9{Z||a-RZtF7YFT& ztt|pX#9Z6cXy9st1$gS@x28A1Dg(R>u?byzHZgm4X)Oj6q;YB9ZXJq1uC}-+2*JYJ zB89DPren{BTTbpBS%He~^T*+jD$_SQ9_SGU{UIIvuk_&)Vcuuq=OZEu3Bsh}_Pu_g^*hfkip!s2}Bn?@nx^FZOD zLbS;3h1za2VI&a1YzLF{L*A}K_4)1F}p!Y@92@&Jelci;O*KVQmm zm#@9W@}m~PLc$P?r$%XU_n`>g6%-=l`w!@=Y`0MqC{#WaM-P4WB77*?thyEqJ{B7Y z9o5ZYJrKcp@RTF-lJ6yozmDRhS77j6)*b)!ld(Ay_4xQ2XReclTBSdv0NgtqC~= zTcY$a0m6+~z4OMGb3EDzLJ_RsPw{&)?825FAqICZYVWdo#1)+N9`kCSaBJM`fJxq~ zUkAZU0jJ&gAEW!Nx4O-}Cgxy$CL7!{_=FolzUc1H(c#c@{%12 z`z*SXwByFMD29JuDNs&feV9;uZs+3^Fq=@XV5ueR8Kd(oj~{-dKymvgV3W=>Q9|3D z;cfo-!F-QPysfwW*ri<(xGy7l5bi#?8u7#FYO52tm8&0V_WL=L`*s!olMXBz!5Qa2 zVv~AdHYuzJh()ec$TFX_MX-$b z0upKwMS^B58alDD_eh6&5So48b*-DNtbW|xy1u&om`6j8N`WH!Lfhbm8N|#XpOj4oq2e%qjatsa$i2 zX~%PZn7v?=G7^%|Bq7!nu{b-F~tc$-Z zaeerbYqodqY}Q~*ZP$b(-1R=|eL?rzn}x#D!}5spiCvTb`tE)pWJ0(%-u&Mnx`6lC zC1IdJ<2{Fa4K9m4`2B9e1}^p7do-Sx7+Q70c$ma-rq>GaZ208)(b6wP-#teU??8gF!OIvoy!UX<-p^h!*PL^mPqOdCaj{9T5eNjX#GBXh2n3QB{QD**I{e)V{i+)N zfod-zp@<1T9+-w7;m=q$Z`AA&h&%Uh|3Vs>^}2-r$m<}g>Y!l#-oaVV&In94 zxoQ#`UEBzs^nFDkin~~65h&MH}%8dCd@2OGF-pk(WNWvV~xiX=U@LlbF zV$Je-jwv=7A?L|VWILMZ7tf%w{=VG^(wJ{;f1>&>j{eYm<*=VWA=^uIFI=&|rxu%* z3O};my5uLw1h+rr%)yH)va+%{#`J+Y!otF7$!SDhXlQ5wZh`uzgz$n5;{S&)u!(R- ziXaun$3);Fj1jmYp1dd~Ir6#us)>5qI`ZWtbwa%Yn|1Gw->4YZ;aSW7++Pk zZCib#SGqu%M^CMi4Z))pOB$SRB7<4-#9ydDnbgw4qK})KyR@Ky*}&YqcWQcC-IS9= zEMs_KV?6(3SXcux<>EiBZ@#|1BHONcI5({UcP8$Mbl8y@7nhWYJP22@|uw>Fwx1XNbYhSuT6-yhB!~)AWoatYZn0DefeU4L^7vvU~PWim|Y; zK8uKm{6JEjX!nVt)*DQIX);~@R6$mj^*=5y$FX$Lkn}^hD=~z-YqCsUi0l6z3*qb7 zmClC17q9S9DZ-bYg;NO5eV2%)b!7irs8zSDQDxP=+jJv$!T_SR-$80gviebxzx6FX#TWhh(+* zVQ@4yHX6-65WQDrH7g<|6}rB^(tF<8D)Lz`{w2Df-W?x5{=wA=H>BHpa_mzuK1CA3 z_n%O&vbvgG8_w7^Lvuo4~mM;3@> z*go)i!atZ~&RKjL2e>X~xPk~w-#z|L+s$O}Yu73`_g^NV<>j0fbM;eSVq!$q%T4q) z<{Ijx+X8X*j8!;TqL_N$NK3cJFsfwUdGu`A$jGRKsdtBi2&W0@`Ceux8mh1j25aq_ zculZ3l8@rvl?0+QMz`9xHDfiG`_g`OK#RF|Ut_5w%r7EBCajY!sUI%cFFrn=C|5pL zQ<_$xY_7pQ-|cv-yM)R8rWzj5Pw=6)TqKPZQb3bqP?-qyQH=?lN55pRWvx>>)Ff_Q8wGtTn3Q$!NVq7dztfF1O&<4 z$;uRh2%*@OK}@P5-WM&8!s=c~IVhTT!VmzS3x_y;MTktE@Zi13DM%>Gd0U=;c2XkozwvEYqVKUME) z&u+K;Mx#PqE90#1JqJ9=z}`5PN7^-ZXo#o~w4gzO!i8c=%w4CAG1K*-v{(5jCJJ{0 z0s>C|CRt-2xn0o@(S6N6iI5Xs#QFn|>VK)ELL7KT#mXu>UZf+KpBSpgoy6vS?I9Oy zq-458jVXeHC_>mE6$h-I<@-`j=8bPeKM@Pvvz)DUEGSB=UtslNrj0gz;`1hXwOw6C zKKQ?Xwfm>3aDE}^c;uRNF~e|-ZQ+mk_QS*s^12NZU%DS}9XYZULS(k{9|ck%AeNMK z6^GN((yUep^_4`OoVa6IbdtFYI&iYh`Vx?vE8xune-&tG7#SP44GtDfv-yn7+_|gM z=%L0B7b@)JR7ptnGZf>)=*7*$D=P`KqS=d@LstYM<}F%ux8e>-xq1Q7{rj!47w>T+ zjfi=yW||?TupzQ$5;%;X<>i+^cj%F4!TDd7gsK5Al6@I4T2`4lShr{edRUlDP2VqO3K1G85#W_09Da20Xc3 z^;H@=I)na1E;ZWdT&%$ZSFQvNd{p#iO$0}_R06WQ`$Zzo!J9Xdl5J4mT3B)34<=u| zSsm!_Zx6&J-7hOGl@AqLO0xgkhvl7l2Rb6gSpHqjQl{+H6{UGA9t_)pF>h&BmzVi} zak;p}kWM5(EvH zD9}_PB$r34$?N6rNS0&;(VyWo<@_wj^iJ}tsQT2ZAt!yjLiF}W+^`!94h zJVOicW;`0%L-Aqi?VI<$(K-{Zsqtxe$!bp<8H+wo$S8z;r_PJl-Ki|Gulv9ww%d@T z8Y-&q*cjcrz-$~p47~SG{`)UEzKjYR3l zxF+6|6i;*)7eq~su1rc`S$_UvTT#>XWB)A-1b!*1zv>T+mV--TIRe4ctCRVI z6aqi>dj;wh$Zf24Zf@sG+HbL@%S}<#VjrUk=h)VZ3a1GuSmO%%U?JG=K7R4V@#1)U zKY|jKNRYhRlXPhF!&2vGCDpELUft$8#2f~d8R8|0|5lpEMuZ-RAvhF zRErzjIiW=y+BtK6tF6vY@G^|}_%;jWHtK_V4 zZ(c&`{DUskbF|PIiZqan*4nzTwWW!v>ylt#$V*Y`k+*gs+qG|oh!aAaDHTq^(MC`) zT!*lXdM?Ej#Bknqu?Xew|4DkbvW+^ z8+v{wGU^O(P8St=cXx08204)K$!3}7#qk>%8Dr}8Zbreb-d>bW+ouukkFl|DxHlRW z>HKptGBRpz?+Nel5OvOrR9d-6EF}_OJm#&V9KQecc(QD4R(g`~z{4x|Co(TZU9dDsOJ-HNL;;H$LZNKEtlao}+WodoBmkl$->{N!;y?o)_-` z;hiCl5BPNo-Y%rO)wS#G}(~o`n$_H-qQScPC5y zIw;gD@^;1^MkgeE0_;c*z1zdYek|}YpVL~AW{usnF6&`oh}bhxeK$YEq%GOW%T8Nv zD1Y%%-{%z>lr$uwcH;ZrOT@0=`bX-j#S$YnU6Y%XHbdlOU0xUKc>HT$(rz;l&mLtn zH8nL*WFTBxSyB3@fZv8_X=$$8Z9NO)iA+q{HDpf^>nY{uXJXn?DNxpE^zlS9shG~( z+uQp(Ha6A>7o!+6yk|OwY4Qt4S8bsU4~c~(Rqs`*tG(IYyj#dzsHWD3W+6&ibQ_yg z)0|(w#zd7Qt>)@K0i@^!*deoASmn6+YX+*EmK5#iO}V?(T)hb=Q}>s=O!k$mX;EQqyU*1r6E_wLQZ#nC;(EKHRp z?+I_h6vp>>9)9t=t*x!r`{vpyrqb+klVxE-=Y!)WWiNZB)oflwM8wT+6VAJhbiXy1 zz4n$|uU!Za^2W`MT5cPn`@i-_1?JQXu}OEB)Q~SvpQMf>BOx^>a2%qun&1y*VtF#y zlvYRdc|z+CJXjqJfnJhR*1_o54>iwHz+p}Hd$-{RF(|}8BPxf zUg}vF-`&QYsmIc6z#d6MnXa_#&C1HEF*Y)~(ot1a^;gbs$RAzzMUcJpx^!uJ6?FIU zFS80_!al~pfB?&Zo*t6)iOp}&h2;kPm2{2J4%bnt>re(?VuX@Ocw7AntqpvajQULH zJ7HH49?G+4Lh2+9Y^q8-v$Zyh$cQ)B*Vi%@{E&Jfwg5-MLPFf1Ffimzq`eB#uTZx{ zYbRcLf+>PWN}5ERAr@AuuhzS3%hcOCI2dtuvD=g;pPLvI5J0%$P^$`&G}|jH>taYB z*hHjWP{~S7y=T0a&S7th0uS7xnJ2zZ<_3ko*r>gddy&ASv7 z6aX6Xf#Q2gOGk&tMG`hqp}yU|5uTB{mm{nBl8_P;8AGU-RmwT$?U8!OL*{zGPX&_v zNIx{h!`3<}=1;PX-@pG;HSfjPH85~}uXzoyT&;G!i=1MvqF|EL_icbZQyMKEyNJ`4 z_I4WUpC9iz?d&K+=Pi@OU7-0CLl}SV&vUCnrrrT4@DtN=tp~>iDKB%saWPW{3b+zl8e`G*qipgPbA%_73CQJMl5IBNpi-?#KN4 zKQRYd(yR=<$IQ4qJUx|G2UDuJlKQ3FT3e6l1-t|3KG98EUr@Ik)ElxA1!jK#o-F9J zHHp$Tn{{Va$$D1(&#Bkdc`gB{vf|}tC zAY}q3+qL%j%D?S#-TNS+|9ltV+1vsJ{31Hc)cs$oZUph-oP?Wj;Kpsi{c-Y*}9X2 zKTBA?&BaW7%zS)x_u5!B4GpR3B;+y5rZjC1*M=jPmksR!t0s`FobXslE#bjaIoy%9 zMju}u%T>?^nu1tGWuga<+W-BFnz~Waf&8M8zI1NO9KNkdHr?Kb3mv$+qqMrK?R`UlGE|`oh#4!`(22@85 z*GK&zkT0Mkpup3(?~_T)@qQ0sv(iIYsEp)-he!GB?y2`p(RB8EW8;kC;>e1;+}&h7 zpNGsjwmQ|39cbUBQD~*p3)9;}))ktgXqpEFCoICvC?)Pgm!&bQP@fvuN$a}!(lRwg z4A<|!RP9XO?GM9KD$zAb>p}gT31?$`TwIm&c%IUCpl52A=ul4&2Jd&CUt9n{BWF$O zPxhsJuEIL^Z&2XEqB)e9cz51f*nR<9mq>StJ+agK*rMWHe}8`f zQ*Wl`{u5RzIY@T90miMajg31K4wr|Df-Qv^X{nPWgZS z9+xX|I)MT`u7m^(B5aoxKC7;6a6GTnVznwD9r;Z-$HotOS%jRrv)y8i7T4EvF@}mr zma>V$I+|f_GSY5vtN458XfO5bD#hz9hbPm|-rhT8of1k6amsNTRVIYC6NN&rQLnuI z>F4=utcsgs2jU>jx%hpL3$BQ3eo9Z@+#OA~0*yRsL-Fq~G%G8swbAT|F#6!%sKR?5 znbC~&U;Ok>8G%Rai0%0YtZ5S_73XN@e9GUUA_k2dQUU_QY~}okXR5`No-Mv;F=nST z89BliNu)ehOqvaDjys}_hb%lDvPhSJx3iYd$=4PRb3zoa2Vh6JkWKV5>0BqoJ+)&&Eq{-J? zx@ErZ_O~ygOq@V;H8V4_1QMsMK!ZyWLH<0F`vh1=_{^3(rTpbEQl9_V*zN(= zrH*^1mB%;naSDf;T2^InZMa#SVt6o*^V^GIE$_kP=9_Er6x8e8n;dg`mI&+>HKL1Z z*8|%74;~~u(so%a!Ro&!f=@5zG+AEHWh@zIJA2BWprF~yEmF-V4 zGncHqPtGgfQIRg6yYS}^a;(w#!QXyT%XMFub9i@-g_lpx0 z3_RqCA`}V_p^B(V>+BolRzMm*Q&TCshlfiBo@LOYqM_Ns42RNNx(V}fqhg+~$m29P za7zEzFJ8QO8%3>#Qe3#Dn!H+MPgcdl&0V=nI`~pN?0RR`XaE{lYq4J2kAfdR1PXVi zfe2PnQ&U?6GJ9l#{&%*!a~=z)9F9eS7#-KtfY8f>#7Z_50Ywd`=d# zSKr9^(CaVv{Zi&#G3bAY;gK2}Z@dc$M@Pp&y!)E!h%6y-m}oV}Wa|PI5$M9vI_KTa z>nd$Uaa~C4{6(_Pc4dM!6%=ov8?UsvLtanL8ML?N- z_f2PBtB8q8;m?0;29cY8mH#wcUV0D^`cy2qUaLF)qQmqpP%jYpo%RZ27bd$rBuXwW z!sO)SSkrzYoUu0pDKaQ|qA;7G{jRd^T<(t6)1VfVTV>LgV)RMkblsb74H(OU%j@ry zev2${^Yvlq)iq!0L|e7PQ(#YN@kqHtPtVo2)ZD4Jepe0J9B)k-&_=J*B(IL%5(XQO zf)|Sr!uUTB@ko=3nZ@*&t(~Bf=sbM*aN49o{fmm>ip^h~nUgKyzU&l{XEAsb_wFGf ziuU=NO3*j$<@3iepgqySSa?y0ahD7ecqSO$Q%8aof)}Idy!z z_he&^!s}!QWo76OPtI;*hVYDg*s6K&T!WAl&T)d2-O0^$+;giroRNyn2U#>QB^H~G z(jEW<(Uiny(D9|Sfjrsvf2p=_JshTO)=nmpF5l)~b!b(+5t)G<$hXomO#}icq z6Zr6+d0X%ErvP6R5@_UUPonqLbxE1g{%=DK75G5 zD}ImLpQ2NHcrD4x%X_+0x6AszkI2Q{eZo+U(EgOw(UVzQbN^^YlYwEPl6f0LR-8$r zUe#l&C-}(ipXj-NbmChr=_;$?zO+suZEf=O^z_tmv(GUx0U*g3C-nb);+0^eNz9B%HSTUyv!cU7vlv!99-8>+(5>KH(618&_9X zz1;h2vq@&h7#MMp5>9q@fAkFuQtsg4&1a08Ddg307br8DSEwtzdD8{(?SvwE6>r_) zg$Cj!OdQ&0;S{L}95}E1@?kFX>7am+hDbnxf;lxlUa`Y2`*$Eq)T&?7h*Mon?pw;T z;X=Yb=ayMV%%rNm#juFgaPEVakN3vDefcKsjn|(vIw|s=c3bTd^J7Rz8{ERmj~`60 z#l(8Z$;qj?xqp!~pML!KaaO(Hc;|`QN0Elr5{&v}2S9$5fqD-q_?&P`nL@1V{{>z_ zIB)B?ETU~vy$V!~Am%^^<~I73hzLH=zKtv`9f7qRbDmYNg~lf)9;p}n`mj{p6>#TK zVS%(Q-rzw1LI{%>yP2KhC6%J1{k%Y`>Ic;n0Z)7a0)LoM)5NA;t>|%&-qiuZ?dF}RC3~YK`9y4pDTAdc^II4Bf8JL|ai@J8gTOlo zQUjeZ+33kf0xgFFCj;5WX*gXpJD8-Ak)B_XpiKvjf6#a!p3Q*7=a-(I-Wfb7?#xHT zm?D_!l@^~SwB5rXhst3#_%r*jq5eqU>aGYTXg8l=2CEZZ9rz|*#ze}9DN=CBSjyzR zwXu47|q;Zb!cK!6Pu&th`{m=CMKy3P`RpM(oU*et)Mp>&pMa zc_$Q3{(G^*uSj)i>yF-7ITe-nw9*YPokAbZVfnUmA;-$g%KG&6NmYUr;E(SM>JbMV zj;Ox=f37<1gb!X94V8DX=;sy$Ri1+DYP^;M^xqBjv zZXE1B_N#B}SN{GDyuP}~|6OkS3W1ZeBJY@+n~N*2pujAcA&j!Ie|9SDl&fCQfkENX z3>a%7EPwUqr@W)HhI*e0^G(ASKH7d_8TX2Gnza83`wzLE>}H##S5|VqqUTMh^?&y@ zXPo4A6mmUy|3j?|9Rf=K-+LA)N%*4o78e((VJ?G$pprknAzYCtE8K!iK;g|bWL7cN z($WI|f04b@wn3x9OsSzS4jtEoyZ`!XY**(khZuqA_|fJ>68Q^^(u5kS7|8B5#7KH(c+SD=5*VU7rU@o9&0BU ziUi#~{FJKK_M*30;>{b~(z3F4NL%&FZY<1H!ZsX~<>jH&%O7f-O69Kh({3Xo|2=t9 z;<%~&99kP(I~_b#{ouLya2N=@bBF#kzSw7 zf_d2Kk_(i$VukE?w*UV9>lz#kqE>p<^Y?5uS8l4Zpicv4UnqV^2yQ|y_o91I)VSzA zaIcS4XSyW|zK@rLJVX+0H^FI}xyd6`Q{&8;uCiX~oSGVbeA7Wf!y6+hB!u|0w3P3S zM1m{*(sDjo8LRW>kT)|mKuQ3t?UF1F{&E>&Yyel8X5Nn5Ar3i?4-XANNq!27%cruE z5@PIyDYGIK;WQGUUeNdWy}#RUR#{#|LQ$4d03M(bzZe>`zJ z*C$(PR(X@EdDJhgG-I+!aL_@r_yi?3PhN3wcJ}f5`uflQeq7NJ3dgVF`Khw^+s74N z`TF?{0iVCie8BdtspI=z#MeA6I zZ*Ogd0z!0DS0{0YPSzUd|ty1EF z&+7U=$03Y3d|yz4#LLUd4ESH>f9514l`QkbzLWd&XFS{3LS6Nc7xMPBT$L7D!W)?J zKL!Wuzf0!-1c99fgFWGU^>2dSWbXX=bCM`b%$ZQr-10_2mNU`#~Ral#b5Q)>+AW? zIsoF*Nc2psJ2(RkvXbzEW+EQWA_K~MtHX=gM{I0tIV0X=WKvw#iQEC+viP4OB0AxB zy8N*oEd2dTOU`TOzvl1);ObCj^`VGs7yB#?9x3{lr49PHH50co`aI?wX5cWTIfJ<8SeK2*tKnSEuaR_=nIoy=tIBs_5#su3FO$K z2Xyb2UyF)Lz$A{3iqv$uf5+?cpE$y&!IN!0g~B_t=8BissAF@wf^lU~=A@8Z#7wtOzm$p~rxd;2r1k78jaRO7{Z3;X-J1_rMHxEMlHc32+?xLS^u`KX*9 zBa zH#JHQt`~$UsWauyRwtjxJ8Kqrh?BU_@cFrZlfPGlq&-K8BO)cah-rVMB(9UTPp7$OJ)gjj3 zW~9U;1+!J}gTK;SvvrRksiW=e?Wd4X&=plBw%67$!I}a&09sfZjK&a)e-952XCQ&P z%sdgdoWRy81u_^Lcu2wk?78mq&+B)D5`RNFd@CVwI|W9@DocfyczY-Qr~0n!pVe&b zJ;bev2pJjqN2pkappW{eY~rvEX8;f{S@`)q_^7DS5Z9+mcz(mGr3Ka=9{jPqFM2+R zhqFd+ZA+N)1c+s{m=`sO>Fevi$+D!%$dK$({2~@b4V^4P@R|tB2fE_nWD)==!F%S^ zF?Z)t<_1ATKv2*Ua8}C=Cv&&-z`r^7UA?||w$PLm3Ik(fx|{2ZUAuR@GAeH*(wc(o zS54-;*1wD%ZRVP1^LIpKPgI*ePih_p{M=9qs(;pu&17;=cE#=LYN!g*1xc_f|U!N#E z!}S0}G*q_d!{E9Cn8uGCAC6TrSNxA~G_Ma;U3GV6=)| zbEv(6@T{u!II{}@vqv5#)nt`5#a(j#k1%AV&mIguuo`Djchu~OD;PGhS?a(YHsNGv z4&II2)#FB4TrB@kE2gmHHt?0#51z1E{`h@_$z(B=+u@q9`tiD7Acg1a>uM+IMrH|W zT3U1v%fG;>8&;@Gze^Fo1+f%tIS9l+^2?CDJ)2Ncp1VM#>#98j2C=xRDyXW8XZ=?J zsf46t^li`rWx3HZ+8c1^u-48lN3f}WY&?e1l)+52#Xs`9?^dP+kRK&+x2yd-#oh^ABEk$7q~ zQ~lxa&;fd#BurJ*&!1QKiT0*=2I9oFSN`p%i8WdQS*z66*7gq=28cB@Gy`zH+4h<#Y3g#T_%S?E|sG>Y`C$%{8J;`i?M#&?f}lXA3xG3$)S*3Rzh?}QoWi~ zD|_D}pMfX$`l6ik4>84H^HhylhM+aM<-RsrgZqgXc<9;-epgD!@6I((l^vRyEu26q%oSi#?@lB8sIQ!{zy0;jP)Am)Lh}IqW!8$ZySq2Y6Gyl>hZxML1 zXw9coy{*IDST4H_c3J{3bLeHIFOXb+Yee4xgqf^$WPCsH zRqYHpf+9OnY_@j%@IFOkB%=QC{(wxPf5z0*A9o55S;vLLW~Aw6qrP~CTjlQb__s9; zG+PyI*8tnfiYzw&EJ;(J_yX;(PQYL4gVL!gC@6Sa7aCtX2@4~=`}+JtSJwrWU_TNO zQas`ff*o9x*9MG=Z!8a52{$m4SEWHIzH!TkdFdW-!=|y5MmpjNV*O zB>y{Pnpg`83IbUc8%CG=a!Roy9D_qzXUE$W_T8HGZ`^V5D8iqIiCGw$n+rpq>M}z(hvy(lWLWLe+XGM)^ZALws~RKFY6m} ze`k|@=7o=hVHSW0J}A7UCCD@blas1Y`TnD(&NN$+#Eg+F4CCLwxyFE}Ntl+zhVu0- zT1bk+@2YH>#}8X=$!eWFEK?gA<1 zaXe)l&u)Z`edo>!kOZyW-B{6dGJoNU^|&mjIpMboI=P6(erys_kd`@&a=$(VSKAbU5GB`T= zz@Q_P>b9kom7!3fT0E_i`!_fWc4$Cp9bgI`P8If(22bq*OcrUwCi{pnEd_%BZ!nvC zw=TE}=)|s|G%5WjJ(Dd%K^mxMh^TP#Na}w-0S)t(sq`2O`kI&+tmAct2JGt78)|?_ zZZ90oJ}F0?=-z*@xbJ-v5&7+#Nx!y*LEyPVDs*NZDE8tBMO^!(5RvWeUG1V4OC&tZ>ipJo}V~E+HM!=Z*!u|M%$JMzbdycO~ z#{JAp#Q1i(@=rM7$fzh^D7$ZoiHY&%)+X;&JB8I2&$*xssR%ME#2V@6vNN=?%I1%Q z%PFWuHxg-V%a>uyZ5L zq|;dcM~JdhuEzHRis^>F?KADnp4e2Y7yzrbK)K8;wD=`}4s)L_o1{8{&nYvozLYx{ zv2BY_D(Oz{;_{^{b9nP;vd)>s6>Kk`XvWJianZak3eL^ZbS*8zY?nIN01Na1A*LaZ zGdP#b?LA+N6wjVDZ6F!t5ALMY@;)&m7_^8HOe(&0*glW|iXHeO3^7rP`Q!1ddcFmq zbmIDK@TP@;`26$W(lvQC4y4)V&q#beFI5YUjE-7fgT){iH#Fl(jAoLpBvC`7? z;E3eU!h%hc`_%SG;bUXtyuris&GET23=E8D7zrt#JsU`0I@sU0xxRFrvf#d%_#;7( zY<7Ftb}Cu&YMJd1@bOc@vpWj1hmnG&&+6GB7-=h)T<3Z$xSMbga&mI2;A#VLN3KwJ zda}eJ=%we2tFy7EW**~ahK7c>{KL-cj>gOT&pqO~g`U1seu(@0WCzzjAjW2!AZY11 zr`gyW0dQ^_J$=cjg3MAcyR>4)Nz#}6l2pCmA^4*@VcDS_!X+5sVfpt|i3b}|$R+`$ zXbECf*7IV9hM8lT5)X1UJu~g#nORd&EniHJxzqD&(FfjiFBg7CmMa_KH2;MIXqL%` zfn-`4FL{+_s3~HOtkbgr1k#zJ#&c{SP*tW#n@O!@{Zf)7!)!iVl+y>7w)f95xAX*W zpkJLCcTcPiprxmq1QosY?SR02^Y-n3fEJZh&i*bVa&sdYHkFmpZr#S9*-)qO+KU;g zDRU?FTY#M#bRKox&b#M|>B=biDx+ctuL6e#i;?eA2!!62irG5nP8fkYKtNZi2{fN5 zq!JJim@s7TFZ>rk&+kYdQzt{@OX&jiA?ek{i8x4aOfOb}h2965@*QXix`<@N{f$~X z1$=)jgfg;^SO(ki#(2o)TmzqdQ@f!aRgCf8KP1|BsI`u5$J@WpPx*%Uod{ZYSJ!(D+7TZ=VgkR3q^+&Je72gx;_6F3 zLfUeNWr)=HbLauUQyNA_Mp|B8wYT78)OKBoarbo1e;sS&adk9-1`I_J0H|z>Dxv_l z5c!&m<$vHG6LD}TZ%;S4&Hj>-l52>DDj35nx~Hp47Z_JVSV?dl%aNm>!^vid zii*-@C1NMYD3T=+jkv*jl|6ce<Ts_W7lyrPVOVPML64{#ths zG_9Dns|_CuO@I5F=-WHzN6os3YFJ-+s)wjhpH^v}r*OG;wTXL1^(t!lbju=F=`A)2 z3yay0C;#OLdi`QbeD*ZByt;cXxsvnp&z*&{)ei&Tax)LU@o`>c>AlkJzyY_WZa<0H zWlC3AP0ebX#dolxH3kF8S7_K0JmJ)GagvGzLuGVe#M%R3 z_k@#^z;e30q)S>}pGhKJ2C=?gj=wqZc;R5sREp|Zc%yMke+ef9<}JDgQL_5!!B1=OLYCuj38DS{@4x>tLql=)q0~of)j4&Gn&$5v9H0n! zZh}3&Rl~YLsq+2eoTE}?2nCEwb$1>%D`dYa`-oXQ{?v)F!~5o9eg`U{x)2mX;`Fv&=}xk#eoptq?ac+bwxj66?p zUWHxXVS(~BWWu>NQA7a-D5|=;x?XU}7%(vlAh!*%gu54WSPdhe?!7VtyxiO#u(6=1 z&|Cm!)%X{V47ZX#pviTBOPQvl-|r)Sb#?|dP)fXS(rfFvngPAV50(_z!3Fx#>wKNA zx~}ea<^!7iQS|4}9~KsL!F15v-7R6~=*Z01(c)Jwmik3e432d;2vv?Rw4@Ik z>NgZ>qcH~i1bAJ!FR!dn!61i5xUV2f{{aT4R(#YJG$976Wmumx&Qr{bhUJoHW)&n# zS-X}q)odWd9HS(!P6+rqhNJB!5^m_Zz5;;FiS#*G0B?@V_59vUX%-fD>Z_ zY@5YoF%n4NAOx|Sf^+FP&@QEq7$k)3*qK@Dyd{3Gz_b(n?%Rt`e(1RRyYpl!1?eLX zepf1OPNxHL4l7C-qu-_TQ!C;{JjEndJ#OJX4bx&kdTngg_V`8yf;>q zJUkN{kjKO@Tt8Fkm%>M_c$aMecIYgnmRL}y)5gtC2+%U-YmN7!qoS~(wZ3Kky9d;l zg#7)51w^b7EM;^9tuzE%cp{j>^78i~N0{zEu9E@d&l}8sYGe~B*wWazyFP-})rabK z#BeeOlgGkpiuXen&FW_G&3AqN{P}hEC>6|(Ks~k$XNV6|@{=*sVC`I8Xgt(>8WT$(2zKVAjU1;U;Gp$-`I%?{L1mk2XBmEcBN%GFW zzC3L~)LV+V8LGIa5Ka38(2U%A6b26h`6 zFSJ#Oj!x!l!Hg}c#s|Rwhx27;rl#$1Yf52bs%-U2)el-R%=e*UPoO#Fe6bfp@7iA( zzh?5fxpKZe5U+!N9%4WME4^{Id>R<2WU^!?V1e}d^33IA*15N~f5-NMyFk`!ohJ1w ziNE{D^p6ljNz@W{e_b2NEG+}h!}U*Zz)zdH=-QaNc0q`sBCzB}j=2X>oc1gU!IFP%ts2o+W?v7erPtCb;x_ zE~UhZ`4uN5_(VSdS%d-@;9#=OZs0EdfZ%C+yrqUi#45A_+n?h*ofYP}i{85p!4bqS z6XzVfZXP3wt>*=Pwzqe~R?Q2bFN^&0nI(bI=C+;-g?XYC>~)A3)l;}kHv7L)ZW-K3 zVBY=Pk0HZ^82H8)R9wvJ3iGv*^JTlOO{(zrQTJ)ZTf+ zvXDH?a(=Ca(6qDL{|UA8Y6lio_d_I~J8w;XPT(|+k_L}c5XxSRQG(Rh=ffSHovV(F zjQJ`^K6>%(c&6V)r%ba;S=a6Sh>gKNbr|Hw-5^Fs-|`#2Z|Ej?Hbf!0LC zZ4qBFW#N@R~Cw8rF~!A;Z6u#b(> zOwFsLe2qyGb|~(Q%0D8Z(LRYFuCsl>3RVPUUlGU;m8?{0fAqCL z7=YZ52E(lv)B(qW6$SL<)xkt5+WED$H9ug6zW;aH8;jI*O*c^b`TzFKq@`G$&&G}`$|w%7hXP|A5321p=Ys+PUSg-yRK@YNKr z)R@9@#s>g~lAt_C!}i#0#k`~_bKtPaYZsU5wdG~S(tDRNjO8^_|4O#Ed<;5$LQ9j} zqPzV=9TUoP$X`c(8AcO63npeDC=9xcvIV>Ux+-tADBA-{m3B!8#h6V-60EdygOE zHfRghj)chOOu$h4R38+cASqgfD%e-JtN>!P6=sm06+(Ph7Z=#iLSt4fUZ4}kpMJUJ z_>VsYma}JoCmdw_OtcHb#`U4mO zoDm`;!soxTj3_KDr+RDK5rGj-mTS`olhqH6s=Kg|0!8S4eM3XOCPo`8xLg4Dpt@ao z^2h@>3a*-(rwZS7L3;)k`-F(Ab2vLqz;jJSbn^G;WA9uuZ62N~_j%>VjB+_ux3}X5 z--`e^!ox?qXxDRZp@jpA5&hDrjiX~b_;FHq<{B=ZhcCT@tuqe7Vl&F%KO>=`p(!c_ z>PnHY&3?6=Eu+w;)VIA4sJ_g2;HzE;Mt*OxA(qnmkN*Wj_NX2#O#-(kKDAx#hhlTa zzOXIrxq6a}{rqlDD%JpyMz{Fh&q&P{hOD0*tnkk zr&1Z%IX6e{d49N9>#(lhZmW63=cVHP^49fDx3aR*f4vw)fvq4f?_)LVW8K6o_h|$8 zT?qVM;N^0vYoAm4D6c8Q*C8MQIR5~8a|UdO5VG`i1_{`b@xLjveEr#}ZR6MWHP!nv zVwf~KVDtq-^c@a`09jGPF^LAh(dc~(OG_i$snQFv+pma#G0R{S7MLCXuE%2v28xqO>mGQBm9urytk8X3fbEZT*M+dwff+2CHa1uAvflvKen&@rwdm6o}DJ@T1YtxXbqT_Tcf*NxM&=_BWdhvX&9Pib5U+hMv(=2`MQiRQwzI3F_W`Jou`F0|3^G zV8XfDn3_77$HT;Ih9KyM^T`A&d5py8pF6WcZ{Grw1b&+0%F4zGj%u^l_ny0bIltuK z_%QE)trZ8xlMb&mPtwB3g6RL)@ZDy?p`Sei(}j3qHU!CIMF-2wUTrz_!uM3bX}{y7|}* z0ZUnBoiYP1+}OywJ297)=E=PxMkvPRbgiNIR8&;pH1B(T!9Kbx`mK!I z1{4}nkuH0%ZJ8muy1JUd$#DqBHlHB%U9O#mikuKqM1Yi>{CX6abaXIV^Oc*;CO!!W z7&ErK{n8OX0K}1PL3mH7s6K$cA~*t)uc1WL5It>Rv8}CQZ5jdG8AN6@KyI~~nd~Vk z+?|baPFa2nqA)J9mv5b~{4o4Z&-Jq#8WblBzsI`iTOtEbrxoDjt^Rk z$W}@8Uq)7?gho5)g_CXVC}yzPT6kpJRN2{qadB zIx3RnG*|a!vN3rAuVaesuQ~VaiaD;Es*t~D=cWFI%|e-3S*9@6JOSg-Gr?;il$+N$ zg~{IN7+@j1b`%ps2U5WVzOf`w{`?s9oyIGjxi9Jk&%nH|0`sFhEW)XucwAVL$2}{# z=iwTYR&U@bXHC@Oh0>t|J`y1Z8!GRYi@~8i~m($Ig zKbMcDs3->W@))2)6Z<*zVw0GEc7MMtD6;e()uxU%-;WiaD_2Ffeg_A==*3(*ZDY#? z@s!Zy^uDX31G7(<92}IKwUaKFqT2@Q>g_JnqK%F8oO}uM{eAJ^)V!ej@O^x*kHx*B z68eBN)IF4s+d?^0?F+;qrR%gXFas~a_i-o>SG#(8uJR^qQLm@u+HL``0-~djVyH#F za6hYyQWp}+wNectL~;ZwpR&GhY!rb&)+n$92D2WdPPOb~93Sn>nUAaL=}~ZSaCimv zkqAjvT7}Io_$5aFtamJrtVZcYxjg4zX*5ACO+Yt>^L!S%i+@c_JdJNTWxzA7ROWN; z;PHDfU76Euic4ES)@S2blYK2uzXk&fzvrx9(Z&?4uiND^~r6{FN;1u#i13#W|WiX>>r3& z2}XrBu|VqiOUNS|{vIzOak8_Er! z7FJ915c%?{<&W;o&(E6zW#C_RHJ`q|K8~lSr>Ujo@gafBvP_o}q@3$L`yuytnSF(Z zam5DomS8IkDZ(f+9NC8Yde3irAK10jT=`nn*sGkEq{nZmh`{LIwe^}NhL7UmWYc{p zhEhO?C3{k$c>~dUb!O)e6}|;uI${lpfqc^>S;U1m_5b!QnBwLAVfv{3rP!RgSZ6nSNl4h?0?%pfKV{~WuP9FJv95OO815Hg*Fm!dp zSxQo_J%A3@xw=fj4zn?4d#d|5CF0^AYwK@2I5>zXBz$z35d>v3xT&Fm@Ss_2EwxgD z1niq`Tcm=dWD4LyVtD9ti0E~3e(~ZF(vV0?s|w9XIMM@t0BSarfokgN(*FMbnKbf+ z#WhT&w+)RG@RpX8Gnx!}L0v(*fvYW)yu7@SHGw*4E#UM3<7q^EJQ0YFE?`{a6%%_K z85^4lI^iZHtNMU+^z`|2Jg^HIxO=1=*EzO)@|6FYLz!o{SQ$qDp|`!}s~>_pG%Tzn z%E%`|fdaBGfIWD*B3xu;#Q2Dal2YF;&b!5sU?vLJz~|bZePEb*y*ElKIRYEn1$u2w zO+rxd-fOb&i4nj*R6EXzDj)4hZZ9s13aMCF+*PlxeyXM>)i{v)?!I6Tz)2!f;bMn3 zw+ns%yFh;TfGn_qio%S0?Y7Mbl#=cDw0Tr=Z*itcTlL0p1hip;Z=w(Cddl0}hNNJ4 z^;Tpv=c90#_&^5Y!@IFfVHmJN>#GLCjcO>uAX`NN!#6}*jg=7^ePQll%fhc2p1u0c zMflbSL8^*eb@jG=&J?XZ;I?V^D}#g>9<-)QXs;uALohq*awRDP77_MYSqke$0UgaF z5}1gFrl!9zo2jXsLWR?Gv^PbL=_~Fsn|@#l+*v7M!}`*8kd@>v!E|j$p!B!$m%eD z%QR|mrZ@E2yxWZQH`IO5hbIQ)TBhlrKZ#jbSelO}pRG2oXFqau>*xL#P<%a^ahbcb`oJw_R()6$$R+1NhTRF%w(!}9|d zmn2szyr3AV+(v6aw^4yh;G0x2BcFx_`MFE_#2^(0eJ<+%H{ zkvu?m3cya*)zR^8DVjZ*)lPAS)|m0)yLwT_%Enhxp<)%Y2;)+1UiWWb<>>@!e~30w z_jXkEOlY0A0*cJQ(sC^%AqD}K2z+2%lo_?rcse-L4>NV$PBQfRvhJ`*8*0+!w3r^M zZkzYM_$M|(*f)i<`AH5w$1@B~&5!!EzkW6F+mmy-|9O)T&Ta?Y|4k^6APxV`sL@rH z`k{{iFCU*Ye(4F6gkaOndV z>Gz-AOW(h%C#9rJ%97nTJ#j2Tk--}KmO2nT-x54g8ti+b+ciSv^l>(rh3UZqDiF8S zot=5golddo-H%X2iwX=-_t3&3@GeMrqfYU}N)6gvf4!*z&`rp7{->ps&R12e6rP@f z>?ixd8qPd7VrY;cAs&-2p&01uq&Tu!PFEn%pDsso8=KlIV-^(Cpj9(ZlvRsXA}(^VZ#O zG-6->qKkT3Vw*pCB5BGn<9Xq=7(#$h9kHZ+!=!M!-%E=UbQ2fX-jx;{cGU1p_da@L zq$SZ2BDgowX$(I{qP0K<8(1w{A$4LqTBMSRNyTbGAMd%tlOE>dm<0~k_OD;DBrXq0 z;N$!T0tUvq@{=dXe#jc^DTLGSP^F&W6A~hVqVxRy{Dd0~hD~=Kcv|ihQo?|WVZO;d zk_t*JnAnZvJn+N^i8ho;!2tAtzkmN0Kx{F%rnc6Pa3pY(_+FX%h)T#8>AG*eYq%QY z&7QG+kA+3~`oL)#BO zbX(5m!gyzQH#&0oZE0CF4M!?Q1r$=AigI#tvyfQB`uCe(`?6GSp{J`W^nuSI>vHU! zklvGpeB)E+r_Y}4iN%5v!Ta!GR;G{>4cHh_5xV;N%P>$z3Kc*lb3Q+I@LByz1ZQ># z%q%qE>-f$9c!_ZK}n!yV;;( z>-Ue&i{1Nh2em(VnC0=!wh!-fej-$#%Rmcdw|ha33UhwRa3xdQ~@c8{#Ht z0b@YnpN%=!NMg0T(*2=3Qegqub>oRnNS7{TJDEN$6{^su4wzV2Xc^+#w`}~mv^_aJ z<&z@(4T*ckEj`LpP7t+k>)r{3B#&n7=M=fn(bY0jI2CMdO1h${72bzqdI<^nwU}YH zXlu*)R2q$>7Ze0l>SUGG)+Rw8jQm>0hleZlM65vdl9iKt6=vsicD$HIeqCVL@)P4| zvu0(pl@m4g5n*Ty2t5%=Og8AfF1zZAsW&#z+o7R+;(rqdrwG+cLR8ep#?9?80Y;NV z?Iwr=L{th>$!7zu9IuPh{Z9DYyaOlwscL<2FG{e$lgDvm&t>RwC!iyOd#TNEjN_xD zhp2!o!t3x+En)g=U^kBOirj{Z@<+2?d^Udm#GBaI@1S&|Tkt=*1Da^adbaPAtZ@7kCmJIHj8rFH@D?U-(4w?AlYF;20Dc= z7J+ila4Tp~1KDjqW#GL0h$~4NR|i;|dTypWuA7H8=`g2@>~DT~`m{00L0f?T7|wkm@V%0NTB@jY$JJE z655ziz!FOP+*qP&gR88qgH4|v6SK6qpYWSc`ryN$NK$XDGnCRGl;*LY=E;Z8NcYyQ z}b_1O7q_+Hqu^YX**~^wQFM zTlY#P-(XKd$cM-LD-GPQMR^TjwiC$Ec5?+XRV2z1K2+T{| z4bxhyu6JsEn8-|TF(<0I`YU)vnCb4_cQe%%;JQ@)`D5}HsFTRaZR2jTVneNy>SKIL z8FmDDGz}+wRe#}b>49>+5T>H7ePS;uFKIJ|Qo2HL<=VW_q(0u@Q7+Ns;^E_Sb$4+g zf?h+Vth`(VO5R%Q(Hn4X(uIDd^{sv^i509~QkHo+5wHf?eT4)LG$}fGZU{U(k-cdf z8bC|$CHJq9;A5k_!tV~lqk7ut|G+`WPxud?BefcP^4`%=H&heIsocXhv+&<#Ee}6< z{vmD|81T0K3mF7Nh!SLbVxy(z9$Oad6o z0n|lEkEs~>A8DD6%V2GQpP~;`F9E6|hc}%n^avqQW98HmJRQ* zf9d4IRf$hadkxyd4n0tVXi` zjwJ;k+Hr#Lfmrt zi{| zRnkgXGI#u_;i#$iID{;T^AWp&kvIDL57Otc;>&W=GZLd46}hYU;A5V7!O+2J(-f&PHsJ}+@$i97+aO@JY?=6&T1 zuAHj;d`6_k(gzGNI3HhutQ`Vf^FFlQFpoF|&A<#MA%KF!mjHFgcu^9VG|a)d+BF65 z6Nrmi4!Unk+H(Z4kd!9$_kZ-AV7CFLu?WFQpZ70@p1BpuY6?zo8NHiu?NOFXo%%L>B%KYT6OB zxp|+Pd;2Eu;y-EX)WrL^@G9l8b6PN-epg?s7`1--=MUa)+)-U$q^tiXiGx@Z z_*EQX?j2n>5jv-xnv%kdn7%#~I@snR4?rE^P)gy@W5D{Nj>Y=%9A|FH zF*7$bJ7%Rh*+e|<9yVK*XKvYB%XFumYYU`JV2X#N=IF#kGA8{XdaWDVUf^}FC@v$T z0TY@{skU0=grWpmQ>-P^@_n3emp z@;Sm-1ba0B!u!%|vxrAX2oh|bD|lwTHx>d05KI^WIj@jcg_cc*mY?B)4m7dMJNIO0fThrgK7yvP_0!Rtt$#H0DX-&gm$pWN_ zBJI*kA^L*X>g41K^+@>kuFf$aplVO)hHNxp`4zsFpq4)70=j0lbqvsBQf%JI;-#O zqyO^)Y+0$CZX_S9FG1^!E#`(LHp0J>tIq3E-x;3H)O~enpSApzXmOfXQ%f7!zMKQb zq+og3^gF0fAe58WH@Uq7^RBBj;i2Q>n6DMhr=}rcc5q-SX9^B^Wif@hNw`@*!J;<` z`p$Bob1}3iTww|vvb7|2;FW|_7&Imzz;@O03MTXS#d8ZnC)B1tp9FIyMdQ67nmivq z@_7i8>PJ8lm4^B3OQ1xoEK%Q7WCPc(Ryshjo)?b|#Si=vg2vb!uD}U(#q|r9@_?X@ zJu0tT@iw3IuVL7|r*egrbE}1BV=C5SJ0<0Yi_7l?OWZ(Us(3&S1l;V>Y++A|S6~e5 z0*W9AXnA0rhTLfn{Bhl&W<&+o;7Nu0j?6}(Eq8Mlx4(G>v$H&a0qocKO>l}gsX&tdxRCpKL z`Uf$0^qref9lbX&WT7{V!GSV1ejKdvh$%U$-DWx+zF2;?2FqY0ge ztgPpWjvXKoW@Ke$6_0IN-f$k@bn}3aaWbL@aIb$Q>VDyd$Y%yy#l*!C@?oaIL?hE;nWauR<1GR=(MM zqjOcrk9SN@bA|+%JGKE!V#0gBFKEk#2FmQ`haL5vJ9KT;>Tb@?i$IVC30zIw0_O+w zn{3cI=qq7rCIl~7#teE4Br!XjH@9;UUW^x#0u*d#a-AOE#Mm9$uVN)KDI z;^^2|BCVJgkEq9Q`N5$f6H7~sFliKNESRD~1sDMuvm5~3c%gF|X6B6-_CF%yJ!`vu z1Re#jScwk~4z?5BxHu$vF*f)Xd*ve!^67z*3X_nK4)S9LPXe<>kuv?nzkhBk({!!@-)L)o^1P+5$g4s4r4yI0`YOZeMC!l_r~I? zOs{JC7w|FWHzLpwzzP~$Ut0@+%zi>NLL(Os8=D9T+PIb)a)23VZ##b^lR_^HJD$T6 zpLu=vA@+jbnEXo$#7+!(@ZLme)#;3rcaz1<)y{AU_2S;i$vP8Fg2F|glb*>E4Yg0M zh405Uy<%1*2l~I&*J^HgoN##p3BUH};E{#52pqIFpj^r;E90L0sb5fpAhffa8`JDt z5pzE^BECPr8(=C$NlB?#@PR$){NEBV_DmyKO+n&lF0A1%6-`O%x+GY$Aq;x}J0UBV>DhezKbiPyN1+6pGc=!HC$G zFEqYO;4IMIbZe5(@@-?o?ViLFs{t@aGDN4eVxx+@iScR5?qwL#HX7hRVeb4Zw9r-2 zuedosUJ|FSo_*1rDfmuHm%Ilkps-kAu;b%T)FK9CK(&s?0RyvJ?bxTSlAQ?MlkZqB40*U|>$|e9FV&@msRIbPdK@ujd+wgoXwe1wA+_N39#W zx-$GqNAvZ3p;&4!xL5IpVd`Hefr#$2ny+~&oWVb8cp2`K!HvlZIba=rtM4@L-ipnRS})iu>ydZBgSh!qDCi30EqMKtzOvG~ZU`2nYyHfBaOmUZ7ET=7H*9 zt`0%gbY>-?zJE1+Jg=;Vf0RC7`Ngpqy@;Sa&&f{5KT>kGZRmsA$t~ zc)$GN)*)@{pQ@aw{u|ZW8eOynYg=HF`3*%gfyuPSo1e|qJVmATUo_<9}rHL-UbWc(%PCF^yv!7!!u?j4tk)-H*a3IwMj&tI=iF$ z`Hz0-L_OJED4x=(EW#%u>RMgTSsE)L0Rn|Q*lWPDqk?qZHgXz#O@Awj4#s{?7Z+2Q zkP1UIqnH8k8l5n~>(h1H8T6Zi&im}hxEuwJH_hr5qsMTg|h%6~NdF@r3hhWD0_wUivNYCvA zC?A98te7@lP6h#KuiTCPM-V;10nMBlI8gE%-+~Xbg^A>XgE`)9t1V^D)Yl9SMUbQu zLF|ipijWeA&qsixyv*3%9#fY9;AR>~2wq1Tpk;PV^{a$5I^93JdFjb;b zIYaV{Bx-NoWDF$)WgXlPLLlUXgHlHw^+x*JbQM|%27QeN%Z{rFJy=4~6%wB6unkV7 zQk=fQS=>fCpUPAk!=GhY#3hz?8D4D3|4rIY6>k?dov9W zL$W}^LkK1Ud7A7cg@t!Z*B_YNhE`+JC5?9$RHD`b zloi36L4|h#f}1-g^~v?_PZ-hIwE1~IS9lEc>gDzI$50r-O)15sz;NB_rPj2ygTH?2 zm6n-d3XurpRt*rar{U04R@r~v7Er75*@NND8{J9gC-?&oHok{Nw5y~cVyBG4pA;Wd zmhc_b%MhaRtC2oKK2RC=&wL(c{`q&_IXsLH@KXUn!CTNrtb*f@1u9*~GvV|oStEzp zua+;5kV|j?v_h}&{W)R)o1XismDAVfzw$U1oGyS97lV*FK2((}RigZN@7_gbz(6}n zW3ZA$C@Lw9+SA`gKtAJuVhfk@=zcN@G2BcFQgexeRq_>;(e3aqQ&?qX_P!((v zfjYq}`?19(K3vRAV(TOPooX5dDGvSyJ0JB4(5YPmYtv2tPqjF0%N|Nj^MIW z9+sj8ydz)D`7$!kpB}E-RiZqrL-fW-B@DO(99X^uaKo<>4Zq*j7Lrc~2jx(){PopG?o&hOM|zI4v?N+KerwQ{rV3F*Ebk z|0Iy$L22WBmPRfA5Drq_Cd1|1y)H@t8utP)kxz*c2Kb(&vHqDu0xlT|;)deszq21` zE2c0TR=2TXqXl-<+E7;Hcx78kS+;Ksa)=HDX~yfz-N4Mc3j{2qx{C~Mmhi`kjojM8 zx%nef{g_e!>tl_X9cE{^kO9`DtsbQW;`h()NfgIf#M-c|jRN*Ch_{bcmW{1UP#PLh zMn?y&sUP&ras>o5kdex?6sh(KkdQX7~{}zPq z%%%I<>={cIcS4YB6jHP>bTS2SDlx)scRowv#TqVn-*XD!#94ukMVaWZ2QMW$BLyQV zshvZF!UWQ_=k}v{x9GYq2u^XXi@%yz&qG+9Ia*Mj_?)XZ$^`qxku{`%K1|y${=5(M zm>{G5LbiV(za>w6t4U{u!EB57LD5>ruL229wNepW7m&-bsYV`T@=r0*s%+o-KgDR&#w zcn^l>;85SEXqOHbwD1xAcLYiBdJZO_1--?^&m2E{ zSSSR&VU)qn#S1EHb8VE9A~eSdTfWE0nEw&VTfupH#*klf)6)V!W!PkUNm$a@t=a+x zV;AZ;U)-GFDww)?VjlzHg0qobp@~1259tDzcE{Q!$YDx}hyv@fh8ig+*z@3cK>=hg zW<2Ku51z1r$?{;K`S#1eYbuJAl-heEBpJ!*)vk9p4mZD&$&!YJjUJbj6bR5EI1m29 zN*h{p2T_qKR`%uD$s;BJ9Ghp|=F!bA(U6FH- z2>cfo_6eWzaM5?nIxXiagdk4P97}+RXx!-=-OI)ofk*zUYip)ZfPP21VD+ob`@S13 zhQ8;Tg+jYfrNpBGz-(xd^M#%00fHf33p0W9{kw7f? zrrDE#l|yE{2bp?lU7fGvv}*Pf3CI>DOHxNeLxTW|0`=zZ$mirF#Gjw<{N}|p3yT=+ zrg_}vn#c;uaLxakw|9ovkh=fDQOU2q2S zgSVE(o9+`*_KWV~Q3YufJO3Od>JxHA)-cyYeGX6rb8&KTQ0Hlvs$NaLxYYh{;0RU7 zr(5lE2r6``J!K`O8IW3Mk%Bn}8rpm6i%S#)@Bs>oidZLY|DATp91`GlZvs~l(2#!? z+O89?-+O1v?k6RERBL19%h_QRjfO5k0a^3G*i2=&>tOItrweQRKz!bqg2q(&%HZ|x zbx<`Q2e|iOlnpG{T+yr;9Z}Kh`9H)Zl3I6VsbNcVH z14go)umTBj$y%5u=%D|6DFcJ_cFh?^5EtlD&WcZ-WT&O190yoizjuLshz-bCI;`$ME@HV? z2TM34zgAvqO=h`&p6otT(_tS}+3kdx_9?R%{6uZh5Q z1~`yfyO|X7?k=8{#B^-eHQb+`e{d3~bzOz{Nwhm(@#eRBaPD0kaG1NV%HJwVPwh3h zePkYXaB!ezXvpPTFg+JRQl@f0fh?5JpzdRwRd^^amrltJuCS{N%hKlcs@4WZV8L*@uAf{|PJz%>2T)_3u#u10P$1g?gh@p;PwtB%tml=D_ z5k|n0gCsl#rTyjJQl}OInZRWweRFfS^?ZlXXF-Ah`R>&}D%V~|=yG9w8AfvKMPQV& z4Kf!WtS7=CO9`l%~wxw*k_NP*f|&UwHOq2_}}z1>S?(!pTHJ@xWN+1#{`mSRQ~zf9s(CjPQ@ z&CF8c+Z1qz=e{f;xgB5=p}U8NDkSvP>NXu>1aaBcozo#U=|XR$p(rl+o$9xdNfBxyexf?FgnIS=`YQ-B zI9t##;ur-%&vY{=TKXN(4^r=K<6aMCwzvBKe!wSaS@Cu_i}v2oe(kGkNZTQ4PAHO= zHa2?LlCo^w5c?|qP+IEw&>{1h6|Lo}`&2znpwEjb7nmcO! zt;+1NmyZu0;TDr1axZCb)Rt3 z4#mYQq%O}|RQvlkk}od$A@VHyk`7lxLll9KlxIbRXS7YB>S8Lc1Ps;OLJQs#yM_;M zk4(0T1Y!2##Q`7GjkfU16_iez_FA8C<-(*L^jzqTDv(PS_oPO$>1OIsf`gUcL)J+* zX@cZ$?JEfumg3`)F?gx6P>utcq5m^VD5%Unl?mj*=yY0iiiRSZ1kD6#Kb!#UWeM1D z+I-SLgn}*@10+~AuGB;*W7G`|pCCumbJcvKze5O4wFgq-E0&hN+0S5@nVE@$55>pZ zJ09+VMd%vdGATgfoE2bAys&L)9ukMli7b!q2Z#k{QUQKGPvZK5pSiay&OjkS`RdYX zm`c*cg%<=q5i_-<)z(&O@hkG_y7GUSS;9nVeCU9daolZ-h5LmD&XQ$7+VXns8N-g0 zHwa@J8wHq)4`p3$-LrMO60;xsPO01Yv)lMO;}bE$x#0z-vkSdHAHRxeh2as%XG&KP z_u$?>I`eNTRFVMt`eR#Y+h&&ps^Oz~4zL10vXBJv;~_89{BB9~LY zmM4)3n=-oSYUlccck-SXtz*HI=L-eZVpN&2qVV~I;?C6nuwUdf`|2;ovYH3 zyKfl4HRzSD{0a_EMHuqJ>Yc=Kz&z=}qcowI;H6ah>*VT`aaEtQ4`9a8(b1~_o&fC0 zDA_&jI5Jv%ijKe2i#6wFtq7_sT+7UaaaqXd4E*OYxcDwR{YERH#li& z0>du0knEB45q%wk`ZAS!-Op-7uyMd;4xd_h(f#`B5*P6dfk=9Sfgm(RqibB-^+H63 z!MZ|(AjmAR34;xbz9>04SqfonZtf<_m0FLFgQHFjc=MQ;7)adx;^5?jj)}{tRT(;= zz5<0rB-I+>h1vc3j*|^yHi#;I}}O!1U{y3 zflJx@_d&mxWxrzLcm0KiJ~1^_!27Q`a>Ng(J<0jecJIv0Oih-ZY=^D8vAPD-q(P)a zD0xqj8xF?BxMN?1zH*Hz)nR~Nlz7GYq{-#aI!!OU;#j_^_z=Ts`3jVY2=10c z^_qAi5KPq#3}#zFvK8D*h7GnjlI4Qom7qvWpKe^^AzhS#xVE1}cUEF0vK!$n@doSC zz>gn|KS5|41mfAyggkm$o+UV0!OJu}hf03%GwB=Qn`7?)&ChDyR;f_Bzc2Jaba-Ik5m*%g z#(Q*5;G|JH;Vm7F)>UJEh=ME-2v)!qUm5+c9)eYrfE1-g@))TS0ZPg9TrjegLZa2?XjmbUM&?G#(Jk0DHjw+gjplWf%;(BhhS7&U zbS}GwKUa311N!tN9)BImwxrb51Aq}qLr!A!uNVWAo7UZ5!em%d85cSq!3s|U*f{(L zAS^oTZ2|kT&fLvG;t>%BGBRjDX$9~YCuBoLA-K4&^6K5B)q!QM((O=c5e9COZW

43NjXA2nvXOKWK1s6tHUiewUYCDnHmYB+ z7#Zp-cJIt#OPHb&B2&h(uxLP2M<*ZT8#s^tJ>3lO8OntootRihgJDphi9`or6%U)XrL;<&kt0)rDPpL z8_{$eNp0<0Wl>Saz^b@MY-T?gy4~D7E!y23smyKFM{HfJ(&?e0!PZtyjKoL4Y>e^bpC)5AdSKnJh1v#YDL zq9P9Xj-Ta@ZBm1e!Kgp(Keg>X(wi!bvbXHrTCB{Rd856esp;qIb#KmI7YoR&Xhu_u zeD5m4ma2R#&9=AS%OP+ue5Ys-n`fyW1vPCchd0C>2aqhzgWS(H<(Qs=aVFK#&lIY%)+h@v#XX)8?rl z5QG8>GE$mpA&DddlJnK*|n+ai-ltZMmX0}5dK3*GAF{_r&Z=&SXf-V0!W+M z4#X;u z$DS%ynResoKYy-Lq?%)BH4Y<8xGK>AuhD}!_qo?RbR^67+y1!g3I_l95%ITLeNH4h zu>`Ca1#o7lTAd~)2A6S6X2ZU9d8I_8gOC}91i)~o{M`h3EY@U2UIBrmHUQ5cxz62@ zw>$$B+qf2XE!4o(i=u$B%Zg z5&ADUTR(ij0rQzT-WZJ-s zs#>U-N01ax2H&6EGLWBK)z_~kx*CzF!F^VkKrzR{bB5rD@zN-Sr4!HYJaza~%v@E4 z;y7m-n40v__x-PS6y}+yBYVZg#g9m3xp;U!cG$2MHULlt1mVK=_V%JXo8scXkB+9= z`;*fW;yb{}ttfG^hYDW9UU>euH8sHmR!)G89iN_-)(+Wt*G2>BOMQCJ9YiP{1H(($ zW2m8!AWT9+qMRds2WG#gdz}QZQUSS~q`Wajr?{|?6Vtivc>iJTrP{6v$~5d|JF^@* zmxnEPwC#&)T*o@?U;-ldQj}3Mc&@E2xB(axtmA_NegF&2jFmIgS$7yn=v4A8T>t$A z%Xd(A+eR4tvg2S@QK1*HzQ%JOomtiL4uZtUEQ+$bpm=)}S{)e~8F|P%zXeMVYaviL za{)hh2%AaXO24xnXA@W+5(*Z1Az5M2(M}+-O5OGkV;>v)I}8&x!AIc@Z9AlP^&B{# zLEEQB+890(pQldW*Z(H!&V!U%yD5C?-U*6z*cSvp{ta+Tz|m{7#U+EVvnvq8ZGRd( z5ENWoRD`%V0BTna0qod32borrw7Zv9msUEh;h7_s#_Pd86E5-~n@$*BU)>7DBx}i7 z)M>PBJC8|DD65=IPy0Hnax1N>=Aa7DgHqJm|nD%Aw; zLL1sUb$bQWRPfcj9dAx@`aG1Ng-V4Oj85NJ z^`ShYg36r`t|6*PKF8M`#m@;sVi$sf7lP=pb`%R;6AiddD0z&7`gV!s(vrKsP&{xm zmNn!uFz)eL5U)d=kEu#l8tOJ$#cnJuNnzkqpB~=kxMy~DQ2e9{{TFwedG~zaSxJW@ z(1hTIsBLIS6BQPA2A6PnNeP<(C7yPL0b5vTXk1WG5X;H+`q~Xg$LVJK^dvp)9&nkA zfl3!(%A>7$S0}!1Q6`RCq|E>V_0A5 zT_~4tQ>k5gkiCq3SG3QF*zKmCTC?7(;0qM5 zU?=?u0Nz`&vV%d-^s1`kRQoHQ+k2SU555_YSI=_mN<`{>NZjzo_rl14uW|IMJAz#7 zU&1nlI$AFHemX7S=QF?QoNaQy3Fm?=B(1vE85zB=`jcN(lrVz=0vfHUkB{gH5Pc^6 zQ7}3e$f2k)Ui1W%^pkf_-$LW*3G|fA^!oaf6?dlqRP>S(;d*N#Kkf3D1GA0xe~ka= z=RSWxCzztZuBj>3#IIWyCA(N_*Ly3AmU3SLi9WHPZ6JcALlAtrFyE(Y2J!}7>cDoM zrHon^(jeaOp4IVeIO}7?Yh$$sv5Id7hAjA#&i)Y$J-ruc58{F%TbNw z$PL2Qh@e6xy)V;n1GmCjW?e4}Lz)-#C}jc`_8g1b1799?e#t(gfg&?5J|3hpM%aA# zVQM?Vu#zQ@)fH~L1g7A1?{PWFzF)33P?Nk>Di?Dt)ourTMP=*HLv&Zy>9fvS8x^O@ z$L{X;fwu9kufIPbBCi3_PJ<|fu5m|0=(kf87{7S-FzK;gvIT)j-8RLr^5g&@e@M8; zINXH`#aPOCFh}o2-iwe16?I;0FXFdPJ6$%hzpL47;hfl(IRd7rr;|3#N^> z8UG0|J*w&HML>=p$&mwD)G4ha^DQn^;ORC_PTJRX;^FvJ8@Z)AIj0%--D3t|F~uoZ zeiqwz$CKLd{`*98;1w$uj>&{C$Vy%D4*2pv!Q0M%0*A@_X9xH6>K(Jj!3X#q7zDlC zT=K*kTNi(o+UIG=g<=}@l~wc@rlKgy3d|%C&YQ#o9NHym*_TcmA7PS-jJ<#?nrnj{ zR%NEARd!b?;OPF=3n0hYFSNG6t<#2YY^8G1f&%?D3TmJz%=A$=*i#22ps1baw;Z%q z5BqC#I@NY{7ZOS?pZ51uqvbmDA`A?4M_qJuCZ)>sIt?DzSfT#=CuuFa|;)4KsIruZ%H^1%1@dZ|66z_P!G9Y)rwz+1n zbHC0z#n#2#ixu+u?^C&k<=4u>F%NLs+n_?}f(Hs~XD3qZ$-*hJAmD57bKjrP}3D;NV>aT#u~7%dt*B2<lSUgGh<{R@h5 z4}7Z;KF(YS8otH?@}$~y35i>F_QxEt^gd1Q=ly=?KYnn$`1g(eR?*h-Ut`TSQ*?+= zSL?|-awWb!C4=2Ka1}vquLTaQ7}&lT9*`qvzV(DP56+j`nVC9vug?ZO4o2<8Kzg^XdO9=(t zw@~|DJIthgwi%+VtK;z#_PxBg{xj!fP2x%2yFYR_^{vOJcf#EhLn1eC<|jp0+axpG z(oSQ2jg!bW!$>>0#F%5xy1Gv0@~z|Qbso?0*C8!gok>g*H%=Qe{aV69usM3^_o57rDgmztzIW-Z0|C=u`x|1K^rLMk@%BzH?jdndZG^=pdd1e z{Fw{wHTK_1bgF8~fx+}3Vru(RG;`<-#Kc+n2E6UAKbv|}0&yu9Fj?;47H+Hl@p~I; zzs-ycN(U&+YnJzg*G6&(5Y~2fi4fJCq%r(#WDb`!a%BTzkVJZx^H^+b=reTurX!Lv zB(<q-)yDgqW00FRG@I!D6R3CP9NI?r|S4p}-zo7wJ>{27UO#^Z0#kr3;y4#&DWGwmx zhR_l7h;Qf!kii@^G!jp|D~Lw!4Z}+@ax{nX^BG~5DRe;J^ZE1?debvJ!)B9Ew^@vlN_U2cwFgzi^ zGOr-f@*5lc7qPH;q@d=O~Nhkg<` z2xkZpV?rSK!W6;;pNkKr-k6+5keX(!J$Pl}SGawKT-i~sTWcL(2Ye5CHlo;G`a&6o zcu8o^V57!-HHRHRkWnb%$xV^Rc6QtP&!^f-;g^1m*Yd&3o6V=qD5j3G6)$o zzW%cmeU&3GRb(Uh&#(2Q#n36zVdhg)#kznB)n6|$3O0-H)ny}vNfHl7>}KJkHY4vD zm8ARV3c+@6O)V{zQ{5?d==NNq5rBaG#yqEkC(Ojy zzZcph{s<3eO26J76IhN?Zzz@`B>Kfhij(C*UHlK2^nKe?IdgxZi7G_-ZFP9iyGNp? zKq!5&BRu>WDn})7_piNr^@_$x5ge@+n1;&U}aq_`49 z$#3`1F$@(8)$2Q#oR3GR0DzQ)z86iH*CsrcEb%JmwPFGxgXN5e8N}qDs;Z83o)X~V zninLkM~XaaG=tyY9Gm`?{fr?T*=E;W3odV|dje5&FL*9wG{1)uK8ji4h?L9kjF)G6 zrl(he;?+3)BAFlgyJizE$E*ksFvNd#=D4MVdirUaKbhZfSV6|3Q(y=YR7S|4^;@r> zqEl6-fINGPo(;g69)K3}g%JNHP4*j_EM{6GAM2SW1l VgnljSfYOIw3bIdRDx{5H{ttk_?i>IB literal 0 HcmV?d00001 diff --git a/_images/notebooks_weights_21_0.png b/_images/notebooks_weights_21_0.png new file mode 100644 index 0000000000000000000000000000000000000000..e186f4a151dc1e363699ef2136b5157375edc1d1 GIT binary patch literal 37698 zcmce81y_}8)a|B`5b2OoKvF_LLQ?5&q&pRmkdhLPbR(chNlGIn9nvi&l9JNheHY&y z-?;za?lF!Y8JqXr@AIr@t-0o$Ylo;PN#kNsU?C6)Tv-_jH3S052mXHp6CM7vN586u zzfhf@%W7c4%L~&y82)|djf{>n0)b6%`ybNqjL#+fP{2jybX>^Ps(R!%NDl*kKU7PbDcnc zcs*}@?=wlLa{F>GV+u497Z?Bf{wtXe8XDRM^gz>7Vj?0U3bN37ZFqyV@&Cs+w1{lo z5wden%|%!v{vccHF7%R!smIGLw{eCODvlgyFzK!xo$pb0wu`hgvobL;jfSiY>>daW z`jOdRJTba!TRHi`-8*4Kuw@WkQQH*mloGs6%M#THxLZ{)whY#sP*7U5btdl)G zau#-Wb~!`VO!D&b);viI9N5^{-!xd#LkAZw&km{`7Xz(1$&?V$sef>p;o}LRr?R%< zH9zF!RKdc*;lVIAq#^xCf9K+O>qT$E<2ATljE#+rS;AvIlI)SSD#V{bM|~&n@XYk| z^xdpa=Wl%OscvRE$HQ5&acuhf`s>R{?~XTPcBX6Se0N(gco48vv|L>H-@ku9 z8!t96BM+>3jQLYbmB;t#)3yTWr|CqF>`Asr~XL(=bnia>@A3ojJ@-$FsMoezyxGd@xP! zgP8O1DXXiyIDzX_=5JK~E-~WxVLOI(b#aoL|LiFp9m?L`UbWYm(?G+!lfF^gqluqC zfBr?fj9TPpU@C;iQ`oIPJEd_t?1;FZ|IBSWy_lUwmB_@>QmbeP1EHsesq-r;l&EC6ct` zBg4@{l6XUDRXFzHHvVl}oL`+H`K_EKzD$@o9hT=1I9wgd)EbvjR_?5_oBFS?kS$;F z%Txc7k`l?097Pig&1W33Y`rq_@-OuDlU?=}+UwyhfhM1f8w_ur`MntQ)c0HQkVcq= z`Ft!mBSn0ZYZS$u`;P!eTg81}Xgtuj#UE`0w*1{fTgV${=YpfR;Zk%@9cI}cF)&Ex zYp}c%zo&b&HKje4t4xz%@@Zia3mefnLHD#&!Rf5IPcQfgK*H;&TpSi7EmpmFZH8e&CR|ZlJ z?qFe+xx9TVX=q5@c)rdG%hWozvXWa>S;@OL8F8O4Fe(bq%gd_}&Pq&lbb5o!np)I- zKKnw$s@FP&h9x(O3Ck&zodzYn!lQJBVPRqX=3Vy`sY=X_SJHgTLPA1}kUr_s5UQ)F za7L_nwhtcE-}igv&~QXzyOHMG6-vyCwSRDc;Y{gPxH?HBsVdIaTl{J)Kb~At^&i9_ zPH)*?gnPl;jo+i+R5RJeY~L1ja8pE7`&({7}k&K+Axs+M?`wlMO8PvI6 z+5Rat;hmb)5Hm4((0Fw`^*lw158XWI;PRS_g-PfIY!(dyf{H&fXN|_&%S!_V9fz}^ zpBMIvgu{@nr>v0WRkC}k1M1vcge&5DiGQ17@F2mq^8BzXhE8~TW@f_+j~Fco>5>`q zCkY~kvNPl@brz1~!dv1!lauY4#D@JI)+04?@2m5-o0FBSe~me_?)Y;$%+`B+SzoM$ zy^24WzJGfHXSK4`+R@R_1T-{)HK`^hCSF$BYX07wD7Ulav}8eCY|qqf%*@R6mz9?f z)i|$EbRv58Ir+Vodx-abe!xb9U$7*SB;R9tqkHKvw3Cp(R2d|iD2#_lSIeWteEz}t zmu;n~u`#Xs{Fh3x1dHi<55i}zn@qpfT(JN3eJ(F-EG|k_Gm>DHf zR$5U}I8*}<(h6tW!RPvHrRWtWHCl66&e{W(c-wlzk{wjU@87={7}LCdjy`RuU=vKa z8%rNAr|o^(zI0ui?uit zH#F?uaxJ&)H+FCsL?%<8`W~iLf`XK;nkiM;&_~!ZFmTtbBmBKorpH2ozf=T;NzX^- zgw{aZSN)uQ+Zl+4+pIa9jw9+{PeSG58+{g)jU`k#3M%iI(Bxj(l7DdQYV@v9t)>+bW(sLbfJHARKweD z(03Rro&Y1`O5Q-r!~}Vo*M3O8@6B})1)qJrOp(^kqDQ0a`E5!;P^8aeAR-r?Y?6N8 z#|d1=W1nA#;6POz+1lVd{0%8!$)M4z=5C_9)3-5OW-hM1Jn5UF!osGPL|M6n+QH z@oy(Hh0qQ%EpSh%0jp_nKj zMLR-vEUa_e(egr-M2dTaNcCm`wG0dUGfDt@1I8SR%0~(@8ib;lYMOtBJxR*R z1E!uIW$zhe&l%|GTKCgR*T=1SOr7@2$COhunB3pJD`)H7p7Utj8%d4w|0x;)Hxh`{ z>vhyu56!5WsnwL!ZcBLlUMa;d0OP^^2mmF&^w*{ZNXn8ib)JePT+#L>A_|c>^H&Q= z5$^sOwSF1Yei=!A8HPxb5$^6f2^OtT?6h_ZOU}18H~&DT9<3u$F(7|pj=8nAW@BY< z-*{#-C@DUlCKbSYiN{5T!w97{|91e5D0OfM((~uWuU_e48cWoenG4XAdF8BL(01($ zA`-<>r_01$(K!M#G^U$wQbb};Gxu9Ncd@l7{+UwoGTn#F|m{{4GP zsZ6fj|Gg34C1R8%KHs)gO0_wbAw7Y;eOJVrO_OEpL}*aEWQwj=s%sy=s|-gc6-~zn z!w+-rt!@Ixk7{3|tf#~ws-EvqdJ~WY1e*E&BF?SoHpX!+M z-jfF^DyO+abGV|Cs_TFLynM>coVSkhg%4xa1A~3z_g5ohW5Rg3w;?NM?|G?J60$Rb z#0TQ-XUd+FK7P_uhU0ZYwYy%>e09F0HL zE^mt?Ev6ErfMPsL-d&-cp9l3n)Od2B1ovgF3oE*(rcD&-{XhdKQ>0sBMD+g0EV94< zy^%5o|9}8xZ2wZSX7R{HTa7#VJob2%x(!yFf4(af=~lA%Hh;htvwSqSg5mCtXu7$p z->5*1voeTM=NfbRqRy3OM>YA#)=T&N`E#EU z+e%{WKid9U1&ViZarWjmYisI<<6;Ny#Ngo0XZ@qvy1H^krQ}jV)OlasqNmyH z;|m^*#C{lvj+)xqyRJ@7rhh$FsIaxQ$2xUKL^UH z^2lLzX=$lLrS29tDXO;0H%yCmBY;!(Y`v*2P^M`3-=u5C7g6BRp!;0l{;9?1JE zU)$E!7Ka`%A0JfKFS#8wK-rn{%~HQow@74Rdwcd^OxuXJB;HTYp1sr*ZFfZ3PYc`K z18HR-2BSIpfnON*1o59w)6zMgR#&a{tKWzxKe3Q&;5E#1P)ZfD5%N5=&Y{Ib5r}+d zG_`RHhu=g|3!gXa{=~*n{PGWt7!}FL`zZd~_y#!wDxl^fw}y)QITP#k!wOwHOKa=Z z!J3*HK6b-;vgp`Y|EG47-(FVv`y3V*H*ZZfSH4QGbrBD`OZDgQ(517muUYWNX(d^l_1fB(Ji?dhS&A6a`nSz)8z;x}e&iGH|&!7qr+ z(TEvNA?ag37Fr#sl!jic|A4rwGZM+wRm@Y+gY%Q-)=aJY-a~{;YHI4>YoV@*iO&ES zD-~p9+__m;dTsz~@97p*#V&-0&U-Ze`0$~9lgq5*6Ib}!Ab+6AuNr5o^QG=Ml{}52 z7tfz#!N*&y)U{J|cp*L?@|EnGz`AnsXLED&r|9TtO&uK_Dh|W?)ui}%N%9D(9Gj7x zs9OCY9>+XX3>2zo{`SMD)YR0k;~ps%5)u+Jeh3O8?I~m9d-eNu@Q)uq^yK71o0^(# zCRsX&Azb%0SjOhq4Qfa8IXDqz!$xKQWu-RmW9h72oFSp0BO2bJpkNTZNJ~Jc6urCo z7jIYS4#fyhbPN)Y4Kk7NCIJD#o6SF5)z#Hq5O9NqP#-ZcFb+2-;wno^t>10@E{b{Z z;DIlE`q%1%qOO~Nrc$1{-QC^Y{k9h{K0QroXlQ6X`YlFUPOgVDpykbrf-%GVwYNk> zsYIa#xdiU1R!G)1NynOb8gWwnySg4L zBRX7Hf3;jgtD7O0eJ*+LzZ59`e~r4`caTqq1_sz2mbzlJA|oR!zqqRraGIfi{-SGe z^gUL>6`7QSz>J0pS3(lWpbj}Tl|MBxNKZ#+-!DoegVOd{TCSLc#D825AO39SRQRTp z`wTHh(CKIrPc?Yp#hPGYmaFjD)ZWTUJNJ8BZ0zooL(`hMjv*uF&&^5K*Xk_h zN?O_tS1V@`#P~5B0XiX}WVM2^rmEKy`|&Y!(q$3%$D=l*bc+Imf`ZneeMpeX{B8jc zC(^!BvdgxoaAB9mz#kcR=y~<4qM`zOXlN)3$L(a>T(iOZUEU%F4q18*Q_mg0fEHtS z*^=?JCuBIq2v5y7XQ{=-#r{D-7|AIq*xcOQy#6YgeZTg-u6R{c#Pmff+h%8}r84n7 z<3p!cK5;d-g^1}>mU?i9FkAD`8*;jH%5q#CX&aBR%&n@X7oVsoSG*d(OZZ5^n#cRx z#aT~piVG3W)*GlwbQB?#NiJg9M|QwcUTupcsp`H_^n-^-Q5p4Dl_5uQx{5SWs}Tx+ zFIi@0Dm3D8qZi5U!M+R2=UNDs_ds ze*W}FyCp5+<+5v=Ec=r#CwT%n0(0I|3;S_2(f4Fj)}rE8>OQuzv`p|F8H(9_^hg03 zNcs-nYp;EZ)@Y2ucRMlX0W?0el2)V~BAU!t&d$yXpP#gs>6BZ>4q4-@4rlj1gQxoS ztsv~fsEH8d47yg%IO<*m7FMN%y}Mh}1Cs@urCtwZpxHS%7#+PQl6;avN!5*F zHO(KZGukNZ7$hl;;(L8(y8h1V8LZ7&T>3|`7$5SF4U3Xuqoe)Gtp?Rba+QM;6G;n( ztf@ELAp|U~22+oiS$4SvdS%4t9Wx3~Um?C>kYedg22+JIvv7N7G~q`y^t8>2s-+rq`6QObIB=(+Hy z?hO*z)9_7HY80p%#$qgKrVtK|cvM^}?r@MjZbUcUELF2+H zcLl=AlKj8Ec+dBjel6Q{hT#n~fN#zZ zZ9ITW(NJV@-axr6bQ|M?&xzWpga-M1GXhwdH2h3YS>Lamk>vF3QQ!o&5=q7=&?qa% zzG$lQ`dXZpmKLvDG+S!k9g88Kz?P@hy7E90ck=IKnT7m(?b{6}AGgQcWM8Zb97edGw%w(WJWb@vJ=eKPa zPzvg{6J^;;|Nd!-o~XR=@(%0e%imc9dh(MhjxQPja%5WBBCQh6`IlNnS~s2Wsy%I= zZr3wprb(zD%9wZWcBDM3)Id-ReImPg zl9!7YLx0Ej`i${+u>q^YL>Zc_tnBXbaSpptqrPu3ekOkP+pucSjz~0-v;VxbEY>FD z3(qeOk*-ff%Lq@KZs>}?)(buSXl1&&c)T?wBPW+(o;&DJfKBfvOw;E(`Mr7xSdPgRbo+;o_qefC9*-s-xE~Bj(wx(sTi~OmcxduZGRs)2! zzV*~LAT5oiKrOG96Q>;drzH7o7N$|c(D@QXXvRZ;;16YE&F?nX=bH&c*0q#vUZ0+x z4m;GJKIA%ocard|v#$@QH3*N7kDL2KTXDsbhoY$u`l*?6tEghF36aJ|2_x$sq6J%K zaW%ErtTEeVQX{Vzh(%M8i%stO>+_A#|Lzd3@9fYEQjiIs4-M`#ViWyN4~i&y?3ml$ zfgFI2l&cgY_M zO2v8!yfa@Jn{uX&pf9j=zsD$_$tEltLB2J4rFVYwJ-_tcB=4&?rkCzZg8UynIRG$7 zq8Z!qN7fm}o$U!Zj5e%2$=z%C9x!({PkO?4C$ptPHES{WfMpxB*Y{n zx`16YG|b0Nrv>=8r-BO7ywPhEM7&rPkd1fnG5ID zt5?-EHD7x|HB{-Z_i23TCwL_b^?oQ-R93bF^||qv#^>gmZuwU%-nX45M)B#Oh?R|= z>nmvEFiB7+PQEyNdo)$`etl^1^DqGcDw5t0d)`^7QWq2DR?5DU2ddUDnF5E z68cTaau8yl3`_nZ&E)`%_8Lfb7KGP+H)A>zmX?+laY?o4MYu+3M~D^FLP^UO`=-!FAq z4h}q3RaGEQyLx(lLY^uMms;$l?35Iazr)NUL)0B;8yp!)O)sl9MJ?>fWBa$UA(s|2 zz&a^)`YSa0{YkvsvrWEf!j225O3D21p<-_c2@Ch~?XONHS|4MeevFl^`u^Pn)DR;a zT-=%5FNMF>-f5_2rLzMnO$&etG~YfTkMRIF3>7k zYHk(-)>m^=zOp7-J>iiP=kaf1fW_)BAZrLq7) z7g|s801U$M;jS3^UhAQU!y%hoPN%yj-vM2po-Rf)i;9YFPS+4V)~$%PNzy_J)&Vs9 zIU{ff3oDAaeODW$)A2K4nbbSY!u0g?zB{uG=NOXc{uxXac2gwKx8zjlJ{Ektu5q@0 zYBKA2hYv$ib#){cZ`NZaMQWz@?fqU(1);%%xBDesWtSZ9-d*U&DVJ6<^dvQ1B4>$A zx}08IydaXa8OzsnY9PD$!UuSVc2V=c5{~ZCkbKc7=^yqp(a_S8CiGLN6?C_{FUu{g z_w>={{TLd`+KpUMEXL=I_xDFOx3qjRQ|Fe;6#D#cqxYIgYv2QB<`B=lcG6`ySec+< zr6MdxH=41qh||e@2?e9Viq;VW21O%X<-=+L! z4+JNgu?kf#MQTFAZ>GnO`wzJ(cptK-`3m>2YZi>1?zZB6-rU?gcRWfK)NBxGD(5aW zdC`D_5&iC$HO~StUo4`*8C}&Fcm%wv^763{KE^)Rf1ax}W^-3SK;Tc6-F=W0@faBy zznhnnf^rm`5&Y|y3JdgQK!|A-jIBR-OYuLji^dlhj@kqg5)z>HuTOf*yr(K(X_xmU zN=3*#?QaQa+cA>jmLifIgInstfjhJ+($ZsnPXPx;LPDb6V|_I5k%)+h%4Zgj>0CUU z+|!f4es#|fAb3bfOZP&Tu8}DfVauH&4JkLNL7U<8uWalId>%Vp2XcPcfsFF<^7gw_ zf}g6o_VynVxANdFEk&naPS-TAq!D(nMN%nJKZ6=F^}|6L%3l`H_3GEx*DkW80H&zU zkGH}yQu|yiEpyUbXK?=43$Qnk@+=7SQdcIbIwESup3o+et};ree|_XnLFqj^JB!Yu zkeR4IB;aCs=KAqnf%D41uZ<%^L=_3|yAtA9`UYggm#20toHcQYx{CQ`iH}i2Lx-%B z*st>mb#&;zL75rr)X|9{zDdw!5YP+;7*0S)_{s-`0#{aeYcxdTPG>uQHzpyR?v}m9 z&b`T3B_@5JxDK&7>JdRtDk%|X;a~V127sT{yVa*&nV4|lG-LComiRx%RnfYv6e}2e zBq<>=9UKvH6cHS3?E*{u{MoZ-@hK?=M~v!3L*H%|@ye3e<_~h1u-MtztKXdzm(yaV z(TMug+o?AFrVvO5F2@$q*mLoF^-(mUv;WSIHqbtQ{%qOZ-CY(IhOKF%PWtXbdV)PN z646Qv+W!905fFB0IOr&co(*et!9fyI1Zf^(Vn>}%Ur8a)@xIj2z7=WlNl2tTJUwA) zGb|Zb{tX4`?8hO=^f)J#xuCB|WHRd`}T3RH1{r%#+ zHqS#pE2Yv4o-u^`7Zp7QJ#-WZ(mqhf>yZlK`n>jr1!J}rzP>l2FJ8PDx3IEG1N1cj z7`zyb$9|ejNl7U_?N2^&-m~B^lnPz?M~~!4ISfC7F8Apv=16-1I~9%35hGH)#GkhZo?nmC_U#V@fb zvYnA_cG|L!)WpS+GBPqCRVmZKb%9nb;TgGY`4P09o}R;21Ia@xOH2B=I5;>(XEQ8J zpKiMgNYLJ&pc#t=w;95=jTr8_+L#pb|B=w1|fX2dBdund9Zq5@Uz4i68VzIQX8vNk`U}{?OJD8ziY} zCvE^}`)gcWoFoSa$B4d2cXw92WoKm8E~_vVCLW{OFeyjusB$V}%PyV>ZC&*fet!Pu zjt+EaOhM2mw0r&9T3WgjD<~{7Qp(3iWTsGu8*=<_C=Slv5KXtnle)LHj%Xj`RJ<;a z+Te-qdO?DXgB7^RQ_ppR<;(*1U{@##bR=TYt3yIW^JMLRhl9$ZG1J${$xh=NLzx(h z|Ni}^Y{o;_b3k|NX>fTh>7tdVaUQe=+{JfOyBo`XnFnLL^Tr4J#wI4>Kx=j%A0MyI zHat66%S}_$Ez%Nscl`ROC8Ewvw#PhIDV{nO3Nu7dXn}SKiL;ZF4DDEFP+|3}_btXu z#BOVFNBf!Dc8&XCF&4(%1W*3X%}JX&+1oc8`NnkYn{`Ad{RiyD{%=zDdlRcqe(~Ts zI5-@xk6~vpX^~@KVPg78WwvlYtpegBoE#_xo#Ss07jky1AqO0VYZW}kymRM_o0)kn z``b6B`#K2@|5jH1ex&d2ZfQY+w8}IP&BaY8WigZ?ZFfHmP#ZX5`XIM6!CgX4$b3_j zPIQ4@imL2Ch2vq<8Aan(=W$?(A%0H-`Zn%Js%L>%<-SRLL2tGwTq&PDntei%_uZ^h zjp1T+657CArIep=xaQ{PRXuuEV(7$-jpGA-+e3-Fy1TyuvV08GyN2bgAE~DBy5FvS_~{18p%7n($cqJb_L}JIle;8C*YKU_YR7 z3_Cm|Fbzk+K;D|v{PVgVzy}c`S=5&rh+#|gfEGfrl(rEZ^wxK7JF^C46cn{_8Q(Mz zryC_rhv+ZXsu}_QznsVl*(AglS1zy0>8WMrp}>8loT_k(it@`Io4v2k%F_4O%_t}k}Xei!Pv-&~z=`CPi! zLdL2975%c4#563cfX-*>;ixUIpxbu% zr%z;gU<7f3a%&iyl@3CN{TSFXbO+>dFfsYJcXpb10Y6LL;%BgwOc~TTWh;WXqCq72 zfS;dCI+9ZS=K5-AFFTRRbxT+6t$s&h(UA3glzPjm57|lrzSsrm{o$BDN+g-&MS;agUkSR=T^l zqW#gk+!9w-(n2TQN_nmsX}`{sY&wUjxev!l0jJ8+T;@9$*XRb}qjccJHNY#TT4r7F z1gaYbm<2Fq$qN@QvGQK*gUn3xYDW=olFbi&so_#S80Joh;jA2jkly2q<|k z6ByKf2H_Eszn2?+d~k5E2cniNs3yz&#r{4YDpT>YwF=@Owl~S(5RniO{aWmZ$P6v_ zB_Qzo%>7>U#>;#&l;3?f{bN#+oN_Y%_sb7A*Y{6X=@uR_w?b;)n`=S&FECIJkeP;< zm{`r11koExa-0CFB0YJW)~?yvS%v4%{oPNt4JL<&)sz$!v!SxJ-4cQmKOAVJA}K?F zB+>RvD`Nv9TR${1GN&V){6*zJAN^;+SHCr8vC~VV%_(M@ZdPZdqaNY?Oiy2E-QV9Y z^||sKI#`kwNQw3#6at zh|9bO2>5c0y=7o5!~%2@pd*{fAWQFX)z2sEs&ogUIgF4|DVWAizR+4rJDf`i4}-T6h%R_R{0w?)576;;-k;iY}> z014b;0omEvmkVJWYM@ucb%x_vwXu#o8$hWLML1G+uGv1dLHi)hBmz(0>4=6NU?K*I zs3|-=95?923o|#Y=MUJ8&|_m+go1KxT(&01l1)CHkFY05olKPY*%eysG zmvx+u3anCBe}8snMn<$|RaA+t;$a9&IviIQpfTIT1JE^JA0mlmBmevgC7cJ=c@M;659Nk)N(i^WoI+`zOk*OFIp4zl-+v-2`|{1iQmxK)i_>a=vf}lG+HAu+K2Sus+;@%7N0db?DY;A~2$OOKfAOR= z00G$`G{{Qah*kLLkP$6%}Q>Nk^Fe z(JA*ED_~`F0?wNSqAgOu`JaYx3ow^Cs)MPO4eip?wP^Ln6zmFL0v9JH7A|OfUV6_R z{(3OnY;k!yToOgCIIL9X#^KX#%sE%L(-;RC-Vi?9@3w7w8 zzWN=$HeJIFIY65&#y~~I56b3)CuRKexx5Gz1d<;rZNMV`vS`)wY^J~)a#Qd$-egNU zt}}9R{rd-8lhXvN@zMI2Kwe&6Iie7m)|pa!BV}r#J&Y7QBgZ2{nbKc!tlq2{OP`gSYX(u}q#O~r{&o>vhb!>`4-XNLCA%jlqyYB{sshUtw3eT_{hnq}cb)YV zezQw^?c_!(uG$CuQGw{rKSfZv$}X6?XX@x7X?;}VxE~<}MkWr(n}h-W{$$e)*a|6F zm)Flc5WkyuZchIC($UjP0H+0&?e!8Em_l=GK;@V4Ihk?GgXZ}1c*>!pzFtW69x6Ae zH;ESHWo$39)eOehTy~r&-GHjc@}u)B4D!BDMDaAVV1?Wi%vK|4e%O0QkK2Z`6XF8KGgwHJ=_#LOdeYyeEALqY!NIU_is5<+0*KIeH8en==n2#H;xn=;_pF=)xfkOmK)K2jE&uaV@s z93+dSFABv+<+AHfl8bV5b$$8-=YSp2mnPbzXV4L6@wum@8P6N4-_o+?FSABfx`kTn z*<_jf8h&nx>~DIyzdoI8A9W<*F`Xlxdb|{kDQ9#-WXdy?I=48_I|$p# zq$fI+JiPHTT8Y^<>P}lvj_?q3YioC)^Z&Sxa_=7Eaz#{PW#x2_Vn*uVU;i!2=m8-d zC_aFU3gkajy9Y;p{zL{krS;Euvmx+!7C{=?1waa}?R~_kk-FIjU$)SB-;OzccB6#l z7fsp^6sJp!M6r`{ED y&!-tfLTDrz_?Fy9z8NVybEY)0n!0++R~b=nzB_N)0o`; z0~a-d&Fh_;Xa_sRphTHvaB)K*$3b2GY|HB-_mh*J*Ja0WWH81eBg5k#jAfd z_R}MLa@liK?VLhp%w|0Y%~LHXgN}f5^4zV&N5B(AxL1cy7hLcyp{q=PU|0LUy1Hi~ zXG?^=Ak?%B5AT0{V~m@vNt_DeC`P+q`NkZhm#)Mea6D)c(EHsjGzG@ZR*7MaP zPjWF_y-sGKC`cz0S+Uv2bhU0fN)vzn976K|vDdJ{`8yF&i#WwW+^Qm%eBW)y@_SI; zv&k=Eq2oQu3uCBp$$P16RHUUY{O;Hs1sVCzt$RIH@GXmlnL0LK`42v>CCy4zRGE>} zQ};3gHz$^O+02o(QfQIa0ia|nsCjbOE;WZMrd6FFE$Dt zDEMHEhxa@@JgVQ!`@aU!gv;aJhZTzUUC}So+Ibp}Z1#Y3%>xS^Tk6WjA0kp{L0UlL z6?CGs0*OT$MNC73D1lAKKP!t~gXz;#6J#Be!6Zo^5$8ZMqe=>La&kz(1)?$ECBwSb zYYRWRXp!9EKiQHGw`C~s0P8sP%V&T`a9xQ7K#2v*MAC`0Fxg+d7|dz=orH?DxL2KK})Jebo9bt zU6?4915U?lCnNQcZ#p`sO}x_ zpmaAn0X;9@-U4B4BkPjD()F{} z93f1!PM*4AFlNhpd3B{Y;C6U;_!^M%IojaC1riU&n*tFQzOZ6P%4WyZl|@8hNNDI! zaO~m&vshSC!l9^2WHU`bsjx&2ewG%3TW7*LbR!SfnHUVPQhn(YT$eD1P$qvwo%XYC zFzEmHe<@ui;IHq4C;Vetno*4z5S5JomX?~CMN+BHFLp+IShaz4c)$ygVI7ErW$3FL zeYe9n5)KZmEG$eQHLpTv;^pl{#;q!$Ok`f#HP}qIfkDAY(686nv*k3WhVso~kuGyNWvE5N${K$%lhX^)za}WI7 zKqvC*xD>uS+17vpx&l~t>v|m+?b@K9%$(^ z#{avMu3g+l$<0mAz%Zm;tRDkD&F@x&)IEcPB`y~|Lz(aEg=iT*2%#c@LlUfpx;|X= z|7EoPl)?WKPOdQ?yP}XJ5juh(`0siiLye5jmZ;Q*u<_!`jhT)vpsKt)4yKQm!3LLZ z&Yiq2qofpQSTguY)Ys>X!~_eMqJ8XObFYT2x7u}!!os#uKyieO&ptT^ve$36UW&JZ zGxA_GrB!Y81e?xE|Cb;4n@596Bqb%|eK@_(7=~uF^AOI?p9BPdcC?6#5L2@+Y#Y$h z1!$CB@A!h3v^!X*iJIT@ljo5;n#IEOaVhVCY34&R5{W)Yp&3 zjie#Tz=Fw-qa+Kw@Sl`C+?b_u@e+F5HKzHKkGM@kuad<_=Ho*q%+)dMjz2GDPPT^} zzzr&LI)`El&Q}G+a1jJ3r6Czi_C-UoSh&cN0NDIj&KePNXE^@`({4(4b9AAN2?DIn z+iuNcPb%pM49kyv(Sm>Aq;&aVSVCiIW5Yb~i7T_>zI1GGF9QqK>Iepm#hspSl;9H) z{RdrTqFbEC2l^O}OneAkBGZ{V46i*ju8KQ%mV^ntW-NdN?u2(i&0~ObCzm^-3hiv7 zbU2y#6-Y{^Y3jM(23iA$EG)huJ>(<>YQw_ZT*aY&54{rNq((;$YiweM%C0jU39;08 z&ho^})YuUeq@)i)Cz`VCKF^;cZ*%DQ|C^t;CMH48dDL#taQg3ygHw4~nc)IId#x6! zio3n4zVIN)5AwhXwoudWL`&d$pa&%@uF%5L@)1+0+!t_hS9J18ij|BjBckKrxX-#N zkF>2eT|R;I79kY?Mn+@c2g+arg&Y?oCPx?Oe({`{>STDJL>pGq_$uJ!wum{c4W<@- z_xl2f#j@|ydngQoPoHWDI{(8N1AoRH1dy2>`XA}dR_0q-FQ-BOh=LAmSoCriG}+6cb$yg$#_Y~v+wB;^CvizjO2kdJN^#&08QpIl4o zA5x&ccWiXU4QGm_dXC%G+xr5@HI($b52djNS$jfn$OBe9o*`_AB(K59H#>rIS20`d{F#=$oOhA(OBy*h685Yxdr6Rp9wv~EO*JD{KxFW zUu+pKSdwg@ZNg zMHqpoR!9#1!#5j!=qU^{MdaUK_ah-*&ni&Al%xbY>h`e=-)-^Y+2O+Hh1j_F9T6>@IKcZ6zBdvOc8xpLtZ+}cD zFlD?Bv(ptwRs-~b2NyfNO{4_RFR$FTqmAFhlzvglZ3Q7G3kva&_xWMW`Qe&6<*R$B zNRTEu$#4J&(mC~#lc#GH<@>OEpGRX1{Od>f?SAH7o>KhMVF(e`0g{3pFwnE|91Z4Uup(-msiMAylRq5NQghY<&;z~-OR7?Vlifuy zWm{YP-a|2co)j<^>HA~}4vrYW0MIu0ZMkfQ=@q~4DJwII|LId`?m+jwx#D|BM<-phzn$D z?KWSX1-4Fz+osGqrZoi+x|mnTdiD6kXk(wb5y5RgAwU~(69!nO$UTm8&m{%mGhtj&;@Hw0~kG@-bGj^8D4+-N6vxi zZzLxtw*(C5CnGlL*H+S4pY-(+;$n&H2D`xQbMG`>u)hLM0cM)aV0f0_W%Zt&S^yDE zTIiR|kLJB3#=RuweP4p^&(7|{c;VdE*5f4e!<3Ye3TMsNQ&JT9fBqnNB7kIp+WcbQ z^XjdR=1Z9hcSMEt5HgP<9V25s#|s z;LwOnPXmZ-<5XbpEsJ_w@@0`InTRB)E#TNR>Xb1Qj)>+AiXou(+nyLTh|GNL!htJfNB!T8NR@$}`Z2ZKn_ z#K-xX1-H6>Yp$CEmhYA1IRR+{qwH{I=+s9dAqrTL@O8e$tn@gD|N;Z@gvZ)C)(1-EBV&W~7sJe0O)cN_s*0jIIpUhnN7WrJrW zsQm9dV04x~_)C&peysQcyUS1{0)hYWK5zbXDHI|}6_tB{cchmSh-@zgePw2ECd#9T zRKRbzr;CQCg23y1G9RE}{S8`v0b}4h?}I#5jeGwo(QK`z$M@n}7sTP(3oaaP8yJ8- zDq2>*8@XtTD!vPFU%1R|$MB(llM@4s2`p#FBY_4&Co0->-h9yiMFOjqf?n1iM)R+% z8I|aLjw*PJ=bEwJEhE$JcV$W^`p!&!>3ZIDLTw{_2P^_OFy|ZugZ?}&t13Bv6c=}t zkxTvkVE!c?{O`jsscI3>BBr&4r>-h*%t>~Sf`SDmra#)F(vV6g^?r0g($PU08j?WH z#PO${0~1oTg+TTsp3K)4h|87#p!eE=i9=An>RjUme-91e1IDRnjE#TIwK7OrrN8RV=PhtE=Inyh^~BJZDmdb?$YE}p&l7h2>U;8u>}ZmzqreN8*x4zr)9^6(hdoCqLwnDjL(xbh>SxaH3xq0zWj6~E^xB_Tm+SmR_d4{2&S z6e~D6IhhvI|8FdVyw5+6#>K@{(oV;TGByr?J<>pkKhSBgpOX5>EMI7^SM@ps#KaIV zD{EeyS@qG*6y)Ekf8g)`;qaGT025!mxBEfOiG`aCj7H+)NBLau%g@b;FXXT|O}w72 z#)smR`qYjB017L0y_IqXBkDeaKoTDSc5eCzab1k5nORIiLWdIA!J#2-1vI2wpp&o} zcz#4@6mMdusC8+P??FXLN$sQOT`2K?HxCEG?RJ`0Trj102e8usm7vSFWaU{5?)I>^EO%Y6yZoVq>Lm*u-C`nW>LlhC7WlqkO>BD;|E4aSS~y9-ZJSd4$xDMs zVphM2@&d{o2op>^yiTAbe*t~5zn$3;@t##10le@t-)dH49n()iI1fJafb$@O837)} zj&UPj+(45ys5mMl7K;dmwUHq69io~n_|^`oOeEJG^iZ`ocr+qxaNM-3%E~-7;_!(i z1U(g#UrztZQDb|I#KG~<*#H?F4pe?o`64=BA7nyw5=AZ!fVnyy)K6xP5-;2+5KeA` z#dT+PCfs6TP1#svxKO7&XL)(K{{qHYvDMYpyYo-$cH}fO1cAAR^RW;0gQbN17z|Fe z@$iKbelTlo0$FesLTEY8$(in1B%QQORRmM)+36`_YYOGDF0}Bs!1uOhz>OmC>7MWk>g(?xaD+#et2Vn9i+pr{!n36IXBk9rm z(I`=LL+{GdPjJLl+LJ_yhZ==#I@Iof=>{f?R{sp4a*#;IxQmY$o1d6iNFtZsTygyR zigGKu0UJyY_8O3fpKc}LeddoTytE*XrGG%j^o_sxJEWu<*|u^0=V0T^?%*VUb@0Cc61wHNpCqXs7Jp6md)gK1!_ zfuy6O1AHq1r(^OwynFlmKf!I42kf6L@D}O4#2}2xt36_kd3-ya3ML|&W1M1YRr>aq zVAf$-gyOPqE|VfSukTqabXYn5tH^3Fi6eHh;(?CXzkdM7YM@Cdsu3u=OAQm(qjN0* zLzC87j=Qv_HgU53zgf-KHDGLJ_>{_zDU=97$TCkv!2&ImK+qz8h{Z%Hq{~E4VZa^G zxp64S%6cG-ZwOQ4;42T-;7b6yaB*>YduD25#Bvfz-z;Im?02}^tVa;2>^Bq74obiE z97p-4Ia_`*!9YU7zo)8$Dyh+o*7EqoyL+bWNu{FQ5YK((qlDvvzI{b`)*pQg#M*5d z|EIX`@W*<8pU5kg4zR(7%q+1qp7=l48+ z!_(`$&Z~1y9QXJ88Q1k*7dq$+l|*&Xm1gvhT+%bVau?`tFkm-6JTx6#Yx<4)`_H5F zbE%=$XFJBVo~s&wPL>q>cy!=kcw-nHv`--ZtAhgfrMM;8!i6Hxs+)tUY+ zx>jc12IpZTnD+8Ky}Y7QQ&Q3!c829u-n~m7nw_RpQBhe3)m(I3To))3)d0%!UiyN; zsZQ*C|31$1ztlqSjy*u>2g;~1SPrtr+xJUtF?}!n$=Pp-#B@^+=GyrkO-wMjeU1*a zx7T}J%I4$qV|-cRo80~v18|Y&#dLjpE=CL*cjW%X$z~_kJrjRQc@yQ#NETgru8`&mkFk} zJPMwas%n^Cj3*7v9d$2UEpy0H&mDOZG`_C5Ld@@0*EFSjP-0oTF*a<7c zeG_DTHZ}*pE6wykBcGSgb(i4!R6A#jOImskKUgeSTD!$c`dZ_F`RY;d;^N}oix)4( zQ&LiLK|rM{LOl>?*PlvvW|c>Q01n6~?~ca41xbu%x6!%c-{$ZG9mRBizEmM0xjy zEWf%#d}KF$cJ{V3dPT)_e>*}=6OEj=OFK7r)Q^T{`*baDjTE;#d7+n(E||wGpNI1c z2RWteOR|47v+9@d9PIQ z`&(VT*gel>_jMuxQBl|7G$evRA?dT(^<#S48W=9HeWU>d?HH`rXFI}_YPR$HE9o7l zPaa_dg2W^lHAjbbpM&Btt82fE9C-T+h^9hiN_KC+?x)VTO;lXGnUAktwO?P-TibM? zFJR(ZV^~B)$UVK26mZZEH?2~==|F&=Uo?o5*T6;W0N26KpFdxem2Ipnbd}w|$)i5I zVrdx-)yiSu1>L%z;V?~*v^GH~10@wDWjOE^7zuCR>5;RtEJ{Y8!WE+8GL`~z?B&Vh zg-&_a!XD^EK#Oz$(LEFKnQf=PX)HkhY$uq34+iHX=Yaw7@K)zFBg&lf%jixV8V}8Ia7uUflTXR1kW=+x4zG{rG`3BB>C8`AE?n(roO(=>`s~cH zv}e|MNGL+4Ty^Mvm`3rtaR=f1d=^bz%G0w<5)5**t$~ub+IjEIRC&`1r-zBiCMUh2 zLVo-1-5aAVoR5z6rVpH*<2E-RtF5k@H&lHNwYW$4x&OOTb{a)7l0Az%Qz1_gqz~kQ zS3u*22oJtGVIKY@gxdT>8TvaUBbJ$$_Y&^9e?YC*H8!S8dj5I=fg?4M#5k#`6{1V^ zQ`C?DvWWb7zOugl0&Z7N&|!Q5#+V-{*prhJYiKp}eHRqpZ~(Rwe-=|R_R+OFR`&AY z#W2C4)Yy99g?}z5pt)Syxl%LR&>zW24Ry+jr5PXY+_-ZGVXfe5k(4yNedO|h-yWZn zlM@b1_lJ)j#e%#1Hg$X?-uf(=OM`RBc`DDefIWUvORJ5|BQ~hX-2t=!8l};DgV@K@ zlgS=}9CD=z9-$r`B@SkHlzdUxP;=(qaJ0vC-8OFwI=H#KywVM4kS9omkSQS9;16*9 z*%$(wd2?lD%$>n!kEMT;N-CYhS>{?Q*%=$hW_0{8^Am}}B5ZP`V0CVe4vv-N<>h5S zoopUHR07upRMjD1Scrv6*4*2>j+BN*6Fi7_p|}o)Hv;zV#dn2;bqh0o0XvI}Z6eA> zL$Y{*hA(qVUqv8t;fQ%Nx*kE1p30B==zc{vySpPmBvmQ^Qg zezl0k+5e4+q9^yi83ET`qUm32n#_cBq49;x8y7#^jCW7h5C{qi3d_O~chEJz zh>0P-d-rZP1WwL}D$^*PBZ{{Hc{l8|`wbex@a z=o!6W23X@vQ)`m5zo!TV9NRPdo0&}t7h6b@D^AzP4j?o%GYoaSy_1jS%Jkm=)|f8l zcB>7dv|1oh;VBTp>Mln0pzl`$X?S%_4I_NsuV!wo%DDmC;;>x3iZ$$FAESlY+etvO z%gd8PsY>==_3w$;*cJ~Q!IM16$R*om!<-sRQD9PwKKb=)w&MdP=gP`0@_OePVn{(s z>|cEm7pJ75feWXG)B{)71VU4uR~hN;!#!9C9ZSmu0Gj`SF+Zv=UBD*<#6k9b0P*2* zboWI+rIXgs+VWXMMMQ+4e1p%yC(HgK{!bKvEuNQW`YT`GN89fftxM|Lo{5u$dp)ry z>p;U2{h^w+a_7!?W7Fen*pxJBuU>gn6*C6|E7CbRNe)DR7adL3UoY%`D8*@4iBhBgh3m4AUb^}h#m@BnU2 z&&t|@cr7MS>864Vl}S{T{9>Y9?_#`+2|I*6X1XGTeXi#K8L z8!J)$EC!c3=#7yO3z2;YK7pMsfE=9`1#-N4?vGjU_a3GmZ7hxaxeFdqq`Vp74#fT4 z_aN^NBe^_Z>1q$*E5G&Ea?9`QFmjQ-emk*A1)849-tXU?8-w*yiT(aia(y+ekHOGH z!KdU$05FTxW{1|*eGM%{+O$C4_IIj^KG5ka{_^|>Hi4sKtagRk0b?x%MT#KDojZ*tcoej>=75^#J_C`=P2jSRpUH&tuYOM=1`L4py&=*K z1gtJ2GqWO6cpnxr0IT*kxFuWxp9+6=L^ZZhHPQfe%x|PPe0`;72~14A^a7~kUooYI zn7O&NwC>(rCFeGlbAEn`kuHE1$;+!&^)|SthrV-aiUPzD2cQ>YgR>o?^qA^lv-3Q7 zU@Y^z)W2Te(D2Wro`i~>-O0*|s_k$bEt|3a*nx)+Ygv`oH8eFrnT1zrs0oQxHqJlq z*jbh7FGFqcR#;dmBO+pn&(U!KYD?J`cDW&;u=$C?H88Y6-bPLb(g7y9^v{`B0yZ8I9me%^6h|p<13*6erWYtdv zwq&!DzQoB4g>BErdyR}dm>4ZC+F9L(cFSV4kmN`dlY zrM1O!`xc!AD|Tp(MzOz~tfsVfCB7^lIa(H#Zg%{pK( zs`e`Q77!F=N@p?g~BR#lQFPyv7P*&+u9tPFsX51xb2 z8(@Mj;x}(unPeCf^W`$+Aka*g4!vhP{c|9!LKL0=_a9y|iz8W&$BwQ>8rnKWz7JR* z&cJIigt;pZ4+q)q*a3OP6kLcPM^JL9>-l~%mpOz2RW&Ru%SA(cLu9%BJ1ou!5LcjDN7vUM(p0q`WvYioBz37=l^ddDi77sEjspZp9Ui&4yF341 z(1VyXxY8l(z_r|fdq{mqR8^b3P`J3)v7ss<}!}}$lFz||-eAngl z)8J?U*PUrj!b3^%kj%^&JaX>EHj7r%KQo_%7JPG#R$;C+ zEsky=G0FiSBtQvf`*ke?_Qc~`d;iw`5TOj|sP2`4RMgZ*Ao>gm!z9r24+tOuHR`&z z#IBT;5z$-2a>zZx>FN@e&Zif7oT7%kbc0Spzun^}1#}&j|9s73|F@@$^#C6=L||jN z8-av0Fx=&v?D?M$hLCU+-<<1Co2-1t3ln_Vz4L(-&>;Ut>VCjnl?(_~J0yre@RSDF z6BilPxu2RQKY9)-!S%^1RUZ?ox#Iz`E~wPKm+#!lkr0@>beh^$7n>>ss0i-7B>_9! z;VSwqhL6rvX2xFlu8VR9A3rEUdA=iQM<`QPw#&h}EHocP1Mq9di|ebjhXZ*pnga|ZaQqsi% zx3)ku&Ivu8cW!+rL_j`b=i@OJwJH?svW7Q8OQM>)_8Qi#0m#|pAeb@!&)>gxK!Lxl zDl+9_HICIQ>l!Xl6ad@>R6aDo=D;Ud1xJC6g9A21FF}17uVM>1CNgBf^SfK8zHju( zln{?@J)+6E=c}1iR6^lN3&d1=f#R@MZd^Krm6E4C3RpH6;P`=yFq}pG0vxR)@ADCp zY}%nM*D`NS2|##%U6o+E~aeRb{ba<2tCPLPu+ySbqypJtihp*h7UN|9FMi zJ-G@x^ zbAgN0{qaI>0t7wiBlu}04Y_%ERv`ognSbF3#O~e4XH)Cf!`$S=H^yl$f8Rv!AZ~Y$ zP^jr09v<%Q>r=0*sSyA?cNxBH1mKkP^z>jNrswN}w-AizxDjt$kBrW9q4{J{7ofuf^) zmZ&}y>`;Elo0?M3O}4fD(lOPDtaIpKbF5zm*x3(Z4iS5SK#fEf6xbB5AZ2hBru7=F zj$iTTv=ojIlvu6L8wllzxWQg1v*LH947YwIM1iP7*PfZ9E{$`e=`Rq2P&bQ8yW%R`&|v^{tqg5#y;YH!t{(ajhphZS(G5z& z3GC2CmgK%8>FbOA5{+VFr^$+&kUa!ah@F)cq@U8`-?B1zMz30+c=-11Th~RKR{nLK!?8xK_ut9Y|`$$a_sF7j1 z4lFUj)t)EoKw=t}c?-5BI!zv2feR1iu0U7;xJV3u_jZ7NrIg?tewr&wO-bqS zYjH8y?enS1-oXKj%WT~e;CFD|s9juKxS#IX1;IIqTnTV_4M3g@8Kp4xbZvw>!(06d z_IHixj*zr5*klWs#rsD?0illv7+$}&*=bnNK>PD&k({QVkvHKl8*c(f1YqKvZg_Yh z2j2Ewcz79A&-;jJll%Yu^j+vnnV(m)Xd(@24OrO>K|@~%>c2%UWRJ*up5PgQ3OIXd z(A8Cvt{md!^+nXDc#tl5-^=jbUi5yz^cPI=68AEdUel@~7{tY?sN<22R3CZO2!#;1 z-)ORBd^Uv;Ve)ExI@IT-&#kW+(B&x+)mMbiv7kjs1vJnBq?R;PLAs<+p_;v)czg}P zE15VCFF*bFl*ki+ty3P6fwBr<=`Y>g7(k=1Y&P7ftF1+b1=u(`ssrJq^~>{Ay8GM4 zScZH;f_p% znt-D5RYpeNK#pX?NNr}_k4-4xC=pon*AK5K{X47H%Is!p?fTK>jS1URRvIe+_q{(F zcRknB6NQX#aWxrK=dCVg zl+-lLcAc04Q(sVTe9P%sAJOt(8W7u>=j7lBVNw4D7#XO>@NOtfhuNQcF6Q`7qje4| zqp@xLKP>>!zi@`rA8uuSuDq)DL-vtDXWmD_CXGbX&xg<;%;N?ENi0BK1lfbA8>MAb zR7G;dp;3lhsV66i;o;~|N)bV3<&6XWXX!a9Y+=%|eteW`g znYgsHJHy7|s3!8mmJ9XvT4P%AKJo~ADf_;hWV+e6YJF)b1OOZ4>G28@GyDEoTDmuR z<1oLZTk+{nT{89-ezN^D+IJz4;v2PiEHInYRaR|59`BmZ)f>RxM(;mz{Q%TLv2ZB| zo&OaBd;ennlw~If_l7^?G?>ycGIF0hzm)Kz!^HYvQlPuCmjrrBYk(vl*xB8dg<@$G zY{;0*sqfx#0-9PV2+v%xaO9afHb+s)H*Cf%l7 z2ZR+L0>#yG%sc4|oQy4hSx=7(h6_V9j?LKlzJ=&e~5{+eMKlD+Y4Pd)h@LP$dk z?nQmOzQFqW@1NG;2iBddZ{4xG&CfE>X~j`<*D^eGI88>TM+&u)mKWv8OHVF+7f(F& z4Gh7y9tzk}j=sLW5;BJZ=+0&PG+xrJ$ydpt`CgZozB8}Ylc|etXJ%yBfWk_JhJ~Z? z{1tN*2FV@>aQ=f$!=HGH9GjU5p;3@|&K)K%ZE_*T9 z#k1q%2|)3VMMFaawnH-5q)4x+F))06L()AzELy+S9cD4{5PVMK)1-PV@=xMv;&`6T zFL8Pa5J>p6a20;?s$H-S?=)TvowhG)RdIa|Be>p(TRJq zU?Ie~xnDf*Pkm~0@sv_uKlt0K4>2krqEEs9AHPmv^p9&e`U!MR<`wx zjD9pXHdBcPvVwAr*;pVoPHFU@$>Q~*xT8yLRhFcf)?D+E}$K|9sCbcdM~P4JtHlP?hf5o zb$73(ym|9g5O{?uFof}RB(hXf-X0BM8hKD#D2meAG@4I5kBZ97|rW;=R>`C|$ z|9pNOn~y^>?6_;~X;PW$N=@Sh&esaAMF~0z)m4yaHoRfdn<>39IsZBS=Qj<2t#a>k zzUCJcR5*>JdKks-4{CZVLR?(`x6WVN;(L30UqWf_=&ZlLTXl1a8A3ylYYxc{|4~=x zDDVAP`@rMPxvf?*TVd^6Y?}9$WYBzk0*mP@2*-JKmNT+>-`qS7MB)aJ_Hho~@K3l! zh!ONLZ%%%Lx2o~7s^$0D|IRv?)X@)x2wy#T{%UpSFIL{@R3{i67U%fg;ulkGX_fwB zSV^qS%I1X|p>VLfyBLK}6$TNly=!Z&fJcd zhf`g^-vOI3yMP=TZVuwX4&9C zF~mABu@Ms&!Mu{?&CPFvx`j3y1#Ybv#>V_pUz&Gno!`v2LLBqkxu0syceCDl{xwY> z%+W-&kB%lu!na}iP}`dW<4NA0?yGkX$=W`8%<19o{x+F@7evILW)8Pj#C|rBk%Q3U z@}byiUKj&*Hj8>5AtitC%4tBDrvf&VFxn6wc`q(L-h?Qyk9aZ5E%^GpO-02jiG>zm z@AKH0VTh5E@cW8C2>Pdi+YAWs7p3q@N}its8S8?Xj_LyImWY(p`yXG^Pu7uU{{yLd zwIpvTNI>r%8L2sS8!gUqu{rU^uzXcK0gZ=CabZ-i3}SW7&&sRbR95kE_V>e73c2&cEmc4xKLI1F zAu1~B?(WX;)2ZrJUqnQ2b^WS>qT)t-2wJqhL4>E36)m-lIXAg7vUO>2_eKx8cs0QE z-UiC|(+dZaFx*TH8%9ECfnW!#r$A9%Ga<~*m@-Y`i8GqK04Q(y zSNuLn3GO8_VBZ=_w3Hq4$cC7~{bQq1mQLLb;>_A!5=E1L3nyBS#rUxOibrPX7F|NO{BpM}*k zFW{-QueY$_dvo<`NcSFvkD>|9N+hV90TlguH$yODRlaryw7i{wX zF;c{|w9nX>nBIVOuk|I2ap|DnJ9HARkS=_wU0BwnR~8NxKpo;WOSG}uoCdCix%EV` z<_CXi0(Ne6|AS!l23O#NQ0Q+F!ia$4LgwC345TmR|8jUWwY5xv=SQn|5)}3HhFWe5*Y{bEqkCz@06{f-;T zMwzYa`1qE+1}@BONXhlGI^5_qH}l;QJWdQj;e@qaTh67@vWuErv;H&V^nHAMNIcDm zUfC}_XP3%v{rz45kwWTE`ZZZ7L!BWz=@OvJE_9TX>~4cRE6&#K-E6l<<^HEpJqParfe@ZzSU1AF;srAw11J>=0V0K%dU&*1?W7h6m3McBw8xYqr3 z&VVhd@buc$w^xEx9Be!Y7DK0!BqvWzg`*vn5gm{u*oSX5D}iw>1{C4^pwUOkW?3AANcQnX{eZ3RL7SH76_jLhbXvF)xb%GB(XLCESY+{+docv z$Cr>&D&5XzLNSR2)Pgnuh*4{B+_3hB54CCK74b3>2^*HF6zh#_Zf>f>OJ|=3-Fj0K zPTByPhd26s(0M^Qm}7||6y#wA8Ottk+z$>%&#$fBAb9fk0Y|~>*W8Gw=b~eCIQY*N zJvh0zz;yHpQxC9>_SakxD!;lp;c(o~R|K?I(ImegpqfC<0R|ct6NAg7PJAjTW7)L% z8?$HKAw47A8h$)u$PWRomxgxdeKgJ_oQOZ_oY>w}CmIkeG<9zhHhJ4HxkKa<+)UuU zxP08Cb;$)_7Jv_iFruN>KK}E)9{Yfxpz8Yih_*IaX`fAGGHEaPsqX=#oi%@t)po`x zOYB32wKNQgsPnp%M+-2B)KFpV6`FE^b(0hYpJ1o%SkVeV;L|OBAB>x4A=V->JzWiAf7GIG&=1}Q zCfLf9`ggAEOAtRIvtNMce-Rs7{=-L03m+u&YD1Q-PcJTngiab-gjL)J!oMUbb;7=6zopb2~=x?H9^f*f!!%GC`Y&Rq(0rF zrh=>F=5vy}I++TkWAd!YBY*y!*RompVN8D{xD!O1WS$Uf*08Mg^bY4x_L6p`F^axH z$No6SGzHm+WZU(U@n}zA7tC4kY zNWXk0j$btO(?rl&G|q|34@`6n5o6@Q4BIWTAP?GxKhf`(wdDZky0C?yw(ju6YZyFG zwgJ1_5hGec9;7=WrTAbd~{$P{`~QYG^5c`u9HKELA53rJ`=oHXMX5xFgUbz(b~ zO5YAFq8+G@*nBXP)=cu>=Lfg4+f{Xhp_rMGOHvBFv0*SSw6TM+Vvlabq7{{*?XMNq zHBzo&-6%mTd}Hn8I+&us%#=QICn)=q#j`*UA^t@F!Q6P0uV2#>UxiG{UMh(c7q?GV zR`amuUj{x4KJX^?I;#ucp34XToJ_8~8{`!u&Ax6(eG!eQb0Q)i2&oHjQmi8_NIB90 z{?9X?PM@j!Y70 zdT@VljIF&Sgk>TLhmDC|)}td3U-Fr}d-T8WD_6#Ky&4 zhK3{EAdTgSlUK#wUxH~U_w~E6G4V*R2IXxXqvty#Z%)q$^x5(8l@NjT z^84yoF`jT5U-E3$SCf7DF7sAS{f%6^C6s)E;P1~pn^okA9zrgX6%94@J!tN2SI9<3ja|a) zeF~LR^t`3~lFB@fwt6mL;R-hBxG=O@Ha+qxDk+(4d#*j+a6A-z5hklGJ;Wc%FpWyt zvwuvQ{v zm9-c09ZG%whR!W^sPV8T=3ehAx*m5$@0v9d<-))WQE)Ro^<&&`J$9&RmFDpBD3F0P z)v*G_3E1ID{%s zcFWHYjw$$fJnf`m!PsjrDO?DdU2RR|(E+F9V6 zgDP|dx&@x=6{CZ-d?X(-f*op&uujq|qb(oXcm~O%I%9ma4d#0vr!HFA z1iY#D(YZO2`=x`q%FTpyiMhFiKrwhgNaaPC#@{U>Wzp4z4^j2T*z0JNMp{U_*^KsCX^;No<4LYo9Tu6AavKK>&jVjFkyE8lV(wB!9bGBab z6a;%38VbL6m)4sCCDlx*dJi@rU383nbCxV!1aHCRCp%#}f5;B7VqMl3C?z~GLu%;xO(LRvXw=UEZ)$%7l8&tBS2Ob0ZD)IWzje>!qhSnqU4uY zgvf%Z46gXU3vJhh&&&LB?f#Kce9&!U7tGs6yG4yfNSg>!a4o<}GA*OmGJZs@=y0bo z>z2Q^cb#s}Xx%5&F^oiBt)MOj-L`)D#2zjd7P%LQl-1jU_|-MT1};vu1RHCK**R=R z$70DR=oB73hRg8o{?tSvmX~&j<7CSnr__I+Y6V@m+mB`Zh!KJ)##47%WihHT!ktn0 zQBvLq{(_7MX6#Ur9uG;xL1D@R0I_`Hov3y6yUu91ExwKNm1^01KHF(~^j?ygIX^Jq zg|6<6@p(U@!xc2plXrJ_Yaq0{*#eN{R8WQst|Y%g@!Y1J_5F*xa=)}UCl243kbW@k?Ch|;_Z7FD&w)c~ zNk(#~ImO|_2*9n8^m#!3^ju%^pUlTBT-c0i0%B>8FtBcL7;(DY0I080tJIe4QOen5 zg)nJ5Ey78@R}zsBJlZqda^iIpy?`#*sot@9r}g+2^`|G^5~+gC{vz%xm|Gu@1|?0tz3@{-d(9nrJ=)%5@02l}jj=(f<6t`kY1zyV>L|P5C5rWwouU$i)=m|a8 z1CD{-mM}6hN`^pd(e>(sF3%x^&;=T1^-UNhvwu3JV{F`;k(Ff&k~wTVJVk)hkTXdg zD9GGeLVk|x`#a1_m9?~F(?c%AFHzC&Ll>9F-*3>7MeJi@zIFEsYba$)%>4EMUyy2d zqm-Lp9ee9KE3tiWIuIv}157Z20jYZIq_{)@0l$C0?SXkgHAv$C9(MJM zjY)#9cod@>W)1cg0f!S-EE!s1tNmjr-numtSZHb(jHK=5`3D2%FAs~bL-WyxZw1pZ zb}90vHHGGP`FsV_eGzdE>|8omsn=SRhL_a)rMAFx zQAlmXLkQyG#cCilG&lzHWUUM=ELzt*s!ppE{##qRW%`bx4Bn`anbg-;2{pi7?BBAt zK=#q-xr&R7E`0I_d_*_wA3ndzSUp^5)P1A{zq}y=B~2V`^gn)NHAAQib}-C^o33}F z7#JE#gRj!Qycl-tKy7pq{sqykAPEhQuNUd(fGLXOm}DO=E{os1VY>; z@Lfcg-p$Q0K*#m~6%DNq+WbDK1&S6Itq14kT3si=v8My#&!{ImgW~bG=B&k_rbep# zp*9C_q$8Tidw!lby<+siL|+)SEHn;T)qn6 z!A4#3yOIQr1q^+aMB#_BnCnALO#zUFfMWlX3N|?u%~0oCjG1MjiU0H$Q}dZx z(t%oJ+q-wTu;M{)G0sUEqlQ=oq*wz16NC`O2jQUd(rSIxMu_a>s#HM)LxSG10-`!u zM<9W=e*Zp-I=&sl1i6;I{SO7RWdco+c@d_N#(KChrfO(zt|gMhGC%Hcaw&U_|4Bs= z{4?NC@T(sWf%Fp3SKzK`;+)#4=30!VD)$27X-*!7nV_!j#sZ1IwKNU{OLCgaT{N9Vud9 z!2uoG_~2lIR+cCMurV0Hz9=nDCdSw=i&&l>ZlFmD2_=FY)nG)1_hr%{lD~jlWh1mk z81HEB<8uh7mgpYr?hXXLl5UEVaHf;CH`8;$Gw*xSLts=r0Ki8Th$*M_<>k=xEO#kf z7}kjc0?1vt6=Pjp6q9FCzrrwWR=27O>q|?K6O(v>1prQ+0?^Q&A2TyGubq@T9{X4) zB?XJkgAWw(8QxeoDyriIV8Ndj@rGx4-S5XSvyKFVpOKuLUQqN z%H*zMYdRQ$P9T`980Z+UA?agUBAVEJ`XKh(33Rcb+xB|t?dB~3nk{l}mxWt1ety%9 z9<~|xO1Gf--P^XZAVOcMff&~(4|f+W>5`L%1vqfTK03<-QO1zgUlShN8EQg{~$ z5M&<1*RredA;SvbQau=H90Ku$V!N+#LWgnXDn+ASY81z~wH#h!UcRsb@h1G!*{@{n z-+$mJ2{9}`^!E0yI662Gh7kpFUebCfC2uoQQo^Cr(B(}N+nn{51&iNzhFtM5Wyn>Y zvhqq~nVy|}0OMf^2zoO`{=828dd16*`1v#a2EE+Efp^{M>7)17v%%gvpFj4mc6 zJ=k4r(E2JEgJ|!@AdDsNSXi*~Tlx~g1BWsO1ByGwZnhR{R@eTs2I-X^E=0TCywvp1 z&jf4ja;YXCe7I7%E#n?ne(ZRpdkpc1>@kT>!tDuk?gr&c)FhoYN6wT|*HZWopTAcx z|MyQ!Qev>LPac>=A6S%F$9(t8^u-n8(YwYT9-ttPg1CPjSoGt+FU;T+ApABkknk}8bN%T4TRhgk zwG8E(J(!8eBcE73zsux*Aou6$vaTmb5-F}hqZ@>(jh&BgE#Po70=(95mi)q@*sL^e zNq1QF{MFQ~X+41e+ zOcUAqC`L!yH7_4Y_pLrblUFS2n30i@6L3@2LbAbXCkGcch_{pw}EAi^FG zJn;mfx{n_x;ew%rWczP9+1b@l<4D+iK?g4ZAs1J{j@j{n*k)Ym&N3>MwW z&Q716ZStuYJ((8x_zVIQ>P@@8eqDy+5E~yKnFa=87y>Xif)LFbwvt{@&}SBPVxZJG zBw;8CL_sr&`)sCwLlH|osZp%TBCNKFTAa%e3>2cD6ArgBXuJE8k(1;BhJ~0I53n~r zhB49*yRbD9^Hb#|=Ilr1XblY5pp=x9azF|L6Y_MUI4zU61T`@u14mO)F@0^dhE+gC zMXPaeEV-Kl%yX85wRXebGb3_XS@m4)ZUYhAi8RkawScr31H9M`O^_GV?SMpfb#|h` zzS9vsB=SQ?4g-O4fpcJ!w?ic6<=ud&Ie5&>Fi8PYT85?`*B?Q=3ca1$VWic|TxxWA z281cv?k~U3rLa9v+CMfm%_gq-5%hT20i>o6-)(lf2}iyPOMzpzkBwVo|H!4}I}ZO+ z0}5LD((^-uBORE?Rct%o1AJ~Vhy&k19ebahw63Lv7S;?n>eoSq&%wv1`tTtOA~kFW zyj5_N#O6r&EW>E<4EDKbl6asYo(%e<{w!4`p`eHYUsRL((wClqSsvqd+;30*q9UB9 ztK}gIZ|UrKXTf0tQcVGiK%?#HfO7}5gp6aMp?B(B2RIWOT+lEH9^82SZv`b+)yGHV z3K*O>6&3ghSg?!B%S@9^qk8x6dq6gqseyqqye?#XkFkk~^yF=X9E|#bR0-yLS)%dU zkhc#5V>ECWC4jixhk_=DMg2-Ui)Kw1sl4;Q6$}g(!V+tjELbad&1%grs2h?>UO(?j zlqN9{-54!CHmt6(d0!+ShNzzDfCASMo(PID<2=A{ zHcn3c{*((nKogIAbTO-pj#jU%ani32Tv$LyREm>Z85m%I{*FUZGONF@@6@n#tn8uS z%oBtvSm~NJYqtCEhtBr^W{dXrRmjuId9!j^2=R0TE+wxOWCLGodk9#+t#T(i*>tF! zv|WAUbSA^K_onYyNBgd$o}>gf6-U z2N9|_1k(tDk7RmgMxHlK^X&rHuOpXWA_&(W1yK2RfnM!#u|W znKuXrKG41h5QmlwDxgh7=|}sXB%avYf~9X@!rC8qo>y*#9fYwi8%qAVufXECd_JlQIG0b zuWSl0Gx=T;3lL0=Sz;T9Kh2S*G@zgq3!UlUe1;$$1uYGY$J70djQ)8~qz`0ZFXkfT ziGG4NnEaFZwzzdWVnz0LJikzKvCxzC_RJRZrmncd5HxPYc|V_Am8Eg3Ti*Ki_B~7j z>Vp$3ZZ6xi{YQh!_<&+$NlA4+XuC|*${E?2aTD?lc1_&e-f9Vl*H31rnThh-_p^}ByX$4eRU7iS_ zKJ*3wuBkL)=}r!da+BtEOA6*9{K0?AtG={UCsMgCSwJ8sLqKGxnlVf0vx_ zlyr1#>>m(OZ-7T_0#rh#=|^KVQ5wvtJ6?`;X!Byj&vGF2f-qx1W9UFDL!ufP@$cd_ z7lFn7yFh9H(A@>c>^2NVsyas;M79b1N73YkgZ3dLq(d1_#VK$FXZZX1Nt+-4#_848 z_!4njbMf+TgL|fIUN_-n71nG$+P$0yNw{QWH-acDj5`F~XX|a{*UnWgZZHGy3zet} z3>&b1@Bo#Wxe${N&cfc+y`~B(T~ZIwk#lfLWoLnjt3pxHWO6VpX1Vsm41RIYrJ~UI zHzvrZPtnr=5Wf+aJ!S+C*k?LyEq=C9Lh)6&rmaMTP8ECwU5P=?J+UqjoUd(dIV~f* zvAU33Utugv0%U_geq{`^N}Tm!wPq?JFAx)Suee{~;(fMH<5qnDOwVrxRAZ-a_e)`3 zTI#mA$FgmnBIGp!F$Jxoa=eP7j|APwhBxGO-2-ANi3Mhz%;K|uGUvSu0H@cx*Q%}) zxRCF^xSEzF(_U%DeZ}u&IM%;~OkDuDrVO5--5YjZ)an~@WgsWqpQbqCQvrBn{WKQF zfT5kdGCr_@tGTX;>^z=djn^1$?dGFzT`MXBbyk?kMnO$*L z=>ip2yUX1b9{qo2{)B*sX;`T+olUuPtN@fVa8yp$Ig%h}YgC7dF`~G8*$R$XT2@@U z1cK^&M&77OW>3KBj5ZD2NPSS9E)~db=v|5YZ$Y8~m%e<*HO8DbPm#k1Q~)Ee*$2M= z_|aV8IzayrG_-oavICNNdFz&WB1_5m>4Z^m4jsP@s#iTF4H^|y#b@hZY5>AFKFcs5 z=X$L*bcJ)v7*1Oxd_&G-I$jt4<+{Q5SU|VPm$tp_gJd%^t-=fCzh88_f8GqU>dRF*;D;aq8!|%K)fi)m4=!I|z zTIv0zb8gBydy?W(v#f-d^llamM>`FX36m8lnOP`#L)3z%P2&=vGpV#9c5yMxyV_PZ z(ROhXN^i6 z32tPt?hc3I#aH;jjG33ovojYDEvs?JJiz#=JV4@vy%a~yq2fw zV8(G$xF@QQx*rj^;Rn58zi;3J zse^54EF02y$G$etxia6r-M#x%%ER_+oCkz{=06G<8$&9C+7?~{0WH&J(P_Q@=?=st z9-=lqg|IC5xxv%fz8iLS6B zJKi?oVLQ8dAsyPm00LL4bx?khC}dNn^U-BdUMMNPc=wJFv4LP!PZCzwO@W!ezx<_g zU)WGWil*lJ#=w0;!$_#bxXnItpA}rwLR>x4F;xS8GnSrilN*j>qZJ?fCnhEdZRnq0 z1oppJe&E#TcpbDg^CgPjw5sZJZLVrdC{h@-v(QG5%5R80a<#d@D=Kgj9oe`&BTos&x^XLV1``iTen+lM;2pDxrP~u2F>+wCWLz`4l)NQ`y z>xTE$3_pHa&kD{^rbxf|(gt~d*xUMgG7xFx+_)vx_=xiB57=-hFMF7IV0@>NrY0Vo zz68iL7vVH+6DH~0W_mjV0|Rz0F0^1$#;!1jDWU0Xum{IHAy7IW`t49`Hr*A(mT!O?{~Z{=wsQMuD{jBfmp{2^f0mx z`Jy_gA#!;MvS7XH+Br4~Xq~she<~ml+@URu|Mp$x#*=2*DdE4qaH|JNbqNkLy~2iq z1T{WB-bm!G8DaiW&(~f9gS#lZBEhunkN0V#m8#*o3vvlNu?6rg4)D|aNi3IkLpV{L z|KK+rTZiO?#*6~t@a^NE01%O-C3JgjCr(UHU-gn!d=%j86v#hPiK7OFV~i^> zae)6M+F8k9!iqDd)*^M)7iQTL=fO0d;*ydt!gpcrc{}{QzJ3XsO*;5>w?M~1D0oHT zg({kfs=Ry$RxLL@3nNko-!)AGi=dp!%h_~diOY?f7SGt zw}h9--7JQFPo<4*F!goI~li~(CX8xA7TBG$fFi_=;(aTOr5%z-S#tkB?J|BEq za;F6TW!>4$?YeSmizm=RgwO~-h$-v7fe4`-X0TIOYr49D0pw2&*_q6P&3PHDJYQSK z{h+cZFfueeYswSh?>c+Yp{=BAq@$C_)xS4|N5QKFXz#P_8c3gp8_Gy->M#$F(Unjy zy7OE6Urc$Wac#@02Cb>X8OZMV+vvA{Y7(^E6^#hCz`wkL^LZqZA-wVJ)>#!OXC&Zs zW`;no)&xi#?Sk<&s_RWxrR*tpoZa6>y@(_=FknM8Vj#eaoi63KcVk}m$sgl&&?}TG z77R-z>>S_NIf-^qyQwgaqJ|j^8}I=42qrMIXO>)2xBm#U_~G8M$o7V@G+?e>8zv6! zKwC(o{n^OE!Ub^>OY}xmVxn6HQ}!l-x&n4viR0M2ckeQ}I5}@cJr4{F92OqH8>!%# zgd@wLmsmmADN}S}ZT~dji`CR2c2gdT&NaMz2Q?A};jJba_%Cx+6&1q7#KbHJ$C3A3 zssDW$iNdqet+R1}eb0m1WD$$9Bkws3UD7HRtu#{7CEcwc-9tBsFm!kRu6dsK zUEkmEt@X}YAhMXb@B5r9_TJY%e)6*7w{RceA`pmMNQsw<2n1Fz0&yAVIyU^K@wQ7N z{DbBA0;zl*UY^&DzQF%+>?AZC5r`Z2F<+NZlisKBOJ1i}>P||wCQh#U4#o&;eJ49B zTPG`X11c9|2S;;T8>(k4&sf->P?WDgr@;K)!sg{3dR7 z($!OS{_JAwzE*7Xlh!)viLo?*RD7E#fz7|DElo#p2lpM{o|Pnk^CV77`@j>>c8 zvex@#U+6`jUsAxo^!(oS*w*XRIBoG0=+pCx_s?#BwGYY6N6-Df((1MDsG}eEucpV@ zOQ?BA;1b+AyjmO$1pnv9a2YJ||Ne6Gl^xc9f71KEU;W=o{3jItFDCvk75*<3{x20U zEAao1t{_5U7-()5xE07|Uzl(MZrgkGI<$EDtA^55YzqZ!k2{EqJBZnviNo+$+%CPP zH0+c&>|`{QmYwBXaWj;5_=&!Xps)VVTWT!@d!#}KWKor&6oFfwh#9Qr=xL<8Hj0vl zR*FwgQ55MI#5Qlh!-)_f5rf_-68$EjTngn;bSX5Dt*trQzBzibIl8MkTA0)@u3XB+5&i!o|4xLg58wRhGIqn#n>-R8R+@s6e($ z$YCk>-kloJk8=Bop-xJ(9@t3tv7MTrkK8tQB&%jC-j5u#*)UYL?$m5xA!yZfP!v5o zxSqP>3|Y}!_Isfnb6wjQeW{|&36=9tRuY?Sx4!%Tj~kv zmO4{}_OBt~0=BV;A5Qxc**1ZGJ2)X0$T6?)2i#wk$BBzCGDEJ?F!L?%aR;)kE98H6 zTIIAJR;cg(reltSpr2E>|8FE5B&D*2CWO}_JECf1_>${V*FM%y&F*NvOASmBa;Z#( zpg0yYYe#tVMoP4Y4WJkAJTPQzw<$c6S1e1#6|dFa$<(urC~4cNVH7{h{O2~MB3?T+ zS22ty*fY+8_$Bw?_dNt+c8?Mng|uKc_fHiMWQz!7yG1j}YW`x@J|B6U%a;C)?J*LS z5~?d~L;LFiQcdz0cC9MY3mf6>BGAK6rA2n4Vb~eb9PQ8?{V6oP9eWaw){9{YvO&dA zT4r>uNZgZg=?B|FNOSadbM#xb1u{cvi`f;{cHNB!5}|DApV-n(orL%iA~g5NE+OuU zC7{0KG?UCHSUxGKO-17)x(oul1jspBFBOp$)S*(f$5bT=@S zo3@Mj=TVt5%I)4oDgtrORG=qdj|@|zUdFI35RR%y5VJ6&oo=-x^$1^hdh6;=m71HIyR}fV8~nL0UUq_dh^(evlai9^xU=%|E<<7MC%1$W zn|Kb3@PXnCr@mKoWY6sX{*f=W7`&{e>t_59z0*X5Dltb8x{Ac#W*6AHOl%Y5=u%+ zRtsdY5C(w+;)qSDGV`#3^86C37!H?JoTP6wS1(_3OQ0KePGQd|wM=taOJ*Np(DvFJ zeD^AV(7Zd2H%ZBRy;|Oyq0^FK;0)=$69%{reX(H#f(P#0@59OV%Hu z^Gzh`3Hx+A;(X&GH6wBVRuByX3rlyvpL%OOJuh14RrM;zC+hOqy%M1;mH+O;zPS!$ zDonk*a!uCD&LW$`y@Y(H5}jIuS2P*DJeU*Zw)y*-+=B;5#Wcx?xQU60f)H{dq73X? z4>GmNZR|t2FjqzQ<%bZnJ@WqZ&hBLU;Xmh8)K4tfG2X%{E z!nW4AUF8{k7Q4cYV4(|b+>es3!4C7O4@FbCr|7pB?&IO@#ZI3-md{e8wQUb)$dEhh z;SqJ;*Qj>4JblAJo$|*}ykRL%FG;@j2G-?!r1h4=d0V+!<=sI60kNB#jd!Mb4gP%L zK}t$X$9)YA-8LD{)4`*BGjj?3?ixkrn@Q(ksEytCVs9e;ARwDhQEw7zE8R}*vpn6F zmUHAz2wUv&{W2=)TDv0F>-G31hy3ZYG)uFy)$;RvuiYVBy9Ie*TgM<1M}IcYy1#Se zw<#d^t!7ISiR`oWIT`=c!CGIVV_@)CJVbDR1RtsPn1<#JyiwL-FnjP$3*i(^Q9Q-@ zi-%cql;#)SS>kt=IL4VeBA7DXzkk2jxwf3M*4~J+=>0KpscMd=YUcfoILuY8H#Cm6 zQ5WZQZjX^)UrWltKWSeyz>vDTQ^Zv(!>2ju| z_OB3Fv8$`A$s7Gr(&4&ZD%q+s$7dU9wI0+w)tmM@+y+d+!FFWgYvbkI2a~RPM*{-` zx||jRZz>`E=q3j4lg*}z1&3qb3Kcq)cVA3;R7-2Y6uiB&HdOiVA1ZNW_H&v^SE{1T zy*$M<|LyHOwMAaw2VN_lEpyJq~P?t6kRA za#V9Qt6?o$$dulkF%oS-*yC@>kRVPKt)^M5r>xX=w7p7i@%YnQ{O*fn-Z#m*nWbKs zTvSw~O@P*yGDvos_Clp1_j``xU9G+{LXE=UQH7?L;9=d9#b%4 zCTeD*j@W+gBejEL+NCS2`#o7o)@*142+JhY5ILj&m20VV3D>8O z_E#BH%xFgccE1z(u{drWGE|tNb5vpyw7Zy6hOI+Ffcr6-&@=J&?|W|(sR92TR+4hd zI*@6V9Bp?5obAKTRwke;Z$04n^6OtPyH}N0mCmQs^mImc_WmbYWj~Du^I|!Rn>;pZ zhi&czs=8JgT*vm!U=|{k`KWI^T5;p0Rj!U@xzygeb@^Mu{`JY~QmfHtAFE}m^FxF} z{S_tZGhaMhdVgb;utG6Yr@HLqcqPA@7PrS@F!X$vuDa`}i71VnUy?IQ!q3S5;xFTB zL)+esUpY|d> zd#GPKuj_PD z=GScebj!JoHfnKiSZ^5mZHd>(KDAs#K(~D=gHq~i`QwB7H0$w4?4$Q#Ka5RcTTBzZ z2ywA4v-hJ=?W)3dFGJ8sIbrK^FJ|2*lWwLsva{yP16ei(2Fc^arag;gBZpj)1PKtRhrJ<5v?I*n?QB+kWGd3}? z=uejcNjBJ>oT3TunMp99wr6HY{M`CB^I~s+0Lg^>6Rf}@p z=;PylEHP>eeGR}T1vs1m4XfN(!EYP6>ZQk8R#jMp%$on!M+!w@y#iz(Y06VsPY|Ea zEbjEAeYz!8+r-JhfV^_;HV5pggPzA4r!Bx7TBc*CwNeyql*A5N%I7rY)=@j6XQ%y- ze@dEE6m}3BYg$@bM6PifLS7Q|o=wN?^OLf>jaF z�+X{gKSTCnmp~ysCC>kG0ZwB2+WXnkB8{s-Y^P%@XAk1{XHRdrWw<3K|;rCGL9` zNX-}kMvOy_&u^|yT2{LTQQGDk)2hRr!b)h?yeVXVv-z5?kT?h-Ip6zmsf})JzsPR6 z_jexEtwvQ8^x~CZ{`Ko|_RS`o zs4FJ6>+0v0kO6p@o{5|LU_*hDtnlCnU3Pb0MQwE5Jnd^jLf&^y%WS|8`rozhJ<%{I zk9gHUmngwKO%|!t6~iu0LPCOz?F)YsS;xH2>AGcb^7;|y;80hrpq4wDoRp?%B%DF1 zrhLl1;|vOkl(!DcM*=3*ir~4LC|FU>W#20zA2494=XaQ#WPa^qPMasrD}<3s*uK9D z;xbwt98y(tlle_>KD>CSROw)x@3ym0wOZ66Io06ZOEqr3cE_jSYVouiT@4=dr{*Bi z6==1JDPlpF0gLQCmidmqSDn`t%gw~ZWLckjkSxe$VAY6iz9>KLecsJ4Rin6VcJ=Dj zv_v&~BjZsK+WVnlX&*im#4&Pn5AO-cnZ`Ru0%qYS$kAG$OB{JIe{q^IP?ozppo9Ws z_W@^rxbK`@xZUeu6794y)J4YU)ao`D#9cz&J~^#DJlI0%6Bip5bs(X94f`!Urr9SJ zt&OKy<`p{AnRH&)@(S8t8?Uyl-HVJR$X(ZSb8{(GE;i{S$;YPvkkk)6q}UPNjj5oe zP)hzL(lAN6?<#osPSjNHqJ^dOycxQ_6P)7^DeNr|VhT^DTE4EVi;IhsKMtiaZ13pN z(NRchT3VC$^o`_3=QO~R$A^Zbar?^zk^Nk@Q`#Q;t9{#MHdiJ~I|ze=KMW|F|C1p7 z8G-us?n?Y`-)l_7H{Em8@`s>KEfAVJch7~4|2RnwNEPy0#qBfhSRER-pG%#rwzl6i z6Skwrr=-k>=dqmm^$q|ZlwBwK?74g>k4f@oUYeSks|OTUM6m9{R?DfFq@Rfiat?mF zqyID49-{r)cP{JYAPPY~zLPsc`Q_ZNXmx7wUIouBzQ4iJ3(HHi*qh|r988|WX*q!wzvZT4PLGbb6y!TM|a1^B%o^_blKk% z)zCm?t8jT%{KXx=^i0}f=x5eSe!cES{Y71wO%N(CNlwUb)g@QUHiD)4$&-w1z4|(v z%6UT5kpg|qA|t|Zd3legFV2Y^$XfgsxSDEe1Zn|@f8N>NUJoAofw*gosZdHB=AmclXY1A0QF%|V zu{0AqFZMpXdlNfl$N3TOsEhou-_lfVwfp{RmPWCO`T6P5`fTIph^VNH(^JpN3`XLU zr3}Rg#uo3N#!@FQh55&YxjGY9CpWjZ%|DX zs$}I_*|<|PiRnw{(c$-3Z)}Su^;QE?ReV z12t|tt)Hh!xg;(QKXbgX``4T)|N9dUr-elQxihhx)^pcsFW1+nhg<7AK>Zu{a{9`r zvs>O@ZI9!WGL84h>+B1$H4x)V79ar)y8(JcQ)c$rPELm&PW~k%B&3yxF6`U4q`nk!Qv!T^ z4y2S+fHxEO2hqNKeM&E*@@Im3;R9(>Mvv#*-1kRK1q}mTPu9x${rvpyk)Vl-O{G%A zknE;nE^$8RO4+(PRcHIH!No4Q+tY7EDZMUg2{TeN#eyD8#k)?KdoLEne0yj;{@8hO z=E8e8V#=fEJVrW!tgK7C~7V49gDvs}e^u|}O*4<(m5=Z97$@im)>#LD8n5b*SHF{=cPQq1K!QmtJeisF;?qQ9u*#L1QaU`Q1VJA zU1In`mr`Y#RH-wHMlO~+R*JQDw*{09UGLF69zG4be?0r{=Vu3s({)_(H$*dPQqnRq zRsfA2EDz;ce!5L=k$nFyg=v#N0Y?8As?L+L=0XU23_xR2Z|@X1W7E*sM>@6ym#wIO zQ2Pi1j9Kf~hbB7{ub++Je948ZF-)jVz9 zff92iyqnlJBA;mdJv*qs*n9TuS&79UBSaD-phBn3ndi*f6`L)1m3g&=d^&>R-#M+j zzH(ZoUYrjPDd6}*d8s}88<3P=e?C?{AE_1o{kugn`2!@1NY8T?NUm+zN)@Y^m)%P_ z)yQ1K66YN2S&HAii(jNzD*t3b&E~ck$n0gX4Eop+NP-&H6Za-VT8s_kjWE8uBXlSd zB79zPFrXy2)ObhO3FAFyS~) zrYBB~y}vP?Po(?ix8*?QH;?%UHSEx^FlWz^zitVHPt<3;L64LLG69ukF~MWKQWlgy z04XGAie7ye)_cHLlIc6n?0*G&WX&_}aEIPgas#@m8i0?Wwp&p~q7@jq)9xv8 z%~NLPwSZ{p%d-yKwluI+Lp5&O$Sg;+;@LQJ9^4zW@-auU7T|x;c-_{~m6espuo9)N z8@fP7vYVsX#(I-Kx}>Fk0Lh_7gz7c4{|Ac`mBkIZscskNcsEvvelPZ=+_+64K)eW| z9IV&7%kNT_r#%vY1@J-VO|Tu3zM7B$ZTSd1WeH~>4Kiz<+09Njr)u?&CFNs zyAi*b&{687h1!eXujLI}f^V%&*9+SLNXxdFtfCcCGna|wTH6GGE-rXD<9pC#bsur} z6*TC(QgbaH4+IYXSW6rop*~ZNk>;;YT4#JG9;vWTfy<_+rl$7J{Pw**`7%1u zr;hQEAUycJA0C~%y}kW9B&^Svjp50`MwDK`t}k%MgK1V>bjhjbQeJiHQ0`h!#^`>b z(~=^Fv5*VADR4|(Z-Ks40yJL7bE|0z!`{MF#Kb#e*y%Pvbs|2Q@x609WR&JEg~x%r zu+uo-*!!zx>f7bhVri|_iL0wtGVy$aU9GK8)pVRA%qOdy{dzb}I-}*q#6E>3CfaHb zt3cc^Dre59X3PJsUS7(GSCJD;^H<4^PEDnm|M$-f0B90q=Qa47y8xZMe?Sk)b}Y)x zY8oug*sZ@nzPc$}W;2-$?Ro_QVHih$3-U97b!-Jd44>y=K_D9)h3kivv14V&1&O93 z_oucAyQ{@zb}lJm83Mbo&JQ>(!pF<3wa`T!EMZ2JM$+Fo+5~qx*$3-=eCSm5ZqR7m zJsDKfn~X|KoTdV#!(@VY=`DS7^F72L6nl@v+BhZYO}B*HtM@5wt5JXKnq=mhgPeN= z4;BI73_A7*s{I`lhj5jDO6=r)wxX8<`Y&LWIHT%P62bEdr-c}csoe29E#+o?4V6GY zN^GZvymq>{yFu!Ek?6UN{9(}Kp9E0q8lUU>=^Spt^&8l}V>NEYBwSYN-!uo*cqc91 zs^UA*bW!Rs;4v1T}WB#?6u4q?4GHjjfNFp8jcQ+(Xe% znGmRjQh`QlCb=MfQW4)g=Z@SFiLTjvpWEbIGOSyiqbL>hz900ph7*uHv;0d(d5Uj>vE~~GP<%Ve0wCy`RU>j8cY?h~Knc*ioo1Pp#`a+Ne23J@J^?S!cXrcYC?jY_Hny#nOM-G^ zg^h%T=k*sS`UFZx{e!aYJ>@yH0Vj8pJY3BWY{r=#TJKiRuk!%iYKJBc={-4CY8l%j zbRrEL<2F(e)QcaWu`i?20`NL|wLauou7-_ucC}D?__K-=F@rIXhY)T`I4S2-YIl-0he1fCpRnZke|=R&Hy{Wj&Vq z`YG|(R46Qo=jl&zp$#g_%YUV1kbI?oSHZAlEV=95+wd^zNuPQS&x+mSl~=d99<>pt zK!wP*pKE>qXj`Msvl4+DcOkMg`e8xqtuuK#{Q& zM!}n@$}6)P{rgj=dMF;Y=3q$6HYPkAzg#X+NVZUPvn?!5^s~QH=1Nt2YpWeg{pmKP z@S+yuxGIxJ5t{u`mf) z1Rl?Q?KT;d2QjL<*Dt{{@Lq_y8(nju=*A78umD@n9W ztGo6b$4xsFm%f{`_aOo%3A((($^Kdp4XEQ1UEevC;LYtXA!{H&Zn!0IL(K@P-4?zE zxZYYkG0L=DU>-gG=-il!gHID?LCX2Mg07$iG`UZ=M=S8-{rJYYI^D<@xauuld!E`J`gIu-fwQMWxA5X9fLM+>p>B2+)1 z>STiq%y+U{tOCyw8bTr#6BE;3q?aGrK5e&WvTXG%U`BWGJbYCQsUe7lKL*t>Z|fmX&td+qyxgXcdS zk)ud!KFpFO7W9bR`)qGGRyLl`d}5@K585KC$XK!7o0hRCSBh0|2{-4_%5aa%u*W=s zdE0%Yi}64(IlogkFZz!s(^!@#ly+$48z7#1G!P_0e0dBq{FgLN%hfX981}WH6oa9u zFJ+7>*%bguSy6=;5wOZB%cf%X6Q#fA!N&CTXt`~o(8Z~v$4;4btd6rv!#ZXx(+e$X z4T7&jtJb~r(V#m&3yUoL_XZh{-LIO1DGypbhMh@QmyasuYGEYQf?FSMO;C6#^Vx|6 z5V78NULEOU?%>wBc86jBFy>zxFS395D({Ngi$jf}^*n+IvH$2oSOjcI^RarsS(g%2B1LzNrZQYT{ma3zP ziR6`Qgh!i%dR}QcQ{GyvFvW48bW6o5X5J0)kysgyIz1EDb_`5v9( zV&KPfUsNLhd)0hhucxf6w&26Lgy_S#Y6=IEe0R4yTr9^T)FkIxh|I@Tf5t)QFj+#S zxo^}S$hv9U*yQQ@oH-x-4PbRy8O%9oY?=G}*9iuMyZ|IPq1Jq@J1rXE22xnY2?#fd z-?W=-qp*ddA6Pb}X2I)s{^MSFb_|#6FMG6V%kdn z?B$8e8ZI>NI%yvrR!_|fT@a?cf1=+%)u`9yo4ZL$|5KBeS(|u;BwpDU`xgF9>?^D_ zn=j~BIEF_7l}*Y>NZ94oY_}UKPMx2f#DYq_*e@r%_pb_djZy*!hc-b;Q85&9B@m$k!it`@q~a;P&?mHC7>>IJMoTz5QwEc8`In5lan&VGK(%c~)- z*+*Gu-v2l)H5LEl6fi6a>6Obw;|xBlD*h@aVm~e>yh&U zN2uN`hTnBP3HXGdL*FYR1>zI*obB=C2DHhvi_?}e=lZ2|^`1603`=oZ`~kb|1_K9| zI$(soz<|jO13~lgmNsMa*tgn)BqN)qEwqb`aRaO)6Km2HPJC0c{#YezAtEmBC#3Ut zXbc#(uTkxidjL`Hk(HIzqAlRMKEYrZ2z`D{G9%Wu%(?sT+?iZlBI~66X9qgDp^{h| z2ak){JF+hrUa%M&jS#%3b&ohDYq1=W&(_oXJ*>P&2&C;=m1%TN%hQ z#1IA+Ce=4YPqY`K0|W8oBERWZvzA%su;$lkwtc=GQAd0hr8l#ZIH2c8z`9a59>LJ%pH zD~l#^6+iI=rvNC;fxW@Z`!6S;8K|inJLCC>FQY-(xAcb|E8?RK*}%k^U5y=6)>uZTvO%M<9BVVw&&;y?lz zOqU@og?yzNrJ4gvgcCryObp`zgTmBrU%HEoWw!)1@BYUOmpR=q#MKL~y$%DNiTCd> zgO(!$*;ok!Gz^>IhPlX1;-^#v1&XvA9WHAVT8@tKhGmK5LRKp*duvQ-Y34lxS$y8} z%6=slv}a3lX?#t97C3FEYUDBa9*}p^PB%X*#!&+M&rpnUZTEuUb-@n^94q z2PT!VmqVw5FjbBagZqcFRf;)-gSpJUo>i)`YBm1t;!Y9HH+b5d32eV=DLwXbMF840U2N*vb zZn{B5z6uD2_o44k*B0{b?dfx_lAo@&8e6!?5h$*{OXa8VM)e8)L*x)_xcOY36t({lg_V?Wy5VMX{&Y^FBt}Q3txCTb}*M? z)|77Y!MDW3{P44rv_eB_2T_e2Rc0u8$hEOj%#~y_ot<8S7|7vyXty?5JzN8v>tTJK z6^JvypIQd&7{AqeSnF#fQmr{b+eueQ5zB(+HAU_^p${O?XIoQBP1l@XXK(drZm8wi zYuJ-fm@g^(M8CUUu_b1{GK42QRho0=niy-@n3gg=5~To{H(=|%Ly8G3`4=x5koo!v z=&W`a;2lhV_PULOgCi*;qXN_bPUbLinxkIY3k|nbRPe-4S2_RC{fPVE=x@MOa0F9Y z3uRO{|Hfy~TLJiz;dc19ty*OjG-}(gPFAa39QF9TfDhSOui23;wVgiyceQF|2-ruw ztK>$FQajG)9zbIMc)CL|)W{&sO8ETJTfO&}uB5I{%ALDw$5}g179>p`7n+8gd6B3V zo5+A=Y>jU6oZu!l0VQsPpC%zdn<30PG>1^yCP0$*Zq7Dd5uY9a>_*SVR_OGqkak=M z=0X8`kqk=dZ&rr$x!;M10J@il35tK2#Sb0+rKHbRg?~LZBEEAnwFNddJL?!58HGoc zaHQisH}c%}1L5$((%yc*YB2NLEg9DhmYv~zFx!9{uo8YTEYQOqJSV}d`O;Feu9Ms~ zvv1~icY$tgO;EAv%1kQK!dtrnuPnE${y1Xtlln{GRsE#4HM3y3>n}7E*Krv&4xS#G z$D?^HS!_BUA+C}=(#zHiAjA<~(;<5T2rAY8LnNmyBN#l3ToBU*- z{k7ohO4S2)lfY`93vYI#*1Hf?G6amu^iyxtwDngE!N+hgP1(=K4&!Y9fPjueut~;| z6eFn|&X3i!Zk`yGjxef(K9>H9i))2A|9wpn-K`LBP@ytXE+;9;*oWIt04CFg>>Q_s z*~W#FDBW$7&N%Z2-bZO5a5^1s&dM7Y7`!PPTc2VMBBh&j(fW4#Vzs!31L!?aMNwE^ zCHM*`S7G7RaNiIFFPiy`h}Hq?C%qk*(~^bnB0C==5Nyq=oQN+l3${9lO(y1O#g^ga z-6vf-J#Fn~egXCk6~~s_S_c_{UjhR9!CEup1bGK4vAtHA)soZt1g}j?FgeJOo=Y3* znq?*2&odO{<$nNBco-fVYx(I8r439y)J{Q7?~Y#!ntFc~1rfhWreDzIVxUP@j6+pa zcRr>YCQHX63vQ0{>eK$j)CeYO;qvQQ3Ev*#t*ih(Ewj;_u0wt2w3sZ-sf0?ZQfSa5 z594?+)n>e9YsT_@u2koFgbJE>1M?3)LrsjZPu)Uyd=5A>7AG8gI0vOPGwZc^&Br*j zUVCjD@qZ?61+gee^z(fhFM==}@ac3(g;G^m2)S0OtSJXm;7I`f+ zOlJMpyTaIChg+ynT2$*dRN}=G!Oge3ZFB$yzQOR8qyoIGPS8&+LB|JScp#93UAz8) z%_}b3gj^Np2LR~@0RwRY=8Jb8(x9c>_`;}?>T}kiTTS83^Y{)a#+rM0c!;qN3wP0R zBJN^in7!p(i&R%E(T1SRcZmR^@v@G#HdMOIx0rDSn89R$jtt{%4Gb*;9yhsjj3@t4e_MgW^(1{EuxNNwbM5(J@OKCy=OU_`egaB`sX zfyESX75nGg z3dgzlUCYL8sh_a3E5ZAQO3eE);SN+(8Y(;R}9S^R?Q0CZKYPYLs|~<7`E^8_qK?7v;PdeR)%C4 zC4b8cM=(ik)LGu>Ip6R>b#af|7B$jSQ;UMp>lWPI)v*%uxrKlKDuCoa=I0+L6Y?Bs zWA?Qxh+U)M02h2OYI$V(@6SpB&`qIut1v8mOZmu)yC9 z#PK=~0D7iO_`U&c11d9Wt$aEUW_$!2AHdgO*gTSFkqiJu*;N8qiwZ1M8KJ&#{>FsVvxZ3)+L*~H=BB&3K;ff-$& z;L6WpjB0}&$X2yCq!s^-THKw1fx!l>7y%bEZ(8qW>DKmB5Q0}^`gDQ&9r%^9b!*+h zhnZmBpB@BP_80ue#;8^{DNgAj4Mz5pJr+q|I^p1n6!IT?i;%|#vyjNo2-b_a{h-jr zvB5kuw*?Zw2nNozyb-UTX2Qp~LGC^S#k#kNNbl!|4_M+YxvJpif$>axcekpGOIcW0 znB%`;a6&o2097#q1a>eGB*{wv1aYW8d@*0;e4|64(HbxdMuZwDx7Fhm%uaKL;a&-h zux!B(@j%G4B1=84*K$b_%wEmc; z+(~E05$ACkh0ZIg7})*>V0*jlbEXe!weDr!3P`de;r-oyMR#{~UyP^C0%OktL{h6| zTRS)a3L^JYoR2RUYiwe`4gBkyrMjwWj2!Za(gTby+~Zgupi#ibrT!mqj$YdxNN zcCxmdmn0f;D=1h3sqp)!hP(c}WI6aSF(v*N{tykuBn=F%3uH5CK#$*vTq9O=Tu0aP zURB&~0#c|qTWSo5DXA%dC>AWDQQlFaP5xzC|2kv1Ub@eI3>9`_c+|5~0`knuLWBFi zSjoV^{bvkRkc&g{t#Ws=E@CjaujTVQ7jYB1POALvXI3u|fm0QG7Q=aKlWyqvbkHd1 z&ekW0QvhJVf-ueh$yM*}YatLCi~=uudv|1Bb>1Jxzz?vepf0-!y6-;i^3)uGLOKo# z4Ac7I*4%#;n;D)tx{OCp_fmvZ_KoUs!75ihBGC(kb zcwZ@?L3x#oV9Y}KX__Sv3O%^$K1AgYGI zUmh>dpCjY0$5;TDbMl9v0XTuUm;=J(D^g+MX`5o}iHZ@WjnQJ$*Ao@?FsP69_pB9& z`12BDOFwZjKeRI+$oz6Hh&f~OPUQ85=pDflIs;!gKZG#`{=u|cm zB|6~-W(@cr{-ZSc_5Ag4-u(-5G!#BKhl0BiuMj|pQj#0}^^9FLQ)t zARQ_0ms9N#uQdG>Y2cj4VD=~)??q` z(IphYW|->O{Vn0m-x41}%Y##&{ce7NY{s*>X~zwkm|e-sGQ_ z0-andGdjT|hL;`fF?DbfejvB)WU)>l2tDlRwsgPKWcti<@M%_ z1r7(u&%G9<+9`d}>&1Uip`L|Y)|V4}C=QQIi_-+BE9|cX7E+s-Ys2&-f$9TqnF!V0 z0j>-=C3B05TxpB{^#UkuO*sDJ-k$RK6>Iyz$v-<=9ekoiE^C??T;>kyv_=~Tb6D}~ zOEa_jb^AHbm6h>rrt6q*Q3`42N#6{m!GZh>gA*Qi@7>c^KOP*)Res(svFk1f=}1>@ zJ3X~~IU$N@bM`Y0#o2jvTP*8i=(Ja6LPuGsGQHB}uGvgJlhN8+xiZ(RK#<#)a*O3R z#l3s)pp*Otw{tyY&?1E9?7er*MaCUhgdZ0F=6$8pl_;mcrSe6LFaEZ^$NpxzyC7N4 z8xzp$Ucr>%5Y8gp@~CJDR^flN5A!?8*RQE=-X95io^t8at&|t{dIU|&EG(f*T0DRL zo1~b7c}X zxnC%lU9Hv^-O*{3z{SNa@H%l3vYYv}jZ$gX{l~Y@R-|!7qL_8nKWIi0a z`qkH`z&RE;E}xvjV7wXcdXuqKhun!Tp7yOW+(IU)k%=N-7z56&Gzn;+Z)aZr@LzsU zCzmjAur^Kv05FW4oLpu+O588#>cm9nu(u1BpGi#2uk$l}d*!R(Kvoodz%j$c#%4sL za}};;1d;KCo4b7Z+-d2>QjeH{>MSW0`yQv|+g6EeSqp3jN5>lvn_0n6e7E5nCM@_S zt7BRJibl3Qt=8e!{3avGc<}VvwQH?KR>vx{+pV2gbw}y4D#}`g1|OH_=hKc!XZt{; z@C^?S&n74vP~LuVLT&FGb4752h((zP zE#HN|uIF#q@^&z%%ZL05ugCrq05@r&1Yd6c?&!Gj>eZ{(j+_^GNC||1VB4<=2_AI8 zlYDnYnbG>h$J(;8G!#ci3d--2qj#TyNZD(~ff){XNwd2@&z)Jj700H;6;dmx(!=-! zOS1&g9nVzCPe*qRSg5F`=69@Lr}^yN@8pDYy$LGYdED+3^Mxmu6S6$1cNn8ybmFrb zE&BNR(yB2i9+}QnuGi{LQK!Q(Y`!&Aib_e{aejvRb^dc1vJ4oE zAt7-c=ACiR%{4h6vxYqSv5bHR8YwiqMk(;-X>oBe`?5AN^tG{ZS~~DjE-o$tN;B(Q zr`uAc$8;UfoYHp{`<5tFC&ud&lX(&M%O)n@{WA(nzq^1&i$=~%hjG$p#&*VDi|)s} z^<#KBR|~(A+YsC44!M6W5@`Wq*uS;4+(1fUU673n-A)kle^OJZUtz_B&UYXYM+f!q z5(IAvS%XQ;0$NBPNWq#nBWe6^f9EGUJe-s4advTu+?cA(L1gkw6cl{*?7b-w<$<58 z8jzg)sQ*(Ti?)QyLUJ-iupYuIUHMzLIyn$ilK-yGmoL=+Ssj`z%|80U=gv-lrc`q5 z&Q>+zc%1zYRwpz-@hI=Z3=@AN^lpZI4S&f%Tq+Hy9_&j$Fn(ogfQWtQl|6TSLPALv z7M2Lg3J2N(N7K?{GkyJsG15GY^gr;U-(TJiWZ+#2rSbP1ub<`^u9EZi79ut@dAfOj zfT8oAml8#H_m`lcrom0SI_nO?H$yosrd{7Zf)Ph|e}CUwAge5j^-7PB_mUfv$0KZYe2w_Dy5{TV!Nbl99h%@K*b(D22^pEZ9070u|sOYpz7VRrUc9B;_HA`y%BFA$S9*T&gA8n6f_ z@+qHW&*~^p2a~b6Nro4Ko8R#F`>Ph18r=GgI!IE1X#r|+L0Q>Cgc#{1k(~vR5Q@QN zQz%#JFJEHGCJ3}yavVv@T*bbLxQ~aVDk@{~2z+vd(oLPA3C%APt*2EQjJ>g94F z)s^be`*uB_{TPjg(~e)fleQ~E3-zj3Y3S$-0V3DHjK~x8l_DCIjg(D*eP(dFbMTzJ z+Lct`p=UUpcs1Bv>>DY!rS!fyJ6M*f3k}V*(A${WU1e%$cz@G0=;`%*e;66qb>Dib za8ID`PfOHFqRDN4e}DB1+4$&)2!dCMr)L|=&m9idTO7Qwt}6VIl0izPNc_RR)oR!& zvg4_uQfSn6pBCH$;7|zSRdbpe$Pz(!6JSV&Z$rb2ESSnf=sgvv8C%MMRE`$(;Ogk^ zUf4nRh=Z`c6_m+nH;_9^ zX5_p%g`1nv18rXp5j{P<&IG~OwDfcX2ty1KY)2jgzfQIxZ~>vtk?Ti{-1tIzIC-vx}d~+wF#B&hNBPEj*5`~MoL+qS^F_( zv|nK0&B4LJ(vp#+KKbuRyQjVBw+h}A9`V^7J?qVmI2z0U0F?XnXpu3v2#GcT?lAU~Bgd35bxqA8P-Y7lm5fL^FAwEi<+5gUEr)UsE{wGC@|<30Juiam zw>T>j3Ho5{r>?F}4^DaR)eoyy{`9c|BS=)42u5VXqeE0prCm4;Xf7CdaV3f z-NkvKHbx?Kc5?c8_}1s_2C-0_;>h|0o7Xim@|>T$hPNL*dQ@Q2_29#&Puq|f-~Scc z{{7?UU}M9Au}&&43YVDU$yiu^$<7`D&w_6L@Ej^lN+l7>Fw@>}epvZ8wwhx`5_eL? z^lIGy;GEOv=ci9JE_0Y0>~}yuHum)u{>`jj>PH?vd4g4D%k6ay)xUJMx}aLSQ-6_w zmC_s(^z1i`ftq3FnZd`)TL{|Yb8yK%Tm9pRW(=eO(TVoOix&mZjIVvuHtthvGZHRm-*1ydRk91}8U9JfZSCm5TR6Y`PQ;G#KLzEv zH6YF2!a2iAWd#L=d1LhFTPb!vS0s7W0%T&}R`B$fYh4123nr+5`v8i;>Gp`8zSYP$ ziU!#LLRBh=23ZaG&*E<{qSBg&fvHBc^F}?Ejz%PAqd3nGgsGl|GN#^oV079q|Hi{pm4zSN4__J`5UC2?>0h5d-r%F1dJ3>rnC<`wm4$VJ7cX=;2UR=WcI#t#BX>&LSR^dS>L01087Ne-U7!58?0>( z^N|+wsGlU8gK7lp6#OnfjUZa`;2Z_>oN#!YG{KIAh^{UL(Eb*%)b@Zr7XXeT70;*W zlGpnB&lN-mWn$u=ee6WpPG(OXA$ZWOZEcs(+Non;0J`*+k!%ZElgMkAU3bksaLPFV5LROKzHEhYe?7jDh?3IwcWsk_Z2oc#MnJGJa z6f&|$HsABQ@B8z6{N9iLDDNJ*yk5`eIgax@ybdvJt6kin<-UHtS)A8JUrirTm)~gtg^qTc}92o*~qu7eoHA3#| z1_;byN8idjEO@2Y>_g>$wu5)LyK4em_Mn%F41W9$j9c|rV;S)Q08MH+-4uBVjc6|n zo9M}j#+zumzvJLuE8XQrp%~cN31D7A+*uA3V!cKW75kz0_{8}5#d-&mP3fxn?(0RK zHngUTqn|B^^7UyTGbuPNbP^!~IKElh{G@_-e&llde-Vt~uJw?Fao_|eK$)EY1KvP{ z+}A(cP-tm62|p7eB}Mt~*pA7@7QIt(g^`unJPb&Y2w9LGa8J+7d@rO-Y8@M+0L<@^ zmKLQy04($dF55;q=HJ-*4IA9SiqrXIrLyB& z#3qHCA)$1^&UZ5^{P-7M>(J23FvtD-JD{gAf-5HPNXM;wA zvPh)e{=F)CMK3{T*`L(`x$PZGFE7F{tw0Tq^!DQaWe<3rskcqBeNXnG$|QK--7QN; zN@{ZSdG+%gu0>yt-;XTCq*sw2a?Pyen3BFrnwT&EX7c0w{G5cEx;Jtc^C3o0PfsI! zX0~vtx>~_q*R+RuLwiF*Lr$whO#CoSsEu2F@cIskF+wU(F+;Z4+Sr(H&7bPY6WM{t zC?aES`#i@Fy->F;c>}<{-B(j58;w%Rd3zUFxxap~zud>96^y;y( zagZLeIy%&prrX=w9<@7$mzdCe_x=$8vaajuQ1HRuF{QwV3ls zgVqyS&1M}&iYMda@?y+)9z)(;6aKRBpQ0??w2M%;qwJ1X6CIoqECkdQR9n=xmNM+^ z11y=#iG8Q71yHkK_Tk zz9C@B&bRajb7zN_>a69Gr{-ITvFX#Lu9C+}~`y__u|&x;uV#5kznt^f3;ma5X{ ztU2woT&L7py@TfRPJOb@vkJdUj=U-89N3u3c1Kv48e|(#_Rd6Qt4T^>T)Wmqr!sa{;bB&T!_V`X#Z>i0Uwnfi{Ce;cP2!xIxXI#w3d zjjK>76PRw;wD_GvzmVi?3bGB%Z^>9P(Xp|X*V6cL{%z#h?yp;q6qgYX6L6+98lo>B z_WxZzAD<$xRI0Gh(174z9AGdSQ|GNnM-}l_SMlVVL+im9fDFlJ8YnmXUhbQnkwFWp z$f&NauJ(?O;Fwz?8r|hf_;?nvoiD+?c^!0*-LUSD&uGGVw?;{f=}7pkOQRZ!sO!(q8UKX>_HPFA}RD}=DvwPQ;8 zd4}LC2o6S|cHZ9G<1y(p5vRR%>)oK$5!}g?h6a%&<`!oxt5MV!7r|wt$hLWw;+cjX zC-*t=@I((ic*PRuk_Ivg$<#hNaCi{Ys5Qa1?10O2;w#tqJ*yyqx52c*6FO>-Y;j+< z@;;>gpZ>x*mp_PmN~$l*cR}5~e(HJR%H1a6ah*$9w5PA{Ypzs;x}&3GB=E}x2lJV4 zkjHmlt`;tBx;ZM~* zAg4yjlQlzKS8k==H>`vuE$wY)Y55d6N@KAWm-7H>frS*g^vF)&)@}Fk^ydH#xj^pY zhe-Fi{QdrQJEQiHp;PrF`ALd&4Z{Z9vt^0I`WoBhwptM_JspcF|brsHRq zOY$hoRYm2dv<48Cf|wW?MW^e$1*pO_1Ix=f35ba`QH}h|ilsdosh+PDu4^35B~=*q(@M^0uAQkcQ8rnMweCW#=F)AS-x*o`NU5N zk1kG!P9NxTP3j%103{(hPbS6$Km{fRrZFn0zxV_krgP*HOKgMLPXXV&LO}3TPmgx8 z#-9Ba%t?1?E3*ACVMLJF87`{Pr|87RWf7?&j@HTR6%On3n3iL|3@&deIIP9ThmT(G zzI83{%*7_KK_uTlBp3tOQ(kj34T%69IhoB{B7v5la;l!y7#@B5&><#@Xas4T<*tmY_?WUVy=pfMKqrC zOC?cpt$y$8>s!u<;Eid)WTtCDvT&~$GDUc z{$DI(7!Y2gfo35Gl5QX+GG(x_66sGtwqF7Ij$(F+w)UfRe)H(C=xAved5Z$^UrSf_ z?*02jW95c#>^+l$XT4+CByLGucs#2pFV5zzle9oa!h5o-)s(b zm?^Fucv+m+s-?+8o3eejw-{DshA(xim<<`rn03mpp*REaLJ~;TG ze=s(a+1HqtD@)7%7!Ea@_M4q4ks|H^t*tN81^vzhw?I%zfR7&sLB-w+5x&A#g98`E`c#NT^*ej(z&&#^xKFkH=^Z<%&o zO2tM~u(B$T&CJ<((f9q}z~2_{LpCKbpChgtQgJ|SC!)bpo1mkSiB=9fkqOF!9)ELV zUFX7ltsG5(c zz%jWYCFk=@j12CT@c)5$JNwuceO%TF(D=f%wVIt4PGZRc7M|*2r1Vqdcw=KgvLUWT zKeNhWoNHo51y>nMIIq<}j_~^w^=K4|g^kSw%uW!?$}N|4$uxX{Yriq0q_NS7K9SSwoQ?Nz*ZIC8h$mxd?bH22Lk~M(Um3qs&fb zYVPL?)zztd>a{J$=!#Z3s1|YWl~kE+_N944Oy3E2;cu1|HiF()ee(|p)koXfUIm@J z{2Oaw`9?&?zWAd;-XNShG8jxOiP&Mm43W2{Tmv)S^Rne zJw#vB|Da4E=fGz%iYsLCnVCd1H0j|j(-PMpSdJuZHRs7oMNwn?`==gURCHy$CTd9B zZ5?4^`YHgSH*7<4>(+N@aUi9C)7fZ#C>xIrz$TNZsNTQB1F66&9%2cvL|b0!B$prR zNSx&i*6=R?LzVy+U_x3|?bV$BJ&C)9bM^PAF^Gd(1!g_8IvX)Jl}`RTIJ|3hC8U-l z+kKI{j*2iSx2$GsEY*?P>JV{fX|e@m_RB;ChM-T1PmI?-f>{YSgt&0w$y4C@U9EP>3}MYaHxiAxPw%4X%#mrD+%7XkIO_$%3RL%F{$>lZ{m&5eat?YjrJpx^mY0Y09C$Zmzkq!F) z)i66)!8n{`5itaIEamMj@S>^%LCkcVOCxZW;u(`P{G(}w0%7)v0%XekUXsfnWyyB- za!S3~1`Q{dypi^PiSm)Z9g~wff!Cuis7v*%D-#)E65uc+{NNjR6+oJD>C)H&C17gu z-yH!vJ@;BiOU#1Aym&p&_qT`z1!I4m&os2ox4EuI(JcO|dC49oe@ob?HI0wscvkGk z>3*?(OkMBMdKEYF!Iq}%!X>zP~F2uB6omjl&9?(_^s`AVmM5V z@aJCM>|D8g$dD`lEA*j8b!s}K_%o@ZhLStzoO?DT1hP>4Zzt99!eRfYBeqh*4*hyJgRrT&h`m++Ys9|#QPmi`kZzJzb z)W(S}?(VURN|uZUx;*&L6#xGlILOH}NL(SSa9MuN$HF3ei_0jWwD`;G&iB*Jioa!S z*rC@WdNtc)45>a@=^IZzpEb~br0x~qq28JU`z;^&aB6%){j zuxqL&J|_x`h6ixe%cPdLvZn38NgP`K@ z5NTR@^OMu9W>aGg4UTeu|J~u8op*^f?-}J4|5T?-5eA?#GlkSHn&7I zMYk?}<8zRP(E)G>(9D8o1FTpRwIm*wzTs&--7J5ae0iudXR1_Y>_O;pZ?#GDo0?wyU0d^Hu&5r9U#> zd3(oO4Fr7s(W^FUru|k?*G55EAS{|+j_22}U-C{)TnXmKI~;awSM%Ay8W6KPZ((e8 zn70fh`Xl8^tOhg!Lvt->PYi^Xz>^a(@jXhn<(L`E^pTHfSgDE%BO9l#bg^o4^CB^l zW_`}^;vW%BK*Bv%wp9}F&j>dG6g|_|J5+CM=RSOhOiFc}6)l-Psvhy~Zo+)A;)v1dRve_TH{T9YTtY zlQsD*A}@2fyOB<(|Lg(i?9LQ^={25HcrQN)YSl3H;9$lYDH*KGBRnqitBRP&QFV7M zUpqS%qFmBRL6N+MWQrO*oI7{!Z#;b2_Z7yKC(kuB>Kdxm<9Zez9?C1zd~#GGdBq3Q zn&q7o`M(FPxl)PbU`&X0aj_I*nC&NDFo(!DVq#WZOVuFoIc5q|Tyk3MCdmh9vGvEO z%n$eRd*E~r3f&S`UR>OqxuGKTg3;bTV}WA%2GLC_ZLfx4oPiIz`Gq!nyW6|1uZHe_ zAfGbVF2>qX>l{Yi-0t@u!ju$(!^0A;iudg|x**#49|9}|JONfO)5UJ;&q--%S8Z)= z_x#^1XE1|mBrZj*4JD#e!#I~^BJ7Tv#{15-Mm{t;I;5neM8{Z)NiJ7z9EDtz8fuY{ zBGPM+PG~@ubbsRKsq#A1BvVzBW7#W`cy48<0kWw3S~iHu86XBYUe;>jf~G3TcsabGw7imf@0>xMj%U~ji5=17!E~ z-G5V_&La4gb=KUKNraltb{gb4)OLXRus?BKc{KX^Pe0zz^76CsC>r#T_~JXIayebT zt@;z7bH`<6{Qy9n@UL3A0q?uLojY^U5A=)tzo%i;)h(K;3`I_6WQfQ}-27-e);>Z> zLBYtx#0t`M&o3`T<+uNqFJh?uSX5w6a8&tmqVxkytxB1(u>;0Rj{U2lHUJEXc?F5X zp(pz!s+<%5cG7#cUmKr+oFwn);)-ozx;jTht$g!iv6{jy202m?@aKR@UXhQ~Zoc3l#K_vq9pdo!>tn=P4R6D*t64W)U(*3^R0pJ${oCMLZz-zgUmLH%g{&7&*->F!IOWrTA$tw8 zxRfP=MieH!pDc2)`3TcvAqv$GCqh;>rw1t~{1WA%`hp%fEFjUT1X*N>v_yj21`G9S z1SiXf_c;NoYj5x8$-WnI>C^qyJw}njS90bHvBOU}isq^P*fn%+9)WNm#KpDUb2HkE z3fjrEZSgPA=f`Ge)2k9Rk%~%#)Qn{U5NQbEKZ|ZP84$y-sw*-g?(s#U4zyun$hfR) zXQy+E5}NUD8{K0iS}f8dS+Jn6}|ZyCQ9 z=En)nv`B<)Q&EjJW82xu8gcS3OZd?O=aV!@q0*Bl>hkXxmTBiam`Kfo4M7LkkPX0j zxu?a4na}aS@OcCw6SRXKJAdoKRddkg*4Y1^>C|+?n`=O$n;$7f531E}(b7H>C^Kx7 zEv6E_rAXadT&Z@4fILz06{4GL`Q+t1C`FXUtat$w!o zyoy$1ipCfjX#iM->>HxuZO2#+-ZQqGpwby}M)h3$I@|@@@8`;SAX(CILK_ zk&f<{ex&;tq;YfymI?}3(7oOH)=wN47YFg$0w%{HF)>O}jwL@oR^wcp8X66~$4kE< z^%#m7?AtE@ma3~B6GCGyBL4?V?Yr{Uxkc#%ljx*m7(M>=@O%<9J06N+uM}sF%m=gk*n2rP3F~5NkrU3zzAoICpy>|%_ zWghaBbo4AYFK-Xgmj*)i_;95gXWCXyzcBal@l_RP3vYUUVhuOZqb`4r*SJqA64A6G>uGBmpr$hsAr4s(XZEvzy`7!E4yX*(F7-6apU8k4I;B`+RO0X#UVre}smN&!k!s(#XYhH@)w^iv1yaes$67<0{OG&z_ly zCf@$}^-E==;xaV!%I4MyQ%pU6}s$t!;c*q*9723}!9&o&oU zRziU&{}IL>Zf8f%OW*^g3S>?bM@Ph@>nqhOM#FzOqXb$5#nep*8t6&GMSLU`952Rtqj z?)5t$HEL^VJt`S}>nmYquHrS8Y#1*%T|m_IIqGpq{=?Fje|HZRNGn`f!+4q0>Z$p1 zZ+!MUr?aye%*FWzxHXi91GUbkf>iN;Y&qV(O?>gQj%WL)ZerGFPo9Il5mr+FlYjXO zz24-N&sMv2Yn0j2GH=azdkN?FG+lTV_hWQYLV?KwqqjS3Z1Q3r+i;$LON|Z<#n;u> zzfHI47Q$O@+>ACXD+|aC03^2E)3X=8<<*-~o+U8k{a8KoAIy^dfA)bng{B7~E(voSeSE;Y#6@-o1!36%6EyLlIPUk2k4#J*g*>h{-F zPvu5AIDYhWx(x`gx4IY7+-xVU4n^EQC3;Z03V;Ns~5 zy(a$0j~{zMpv2gjvIfA`_IREQtNHHvVb6SBP=LdYY+q@W*KTf0Tc2xizqG$SPS$ zJf-QCt5@S67&I2qiTk8fJIthM)1-@Q-lD{Uo`zmRB2B&8POjgo4by1gcA6dhUghfP zVS>9_o-}VAEnjcWxACc|ySHx#z(_9YVdpq}no;nvkOhW%cvMu>;`(~z%8JzijFDd0 z*>O0+vp`#zphj)9#mEvL2~a(K!|-jGY;gI9T)1>qKDdDil!(i1zgJUN-#1n;G-Q6c zb!~G!5}d|NU?OefJ(5m^8r#Kq~Rw7mX0ZyxV&B8 z*dU>!gNnJHtHzVZ^Q~g0{HpGcAEPZ)KdjfOMQV24815F=YaMRpf1aAc@;`e#E6>F6 z0En1`fW`#{2e-}6WO+aGrJ-HiVd~O_Ej&xum z)_T0B{%QyjCzChW+SP>zVu!fKrX~^^nh3a&RYgTCNe?^q^!4LXQ^Vj7KsIRm{+$TO z!^$!A5@jdH$4HSU-xrUL5DE7dzRWh&+i5?C+D2EI8|cDqflLnDR0=ahJxRf7Qv(Rt%jUDa_Aj!c{e9SAkl9uSNv8ehPjXQAnuF-j2Jm^54>;!t)q3tRmwxy#2o7Od zqH7<_2&1S6x8B~jKC7ij9vu?moM+5ca=TDEFxy!d@!9f9+8;(vdUk01j-KS|=`o>uHK0oRH z@)^r(+@$-uju7~xOyJf@YiXqjoA)MOy=MUN<+q62x=|&E%Lk1Tp!R;tZ~-6F=Tv~H z=`F<1>D)gqT%VTnw=_d64n8S%;QKl;K?MUxTm&mj@@1lFRp7aBya@`Dg>d%z^Jf9w zTBmoF0L;O)E&Z`rwgF2Tl#{a@uyQiAtLOW>Ap^F`#B_e#ocXmo?P3S`bjRxZ7r>K; zLFNziW4mGhQdpn$6%7JR`ka<}Zyq0vSzpTr_BI%Ku)>ULw?y}IV5UUOQF(LV0UmwM zD^^igAKzCk=TSbrY@(fM&6$z5VGeu=!imODJLs@X0~QOJN1vm66@oxPhA0c*;vn1okhl z=)}CbAyc6z&~R`(L6JMZw1guUKMrOP6`p$*useuQ=R-~B7%xup+1W?~*!c8O^0=X? zbrH8!N73(|d;%_F*A5lcwBHaT|L>(_kRuS$ttY@N;-MR4Zn$7|LsTlj>H?I&1J0`a ztz-x=DJhijjl(|MjD|~{9pwqT9=|B=8p`JoWeIhRiS7h_^(e4u4dz>hR$&~czAd3+`#}!swGrCd^9BygR3kDZr`a< zIaCxfrY}qw0K&mvTS3n>ciQKKt zRsD&9fnf(Pq+3yG87z(*Z5oW*-%q)@Derq_G{3+(KRvW``O_EY>*I3-pT0Mv9K{BY z0i6vFzC$^w-5(QfHH0nuyiB9V8y1>@*K;_ePKEny&sFM_K3c(&Fs-ALled%0tE*@# zF%s6kd`YsA6hZcKwkTt(CNSR!rRpOJ5(O<~W#yfhDG?D0se7g-CTI<1U$#W{T%&f_ zn6nBAl{7o<4@=6soHJ2zhsAIv|)p?wQxpO{3uB@CeB9cLW6~(Tr+M!t?baT(qSy1xP>O6&SXF zftD1Ko$kR*8ejX+L{$QYE069QG_4I^(gQ7ndTc*jO6Al-=T|R0`*W(T4fvyNxr$Wv<*7utL9Iue>O`M%h)z5sh~T9S0JbR8tIIt)J^hBJ zI7DFNcM|}G;{4?0%7NF{uCBXaHHaoHcr|4KHN+W!yE>3Z2!h+U;Ib;DsT6~9bWxZy zygC5Y!HX&T!Q5cQi|^@V82fn27mouaD5lsSJi19s`=6?R=XVD*P{l)lcO1hJ28$du za1b&Fe&fsS`8HKgI{Wb!dXK;Nx77-_v;EJobdboWPoBJoJTVV*e>8Cv5ddh)J20z2 zaeT|~jDk|h!P2r2{(?GujSslEInh)+1!pE$Etd|{VgmN^PdwfD)w!EAfJ?~+9Sy7m zaTo5KqVYJjzs>(vvY6Dm4*aJxN>OYMvyEY(knM(gW&uL|6(XV!PI~q97^vCu4D0Em z4k4Pc;5)!B)j#)F%;C>C7L^~vgpuCHI6 z;I|sR10z%E8b6741lT&;Fl1$0n+g;^di0QjbIvxfSSz5EuLdYEp5q%bZKk&pP02!Y z#M;{0O4)|T!4}(qh>%bcpgu)ST(2W1(rD>uM#I<&F8PTDubW46mk3?moR_wwF+M)e zT)vZntmifh%N2lVR9#&^fqv+Yl(h6NNFW@HjoYAKR1oU|^C>8NWbg?H5&$xVWA44? zpZkAYfEQ9to_hsm*48~wo<7ab$+>M|Ys=0AQx}+9!uk9RTwe)tO3Ev6Ha)z(P2u9o zDkz|rWf>#wK6%pvqqnsA<+p;FVzt*F#E)(h(fcxHSX@r~1iigqyzl+!QEF!7!%y~8 zZ*g#Of5R+Z@WtX4kXa)+IXUaV3mW}Lv|IuHBc-I2L*r1XIf&lTCZ zI?UQ@apuv!rIUwomEhg@xY5CE6Nr#MkAs^XTkxAVdB7|)ii|rNY!Dd8!I)pf9v@Hi z#3t#`NGFX0R2Q)n?5b#-;!pqS49Iy=3vYbXR!1&rH5f`X6o zJZlSJUKas!mu=V=!@$fO0;CxII=79q#JIRNsJicfC)exIazjJ3T?_=hc3>Fy!ThG^ z8m!!duhT=;;XwByF?2{VQPKA@M7>OMUpi<6UN|~kSbvM4AfC^Q=_CKn3b|d0v~;LK zAL{YzDKycg97Yq|@&sJ*P!F0waR`HzdBEE&A|C=R5oR{X>?OUwKfAlTV?ko4 z4V-ePqithx@Pw~<0U#di5dz&iB*#u*J_a7n`L{$WLwQC;E9#+)-aKU%pwXDjq5b8h z@GZ#M2ixm_CtBdby7v2bAbee}!(uAK1!T?b zJw3(h*pF0INdfqJH{I;3Tl4Xw3V8i9y04AkL+rvu_<(L#8|%+^-FcS-8-yUeRZaTM z5gb8{(%Wj*j*fXs7r^PRL!s#b93et7P zf$?ZSy1=WexhrhBD^rfnCw)|OB-dL(InD(1Hy>E((g=)9_$^p{UxVwD*hxVtt0K&61l^d)R{M;9&UH*Veb0F;NaF~-_`(({ln3c*2!u{#!NASQa${> zR4hpuH5?&#_o^%NOdvD;0_6JGl$0XaKimtQPmVYX7%%fgM(nuWq_il;|HB!z*|7v)~m;A zm%8X(EG;eTJe#~gswfHlKH92-gruz>E)FnBZ$wGo#d_rG%8R~0T%Em%F99r-ad6mt zy#b##p3%YH{yyY&qO!8Gin;omeRFfS2SZ(=VY~tc6>lNJ=h(XO|7HBvcpiI)5CN>j zC^)}pbgbq4AB`dKw?QMNo^ZSan0*oYP4@)lsTFq9FCH(`JFrI!!_lqv%e-*Br-Zw^ z8^GCu?J$$8ew_z!TTCo05=zQ$#5_bc7~IwR!24!`E^8B7w^ZI($Q$!eeI=qD)gEY7 zAOIqg26(iMl3ifq`|vOsY^I8X*(3=)J!e-(2P;?vCA zW0mRkNjhK`5MdZ#fMERbDS= z$pO}^e|9c=e+5=J7~m=TA3hdX z)NR9dyloI=mcRyxQafvFZFw#>&odZCEW!H)UzjlcMh`efBxfKzJVQ5bK0ZE9tv~-+ zU*oU{AV8pHzJV>G|3?SBgW+*(ZnUDDr_|(iz&5gOH+`{4rU&|pkJ&vX;mIA(M;wCS3yB5+s?cu)Bq7^qPgtfiUeE;I0W%U-@Ts$eG&yu+{%ydu z_lA52DhTY}7a;5|!wUi6z7Zxas;7lnfuDSiU)M0nJvlwKzJVUrQ{2}H0)&PQ3fov{ zM{Q!=mCT`K-i9J!q};GYdP5Xk4RWu@UzNEff(i5R*mMF8?I%p-E$8GZVl;wokr#Bl zS3I`F!iTtcz%BL5x!lYADkKO4;las+qIta0lP3mB*f)e!44ULSXqP$(2?@|A^bnA9 zDBIiHGa4*@}C_I*L84WS!DIt+J4+QL5>(d21$6jHP za2aFPpPnY4>Wtb{hlYj4!7%|-4|c3pXe5Au)^2ZS*Bj{x?*l!g2MpuH2oN$d=+Q^e z=OU@45u?$Hy>Psl4W87^nwd)y20+YH#$`GBLnNCxn%oyL*N%sj4`7mYuk_~U0n-6*@6G7yNjf+#Mb4rYVa!C=7O)H2{=eGcTqr|zo zPWM|z`AqPUyqsv*t6*C@C!XI*#d?E$Y^H*ZO`?873i}YpUGe_sk~$+D8;zg$s~iqW zVmF)aPZro0B-vWT=~_F4g$J?({t3?wpeefDz=3D+=deptaj}BF+->XhKvcX#sH&2% z&r+O#%cFv&TDMt`7t8-pe~{jKkU{17(U$+%s;Eu-@%}DiG;n>scVd1m(>@x3THmY3IO^3tml2uB0(;= zsc{B-=aT@I2cs~RB?nb>4GoRa8o~&sMr$95#RnScyh|q~*7EZ5ZbGQ`1V$v3!Y2OO z+N~WCxfH`y0o%o}^P=o+Wy{BGp`CbX&=N>tP$XER zQ-~E9DA}JVCF!J-b)7s3e%T1Nqkx_RJuG!PSxp9t{)#t*Lwl4cHH7vh;7ZVL1HD=9t?c~`4-RZg~b zp28q@5d#aQHwzCtJU0ir6!$WLLZ$2w@COO^#>|5P70f-dY2iDR$wUJxV(}w`6{{7d zM?35R# z-y)}a{IYu-o+Swkv#dm|-m|o78ipCTTwLVtA7@>d-sH71@+oTTj$^>G-8S0U0kt2B zjr*Rx-PeP^CFPRyJzp@36kGC7`+oem1}CA>0kVcxvyTus8;k&)tDasx2}Rc#7;e@> zCv6MEX?Phdl{F4mjW_}p5d82Y?lE|UrgEHThlZ}P+{N-(E7mD5Xx_bw+p-ruy>T$c zv^O$BJrfGHMPPXQyiQ+3MNcmhy7lAP!b&(!GEbfaKH%m3^c%Zc7wmNhH>&y<-@&7x z;jQO8ehe6Ba>sxs`9WK?y)JgOO}>_XbL3i}Gy)8d z0NEaZf>@*+OiPm?izGGRQW4_9N*fIVLc*Yrq%~8d&8N>(dHluq|NI%<6cHCU*xBBW zWiy+9x%D8BO?rHCG8cLrw5Lev*xylUG4JrokH+m^4|3juo(&YY-@_?@7Z#B1Pp(+e z)FjnfU!OyQsI3prnQQX#k!(Q?7j|^Lxfb>psh)ULYpL`w*x}a`XCiji;)A+r$EP8L zufUxt?d@BQJZ^2cNuoPn$(-EXHQ_*BgDp0C2<__$cT7>4BabBa4WnP(Wyr--RFUKi zOFQ|eds~=#N59^vKL}q3@EO}i8#op(-II%^bBm1;B7(>EL)x2Vg90R_^B z?w85M`L5q-$Ooc;*IYwSBQ6xcd!eI)PnVww2MD~0eD>il7dqdW%F0HyaKh~S*YdJv znWG}K^T8L=@ai={!X#|g9V`DCJk|rAd3$G`9WRgK&Jf{Z{m2q4foy8nfs>gbxvFs! ztfyYZ$CJV&>sCb-*?G>tt@0PQOu-sPSzTS-uj2c?>`*!DTfzv53l?rI+qJ6x0EZd2 z<_F(e-^;bux%fA`%?Gd)K4@Tf-mV^#teebN$Zh-g6o`vB=y46OL~PH_m)6$8VU_hN z3=7^}P!Vz!bgvME$};5F3?N0Eh(^pnO+LK9 zJBz*3`a#YnNd<`npQI7+y+ojW-GKQPd-8b86140B4qfx2`l4Zlw$UBvy_^MS@TOr2M$12_Ycz;?K^n71H43FsC!07$t}4rH}whMYNmb{cf1ppsK}eM|26*ed)G3A z__6Fa3A^-$@??ms%ksaAi;MsCYV!O2q4S~& z1NY1$xSy|BlD4-#bPKuRTeX|wyxR2W~9r^}q8E~az z=semz>xf49HCUj_!rz>p)d@^R)Q5?cR-OtjW^&4V6 zcFmH$fymq#wqzyYH8aWawo5qY4%wq+80a4Z&7K5j zuVCvh$_!*^93*lnZJ!_Y?Af!(x;CSfn{;#zc#2ckjBpu?Bk+k6LRUD0zkdu1rTbK% z$jY`d>S{h&lYpQH(jIH{KFk9hN% zoE~FiC@4tftxuJfeia7Int%f$ihA_H>sCo%yg&$g4|=}hJ${F|Pc(!fGB8d^55~~M zz>gO+Q+z5Z83c4THliXFUIItNZRfdWKP#%ydyc$Onk8YFTJKd|_AZsG!a{NMo>nF*P&z=c5Ccn+ zY<*9x%z zBr|P4l1G9FUBnE6w$w|JA@}lm-+ziw#vYG=+akK6zr_3vo|V`A?R@suToksAz5u#r z4Q!mNt}Qs1Vgu9?I?@LDIZfnE^xy-nB?tBZZHfS~+T{VK=RnTmB-|)8#tnUdH9*Oe zpw?xZt1AfGO{%iA^=U*COTmlz6A=bRU<=^DD6pfnT3X{! z;jR5U3!|K;U&$C0)*XKQV8|Ki=x+bpMUQuJz!~SMF6B?I24?3^L1YgeIu$^cum>9L zz?i9OJfmD~rZMxk-NON1oJS&vEM_4iuUg88Tb7m)mj(G@w@VsMGvf{rT;PQZVg5O~ zVgpQHxqN17a`MaYa8<84l!Kwr+(B=O53HmWUN;WrhB`U&B;L56yhPxDt^#vk4j4fx zlyP5CQASA0j2(HT1F;Rp1HY2z{JW|(4IYmSE0v_CrY4ogriG8pHdT|$M0fLxxIH>q zmauK)1n`7(EM<+5R!iKL^moZ%o+`- zf%shQ`)B^9tjH8m&q{0r3iSiz-vU@%SgmfdL;m8_(vthvS>}vlptY#_y}-xoz!CVw zJsF$B@IfHKXrgH`DjZhr>Oii_;;nAOTM_!m5Y`|io(vv$KgL%LInDtQ(3f7<(Mt+*}zr3X+x)Y?Xp#fzH zKMP>n^{^-y8zS|60YqVGDIwYqw5hT26JUX>YhtuANGa`!MAlJD>`ZZ@^+}w*Ed7gv zzGs6s8Y@-X12K0z2YGiGC0L65y7Z#ZH8TKd2?%sE&+bZg z^vIK+GJx7*6>4TOMKqf-P~mptDtQ-uX^r=Vb@s(j&&=L;Kbov1N#Xx+(WMs* za&9b`xi#+Xz)n}KrPr}(IK@U4>9 zY5vhfSJ!fXKwq+9c=}iQtS^oel~Qs5Jj1Sy!i18mWnd4+5*!+iX=i8S`V0(pzXCmg z%lHenho|R^=Q-dwecxi2XRnSqCqPJkZB#?^_FYj zM`H{jKxLaMRm}5nuWnm=U^C;MbNLg&jlNQBli(84vg1T&Y=Mk6Zy&?=AH=hUz2fn zLstec77YEU!1S(K$af){mW1d8R_R%M^FMl5`!kB(aHpx|QvX?WsaF&!2Z%+q9*_)0F?8VOOTVP04A?o z{QaBZzF{*hx|e7Mo3NV!qRzi1wF`$IBat_5+)!^QXY<`BxlX25W&ZtphY+=G2D{wv zkSdg2ZkWMKi|6hCG{mym!|NTakN~mO%k-aKpw2TTRWbYA)jF3X2 zj9hgYNk|&V9&cNu>@o`3Br7D@M0V(YyguLW{o8&22cM3k>$tA#I0~=#`8v<%`IwXz zPEL>T@i?SxXQS{fDJent;71DIi>ZGo6;AmcJFmSXV)`GB%+|!3u_Y!E#q@CVBa|t` zXR4s7$-n_w`?bEej41NqU*(5d0!ERo1!x*hgbMV=yYPZgIZ7w$3n92GKY)@{+qy+i zMD+??Q>-9>SVy7hNJz?jeWqmKdtI7I0N zymt@;?+Q0^XBK@u5jkwSYDp1P)qsU!rqgJDDYk#VMe{U;rKvBMRu`OeM3VPbcKF^jBsJL2S}-j zng=4RD~3$QzW*=61TMY%X6+ya>(H->jPDN`pJAv-G15zXrxDFyqzcAyt?p~ji*+$V z+K9ZIal+Xp2k{4gT@%1THt6Zyjr2M*pnN+`D*gx55NoBdt+8p@Ed_c&KQsaYVRt>e z)V$bnG#upSri2`wXgZ%f@V*p(noxTe7Z=+Pe+ z{bt6E1xXT;2JO)FsryiR`l1Ts-wg~1dnMZ>>G0><5I_}-P6WOEl9YW+Pb?@XP_eTcze>VOT5h=s8kZuD3Zvmo z)-?yauMCj(h)ZR~b{zo`k7Q9IQnn2Oi^(VYue~=sr(Zgk`@sVT=0Q*V*HNcv!8|h2 zEBW~4%Z!sZf2!5U=;=N23Ss48>+T{VT6A$dSc7sc#yhOPlMQk&PrmN%z;cDeb3EcA zs-Wq0F}6a%wlyX}uo!>f0>+mUL{cA`RfjHHcRi`kG}(%wsKkvlcf7Z-Va3a{?9+=( z^7HbG0{4a=JxaLZ_-Cny^Q;tTqkoVZ^&YI?8k8`4IMeu?=*}m484nI0#2xy@Gxq!{kVbRwD z_cKV>!~P=HcmM2kyj{Y&{nuP!uNlY=jC0D)+5TTGz(p06(^sw}AzJ#R5X2c!V(Url z-ZQj@qSgH19b)d+3O^>=u_YuVbYNsUj~61!{>4EMOu~G}ju~#>w(T**H$iZreE=aw zs8^-L`F4mNcH}P%-@o1on3=s!PBF ziDC{^$3>gjK7z>*$R%7OD$uu|BM_)Wqnqk40@UK`^R2ijW9ir=TZp}@4(Kn)gj#qt z7@*kp5H%Hi`FDN?Fo{l?k6Q`NF2+71HaJU7ot@zs z86r^q1mV%6RVU3n;-GUweZ2$(VDras-ux|(+s-{}qfL{B>gt3C)YKYQ-%6d;u76cj z^r1~DG2X+dwNY?QsGj2hd(E~<aofLgA<0BP!@E_u`H=?&RC9~luqAF`=g>sxe$XT0Y!Sp4@cq+bXE?ts}u z?U~qVvidB$fPlbp^c_)KEZmIinw&%4>?B-Q_kos}A-ILGbTIAPM+VRXkB}sSarC$D zWchXVcyIjK@BFD&AK5rRnr-Ec&8KJ4T$M1$3Cc{WtgMd;vu+i+^4DA3&AF1~a@0@* zVL}laa$2}G@Ilz(h^>%+jQcRgH;9r3h)pK=`SWf||Mv{@HS(J-DMpvS=Opr}JV@zG zwA>*p$*XduCY?yiZpk!?k#Sp^GV<{75De$-ocPlM8z?~3GtlC&F)(P(-E&!gd#qgU zF1cS{LBaQmm6bo7ZP)sXnecuD%`Q&P=g2sJxb~SP`Ib#eHrb~0MT#X)%tn(?6z)X8t( z8j2h~{H436ha1yvu})J88B)Q@b`1ls8K#vrN=wV{@ygbhy82AHgwod>-Nv|5ls9p! zJKy+B>(8+G_kTIPHK7yYrg)4Dz=Pc#*T0@|19ZuU3zp0CM zFsG z9Dx`J0PZ>TRf!>jsXOzjMlx0b*CC^PMFYIUClj+m5GPXd=fTAfSqeJJ$}~i+3RaNy z`pVo1pr{tp#$3mZ7JjE?IraO(t+{;%g@eOzL#7drQ<~g{Zl9WdGT`<+!4qtNnzim} zf83u8)sYo8u@*`7&EA1c8pM{z2zkj%IrenGOVRxoobZ}B2*^);ee0U>$;r;k{#%>P z-CUk`ZAmLv*|{OLWoxjv^tW#b2d0vvCJLTof)c@;;kMoUjcqF>AbaUex&w>{?`4OD zN%cGp4W-8^QizjF)vWnd*U(4KunHSGX{B?j=-?ty|L;G3Y=K0%zrX8g(QwqTZo?cACcc-$yr?qlqCj~HEp6o1M;u;i>wl(>imT+4GmT74EC%FSInz~{ zEjHKLsDD2c$L)J8F|+^?GiIYrF|Dt!YCIE0C=o_{&ArL$uvxHiaL5@!5gnB9(D}y3 z+QfmACA?m7y9#}1b2ne5mmXj=!*&m@KvD63G{3%<=PT zLGaa2?)Of*#%VxO=- zw2iy6Ae<9gPzTN(fX_NhrNZlmV_p4NX=(T~&kzdtG}`k8@)W5&+O$y;o2-a2(EJp98= z4i2iS45rBgvi{$1>RdI+MDi4f3F(#W%U%CyCL9&EdWy)V_(l$=SJuU7dQ8r zLx&FC7j1ZK%}Uf1K^IB+Y=(;p14HJO+f_Dk98=AFukML;JM7p5NIz|MX6@L>rI>g0mw#_}7Qs%N{z z#lH@eEZ=L(&;N^eb(oHcal^o>mXWcwO7NJWTCeAK+At&Ss`2Bassu_4$gfDg^kylUd`3^NL%Lzi z37?l9zOR2!{oHZfjfjgu6mx49B65Rc#HlvIBP`t((ps%G5G)Rv?QIBj(Iyd2CWFGL z0>C?jqMTDe%Zne#dIo66lDBLL$V_QZRkA_+xZdGxL&L$zIIgU@H;z3#19t_Oy>7pk z;EJmqO(P5AHtPnV(J~+27^qd?TXOUOX46fQ+qGkdDjhxj?2V4b>A}isMSuKWOLV^qrd@I77)IiY*o;^U>vi2)1#RISX+%n4UIZ2r>T(_eE>A5i6! zud2m|SUKJ!_2c48nv!JIg9DxW(?FM?acOp%zClR@kIurzW@*%+rlxYgGih#)dlE{x zdJAJXPrMIE?>u_aEj-UoC&XWD83kfT;Q7nj9DUVlQ%M@LvO2h*^)N*KzJP~q@k3~1 z+6#f6RqA&oBxk! zh>#%>A_Qh;W=XrYEx_i-I@0$%;*br(1zE+8#{awL@04rfv-EX_!_y^u={a{Ter6rx zxZ5%Ihq(NNgmeNP%o!OOvGg>2Rw~DHw$;n4p^1@Ep(|Ueejd^2fPuaiIxy?P>u~Cn zeV=csG(Mw6KoGKcq05f(@+RRouYiQa{HT6j-qE{EH4_humJ_{}rjGZ*GNQvjfF_gQ z56kVH4qtHI*ic%9qP^2wqqe%5sAUS3TTAOp(@HevJdaZxoKPyh9s!+?9O0Ih_I-Ub z%k#?`CG28|M;M3I-ciT2YYx@cXw~pj(nD#G(@!v+>{2y-546PM3o4B+b@}{ zfFJnrAXOpB>v(iPHmEj)O@;3B=eP`;eCt*X`O~q|bo0nYlQmFpC&a4jb00Y;uyRIJ z;^W)KeM!+_yvft)IucV;)h)hk&}fG3WoOTdk@eF5y|nZcrfB=WD&z-f!N6|oq(>ZJ zyLaC>#mlQ0{P1C)#jOp`qQ{QCcaF#{J=4HFvgt8?6JL_wxgN?ieW%SXY5UkURWY-CCyk`a zdEct3ZYZe(-dt_w5R#J8%X{$D?u9*yd?UI0*uW5Sc6-8-yc-m83ycqsGZ2uUhRiGkD_Go81W#1uKS6fRX z#K(8zXZPz1FP$qQ8CeARD?7Qi{g|BG0ZI21989X9nW1J>=Qy69mvmUiCvTtkZP;m=X3;g40> zb~**S=%bLu1&3H6zI^93Dmy!PX1E*dIs_5*!M1o1Cfhw%jJ_y8WI3p6ZhpCJ%vStV z{G-!m4Ou2ba$av-56NG`(AowT0lp4wY24@pQ92|f)S9C4%Bi5}IjnoghdnG5#2ph7 zsO6-r_{rzkNfAioB-R+X@R^x-5Be6!A7g2Byk;>vW;nF`1#!=Lj=j>2kf=e~d6I~= zO#RuI$9KYb#(Rw6hyPZ;bDUYNt0#^fi$g+q8KmTyR7 zNf7P=Qxr2i3JKBE(bn#O+cyzImfp7^s1XU~JiH_^v14rTwB1Y53~Wwe7<40n)zrNy zl6VZ!be{8ooZZszX4TQ9Sp%w%55sUd9Fcf}OAiAps}L^iCWw!qavHEWdE&%n6W4-1 z$8L$S1i5cz@Nq&5X9Ha8n$KXR9|xq2{yaQ9^iK_q z_tEv|kLZQM_AhT-V92z4xAyN7+@6M?Gv>`yRa+l-*KhY2qSl%>R?#d04%!A92j03n%ZKPcn0#oU_}`C!jva(aBb`w87eWMnezu_{v^Kb*M|`*S3a|Bu_; zSF6V+g=aFtcv>O2MoP8XiR**Do-olOoOh=NpuTMKPCb=y>@$9E{I@n71`BY#;ptcQ zJv@ZoqOhRg38V>J4HA2m-lM=P`SD{04-e0T@c>4ILyA>oye~?z3kV3%1PygWe(9@~ zt)~O&AM>1Zch1~vyFQ`YJyIv&CvH{!q>e+DEGujDv^DYM?9wNg zm{SXvmcE!3yQ`~Syr|#a-tI;K*^nAEOb@iSGUEHRpTEE3hRCH$F8=1apiU`cV>>xs z0*XhFvL^1VJ<@4ev{0`Rrp2ciX*r8QP)n$UdrrEZ7@dl`bXfN0pfAl}Qr)c!^jnV} zZQXW4NM+&I{9@J>@uNh49x8O-<7^}{@7>@Ay!UtCjWd0c} zD$Q^Te)oU?T`&C?yNb%KO@pV_1p5MhHhW`HE7gDV-6(^-*rx~YZo-~$7~X$x9iNRw z11#z$vUyIF+ld&A%Lc3@X`h9#r%#>-=7B{(m=7f53B9eQ+6<%I^ME#*q8`(I2Yx~ImQ z7C9i1{k6P&PDLf~d5T@*CG18bU4s^?|L$PE@hw)yx#MoHxU2`#k2g2CZ>Bh3ic3mr zQv%2RAGoBu+sGIJJh+!-2nT6f9tV~&4$N_4$B|O5`~UpILeG{iJUDdl9z$oVWNU=& znyX8HNe%QGhYqQCC95(IPcku4l-#0HeHySkqbX)`FL3{*S0GnBhh~Ns7q+<1AZ&-J zEZp8|Omonme!^8$nVK32#;0?-tZ=b>hUIeVa`iS0-1bP~!f;Z2(~(WiI_QUyVOsIZ z>JSp$f-v_wp-8VyB&YOp!INSPF#xbzp*0E|;Cy{G*yrqnj3YtZ(c!Qi9?JdH3`uuAyt}{DfOCl+zw1OTaz=C(M zkEPU+$hBGW6L4>3tMCgMA(kf2Wq8eb^o@C0wQI5ov|BX04g?GiTCBcqmaFQ2Ux*_u zzO^=Fwvo+;4q!lX&*40yQ|AAd6 z9gvrV_Z}y1>@I@HJAdXi5}1?uahFv zqp$p4UsYOtm6f%!af@EPolp-FuA+H7Tm}}FfMQ95ob=u*MgSeeMz{BCFK52sp-z${ z^<(z|cQwTYlK6iP5t~m8t=HYgG%aTO?3rhwpTxCzuby5*SvFZ17RX)l@)h+y%q%+< zE^~{y*(V1>@0I`kvPBim6?CJz;gG?mUx2SE44$JJ0-ORy9%YL$v%809WDtsd;dQ3H zb+0tzHE}+9d5aBCE|HAB1`HQlxM~BVhJW%qwY-p`LfU=3I$}ytr%Yzde%4!DSa<@zh?(54un3;)ikymFnT8aZ=8oZ@)S=(g zzEGS|y3_aArd_+D#b(if{hRm|53PN+^}8*P9%Wnz4ov^`6!lg39E7vmlXoCA0ULFv zQ#p7*WZ4O9uD^KkGT6fELXaR;>F6>Gi6|TjL}2a{A)OYSn~PY3g(p*ui~F};2hL=# ztJ~3d*?)+g0zQo|Vma#TS73cHU-s=`?-cpK5q9=N z%BKy6pindzK6~cz+BdJBw)RvlQ|$!Mk}r50@@K$i*5IYfaDWaoL?fe|z_*Zg(*2s| z?p-nx9IjVaXMsjgT&nV;8Zm!r&5Cn+0wzL{Y%8b3_wHwz7?iAn;X4oGZx{4ezJN3w zN9rT%YbLvt7^cQk{VEm0v|LneZ1}Gj>8Gl{K+Dt#wLDw%TJUF)3ZwaXjW5Dr}~o3wDC|ft5!ZrDiU!i z=*YH%cbmz<(b{OL*&?mGwtVfvf{6s~LB5x~(|_forUJS@9dfJ05bIGzpK^QG$uH^` zaC5_H#6jrhh-*IK3fPXgq<|2n#@e%I8>k=HVvb2J6lWrB=qBHn9tMT@fO1K!rfFxfsx#(qGCWRPHrB6~)7>8Jy`Ig=Lj_fm%w6czjl4qWe@T9xJrP2OVzw;!v(s>k{sq>=-GcY_c8cB*};4r5xPmq$#z)Y=Rk?sUsH4g zp*RDFdJjMmu7>=l(b1WO&I9K9dQkRqh#h6Aj#$_uP^})$7$v{XaC$4f{miR7+^fZJ z*9Ds1QUb~Y>H)#K9pn%QD~N=&Wujupd&4(yk5XlAb;r-fu(0QWdj@<$f0`A?DFyEn z1pI=JUXOGmIl^y!!|(TKM&BEMe<}h7IH#y+fk~hkga+i>3dTsiXv4K8rXfx1Q?U!x zBPyCf&zI6Yv8VkJKM5NNf=w~M7hqq=!fq--B7F8pnG7S+Ee~;VRbJ^edC}+ikuqLNXsLYP9nY?lfb-`%;uTFx+||)lJC6aC&%~tn zMn=prmox1suLUc&jr0On1_&VpK!PSNuSFS2 zB!(^(#nZZxrZ4k6#B-fuY{`!H;s0bVO@~32r(i2cGz=jR8&5nQ@4T?Eu(rk2kgGq9 zLXlIa_l)wR1476X{dWQvLGVs5tpM0g;05CX7Nu^FMwK9&<_E+23zA`t#=lXn@$VHVN-Cv{q})Xkqe(W3k6ni$I+ zfZ@95wa=1fsXRDd=)29b0Ym=5_H?sDN9@lCv*_J9B}sQzUAS+cmVY^cjlcr#SIgD! z-!Bt(bD-LUU`9XFFy0h=inNT30Vo+aY$w`(%!_%CFOBmYr(@NgD}Ee#zd^*{vh#%? z3A>>W^{@NBfA@_P@jLCWs553_{WOKpbFG8Qx&W(0HYR04U}bGJYX2l9FwhD*k8j_Y z2IO7N9QZSx(!*Z>poe#Jg{Oy^N$6in$|NMNcK7v}MpzpW+Ze33z_IHjLZXD^b~mfqho>IvCZ|bg9 zo^NbE7h%$cshb$Y1aTH=gL)qU(VGF^S`?7B4oG_HajK0-2v0&3u$R+k-9-xt6QN)q zwAw{gawt~lUbuheJ$aDZ^Ssz~2&^ogPjRm!mhFk#%(wo`;kpR!T+Ij-+ekzxRIVN= zuN-3zq$w)7%HX>{b@Y#qWvAdYX{|#KVF-mypJ6I zu-My~3|H4sG&QBfD7yxe$sWu7x5Pg-(|4RBL?__Kmnz9-+sux1L3`LvNsfk zgoVTJ-no;6r?&`^OFq)ZaMUIdRXNhvzKW&yOgF~T{TL129c|JO3-1?B(wAgAHsC@X z$VWMkpFw%cAT#|c6Jlgb5vZbYiq(-RIP~wyo3Mrq>JDmdqoS@2Y#H7ue#ty-l&DP9)aPqTo}iXV+_F?-_@(5dYF5HPK;aEGls8T2T1H*Y~ZES2%790s+4U&(e zZt$$;r{6n=#MT~Qt=yNqrlrJZ)bCW3Q4Ffu8oyC-KLeq=#USvk_Y&Po9_X4S`@nWw z6lIRLU+;-d$7-6S_&x7lX%cy8}NY5L^NnP~g2oL7C*!ZaoW1cjv*k^cy`u zgnz+0Jj{tUiO-X4KaL!t4v+9_PxTAq`FrQ?$6XfnPlW%pcj{SM9t2aHqz<`|y_`?^ znE$PeOGfHMs^LfwlkxQ{Nk4uyoqYTBWrjJ<(Mjk>n|gaomgp%Y=~fmEw91RDRqxN2 z0klOn#rxjgKNqFp1By`FeTqH|#rigN6Vq9U?*4b4srUz~ z-Dn4~w1D6UEknT++Pmv6S^m38)gf(JE_0qFp!G@^Gp(OIiQ_%SB5?2C5B2o)`o;(W zHw%|#dQ_8*exFe}`+6>c7 z(!E0_Eiyv1`BBV7KX65}KW|`olul}Oh;4hyv$6j{rn1j3@v|D2sM^C&pHX&k*(o_eQPFB7n<`AxP@ML{xWzF`BJ+UX6TL`3+UQPSA67jB5qxGu+6@}1~f4hr7; z6o=Oq*Emg^V-psvznv0KZw|n9ozQn}+qO;2C?%R#h2_}wxGeLWSDYLi-X}?4wkc5Z z*1aLSjSp!95(WTa4`AB>nYw97DJfq(%%F{f8z5->k*DnAmnO@B7O#AEomw)i=`zT= zS5qB$y}OjPxpXCArm)Mrif9BlF1T%F?%d$uX{{Ma&xN}?*kGptmaRWGKd%j!f%aeB zlt=7-&sf6TboKcuRbpemdpceQZ;a@TcC3-q2y52sx0o+ws7Bcr5-kxsL_`*+9?)@T zh)CqGMUt)TXiNWOuaq(G=1x)mh6~w#!uSH!o_bHlAu%z{aO-zBLDpX-`KB;YuFzE; z`s1f`|B8M?cXZUjV9I;FeeK7RM!b^n8V z)|zo<)>-hze)j&=o^MJD(wJx@Xb=Qp%F4V|fgqR<_~$(oB=C0|q=!cE2ZE!xtSSol zc%c}71^EZjsQ7L2Uw>aYamKH>o%K262W)(hl`Nd%>WhhhGk|oXN%J^mZ`1$#vGze9;b@VYB zc+{wKu`Oe1%akvu?<`72?ki5_0avV<3cbWp(=!fe2+x!H-?jC3I+|R=cAA}bbDVZ3dkOsxa?O>L@%Lw| z;9pz*-r(foLZ+vq!+2N=V~Zq?=(~U(2_-o$mCti?a&k`dsNyCIgo34m>13S|#2R@$ z&dt*c3btuKJ1*2)bMy13w4aR$kU_?#rZmjVXa)ub&($k*3EVO|OsX_|Voh!oA+xv2 zs;&sk%*^B5;GU5E=4#B4j|Dsa#;fbvTg+A(G%cix__j}0=!uNY%)D8Ct(kyJP9DLc zUas*uV zpND1!etwco=bM3Q3{uim!w6xBS3n@wdZFHYp}s74(70>5M13LT%a_+tU%y^kEVa73 zma6SlRI@%|t)wxAjxUFofM=Dt(xh_&-&v|zvqXqsASNp6S1uNaM3wipUVyU3Y&^K8 zriN3$6DpUAAThC!P{!}+>7im}9dS5WldKsu=6oj3lRCP!43RyPoY49&_}^g|>U6Zc zhKa`H5h03c{Ch#obvA#R<*gT6T(L>t*woU!c!6hYYx@qo3+Io;s{U=>bFDIQDs*&o zRDyy!O?Io|9u5wi<7f8@v4iI2@p>SroF$%&eHP zJ%2o&^4gLw|2#rDS1MZ}o!`W!-=fa&PqVXwyu5s&RIYuU25TL^^WVJPpV@((XZL}3 z7)bC={GW>E6=Y?9#IvZ|t#*C+CE$8E3l2*z_&%oJK@KBBocqrxRPe4Ubec|Mnw|HA z+1I%HMRH0-wm9$IUA04VR_5z0w?;-r+-l|)_cb&3RaG9Ml_ia`DWc zho&N_P|Rm5seP{wKb`$5`amidqq;Znot9-hjc=U@2S`%!(+(%?s7V@hCKCsDi10+kLXaiFFrgtnM}{eFGBTV^7x_hNOA!}lZ$b)vuSlb z6H{a3b6m+2eYJ%koM%)hU8h=g7IQe_RYx%upIx&Qe?0#B(L%hpIT?FYHn?h&zcvRKd~wja9R z`y58yc)CG_lIaXGZu97hs3^szBHW$(jZaZN-QzSDvCdN<# zrD|>U$8O-0>4S|db*9Oa&=Htypq+*Fs;m&-KRj%{`qX@ksLKi;r?S{+53gNsHONg8 zQS+Z-=3{TJg|?(5y$C_qF}xq0ESq`V{KHY(RmRxZSh?!>Qj;TciF!r*$w@!u%qvM> z1kn$X>$eu%DYy)=MYs?zKmQP=*D*}*_wi&aafB3OXbg+a>$`FK8(Xo=-o8G=o6}7& zaYd*8drvvY`%YX=4o$6GCmDSBmM!YWRA_xb8^R{&JBIHh((^iTt#>Q62B? z?KJ?cXpk_h_XB?KdG+~A*=NZ5gnqlR4DSPSbB#1p+-d%uVDPNq`t89(?ZZ0|c=-}@ z?|0d-jDkYso77Pwv$3?Mr*BxIlKF5-+01szaz_OPiAy#uEiK*C(;p%B+EQ<`GF?xY zUtpkwW~w_)V`HQK&d=c-8;2@csEFJu;jcoDfkBY)K8(byR^H&YaKJOOmty8nP$8T?M9moY-ew_#&ssDa- z&#?X7?tS+Zv^+mCfg6Ma#!CSY5;%uG=Q|S~P>IOX{n?%)s9DvwwckTS1f+-z|{=JR%>*u4XZ;pD;?hRyP_(cxviwf`6 zi=x3rGUhLytoMhtGx0rNao4}LTNxtYP7{3Iqi_B&7yi6%XtIDY6jVU|c&6`Ta&q+X z$l&otu3m@Fy+1s1M)Clg7|zcEMM@vg5qL-r5EnL!Y!MSSsh z8ouBD{PE#V(UY;MP_ILnF+ZM8mif#*EL2YNzb+CVXdR+ETxejsxja}vToyxNwx1*;y9DJm5~IJn(;|V=2vOr~jm57B_iZbKqnc#IT;N@bC`O3XB$`>Om1__K$858%WwWMHJ($ z1eH8u<~@D1wnp<-T3W>6W!C9rgRNe^9P3WlylaB}cO z9)59K_k~m4O%)*S?axK+O;eyc|NZp?%#w^I9650mfS?SG>aD@1V z1_p6@?P-7Z{-Sx^bJ$(Iq6+ofo%?!g^{Wu~aJgfgX{aXACpseoOAKc%^OE;}ZqBV+ z5oIFy%NJA*4i3rXomE)t4TE4JoAk`9Ps}e&MzhXIl~S6` zI{kXQS=68FdCA`c0$NTBAGd^<|_A5H-41?6YY}?H?RuGoockb{}nQ zAb`gEJ|?ev`UfkLY>XhitVKCPM3JDaAXm1BBA#r_fAv;#4!?)lI&^AvJ6Pe3`r%+O zUhNtNm%~N($*W&QnRoXOuFYi=jU++lVxLiC;3>`*v`VIJNO`O@>cCXo>@c{n5G_H} z^}@AtgvX*l@OdJiZG8?}yG8?+`4o~HLdw&Z?{RTKywVzsC#y5&*`unAM zUG|g0dJS)emzPD#1+8UcRM9)Vq3*WU)?3vQwfAmkqi>vbb#)a$p&xj8d6B3Us}|LP z8G^V(d4o&9U#A%~tU7-td7`7akPHY-#_uw1*Mr|>q~rGVX8~HQgaEFI@+8X( zLW;`xVJFXv3kAJ@5%>~5K0eCcT^;EqCnUH$00@-6zP7eXE z;I<4#!X!btI{Z`O(P}Ym@LgB;g;tu-f~VfqVUd~`uNz=F8F!Zl0y{@XnHn-34t93O zeH$Aai4jspCbqUmaQv(Y;{+*$%)w^^O?w|Km?dZHNtEou0~VLLt_j4 z=g)qD@cJKWUH8DHKv~?MCpVIXu#1&*k+%2ut%#mKzq$QRE6xA!cDt6BJEAwj1HRK0 zwJ8*!lkqzhVvZ+zMXtM3M3BDOilh|5ijevsz{@*}^X%EP)uSW5`57f;cf-P95oB=F z!2s^0VPawF#-*h#9)sVeJ2*JlV^Mbs@V&dnX6U+x+R<3LXm{`m^T&XSiVCG775aWI zRMc+qW|u!XO2y%yI()LGN-BPbzkjzkTV>R5B6)6!iiM>xW6tdj(7oDibEoe;3;`KF z5D6B`05j$KSw;J^f-)77ib4v;fZbjqMv@tnXT4AL%c5GD(eq#L*TnxmJydS;-sSuE z@4RluRDwc6MNv`XT!5N%j*enl&)4Dt4)7=SjV%@$7S_@Vc+@JB+t?I>*HWMu1nzEc z6TH?&yMF&B1Zet8U|^uFj*gCR&79Yt<>e>C&kKNwsT7uHh)2`OLM!9;I@%FZXDJO0 zt`PuOF6apOO_%rwA*^&`Q(jL2AbGr3(P8>uUf#Vby|7Q7<@VUvmFrQ$hmw!l=|AjK z0dBf+rG98b)GrDPdv}{97Pt=(t=8!e-9{*{fQ#0av+84OP99;o?-{02 z!z&y-_)@K21~hf`wD*erCh3uvUPnS}YAGjzCRpVB#zIaz(a8XP0~k)^7nZ|F!MG3D zz6ELk4v)1(po7ZnOBsCMhY(aBB%NHSVpUjA6o zc9{Z@R3*A87rQ&>S%vGt?aE_#IEL57v^wYn@Ysx#dE=~2{tCve*Hn-cyOMYAs@C|lRu z-0y_AVtb#O-{RmS%r4Y0=K4HnNS$%%C^5W#O#n0kX;sy@leONkdPo?d60x%^Z9*i5 zZWo1`lrjIoY$VA)=Jqm-hL#o{kU8$RQc_FosiP4Tk^rR*<-UD=PyaTCZmh4*w4tQL z@@^tmT7>(tK(QupX?IHVnHr(z-=$Cte1c_ifh4aw!4@p#UxGm^YXBr4KWS#*=?)hjHZ2K3ZY z2+iiSd$fK4{y{~YsTbTZ7eI|ODWh8_#V6|S32y&A)Q>;QVPs~A-Q5fd3ObXHqVP@{ z{Z&k$l#eE$F)B8mAygL>Z2>Kgn4X1!FZJ9YVKP4myRjpSr-{krlQlG)oSs%+-`?hc zSrVL=N7vSC$TZh!vk0k`4m>p#yb$>Hr!xE3QA$Kf2@4=-^6yjO*jhVjg6ge}TEd+7 zG<;zBos;?d_gR+eJTO+Rp1wHc+Gl;SIl65g#C#5U-FdRHR_W>KA#jyw0d{^kr|G&C zlElE=W&8++*w5Dh1vZ%sCz#MNm?Hi) zri{^TPuug+*49Q84N@x+GT=;ZUUYPHeBN&J#|45x45rHk(-xk4PW&(^Ej|4;NyOG+ zl*nU}vXy~bAnbZIqzhClS{!Y2&^oVqomNU*T-=jke`M*w$@(1D%CUj|rPa!2qGr&< zi%iJ2eb5E*;TDEY1m}5GO@ge53Vv-k>6@{!KYu=f37ww$+VXM>aQ6$XvdgNA?X4}- zO?RJjqg}vv!V7~t;=bm%k^A-kX>m<_1ndo|WO~T!Psbw~25H~@qbA04&YtoQ1qwje zn6|RA8ndXI_lF=kb?BNbi2Eb2%`+$y@S91a{>TZ(?Xfux)RpFg96N#nQdb2qA0 zC@^Ma8r)DBID>?lr026GpWv*61b)y49Hy@>ib3oTKbVy~Dr)C^U8mf5zm65t1~5F8cP^|983R`pWo7+; z=&x9Ze!F19k2La-sOZ2NNk!J_z-m3i67WSqH#($&G+L8Bd5$oK1^`|&2DkWBAO&Cb|;b;*2o&|tCNDszL$@)B@F6U&+M z_aVCD;qz=A5L1(5h+9So_~43;dtoYjAc|r`f++5kLFP5{QGjLpY>%bCYxcOXI5Zo} zG<*2PnvG1&`K-~UO!Y`TR|*p)APc`lM~hgEML_4jxP!07ss?;Wg4nHhuLK}rJHG>z z#l<8zi{ zM=~D*7mX4__mQoLtYXe;Ndm>-yYTxI_Vqee-yEA3mxKK}t%Gq;x@{srxLhO=jw6B1 z!r4Lkh}3Y$S)zBd7ke|L32b^9E^9rgK(V|($Kwj8r>F8ekdbTp>+0-Gzq-1bKV@96 zp;3!V-I*;RPmyD(?y?0{a`5t1b*NW79`g|;hIBceZNUI>O#bWhFl$y-WmWJ236x#l zuTsqqMc{ZPX8@C6L0D$F@Ie(RD<=ki`j`l)EE$j?=&b7Wjp{!w>hys6#3y`h*9j4} zIqWEvdwP3&H!*$qZx*1z`DB&9sTCY*LnmAiLMI2#8Vuqx8(X9vu6DGt+8;<4aHYBZ z{W2k6z|C$~cf{DRR~PMDsWLudDvxznwaM@f0Lr*vrf!X<#=c8@6+iOYu&#RgW~r@H zU9T$sAxF|L*XYpGX36+fCKh>;osQW0$*JM1EG%-0;31!DYDc2{0{9mSao2UWf11A} zB@rLyC+d1wh&u-1I2|s|6;E4qs9ijK%-|_rWg~tGF@|!!dY9S8C|IUunXcnwCoNsy zCFJz=c@Y_)2|!%&+jc+LpQ{PUrechTog?N~QRNAs*aM}OF?5XwjOU>7WFu9VqgR3{ z1?*NBsw`(-{ROII^+xW~1NLki>CT^)WA-WU zI}I;imxPo3xf_N7FXQDF1NbnqW}o!*=TN7fZ&mji&1|(v*kbu7fqa#GImxA~#?Le5 z=~)xz0HSoL#pF%C%LmAr1{4+)6#WzErA(nYvjI(dXp;E7djVAUaP>)YxUC;gARB~M=wnywb9*DA|Y7jgc3NiX-(WUN`Y4(rj9M@p>8Pmuo_2Dhj(wl5e2q5-zJGZVkd=k$dVKqm;PWH|M2!g*Ea@n?iuT*% zqh;@Y!>4y>)FbH$LRD|yLdnS^n5vxuUxI_XEb1K6`JFxfKK-saMX>@8<|>p51-A+7 z_M>VBRk5)IY$WCNo`Br$+sJiJpggW>jI`x4<#)`^&Hb3;yL##;34}e0JbpEzm7*FQ zeK}JHK$J1PpLYYCZlQ;Z0vr(NlpO%`0>g!{u6P36xZj!)DlS?whQ&f^Fn9a@Dd?g39(6UqMDol zsCm5U`Wj(EFcgf1XgUJjUWGJia(O*m%s6%W!Fp!ibeJ7{u6Ep3m;ydWloo3Obq=HO zO-c$g0SP!h0d%rFP$}f}g^5)z<~&=W;BG{peFun~%1XEd1zcuI&izH_Q%@M3z^1eOy&&{O;KrxVpOT{Gl z`JVNHp9MA#zDB!O6EK;=fdfIXkG_Yi@k5#$y`*Xj#YKY8FYkUh#e1?sTbfOi69^$DR|7UD;H^i zDNRf#n-f4qcP5yLy5cuzJP)@L91-z8YtWbk1^TC~qEJ^hG_bk#K1@iL!u=+--MDpo zyuaxK%HmV}z_FQx3=YJmbo(EjtRSQvx!$gVZz2fc`XN-Jc8-r%?9?AFjk+pCr=)~Z z`dq_krNaFZ6KA^7IXFsV)b*)Y(3T68zlGfU1tKT!Sw7z1&(P3l$ZXS|cl!$YwhLxS zqA#^bV{hr+EA=R&bA05PEJkPZw%mG-`&yj@jV|-WK#t7&h{< z)^*30R@*yt)woNF_b8j93$*V1eS&8Ck1%~PAb9}*uYp6i^*eyd2yQz#jX8$ z4TW{0q8fyhYVI$0P)bLV{pj?EFRF;b7Ska+9%5mwtro2A1@a25^j1uzPiLO2{8F>v zVTNF-R$b`tLgm2A{khn{=^-6$^@?h;03lBejiQ1V=(OH&0G=2EQBJjB>W3B2l(6@$ z-9m$H2#|ibEw(n08Nf*?Je#FDL3@SlF%_TPTF_b z0`VE1ChR8QdMmZM;S)-Gd;13Hn6+l(8Q6QzxXnAmg*#m+KecfF$y)X?5(wxY$Pn_} zAkua7-B5ik$*Vs3VJoTa6u z_mI5%22kZU#QqU8{9YNL$!{$CKBad!?W#yPaa66}Pz9NsGcdqyI~?u&SzP=H6d~(} z+Y3~`r7wbPP?CS^YJQxQ-xn_nv4QQEikTWXnS;>($pQ!iv1=tdI$Ei@%H559f?M3L z$|(EdxU;e7!%a_kxOA+Q(;C9?&dbm@OAyH$AG$vR`!|G@W63JD7fX26-h60oRc0Wq-pL!{wr{&cKrR->oK2RcAa>nvw}13=%td8jIx zPYmW6+FRvT0(^Y#Zi_k}7ho^mcYW?vE+cV#dH?9?FI5RlJP%;mqQ=k>0PKsbkIXn~ z+spW|(WBWtQIL`x;cX zxT-2XCnslCoRr8`FHv%o?{I=wBFP&YjM%|n_?@PUWwgmw!0n~B{@-8EL@3C}!n;GTjRvBriTRxvXUeqSG;R)VLbI;>tE)ej zo1Nd;OyqpYn%cdE-%SW2b8Wx<%QBKFvW!DPp<5kNqr=4O zl~h*m*lABD6-oAu`D5`p4g$6PSQ;M-o$Ol8{S^!<$6pZ6ukN$3jz3)KoB>k6Sy*6z zJg|Qp{{ohZOF|-7l*67~Lm`x;cbD#(6Ka1CcQGIg@3+g${1ezXU`1=}}-9OF>3|LYn@oAZN0Cp>l5U{^8-+ z+l$aFi|OJ<-zQ;vM@NZ-b7|#mL1yMnsn_==bc~GVz&9wz5@jce_yff482jsE1D#g4 zs!nn!A755hw)9bMG(|LwkTr%bN*RoTzMgM*2cQc&6NYWRX3uPYD1mYA#k99wNVN^-lI zsJ8|*tv;aD>2s5y`_xl$a{B!)d*}01Qjwq~Ss1yP^XuzZeV@lypJwN} zo1IxX3oU0tx*Q~b;a?sfi-MZ!0ERz!FO-r^!@x%XhmM&EicU^0vLh>Cb}JTC``=tC z5BR-6!iqIGE!6!yg>DHuVsz4Fh`*N=5IhUE%p_`k&$)!az!TQO7E!Q7lNUBp*7l8i}g3^%{jM)dQu|F%X99v`KH5)+9iK`A+i_*$_} zQSy5x6eSOxcK^|QdSqR=>BgQz(3PQ(2j(d|NKXLc5Z=YbrAoi`jUq$OMeS4Y2SL?r9ADbm$K2KfLJxD?FBMx|@u*&-G z)o$;7leskVB_M>LyGo?-!H1Khi{XGX^R=x_$l2Lh5{Qo1gRw90e0_aAfQhjN`u?)1 z+S_hQJtICWc4$g7A`s8r& zMoGTh;^WGcqT}-2L4&;h;r&fWe2)V-ZYghUBf%VmRkISgWBqD!G~2oG0Pp|}7~ubo zHXBNp@W-C_oA%iZc0z`4mF0me@Lon{Ao5?j0p4y8Sb$8BR%25W^^8GDE^Vbg?D)5K z=j}z4*GdphV@r!Am+O%fy!gN)7CFP`_4T`VF~4;1d%LE}Q0*ZlynU)!0zZnlLztgU z5O+=X`7eMPw74yP$ut1?3w26UdLy*yX11iOl||p|Ra|f09hn67c41Nqr){(^h60lO z40!q3@W@!Ki|)Q_2vo9?K4v2K$MD9QTOixQ%BEHO6?jU?+~}zO?e<1?&U=J6R=OaM zfbH>k?+(X~YL&4~fQ*cc<`)$aAsNx-LP3a*m%dPqc-`>???7mkERZO9yP- + + + + + + + + + + - + + + - - -
-

Related Topics

-
    -
  • Documentation overview
      -
  • +
    +
    +
    + +
    +

    libpysal: Python Spatial Analysis Library Core

    +https://github.com/pysal/libpysal/workflows/.github/workflows/unittests.yml/badge.svg +https://badges.gitter.im/pysal/pysal.svg +https://badge.fury.io/py/libpysal.svg +
    +

    Introduction

    +

    libpysal offers four modules that form the building blocks in many upstream packages in the PySAL family:

    +
      +
    • Spatial Weights: libpysal.weights

    • +
    • Input-and output: libpysal.io

    • +
    • Computational geometry: libpysal.cg

    • +
    • Built-in example datasets libpysal.examples

    +

    Examples demonstrating some of libpysal functionality are available in the tutorial.

    +

    Details are available in the libpysal api.

    +

    For background information see [RA07].

    +
    +
    +

    Development

    +

    libpysal development is hosted on github.

    +

    Discussions of development occurs on the +developer list +as well as gitter.

    +
    +
    +

    Getting Involved

    +

    If you are interested in contributing to PySAL please see our +development guidelines.

    +
    +
    +

    Bug reports

    +

    To search for or report bugs, please see libpysal’s issues.

    +
    +
    +

    Citing libpysal

    +

    If you use PySAL in a scientific publication, we would appreciate citations to the following paper:

    +
    +

    PySAL: A Python Library of Spatial Analytical Methods, Rey, S.J. and L. Anselin, Review of Regional Studies 37, 5-27 2007.

    +

    Bibtex entry:

    +
    @Article{pysal2007,
    +  author={Rey, Sergio J. and Anselin, Luc},
    +  title={{PySAL: A Python Library of Spatial Analytical Methods}},
    +  journal={The Review of Regional Studies},
    +  year=2007,
    +  volume={37},
    +  number={1},
    +  pages={5-27},
    +  keywords={Open Source; Software; Spatial}
    +}
    +
    -
    +
    +
    +

    License information

    +

    See the file “LICENSE.txt” for information on the history of this +software, terms & conditions for usage, and a DISCLAIMER OF ALL +WARRANTIES.

    +
    +
    +
    +

    libpysal

    +

    Core components of the Python Spatial Analysis Library (PySAL)

    +
    - +
    - - - - - - -
    -
    -
    - +
+ \ No newline at end of file diff --git a/installation.html b/installation.html new file mode 100644 index 000000000..f9bdee3cc --- /dev/null +++ b/installation.html @@ -0,0 +1,206 @@ + + + + + + + + Installation — libpysal v4.9.0 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+

Installation

+

libpysal supports python >= 3.8 only. Please make sure that you are +operating in a python 3 environment.

+
+

Installing released version

+
+

conda

+

libpysal is available through conda:

+
conda install -c conda-forge libpysal
+
+
+
+
+

pypi

+

libpysal is available on the Python Package Index. Therefore, you can either +install directly with pip from the command line:

+
pip install -U libpysal
+
+
+

or download the source distribution (.tar.gz) and decompress it to your selected +destination. Open a command shell and navigate to the decompressed folder. +Type:

+
pip install .
+
+
+
+
+
+

Installing development version

+

Potentially, you might want to use the newest features in the development +version of libpysal on github - pysal/libpysal while have not been incorporated +in the Pypi released version. You can achieve that by installing pysal/libpysal +by running the following from a command shell:

+
pip install git+https://github.com/pysal/libpysal.git
+
+
+

You can also fork the pysal/libpysal repo and create a local clone of +your fork. By making changes +to your local clone and submitting a pull request to pysal/libpysal, you can +contribute to libpysal development.

+
+
+ + +
+ +
+
+
+
+

+ Back to top + +
+ +

+ +

+

+ © Copyright 2018-, pysal developers.
+ Created using Sphinx 7.2.6.
+

+
+
+ + \ No newline at end of file diff --git a/notebooks/Raster_awareness_API.html b/notebooks/Raster_awareness_API.html new file mode 100644 index 000000000..00054fa2a --- /dev/null +++ b/notebooks/Raster_awareness_API.html @@ -0,0 +1,722 @@ + + + + + + + + Raster awareness API — libpysal v4.9.0 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+

This page was generated from notebooks/Raster_awareness_API.ipynb. +Interactive online version: +Binder badge

+
+
+

Raster awareness API

+

This notebook will give an overview of newly developed raster interface. We’ll cover basic usage of the functionality offered by the interface which mainly involves: 1. converting xarray.DataArray object to the PySAL’s weights object (libpysal.weights.W/WSP). 2. going back to the xarray.DataArray from weights object.

+

using different datasets: - with missing values. - with multiple layers. - with non conventional dimension names.

+
+
[1]:
+
+
+
%matplotlib inline
+
+from libpysal.weights import Rook, Queen, raster
+import matplotlib.pyplot as plt
+from splot import libpysal as splot
+import numpy as np
+import xarray as xr
+import pandas as pd
+from esda import Moran_Local
+
+
+
+
+

Loading Data

+

The interface only accepts ``xarray.DataArray``, this can be easily obtained from raster data format using xarray’s I/O functionality which can read from a variety of data formats some of them are listed below: - GDAL Raster Formats via open_rasterio method. - NetCDF via open_dataset method.

+

In this notebook we’ll work with NetCDF and GeoTIFF data.

+
+

Using xarray example dataset

+

First lets load up a netCDF dataset offered by xarray.

+
+
[2]:
+
+
+
ds = xr.tutorial.open_dataset("air_temperature.nc")  # -> returns a xarray.Dataset object
+da = ds["air"]  # we'll use the "air" data variable for further analysis
+print(da)
+
+
+
+
+
+
+
+
+<xarray.DataArray 'air' (time: 2920, lat: 25, lon: 53)>
+[3869000 values with dtype=float32]
+Coordinates:
+  * lat      (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0
+  * lon      (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0
+  * time     (time) datetime64[ns] 2013-01-01 ... 2014-12-31T18:00:00
+Attributes:
+    long_name:     4xDaily Air temperature at sigma level 995
+    units:         degK
+    precision:     2
+    GRIB_id:       11
+    GRIB_name:     TMP
+    var_desc:      Air temperature
+    dataset:       NMC Reanalysis
+    level_desc:    Surface
+    statistic:     Individual Obs
+    parent_stat:   Other
+    actual_range:  [185.16 322.1 ]
+
+
+

xarray’s data structures like Dataset and DataArray provides pandas like functionality for multidimensional-array or ndarray.

+

In our case we’ll mainly deal with DataArray, we can see above that the da holds the data for air temperature, it has 2 dims coordinate dimensions x and y, and it’s layered on time dimension so in total 3 dims (time, lat, lon).

+

We’ll now group da by month and take average over the time dimension

+
+
[3]:
+
+
+
da = da.groupby('time.month').mean()
+print(da.coords)  # as a result time dim is replaced by month
+
+
+
+
+
+
+
+
+Coordinates:
+  * lat      (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0
+  * lon      (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0
+  * month    (month) int64 1 2 3 4 5 6 7 8 9 10 11 12
+
+
+
+
[4]:
+
+
+
# let's plot over month, each facet will represent the mean air temperature in a given month.
+da.plot(col="month", col_wrap=4,)
+
+
+
+
+
[4]:
+
+
+
+
+<xarray.plot.facetgrid.FacetGrid at 0x7f68f71b8100>
+
+
+
+
+
+
+../_images/notebooks_Raster_awareness_API_6_1.png +
+
+

We can use from_xarray method from the contiguity classes like Rook and Queen, and also from KNN.

+

This uses a util function in raster.py file called da2W, which can also be called directly to build W object, similarly da2WSP for building WSP object.

+

Weight builders (``from_xarray``, ``da2W``, ``da2WSP``) can recognise dimensions belonging to this list ``[band, time, lat, y, lon, x]``, if any of the dimension in the ``DataArray`` does not belong to the mentioned list then we need to pass a dictionary (specifying that dimension’s name) to the weight builder.

+

e.g. dims dictionary:

+
>>> da.dims                  # none of the dimension belong to the default dimension list
+('year', 'height', 'width')
+>>> coords_labels = {                 # dimension values should be properly aligned with the following keys
+        "z_label": "year",
+        "y_label": "height",
+        "x_label": "width"
+    }
+
+
+
+
[5]:
+
+
+
coords_labels = {}
+coords_labels["z_label"] = "month"  # since month does not belong to the default list we need to pass it using a dictionary
+w_queen = Queen.from_xarray(
+    da, z_value=12, coords_labels=coords_labels, sparse=False)  # We'll use data from 12th layer (in our case layer=month)
+
+
+
+
+
+
+
+
+/data/GSoC/libpysal/libpysal/weights/raster.py:119: UserWarning: You are trying to build a full W object from xarray.DataArray (raster) object. This computation can be very slow and not scale well. It is recommended, if possible, to instead build WSP object, which is more efficient and faster. You can do this by using da2WSP method.
+  warn(
+
+
+

index is a newly added attribute to the weights object, this holds the multi-indices of the non-missing values belonging to pandas.Series created from the passed DataArray, this series can be easily obtained using DataArray.to_series() method.

+
+
[6]:
+
+
+
w_queen.index[:5]  # indices are aligned to the ids of the weight object
+
+
+
+
+
[6]:
+
+
+
+
+MultiIndex([(12, 75.0, 200.0),
+            (12, 75.0, 202.5),
+            (12, 75.0, 205.0),
+            (12, 75.0, 207.5),
+            (12, 75.0, 210.0)],
+           names=['month', 'lat', 'lon'])
+
+
+

We can then obtain raster data by converting the DataArray to Series and then using indices from index attribute to get non-missing values by subsetting the Series.

+
+
[7]:
+
+
+
data = da.to_series()[w_queen.index]
+
+
+
+

We now have the required data for further analysis (we can now use methods such as ESDA/spatial regression), for this example let’s compute a local Moran statistic for the extracted data.

+
+
[8]:
+
+
+
# Quickly computing and loading a LISA
+np.random.seed(12345)
+lisa = Moran_Local(np.array(data, dtype=np.float64), w_queen)
+
+
+
+

After getting our calculated results it’s time to store them back to the DataArray, we can use w2da function directly to convert the W object back to DataArray.

+

Your use case might differ but the steps for using the interface will be similar to this example.

+
+
[9]:
+
+
+
# Converting obtained data back to DataArray
+moran_da = raster.w2da(lisa.p_sim, w_queen)  # w2da accepts list/1d array/pd.Series and a weight object aligned to passed data
+print(moran_da)
+
+
+
+
+
+
+
+
+<xarray.DataArray (month: 1, lat: 25, lon: 53)>
+array([[[0.018, 0.001, 0.001, ..., 0.001, 0.001, 0.001],
+        [0.001, 0.001, 0.001, ..., 0.001, 0.001, 0.001],
+        [0.003, 0.001, 0.001, ..., 0.001, 0.001, 0.001],
+        ...,
+        [0.002, 0.001, 0.001, ..., 0.001, 0.001, 0.003],
+        [0.001, 0.001, 0.001, ..., 0.001, 0.001, 0.003],
+        [0.002, 0.001, 0.001, ..., 0.001, 0.002, 0.006]]])
+Coordinates:
+  * month    (month) int64 12
+  * lat      (lat) float64 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0
+  * lon      (lon) float64 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0
+
+
+
+
[10]:
+
+
+
moran_da.plot()
+
+
+
+
+
[10]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f68f4044940>
+
+
+
+
+
+
+../_images/notebooks_Raster_awareness_API_17_1.png +
+
+
+
+

Using local NetCDF dataset

+

In the earlier example we used an example dataset from xarray for building weights object. Additonally, we had to pass the custom layer name to the builder.

+

In this small example we’ll build KNN distance weight object using a local NetCDF dataset with different dimensions names which doesn’t belong to the default list of dimensions.

+

We’ll also see how to speed up the reverse journey (from weights object to DataArray) by passing prebuilt coords and attrs to w2da method.

+
+
[11]:
+
+
+
# Lets load a netCDF Surface dataset
+ds = xr.open_dataset('ECMWF_ERA-40_subset.nc')    # After loading netCDF dataset we obtained a xarray.Dataset object
+print(ds)                                         # This Dataset object containes several data variables
+
+
+
+
+
+
+
+
+<xarray.Dataset>
+Dimensions:    (latitude: 73, longitude: 144, time: 62)
+Coordinates:
+  * longitude  (longitude) float32 0.0 2.5 5.0 7.5 ... 350.0 352.5 355.0 357.5
+  * latitude   (latitude) float32 90.0 87.5 85.0 82.5 ... -85.0 -87.5 -90.0
+  * time       (time) datetime64[ns] 2002-07-01T12:00:00 ... 2002-07-31T18:00:00
+Data variables:
+    tcw        (time, latitude, longitude) float32 ...
+    tcwv       (time, latitude, longitude) float32 ...
+    lsp        (time, latitude, longitude) float32 ...
+    cp         (time, latitude, longitude) float32 ...
+    msl        (time, latitude, longitude) float32 ...
+    blh        (time, latitude, longitude) float32 ...
+    tcc        (time, latitude, longitude) float32 ...
+    p10u       (time, latitude, longitude) float32 ...
+    p10v       (time, latitude, longitude) float32 ...
+    p2t        (time, latitude, longitude) float32 ...
+    p2d        (time, latitude, longitude) float32 ...
+    e          (time, latitude, longitude) float32 ...
+    lcc        (time, latitude, longitude) float32 ...
+    mcc        (time, latitude, longitude) float32 ...
+    hcc        (time, latitude, longitude) float32 ...
+    tco3       (time, latitude, longitude) float32 ...
+    tp         (time, latitude, longitude) float32 ...
+Attributes:
+    Conventions:  CF-1.0
+    history:      2004-09-15 17:04:29 GMT by mars2netcdf-0.92
+
+
+

Out of 17 data variables we’ll use p2t for our analysis. This will give us our desired DataArray object da, we will further group da by day, taking average over the time dimension.

+
+
[12]:
+
+
+
da = ds["p2t"]  # this will give us the required DataArray with p2t (2 metre temperature) data variable
+da = da.groupby('time.day').mean()
+print(da.dims)
+
+
+
+
+
+
+
+
+('day', 'latitude', 'longitude')
+
+
+

We can see that the none of dimensions of ``da`` matches with the default dimensions (``[band, time, lat, y, lon, x]``)

+

This means we have to create a dictionary mentioning the dimensions and ship it to weight builder, similar to our last example.

+
+
[13]:
+
+
+
coords_labels = {}
+coords_labels["y_label"] = "latitude"
+coords_labels["x_label"] = "longitude"
+coords_labels["z_label"] = "day"
+w_rook = Rook.from_xarray(da, z_value=13, coords_labels=coords_labels, sparse=True)
+
+
+
+
+
[14]:
+
+
+
data = da.to_series()[w_rook.index]  # we derived the data from DataArray similar to our last example
+
+
+
+

In the last example we only passed the data values and weight object to w2da method, which then created the necessary coords to build our required DataArray. This process can be speed up by passing coords from the existing DataArray da which we used earlier.

+

Along with coords we can also pass attrs of the same DataArray this will help w2da to retain all the properties of original DataArray.

+

Let’s compare the DataArray returned by w2da and original DataArray. For this we’ll ship the derived data straight to w2da without any statistical analysis.

+
+
[15]:
+
+
+
da1 = raster.wsp2da(data, w_rook, attrs=da.attrs, coords=da[12:13].coords)
+xr.DataArray.equals(da[12:13], da1)  # method to compare 2 DataArray, if true then w2da was successfull
+
+
+
+
+
[15]:
+
+
+
+
+True
+
+
+
+
+

Using local GeoTIFF dataset

+

Up until now we’ve only played with netCDF datasets but in this example we’ll use a raster.tif file to see how interface interacts with it. We’ll also see how these methods handle missing data.

+

Unlike earlier we’ll use weight builder methods from raster.py, which we can call directly. Just a reminder that from_xarray uses methods from raster.py and therefore only difference exists in the API.

+

To access GDAL Raster Formats xarray offers open_rasterio method which uses rasterio as backend. It loads metadata, coordinate values from the raster file and assign them to the DataArray.

+
+
[16]:
+
+
+
# Loading raster data with missing values
+da = xr.open_rasterio('/data/Downloads/lux_ppp_2019.tif')
+print(da)
+
+
+
+
+
+
+
+
+<xarray.DataArray (band: 1, y: 880, x: 940)>
+[827200 values with dtype=float32]
+Coordinates:
+  * band     (band) int64 1
+  * y        (y) float64 50.18 50.18 50.18 50.18 ... 49.45 49.45 49.45 49.45
+  * x        (x) float64 5.745 5.746 5.747 5.747 ... 6.525 6.526 6.527 6.527
+Attributes:
+    transform:      (0.0008333333297872345, 0.0, 5.744583325, 0.0, -0.0008333...
+    crs:            +init=epsg:4326
+    res:            (0.0008333333297872345, 0.0008333333295454553)
+    is_tiled:       0
+    nodatavals:     (-99999.0,)
+    scales:         (1.0,)
+    offsets:        (0.0,)
+    AREA_OR_POINT:  Area
+
+
+
+
[17]:
+
+
+
da.where(da.values>da.attrs["nodatavals"][0]).plot() # we can see that the DataArray contains missing values.
+
+
+
+
+
[17]:
+
+
+
+
+<matplotlib.collections.QuadMesh at 0x7f68ef4c5ca0>
+
+
+
+
+
+
+../_images/notebooks_Raster_awareness_API_29_1.png +
+
+

We’ll look at how weight builders handle missing values. Firstly we’ll slice the DataArray to reduce overall size for easier visualization.

+

This time we’ll create WSP object using da2WSP method inside raster.py. Since our DataArray is single banded and all of its dimensions belong to the default list, we only have to ship the DataArray and the type of contiguity we need.

+
+
[18]:
+
+
+
# Slicing the dataarray
+da_s = da[:, 330:340, 129:139]
+w_queen = raster.da2WSP(da_s)  # default contiguity is queen
+w_rook = raster.da2WSP(da_s, "rook")
+
+
+
+

After plotting both contiguities and sliced DataArray, we can see that the missing values are ignored by the da2WSP method and only indices of non missing values are stored in index attribute of WSP object.

+
+
[19]:
+
+
+
f,ax = plt.subplots(1,3,figsize=(4*4,4), subplot_kw=dict(aspect='equal'))
+da_s.where(da_s.values>da_s.attrs["nodatavals"][0]).plot(ax=ax[0])
+ax[0].set_title("Sliced raster")
+splot.plot_spatial_weights(w_rook, data=da_s, ax=ax[1])
+ax[1].set_title("Rook contiguity")
+splot.plot_spatial_weights(w_queen, data=da_s, ax=ax[2])
+ax[2].set_title("Queen contiguity")
+plt.show()
+
+
+
+
+
+
+
+../_images/notebooks_Raster_awareness_API_33_0.png +
+
+
+
+

higher_order neighbors

+

In some cases Rook and Queen contiguities don’t provide sufficient neighbors when performing spatial analysis on a raster data, this is because Rook contiguity provides max 4 neighbors and Queen provides max 8.

+

Therefore we’ve added higher_order functionality inside the builder method. We can now pass k value to the weight builder to obtain upto kth order neighbors. Since this can be computionally expensive we can take advantage of parallel processing using n_jobs argument. Now lets take a look at this functionality.

+
+
[20]:
+
+
+
# Building a test DataArray
+da_s = raster.testDataArray((1,5,10), rand=True)
+
+
+
+

Below we can see that builder selected all the neighbors of order less than equal to 2, with rook contiguity

+
+
[21]:
+
+
+
w_rook2 = raster.da2WSP(da_s, "rook", k=2, n_jobs=-1)
+splot.plot_spatial_weights(w_rook2, data=da_s)
+
+
+
+
+
+
+
+
+/opt/anaconda/lib/python3.8/site-packages/scipy/sparse/_index.py:124: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.
+  self._set_arrayXarray(i, j, x)
+
+
+
+
[21]:
+
+
+
+
+(<Figure size 720x720 with 1 Axes>, <AxesSubplot:>)
+
+
+
+
+
+
+../_images/notebooks_Raster_awareness_API_37_2.png +
+
+

Few times we require the kth order neighbors for our analysis even if lower order neighbors are absent, hence we can use include_nas argument to do the same.

+

We can also look in both the examples we used n_jobs parameter, and assigned -1 which equats to all the cores present in the computer for multithreading

+
+
[22]:
+
+
+
w_rook2 = raster.da2WSP(da_s, "rook", k=2, n_jobs=-1, include_nodata=True)
+splot.plot_spatial_weights(w_rook2, data=da_s)
+
+
+
+
+
[22]:
+
+
+
+
+(<Figure size 720x720 with 1 Axes>, <AxesSubplot:>)
+
+
+
+
+
+
+../_images/notebooks_Raster_awareness_API_39_1.png +
+
+
+
+
+

Additional resources

+
    +
  1. Reading and writing files using Xarray

  2. +
  3. Xarray Data Structures

  4. +
  5. Dataset links:

    + +
  6. +
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+ +
+
+
+
+

+ Back to top + +
+ +

+ +

+

+ © Copyright 2018-, pysal developers.
+ Created using Sphinx 7.2.6.
+

+
+
+ + \ No newline at end of file diff --git a/notebooks/Raster_awareness_API.ipynb b/notebooks/Raster_awareness_API.ipynb new file mode 100644 index 000000000..7a3814bdd --- /dev/null +++ b/notebooks/Raster_awareness_API.ipynb @@ -0,0 +1,773 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Raster awareness API\n", + "\n", + "This notebook will give an overview of newly developed raster interface. We'll cover \n", + "basic usage of the functionality offered by the interface which mainly involves:\n", + "1. converting `xarray.DataArray` object to the PySAL's weights object (`libpysal.weights.W`/`WSP`).\n", + "2. going back to the `xarray.DataArray` from weights object.\n", + "\n", + "using different datasets:\n", + "- with missing values.\n", + "- with multiple layers.\n", + "- with non conventional dimension names." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "from libpysal.weights import Rook, Queen, raster\n", + "import matplotlib.pyplot as plt\n", + "from splot import libpysal as splot\n", + "import numpy as np\n", + "import xarray as xr\n", + "import pandas as pd\n", + "from esda import Moran_Local" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading Data\n", + "\n", + "*The interface only accepts `xarray.DataArray`*, this can be easily obtained from raster data\n", + "format using `xarray`'s I/O functionality which can read from a variety of data formats some of them are listed below: \n", + "- [GDAL Raster Formats](https://svn.osgeo.org/gdal/tags/gdal_1_2_5/frmts/formats_list.html) via `open_rasterio` method.\n", + "- [NetCDF](https://www.unidata.ucar.edu/software/netcdf/) via `open_dataset` method.\n", + "\n", + "In this notebook we'll work with `NetCDF` and `GeoTIFF` data. \n", + "\n", + "### Using xarray example dataset\n", + "First lets load up a `netCDF` dataset offered by xarray." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "[3869000 values with dtype=float32]\n", + "Coordinates:\n", + " * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0\n", + " * lon (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0\n", + " * time (time) datetime64[ns] 2013-01-01 ... 2014-12-31T18:00:00\n", + "Attributes:\n", + " long_name: 4xDaily Air temperature at sigma level 995\n", + " units: degK\n", + " precision: 2\n", + " GRIB_id: 11\n", + " GRIB_name: TMP\n", + " var_desc: Air temperature\n", + " dataset: NMC Reanalysis\n", + " level_desc: Surface\n", + " statistic: Individual Obs\n", + " parent_stat: Other\n", + " actual_range: [185.16 322.1 ]\n" + ] + } + ], + "source": [ + "ds = xr.tutorial.open_dataset(\"air_temperature.nc\") # -> returns a xarray.Dataset object\n", + "da = ds[\"air\"] # we'll use the \"air\" data variable for further analysis\n", + "print(da)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`xarray`'s data structures like `Dataset` and `DataArray` provides `pandas` like functionality for multidimensional-array or ndarray. \n", + "\n", + "In our case we'll mainly deal with `DataArray`, we can see above that the `da` holds the data for air temperature, it has 2 dims coordinate dimensions `x` and `y`, and it's layered on `time` dimension so in total 3 dims (`time`, `lat`, `lon`).\n", + "\n", + "We'll now group `da` by month and take average over the `time` dimension\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Coordinates:\n", + " * lat (lat) float32 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0\n", + " * lon (lon) float32 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0\n", + " * month (month) int64 1 2 3 4 5 6 7 8 9 10 11 12\n" + ] + } + ], + "source": [ + "da = da.groupby('time.month').mean()\n", + "print(da.coords) # as a result time dim is replaced by month " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAKACAYAAAAVY3CsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9e7wsWV3fjX++VX3Zl7PPbeacM1ccwBEELwMMiGIMt3iLD/CoIBr8DZE8kwR+CmKIaMwjJiFBUR41iSYT0WeMqCDXEeXmKGNABGdwZICBoFzHOcwwlzPnsm/dXd/nj+7d67Nq1+pd++zuPrv3/rxfr/3aq6tX1VpV9a1VVV3d76+5O4QQQgghhBBCTIfsQndACCGEEEIIIfYTugkTQgghhBBCiCmimzAhhBBCCCGEmCK6CRNCCCGEEEKIKaKbMCGEEEIIIYSYIroJE0IIIYQQQogpopuwPY6ZHTazF9Prp5rZOyfQzrvN7NQkli0EMJ1YNrNrzOxDZvYJM/uYmf3AOJcvxAZTiuevMrPbzOz2QUz/i3EuX4gNpnWtMVj2QTP7ezP7L5NYvhDTQjdhe5/DAF68VaUx8FoAPzyFdsT+5TAmH8vLAP5/7v5YAN8J4JfN7PCE2xT7k8OYfDyfBPAt7n4NgG8C8Eozu2zCbYr9yWFM51oDAP49gFum1JYQE0M3YbsEM7vKzD5lZr9hZh83szeY2TPN7INm9hkze9Kg3lEze/vgU/q/NLNvGEx/lZn9ppm938w+a2Y/Nlj0awA8cvBJ6GsH0w6Y2ZsH7b3BzGyn/Xf3mwGc2elyxOwzy7Hs7v/b3T8zKN8N4F4Ax3ayTDHbzHg8r7v72uBlGzrn73tmOZ4H7T8BwAkA793psoS44Li7/nbBH4CrAHQBfD36J8rbAPwmAAPwbABvH9T7zwB+dlB+OoDbB+VXAfgL9E+0FwO4H0BzsNyPUztPBfAQgCsG7XwIwLdW9OcVAG6v+PvVEevwVADvvNDbUn8X9m8vxPJgvicBuBNAdqG3qf4u3N+sxzOAKwF8DP2nvC+50NtTfxf2b5bjebCc9w9i+oUA/suF3p76099O/hoQu4nPufsdAGBmnwBws7u7md2B/gAHAN8K4PsAwN3/1MwuMrNDg/f+yPufeq6Z2b3of1pUxUfc/a5BO7cPlv0BruDur0X/K4ZCnA8zHctmdimA/wngOncvtjOv2JPMbDy7+5cAfMPga4hvN7M3u/s9decXe5JZjecXA/hjd//SGB6qCXHB0U3Y7mKNygW9LhD2VdXI4xXz95Dev1vWM7NXAPgnFfP+ubv/WMV0IZiZjWUzOwjgjwD8jLv/ZaJdsb+Y2XgedsT97sEF9z8A8OZUPbEvmNV4/mYA/8D6ApADAFpmdtbdX5loX4hdjW7CZo8/R3/A+vdm9lQA97n76RGfCp0BsLTdRvQkTEyBXRfLZtYC8DYAv+3uf7DdtsS+ZjfG8xUA7nf3FTM7AuApAF633TbFvmTXxbO7D2/WzOyFAK7VDZiYZXQTNnu8CsBvmdnGd/yvG1XZ3e8f/OD24wDehf4n/GPHzP4XgEej/0PcuwC8yN3fM4m2xJ7hVdh9sfw8AN8G4KLBSR4AXujut0+gLbG3eBV2Xzx/LYBfMjNH/8nGL258DU2ILXgVdl88C7GnMHffupYQQgghhBBCiLEgXa0QQgghhBBCTBHdhAkhhBBCCCHEFNFNmBBCCCGEEEJMEd2ECSGEEEIIIcQUmRk7Yqux6HPtw5umGxJiEU+8SHlIzstPkmo71V6NftRlbHkKrbLYf21blj2j6VR2mhzV4ekj1iF6y6vLVoQXxnV4esHbPFEehVWv3+nlk/e5+7F6C9lMqzmIZ16fUfGR6m9qnXYUXz7i5RhjeNJYIraj6aXPobIasU2zeI2EoXEsxxvNiur3oritE8OpfZFa79Lr06tfPu94brYWfW7+yMg6ljiGzyuexjX27fb4PR8S+3vTWFtjfE6SGINRVE+38ti13XiO+lTjmMbO4rkxt+jtpaOb39huvNSpP6l8w9F5ZfvzjKvt88Kqy9FiozE4Me8oePtE1w40PRnPvJwJXdOV4vnMmb/f0fXGtPmOpy36/Q/0ptrmbR9be4+7f+dUGx0DM3MTNtc+jCc/9p9vmm6JQdy6dAQVVO7xhQ7XOY8jiOfnfnS71F6iH6l5mVEXeNmYHmLycvLSMhsUHq3msFi0qTxP5bl8WO7Oh3JvLiy31wrrVDTSJ/9oAKR9lq9ReTVUaqyGAz5fCds/W+mE5azTfumWBgjeB3zx0gzbwOdC+b0f/XdfwA6Yax/Gk7/un5cG/fAiil8A6PWq3+t0K+tEcVfnhnPUDWpiue6J42e7xtUaNzK1oQtKy0MMpmIZrVY0e7HQpnKo11sI8/coznvN6puzqEu0+bJuvG1yittsjWJ4meJ2jcqroYwOlXuleNmgQdug2Yze8nZYp/d8/D+edzzPzR/B45/Sz6nKFyiW+DDEuonpvXpxE23nUTcaG1USF00j26tzU7tb4G2Q8/gaNlTRioOz16Z6TapHIcI3Z7yfMgq7fD3EXb5C4/Eyj8HrUds8JmOdynze5PEk+jCEj+lQ5lgGdhbP7aWjePRzXg6gfH0RinGcY8s6KUbeHKduLlJtJPqUvGkYMX9UZ7vrx8dYzVOBJ25AOB75eqFHw3ZBY3CPh7jyeMwhRaGWUXg2VkOlBsczlfm6I+vwebm8bRPnxMSH2E7HKx/HAPCnf/bTO7remDb3P9DDR97zsKm2mV/6mYun2uCY0NcRhRBCCCGEEGKKzMyTMCGEEEIIIcTuxQEUSHw7Q0ToSZgQQgghhBBCTBE9CRNCCCGEEEKMAUfP9SSsDnoSJoQQQgghhBBTZHaehGWG3mJz8/SEiYcNctahMpveEgbFyJq1yRSXsM7xcuuY4urYDYvSJwlk9PPuWijXsaSx6YpNcWT/i6YDQE4KobWgEMqWQ9+zh6ptVU22CraqDYO9+bi97mJ43ZkPbXTnQ987C7QepEnL10LbrTNhOS3qX+PUSph3NTZ2RaY5skRazuawHOPEG/HynNbHmiXTUpfqkpEJZFRKxm0qHlN20KJkjmTLIB8nqWVFxwXZFCPLIscyxVn5vYS11NiYRnHLRkTnY4EtbCuroZzFFqrsobCsbC6YEhvtUPb5oOYqKJ6LVmi7aLNBkS11cXu9g3wMUNvd0EZkAT0T1iM/Q/F8NpSjdV1nTVppzCET5E7wzCID6rC5pCmRKkW22vMw1LJZM3UuSGnUGzVtjMZjTsKWR7EW2R/5PFQez5mE4TC2Pyb6QW1n1EaeWia2H6s8Pxvdum0234Zy50BYZr4Wn7cbK9UW0OxMOKfZSihH1kTw2ETHevnctQMcgA8WnUxBUccqeD52xAR14jml9Y8zQsQNpuyIWcIcmuwHL4bioygPC6n1TVgXs3WvLOdrKYNidRkAiui4oqb51ErXF12y4GZLdK1B/WisNKgcH98p821kQebTJs3ba+n5yH5hdm7CxJ6Gb8CEEEIIIcTs0Rdz7MVEjONHt9tCCCGEEEIIMUX0+EEIIYQQQggxFqSor4eehAkhhBBCCCHEFNGTMCGEEEIIIcSOcTh6KSmdiNCTMCGEEEIIIYSYIjPzJMxzoHugEau0ESs+WZmadVjJThrvLiu9WSvMKm1SDPdiXXdkWN3unb5Vq4ejcjbCWdvg/pJXlTTqrKeOlOBRG6xgZ8V8KRxIM4+E1t5Z257SRa8HxXC2HNTDOfW7BaB3YC7MfyyUO6yuX6rW3zbWWN9M089RpVHbmXXxpCbvHZoflteOzWNsZIailUXxbCndMOK4i1TVtC+9lhOZY7tacx05e0fMX6tOtH6cHoKUvSVFPSvrLZVygbcBx2mTfMWcBiJLHXulz6E4tjkmaAzh9WOtdk7qYaf6BcX1+uFYC79+sDoVA8dCsxGmZ5RuI1upVvMjp5lbYXsUSwtR252LxxTPBvTa/T7G43GizONrNGbU9HUzUXxVjz8pytr26D1L6KwTfeSUCZZTn2jfWY9jqLyA6n45jZGeODektPnRNiir1nn1aH80OnTsnaNFUf0eqbu7i6HcWSRdfZNithcfY81zYZ429au1SuMAZVyI0l9kpKWfC7HdPUznjp1iQW9eJ563LYE7jzCPwo7i4HwOmRQcR0VRPRbF5erGPYrl+L2CX0eHfnX6hfiY5r5WNh31r7FaepOSB/Ox1AvZQNCbo3Q4PFTz8d0L5ebZUKX9ULw92nw9ul5K+7LRj5zH/7Bx1g/NzKW52CETfRJmZo8ys9vp77SZvczMjprZ+8zsM4P/RybZD7H7iW7AhBBCCCHETFLAp/o3q0z0JszdP+3u17j7NQCeAGAZwNsAvBLAze5+NYCbB6+FEEIIIYQQYs8zzWeezwDwd+7+BTN7NoCnDqbfCOD9AH5yin0RQgghhBBCjBEH0Jvhp1PTZJpijucD+L1B+YS7nwSAwf/jVTOY2fVmdquZ3dpZP1dVRYiZgeN5XfEsZphobF5TLIvZhuO5u6J4FkJMh6nchJlZC8CzAPzBduZz9xvc/Vp3v7bZWpxM54SYEhzPLcWzmGGisbmtWBazDcdzY17xLMRO0W/C6jGtJ2HfBeCj7n7P4PU9ZnYpAAz+3zulfgghhBBCCCHEBWVavwn7QYSvIgLATQCuA/Cawf93bLWAomk4d2KzOjutQQ7ljBS8WYfrV+vBU9MBwEgRna9XK+5ZR2prVCZVu5EKmHXdKBJaeSDWb1PZ2uRYZcUw6+rX10O5QxuBNfadWBUeLXeeVMkLYT/0DpDOfa46nPKVsNz8bPDG2hpNf2gZxVIwJLKmubtA2lj+kJI+/GguU/ls2BeNZdoGpNPvPOxo1MfVo2F7rh4hVexSqNOhMt6JHVHkhrUjzUjny9rdTXEXxTDHZ0JPnVIXcxu96uVYKQ1EpLXnfkUpIVg/T8cFx1dKG15eV1ZSc0xSPINjmOuz7p7TKmTVqRhYcw0AxTzF8yLp3Vuc5oKU3ufCcZUthzIfu3xcrB2Ox7DVI3Rc0VutM6GNfJ22M40n3qY4PRLiee1wk8ph+esH46DoHKAXf4LzxnNgfanfTkqZHcd2zbQMNT7cTKnvs251nSiWy+2lzgG0v+NjhhYbaeU5PQqrrRPpIRCfP6L2+NyQVbfBum2n9no03vXm4s9boz7SuuYrPHbSuSQaW2g8XgjLXTtE6UPosGqwbh5AY7l6x/YW6HxD55XOgXD8sLp77RDFNo/NQP9X5ueJZ0B3kM0hGZ8cz8kFobJStPbno5ivMU/yWqhbqhcNz5z6pE4bHM+JtktjO2fPcM7YkIVl8RhSNDjmeXr1crgfecge0n/NwzOfNvlagyTNPD5y2w261mANvpcufzqUvmH9IKXZ4euZA9XXNt0ZfxjrgJI112TiT8LMbAHAPwLwVpr8GgD/yMw+M3jvNZPuh9jd8A2YEEIIIYQQe5mJPwlz92UAF5Wm3Y++LVEIIYQQQggh9hVKyy2EEEIIIYQYC8XWVQSmq6gXQgghhBBCiH2PnoQJIYQQQgghdozDlay5JnoSJoQQQgghhBBTZOSTMDP73hrLWHX3Px5Tf5IUDWD5uG3Ws7Iqlm+86QupWY91vKgsR8vheUtKV9aDswI1X2OlNGnsV0n5uxL8qTmp0201uFNtfYTSm5X1GW8I8gG3aZ4e6/GpvV5Cg98opQBoBWWwN0nrnZGuO9LUFlQ/1CnavNxgQbTFeP06B0N7y8fCPKukdWFtbPMsdX0lLKt1irYnqdNXTywMy6eujtXkZ64K8xdHSTve5P2BsVE0gOWL80h9O1I9HKnlQ5nTL6T6l1Lfc2xnrEEv67NTGnA6FjKK+SzSbbOTONW/EUp81np3qtM9RBp7XlZ0vNDnTXn6syduI1vb+jMqPha8FY6RgtT3qxeHuD53abzM9UPULdIdt06HcuMsqcLpGFs9Pj8sP/SI0PaZr+JYDsd91qLAweYMGOdLkQHrG8cla6cT6Rf4jSi2yvGRUIJnPHzRrs8pa0GkrY5SLqRXOj42qI959bERnT94enRIUnt5Yl4AWc5e7kS6CKvW0kerFJ33SPtdOqa7rP5mjX47bLheEQYnXqf1pTB97bBRGZX1y4p6Pj8yq8eDlv7MlSGez10e6nSO0g5vcx6C8Q3OngPrB89v3mQ3Utcpo9IkpNIsRDPQolLpTjgDTumKL6WyT7bH83q1dz95firVixdGVax6uUhcu0Wqe1q/eLSLG+HjqkeZEXokaS5COMbHFY85q+nzL6cfWT4R2l69JCysOEjXZc099Csqj4ZEMYKtvo74P9DP4TXqdP1tACZ+Eyb2NnwDJoQQQgghxF5mq5uwd7n7j4yqYGa/M8b+CCGEEEIIIWYQh+yIdRn5fRt3f8FWC6hTRwghhBBCCCFEn9p2RDP7FgBX8Tzu/tsT6JMQQgghhBBC7AgzmwPw5wDa6N/DvNndf9bMjgJ4I/r3Np8H8Dx3f3Awz08BeBH6Py/8MXd/zyT6VusmzMz+J4BHArgd4feODkA3YUIIIYQQQggAht5IlcTUWQPwdHc/a2ZNAB8ws3cB+F4AN7v7a8zslQBeCeAnzewxAJ4P4LEALgPwJ2b2Ne6+2feyQ+o+CbsWwGPcyxozIYQQQgghhNh9DO5dNnzazcGfA3g2gKcOpt8I4P0AfnIw/ffdfQ3A58zsbwE8CcCHxt23ujdhHwdwCYCT4+5AXTwDevOorwlnXWtKw5pSsiZ0q0Csu89IiRwpjbvhp3Y5qb+by2FzN85ReSWYATNS1Fsn/mljpOhmzTy7QKM9Sv7zdmjDiuqfTLJuG4iV297My9U3tZ2vhT7xZmNFffdAWGa3HX9SsnYotL9ynNTHR0i5PU8a/AYpYFd4hwd1NzyUV46FOuceVtoGx0K+gTapj4teVlneMRnQa2+eNmyr1JQnNr9xPKZiOxHPUbnN9WtqvKN0DaHDWbdaxW00netw3PTr0T7m9W5TcBd0zNBxgW7i58CsAI8UyKUBhRX8a6QPpnpFK6cyxcdc2IgdinNWFbOSvv+a2pvnsYX7SzvHQzkZzxTLcxzLpf1a9Mb0SaWF/RTFGtubuSlWStP+3TzW0nup8TlxPuDlFqRg5/KodCeRij6Z4oTTkoDKnKKheiOUj+eCxldLaPA5BllRP+JwrVwOEK9fj8bhLsVgj9OS0KHH4/Tq0TB9/XC1pn/zhg4Ls2OhzIr75ctoXSmeW3Mhnns0Hvu4YhkADCgGGSay6ESWrj/sR+q6I6WlLxvceTU4RhKpHziOUueIkcdLlNKA6tG1Dad+sFTGlsTmL48xUcqfGrr61LaKzl2c3YEyz3hJuBxtH9qIfB5mRX13obqDfH5knb6V1rVDaQ5Wj1PqkyNhsJjKtcYFwBFl2pgWF5vZrfT6Bne/YeOFmeUAbgPw1QD+q7t/2MxOuPtJAHD3k2Z2fFD9cgB/Scu6azBt7GyVJ+wP0d+eSwA+aWYfQf+xHgDA3Z81iU6J/Qef2IUQQgghhKjJfe5+berNwVcJrzGzwwDeZmZfN2JZVR8rTOS2cqsnYb84iUaFEEIIIYQQe49d9puwIe5+yszeD+A7AdxjZpcOnoJdCuDeQbW7AFxJs10B4O5J9GcrRf0t7n4LgO/eKPO0SXRICCGEEEIIIXaKmR0bPAGDmc0DeCaATwG4CcB1g2rXAXjHoHwTgOebWdvMHg7gagAfmUTf6v4m7B+h/2M15rsqpgkhhBBCCCH2IY5d9yTsUgA3Dn4XlgF4k7u/08w+BOBNZvYiAF8E8FwAcPdPmNmbAHwSQBfASyZhRgS2/k3YvwTwYgCPNLOP0VtLAD44iQ4JIYQQQgghxE5x948BeFzF9PsBPCMxz6sBvHrCXdvySdjvAngXgP+Evj9/gzPu/sDEeiWEEEIIIYQQe5SRN2Hu/pCZnQHw9e7+hSn1qbovGdBd3CwniVTELVJbt0kT3KD5WCO6Hn4SZ+vVqlHW0ANAthbeYy2xkXo11niH+p3VUG6dCeXmOdJ7dxpUjtc3I/Uxa72tS09JE0pjxgtWKKe8uyUirTSpgVPqb6t+FO2sYW/SNlh2rB2s/olipK7mXbkY+n7uYWFZy5dR29zeHC1onl258Y8jO2t0WLAWNx+fHMcN6M6X4pdUuWU9bvSa4pzjOaMYzlYpTUIwPCOjmG2sgOpUa7iBeJ+xHjmn2M5XSdcdKY2rddsc2xwHQKz4jrTQiV+wFh0+fii2e3wwkKa8SfGbpb8yESnW8+r5C5rutB6dBapD2uRNfiWO5wWK5yspni+h+rQNevMUz4u9qipYX0sP8Vle89jfAs+A7sLgRUKfzfHbozQTSI3NADIan7PV6nE3X+VydR2m4EO7tOt5f/O4ndZqcx3W1YcVz9coBUGv3vjBxwwfJ2WF/7BLUTzSdNbY5/HK8naIYpjHI8r0UbRCnfUDNL3NdarHqOW5uO3Vi6sP5ILO2VigeM7CcrsdXsFQtDHKdT0Dirn+wqNsLhzbFLd8reF8jihoTE1cX1hRCsJEOh1OgVPua2XbvG2K9NjO9Vgpztczztc5PLbXUPBvugyIjrHqZfE6pdJZRNcRjeo6RVnZz5k+eH5S2XfnORUJ7VeK7WIh1F+7KJGfAHFcZJRagcfdHqUzcpp/XGPzhaScEkVUs+XQ5e4FgL8xs4edTwNmdtjM3mxmnzKzO83sm83sqJm9z8w+M/h/5HyWLfYOqRswIYQQQggh9hp1xRyXAvjEIE/YuY2JNfOE/QqAd7v795tZC8ACgJ8GcLO7v8bMXon+Vx0l+RBCCCGEEGJG2YVijl1L3ZuwnzufhZvZQQDfBuCFAODu6wDWzezZAJ46qHYjgPdDN2FCCCGEEEKIfUCtmzB3v8XMTgB44mDSR9z93lHzDHgEgK8A+C0z+0YAtwF4KYAT7n5ysOyTZna8amYzux7A9QDQOKJvLIrZhuO5eVDxLGaXaGw+pFgWsw3Hc65rDSF2hMPQ2/rXTgI1fhMGAGb2PPQTlT0XwPMAfNjMvr/GrA0Ajwfw6+7+OPS/yvjK0bME3P0Gd7/W3a/NFhfrzibEroTjOZ9XPIvZJYrlBcWymG2ieD6geBZCTIe6X0f8NwCeuPH0y8yOAfgTAG/eYr67ANzl7h8evH4z+jdh95jZpYOnYJcCqPNUTQghhBBCCCFmnro3YVnp64f3o55Z8ctm9iUze5S7fxr9pGifHPxdB+A1g//v2LIHuaN7qLtZRUta1qwZnK7NdlCCthrVbt8eqVu7veAzLUgh210tbaKz4XXzIVYRUx22Ls9RmZS/3Tbp2RfDchrLYebGSqw0zklz22uTgpy0vUaK7kjXTf5Zz8jdyg7ZstKeX5LuOFJ8N0hvzHUidX31MvP18GLhvl5kSGRlemOZlfOkYyZtbKSQZQU26Y0t4xUq6WRZG8wx1aDtOUZFfdEEVk94pDouWNc9HytqWXHbaFF6AnIDF72wbVh92yWFO5Ypfh8McdCmrH+srt/Ub1Zbk3q9R/GcUuKzuj7SEJcOao4pI/X3Jr3yRv1m9VCURXp8ihWK+bK6O9YjW+X0lNaelcgFHxccvqWUFxznPdYmN2ll5/nYDZMtoaQuaN9z/OaNUkyNS1HfANYvKjb1z5vUKUoPkbdDudGKU0UwUTxTDHe7tKGXaew8HcqtU6FKFM8JhT4Q76doPSjmWRvO8VhYdazw8cKa8U26+mhoqo6vqG2en9Mv8PHZqO5T+XV8LNL8OZ9vaDqX+VTCmnEOzbk4zooFXpHqttl5Hqm7s+qxOR+n0jtz9DZSPlA/+HgzartJ8cz9iMZmWgeOay4DcZxjNWxcPxfKnIrEaXtECvc8MW6WNlOkmY8yelTHjpHOnVM3pFL0lFNyRMcDLSuaP0oNQvNG42t1nUhpXzqMomVF5y7aT22+QOHl0vRoXOPjMG4vs+prj1Q853SdmmdS1O8X6t6EvdvM3gPg9wavfwDAH9ec90cBvGFgRvwsgH+K/qHyJjN7EYAvov81R7GPkaJeCCGEEELsF+qKOV5hZt8H4Cno3+/f4O5vqznv7QCurXjrGXU7KYQQQgghhNjdSFFfn7pPwuDubwHwlgn2RQghhBBCCCH2PLVuwszsewH8PIDj6D8JMwDu7gcn2DchhBBCCCHEzGDolX+IKiqp+yTsFwD8H+5+5yQ7I4QQQgghhBB7nbo3YffoBkwIIYQQQgiRwgEUStZci7o3Ybea2RsBvB3AUEDt7m+dRKcqyR2NA51I6VmGtbis6F4jFT2rQlkh2m4GR2rWDnpQnyfHNoCV+eBVXW8FVy/rka3DTurq/tpiqNNhjTfp2Ftn4x82ts6Qtp309ZGSmpTe+SqpzDuRf3ZYZN22lRX1BKu8izzxg0teLumRiya7n6k6dWnuVIEe1Yt0u7Rc47QCC6RQZqU76WdZLx3/TjS9rglD9HhpOHpHO3F8jGiXFfodSpvA2nwjrW2D0jVklK6hWAyO9PWFEMu9hbDRWqfijmQJtXz0bQNaDVYXs06ZVeHNc4nlADBS27KWm2Oby5EJl2OwqNY0p1Tkm+Zn1XheHZuxsry6f6yhz1fj5opoBOYVIY11Vp1ywROhw2rskRkoijEFeu4oDg92etR29TFWkKp9vRfirpwCIopn0oBzuoaCx9EDYWMuL4bYbp6h8bGUIiBFrIOvLuc0bvNyOdb4x+mRArxbOsa66fFoWCeKtVSchjKP2XUV9ZEefNRxUtEnp/Nej1KJWDm3BO9nqw5iS+i9OSZsxLXAjsiAbL4fY6m0JKlrjYL2S5ZIj8Ia+1Y5RQOlsenMh5253g7xXKzQTubsO4lUA86Dc3l1ePNTTEbK+OoMP9Gu43Gex/9R7WWJ4yqqznGaV5eLhKJ+xCk+uaxUOh3wWJmnYnNEg8lLJt+qitjj1L0JOwhgGcC30zQHML2bMLGn4RswIYQQQggh9jJ1FfX/dNT7ZvZT7v6fxtMlIYQQQgghxCwiRX09xvWlTSVbFkIIIYQQQoga1M4TtgW65RVCCCGEEGIf4y5FfV3GtZUm9AtZIYQQQgghhNhb6EmYEEIIIYQQYiwUui2oxbhuwv5gTMtJYhioXUv7lTXzWVZS4W7My3bRRJ0U7UaskG0fCK/PkGp2tRF09XYmbNZ8pVqPzNZeVqwWS1QOVtr+azIINs+G6RmpgVn7ms+FtvN1UvsmdMhlkzAriosWKedJPx8Zhnv8olqDz8u0kqmYdd3cF95uGWmhLWzyGNbGNmhBpJbNGvHKRqkLuEz7eLuxMxIDrFkkFbflVAwp3fd2Nc2ciqF9OJSXKd3CajsOvMZDIUBZM5+vUSXeNPR8vTdHVaLUAaSuX44P6iiOeLGk6c/XabuxTjmKR5qZYovjt9cqtR2lUKjW4LP6m9MhcCVP6KKzkpGatyFvn4g68Uxxanl1HJVjZWzxbI6sMdjYfHxz26n4TWjJy8tKEcUzlVdaYeevz4V4zs+FWM5W4y+CRGMLj328X+jQ4Njm1ANJDT6va2nTG8V2pLLnFA0cz7SpeNxMxVC5vUhhzhpwq64TacC5SiIdRaQQL/eJz9nN0DGO4SyRuoPP96x6b+QJx/n5YD48P5glxuRtKsdT8V+GY3iuFQJplVKOrDQotQilK7E1SgvQqe6gN+J+OKXjAcWzr9Oy1qvP90XiGInG41IajOi6Z5ta+rgSlTltx4jvdqXSlCSXm9plfBzTWJuXrimiMZlnT6TxyKPz/xivNcSuptbXEc3sF8zsoJk1zexmM7vPzF6w8b67/8fJdVHsB4pxfRwghBBCCCEuCA6gh2yqf7NK3Z5/u7ufBvA9AO4C8DUAXjGxXgkhhBBCCCHEHqXuTdjGw+bvBvB77v7AhPojhBBCCCGEEHuaul8C+0Mz+xSAFQAvNrNjAFa3mEcIIYQQQgixb5Civi61tpK7vxLANwO41t07AJYBPHuSHRNCCCGEEEKIvUitJ2FmtgDgJQAeBuB6AJcBeBSAd06ua0IIIYQQQohZwQEUMyzLmCZ1v474WwBuA/Atg9d3oa+ln95NmG3WdgOxyrPZCM5TS2ltyVPKdZwWzY9RraQybZIK9+DCKtULC1jJguu1Z7SJV0gln1DIRrrhTYp6rke67oQeOaf5c9bXsiaWtPdlDTErkbOE1j7SzydUxzw90oOTEhcAOgtUj/Tzke44Uh9vT8/OythGM/bjxrrjonJ6MxufBtnMkZf6kLFavKQ0TimO+Zhg5bjTDiiozMvh9VxcDEG0XNLjdij9QnGGdPXnWBlPfY3iK5SddfUUm2UzZr5aresuEmkdeNPE34Cg5dCmTtcHCtbPc5oFPlyjeA7lHuvLOX5HjLIc21G9qJPVY0UUz+2wgqzrZu0xx3L/vfFokM1CygeOu5QePxnLpek8vycO9VQ854uhvELq6PV2CMjOarxjWFnPiu9Ibc1jJO2W3hylXKA0DkldfQlL6OcjtzWn7UjUj+IpkSahTDRWJ3T3yeUiMZ3XoVdqvKjuDCu+W3Qu53M8n495PM63mapjFMN0OOXpWfX4nIrnlHLck370eKxu0TwLrTDActurpPjvtsJO8m5WWUZpO2WUyiGnctEO8/SWQyAk1fd07jIaQ6104KZS1EQxkYp/VE/3xL7fFKdcLzo2UoNLog4XE7EMxOMrX5umYpWvTccZz2J3U/cm7JHu/gNm9oMA4O4rZuXbk2rM7PMAzgDoAei6+7VmdhTAGwFcBeDzAJ7n7g9us+9iD8E3YEIIIYQQYjbpjfiwQQTqPi9cN7N5DD4DMLNHAlgbPUvE09z9Gne/dvD6lQBudverAdw8eC2EEEIIIYQQe566T8J+FsC7AVxpZm8A8BQAL9xBu88G8NRB+UYA7wfwkztYnhBCCCGEEOIC4rCZTqA8TWrdhLn7+8zsowCejP43ZV/q7vfVbMMBvNf6X5z+7+5+A4AT7n5ysOyTZna8akYzux59EQgaFx+q2ZwQuxPFs9grKJbFXkLxLIS4ENS6VR38/uu7ADzB3d8JYMHMnlSzjae4++MH87/EzL6tbufc/QZ3v9bdr80PLdadTYhdSRTPBxXPYnZRLIu9hOJZCHEhqPt1xF9D3830dAD/Dn3RxlsAPHGrGd397sH/e83sbQCeBOAeM7t08BTsUgD3nk/nhRBCCCGEELuHQsmaa1H3Juyb3P3xZvbXAODuD5pZa6uZzGwRQObuZwblb0f/Ju4mANcBeM3g/zu2WlZmjnars0ndaZF+fmv1cR7pbquVs6yJHaWTXWiuV5ZPt4OX+FQzaP+6Z0n1SjrkSFfPOuTS3mGtt5PqvXEuTM9IFZ51qQ5rv0lv3KEP/bolQyGrmRvL1TrySD+f0IZHmnFap07pA8fOEtVrk546tQtIixvp8dnI26jWeM+3aSUAtCOFbFFZbth4lN5AP/ZarW4Uz1ZDe1wmUpDXSL+QokV64oVW7NU+Nxden1sI7vX1c9XxnC9zbFM/aL9wrHkpNQKnVsi6oWxRyoRqpXGUxoGWw/Ny/KK0S5Mq7oQ2metzyoXuPPeJD4a4vdSyorYjtTIp2VvV8VwnloExxrMFvXgddXfKq1vuXyr9QoqMdlKLxoZF0nt3FsJGXlmnYAGwth4Gp/UVem85TLd1OjdQG5xSoyBdfaS9T6RJKL8XKbCjOKiub3SMMCmd/uaK1fU45ULRokp5jbF5lBKftN4cC5xiYK4ZBo5WlHqm+pydj3lsbre6m9qLy1svp05qnLrzN2gbzNP4XCyEhXV7YYd3ihAs51ZCcK4txzHvPVLZF9QenSuN4q63XhqshzOHYtHla430ykaxk0ppkNLVJ879EeVrxTwxDtcJHYpZ5/7xxkGccobjeb7ZpemUfoHjGVuPnWLvUfcmrGNmOYId8Rjqhe4JAG8b2OwbAH7X3d9tZn8F4E1m9iIAXwTw3G33XOwp+AZMCCGEEELMHg5IzFGTujdhvwrgbQCOm9mrAXw/gJ/ZaiZ3/yyAb6yYfj+AZ2yjn0IIIYQQQgixJ9jyJszMMgCfA/Cv0b9xMgDPcfc7J9w3IYQQQgghxIzgMCVrrsmWN2HuXpjZL7n7NwP41BT6JIQQQgghhBB7lrpf2nyvmX3fQFUvhBBCCCGEEOI8qfubsJcDWATQNbNV9L+S6O5+cGI9E0IIIYQQQswUhcQctah1E+buF9xdZ+ZoN3qbNcYJ/TwrYRsJvXGR+M5qSlcPAB3ysLNGtEXa0UYntBfpTNdZV0waV1LUN1ZD9bJ6tbvoleUir56fdfWsK2btNyu9e6RZLs/Dyu1IFd6rnp5aTqw9juv15lj5TNuQFN/WSEg5aVvlzdCRNunVF+bCBplrxF7nVk4K2aw6dsatqJ9rdZMq2nK6BY7tlAac0ynwdO53QW7e9W44/Hn5zSzekaw7PuvkYWdtL6cIaJB2l1IjgHT1rHPfFHecYoDmieKW1fWJFAhRSgfW44/ajYnUCgwfM5xGglX03HZB2wOteKGsOY++Z0B65YziuTUXVpzjeZ6V3hTLkeZ6xNi5Eww+1IinlN51UimU+8Njb7QeefVA06M4zaKxudrhfs7jAagoqo8f7lWUToTKvfmwTr0FOt4oJqJ5S+rulL4+Ov2krmm8uhxtzmKEKpzik+PZaZ9xnIJTKdB4HCnAueMlVTjrz+fmQwwvtqtTvqTGPo7nDOOJ5Y02NhT5qRQiqTE4dUylYnlUv7sJ9zqPzxzzazT4dbphJ0XhUZSWeS7U662EcnEgjCeRrn6OzsvlZW1A4/mm9CgJ5bxlie0QpQuqrpIiuUzEaRK4nOXVB5AnFPVZk9IqtOPULhzPcw0en7dW1KeuWcXeo9ZNmJk9vmLyQwC+4O6JLCVC1IdvwIQQQgghxOzhDvSUrLkWdb+O+GsAHg/gjsHrrwfwNwAuMrN/4e7vnUTnhBBCCCGEEGKvUfdW9fMAHufuT3D3JwC4BsDHATwTwC9MpmtCCCGEEEKI2cFQTPlvVql7E/Zod//Exgt3/yT6N2WfnUy3hBBCCCGEEGJvUvfriJ82s18H8PuD1z8A4H+bWRvRz+2FEEIIIYQQ+xGHfhNWl7pb6YUA/hbAywD8OIDPDqZ1ADxtAv0SQgghhBBCiD1JXUX9ipn9GoB3uvunS2+fHX+3NpOZY7G1Vjl9g0ZCZcvqzyyhk00qZEvK2fVejipSalrWuLKimPXXrGAvutSP0jPGfCW81z0Q5uktkhK5Rbp6qs9KcGO9d0ppjNgmy1puULlImFR789S/A+RfnmOlcUmZTbrjNmm5G1Sv2QjTU8raNtXhmGEtfaukYU/pjhtZtU52p2TmWGitb5pW1YcyViPm6yx3PaHuLi9ntdusrBd1kdS+vYVI6h2qrFTHP2u8AaC7QHNTF6Pjh3dfSitv1eVIMV/zY6gofcLi1vHMquMmTc9LMc/xnNK7zze7VA4xE6XFSKTkGDWWjSvlQp55pGOuoo7eu9yfVPqGVAoJHsO5zHX409mipG0vejRWs7Z9KaxbNw/Bk61S8PCyeD1IV9/jtCTrpcDjVffq4yQi9ROIxHjupW3JWnos0BhH4y7HcMYpEzieOS1MQgmelXTbqXjm8ZljIRXDqTo7JcscB9prI5dba6xNjLv8+5XyOM/zsKI+imda71W6hOPYZkU976O5A/E11FoW4tmXw7KKVVouxQGnFKizvxt5vTEmdb7jderRMVYU1dsmNbaUX6dSZjQSsc2pALo0TnD9A6Xr07lE2ptU7MRjeCLfj9hz1LoEMbNnAbgdwLsHr68xs5sm2C+xz8hS+b+EEEIIIcTM0EM21b9ZpW7PfxbAkwCcAgB3vx3AVRPpkRBCCCGEEELsYeqKObru/pDZ7GoghRBCCCGEEJPDYdHXREWaujdhHzezHwKQm9nVAH4MwF9MrltCCCGEEEIIsTep+3XEHwXwWABrAH4PwGn0TYlCCCGEEEIIAUC/CatLXTviMoB/M/gTQgghhBBCCHGejLwJM7M/BNKubHd/Vp1GzCwHcCuAv3f37zGzowDeiL7c4/MAnufuD45aRmaOhUZns2a5hpY+rl+tHI/1xqQqLjmCWSNaJDzBR+aXh+XTB4IbfnWZtLHn6M6dFtMlvXe+Gi+fdd2smS/mQ5+8HaZ3GqENY4Uya4yrLeX9atU2/lh9TKrjgnTd2YHg119cDFrbNumJWbENxDp5fo/3ZTS9huq1RRst1gfH+zWvoTgepY3fLrk5FpvrtVIpjCLSdSdiM6XwbXnYll1OpVBue25lWDy31BqWz3Qphim2+UOp3gGKTYrHjGO7dBhxHEXm70hRn4jnhKI+UtGP2LQcz876+QXSai+QJj4Rz/OtEP/thKoYiFMllN8bTq+hLj4f3Xz5GDhfzBxzjc6wPOzTNtMnlNchtT1S83draKsbrdVhubMYD3CnqNzp0Fjd4PnD9l9fplwH58KplMfarBX2fU4G2O5a3LYX1eeSaHoi5QLoWHA+Llgr34rjpjUX+tWmPnLKhCieEyr57Y7N5XnqxHOdsXBcsQz0leUHBuubTIFT41xQ51qjWyROsojHcE6Nw8s6mIdzJvfvAQt5Pta6ITYbrfiEP9cO49SZZrhW6Z4NsV3QON+iFAaH6bzAfWXlO8dKmdQ2XO2F/nYS2yf1eyOOm7w81lJ8LjTCes/loZzqU+p8ypTjNJ0aidNqVF9r1rke2c044nUTabbaSr8I4JcAfA7ACoD/Mfg7C+Dj22jnpQDupNevBHCzu18N4ObBa7GPqcoBJ4QQQgghxF5k5E2Yu9/i7rcAeJy7/4C7/+Hg74cAfGudBszsCgD/GMBv0ORnA7hxUL4RwHO23XMhhBBCCCGEmEHq2hGPmdkj3P2zAGBmDwdwrOa8vwzgXwNYomkn3P0kALj7STM7XnNZQgghhBBCiF2JoZf4uY6IqXsT9uMA3m9mnx28vgrA9VvNZGbfA+Bed7/NzJ663c6Z2fUb7cydWNqithC7G8Wz2CtwLLePK5bFbMPxPH/iwAXujRBiv1DXjvjuQX6wRw8mfcrd6/yI5ykAnmVm3w1gDsBBM/sdAPeY2aWDp2CXArg30e4NAG4AgEOPPjHbv1QU+54onh+leBazC8fy0qMuUSyLmYbj+fCjjyuehdgBEnPUZ+RWMrPHb5Tdfc3d/2bwt1ZVp4y7/5S7X+HuVwF4PoA/dfcXALgJwHWDatcBeMcO1kEIIYQQQgghZoatnoT91uBrhKO+3Pl6AI/bZruvAfAmM3sRgC8CeO5WM+RW4GBrdaSulvWkzaxacZ7SyqfolXSkBS13PaFPPdomhe/Foe3PU9+X7w8KWVtP9Sm+R7YVUhHzW82wXCOFrDdJ2dyrboN1ygnzar9et1oJjnnSGB8K+ueLls4Ny0faQWXLmljWxwPAYiNokOukGMipDn//OEe1DnYUdTTIKTXt+ZCb42Az/TB5cyqG6niuO/8GUSqGSIHcqJwOAAcz6uehh4bFu6nOmWw+vODtxGpm4+MllItGqa8LpK3m+TuJz4y4u6yrT33ElIplAJgLbc8dCPF45EBIO3GwHeJ8jvTzXF5ohG3WjHTbcTzyfmpaaDv1KWJKb5yqM4pOKgfFNsmtwFKF3TTWMpPKPFJ311OR14n5Iq9Wf3dZA03LueJAiGUAWCAN+4MrYXzu0RiZk/b9HJXXWCWfh+mczoDTc6w0SG8PoFds/akx6/9ZXd9dzyun56SlX5gP/QCAg/MhhnnfcQzzfmKNd+rcWndfMuMaw8cVy8BgbKZUBsN+JJTj273WiK4paLsCcdzy/Hxtw9cdPP2S+TPD8gGK5fsplst9aiY0+nxkcGoF1tKfWDgblps4r2xOO1GdkoDXO9b50/ia0N1zGzzutkvXF81Eqg/WwXdqHId1n/CkfhOV1xjL9sLvqfbCOkyDrW7CDgG4DaNvwr5SpyF3fz+A9w/K9wN4Rp35xP6Ab8CEEEIIIYTYy4y8CRt8jVAIIYQQQgghRuJu+k1YTbSVhBBCCCGEEGKK6CZMCCGEEEIIIaZI3TxhQgghhBBCCDGSnr6OWItaW8n6vMDM/u/B64eZ2ZMm2zUhhBBCCCGE2HvUfRL2awAKAE8H8O8AnAHwFgBPnFC/NpFbgUPNlU3TU/pn1pyygrSsnK+Cdamd0t08/9iQ2+smdPXH54LGdeFE0NHefzBoY8+tt4bls6vtYXnlobloWettUhG3wjo15oOKtdEKZWdtLCnqPaFh9ZIJuOhRvdAtNOdCG0uLQeV7bDGsK6/3UjPUKWtjU/A+y7C1ojil+q5LSj/Pyx2nBjmzAguN9SiG6qrM6yhuGY7hLq0DHwusVl4v0sPC0XZQtc8dDfvy7FKIYd6WK50w/b6HFkM/5oKiO2vG+6vZro7hWqudOLyj+KdlNkttL5G6++hCWFdebx6HOJ5TYw7H7yh1d56I87q67w3qplIYVzxn5jgwSLfAfW0k4rnOmA2k45zVxxyrHM8ppTeP3+UUGZctdKh8OiyLdNarvRC3XzxzZFh+MAvtzbfDcljp3aA6a+34GFujFBGsq+dtwqr81U7oR56H5bZIg3+gHYyznFYBAA63Qr/YTFveJsM2aqjo68Z8XvN42GD6Y7NjMe9vE973dc4rdVKDMOV+ryeuVaL90g0n40gNT+WLWiFFzLF2UNfPj1Dif7EZ4vlAO6jelyiVyqV0XCw1Qkxx22sjzh987PN56RytU4NSK3B/F/PQj1Tcta1TWafcx17i+UMj3/61wyQYZzqcC4Fj++mg9it1b8K+yd0fb2Z/DQDu/qCZtbaaSQghhBBCCCFETN2bsI6Z5Rh8Fm1mx4AajyeEEEIIIYQQ+wTTb8JqUncr/SqAtwE4bmavBvABAP9xYr0SQgghhBBCiD1KrSdh7v4GM7sNwDPQ/9XFc9z9zon2TAghhBBCCCH2ICOfhJnZ0Y0/APcC+D0AvwvgnsE0IYQQQgghhOiLOdym+jcKM7vSzP7MzO40s0+Y2UsH07/RzD5kZneY2R+a2UGa56fM7G/N7NNm9h2T2lZbPQm7Df3taQAeBuDBQfkwgC8CePikOiaEEEIIIYQQO6AL4Cfc/aNmtgTgNjN7H4DfAPCv3P0WM/sRAK8A8G/N7DEAng/gsQAuA/AnZvY17j52febImzB3fzgAmNl/A3CTu//x4PV3AXjmuDszitwcBxurm7SjdbSxuVU7RPiHg6yK5WU2SgpZvuPm97rUBqs5G8a61aACPtIKyusV0h6fXg9a+rvnhjflAIAzy+E93g4ZqY+NPhDIs8R6JxTIm+uFhbF2+bIDQVN7Yj7ob1khy2rZ1D4q7xeuxxrk7SrZmd55aFKLxA9K59CpnH4+ZMN4DutZV98f6+qr9zHHc0bK4MzDvBzLkV66FBNdTstA++IgpR5g5TWvx7lekKiy/neFFNtzjfR6r3fDeuRZaNsidXfoX5Pa4DrdXlhOi9o7MR9SKQDxcbnYCPHM61Qnnnk75SNSD6Soo2dPxWlUf0SdJsZzPsnNh5pzHu/Gqe+PVNz0BQ7eFxzzrN6uk0qk3D7v+0taYbzjNliDf2puflg+QErvWJVPp9uSW5iPsdUuHa9Wfbyeo9QPPM5fPBfil1ODzGfx2NXOtx5reF/yONMkbXudOB81fnM87yTmm2O8NsqtGI5tqW2wk7QR0bUG0ufAVDwvUGzydL7u4GuKw5RS49LWQ8n2WMd/bi4o44+S7n4hC9cwddIClJ9QpOL5AKVJ4G2+lHN6mxDDHCscH9yncqzUHXtT829Feazl/cHbmetxHT6W9oLePZUG4ELg7icBnByUz5jZnQAuB/AoAH8+qPY+AO8B8G8BPBvA77v7GoDPmdnfAngSgA+Nu291t9ITN27AAMDd3wXgH467M2L/cj65vYQQQgghxL7nYjO7lf6ur6pkZlcBeByADwP4OIBnDd56LoArB+XLAXyJZrtrMG3s1FXU32dmPwPgd9D/euILANw/iQ4JIYQQQgghZg/H1r/TmgD3ufu1oyqY2QEAbwHwMnc/PfgK4q+a2f8N4CYAG49kqzp//l/JGkHdJ2E/COAY+pr6twM4PpgmhBBCCCGEELsSM2uifwP2Bnd/KwC4+6fc/dvd/Qnoiwf/blD9LoSnYgBwBYC7J9Gvuor6BwC8dBIdEEIIIYQQQuwNil30mzAzMwCvB3Cnu7+Oph9393vNLAPwMwD+2+CtmwD8rpm9Dn0xx9UAPjKJvtW6CTOzP0PFozh3f/rYeySEEEIIIYQQO+cpAH4YwB1mdvtg2k8DuNrMXjJ4/VYAvwUA7v4JM3sTgE+ib1Z8ySTMiED934T9KyrPAfg+9DsmhBBCCCGEELsOd/8Aqn/nBQC/kpjn1QBePbFODaj7dcTbSpM+aGa3bDWfmc2hr39sD9p6s7v/7CDR8xsBXAXg8wCe5+4PjlpW03o43jpdWxuaUuTW0ZmmFKIAsFoE9WtWhOWyjjmlR26SSrhDWu0WzXu0GRTDcyWN8F35odBHmn+u2amczoruxWZQwEZ6e9o2rTx9o79ACtnL504Nyxc3g+I7tc3j6fU0v1yPVacpJXsdHSr/ULRcP9VeFBdj1MY2rYdjrTPJ98v6/pReNxW3rKLn7dz2EFNrCXV9o2Sq7CZUxFliH3N6gsMUzxzn964shfZKqRQ41lZJtcz7r8WabFo/1iyzHpzn5f6daAf9OBArkccZzym2++Pl7cbmqDrbVTCnaFgPF7f640Bqe9TR94/S6fM4zPXalJNjzUOsrFEbDVacUwyez/pf2jo1LLPR9a78SGiPYnCBYm2tF463Tllnzeec1tYx0aFzDCvjjzaDTvwApQxJpWkpE52vIj371vEfL6fe2M7EsV29DbjOKB35TmhYD8ebp0fWSan16+j0ud+dUsqERk7pF5yuFzj1A6fWyarHgyK6zkmPAZc2wnqyAv7eTkiPw1r6Q3kYz3k9VunYq0sqJQH3YzFbq6yTSi9U51qhXG8nY/Aotq2432b6kd2MO9CbvphjJqm1p83sKP1dPMgefUmNWdcAPN3dvxHANQC+08yeDOCVAG5296sB3Dx4LYQQQgghhBB7nrpfR7wN/d+EGfpfQ/wcgBdtNZO7O4CNRyXNwZ+jnwjtqYPpNwJ4P4CfrNkXIYQQQgghxC7kAijqZ5K6N2Ff6+6rPMHM2qnKpXo5+jdxXw3gv7r7h83sxCCDNdz9pJkd306nhRBCCCGEEGJWqfvF07+omPahOjO6e8/dr0Hfs/8kM/u6mm3CzK7fyH599oH1rWcQYhfD8XzuQcWzmF04lpcfrP7dhhCzQjQ261pDiB3RT9acTfVvVhnZczO7xMyeAGDezB5nZo8f/D0VwMJ2GnL3U+h/7fA7AdxjZpcO2rgUwL2JeW5w92vd/doDR1vbaU6IXQfH8+IRxbOYXTiWF47U+lKEELuWaGzWtYYQYkps9XXE7wDwQvSfYr2Opp9B37E/EjM7BqDj7qfMbB7AMwH8PPqJ0K4D8JrB/3dsu+dCCCGEEEKIXcU4bdJ7mZE3Ye5+I4Abzez73P0t57H8Swfz5+g/dXuTu7/TzD4E4E1m9iIAXwTw3K0WlKGIVKlVbFdfzj8c7HjYFKtU7hTxJpojfWpKa85qX9anZmCNd6hzAOHrPAca4ad3i434az7L3aCBPbU2H5bVCH1irf2BZpj/eDvo0FPbkVXHQFoZfbRxjsqkqKf1KxLbo642lklt57ivpHdN1kmnHoj07qzOpb6P84emmRVYyleT6vn6et1q/TDH3XIvPKnoIEzntAqsqC+vZ+o91lDzPubyocZKZXucxoE19ACwRHF/cSvEGm8r1m8v5OuVdViBHB2HVOdQHvoHAEtZ/HqD7cZzXY1xSuPL7aXithft+2rlcs+qY6X/3njiObcChxp9dTVv86ZVp7yok26hTKT1ZjU2pQxpgNIW5NVjEacGKbeX6he3x/v74mYYUx/shi+GnOnODcusqL+oFcbKspo8eSxl1ek4y+elDTjFwgLpvcvxmDqOW1bdXiqtQJaI/5yWWY7xWuOzVcd51A9qu1P75+1bk6PAgXy1cvqwTzUU53xNwWNzk3K+rqJZmqc61rKMdPzUdjYinqs4S7EJAJ1G6ONh0s8/1AvXF8tFeDJ4ceNMZf0zRVgu76/yGNCk+GoZpxkpqqcn4iseD6r3ffl4LhLjZYrU2Mztla8j4vlrtFFj3BZ7m5Ejl5m9wN1/B8BVZvby8vvu/rqK2fj9jwF4XMX0+wE8Y5t9FXuYuhetQgghhBBCzDpbfXy0OPh/oOK97WcmFUIIIYQQQuxJHFLU12WrryP+90HxT9z9g/yemT1lYr0SQgghhBBCiD1K3S9S/2cAj68xTQghhBBCCLEvsZnWxk+TrX4T9s0AvgXAsdJvwg4CyKvnEkIIIYQQQgiRYqsnYS30fw/WALBE008D+P5JdUoIIYQQQggxe4wyR4rAVr8JuwXALWb2/7r7F6bUp0oycyxma0llaZk6GtxOjYd5eRb7R1g1y7rcIjGdVaopLTArf1np+tVz90RtLxwNKu47Tl8+LD9Auvq5VlDAPmLhvmH5RPOhyrZZSdy2oFPur1O1JnuR1MesQU7pjZn66u5EWoGoT3SQU5HbYJ3sqNgprHpdIyX4GA2OORxL+UpS/Vxe/6SanPq9RrpuVusvkM6d1da8TFZmc8wCQBtdmqd6+7OSOlKC07I4Bg8dDHrjL60ejdpb6QUlMqdpuLR1KkynuONtyCkkWIec0hjPWZyuIZWCIkU91XE99Xo6lUaYvs7jSUJjHI1xvPxS/XH9cDpHMVT98zaLVeZbj5Xlk/Y6H7teVJepDY7t1LjbptCuq23nZT3UCyp6judHz58clj+3dmxYPk1KcNaeP6x9P+rA4ysfY6zm5+3GY3hKAV6mTgqQViLdQErjzcuZK7WdGp9TKQ1S6Ql4Oby/dkpmXpmqIqXdTynLWUWfOg5HadRT681jNcdzFPOJ/bjmsRL/ZOfwsHxF64FQbobyfd2DwzLHP4+vx0hdv57Q7APxuM37m8esPJFmJJV3Kn2tUEpDQ9skFfNRWgGvPve3vDpO10vnTR6fU+l7onOt7ln2JXV/E7ZsZq8F8FgAw7OKuz99Ir0SQgghhBBCzBTu6Q9oREzdj/bfAOBTAB4O4OcAfB7AX02oT0IIIYQQQgixZ6l7E3aRu78eQMfdb3H3HwHw5An2SwghhBBCCCH2JHW/jrjxRfOTZvaPAdwN4IrJdEkIIYQQQggxi0hRX4+6N2H/wcwOAfgJ9PODHQTwskl1SgghhBBCCCH2KrVuwtz9nYPiQwCeBgBm9rIJ9UkIIYQQQggxYzhsbPbdvU7dJ2FVvBzAL4+pH1uSwbGQrW16xJnSjmak6i0SSu+UgTrS3ZbqZOQRZX19Wes9rJNQA7OetR1ptcP0o/nZaJ6vWgzK+WYW9LAfuO+rh+V10tcukRL5suaD1Nfq3c465HLfm+hVTmfq1In17+nH1etg3W5CTZvQyrPWthVpcKu1wgDQo3lSOtlxkluBpWw1il/uXzOr1uACaXUxd7UTaYJJg5+I2YymZ15P9xypvykeOTa57YUs6OC/qhFieSkLcQoAn1y+bFheI+34HB3TJxpBD877iLXJHI+ROppigvtXJpXSIJVKINL3J1IblGO53rI4hUWXpm8zFUN5VROK++2SW4HDeT/lQMqIxXrvlPq/rHiO0jew+j61XyiGc9LYR3E+Yn8znKogpXfn/XVlKyjned47lq8cls/2gq4+b8XLZMV3NA5Y9Zjay6qV3in4WCgzKjVGFVEMJ66z4nEtXib3hcfnKP0Cz1PnWm58hno0EOI5pcRn7X6HlOWp8ZyPT15mWcsfxWoiLUMK3q68zecS1xfl9jjtwVWtrwzLrJX/UueiYZl19VzneB5iuQyP4XEaCB7Dq9c1eVEfpadJB0udsTo6Z1iYzukyUqlBmh6n6InGfb4GrXGtUec4FHuDndyE6TZXCCGEEEIIMUTJmuuxk9vtMX72JIQQQgghhBD7g5FPwszsDKpvtgzA/ER6JIQQQgghhBB7mJE3Ye6+NK2OCCGEEEIIIWYXx4jf8IkI/fpPCCGEEEIIIabITsQcQgghhBBCCDFEyZrrMdGbMDO7EsBvA7gEfdn7De7+K2Z2FMAbAVwF4PMAnufuD6aWAwAGR8t6WC3t2Dyhby7NPISVoHkWyqse9KysB23lJe1opBplBWm1kjrVV9azLmUrw/IonSxrYL9u7q5h+cFDi8Py3507Nix/duXiYfmK1gPD8kWkkF31VuXyAWDRglI80vYTKV30akKDP0f68vLjalbF1tHEpzTgHdLb8/7KRjwdz6JUB6G87tV1dorBMZd1Ii0zt5vSYpfJovgP8cLqYdbrskY3Faeb00AktOOs2qX+chyxEpxju0XH6iNa90bL5b5/ZuXEsHzX+tFhmRXKRwc66f681akKmFQsl+HYPleE4yQaH6JjtFq3zXr28rbkdAC8/9gstU7DdBHFaUo7zvX5OCodb2M6SWZwzA3Gik7ilMJjM28P3k4txERae1J055G6O9RJff0lpYouH2Op8TmOZ+oH1WG19VXNkH6hMx/W7xPLlw/LX1gLYzMQpxC5snE6zJ9IfTJKxV1F+Vjg8x0zR+vK80T6+BrjcaRLL9Xn8Zm71aJVCmeeOE6bVq1hTwv4t0//WqPiWoL6GsUmaddZ884pILgOx2/5GEylYuD1novSVFDKnMR4zMvhNCFlUqkOLqF0ILzen107Pix/uXt4WL6qGdI1XFK6flp11tLTGGfV43avRjqEZdrmPG/5+onnj1MPbH0dkYo7rlO+PuBjIFWvSX2KYwdinzDpW9UugJ9w968F8GQALzGzxwB4JYCb3f1qADcPXot9zHYvKoQQQgghxC7D+8map/k3q0z0JszdT7r7RwflMwDuBHA5gGcDuHFQ7UYAz5lkP4QQQgghhBBitzC134SZ2VUAHgfgwwBOuPtJoH+jZmbHR80rhBBCCCGE2N04lKy5LlP55ZyZHQDwFgAvc/fTW9Wn+a43s1vN7NbTDyR+7yXEjKB4FnsFjuWHFMtixlE8CyEuBBO/CTOzJvo3YG9w97cOJt9jZpcO3r8UwL1V87r7De5+rbtfe/CoRI5itlE8i70Cx/IhxbKYcRTPQogLwURvwszMALwewJ3u/jp66yYA1w3K1wF4xyT7IYQQQgghhJg8EnPUY9If+TwFwA8DuMPMbh9M+2kArwHwJjN7EYAvAnjuVgsyOJrWRXOEMp5h3WqqTkFa1Myr9aybdd2kJ3XWjlbPz0rXOVK+83LmSF/LOmSeDgCL9HqpGZTzxw/fOiz/RevqYfnzqxcNyw90g8ae+83luWasr80y7jspphPq71gtW63vj5T2vP3h8YGUUOx2Eup7VoVH9VlXz3rvko6Xl8tboazNHhcbWu851jJ7tYq8Xz/0txXpchN6XVpW20mPzLp0mpfrp1TFI/sRaXdDrCxGymtSJdOxsFjSJn/TwmdDPXrvZOfwsHyuaFN7vcrpB7PVYZmPpRapg0fp6jmeO9G6UioF21qRHo8NpbEoMU7xOrHmn+M52meRip6WGaV9iNuu1HCfBxmc9nPY3xwTvG4cX1EqCiuNtdG4QWkWaNss0NEaaacT7cX9jqen4nkuitVE+gWKr4NU5/FzX6js990Uy0Cspz5jc8PyOU4hQv3gY6zO2LwpzmnVOUZi/Tlrw6vH4/jcysp42nfl7c9doUOmSKZ+CHDMJ1PS7BAzH+6rVNqPVHqPLOPjkOO/OpZ7pZifQ4ijncQzpwPh7crTgTi2U/EcX3eE9AvMV7pLoa+03udKYfdAL8R2Mzpns/I/lFuJsYzrFwllf7O0naI0Qnw8RKkHepXTo9QgNa41+n2p3mfRtQan6IjGn3ppVMTsM9GbMHf/ANIZD54xybbFbDHLn2QIIYQQQoiBmEPXdLVQSmshhBBCCCGEmCL6BaoQQgghhBBiLOhJWD30JEwIIYQQQgghpoiehAkhhBBCCCF2jGO2jYXTRE/ChBBCCCGEEGKKzMyTMAPQRG+TnjWlimVGKbc3YFV4SvUNjFLR12mDVOGkIGXVLmtVWaVdfo/5qkZQIh9bumNY/szckWGZ9bOnioVh+Uxvfli+vxc0swBwugjvPbL5lWF5kTS3ZwrW7VYr7ZN+zEgNW9qX9B7rlZvGSurq/RTrbkM/WAdblDqVW7WYvkf7e5xKZNYgb5dYB0/TWUVcSm+wAat268ZypKTmtik+8yilQNj+KaX93IhteZQU30+ZD7r6L7cOVC73jAftMWudTxdh+imEmL+yEdI7LJT2waki7Ps82vfU9ygVQ9gBBSmKUykyyjHUpHI07iSWlSf2WVk/X0U+Qse/EziW88S2QSJOR42brO+O1d005tCnrYtZ9fqljtty6pJWNA6H/Z2K81Fj9QZHaaz8B/OfG5a/3JqP6uXR+BzeY3U97+KcVe358rDMx/05b1L9eDun4pnhNUrt11glX53GYdU5ykv7PKGr70W6+sruIY8U4OOL7Y1rjU3tWSK2ibKmfFg/EcvlGKwzPnOc8nm9iPTs1fr3TeNPYmzh6fxEY4mW+/Wte4blUzSm8rxf7oZxF4hjgVOInKNx+3DOqUXCstYTqYa4vWZljT5FpLivTpXD8DmKtwGvQ+pao1+PxqnEfs0TY2QTk0m/IHYfM3MTJvY2dW6mhRBCCCHE7qb8QbeoRle+QgghhBBCCDFF9CRMCCGEEEIIsXNcivq66EmYEEIIIYQQQkwRPQkTQgghhBBC7BiHnoTVRU/ChBBCCCGEEGKKmPtktMXjxsy+AuAcgPsudF8uEBdjf677bl3vr3L3Y+c78z6P5926TyfNbl7v847nQSx/Abt7/SaJ1nv3oXg+f7Teu48dXW9Mm4OPOuFP/G//ZKpt/unT/5/b3P3aqTY6Bmbm64jufszMbp3FjTwO9uu679X13s/xrPXeW2xcHOzV9dsKrffeQvGs9RZiWujriEIIIYQQQggxRWbmSZgQQgghhBBi9+IwiTlqMmtPwm640B24gOzXdd/L672X120UWu+9yV5fvxRa773JXl+/FFpvIabEzIg5hBBCCCGEELuXpUdd4k/4tRdMtc1bnvlLMynmmLUnYUIIIYQQQggx0+g3YUIIIYQQQoixUEC/CauDnoQJIYQQQgghxBTRTZgQQgghhBBCTBF9HVEIIYQQQgixY9whRX1N9CRMCCGEEEIIIaaInoQJIYQQQgghxoLrSVgt9CRMCCGEEEIIIaaInoQJIYQQQgghxoDpN2E10ZOwPY6ZHTazF9Prp5rZOyfQTs/Mbh/83TTu5QsxxVh+mJm918zuNLNPmtlV425DiGnEs5k9jcbl281s1cyeM842hACmOj7/gpl9YjA+/6qZ6WpfzCy6Cdv7HAbw4q0qjYEVd79m8PesKbQn9h+HMZ1Y/m0Ar3X3rwXwJAD3TqFNsf84jAnHs7v/2ca4DODpAJYBvHeSbYp9y2FMOJ7N7FsAPAXANwD4OgBPBPAPJ9mmOD/cbap/s4puwnYJZnaVmX3KzH7DzD5uZm8ws2ea2QfN7DNm9qRBvaNm9nYz+5iZ/aWZfcNg+qvM7DfN7P1m9lkz+7HBol8D4JGDT0FfO5h2wMzePGjvDfokSYyTWY5lM3sMgIa7vw8A3P2suy/vZJlitpnleC7x/QDepXje38x4PDuAOQAtAG0ATQD37HCZQlww9Juw3cVXA3gugOsB/BWAHwLwrQCeBeCnATwHwM8B+Gt3f46ZPR39T+2vGcz/aABPA7AE4NNm9usAXgng6wafhMLMngrgcQAeC+BuAB9E/5OlD3BHzOwVAP5JRR//3N1/rGL6nJndCqAL4DXu/vZtrrvYW8xqLH8NgFNm9lYADwfwJwBe6e697W8CsYeY1Xhmng/gdbXXWOxlZjKe3f1DZvZnAE4CMAD/xd3vPL9NIMSFRzdhu4vPufsdAGBmnwBws7u7md0B4KpBnW8F8H0A4O5/amYXmdmhwXt/5O5rANbM7F4AJxLtfMTd7xq0c/tg2dHA6O6vBfDaTXOmeZi7321mjwDwp2Z2h7v/3TbmF3uLWY3lBoB/gP7FwxcBvBHACwG8vub8Ym8yq/GMwbIuBfD1AN6znfnEnmUm49nMvhrA1wK4YjDpfWb2be7+53XmF9PBoWTNddFN2O5ijcoFvS4Q9lVVZHvF/D2k9++W9bb7aau73z34/1kzez/6F7G6Cdu/zGos34X+p7+fHcz7dgBPhm7C9juzGs8bPA/A29y9k3hf7C9mNZ7/TwB/6e5nB/O+C/3xWTdhYibRTdjs8efoD1j/fvC4/z53Pz3iq9Zn0P/KwLbY5qdTRwAsu/uamV2M/lcOfmG7bYp9x66LZfS/mnPEzI65+1fQlxncut02xb5kN8bzBj8I4Ke225bY1+zGeP4igP/LzP4T+jeJ/xDAL2+3TTFhHHDfuprQTdgs8ioAv2VmH0PfdHXdqMrufv/gB7cfB/AuAH80gT59LYD/bmYF+rKX17j7JyfQjthbvAq7LJbdvWdm/wrAzYMfkd8G4H+Mux2xJ3kVdlk8A30RA4ArAdwyieWLPcursPvi+c3ofzB2B/pP5d7t7n84gXaEmArmul0VQgghhBBC7JDFqy/1R//qj0y1zY9+93+8zd2vnWqjY0CKeiGEEEIIIYSYIvo6ohBCCCGEEGLHODDTCZSniZ6ECSGEEEIIIcQU0U2YEEIIIYQQYs9hZlea2Z+Z2Z1m9gkze+lg+jVm9pdmdruZ3WpmT6J5fsrM/tbMPm1m3zGpvs3M1xHzxUVvHjl6fjOP0z1S5wnrdturWT/ZdJ35J7UNqOyJ6bWhPhr3t6iebjQ9OW+qXCbR32id6COL5fvuus/dj41Y4kjypUVvXHQkXWFTX3fwaN/2oHwnWqUxfu0hta22G9vJGLRa9aLY5qbrxLMlqpSbpnhev+v84zlfWvTGxSNieVNHxshOdn3teSfR+RGNT6U5r3wv1StPxXCt6aWu1B2TtyJ17sEO4/kAj80X8itV1fto35LaBlYvlqNQ44Aptp5uifLIOK/qa7lPqWup0uORtbt3dr0xfWy3JWvuAvgJd/+omS0BuM3M3od+KqWfc/d3mdl3D14/1cweA+D5AB4L4DIAf2JmX+PuvXF3bGZuwppHjuKKH335yCMrNbgnD5oUIy646sRVrX4gMf08Tl7Jm5Ht3qRs6hhV43JOZYqgoknlRnX9qPEiLDQrpRDN16m8Wl1u8PT1sNysw2VquhixspT7pIjWKUzvtkP5o7/x8i+kF7Y1jYuO4JJ/+2PRhh25X1IXOCmim8cwQzzon8cVUI0DgBe703E42cXUxd92j/XydwFy2lZUtgaVMz4jJ7rXC294NzRi63GD1qFjYC2U83WKiy51l8qp8SQKFY7l0mjfa4d1+uwrfuK847lx8RFc+qofHTSYqESd2qmQ11IxnBy3Exdpo+K/Tr3txjYfFyNuxqP3at7YVEKhFsUsAOPYpvEhta5FLyysoHgGl9c5znlsj9c1ivlUPHM3Ehen0fmmFff7cz++g3i+6Agu/TcvHTS4zZ280xvoGrFdawwf5+dSO1jWpmN91AdSlY1TbFLM8jid5UVlnXIs83FVdCie18MFiq2G6fkKl8O8fN2R0XUKj9MAkKXGZ45hujYqWqHca8fz/O+f3dn1xn7H3U8CODkonzGzOwFcjn5EHhxUOwTg7kH52QB+393XAHzOzP4WwJMAfGjcfZuZmzAhhBBCCCHE7ma3Zr8a5E18HIAPA3gZgPeY2S+i/7HVtwyqXQ7gL2m2uwbTxo5+EyaEEEIIIYSYVS4e/K5r4+/6cgUzOwDgLQBe5u6nAfxLAD/u7lcC+HEAr9+oWrH8idxW6kmYEEIIIYQQYixcAEX9faOSNZtZE/0bsDe4+1sHk68DMPjuMf4AwG8MyncBuJJmvwLhq4pjRU/ChBBCCCGEEHsOMzP0n3Ld6e6vo7fuBvAPB+WnA/jMoHwTgOebWdvMHg7gagAfmUTf9CRMCCGEEEIIsRd5CoAfBnCHmd0+mPbTAP4vAL9iZg0AqwCuBwB3/4SZvQnAJ9E3K75kEmZEYIZuwtwGBqRRTzj5vTpWNZ71fL7tmbIV1tD21jEdbrKf8Xts4qljgjwflXyij2y04rCMLG4Ja6LnZEmj57BeNrclLFi9uVDuroVyg81ykckodLyxwusQ73Dz6o0VGbiovGNsw+S0w68Zb9cwVepD9TJHNrh1e3WaKKqPi/7rOuvEZQ7ORP1R7SXqJYeTnBphsxyVs0Y4ENmy6M34oGaLYq9Nxq61aksXKOZzKhtbQHn5bN0rb5txfltksO4jjYNbNDvKGJj27icWbNX7JdpHebwvMn4vKpN9jbuRMBr2CtqPbMkseFBL+6x5G9Yx053PD+Atsa6W2G45x3OLxkdav4LjtxO0b71V1uPGFlCwgY5NcwmzXASvd7bDcZQxwBsV8ZwycdZhu1bAEe1ZwhiYivNRx2TKxOm0/XmsjsbtGieQcvzWGR/qfI0tXtcwPadjOivFBB/HHMO9+bCA7jzF7QKVl7kc6jeW6VqDri8ARGN1xtdJfB2XUtTPzJV5Ne4X5OuISdz9A0gH7BMS87wawKsn1qkB+jqiEEIIIYQQQkyRGb/fFkIIIYQQQuwWdlmy5l2LnoQJIYQQQgghxBTRkzAhhBBCCCHEWNityZp3G3oSJoQQQgghhBBTRE/ChBBCCCGEEGNhN9kRdzMzdRNmxWh1bVK9ntKzsyKd1KmjYidpWGW9a6SjJZWqV05Oq+uLuCOR2pSsv5HJtkYmg0hVXdeWy21zGymDL9VnlXbUj7KROqGsL6jca9MMi6HYJb1x4xzNe7Zaid8o94n63iN9bWcxlNeXMD4yRz7fjZS9kVL3PNS+qV2ZbKMmBcVhEcV5tTY8NfhGSm/SdXvpmK6lRN7JVx1G6KKTX6Hgvner+8SLYoUyEup6ADBO39AKB1bRCgd4N+eDPRq0hsVIAk5NF4lUEf02xvN9kbxR4PDR/kGXkwY6S6iqs0Qsl3/IzfuiQCLuapA6dvLSdO47lxtWPZ1hLf1aL2z0tW4od7qkuS7S65CzGj6vbpu3LW+bSI9fVE8vv8fbvaDcIL1O9RdlovGEFOl5I+Qo4VjuNOLLjF5Or6lto3LqKzpOgb6hkQeAojGeWAb6x+iBi5Y3Tc+jVAXnn0bgfC5OU+1l0XTaL+cxQHIcdSkOuj2KW5oenQsS8WxlTXyiv1xOpXuIzgup9BAcv6VrIaOx0xJjdbNNMdwMC+jyeNwKA6lHY3O8DaKQXEclUfodurbpzuu7fPuFiX4d0cweZWa3099pM3uZmR01s/eZ2WcG/49Msh9i97Mph5EQQgghhBB7lIle+rr7p939Gne/Bv2EaMsA3gbglQBudverAdw8eC2EEEIIIYSYURwG9+n+zSrTfP7wDAB/5+5fAPBsADcOpt8I4DlT7IcQQgghhBBCXDCm+Zuw5wP4vUH5hLufBAB3P2lmx6tmMLPrAVwPAI0j+saimG2ieL740AXujRDnD8dy89jBC9wbIXZGHM8am4XYKfpVWz2m8iTMzFoAngXgD7Yzn7vf4O7Xuvu12eLi1jMIsYuJ4vmg4lnMLhzLjUOKZTHbcDznBxcudHeEEPuEaT0J+y4AH3X3ewav7zGzSwdPwS4FcO+U+iGEEEIIIYSYBC5FfV2mdRP2gwhfRQSAmwBcB+A1g//v2HIJVkOpzAbrlO47WU7rwZltZwHnQIw071ZZRpfqlB7oOmua6RlmZFqmPRpp5dmsnFDJjyKykTerp6Panh21kdH6ZR2qU9LJ9iK1NqmI24kdQPrZjHSwvRb1KQ+dWsvjndydo3nmaTqpYntj1MY28x4uOXo6qZ1OqbDrwirgRkK3zXVS2nAA6JImuEuBt07qYtZys1Y4KifUw0VJb5zUbEf6YarTJY1xL3WApyYX6beSVB/T3DaXbUSXMlKQF5F7unoeVnT3opilY4RivmiF5Xs7XtesXSOfRQ1aeRdXHjwFII61FFlCpT0qBrPEQDVqnq0oK/ELr9Zv12mDjws+XlbpuODjpXyBwnrwOnrx6DgkDT54PKF4apM+Hohjks9p3MfV9TDQ97pb6+obFMt8fup1owQKKOjc7KS4j+J5geKZxn+neLYm6ftbOxsvmVbewxWHT/XbrnEhmRpH6+zHuvFbp16UaoDKqdgs1+sl4j/SxEfTq+ftRSr5ctqJVLqT6jpRegnqel5DdV+MSMuQukGI0hBw2PKQ38l5hrDM8jUFfUHA6RvbfE1RzFPczofxOJ+Lj1exd5n4TZiZLQD4RwD+OU1+DYA3mdmLAHwRwHMn3Q8hhBBCCCHEhNGPwmox8Zswd18GcFFp2v3o2xKFEEIIIYQQYl+hFLlCCCGEEEIIMUWmqagXQgghhBBC7GEk5qiHnoQJIYQQQgghxBTRkzAhhBBCCCHEWNi2SXyfMvImzMy+t8YyVt39j8fUnzS5ww92YXlJKU2KW8u2udcTj0uLhGoaANBL6LBZk5pXa1VZF+OkS2XFtnVIz9qN24407qyZT622V5cjPf4os2/qabJX12EtMacIiPpnIx5RU72CItNbXlnmbRWp70lRz611DoTy2tF4o/WOhgU0FsMCGg3Su6d7vm1aWYHLFk+jkVVrwlmXvfk9ih1aQ9YPp9TKKXUxT2+UgqKVhz7OWdhOGacOqKFEXi+C2pdV2D1Pa5M9oUpeJS33OimDu6TDZo09H28cZ17S4ztrjRNxHsFDAM96HiegaDxZo5QLqzQ+0JjA6Rp6S2G/tJZC/C62Qx6IvDR2svb689vvbrScA821TcuMldk7+9JFSh9f1EgqwPHcooFivtEp1dv6WOT2OOVCl2K7IFX1QiPsi7r68kg/TwPhcjco4891Qh4CjrVur1onjtgSH20TVsvzsRjty8RmTunZo+N7PW7cVsJrPhcVlELBlsK+WVxaC+V29fYs89nkO1uTm+PgIJ5TY9l2Uxik6mxOk5CIbZo9imcam+P0I9Undo5ToDQmUzlKS1Kc/7FbHts7HBd8buDpvbCyHRrPWT+fkUq+1QzboEnn0/LYsN4JxxIfJxldq7Sb1Wr46LiiMdjWq/cRAHQXaXw+SvF8ZGVYPrK4XNn3MjuJZ7G72eq68n+gn8Nr1Jnu2wBM/iZM7G30qYkQQgghxEzj0G/C6rLVTdi73P1HRlUws98ZY3+EEEIIIYQQYk8z8ibM3V+w1QLq1BFCCCGEEELscRzJn/uImNo/czGzbwFwFc/j7r89gT4JIYQQQgghxJ6l1k2Ymf1PAI8EcDuAjV8POgDdhAkhhBBCCCHENqj7JOxaAI9xl3RSCCGEEEIIUY3uFupR9ybs4wAuAXBygn0ZjTnydm+zj5111imPLiupPa0UrQWr17kvND1vkzKV9KmsiI61wqRnJV19We1brJOqer1aW12HyF6b0Nj3KybKNH/C6hyp+dlwWzRIM9tEDOt5WX9OWnrQti0arIjm5WSV0zsHaJlHYz11mzTIrUZoI6l8HhOsoGbt+movPjRZ59shlXCk/E30j3XYnCGAY5CnzzXjbXPIVoflg20qN1ZRRY+Chddvrcfr16Q6cZxHKmhaFuubW6TrPo250DYHWyI2LbImx0Eff85UI0dD6hipGSucViOjdAhFi8ptGuMo5ov5UKd5gLT0CxTLpLAunxTr6N3rYNic1gAAur61/pqnr3XjmO8mtPYp1TuPxw1SWC+Qip4V9Yt52E4AcIBep1T7ax7ijuO5k9GY49XHZHOEQpw1+Ge67WH5LKnoT6+FOOdt1Uuc91i9XVahr5H6uyjoWKTp3fXQhlN3OU65jSaNm7wvuq3Sfp2jGKa+23zYNwcOhrHl0EJQerPGm8fB3g406qNIpd5YT6jWuQ5P5zLHVp6VUu4kVPZ8fLUbYTvN5aG81AzbbD6Lx/ANOqVjimN1hcdkiu3UscukFPzlsZ2P146F96L5KVyK1tZjVOpYLV8PplKf8Hies/6/UX0C6SzQscfXawulioth/qUjQUV/8YGzwzKPTXzO75S2m9i7bJUn7A/Rj9AlAJ80s48AGJ6p3P1Zk+2e2DfoR5xCCCGEELOPnoTVYqsnYb84lV4IIYQQQgghxD5hK0X9LQBgZj/v7j/J75nZzwO4ZYJ9E0IIIYQQQswMpmTNNan7Rep/VDHtu8bZESGEEEIIIYTYD2z1m7B/CeDFAB5pZh+jt5YAfHCSHRNCCCGEEEKIvchWvwn7XQDvAvCfALySpp9x9wcm1ishhBBCCCHE7CExRy22+k3YQ2Z2BsDXu/sXptSnSsyALC82K1yN65C6OKFMZU0p60WT318tTWdVLytQWTXdIC39wlxQR7MumumwfpwUwZ1WrCntdEgVu0b6YFoPsK6eN0HB6lbSOvdoHUYcNNFm4C+x5olKtLDUpo0t7B61H82TKBtrvElpv3agukFrktJ7rhu9x/GS0tJn2WYN9/nSg+FstxVNS2mPgVh9HMUwK5R71d8ublBqhJyCghXlvWid4/nnG9W64wbpopuUq6CgAOHprE1ey0OZ1chArLXndWWF73pCb8zHZNGhdeLtyeNEI96nHBeWSEfhiTGE24vyMnBcl7XJdPxlOem+F8L26bVIM0/zc/qLdjv0m7dHKm0BAOSjDvht4AjxmUWa+NA/VrJ3rVq/3M3i+OWxMMKq90s0Lx1Lq1TnQJO2d2neNunrWVXdY603q9rpuMooZjOvVmaPYo3mX6Zx4aHV+WH5wXOhzPp4o3Fpfi7EzWI7nHvmSscwH/sr6+VcIX28RvoXVsyzKp/HnMXFOJVFpx32DbfRapJ6vRmPz8N5E1r6sup9J3A88/5jvTqr4bNG9f5eT6QS4W2fla5UeT1SscNx26J+8Pi62AjpFnIK2h7SinpO2cDxuNIL8cjrVCTOSam0IgCptZFOr9KkbbDYCnPMkZqflf2pc8RaKc2L1TjHp9J2LLTCsdQ4EtpePcCpIuJtyykbFml+3n/c3yiNge5g9g1b/ibM3QsAf2NmDzufBszssJm92cw+ZWZ3mtk3m9lRM3ufmX1m8P/I+Sxb7B3GdD0ohBBCCCEuFN6/uZ3m36xSV8xxKYBPmNnNZnbTxl/NeX8FwLvd/dEAvhHAneh/tfFmd78awM2Iv+oohBBCCCGEEHuWrX4TtsHPnc/CzewggG8D8EIAcPd1AOtm9mwATx1UuxHA+wH85OYlCCGEEEIIIWYGfbupFrWehA3yhX0KfSviEoA7N3KIbcEjAHwFwG+Z2V+b2W+Y2SKAE+5+crDskwCOV81sZteb2a1mdmvv9Lk6XRVi18LxvH5q5UJ3R4jzhmN57dTq1jMIsYuJ41ljsxBiOtS6CTOz5wH4CIDnAngegA+b2ffXmLUB4PEAft3dHwfgHLbx1UN3v8Hdr3X3a/ODi3VnE2JXwvHcOjy/9QxC7FI4ltuH5y50d4TYEXE8a2wWYufYlP9mk7pfR/w3AJ7o7vcCgJkdA/AnAN68xXx3AbjL3T88eP1m9G/C7jGzS939pJldCuDe7XddCCGEEEIIIWaPujdh2cYN2ID7Uc+s+GUz+5KZPcrdPw3gGQA+Ofi7DsBrBv/fUacTlnmk/QSABmnfjW6Gm1n1dKZbVCtWmV5J+71GauDOKqm0SVXdZZV8M0xnRT33m7W0rGddz2PtbkbK7JzU2gX1MSqTrj5SdJMWu6AmrKwhpnqp7/d66hW/Qds2paF3ACBFN5edyqnPOzKOi2rjcjIOgJKKmDqZ0z5oJFIMnA+9wnBmvR3FKVNWb7M+O6VEZsUtq3ZZt82cW28Py6ukA2c9cXlZjcSy5vNqBS8r8XusLkb19gaAFq1rShkcHa/0IIbX9Wwe1m+djluPtPDx+rRapMluBeUz69y7qZQSTdI3syqf00OUU15EGvAwnfvFMWgJPXsqJQerjvMsrjOueC7chlr1FsUzK+pZZ83TD1CZtd8A0CU9der45OnL3XDgr1C5oPLp9RAs83msbed0Cny8peB+8LjNGvu6H9DWSanCPGRhPfgcxfX5vDLfjNeV99NSM2znlFa9k5jOaTUYjs2ybp5fl9NhVMHHSLRc0u6n0r/slNRyeRzk8Ypjm8cM3n6cbqRMl+pxPLPKPFayhzpreagz72E8zvm6yOL1iWKeTpAc/3yccP/4PNGhdeI6rdJxxNuzSWU+Xj1xrPM2j1IERDERpnfLaV5a4XUqzlP7httu0rjECv3y2F7n3MV9bycU/GJvU/cm7N1m9h4Avzd4/QMA/rjmvD8K4A1m1gLwWQD/FP0buDeZ2YsAfBH9rzmK/Uxe42wshBBCCCF2N7qkq0WtmzB3f4WZfR+Ap6D/2d4N7v62mvPeDuDaireeUbeTQgghhBBCCLFXqPskDO7+FgBvmWBfhBBCCCGEELOMnoTVoq4d8XvN7DNm9pCZnTazM2Z2etKdE0IIIYQQQoi9Rt0nYb8A4P9w9zsn2RkhhBBCCCHEjOKIzWsiSa0nYQDu0Q2YEEIIIYQQQuycuk/CbjWzNwJ4O4Chk9Pd3zqJTlVh5sizItLulmFVL6ujWQOaZax7DvOmNPHWjL/YOkeq3+Vmq7JtboO18r1IAR/6x6ro+WZQy8414k8SVvOgcU2pgVl/GumzSZvfo+lJjT0QKepZJTxK9V5VH7zevfTMkYo+r1Zxp9T3kdY2r97+jJWmc6/qqL93jqGb2IdArJsH4vXjWOVypCNnhTKnRqDpkUqeltMtpWVokf6fFb6n1kNS07NZ0MHPkdJ4MVLXhzZ6Iz4la7N+mNaJVcncxoFmGMYOkjL4dDv0iXX8rC4u6/vbpM9OpQ9g3fR6RlpoUtrztuXjfq0bD7lrHVLnU71opMir9zeTUtfzsVpOezCu2HbYUPkcKdVJq81xk1I0t0rbO/Uea8AjPTXFzSrpy7k9rlOOwbO9ECOs32ZdNyu9c3bR06J4/Of6o7Y39/FAHmL4YGN1WD7cWhmWTy2EY4/15Qxvs7JqPUuMcQ3qe4OOpZQym9s+2wnnwzWaXlZ3MxyTKRV9NE5RP6K+jlHpbbS81D7jeO72wno3Cu5f9bjbiuKp1G86JfAYxyp6bnuulGZhA47lPBpD16N6C/R6jvrb8+p0JwzXWSmq932npHxfbIT2FqjMWvtUWoY64xWfLxqlsTKlsmdi/T+NX3TOSB07o5aVGvNS5+PJXXdMjzrpJ0T9m7CDAJYBfDtNcwBTuwkTexuXol4IIYQQQuwT6irq/+mo983sp9z9P42nS0IIIYQQQgixd6n7m7CtULJlIYQQQggh9js+5b8ZZVw3YdKgCCGEEEIIIUQNaidr3oIZvg8VQgghhBBCjAUp6muhJ2FCCCGEEEIIMUXG9STsD8a0nJGY+UjdLauB80S1LKFy5uWyUrpRsvaxhpp11uvdap0pK6iXu0HjyjrquXZY5pHF5WF5qRkUwQDQJM0wa2BT+tMOKdBXGqS3J119l3T1vZKaPFJmk9Kdte+sIeVt6KSiL3i5rKj3aiV3fwI78ctvDhcQ+kT7qdEkNTPp1VPpCYB0XETa94Tufiewpj7SzZcVtYn+MZFKmLZtt6jeTqzrZp1vOf0BK9kfWg1q7PtY20vb6UA7xO3x+XPD8qFmUGyzmrksWeZlsR6cFfcNUn83il5lHWahUa2PH6Ux5uOYy+ukoU5p7Hk5fHw28rg93pfrnerhmFNYtCmeU/FiCQVyWW9fXvdxUEc/n1JQp6YDwLqTwprinHXfXGY9OOuvGdZ+A8ByN2i9OY5Yq320GeKZVfJMh/rKSvV2Vq0TB4C1IvSFx+24H2uV5RQF6cFZuQ9gmFKgXC+LVOoUd7RtudyjfXGmMzcsR+krSF3fb4PiIpE+ow6TUtQ7KMZoqI3juVpxniXOHXVpJFIx8DjTScTzCmvsKZZ5/y41V6N5OIXCgdJ7VfNzfLD6vuNh3jNZiANW1wPxdUtqG+aJ7cYxvJJQ9kfPFUqLicf9reOO4389odAfFYO8rQrf3vOO1HlsltgDlv2pUCsyzOwXzOygmTXN7GYzu8/MXrDxvrv/x8l1UQghhBBCCCH2DnVvz7/d3U8D+B4AdwH4GgCvmFivhBBCCCGEELPFtM2IM/zUre5N2Maz3+8G8Hvu/sCE+iOEEEIIIYQQe5q6vwn7QzP7FIAVAC82s2MAqr9ALIQQQgghhBAiSa2bMHd/pZn9PIDT7t4zs2UAz55s14QQQgghhBCzg0lRX5O6Yo4FAC8B8OuDSZcBuHZSnRJCCCGEEEKIvUrdryP+FoDbAHzL4PVd6Gvp37nVjGb2eQBnAPQAdN39WjM7CuCNAK4C8HkAz3P3B7daVpUinHXM/H4dzXhK9T1Sgx8tixTRzTC9RzrrSP3dCJrTDqnhWZ3Oy59rxArXOYTXZzuktialMbfHWtss2k5ht3dImd0tK+pZN03bjZXZrHpnXX1B24CV/zy9vPVZiZ+C+xSp7xP7krftPKUU4HUAYr1sFDuJ8jhIxR+wWSee0h3bCN16FSm9bsuqYwUAGqRk71JMtUi7m1KTx9NZ103q+SI9DLFKOI+WS31KKNlZwV9k1f0rq4AjRb2RlpjmXyCpPuvSeV35mOxGiud42/LrcxT+PD6k6s+Rdj+l+m6MSHswTq33Rnymjpfz0eGnYr7OccjzptT1B/L1aJ5GIt0Aa7wPNUKahUN5SCfCfVomLXekqx/x63Hub2obcloHVsPnqI7nlFocANoZn6PC+i3kIaY4DQTDcR4pzknZ34jOPYvR/JzugeN2Lk+kkTCOYU5DszMdfB34+E7uo8T0ZqRBr96WZVL7kj8uzxJ14nQenGqDrw/ifvA8C1k4HloWpq9S+oQedYT3fdMTuvly3NGYuuaUlqHY+nkA932epncozvMobtLrmhpDeFvxcld64ZjuJnTz5fH0fPb/Vv2bKfbAKkyDumKOR7r7L2CQ0sfdV7C9BM1Pc/dr3H3j6dkrAdzs7lcDuHnwWuxj6tyACSGEEEIIsReoexO2bmbzGNzbmtkjAWydLTLNswHcOCjfCOA5O1iWEEIIIYQQYjcgRX0t6t6E/SyAdwO40szegP7Tq39dc14H8F4zu83Mrh9MO+HuJwFg8P/4NvoshBBCCCGEEDNLXTvi+8zsowCejP7XEF/q7vfVbOMp7n63mR0H8L6B6r4Wg5u26wGgeexQ3dmE2JVwPLeOH7zAvRHi/OFYnjuxdIF7I8TO4HieP3HgAvdGCLFfqGtHNADfBeAJ7v5OAAtm9qQ687r73YP/9wJ4G4AnAbjHzC4dLPtSAPcm5r3B3a9192vzgwt1mhNi18Lx3DykeBazC8dy6/D81jMIsYvheG4rnoXYOfo6Yi3qfh3x1wB8M4AfHLw+A+C/bjWTmS2a2dJGGcC3A/g4gJsAXDeodh2Ad2yjz0IIIYQQQggxs9RV1H+Tuz/ezP4aANz9QTNrbTUTgBMA3tZ/kIYGgN9193eb2V8BeJOZvQjAFwE8d6sFZeZoNbubVLRJLX1C8ZkndPCjdOHlflSVFzJS+7L6mzSlrLtd7gY96+m1uWF5rRd2yWo33j0HmkEhe7AZvCjrOenuE+vBuu7lnJSzrXAf3unFWmzWwfP2aeasDa9WT/O8rHTl6eX2Vjthfdc71aHptM8KMip6j1ThpF9mhX6LlP+LzVhP3Uro/FMq4p1i5mjn3fPS4Sc14NtUjqeWM2exbpjVwKyRZh0wx+0y6Xw55ruk6z6YrQ7LrA7uz0P6bNYgW7Xyt1GQujirVgyvkQZ/lLqb16mXVWuXU/U7pDc+jXBML6+F462c/iJPpJToWfXnY1yfU1gcaIR4Tqm+R63rTsjhWBjo8neiVh6VLqCOrp7nZ9U01znYCHF3SfuhaFknGqcr22DlPCu6Wem9mIXxeIlicLloVy6zTNNCPR5TF2gsY939WiKtQ5SKBKy0j+OJNfN8/B1qBO3+nIU4OlOEeH6wE5Tz3CeGl8nnHgBYJ005x+pSI2zDeUofUEctzuu6UzJzLAzaT8VXSo/PdZpRqoh6ivJmSmVOq8fXPIu0zS5unhmWD1P6hHUPsXK2F/ZjGdbSH83PDsu9PMQOx3O07xNy4/L69PJQcY3U93zO4FhNxTDHb50YBOLjlY8xnp/HcG5vnuJ0pRf6zee0Vrk9mqdNx1KzRixMKuXC1HAoWXNN6t6EdcwsR7AjHgO2HvXc/bMAvrFi+v0AnrGNfoo9zmripksIIYQQQoi9Rt0r319F//dcx83s1QC+H8DPTKxXQgghhBBCiJljL+SbngZb3oSZWQbgc+gr6Z+B/oPn57j7nRPumxBCCCGEEELsOba8CXP3wsx+yd2/GUBtvbwQQgghhBBin6EnYbWoa0d8r5l930BVL4QQQgghhBDiPKn7m7CXA1gE0DWzVfS/kujuroyzQgghhBBCiH3F4OHUFe7+pfOZv9ZNmLsvnc/Cx4mZY67RjRTNQKzy5PdYE8/q7iLlUk0ss0xqfm6PtbarPVZj25bl5fWgP13vxZv96HzQzh5sBTVtSq8e9Y+1x41OZR1WyZf7VUef3i2yyvI6aV95OuvZW40ultdJU1tUb0+eh/d3j5Y71wrrd3AuKKmPtFdCnZI2uayXrWp7nGTmWGyup3XzpTivo58vEkpYXm4Ud6iOwfI68+t1UmPHauZqZTOnYngQIUE1b+8DeYhlINb58nKbCV09q4eZSD1M5XgbxDHfq6HVjY9d0t3TevMx2aKUDuV9FCnFaR+3m2H7sNL46FyI4QOkp2ZVdVJzXWJcsZ1ZgYWBIj+lX05pvM+vPdawU4oA5/Ensb89/eUPPh4ipTQp1c+Q4julxl7Kwz5qJfbFemLefnvVYxErs+N4Tqdc2C4cO3WOPe4H12eld9EM2wOIde187HO5SeMDt5da13yM333KrcDhQZ9T27NJ4zPHCpPU6Y/YR3ycROMz7/vE7LxtWEvPmvfy+jzUDWPyKinjs1box0WNoKvPs7AvV53O13SMcQqb3ojjbTUL7fEY3ktcY8UpGpqVdZjydRzHFMdLNF4musttr+bVbS+UzmOc6qXOccn7qe4YLi487u5m9nYATzif+WvdhJnZ4ysmPwTgC+6+dTIdIbaAb8CEEEIIIYTYKWZ2JYDfBnAJ+um1bnD3XzGzNwJ41KDaYQCn3P2awTw/BeBFAHoAfszd3zOiib80sye6+19tt291v474awAeD+COweuvB/A3AC4ys3/h7u/dbsNCCCGEEEKIvcUuU9R3AfyEu3/UzJYA3GZm73P3H9ioYGa/hP7DJZjZYwA8H8BjAVwG4E/M7GvcPfWI8mkA/rmZfQHAOYSfbH3DVh2rexP2eQAvcvdPUAdfAeDfA3grAN2ECSGEEEIIIXYN7n4SwMlB+YyZ3QngcgCfBIa/63oegKcPZnk2gN939zUAnzOzvwXwJAAfSjTxXefbt7o3YY/euAEDAHf/pJk9zt0/K2GiEEIIIYQQAgBQ4/fVY+ZiM7uVXt/g7jeUK5nZVQAeB+DDNPkfALjH3T8zeH05gL+k9+8aTCsv66C7nwZw5nw7Xfcm7NNm9usAfn/w+gcA/G8zawOo/lWqEEIIIYQQQkyW+9z92lEVzOwAgLcAeNng5mmDHwTwe1y1YvaqL1j+LoDvAXBb6X0bvH7EVp2uexP2QgAvBvCywcI/AOBfoX8D9rSayxBCCCGEEELsVRy7LlmzmTXRvwF7g7u/laY3AHwvYrvhXQCupNdXALi7vEx3/57B/4eb2VEAVwOYK9cbRV1F/YqZ/RqAd7r7p0tvn62aZ9zk5jjQWtuk6k4pvpPlhFY7RVktyupjVrqnFOKrpIpd74V5WZF+fCFswtONdiivxfvy1Mp8ZRvH58P8rAZO6babllbWpuiy7juxDYostMcqcyT8mbz92/Pdbe+/lGKdt+3BZlDUt2l6o6SATWncJ6Wob1iBw+2VZDqEzZp40jEntgfD2yYVBxzLvL/Kuv52vrUAdT4LcXesHeJxuRd0vue6Iba5vSKPH6YvkOL7QB72Hyt8U7DGO6UjT6nrgVipzCppnn62164sM4dIy83l8vHGxyKrmXnftGl/pFT0o7TXkya3Akdb5wblGmNqjf0IpI/JZH2KqW5O6nQ6Rg43Q5qPY434GyRH8xC3i1msm95gqRfi8SvdkELkTFF93mVd/RypzOdKLmzebqwKr5NShWOzl3Bsz5U06hwvfAyc6YVzzBotl+e/vP1gWE5Cqx0pvT1WevM8czRujEoNs0Gd7bFTGtbDRa3NlzVROpzEOTRPpGI4H4V+J3HOzTK6jsg4lQKNB7SNFyiWF7KyRj3Mfx/F88nO4co+sa5+yUJsl1N9pOBzESvuO1n1mMyqfdbSswY/pXNPpZAASsdiYhumxqkO9YnTSfByyqTORXy81jm/ifNj8Juv1wO4091fV3r7mQA+5e530bSbAPyumb0OfTHH1QA+MmL5/wzAS9G/WbsdwJMB/AWAZ2zVt1pHjpk9a7Dgdw9eX2NmN9WZV4g6TOpmRwghhBBC7FueAuCHATzdzG4f/H334L3nI/4qIgYOjDehL+54N4CXjDAjAv0bsCein7braej/5uy+Oh2r+3XEn0XfDPL+QQdvH/y4TQghhBBCCCH67KLP1d39A6j+nRfc/YWJ6a8G8OqaTay6+6qZwcza7v4pM3vU1rPVvwnruvtDMiEKIYQQQgghBADgLjM7DODtAN5nZg+i4jdkVdS9Cfu4mf0QgNzMrgbwY+h/31EIIYQQQgghAOy6ZM0Txd3/z0HxVWb2ZwAOYfDzra2o92tK4EfRzxy9hv53J0+jb0oUQgghhBBCiH2Nu9/i7je5+3qd+nXtiMsA/s3gTwghhBBCCCE2s4+ehO2EkTdhZvaHGLEp3f1ZdRoxsxzArQD+3t2/Z+DTfyOAqwB8HsDz3P3B9BL6Ct+DzbVNFr1GFoQljRrq9WZiOqtvIx1sqX5B7a1TPVaQsuJ7oRFuhs+yojuhqz+wGBSy5XW979xiWNZ6WNZlCyHn3IlWKMe67rB+KaXrKJaLoJNdIe14ymrIiu2itbUuHYhV3Kn9lIL13qwDTunVR2myWbc7qr87IbcCR5vLUXzxtqyj+gbi9Uj1m/dFpEGvcSwAsc7/oua5YZn3F8+zkIWYb7eDtvfBbojfe9eDDrnMkUZo45LGKep7WD/WBDO83iltMivAyxpjPja4zPHf5OM7D+vKCmvWFbepPEpDHK9f6BfHMyuRUzpypoj05ZZ8byc0rMCRRl/9nlJ3nw9R37162/C4VmSUMqQI+66bSEnQLmnbl7Kgn2eFdYvi4HDGyvmw7z+7fnxYfqi3EJZJivqDtPzyvuD92skorYlXn2N433M8NxH6ym2Xlfsch6wK523A+4/n5zZS8HjAywfiddqulpuP+9TxslMaVuDiQfqCaExO9DWVHqJe+pD4GIyOaVpsk647lrukdudUFs0Qs2UV/Qat0rn/RPOhyrbvXT84LN9nYaxmRf3hLKR7YHjcLZ9nOV1Bk2RzPH25oOsk2t8cz6k4TR0jZaJ4pmMvlXKBSaUxKachKB/jVfN3kFdOr6v8F7PPVnv6FwH8EoDPAVgB8D8Gf2cBfHwb7bwUwJ30+pUAbnb3qwHcPHgt9jHtbOtcVEIIIYQQYpfjU/6bUUbehA2+23gLgMe5+w+4+x8O/n4IwLfWacDMrgDwjwH8Bk1+NoAbB+UbATxn2z0XQgghhBBCiBmk7jPPY2b2iI0XZvZwAMdqzvvLAP41oofrOOHuJwFg8P94xXxCCCGEEEIIseeoq6j/cQDvN7PPDl5fBeD6rWYys+8BcK+732ZmT91u58zs+o12Fk4c2O7sQuwqOJ4PXLKwRW0hdi8cy4cunb/AvRFiZ3A8H7msvUVtIcQozPeXon4n1LUjvnuQH+zRg0mfcvfqX37GPAXAs8zsuwHMAThoZr8D4B4zu9TdT5rZpQDuTbR7A4AbAODoo49rl4qZhuP5+GMuUjyLmYVj+fLHHlYsi5mG4/lhX3dQ8SyEmAojv45oZo/fKLv7mrv/zeBvrapOGXf/KXe/wt2vAvB8AH/q7i8AcBOA6wbVrgPwjh2sgxBCCCGEEGI34DbdvxllqydhvzX4GuGoNXw9gMdts93XAHiTmb0IwBcBPHerGTIrcKC5ukndzRpYNuyxup7niRTWiR3HquPNWmdSvWdBL3quG2t4NzjaOldZvm8tfL2S+3qAlNfduVi7u9oNGteFZqh3oh209A9r3x/qk/b1bG+usn+jNNJrRbVOttng/oYHoqxrZWVwSvtd1grHitZqjS9vf9YHp/Ylq31TatkyZW1wqr87oWE9XNQ6G8VvXb13St2d2mYditO1IhzyvC+4vTPdOFZWeqRnp1i7uHmmsn+s9z6cn6uczv1byOOH6lc2Qwxf0gjtsSb+dFEdzylYe9yz0Dar5Pv9Ddpl1ivz/McQ1pv1xkxKpz8q5rdLOZVAZT8Sancg3g47IbcCR0ldvUEdvXfUn9Jngjz+8DjM68F1uIleHuqf6oTtf996GHfvaR6K2mP9Nve3RUr2OdrfrLmeK+nuN2CN9zE6FlZL++JMEbbVetQeHdMJLX2P6rCC/KI8rM9SSVkej5dB/c1jO5NKd8LnmDhNSCBD3DavUy2NO7WdO22nHajuR9G0Ho41No9tdVIucD9SY0B0DVI6Bnm/cnspXfrZXhiX+Fjgfb8+4rzFccvxzMcup9g4moXlXt7geA7rcY5iokzuRWW5KCi2UZ0agcdmPq5S6WZGneNZJ1/nOiJVJ5Wip1wvuo6kYnz8VKvrxd5mq5uwQwBuw+ibsK/Uacjd3w/g/YPy/QCeUWc+sT/YycWoEEIIIYTYJehLvbUYeRM2+BqhEEIIIYQQQogxoccPQgghhBBCCDFF6irqhRBCCCGEEGIkUtTXQ0/ChBBCCCGEEGKK1LoJsz4vMLP/e/D6YWb2pMl2TQghhBBCCDFT+JT/ZpS6X0f8NfQFwE8H8O8AnAHwFgBPnFC/NpGZ40C+jnYeK6EbCf35KD3pBin1OatCV3qxbrWg95rUBiuR10kDzkrwI42gVX30gS/T9KB6Zebzi6PXCw3StTaDVpi19KxxTSl8I+VvYjoQq9BZRX+I1oMVsrw9V0doakMDodi0XqSejhXHdISRp7POPk5phfMRR205LcEGxRgNjg0rcKRxLo7ZEZrlWHcctk6kq6+h8eY4Zw0up3fo5rFum9MvfHntIM0T6l3RfGBY/prWPcPyYYqPL2arw/JSHsqssQeAS/KgpZ+j7dPK+FgP/U3FWqRnt7CuS3m1AhkAliz0i4/1OrG2Gm3n6mNs03K2md6E46BXIzdKB9UpCYDxpVxoWA9HB2PYdlX0ka67NP7wsuKxgXTRpPhm5f5CFlJ4rOVhG5zrBqX3368didrjeR7dvntYvqwRYqJJO+ych+msNF+gmLqIYnshUo6Xx5+wrHOUiiFSVdMsnHblIB9LGWu8wzmirNJOpTfgep3k+ZHStNBxmCXGx3Jamag92sfl/V/VHsNtswJ+p+QohmNSSqHPpHT6PP5w6gA+L/OYMQoeazlOH+wuDMv3dA5SnRCDV7WCwPqqxqlouRltWt7+67Q9L28+OCxfQuf+Q5T6ZIm201wR2j5XGmPyxD5etbAdOJ4XLCzrIJ0/Usr+uK3zuDKvMx7XHLM5dQTv5ThGEtevY0y5IHY3dUeub3L3x5vZXwOAuz9oZtWJsYQ4D8aZg0sIIYQQQlwAXL8Jq0vdj/Y7ZpZj8FmcmR0DdKsuhBBCCCGEENul7pOwXwXwNgDHzezVAL4fwM9MrFdCCCGEEEKI2UNPwmpR6ybM3d9gZrcBeAb634h9jrvfOdGeCSGEEEIIIcQeZORNmJkdpZf3Avg9fs/dH9g8lxBCCCGEEEKIFFs9CbsN/YeKBuBhAB4clA8D+CKAh0+yc0IIIYQQQogZQl9HrMXImzB3fzgAmNl/A3CTu//x4PV3AXjm5LsXyK3AwcZKpNIGgDlSt6Z05Cm1OKtvWeOdObuA43m6ZPFjvfIBBG3sCmlhWFfPOtkm6bYvys8Oy0t50AqXubgZ6h1thDIra1l/y1pcViiv1zQRsr6bVb1lrXfVcpukXmXzIZdZu9tGZ6wK+K1IxQowQkW/TZ34KHIrcDhfjhTNo2AFc4vUzKwSTqnrWX0bHT/UNKuw57NYUc/pF1Z6QYr6hZWLhmXWAT+W9N4X59yPU8Py5Y2goV8o7Ytl6vs50s/P0XpfRCr5VQ/97SV00a2E0piPnf56hL6s0rZdpDoc57zdeCyaQ7wNU/QSsZbUdbMq3BLz1lxmHe1+HXI4lrL0uDWqH9G2LGnGef14X/Ixw2NIlJKA9stBUsxznJbTj3xm5cSwzGPco5th7Lw4D2P4GQ+67p4HjfccHWOcYqFDsblYGkuatB6c+mQ1oV5fLkgNT9vjMOm954wV/3GDLXqPNeVRPaqT0n1Hx5tVK+2BtE6c54/SpUQxTGMILSvS7Ft8XbATMnMs2PrIOhzDvA587cDH13q0HyndQkkhx2M1xzwf0wt56BuP+RzPX1wLYzOnA/n61qmovSNZSNmw3AipbuZo/Y9S2ps56m9BMdGmdcoooHpFPMZwHDVrjD+c4oTTOhS02SLNfs0L/zrzpFIj1K6T7Et1ypJelNZEdzD7hbpXvU/cuAEDAHd/F4B/OJkuif3ING/AhBBCCCHEZDCf7t+sUteOeJ+Z/QyA30H//v4FAO4fPYsQQgghhBBCiDJ1Hz/8IIBj6Gvq3w7g+GCaEEIIIYQQQohtUFdR/wCAl064L0IIIYQQQgix56l1E2Zmf4aKnxm6+9PH3iMhhBBCCCHEbDLDv9OaJnV/E/avqDwH4PsAjE9HJIQQQgghhBD7hLpfR7ytNOmDZnbLVvOZ2RyAPwfQHrT1Znf/2UES6DcCuArA5wE8z50cvxU0rYfjrdORwrUurMtlDXLGetGM65MS1+P21kg5zxrkPA+3/Q3Sz3PbvNxVUuKvkob7quy+sMxWrHD9+07Inc0K5aOkuOc+lZXPGzS9+v65rMvNsEzvVetke9G24rarVbvxvLHelftbjNMHvwMi7XVNtX8dchSbtN68/pu3WbeyHmudeZtFCn5OHUDHT2HV25hjGYjjuVvwPg59fKAbJO5f7h0clr+aVPSX5iHOHyo4zUG5HxxrrO4mvTF9zJbxOlHXuf5BUi6vj/gpLB+vkSbYqpXgrKLPIyU478sRsUxvcawVCdV+hmqNcXQsUXEu0af+6/HEc2bFcDyqsw7xJ6TpPvD2zJ3Wg8ddWhinCOAQ4pifa4U6nSJum7fHPZ1Dw/LfU1qGSyjlwrEs1H+A2lilc8RB0okvVp9uAAAtOhYXScPO+49jvpOxpjzMyzEfx2/cXlKBTfWi9qJ9SZWibC50ruS4LjUexzNrx7mNaqLzkLMmfnwYfJhmIO5T9bk8xXp0Pqv383tevxaN+TxWL9Cismaoz2l2esmxOR4DLqEx+YpGODbuL8IWXS5C/CMnZTytUyc6D1WP00AcnxzzSxbOhRxrPH8exRQqp9e9bOhRt4pErMaxWV1npEo+Sv1QnW4jpemXLXr/UGtPm9lR+rvYzL4DwCU1Zl0D8HR3/0YA1wD4TjN7MoBXArjZ3a8GcPPgtdjHpG4YhRBCCCHEjDBlPf1+UNTfhv5nXob+R/KfA/CirWZydwew8ZimOfhzAM8G8NTB9BsBvB/AT9bsixBCCCGEEELMLHVvwr7W3Vd5gpm1U5VL9XL0b+K+GsB/dfcPm9kJdz8JAO5+0syOb6fTQgghhBBCiF3IDD+dmiZ1v3j6FxXTPlRnRnfvufs1AK4A8CQz+7qabcLMrjezW83s1rMPdraeQYhdDMfzQw/IayNmF47lU/eP8xc5QkyfKJ4fUDwLIabDyJswM7vEzJ4AYN7MHmdmjx/8PRXAwnYacvdT6H/t8DsB3GNmlw7auBTAvYl5bnD3a9392gNHmlVVhJgZOJ4PHdVv4MTswrF8+KLxCWuEuBBE8XxU8SzEjvEp/80oW10JfgeAF6L/FOt1NP0MgJ/eauFmdgxAx91Pmdk8gGcC+HkANwG4DsBrBv/fse2eCyGEEEIIIcQMMvImzN1vBHCjmX2fu7/lPJZ/6WD+HP2nbm9y93ea2YcAvMnMXgTgiwCeu9WCcitwOF8eqahnTTMrYWPNeLU6nfXErHot0yRdd+YJva5lldOzhMLlK92lYfmSxqlheSmLfoaHJmmyzxRzoV4e9K5zVv21zUgln5H6mdSyWenjhBZt6yxS0NIDVNKwrrOifoR6elinZEQsK+uH0xMPbIuE9vV8SLVd0L5kTfZO6WuQO9F+4RQB65v04aw7rtbSR+pbsIq++lioE8tAvC+beZhnMRHPn18/NixfSfF8WR76fYZmPVPEccDa3pSim2FNMOuKOSJYjdyjdS3rs7ntjI6lTmI/Meu8nUiJX96e0Ty0n3m5SQ049W/76vrJfQV2o83ceHytXode1FeO5fj44vmbVj1ur9F+4bQMka6e4HG+3YjrpHTTn1k/MSxfkn9xWF6wsKxTxfyw/KXORcPyajOkHLm6eWpYbpXSQ/RY653QxDdpe5A0HOcSKu1oOaWY7SU/Oa6OwegYS6jvezU09v33AikF/HbpTVnpzefDHh33O02tklqPOql55nJKo5FQn/9993D0+hGNkBlojuL5XBF+8n935wj1I7TxiEZ8fbIBtzxXivOcXnOKoDZVW+ZrNI7naDyobm9UFERbJErlQPPzeTCqz/FcfYyU43fUuL+dOrOIYbaNhdNk5E2Ymb3A3X8HwFVm9vLy++7+uorZ+P2PAXhcxfT7ATxjm30Ve5jUTZAQQgghhBB7ja2+jriR5e9AxXu6zxVCCCGEEEKIbbLV1xH/+6D4J+7+QX7PzJ4ysV4JIYQQQgghZg89pqlF3S9S/+ea04QQQgghhBBCjGCr34R9M4BvAXCs9Juwg0AN84IQQgghhBBif+ASc9Rlq9+EtdD/PVgDwBJNPw3g+yfVKSGEEEIIIYTYq2z1m7BbANxiZv+vu39hSn2qJEdfUV8mpU5n9TOrzHn6mler6HNSuJc16qw45nKsGi8qp6c42wu6+c+sXTIsX93+clTvksZDw/IDveBK+XLn8LC8mK0Ny0fzs8MyK5u5T6y0b43Q4KYU0axY5WWldMNRugBLP0yN6qF6O7N6vQ5sYCxrxiO9Pu3znITKdTTBdcnMMWedeFuC9b3bT+YcbRvW/yZ03byPOqyJL+26BdKtx4r7oCvmY+yhXtB13756xbC83LonLJP6dH9vEcyXu4eG5eON08PyI0jxzZrsVe5TtF9DmSNlLtK8p62cOamIc6tWdPeifVb90V8nkQqjv1wav7xaM5+TFnq76vpoiC+lWMhpv+4Egw/V1fF4x6ksqscPZtP0SN9P+nmE2InHahonEmNDm+ctKfGzaB+H95aLIIT/1PrhYfmRFI+cToT13n+9clXoH740LD+6eX/UNiu3OwnNfFw/vLHI8RitA+uz0x9Lc1qHuFp16odo3Ego5s9HPV/nXJmq0xpj+gWDD/d/Qeee+LjfHlH6nBHryXEOrpdQzvN5PYv2F6eeCeXV0jXPF2izXdEIa3URXTv8LV2TfHj5q4flc3MUz61TwzKr5Mu9zqNydVzMcUqVaJ0SceTVdTgVSZnUscH9jeM5uSiqU047sXXcR4p7TrexacvNIHoSVou6V3rLZvZaAI8FMLxjcPenT6RXQgghhBBCCLFHqfso4Q0APgXg4QB+DsDnAfzVhPokhBBCCCGEEHuWujdhF7n76wF03P0Wd/8RAE+eYL+EEEIIIYQQs4ZP+W9Gqft1xI0vHp80s38M4G4AV4yoL4QQQgghhBCigro3Yf/BzA4B+An084MdBPCySXVKCCGEEEIIMXtIUV+PWjdh7v7OQfEhAE8DADN72YT6JIQQQgghhBB7lu17sAMvB/DLY+rHluRWYClb2aSoLRIaUFZ8d2rklWa966j6GatfvVovnSV0sgzr3BnWNN/fW4ree2Tz3sr5/2b1YcPyA6T7XspXhuWLsnOVbbRItpuVPrpg5WrTYnnrBp2kbjqhqCf9bMtj0W+kPqb9x33sWbXStQ6sxC/Py9pyVvWvFtVpDHaKoa+o5/VkTf55KZdplXKKzXVOs0B1OGabea9yOpBW83Occ2qE6Fiitu+leL4qeyC0V4qVv1s7MSzfQ7r6o5Si4so86NVZ59upoQWeS6mOAayT1rhIqrvPn/K2zMBa+uoUD7G6mIi05qzSpmM1iqN4uO95PXX4VmRwzA3a4bFz3eNaGzRRravflCIjEas8hnCcN2k8KRLbj7d/XhqnOY44nnkeXi6nRriMxtrLmg8Oy39x5urQD5r3kjykXgCAr2qEttfAxy5r0UM5SPOBNm2PIjr26gVtj6qlFN1MStfNCvdo+5fOEWWV93B+43QDIVZ5v7Ro1lXfyeVLGkNYF1b+dxJpaIoonQoq6yQprwOtXyr9DscjXwfweMxjAKdPKF93xOkGwnKvaoR5vkTx/JdnHzks8/Y/nt8xLD+8EZa5VpL5c0x2+NqD6szReZqvSTi2WT8fbeXUdKTTNHD8x5FKbxhvp+r0C+Xrp56nj4EN8ui6c3vXM7sePQmrxU72+njO4EKgfi4ZIYQQQgghZp2dfJSk+1whhBBCCCFEnxk3Fk6TkTdhZnYG1ZvSAMxPpEdCCCGEEEIIsYcZeRPm7kuj3hdCCCGEEEIIsT0m88tWIYQQQgghxL5Divp67DEdixBCCCGEEELsbib6JMzMrgTw2wAuQd8YeoO7/4qZHQXwRgBXAfg8gOe5+4Op5QD9H6E10dvkZCxIzcxqbFZ8F9G95tbqb1bLsgIZiHXHrHtNK0hpWay3p75Geu+EZrbfRlj5gzTPieZDw/KdK5cPy19av2hYvnw+1DmWh3l7Iz6t6JCWlVWq3I9I30zLOpfQB8+xMru0LzuRSrpa78t1eP5epAmuTjGQRyrzuE4vUoWHer1ITTu+w2VDg8zC4FS6BWBUPAe436w35n3EKvMUo9T/vKwm9Sm36njmOosWtPIMK5QB4Hgz6LtPrh8elj+5dtmwfNH852j+0N9zBR9v1evAlLXFPA9vqQ5Vi+M/vNFkRTfV522zyQIa1QvlLJX6gY8R1j/X0NX3No0nW8fCduH1S8VpK6F8L4+hkaLbUtsjpTv3yjo8vVlKA5Enjhke55vR+Mznm9DGwxoh/cLdc/cNyxzLt1NaEQA4tvh3w/LRLAjoHyqqU5nw1kipu+MtFm+n+IgLcAxnkXKeF0XLovbWa4xL/WWlxmdWgod9kxp366aV2Qms00+Ni6mxNqNtE11TUHkOJWV8oo06unseD6I2KH6XsngM5tQs3AKnPbiqGWL47vaRYfmezsFh+fa1K4flY/nnh+VDWZzi5YxXx3POqWdqGB24/mpRvW3KqUiyaGwKJNX1ifNx6lqonHohuoahJlLn4FRKgplFT8JqMek93QXwE+7+tQCeDOAlZvYYAK8EcLO7Xw3g5sFrsY/pbDPnlxBCCCGEELPKRJ+EuftJACcH5TNmdieAywE8G8BTB9VuBPB+AD85yb4IIYQQQgghJot+E1aPqT1+MLOrADwOwIcBnBjcoG3cqB1PzHO9md1qZreeur9XVUWImSGK5wcUz2J24Vh+8IGtvyolxG5G8SyEuBBM5SbMzA4AeAuAl7n76a3qb+DuN7j7te5+7eGLJvOdbyGmRRTPRxXPYnbhWD5yVF8lFrON4lmIMeNT/ptRJj7amFkT/RuwN7j7WweT7zGzSwfvXwrg3kn3QwghhBBCCCF2A5O2IxqA1wO4091fR2/dBOA6AK8Z/H/H1ktz5FZsMi2xqWY9YUpkCxZbx5rWG1po5tCJ5i8Gogg2CwFpC2KKcn/nsmo7UMoix9PnonL4OttjW19Otv9QbwEA8FerV+Hq1j0AgFNFvF683ofz4M2ai2yOoHK1NYvtboetgzPF5vAq3KK+b9iFcuvF1jk2BbF1iIpFZD0Ly2wh/qpftF8Ha5KXzGhch01bbLuaBHPWGa5307pY9WCT6tSK52qDXOb1vlJTpIxfCRtXK7LGVdsO50rbdoGMXHNRnPeXtZivRPF1eOF/D8ufaFwyLD/QPTAsf6kb8siXLXe8DS/Jzw7LS1l/nXpwNAfbPIPVMmUxPOYUDrRt8/GQW4jtDD60JebwkkGw2rQVjRsjLI8b5rgcPoyFpvXiOBrEcx3D2k5hI1jT1iPhDpvfNvrStG7aOkrrzcdnaj3KZjmu10T1cdyKbJ/VdZqRaY6XyeeeYEi8srE2jKPvXfoEzhSDfi0Cn1hPxfN8mE5j86ki1DmWnxuWD2ccg46mbYyjFhkS6+xxNnmOirUNOIYzC/O3UAwNiZn5cHzOy8dUNP6T1Zbjg+bJrVM5Puclk/Aoq+t2yQbH9BzZlDM+zuncw9Pn0A3vWXxMc//YfpcljvVUnVHHMccqnwejPiZiGIlx6asawXZ7dOnjUXu3r106LG/E8x+evRqPaf/9cPoijf+rPjcsH6NrjaXIjIkkvcg4aYPlZzhDhsSNbd5xYDGxrDrjfJmiYpYWCrqG8SiGo+sTHucTcdSKxp9e0s4o9haTTtb8FAA/DOAOM7t9MO2n0b/5epOZvQjAFwE8d8L9qIQHuaobsHGzkxuw82HjBgzA8AYMqHcDtlOqbsD6bW++ASuXx0nVDdhugtc7dQM2KbZ7A3Y+bHUDBoz3cfxWN2AAhjdgQL2L1FFU3YABZXVx9fSdwjcvfJFWdQN2IdjqBqxfZzKnoO3egO2UVkKxPbwBQ/oGbKc0ue1t3oCdD6nYZkV9Wde9E1IfkEV92iV23Uhpv90bsB2y3RuwnVJ1AwYgeQO2U6puwABU3oAB6Ruw86HqBqzc3jgNzzN/AzbjXxGcJpO2I34A6c81njHJtoUQQgghhBBiNzLpJ2FCCCGEEEKIfYCh1jebBaaoqBdCCCGEEEIIoSdhQgghhBBCiHGh34TVQk/ChBBCCCGEEGKKzMyTMEOF6hYAUrpusO6W7TlsKQrfWp2jL7CWNfRsNmoljIUpvTFb7rgOG7vKlq7YZhTaayVMSkdJV/zkubuH5VMFaZ1p2325F0xGZwpSIxcHsJStVM7DprkFaq9DNijW3S5lW5sdm/Dh/GV1N5PT9oj1+GwWrA7lsvaVzXGREpysUSkl/iQU37yN2Vo5Z52kUSsVz8xCpDqu3q6j9Pvcr9RxlUqf0Ezp7Wk5oz79OUG5Do7OnRyWv1JUz/Vl0tWfKoIRlPd12ZD3yOapYXkpI0sqabDYeLeU7DDHYPVHfxltftbVA3FqhfWErptpRmbBMJ33S6uUrmE9YdqcRPqFlFo/FRNljX3lGI/NqUI24LGynA6kaplcH4iPdTa38j5L9akOl+Vh3S6bvxcd6uNXaPOnxucvdw8Ny6eLoPfm7XF1FMthX58p4v0bxTOPD9HwUB3PqbGZt9Ncad/zuWE1EYO8zzoUw+mxudosOO5Y3ogLjpeWUxvR9QKfL7h/nFZk++eOOvGcohnp++OUGs2E0XU9MX4xJ7Jwnn3qfEiNk4plAPj7Ho3PZGzmsZrHZx6bD1E8r7KmHzw213uWsEppW3rR2BngJfH1TMc4lqvHq/I+To3hbK5cN75GY6Or2C/MzE3YhWLa6tvUDdg04BuwadBJ6HwnReoGbDdyIZXLO7nonAVSN2DTIKU6nhSpG7DdQp0bsEkxTo16HVI3YNOAb8CmQZ0bMDF9mjbdY4xvwMT+YsqhNrPo64hCCCGEEEIIMUV0EyaEEEIIIYQYDz7lvxGY2ZVm9mdmdqeZfcLMXkrv/aiZfXow/Rdo+k+Z2d8O3vuOHW6NJPo6ohBCCCGEEGIv0gXwE+7+UTNbAnCbmb0PwAkAzwbwDe6+ZmbHAcDMHgPg+QAeC+AyAH9iZl/j7mP/IrmehAkhhBBCCCHGwy56EubuJ939o4PyGQB3ArgcwL8E8Bp3Xxu8d+9glmcD+H13X3P3zwH4WwBP2sHWSKKbMCGEEEIIIcSscrGZ3Up/11dVMrOrADwOwIcBfA2Af2BmHzazW8zsiYNqlwP4Es1212Da2NHXEcWuYJSiXgghhBBCzAB+QeyI97n7taMqmNkBAG8B8DJ3P21mDQBHADwZwBMBvMnMHgFUXoxOZI1m5ibsU3es3/fkqz5/DsB9F7ovF4iLsT/Xfbeu91ftZOZ9Hs+7dZ9Omt283ucdz3fe0bnvCV/1pS9gd6/fJNF67z7OO54/eUfnvmu+6i7F81g4uXWV3cNu3t87ut4QgJk10b8Be4O7v3Uw+S4Ab3V3B/ARMyvQj4O7AFxJs18B4G5MgJm5CXP3Y2Z261Z3unuV/brue3W993M8a733Fu5+DNi767cVWu+9heJZ6y32FmZmAF4P4E53fx299XYATwfwfjP7GgAt9G/EbwLwu2b2OvTFHFcD+Mgk+jYzN2FCCCGEEEKIXc7uStb8FAA/DOAOM7t9MO2nAfwmgN80s48DWAdw3eCp2CfM7E0APom+WfElkzAjAroJE0IIIYQQQuxB3P0DqP6dFwC8IDHPqwG8emKdGjBrN2E3XOgOXED267rv5fXey+s2Cq333mSvr18KrffeZK+vXwqtt9gxF0DMMZNY/8mbEEIIIYQQQpw/C8ev9Ec99+VTbfP2X3v5bbP4m75ZexImhBBCCCGE2K3o+U4tlKxZCCGEEEIIIaaInoQJIYQQQgghxoJ+E1YPPQkTQgghhBBCiCmimzAhhBBCCCGEmCL6OqIQQgghhBBi5zgk5qiJnoQJIYQQQgghxBTRkzAhhBBCCCHEeNCTsFroSZgQQgghhBBCTBHdhO1xzOywmb2YXj/VzN45gXZ+3sw+Pvj7gXEvX+xPphi/7zazU+Vlm9nDzezDZvYZM3ujmbXG3bbYP+yCeP7/m9nfmpmb2cXjblfsL3ZBPL/BzD49uO74TTNrjrttsX0MfUX9NP9mFd2E7X0OA3jxVpV2gpn9YwCPB3ANgG8C8AozOzjJNsW+4TAmHL8DXgvghyum/zyA/8fdrwbwIIAXTaEvYu9yGBc2nj8I4JkAvjCFPoi9z2Fc2Hh+A4BHA/h6APMA/tkU+iLE2NBN2C7BzK4ys0+Z2W8MPtV5g5k908w+OPgU/kmDekfN7O1m9jEz+0sz+4bB9FcNPgl6v5l91sx+bLDo1wB4pJndbmavHUw7YGZvHrT3BjOzHXb/MQBucfeuu58D8DcAvnOHyxQzxIzHL9z9ZgBnSutkAJ4O4M2DSTcCeM5O2xK7n70Yz4Ppf+3un9/p8sVssYfj+Y99AICPALhip22JMeFT/ptRJObYXXw1gOcCuB7AXwH4IQDfCuBZAH4a/QvAnwPw1+7+HDN7OoDfRv8JFND/ROhpAJYAfNrMfh3AKwF8nbtfA/S/LgDgcQAeC+Bu9D8ZfQqAD3BHzOwVAP5JRR//3N1/rDTtbwD8rJm9DsDCoA+f3P7qixlnVuM3xUUATrl7d/D6LgCX15xXzD57LZ7F/mbPxvPga4g/DOCl251XiAuJbsJ2F59z9zsAwMw+AeBmd3czuwPAVYM63wrg+wDA3f/UzC4ys0OD9/7I3dcArJnZvQBOJNr5iLvfNWjn9sGyo0HS3V+L/lcAtsTd32tmTwTwFwC+AuBDALqj5xJ7kJmM3xFUfYI7w5+5iW2y1+JZ7G/2cjz/Gvo3cP9rjMsUYuLoJmx3sUblgl4XCPtq1IUhz99Dev9uWW+7n1S5+6sBvHow7+8C+EyibbF3mdn4TXAfgMNm1hg8DbsC/U93xf5gr8Wz2N/syXg2s58FcAzAP9/OfGKymOvzyjroJmz2+HP0B69/P3j0f5+7nx7xtesz6H99YFts55MqM8sBHHb3+wffIf8GAO/dbptiX7Dr4nfEMtzM/gzA9wP4fQDXAXjHTpYp9hwzE89C1GCm4tnM/hmA7wDwDHcvdro8IaaNbsJmj1cB+C0z+xiAZfQvDJMMbow+aGYfB/AuAH80gT41AfyvwUB9GsAL6Hc0QjCvwu6LX5jZ/0L/Nw8HzOwuAC9y9/cA+EkAv29m/wHAXwN4/STaFzPLqzBD8TwQKvxrAJcA+JiZ/bG7yygnNngVZiieAfw39E2fHxpcf7zV3f/dJPogtsGMyzKmibkeGQohhBBCCCF2yOLFV/rXPvvHp9rmbb/5E7e5+7VTbXQM6EmYEEIIIYQQYizMcgLlaaI8YUIIIYQQQggxRXQTJoQQQgghhBBTRF9HFEIIIYQQQowHfR2xFjNzE5YfWPTG0aOb30js6FrfR61TJ2lm3Rk+oeXWYaff1Y36zuXMq6en1rXcDxbMFmEmo+mpMi8rOX1U2wxVjKrRc+Pl++66z92PjVjKSBrzi948dDS9L8Y5gPH6jDHuptL3cZHaBqXt4Vl1ORnn0cxUieO0R7NSedN73bDcOIapve1u22hd45Xl7p49/ffnHc/N9qK3F+uPzVH3pi2GqtvcTrZzaswZ2V6NBrlKYsHO+ziK5dK+T8R56tiIjnVevyi2KX6jWC6tW0HBnYrtqLtWPZ3XtRTbp1dOnnc8t5qLPjd3ePMb27ymsGkMhMkm6rZdJ0JrjD87Po5T+5jL4UUc5zw9MW9pnvhagPoeXV8kYpjjNzW9vFwmFbeJdQKA02v37Oh6Q+xeZuYmrHH0KC57xctgRenIqnGBbr3qq+rUiWXURWvywmybdzbJi+GRg0j6vepGqHpie6RuWDYtKg/lohkqOpfbtDAqW8aN0zJ7tDFX42/GZsuhwcY5o3Ko01ih8irNux76lHeoab5IGJVRhK+l8/Ci1w7Tb3v9T3xhxBK2pHnoKL76BS8fEbOlLqVuPgmOD95f0b5LTB91c5ZqO7qhSK1HnWvLctvbje0a90ROI11B5d5cPE+XXvcWwoJ7bWqkldgBndBgvhLiuXk6TG8/FM/SftDpvbBBm+dCOVsLZb64TRKtd+iH5/GG7bXCe7e855XnHc/txaP4xme8bPMbdBGSvIgvEnVK9ZJsN1ZGjAHRhda4bsJSF3jlC7TUdvDq/nriBuv/a+/dwyTJyjr/7xt5rayqvk5PT88FehgHENEdcGRR9ueiKKvoAquIsI86rDwP63oDFRUvq+667uINLz9XfzuKu6OwCC4gyCKIs4ILKjDgwMww3ISZYaCZe3dXd3VV3t7fHxmV53ui42RFd1dlV2Z9P89TT52MPBFxTsQbJzIyIj/vsBkO6kE7VOovxONrbzHM0+vQGNek5dL4wMd6jcba5kp5/LYe7ob6KzQDAFulXL49GqB5+/OH0IwaUg9lb9CB3KA6AN75kV8873hut/fhKU/6/rOmp74YieImiq/ExeYk0vm4ytc98NLp27W+ZP8GqQvrCe2ILjooPms0ZvH41Qz7e9jiMsU8lYfNuG98LrfEmFBbC/2or4YsO7VTIWbtNMXzmVD2tTjO0Utk6amFNhrHcJMOvjZ92ADwjk//6gV93rgYSMxRDf0mTAghhBBCCCGmyMzcCRNCCCGEEELscHQnrBK6EyaEEEIIIYQQU0R3woQQQgghhBAXjus3YVXRnTAhhBBCCCGEmCKzcycscwwXB5PrRNYtVtyVq6MjDXoFw9rEilU07J5YX6rdVW1hCUujJxeVMHEVzJORoS+hJY5VbGQyYkESGeeyRpi51iAzVhvwYZh/sBDqrS8Fm1B/NdSpn+JyWFSDbIo4HRrCNsVaN94iSfPYApnHGlvndx82gNXLPZ1ioSjgS8VqKm65DzWKCZaIRaZP3mHpOLB+eC+j3ZcFGRpqVOY6VdILjN5MNCWl5S6fXAnrxa9ZIGiJA2hAG87bZC7shE4NFqjcCfV7y/H3Xt09YR3rJ8Jw3DoRdlTzZFgWWxNrZ4J9K1ujdpC1zHthfcN2bJDzhfj1+TKsA6uXZvm6+Y1QjK2abHfj6fFyk7bCc0y5EK2bhGWRWa7Yrqgf5e2IDGtsN4z6FxbEKQhQ1LZHDU5MpnmydbLP9mjDDcrPkWyWA4DBUrCvre9vjMtrB0JMrO8NDekvhHl7S6G8vi/UOXNJWEfzUFhO+3hsemueDDuhfiIMFtlpMtCt0yDSp53Wo37TMofNLfwoYzY27nlKf87VOQ765fs+FR/FwSuZsiFh2YwCleMusRyfYEOM5qE4si7FFBv/IrNlwhibFb7nJ/Nh0szI283L+5TxvGTMZKvgsEO2QQCDxfC6vxhins2h/f0hjtb3hXJ9PczbWAkHQ/1EMCJmj5C6GQBWwocSX18vLUemy0ZokzdDWcw3s3MRJuYavgATQgghhBAzih5HrIQ++QohhBBCCCHEFNGdMCGEEEIIIcQFY5CYoyq6EyaEEEIIIYQQU0R3woQQQgghhBBbQ0oyIyJ0J0wIIYQQQgghpshM3QkzA7xoQk1o3yOdLCm6USclKGu8eebo0rTokK3Q0ISW3gdUZuU4Tx+kOjGBZNs3J+pd8ZuLc9TrR03qksabtObDOimzG4WZa6RzrtOOXgzlYSvM3yXl9qBJmlrS12a07nqwyU78lmZYD/P0SFHfXU7Ocl54lk4DcNauZ818QtvOWnpkXjrdsyrfThX0/extp33mdd6vFMM0qrC6PlLdR5rlwtpTWvpICZ5sLq2cqlB4DGvl08vaskFtjdX81G+aPmzStonKobH9ZjyARfr6RYrnFm1P0jzXSE1eJx12tp7QRbeC6njYipXN3b1bo6iHAYPcDF2jYyxLaekTNmvPiq8TevAKinpLxArHvxVScvA4FSvFy5cVHa9ch9Mc1Ggb8wYpKOorp0jZoBWWa8NwwEV6/EitX1gf1eO0B14rjzue3qWUI8NOKPdJXd9fDPUHxdQItF+NlPPZGg0W3HYuk4reO0FH3ruEHPoXiGdAvzNqczJVAddPnX5Zz87pCcDq+sKyOK1DlTsJHGw85g9TgVOAx0g6sAxhn/F4HrWJGzvgdrA+vvARk4+HWuLDSqTK52OGypy2oEtj36nV0IzCYrOFELi1g3vD6i5fHJfXSFHfW+LxICytdTz0YZG2f2uFP2DEKvrBqVMoo8bboxHWPdzTLqk9W+g3YdXY1jthZvY4M7uV/k6a2cvM7ICZvcvMPpX/37+d7RAzQC3xyUwIIYQQQog5Y1svwtz9E+5+nbtfB+ArAawCeDOAVwC42d2vBXBz/loIIYQQQggh5p5p/ibsGQD+0d3vBvAcADfl028C8NwptkMIIYQQQgix1fhF+JtRpnkR9gIAr8vLh939GADk/y8tm8HMXmJmt5jZLYNTp6fUTCG2hyieTyuexezCsdw/o1gWsw3Hc6+reBZCTIepXISZWRPAswH86bnM5+43uvv17n59bWlx8xmE2MFE8byoeBazC8dyfUGxLGYbjudGU/EsxIViw+n+zSrTuhP2zQA+7O735a/vM7MjAJD/v39K7RBCCCGEEEKIi8q0FPUvRHgUEQDeCuAGAK/M/79l0yUYRpruorM3pfUmP6Yl1N1RHVKAZ7XyOgBgPE8FC2xsdCU9O+mQfVCucy8qlKPnXlPrjky4VGnAy6XFcJ1CXyO1Oan9vVZeTrWDFfxRm9a5Exm8ERrGKul6KyiUa6Su7/G2PUNKXWo368i7pJxd2x9rk3sJ1XJvT1jJYIm0uBeIOZB1DRnZdc/n2xyOeY/U6xRfvL+yCkFbrMLqY15fnXcAFTnlQmqEidJDTGhKFEc0O223jDX/BJm70afyMJitMWjH8ctpE6LDgfrEivqsS8cVp2IgBfiwQwtqFxpL6xvQOoYnI3d0Kf2loJ/vHgydWtsXAmFtP6nFg5UZQBzb0eh8Hlh+aGR0iLDOOk6TQDNWfJY/0tUnvjpMps6I0jhY6XQAbA5HrUvjz1p52Vg7Hh2HfOzR4uvhRdaPO15bD3GRdUPZ+jQm0gnHKSVHv1Onctg4A0rnMax6pk+d1CLNfygPOtw+lFZqnogXxX1njf5gKWi5+5eFfCDr+0Lj1/ZTSgdKGdLdU2jvXxU7UJ1h3cbHUGpMjmONPjtw/NMYEI1RnhhjiuvjNAlRaoTy+aO0Cpy+guNpEHeI28hExxillUGDArpHqRF61PEeDc6sjwcA55wlFDCsq2+Ecc3blGKjHVJsOLUp69Gxc/JMWM7JlXjdpIy3bmgvp1rpLYfyOjm7szArmidDuX6a+rNS0NCTnr9+9NHjcv+yfePy6cMh5jm21/cWjsO/x+wxw7/TmibbfifMzDoAvhHAm2jyKwF8o5l9Kn/vldvdDrGz4QswIYQQQggh5pltvxPm7qsADhamPYSRLVEIIYQQQggxJyhZczWmaUcUQgghhBBCiF2PLsKEEEIIIYQQYopMS8whhBBCCCGEmGccsZVOJJl4EWZm31ZhGWvu/vYtao8QQgghhBBCzDWb3Qn7fYz08ZO81l8LYNsvwixzNDtdDAvadp/kty6D60e6+XL1fPFintfn1BbLgt2vThr1Rp30qVRnSLr6Xj9oXwekqx/046dFI/X3kD3sXInqRH58qjPkOkjiCbW/TbA8l62OFemRAbmgsY9091Qvq6XMiawKD1Nr66VVsHaAypcWOn7p2ri4Z2/Q3B5oFBS7OfckWlQVz4DBwhDDBsVQKt0CikrkRJmpoASPUxUk6hdeR+VUugbOSEC67kjfnFg3EKvoI/U92ZEHrJ9PaPqHkZaelPFNrl9Iy5CKT3rBza1i/OftYWeldCjfgazgr6+T6p10yqsHQwdXrqLpV4YNWD8Y4rrZjFMsNLE1eAb08xQPA9L/c1CkYpBjIitkgKiSsiGKoyjdQ3lahig+gv36bLLy4zI6Tqx8etS+xLHKxwUw0qKP5+mUn5Z53/dbVCYtfW8hTOd94XFGjriNqXGAtxUti7fbsFk+ZkfjN43NAFA7Qwc4xciZI2ElJ64OKz/16NAoOxjG5kZ761KGMJ4B3eWzD+woBQjFs1EgRGk0Il09L4jnLaTAoXqcJiFOyVGurueYz7rl8c86d6CQZiEFbwo+vvk4puUal7uFfTQoP1Cc0jd4M8T/cCEE22AhTOf0C9y+2r7QwPqpOOk2p3voUb3VS8K6WUvfWwwdbFEqkuapsJzaQ6Sl7xfSjzzqyLj40HX7xuXj15IG/3DYPtYs/6wxq0jMUY3NLsL+wt2/d1IFM3vNFrZH7FKS+caEEEIIIYSYMyZehLn7d222gCp1hBBCCCGEELsAfa9eicpiDjP7GgBHeR53/6NtaJMQQgghhBBCzC2VLsLM7I8BXAPgVgAbD746AF2ECSGEEEIIIcQ5UPVO2PUAnuAu56QQQgghhBDibAwSc1SlarLm2wFctp0NEUIIIYQQQojdwGZ5wv4co8cOlwF8zMw+AGAsAHf3Z29v87gtjkZjEOncAWBIVtCkrj7SytPkYbnm1BI69tE6UPpeRvO0SDW61Ap+3mYt6Ei5rX3y3fYHoX/dQdxX7vt6j3StPdK7sgE22afyrygm6v7pvSGr8kmpD5oebbd65McvXbwV2puR5r/G+n/S1Q8XSM28h7YNbTdW+PaWw4uMlPQAcGhfUM0uNMI+65ILvduf4Hk+V2xkhLRheWwWvx4ZZuX7jOdnvbEndNFcTtUp6qyH/LoZGuncJtr3A9JvW5Om87FDXvmsG8ddjZTWvP+4HYM2KeNJP+8cazXWNKOUs9Ti7LvnfcNq/gbFIC/XytdnTVLGN2ONMadfWN8bZlpbY396mJ5R2or1faHG2uVhbOkcXA3ldtiYxbGz+Pp88Qzo5zbooo58XCel946U3PE8vKyUJr7YjvAise8mpRSIUn2UL7ffptgmTTy3ifXgtS7p1flwacQN6e8NGyilmefUClH6BT6L8zaYkAaC+5RarkfrSBxvNB4Y1enuC/Oursdx5vWwQt7/awdpnqvCG61LQzwvtMK5leO3P6j6ffLmuAGDvIlWmL4Ba/qj8bJC+gXusw3iOOB6vI9qnC6Ax3zS0vOyMhr7ahz/9cIBkLhbYZEGv7wcbY8WH+Cs1o8Dz3oJRX0jNJKXNaTprNoHnWP4WOrScTS4PE7CwbHdp2OMtfTdvRznoa1dOvmcupw/X1wayoND0fpOHQkrPPkYWvflIYdOk9IscEqiYX/r4vmi4K5kzRXZ7HHEX5tKK4Q4x3RvQgghhBBCzCqbKerfAwBm9svu/pP8npn9MoD3bGPbhBBCCCGEEDOEfhNWjar3PL+xZNo3b2VDhBBCCCGEEGI3sNlvwv4dgO8HcI2ZfZTeWgbwvu1smBBCCCGEEGLG0J2wSmz2m7D/CeAvAPwXAK+g6Svu/vC2tUoIIYQQQggh5pTNfhN2wsxWAHy5u989pTYJIYQQQgghxNyyabJmdx+a2UfM7FHufs+5rsDM9gH4AwBPxOgG5fcC+ASA1wM4CuAuAM9390cmLSczR7vZi3Tlo/YFrV6jTlrbelB/Nmphei+hgGfFLS+zqG0fkB52SH7qGqmmW9SODunOO/Wg12VYf9qnZfYKivr1ethdzUboX5d09SlVLyv0M/rF5JD6NyjMm7qb7MPyeSKtKiulWY8/4VeIsf6f2kjbxHjbLgTVa/fSML27jz3Loa2tZthmizRvcX1r/eAfHvA+Tmjiz4vMgc4Awy53mt5vxSrzZifETp22Abev3w39HvYSXm5O0UD7y3ppPaU3aP+RkjqjYzE6TvgYGZRPZ51yUZvMr1mt7ZGint5YoHKNvdylxZjiLuVxgLcJ94/jgJX4FEOp9bFeGojV0wvLIW1CtxVi9dRhjmdqRoOPhRAfPDawxnswjA8+Hi8vBK8Bvb2j7c5xFGnQeX8thvVm1IaztMykNrc10vSvh3XU1kK5TlknMjq8oxjKystArAeP4Tgonxwp6llfXqd20/DPqnsA6O4hZfZeqtcJ5WGUtSCRsoKOqxptg9qZYr3ytrOWfkAq+mS6h2H5RrA9obNrnTjO1i5PpEZYCPUaFM98zl/nMY6OyWwLLQDeAM4czpdLMcGK80GH0lRQ/6zBOTVo26yFPmeJWAbifVZfLd+XHEecooTbWqPzSv0M1enF2ym12VhRn1GaBZ7f6ITtpIwf1sp18wBg/YTunsb8QZvGrGb5SBop9HkI5jQt7XiefofSAi2E6XxcpdJf9PeEBZ94bFjOytH0B5roHLUYdg5/HurTGMefq2wrP2tcJCTmqEZVMccRAHeY2c1m9taNv4rz/haAd7j74wH8EwB3YvRo483ufi2AmxE/6ih2IUopIYQQQgghdgub3gnL+Q/ns3Az2wPgawG8CADcvQuga2bPAfD0vNpNAN4N4CfPXoIQQgghhBBiJnAAQ32zXoVKd8LyfGEfx8iKuAzgzo0cYpvwGAAPAPjvZvYPZvYHZrYI4LC7H8uXfQzApZMWIoQQQgghhBDzQqWLMDN7PoAPAPgOAM8H8H4ze16FWesAngzg99z9SQBO4xwePTSzl5jZLWZ2S//katXZhNiRcDwPVk5f7OYIcd5EsXxKsSxmmyieTyuehbhgfMp/M0rV34T9DICvcvcb3P17ADwFwL+vMN+9AO519/fnr/8XRhdl95nZEQDI/99fNrO73+ju17v79fU9nbIqQswMHM+15cWL3RwhzpsolpcUy2K2ieJ5UfEshJgOVS/CMnfnC6WHqszr7l8E8Dkze1w+6RkAPgbgrQBuyKfdAOAtFdshhBBCCCGE2KGYT/dvVqkq5niHmb0TwOvy198J4O0V5/0hAK81syaAzwD4NxhdwL3BzF4M4B6MHnOcSJY5lpvrGBaUpRndh2Qt/Z5GcLp26kETn5GDtEvO2e6ANO/k4F3tsxcYONVthfJ6c1xmjTqb/lg5z0rdJmnz66Tg5fr9LFb7plT7/UZw1rKGuqik3iClqO8X6rOOP6XtZyX+gNS0ke7eyzWzjBlgtB0yUiJnWbk3lpXxS21y+LbXS2qn5z37PUo3UCtPdXChWM3R2rMebUvW5LcasS97sRVieKkZ+sf7klMu9DjtAU0/Q+kMVs+EWO6thjj3XhwHRvvCSAFfb5KambanR4p6igleLunIPSukgWBF/SARO9xETr9QJ002t5v18RPCcUDtGpI/3vvlqn1EoUntpnWn/fjx8VejNrbb4ZjOFro4FzimODVFqx4vp15L+JjPlbrDD3bzdYfJHBNNipWFdmjHAsW5Fc6kHM+chmOdyt3TIW57J0K5eTzsxzo/yU6r8IIpfUBD/TBR5iHZ+uXTBxRgvI60Aj9WY1timHHWxDcTynjWhlM+kKyQHaXGOn96+i6jEBm0WBtOQbxIenbeZTzO077MmoUOtcrHjfgYJY03xQGPdxy/W5VuARil5OgfzjdEIjUF96lDx+pCK5S5D5wqIkopU0jLsH6G45lS0jxC8Uz7K4oVHmdojKp1OY1DfIzVaH/X1ql/UbxQG3m/9lnHT1Wo+qBVSHvTKR8MPZqHPl+0OKaqtJvGnJV4HfHxR7Hdoqk0znPZKRWJk3q+36GYLX7c4vGMPw4lVPQ1Sv9S28J4FjubShdh7v7jZvbtAJ6GUfTe6O5vrjjvrQCuL3nrGVUbKeYfS1xoCSGEEEIIMW9UvRMGd38jgDduY1uEEEIIIYQQs4ySv1aiqh3x28zsU2Z2wsxOmtmKmZ3c7sYJIYQQQgghxPlgZleZ2V+b2Z1mdoeZvTSf/gtm9nkzuzX/exbN81Nm9mkz+4SZ/YvtalvVO2G/AuBfuvud29UQIYQQQgghxGyzw2QZfQA/5u4fNrNlAB8ys3fl7/2Gu/8aVzazJwB4AYAvA3A5gL8ys8e6+5b/WK+qHfE+XYAJIYQQQgghZgV3P+buH87LKwDuBHDFhFmeA+BP3H3d3T8L4NMYpebacqreCbvFzF4P4M8AjNVs7v6m7WiUEEIIIYQQYsa4OAmULzGzW+j1je5+Y7GSmR0F8CQA78dINviDZvY9AG7B6G7ZIxhdoP09zXYvJl+0nTdVL8L2AFgF8Eya5gCmdhGWmWOh0UPdYoseK56HpB1ltXyXdN1Ncgk3ST/OGvsG1dlXUOKfarTH5eNUXh+Ub8pIIU7t4Ha36+XtKNJn7biX38Tk5fL6WPfMdVhlXiso6lP6dFbfxxrpUE4qy4dpXzdr6VnRzvrhosY6TA9lVslz/WzC/fEaxRWnDIjKtnUGx8yGWGx3o/Vy/HpB67/eD/HF25/7ynG7UA+O4WYz+KiHC2G5K+3g5j3ZDrG8th6nZeB9xspzVgbzdq6xJp7246AZ2t1bD/0ZFjTNkUacUyOwrp6bwfFFKmgMqE0NSn/QCNtpUkx4FKu87kSbhon2ceqFCakR+Lg0Z/Vxubqb4fiPNN607lrBQFp8fb5Y5mgtjOItlU6C92Ok6Kbxo9geVpAvNEM8czqKfifEzonFhXF5neK5f4LWsb55ugwgVsbzvmTNdUaZMFiZzfOyrp514kVlPL/Ham1e7oDORf1FLtNYy6chDsfCITZkdT63i9XfvG4qd8FpHHgdtKEoXQmr9YFCGolU6ohEPNdq6XjeKixzNBZ7Z7UvUsDTZE7HcnotpK1J6fRbFMuLC3EfBoshqE4thPF5rRXiuR7FMzUpEdocj6yrB4DamVBunKIUOqdoO9M6hg2KZzoPZV1ayRZ++E6ecml8pExDMAqirB83pHWCxmFOl+JZWTEKyCFp7Dktg9G6vTA2p1KhRJ9JOI2KDNEXyoPuXmZiH2NmSxgJBl/m7ifN7PcA/CJGUfuLAH4dwPeiPLHMtlxWVlXU/5tJ75vZT7n7f9maJondSFbblvgWQgghhBBTwhB/kbgTMLMGRhdgr914is/d76P3fx/A2/KX9wK4ima/EsAXtqNdVX8TthmbJlsWQgghhBBCiGlho1ukrwZwp7u/iqYfoWr/CsDtefmtAF5gZi0zuxrAtQA+sB1tq5wnbBOqPeMhhBBCCCGEENPhaQC+G8BtZnZrPu2nAbzQzK7D6FHDuwD8WwBw9zvM7A0APoaRWfEHtsOMCGzdRdjOuu8ohBBCCCGEmD476Cdu7v5elN8sevuEeX4JwC9tW6NytupxRN0JE0IIIYQQQogKbNWdsD/douUIIYQQQgghZpSdJubYqVS6CDOzXwHwnwCcAfAOAP8EI8XjawDA3f/ztrWQyOBnKaVZwZzSTWdgZfO5Pda5UOslX7epfLIXFLKnekFTywr41V65vrYzDP7fS9rBgbxY0NUPyEHLunqG+8d1uuRxXSOdPqv8e4PyZQJpHfAazZ9ZKPdJ28t6atZwF4/RSONL2v5mBUU96+NZ255SzBdjJRk7rBneQkW92ahtvHxOn5DqZ7FNtQl9KqND6nous9L+eH0hmmflTIjtXpdU+ZHmNxRrrdCPzkKI4XYzlNdpX/d6cdylUiNEcUTxNSRNfEpj77TrLKG8LswCy8r7x3Eb7Sd2REfq7fR+idpCscppGZoUz7WErj5LrC8VK0B8bFwIBj9rO47aurmKfFL7UopnZqkV/NmLFF8Pkwb8ZKszLg9PhDGqdiZ+EIRV3HEghOKgTeUwnGNI82apLCO8ukJIsKI+KvNxxaeiVVpUxipt2vek0y/inMmBFd+8C9g6Tm2PVfu07jpVovhlJT0A1DlFRFZ+LNYSaR1ScV6rMPZVxoAsbwuHYBale0iliqC2Jto9iYUGfb7YG3bgCdpmq40wPg9PhJ1XP016dooVS+xHAOgthfKwwWVKg3Ka+pH4+MS6eqPUIDbh41Zq6BzWeBylIscdxTb3aUhpHLzw6dZ75QMKp2KohWwu0bJ424DT79Spr/V4H0epSbheIrY5Fcl2pV8QO4+qjyM+091PAvhWjNSNjwXw49vWKrHrqJd8iBNCCCGEEDOEX4S/GaXqRdjG9wDPAvA6d394m9ojhBBCCCGEEHNN1d+E/bmZfRyjxxG/38wOAVjbZB4hhBBCCCGEEAUqXYS5+yvM7JcBnHT3gZmtAnjO9jZNCCGEEEIIMTv42T/6F6VUehzRzDoAfgDA7+WTLgdw/XY1SgghhBBCCCHmlaq/CfvvALoAviZ/fS9GtkQhhBBCCCGEADCyX07zb1ap+puwa9z9O83shQDg7mfMqgiEATO7C8AKgAGAvrtfb2YHALwewFEAdwF4vrs/MnE58E2VyqyiZyVsRo5W1oA3zlFXDwAN8qQuN8LP4lKq8S5p4vukcR2SezWlTl/IYj0+6+fXSTnPKnruayOxXK7D27RbUNR3Exp8pk1qc9aqsoo+paFu12OH8iSFfBnDhPo+2hek926S17ZZ2Pe8TVh3HMfUFirq4ZFKH4j1xkUdfkpZy/07V4U+p1iot9Lbno/0UxmlX6iFGGRlPKumuU+cdoDLqzX2/wK9fnnccTsGrKj3xFCUCKFIdT+M5+W+N1r90nniNtE+o37Xa5xuINQvrq/Ksnh+Xi6PXxwHWSJ+i+PnlinqrTw+Y/1+QqGP8j4DcaqJ5D4mWO99eHmldLnH60FX318hxzyAISnrjYYmPhyGfMashTcGpL+ur1KKBR7iLFEGIh08v8cq+eQmYI13nxTdfLy0CvNw1zk+qX+sux/S+OBNzvdARdoeRlr6rGi+5RQFFDetRvn4kBr7UmlJLhSDl9p6z1Wb30ikaEilbCkSnVuXype1mgVdfT8L42hKV19cHcfXkGJkyOkXGhTbZ8L06HRDxwifWotK/AEr5GndrJyPjz3abtSOfrt8u6V09UB8DPQ75dM5/lk/7xTbZx27oVb0KmtQfFKKgVQqhuj8IUX9rqHqnbCumS0gjzIzuwbA+uRZIr7O3a9z941HGF8B4GZ3vxbAzflrsYvZyhxcQgghhBDiIuE+3b8ZpepF2M9jlKT5KjN7LUYXTj9xAet9DoCb8vJNAJ57AcsSQgghhBBCiJmhqh3xXWb2YQBPxehm7Evd/cGK63AAf2mje+j/zd1vBHDY3Y/lyz5mZpeeR9uFEEIIIYQQOwUvPK4qklS1IxqAbwbwle7+NgAdM3tKxXU8zd2fnM//A2b2tVUbZ2YvMbNbzOyW7vEzm88gxA6G47l3QvEsZheO5f6J1YvdHCEuCI7nwUnFsxBiOlR9HPF3AXw1gBfmr1cA/NcqM7r7F/L/9wN4M4CnALjPzI4AQP7//sS8N7r79e5+fXPfQlkVIWYGjufGXsWzmF04lut7O5vPIMQOhuO5tkfxLISYDlUvwv6pu/8AgDUAyE2GzcmzAGa2aGbLG2UAzwRwO4C3Arghr3YDgLecY7uFEEIIIYQQOw2JOSpRVVHfM7Magh3xEGKpborDAN6c2+zrAP6nu7/DzD4I4A1m9mIA9wD4js0WVDPHUmM9UhoXSWnYa5H6mxTPkRK92gOsvI4OuV+XaiSLLOqAc4Z0zbs+CJv+ZL89LvfJsdor+F33ZOERtk7WpXqbq+RZab8+LN/t/cJyTvfDdXY3MQ/Dul3W8af0/Z166AMAtMhTywr/QULjy2p+3m7x+sIyl2phfa1aUY+/ueK4Vinkq1Ezx1JzPakTLxLHdrl2vH4e8bwBp1vgMgAcaIXHc071QnCv9oMSeY3Kp9ZD3AwpDvqklV9o0rHTivu9ViuPNd4+Pdr3PP42E2r4fqIdReoJvf6A00uQZp7rsyKd9dIMLweI45ZhjTVrjBdouUuNEM8c51VNo1XSQFTBzNHO9eIpXXdqXdy3WqHdUWwnlM2ptCQdiq89zTA2P9QKsX1/Zyla1tqZELeDNYpBUtdnpIAfksIa7dC+QZvSNayz/51WVhjSWC3P7w0WSA1PmnhQDGbrpNZP6cGzwvb3RLtYu79I6S8WSRlPum1PpFywhMIdiBXdbdpPi80QzxznxXQi4zaxMn4LEwVl5ujkbUmmVkjEedQ+Kx9LmFTqi+I8HTrW23vDtnmkGfbL8Wa4g9fthPHYKD6ytUJKDk5pwPuePsOwVr5xiuelBUWK+vI0CQDQX6QyPQzCy2qs8HQ63linT4cnDxtcHhZuE/SWqbwnkXKB45l3GW0bT6RiqLfjzxSdhbDPeDyqV0gnkkrLIOaPqhdhv43Ro4SXmtkvAXgegJ/dbCZ3/wyAf1Iy/SEAzziHdoo5p5X1N68khBBCCCF2NrN7c2qqbHoRZmYZgM9ipKR/Bkbf0z3X3e/c5rYJIYQQQgghxNyx6UWYuw/N7Nfd/asBfHwKbRJCCCGEEELMIDbDv9OaJlXFHH9pZt+eq+qFEEIIIYQQQpwnVX8T9qMAFgH0zWwNo0cS3d33bFvLhBBCCCGEELOF7oRVotJFmLsvb15LCCGEEEIIIcRmVLoIM7Mnl0w+AeBud5+K1i6zIZbraxNVtA3Wz0fq7s3148wkFXlKB59qF+vghxN0tBuwAnxt0Ije43UcbJwel5eyoGBmzfOAHMVsH0z1odi+5fpa6XtDWm5Kfc/1ud0N0g03C0ZEbmMtUreWq4h5Hbxu3vcLpPJvU0qBc1W4A0BtC3U/mTmWGt2kYrte0DKz7riRUDanVP68LQeJ/cjtKK67l5WnAhgmNOr80PJ6t15aZsU8q92BWDPPRKkHUF6Ht02DlhPHb3lsArFCnvvK02uJtACRor5WroyfNH7x+lipzyruTiLNAo9xVXXdWxXPmXmk0N7AEqkUWDmeUs+XraNsfj6OOWUFxzBv/1P14K0u6sGH/c2fzrcuxc6A9dmkvG6HdQ/qtMz+BB35kLTXtFucNfis0iZ1+nCBlOCDcsW2FVXyvA5qojUotluhH602pUNo8HmWtnOt2r7k43KR4qZDWnreZ8XxaINJKT0uBDNHK0+5kNLMp9InpNJDpFJRFPvAqVlSYwDH/+lu+LwQxfOg2i9HOLOOZ7TuTmhXf5H17DTm8yHPoTnh41akvm/TOvgwoVzZnLohGtYSu57V9cNmYdu2+Bil/Uoxn5Fy3oppHTam81hEKQIWW/EYuNQKG7dd3zyFSCoNjZhvqj6O+LsAngzgtvz1lwP4CICDZvZ97v6X29E4sXuQol4IIYQQYsZxVMskLCqLOe4C8CR3/0p3/0oA1wG4HcA3APiV7WmaEEIIIYQQQswfVe+EPd7d79h44e4fM7MnuftnJEwUQgghhBBCGFyK+opUvQj7hJn9HoA/yV9/J4BPmlkLQC89mxBCCCGEEEIIpupF2IsAfD+Al2Gkp38vgJdjdAH2ddvRMCGEEEIIIcSMoTthlaiqqD9jZr8L4G3u/onC26e2vllCCCGEEEIIMZ9UVdQ/G8CvAmgCuNrMrgPwH9392dvYtoiGDXBZ62SkXQdiJTvD6tdapIgurz9MKGSL8PpZJ8vTWQHPOmyezjr9A82gm2dL4EqffK4AVnrtcblTC0+BLjdO0vxheqpPA7DaPWjwi9uW+8es0Tz1YejHgpM+m/rRSKQIKKrWue1tC/PzPuP0AQOwLj2UG1a+7pS+v8gg4auZlLrgXKlnQxyk/Q7E/SwqamuRyr68Hqvoe8PN4zlS1E9Y9xlr0DwhJrqDMHywtn1Pe610+ukzIZ7PrIdlFte3t31mXGa177mS0v+n0hwAaZU0K+c79RDnC3QccsqFVqI8CU6zkNKtdyjlQkpjnEqFcVZMnUeahjJqNsRyc/2s6azVjrb/eaRlYHh7ctxWGcNZ722TNNCkqsYSjRu1sI9YV2890sTzWXWB+kSL9IIOP2pJol388+tIn031jbKPeFFLT9RIP7/YCfuu06QxmJTxrJJP6bar7gs+ThbrYd2NCvE4SJyTtjJ9SM183N9U3KZim0mlppiUIoPpJ1KIROvgdB4cEol0CMNWvJz+oFw5X1snXf0CpTghdf0wZHtARvHPR/FZQxHFLYeIN0hX307Ef0K776Sez5ZoPG7F426jPigtc0oU3p6TzhMb8HGxpxGPgU06Z6TGvKpj9UyiO2GVqGpH/HkATwFwHADc/VYAR7elRWJXwhdgQgghhBBCzDNVL8L67n5iW1sihBBCCCGEELuAqmKO283sXwOomdm1AH4YwN9uX7OEEEIIIYQQM4WSNVem6p2wHwLwZQDWAbwOwEmMTIlCCCGEEEIIIc6BqnbEVQA/k/8JIYQQQgghxFkoWXM1Jl6EmdmfA2nt0DTtiEIIIYQQQggxD2x2J+zX8v/fBuAyAK/JX78QwF1VV2JmNQC3APi8u3+rmR0A8HqMDIt3AXi+uz8ysaE2xCX1lYnrqaL+TNEjrzBrcIuqXdbw9kgp3aP1scp8f2OV6gd/8LoHRfcCaaf310P9B7rL0bof7nXG5VP94Ie9okm6+1pI2zas8LTp6WHQhrNCH4j7vjIIenzu39560InvrYUy2w6bVq7oLmp3F7OgeE2lEuB1s5J9UGF/p9TzQNzXLqcYoHkmae3PlZoNsaexhjop9FM6/Umk9P+8LznuYq0/xfmEbbOnHpTzw4VQ70Fq40ovxBG3/cBCiGfe3yfPhHgqHqt7SHe+r3mmtF4qfUJUJ7G/usNa6XQA2EPK7P2UQoC3QYdczo3E/utk66XTJ5HaN9Xqb56OYtJYdiFk5ljK9cyRcp6Wz+kokrrts1JWnFt6gir7/kArxOPq3kb03jEqr6+Rf5t10aR2H5yh0+dqiCkjNXytFcbBGmnvB704BvlLY9bPpzTzrKt3Vt/zeSihoQeAA52wHfZzSghKucDlJYr5Vq18v/BYNimdR5xW49xiMDWWbSWZOTq5np9jmOMzlT6B4fqs3+exq1cYi/iY5DQVPA8fPwfbYT+e2LMwLq9QbGYUm54VFPXLoY3D9bA962co/QIdloM29TsM4Rj2Evr4bMLdkDq91yivx7GNGsXNQojB5aUwNu+jWG4V0puk0ow0s/LxOUqNk1DGNyek4kmlgEnVSaVfmFl0J6wSE0cxd3+Pu78HwJPc/Tvd/c/zv38N4J+dw3peCuBOev0KADe7+7UAbs5fi10MX4AJIYQQQggxz1T9KumQmT1m44WZXQ3gUJUZzexKAN8C4A9o8nMA3JSXbwLw3IrtEEIIIYQQQoiZpqqi/kcAvNvMPpO/PgrgJRXn/U0APwGAn6077O7HAMDdj5nZpRWXJYQQQgghhNiRuB5HrEhVO+I78vxgj88nfdzdN31+zMy+FcD97v4hM3v6uTbOzF6C/GJv/+WtTWoLsbPheF4+0tmkthA7F47lzmVLF7k1QlwYHM8LhxXPQojpMPFxRDN78kbZ3dfd/SP533pZnRKeBuDZZnYXgD8B8PVm9hoA95nZkXz+IwDuL5vZ3W909+vd/fql/c2yKkLMDBzPnf36UkHMLhzLrX3tzWcQYgcTx/PC5jMIIdI4RnfCpvk3o2z2m7D/bmb7zexA6g/Aq1Mzu/tPufuV7n4UwAsA/B93/y4AbwVwQ17tBgBv2YK+CCGEEEIIIcSOZ7PHEfcC+BAw0Z35wHms95UA3mBmLwZwD4Dv2GyGug1woH76LBV5FQ07w5px1nhnCQXpJG17jfSrkRKcynszVqYG5e/qMNzZq5FyltXu68N495waNKkeKVpJDX9p/eS4zApfVtFzHxq1oFUt9nVt2Ch9r0HrPlALGu9DtO429YNpIK1hryXU1axurVInms77G7XS6QCiCG94uQaZ0xhcKHUb4NLGyeT7RaVtSnOeUtw2nFTaWbm6O3UsnBnGd5051q5sh0wSi6Rz//zqvnG5PwzLbZMmmKezmnmxGXTBAHCgFWLqcCukpehTG9cHm+8L3h6sez49SN9Vv6QZUjxc0To+Lu+tBRV0rKUP/WONcSORlmESrPVO6efjeJwQzxvzThi6tyrlQt2G2N9cnVgnGuNIFV2vqO/nbZMaq1lRz9uGx9F9lDKksRyvm5f7hRN7x+XBgMbLephnLRr/aTvXQltbpKhvN0O/e414rB0kVPSeSFXA0/v98v24tBiOzyuWT0TvHemEsWexFurxsc7lDtVJjcF8XGxV+gOgkG6ANhvvYz5XXSgb6UOAdD9YOX+uqRSY5oR5h/Re38vTahyilDQ4EIqfpJg98wA9+l6IM28MS98a0FjtrI9nRT3FuTcTY0mtECt0jGWUsiGjZQ2p7ZyiodEO2+PgcjhHXL4UYpnHoeK25fhcoPQLqXQK55pKoTieptKMnOv4NbNs3RAw10z8JJPfwdoS3P3dAN6dlx8C8IytWraYfVIndiGEEEIIIeaNrftqXwghhBBCCLGrsRn+ndY02Z6U80IIIYQQQgghStFFmBBCCCGEEEJMkUoXYTbiu8zs5/LXjzKzp2xv04QQQgghhBAzhRT1lah6J+x3AXw1gBfmr1cA/NdtaZEQQgghhBBCzDFVxRz/1N2fbGb/AADu/oiZTTV7cg1D7KudnqhVZl19lxSfkeKWrKFRnYT6uQiL11vGSumw4FP9kLyUl7Vka+Pyl7TuG5evqD9C9cMuuQ1XRutmPfXeelCxsj57HynxWcm6YqFNpz3sOt6eax5rfvk9XkcnC7rig/WgyF20oBrPEn7S5gQldRUVfZV5I1i7y0p2Kyii6b0m6cVjJXg1nXYV6hjiAG07AMjOwxDJCvJBBZX5OqmcWb9c87RPNk5PELbBZU1SA1M8srKZ572nHhzKrK7f0wjxBACHSBN/oB5UxNze9UT6BIa11af7IUUDt29P/Uw0zyWNsG6OeU650KY4T6UOSFFFdTwJ3sc8Zg0ivXG1YX2wRU+j12yIPfXR2JZSyXO/Oc4bFfXePB7wsZ5KucCpMBjeZjxWAkBzT2jLJe0Qd5zeYI1SI3zx1PK4fIJ09bUs9HWBFPVNSgfSqsf9ZuU8q6r5C15O69Dr0zFJ2vzFVojNQx1Kt9A5Hq3vYCP0b6kezktx+gVKJ5LarzQ9FdvFce1cj4EqqRha2dYp6jPzcfqNaHtkHMObb48UcfqJ+LyVGsuGXj6mMkcWQhqC5uHQ7mPLIU7P9OLttNYNr1dPhTGy3whxbqSxr5EmPsvKz1dG28MKdfjYMOo6xzlPbzfD8bOvHY7XyzohdQmnFdlDsZxKkzOJKqkVeCyaVJ/HJq43rJAaZCtTLlwUHMBwdu9OTZOqZ+GemdUw2rQws0NQFgCxhSQvooQQQgghhJgzqt4J+20AbwZwqZn9EoDnAfjZbWuVEEIIIYQQYsaY7d9pTZNKF2Hu/loz+xBGCZYNwHPd/c5tbZkQQgghhBBCzCETL8LM7AC9vB/A6/g9d394uxomhBBCCCGEmDF0J6wSm90J+xBGvwMzAI8C8Ehe3gfgHgBXb2fjhBBCCCGEEGLemCjmcPer3f0xAN4J4F+6+yXufhDAtwJ40zQaKIQQQgghhBDzRFUxx1e5+/dtvHD3vzCzX9ymNpWSmaNtPRQleillbcPKtbasKM5Iy53SOp+l1wVr6cOy2qQ1H9aCJphVo4/0F8flg7WgVb28FtSrTfKznvb7S9sEAMs1UrFaULGydr9DitZIXe/lWujiNuDlMvuyoO5ezLqldVKK+QvR0J8PXYTtwesrqoQjpTvNw6rrlPb6fKjZEMvZWqyJnyAcjbXG5Sr6lKY80khn5TE/oLgrand7w1BvmLBY7ifl9eE6qZJJ8cwxe6C5d1zuFGJoL2njWxTDrIvmedJa57BtVmshLQMv55L6SjTPcnQshnrtKP1CuXo9xfnEOSuwo9Qb4LQalJ7ASM9OqRSGE75nG/jWGElrNoxSZozbESnOy7fB+cQ/00ukIknZVnk8Lq6vVQ+xxqprrndqEDTerJx/oLm5Dpt15JzqAYg154Nh6Afrvhk+py02QmxeRSr6w62QQoKPPSBOM5JKsxDtP9pPKXU9c6HjWqodHLMc25NSbJwrmTmWamWK+lBOpRNJpVxIpVIojl187KZivkF95e1Ro1hZqIW0N3ubYUw7M4jV5ye7IXXNfa2gsj+9HsbLWCsf1jGkOM2oDh8XRZqUToGXy8fGAh2Hl3dCDHM8d+gzFp8LJqUMqRKTWeJ4Y1LzFvclj8nR50bbPOa3KHvIxUWPI1ai6kXYg2b2swBeg9Hjid8F4KFta5UQQgghhBBCzClVL8JeCODnMdLUA8Df5NOEEEIIIYQQQsmaz4GqivqHAbx0m9sihBBCCCGEEHNPpYswM/tr4OyHoN3967e8RUIIIYQQQogZxIEt/J3mPFP1ccSXU7kN4NsBlP8CVQghhBBCCCFEkqqPI36oMOl9ZvaebWhPkgyO5WwdK8MWFslUdtLbY4vfmjfGRrOe18b1Tnobi7kNamW4MDaddX1hPG/P6+PpPZp+2ltok6GtN6iNX58etiLrzYbJbXXYHBt71oYNdHLT0tCzyNCzMgxmohO5ge5QbYC9WTAYHa0Hy9Fn1i+NLFdsUFsk2xVb3dg61MntTqcHDRzMRst5aNgel784WMLl9WBtPNlt42hjlI/7rt4BXFY/mfepjn15O3qeYTk3Qq0M61jMLZFrXkM7b8ea18brLtbZmL46DOWN1zw/lxv5Nux5liyPLUcezJWr3hjbkwZeH9cfvc6i2OGY2rAiDpBVsuFVoW4DHKqfxEODpbFtcmUY4vT0MI6708NWiOHBQhSDG3F72lvUhzoaeb97HmKW47c3qEcx24j6H75j6aE+juFTg/Z4nt6wHrWRDXgcg5fltsS7u5fgce1jAIBj3b24ojWK7Ud6i7ikEeKu5zUcaYzee3iwhEO5wfD4oIN9tdVx+bL6cQDA53oHcVXjobPKd3cP4TGtkWH09jNX4rH5uj+7fimuzqevDBZwRSPknD85XMBltVF7Hx4u4UA2ateqN7GcHyenhy3syy2KK8MWlsdjS1zeMJKuDNvj8YDHhuLr1SGvo4l2flxxne5gAXvyOseHC+jk+36FxsHT3orGu46t531oRZbH4th2IWzsowf6y9H+2ujP6rA1Nk+uDBawtxZiPtRJb5uzjo3xuF0b1+HY5HheR2M8fW3YGI+hq4NmZFnjsflEvxPVW8ptiacGLVzVHsXLvWf24+rFUaw9cGYRB9ujPj201sHe5qj+iW57PP2BM4vY3xptg1O9Jg60g7Xu+Hobj1oaxfxnTx7EY/c+AAD41MlLcO2eB8flJ+77IgDgI49cjifuz+P51EF82d7R9JO9Nr50cTT94f4ivqR9HwDgvt7e8TEFACcGnWg/HcjH/Yf7SziUj/PHB4s4mE8/PuhE0/fVRjbUlcFCtF83pp8cLpSOaxv7b+P1yeEC9uTHyfHB4tjauDpsjcevgTejMa493setaMxq5TGx7rEB8Hw40hyNAQ/2lsZj04nBAvaO+9oex8fKoD22gxaP53DuaYbYHLSi8ZjP6Sf6C+NYO9HvRMva6Gvfa1gYx3xrXGfdG9H0DcvsSr+NS5qjPnzuzP5xGcjP8YujeL7v9DKu3jsq337/ZTi4NNqXx1cXcKAz6t8jZxZw6dJo/i+e3IP9i6PpJ860x3VOrbdw5Z7R9rv35F48Zl8YX5tkj7z71H48fu9oHP7Y8cPjeP7HlUvwhDyej/c6ePzSaPojvUVc0x7VP9bbhyubo+U+3F8aW25PFGL5AH2eOT7o4EDt1LjexhjE5ZXhApbH43Z5eXXYiuI0tS/j8a8ZnbP5XM7LatGyNsrrwwuPZ7FzMa+gkTSzA/QyA/CVAH7b3R+3yXxtjCQeLYwu+P6Xu/98vrzXAzgK4C4Az3f3R1LLAYAv/YqW/9HbjkQXFUCsZE/pmFlXzBrRLim6eXqk7i4sk+ux7pjr8UGzllDfHyI19le17xqXv6QRlnN3P77Z+MG1R4/LfAF2BZ1c+QKVP0jzBU7q95JZweq8RvpU7gcvt22smd18uVynuD4mtayUerpKnV5C7T5aH+m+Wf3NOmHSgz/j6k9+yN2v37QxCR73FW3/vbc+upA+gduQdtRG8ZnQ0qeOiyrxX9Tmpo4fvuhiNfDlFI+Xka7++LAzLn9q/XDpcgDgknpQEdcSymC+mEjB83YTGvs9lLoBwPii5uxlsaK7ipa+PJXFhc7Dccp94thkUvFVXMe3POaO847no09c9p9903UT183bL6X3nsQwcUwOErGdKieV0IgvwrheltCzf7G7b1z+x1OXjMt9UnfXScPN04sa7z0NSiGSiK8WfYDlY7JTCxfSVzTDsccfQLOCVpu/JEmpu/n4adjmD77wvLyPU2ktiqTGIybe3+XjIAB8z2Pff97xfNUT9/iP/ulTK9cvpvTYIJUyYVIMRmPtcPPtweMB69X5eOPPKUVFPbfl/vWgqD+2Gsq8LxsUt+sDSoNC69vXChcizUIqBr4IW6C45W3IcX5ZK5w/DtRCGpTUeDLpS9LiMbAVTE4Bkh57y+qkxjIAeNmX3nxBnzemzd7WYf+aI/96qut8x92/OVPbaIOqjyN+CKPfhBlGjyF+FsCLK8y3DuDr3f2UmTUAvNfM/gLAtwG42d1faWavAPAKAD95zq0XQgghhBBCiBmj6kXYl7p7lO3RzFqpyhv46DbbxtdxjfzPATwHwNPz6TcBeDd0ESaEEEIIIcTsIkV9Zarm5f7bkml/V2VGM6uZ2a0A7gfwLnd/P4DD7n4MAPL/lybmfYmZ3WJmtxx/OJ0JXYhZIIrnhxTPYnbhWF55ZGt+VybExYLj+fTDimchxHSYeCfMzC4DcAWABTN7EjB+sHUPgE5yRsLdBwCuM7N9AN5sZk+s2jh3vxHAjcDoN2FV5xNiJ8Lx/LivaCuexczCsXz0icuKZTHTcDxf9cQ9imchLpQKvgmx+eOI/wLAiwBcCeBVNH0FwE+fy4rc/biZvRvANwG4z8yOuPsxMzuC0V0yIYQQQgghhJh7Jl6EuftNAG4ys2939zee68LN7BCAXn4BtgDgGwD8MoC3ArgBwCvz/2/ZdFlw1DBEzWKLTKTSZtNMZCCiMluhEladNnpjo1ADwJo3S9sUmXgi6x8vK7SPDVPcvi8OlqkMPDk3Ah2qAaeHYVlszLmvF4SVbLpq53ru0fqoHZHpKjb1pJxBG2r2Ik2UL5cFQIPElyC1wgOwqXq8LG5f6vlZfvw4ZUfk7dHAMIoXGJW5TYl9fKEYRtuXbWuTTEuR3Y+6lyXmyRJ2LK4fm9CG4biyQWwhZcMntZethq2E6pyV4xz/hzon8eEzR8evH+yHY2BDeQ0Ah2rBIrpMJsNlUl5zP9JWtTgm2KzG7Vqm9nL/eH6eXjQ7lq/v3B89HYBNfWQGtHIbWtPDOjhWGjaI4orblW3RN5WZDcf7uXYeBrIq9sjIAsqnLepCZCCjIu+jokWStwcfi40obsP0jRQJAMaafAC4by3E7/1rS6FOLcRWvTbEUiP8tPoQqcI30jUAcbqRlGEysrbS/t5L7QMwVswD8Xg+TPQ7Fc/nY5ZLtTcZj4nzcbQNomOP2mTV4qgKGXysDa9i9UyZO6Pz4QQbL49FGY8zGZ2zE2lZ2aCY2qdsNGSFOhCP24v1EHdrZD482Q0//+/UQ/0DLRqPKa6PkNEQwFjff1a7Eql0eHtwPO+L7Ig0NhfMmPxeKm4nnWs3o7g+3reREdOy0nl43ZF5ko7PZgUb6Y5Hd8IqsdnjiN/l7q8BcNTMfrT4vru/qmQ25ghGF3E1jD4/v8Hd32ZmfwfgDWb2YgD3APiOqg3eqoF2EmuRYr78Amy7eDINYHwBtl1czJzmyQuwKdCboAnejcQnkmpK6QshdQE2DVIXYPNI6gPvTmEa43l63dPdHqkLsO0idQE2DVIXUdvFxYyjcyV1wTGP8AXYNKhyAbaVpC7AhKjKZiPAYv5/qeS9TT9Cu/tHATypZPpDAJ6xaeuEEEIIIYQQYs7Y7HHE/5YX/8rd38fvmdnTtq1VQgghhBBCiBnD9ThiRareP/1/K04TQgghhBBCCDGBzX4T9tUAvgbAocJvwvYAKP8FvBBCCCGEEGL34QCm4DSoipldBeCPAFyGkQrhRnf/LXr/5QB+FcAhd38wn/ZTAF6MkVnrh939ndvRts1+E9bE6PdgdQD86/mTAJ63HQ0SQgghhBBCiC2gD+DH3P3DZrYM4ENm9i53/1h+gfaNGEkCAQBm9gQALwDwZQAuB/BXZvbYPO/xlrLZb8LeA+A9ZvY/3P3urV75uWAY6WlrBcvTIKEljogeTWVbWDls2Fm09Uj5zKrRSA9ONqhFK1cMs5K1TWrY08OggP1cn28w1nCA6j268eC4/AAZ5T6xdqS0Hwdbnw/rBiueWfMbbzR+PrVNOuwatZ2tho3ERq9VEI9NqjOgNg7P8dFiVuhzfMQ66mHBAsi643JdPW+DC8XgUWqBjRYyHHc1TisQtYlU5rz3PEw/ez1nz8tG0GIaiJaV6+dZEc2xzfOuDoNd9LJasLV9efveaFnvX71mXP702uHwRjsUL28fH5f3WFCId6OUFaxALo+hSVa8tm3+7V21Z7hp3YV3eP2pdkUqbk4DEem6aZsn1PWjdZQfA1slB6zBx+kDaontl1SUTzBxRuY4PiYTum5ed5fm5ejtFGyYHKupeI7Sl1DcPYHikcfzvz8ZYvm+M2Gc3t8Myzne6+C65fE5H1c0gqKetwm3g7XVg2gbZqV1OtTW0Xvl40CjwrhWJRVDylDYKMQEx2M8xlHKhURss45/YNtjo6vbcJyKIEvEc6QiT8Qzx3nUbsSfCZJmWiryscDbnFMgxONKettwn5azYOy8vHN8XD5QDzr421auGJcfXu+My51W+Jzz+MVj4/LheqyoZ/g44RQPvK04JjhmO/S5KjXOFOM0Naam6kTTozGrfL8UYz7aT4l9OYjiYo7tmDvoN2HufgzAsby8YmZ3ArgCwMcA/AaAn0CcKus5AP7E3dcBfNbMPg3gKQD+bqvbVjUCVs3sVzG6Khx/LHL3r9/qBu00uom8Q9PgQCL30naxmwSr09CwXwgXM+6mrXvmC7B5Z9pa9OQFmLioWnO+AJsGqQswcXGZdgymLirnkWmPd3N9QTUbXGJmt9DrG939xmIlMzuKkbX9/Wb2bACfd/ePWJw/9woAf0+v782nbTlVo+a1AF4P4FsBfB9GCZYf2I4GCSGEEEIIIWaU6d8Je9Ddr59UwcyWALwRwMsweqTiZwA8s6xqybRt6VDVr2EOuvurAfTc/T3u/r0AnrodDRJCCCGEEEKIrcDMGhhdgL3W3d8E4BoAVwP4iJndBeBKAB82s8swuvN1Fc1+JYAvbEe7ql6EbTwXd8zMvsXMnpQ3SgghhBBCCCF2HDZ61vDVAO5091cBgLvf5u6XuvtRdz+K0YXXk939iwDeCuAFZtYys6sBXAvgA9vRtqqPI/4nM9sL4Mcwyg+2B6PbeUIIIYQQQggBwM/dqLa9PA3AdwO4zcxuzaf9tLu/vayyu99hZm/ASNzRB/AD22FGBCpehLn72/LiCQBfBwBm9rLtaJAQQgghhBBCXCju/l5s4gPO74bx618C8Evb2CwA1e+ElfGjAH5zi9pRiQ31cmz8Kn+iknWkaRU96b2jZbKSeIg1Z303q6fJNMTqaFou673ZULVcO0PrCHXWyLDzhUEdl1G9axrHx+UHBg+Nyx88dfW4/JnuoXH52uZ94/JhanfPg9Z2rfDjSd6aTbLFtFkHzLpVT6u4N2Mw4XeOrMHnNmU0T6+C/Silpa2Zoxfpvrkea9+3x1KYwdG2Prq0/F4ihgAUtPQc27wNWNtefmgPEhp71lQ3MIiUvFmkSx/SdErLkAV9cKyrZ3V6WPVjGivj8uebD0dt/MyZS8blzyLE8+OaQYN8RSP09TT1o8eKaI4hWndnCw1hg2i/lNfhdhTjMZoncTgUUyuUTY/nLU+3kCGO+a0isyH25KprtnpyDKWU0sVDOFLG09jCuudITU6LZTtZLdoGKJ3eLqRe4DhnlXaDtO8c2wez1XH5soXPjMuc7uHm9S8dl08PQrqG9x3/EjzzwB3j14dqJ0M9SlkyjPY96brpWG9mYTqnJ4iV+/H2T42LVRgkxoYG+DjMCvNQHFIb27RteZ6Bx6P+GNoGWXTu2ToTXobh+PycUo7zNk/F5jCRnqaYliGpsk/M30uYcxtU5nYU4zwa62n7H6yFMfmqTvh8wUbF9z38JeNydxi2TScL8XgZKer5s1MRbhePD43kJ7YAf5YqpuRIkTIiR2kWEts8SqvB8U8xWEz1MKTPT91obCo/RuNUBTPuqnbAffeYOC+EC9nTF8V3PG21+KRBZLvhC7BpMOOH/TmxHR9G54Wt/EAjdg47PeYvpjJ+2vAF2Lyzm/bruTKc8rapkhNOCDE9LuRO2I564FMIIYQQQghxkdlZvwnbsUy8CDOzFZRfbBmAhW1pkRBCCCGEEELMMRMvwtx9eVoNEUIIIYQQQsw400/WPJPoYW0hhBBCCCGEmCK6CBNCCCGEEEKIKXIhYo6LQmYeady3ypbIqt0maVuLRGrUSGXOet1yrXAzoTpetG7p9OPDBhZpnhapWK+oPzIuf6G1b1x+sBeeIL1t/cpxeTm7a1xu0yZbi5Ss8e3jJsoZVLjN3E3UaRvrjYuqXiKhnR0kdN+s+u5F6QbK46Nhw+i9pK4+0q1v/XcWqfg9W2Ue2rGWsNylzFeR/tfLtbtFBok0EKn459juUDy3szCdf6fLLeVYBoBHLwQ98v3dPePybetXjcsHa58M66D+rZK+uUEa6baxSrvamMHxyKkcUmkceHoqlgeFsOZ6jVTqAS+fHscpLSg6Rnj8GUQpEbZq7DRwLITlp1IbcLtZaZ8V1NQ8D6dciPpNG72ZyKU5SIzNzcLxklLRR+kXEvps3nePa4VUCseW943L95w5MC7/1cNPwFHSgF9OxwCru1e9WTp9mZTgzXNODgJ0E8d+u0L6hlpibI9iNlKOx8uMVPTg809i3bQ6rtOjmEiN8+eDIajDWe7OqUF47GtkrOanj1SJ8bhbUMxXUdlHaUk4DUdiP3L7eF6O5dH6UjEf4ovj+cHl8Pni7tUQz3ethbQiVzVCXBfXx7ZpjmdeX5xeqHy8Yy39KqWEKOrqm3y8cmqdKM1CeQzG42N52pVJMZhKbhPHfJgepUM4j2N6R+EODGe8D1NiW++EmdlVZvbXZnanmd1hZi/Npx8ws3eZ2afy//urLpMvwOadxQkXg/PGtA/XrTxpzxvFPDZiPuhuU847ce7wBZjYvcx8PqgdTLNCvjEhLjbbPQL0AfyYu38pgKcC+AEzewKAVwC42d2vBXBz/loIIYQQQggxy7hP929G2daLMHc/5u4fzssrAO4EcAWA5wC4Ka92E4Dnbmc7hBBCCCGEEGKnMLVn+8zsKIAnAXg/gMPufgwYXaiZ2aWJeV4C4CUAcOQKPUojZhvFs5gXOJYPX757HhEX8wnH86WKZyEuGNdvwioxlQeSzWwJwBsBvMzdT1adz91vdPfr3f36/Qf07LSYbRTPYl7gWN53UF8oiNmG43nvAV2ECSGmw7Z/EjSzBkYXYK919zflk+8zsyP5+0cA3L/d7RBCCCGEEEKIncC2fuVjZgbg1QDudPdX0VtvBXADgFfm/9+y6bIwUpQuWq+gCC3X3dbIt8fa0mFCX95LbArWbY/qlX/rW1SKbxArYMtvz7LFh+sMYJH6mOe+vH5qXP7GxY+Ny3d0Lx+Xjw864/Jdvb1hfaSiZV3uo+ononZlrHRN/PCR25RUdFeYDgCDxDZMzZ/W11KlKnpvIFIqD6MUA6T63eIff2bmaCPER1V7XZvEySnLYyoeU5reAVu6LNaDM42C8ry0fRTzbePYLm/TVfWV6PWzlm4blz+6fsW4/PBgaVz+x95BakdYH48BRy1ovxep3zWLt1kqtlPfUFWJ7VQs1wq7K9b2p/Tzm+vqWVM+oPqsAz/LFrZFEkyDj1MRsCY+FV8cW6k0H8X5s8T25JQXvO9Z95wl9hgrsoFJ8RzqdbJQ5m3O++toI4yj377vlnH5g62ro+Xesx5i+O5eUHy3aH3cj2ubXyxdd+q4mkT3AoYyHl+H57Gc6DwYxX/YfzyGDIz3K+u9Q51sCy2DZj5ef6yML19HlAKEjrFh4gDL+LPGhGMwlfYG0VhGqTf4s0aiHcU0JhzbqXH7GlLOX7r3Q+PyB5shnu/tBl39A/2QVmQli4+xNdLJt5sPhH5QILQTxyHDMdhLpJHpohb1KSKRxoPHnCGdj1Njc42231mpB/jzaHSO4vG5RnXCZ02O+dlktmUZ02S777s/DcB3A7jNzG7Np/00RhdfbzCzFwO4B8B3VF3gblKLn8/JdVapcgEmpkPqAmweqZLzToithi/AhBBbT/ICTIgdxLZehLn7e5H+rucZ27luIYQQQgghxBRxnN9t8l3IrN/zFEIIIYQQQoiZQhogIYQQQgghxNbgu+dnDReC7oQJIYQQQgghxBTRnTAhhBBCCCHEBeMAXL8Jq8TMXIQ5ys2IkS60qGAeQ7dFSf3J2uNGQUU/ntPjdbJxh99jDT7r8VmZmlLRcx9ifamlVdXE4VpY7t72PePyw6SDZb44CArZ08NWeKMgE2JlM2vE92ZBq7pOt5xZ/b2XtvOQ9fHUv2heGLoVTHUN2gQZ1e+ldMCRZj+93JTiO6qzDdZAjhvWe0+ia2H7cwxHav2sWzo9SaFKVsHMWYs02ZvHc3zbPb38y+thWQdqd4/LDwzK4/nz/X3j8irF811Uh5XN1zSOR/NzPK/SPmhTDKfimekl4pfjrqioP9d4joypiU0YW1W3/5EQg49jgfuXgXXim7ejVmhrFunIWbld4QEOGs9TivoizSidQvlYfa5cVQ/LObD4yfDGInB3f3n8ko8TVnyve4j5L/T3j8sPD0O6hmsbQfV9IAv7fpXiqW3F8xifo1LxDKpD6m6ankX7m86BhWOhm9hnKV198ryeGMq20oRnCDETp4zZPO5YGZ8yORc18ay+H6bSMkRa+s3H2lQqkeK643aVL5d5TCMcV4dqd47L/9jbV9o+TpMDAGsI8fxFGrcfshDPj22EtLEHamG/rgxpPKBjel+2ecoWYPR5agwr7jl9RqSfL9fKp+KgGIO9REoDPoslU8mIXYMeR9zB7KYDtMoFmJgOVS7A5gW+ABNiWvAF2LyTugAT6dxjQojdwczcCRNCCCGEEELsYNwl5qiIvoYRQgghhBBCiCmiO2FCCCGEEEKILUFijmroTpgQQgghhBBCTBHdCRNCCCGEEEJsDfpNWCV0J0zsCJoJLbwQQgghhBDzhvmMqMHN7AEApwE8eLHbcpG4BLuz7zu1349290PnO/Muj+eduk+3m53c7/OO5zyW78bO7t92on7vPBTP54/6vfO4oM8b08bM3oHR9pwmD7r7N015nRfMzFyEAYCZ3eLu11/sdlwMdmvf57nf89y3Sajf88m89y+F+j2fzHv/UqjfQkwPPY4ohBBCCCGEEFNEF2FCCCGEEEIIMUVm7SLsxovdgIvIbu37PPd7nvs2CfV7Ppn3/qVQv+eTee9fCvVbiCkxU78JE0IIIYQQQohZZ9buhAkhhBBCCCHETKOLMCGEEEIIIYSYIjvqIszMrjKzvzazO83sDjN7aT79gJm9y8w+lf/fT/P8lJl92sw+YWb/4uK1/vyZ0O9fMLPPm9mt+d+zaJ556HfbzD5gZh/J+/0f8ukzv78Vy7srlgHF86z2bRK7NZ7nOZYBxbPieb7iWcww7r5j/gAcAfDkvLwM4JMAngDgVwC8Ip/+CgC/nJefAOAjAFoArgbwjwBqF7sfW9jvXwDw8pL689JvA7CUlxsA3g/gqfOwvxXLuyuW874onmewb+fZ77mO53mO5U3261z07zz6rXiew/2tv53/t6PuhLn7MXf/cF5eAXAngCsAPAfATXm1mwA8Ny8/B8CfuPu6u38WwKcBPGWqjd4CJvQ7xbz02939VP6ykf855mB/K5Z3VywDimfMaN8msVvjeZ5jGVA852XF85zvb7Hz2VEXYYyZHQXwJIy+sTjs7seA0SAC4NK82hUAPkez3YvJA8qOp9BvAPhBM/uomf0h3Sqfm36bWc3MbgVwP4B3ufvc7W/F8u6IZUDxjBnv2yR2WzzvhlgGFM9QPO+K/S12JjvyIszMlgC8EcDL3P3kpKol02bWuV/S798DcA2A6wAcA/DrG1VLZp/Jfrv7wN2vA3AlgKeY2RMnVJ+5fiuWd08sA4pnrloybUf3bRK7MZ7nPZYBxTMUzynmpt9iZ7PjLsLMrIHR4PBad39TPvk+MzuSv38Eo28ygNG3E1fR7FcC+MK02rqVlPXb3e/LB44hgN9HuB0+N/3ewN2PA3g3gG/CnOxvxfLujGVA8YwZ69skdns8z2MsA4pnKJ7nKp7FbLKjLsLMzAC8GsCd7v4qeuutAG7IyzcAeAtNf4GZtczsagDXAvjAtNq7VaT6vTE45PwrALfn5Xnp9yEz25eXFwB8A4CPYw72t2J5d8UyoHjGjPZtErs1nuc5lgHFMxTPcxXPYobxHWAH2fgD8M8wuuX7UQC35n/PAnAQwM0APpX/P0Dz/AxG5ppPAPjmi92HLe73HwO4LZ/+VgBH5qzfXwHgH/L+3Q7g5/LpM7+/Fcu7K5bzfiieZ7Bv59nvuY7neY7lTfbrXPTvPPqteJ7D/a2/nf9n7nrMVQghhBBCCCGmxY56HFEIIYQQQggh5h1dhAkhhBBCCCHEFNFFmBBCCCGEEEJMEV2ECSGEEEIIIcQU0UWYEEIIIYQQQkwRXYQJIYQQQgghxBTZlRdhZnZqm5f/djPbl/99/3nM/3Qze9s51j9hZm9PvP8/zOx559qOWSTfFl9Dr3/EzO4xs9+5mO3aThTP84vieVuWr3i+SCiet2X5iueLxG6MZ7G17MqLsO3G3Z/l7scB7ANwzoPiefJ/3f1Z27kCM6tv5/K3iKcDGA+K7v4bAH7uorVmDlA8X1SeDsXzlqJ4vqg8HYrnLUXxfFF5OhTP4gLQRViOmV1nZn9vZh81szeb2f58+rvN7JfN7ANm9kkz+3/y6R0ze0Ne//Vm9n4zuz5/7y4zuwTAKwFcY2a3mtmvFr9xMrPfMbMX5eVvMrOPm9l7AXwb1Vk0sz80sw+a2T+Y2XMq9MXyZX/MzP43gEvpva80s/eY2YfM7J1mdiSf/lV5X/4ub+vt+fQXmdmfmtmfA/jLVHvMrJbP98F8Of82n37EzP4m3wa3b2y/RLufma//w/k6l/LpP5cv93Yzu9HMLJ/+w3kfP2pmf2JmRwF8H4AfydeXXNe8o3hWPM8TimfF8zyheFY8CwEAcPdd9wfgVMm0jwL453n5PwL4zbz8bgC/npefBeCv8vLLAfy3vPxEAH0A1+ev7wJwCYCjAG6ndTwdwNvo9e8AeBGANoDPAbgWgAF4w0Y9AP8ZwHfl5X0APglgsdD24nK/DcC7ANQAXA7gOIDnAWgA+FsAh/J63wngD/Py7QC+Ji+/cqPdefvuBXBgUnsAvATAz+bTWwBuAXA1gB8D8DP59BqA5cQ+uQTA32z0DcBPAvi5vHyA6v0xgH+Zl78AoLXRlvz/LwB4eWHZLwLwOxc77hTPimfFs+JZ8ax4VjwrnvWnP3fHLNzu3XbMbC9GB9V78kk3AfhTqvKm/P+HMBroAOCfAfgtAHD3283soxfQhMcD+Ky7fypvz2swGmQA4JkAnm1mL89ftwE8CsCdE5b3tQBe5+4DAF8ws/+TT38cRgP4u/Ivd2oAjpnZPowGq7/N6/1PAN9Ky3uXuz+8SXueCeArLDwLvhejQf6DAP7QzBoA/szdb020+akAngDgfXnbmgD+Ln/v68zsJwB0ABwAcAeAP8foRPZaM/szAH82YXvsKhTPiud5QvGseJ4nFM+KZyE20EVYNdbz/wOEbWbnsZw+4kdA21T2xDwG4Nvd/RPnuK6y5RmAO9z9q6OJ+aMQEzi9WXvyW/Y/5O7vPGulZl8L4FsA/LGZ/aq7/1Gibe9y9xcW5m0D+F2MvvX7nJn9AsJ2+xaMTgDPBvDvzezLNumHGKF43qQ9iueZQvG8SXsUzzOF4nmT9iiexbyg34QBcPcTAB6hZ3q/G8B7JswCAO8F8HwAMLMnAPjykjorAJbp9d0AnmBmrfzbsGfk0z8O4GozuyZ/zQPDOwH8ED2X/KQKXfobAC+w0XPTRwB8XT79EwAOmdlX58tqmNmXufsjAFbM7Kl5vRdMWHaqPe8E8O/yb6BgZo+10fPcjwZwv7v/PoBXA3hyYrl/D+BpZvYl+fwdM3sswgD4oI2e2X5e/n4G4Cp3/2sAP4HRowpLOHub7zoUz4rneULxrHieJxTPimchNtitd8I6ZnYvvX4VgBsA/H9m1gHwGQD/ZpNl/C6Am2z0WMA/YHSr+gRXcPeHzOx9NvrR6V+4+4+b2Rvyup/K54O7r5nZSwD8bzN7EKMB94n5Yn4RwG8C+Gg+EN2F+NZ9GW8G8PUAbsPoGer35Ovp2uj2/W/ng3I9X/YdAF4M4PfN7DRGz6WfOHuxE9vzBxg9OvHhfPoDAJ6L0fPjP25mPQCnAHxP2ULd/QEb/Wj4dWbWyif/rLt/0sx+P+/LXRg9bgCMHm14Td4PA/Ab7n7cRj/o/V82+gHvD7n7/91kW80DimfF8zyheFY8zxOKZ8WzEKWYe+qutJiEmdUANPIB7RoANwN4rLt3L0Jbno7Rj0M3GywnLWPJ3U/l5VcAOOLuL92aFl5c8sH2enf/wYvdlp2K4nl2UDxvjuJ5aeYAcAAAAL1JREFUdlA8b47ieXZQPItzYbfeCdsKOgD+2ka3ww3Av7sYA2JOF8ATzeztfv65O77FzH4Ko5i4GyPDz8xjZj+CkUb2jRe7LTscxfMMoHiujOJ5BlA8V0bxPAMonsW5ojthYuqY2fsx0soy3+3ut12M9ghxISiexTyheBbzhOJZ7GR0ESaEEEIIIYQQU0R2RCGEEEIIIYSYIroIE0IIIYQQQogpooswIYQQQgghhJgiuggTQgghhBBCiCny/wO9hUV32/biNAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# let's plot over month, each facet will represent the mean air temperature in a given month.\n", + "da.plot(col=\"month\", col_wrap=4,) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can use `from_xarray` method from the contiguity classes like `Rook` and `Queen`, and also from `KNN`.\n", + "\n", + "This uses a util function in `raster.py` file called `da2W`, which can also be called directly to build `W` object, similarly `da2WSP` for building `WSP` object.\n", + "\n", + "**Weight builders (`from_xarray`, `da2W`, `da2WSP`) can recognise dimensions belonging to this list `[band, time, lat, y, lon, x]`, if any of the dimension in the `DataArray` does not belong to the mentioned list then we need to pass a dictionary (specifying that dimension's name) to the weight builder.** \n", + "\n", + "e.g. `dims` dictionary:\n", + "```python\n", + ">>> da.dims # none of the dimension belong to the default dimension list\n", + "('year', 'height', 'width')\n", + ">>> coords_labels = { # dimension values should be properly aligned with the following keys\n", + " \"z_label\": \"year\",\n", + " \"y_label\": \"height\",\n", + " \"x_label\": \"width\"\n", + " }\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/data/GSoC/libpysal/libpysal/weights/raster.py:119: UserWarning: You are trying to build a full W object from xarray.DataArray (raster) object. This computation can be very slow and not scale well. It is recommended, if possible, to instead build WSP object, which is more efficient and faster. You can do this by using da2WSP method.\n", + " warn(\n" + ] + } + ], + "source": [ + "coords_labels = {}\n", + "coords_labels[\"z_label\"] = \"month\" # since month does not belong to the default list we need to pass it using a dictionary\n", + "w_queen = Queen.from_xarray(\n", + " da, z_value=12, coords_labels=coords_labels, sparse=False) # We'll use data from 12th layer (in our case layer=month)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`index` is a newly added attribute to the weights object, this holds the multi-indices of the non-missing values belonging to `pandas.Series` created from the passed `DataArray`, this series can be easily obtained using `DataArray.to_series()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "MultiIndex([(12, 75.0, 200.0),\n", + " (12, 75.0, 202.5),\n", + " (12, 75.0, 205.0),\n", + " (12, 75.0, 207.5),\n", + " (12, 75.0, 210.0)],\n", + " names=['month', 'lat', 'lon'])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_queen.index[:5] # indices are aligned to the ids of the weight object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can then obtain raster data by converting the `DataArray` to `Series` and then using indices from `index` attribute to get non-missing values by subsetting the `Series`. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "data = da.to_series()[w_queen.index]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now have the required data for further analysis (we can now use methods such as ESDA/spatial regression), for this example let's compute a local Moran statistic for the extracted data." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Quickly computing and loading a LISA\n", + "np.random.seed(12345)\n", + "lisa = Moran_Local(np.array(data, dtype=np.float64), w_queen)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After getting our calculated results it's time to store them back to the `DataArray`, we can use `w2da` function directly to convert the `W` object back to `DataArray`. \n", + "\n", + "*Your use case might differ but the steps for using the interface will be similar to this example.* " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "array([[[0.018, 0.001, 0.001, ..., 0.001, 0.001, 0.001],\n", + " [0.001, 0.001, 0.001, ..., 0.001, 0.001, 0.001],\n", + " [0.003, 0.001, 0.001, ..., 0.001, 0.001, 0.001],\n", + " ...,\n", + " [0.002, 0.001, 0.001, ..., 0.001, 0.001, 0.003],\n", + " [0.001, 0.001, 0.001, ..., 0.001, 0.001, 0.003],\n", + " [0.002, 0.001, 0.001, ..., 0.001, 0.002, 0.006]]])\n", + "Coordinates:\n", + " * month (month) int64 12\n", + " * lat (lat) float64 75.0 72.5 70.0 67.5 65.0 ... 25.0 22.5 20.0 17.5 15.0\n", + " * lon (lon) float64 200.0 202.5 205.0 207.5 ... 322.5 325.0 327.5 330.0\n" + ] + } + ], + "source": [ + "# Converting obtained data back to DataArray\n", + "moran_da = raster.w2da(lisa.p_sim, w_queen) # w2da accepts list/1d array/pd.Series and a weight object aligned to passed data\n", + "print(moran_da)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEWCAYAAABG030jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAj1ElEQVR4nO3de7RkZXnn8e/v3PoKfYWmuSgX8UIcbE2LKMaoxAgaQWOIZpJMm+AiJNFoJibBuCZrZjJZ4yUzMeOYMJ1o0o5EQowEYlAkPSImRqDlJle7baBpuummG/p+OZd65o/aHarrfc+pOudUndqb/n3W2utUPbVr7/fUqXpqn73f530VEZiZWXX09boBZmY2OU7cZmYV48RtZlYxTtxmZhXjxG1mVjFO3GZmFePEbZUh6T9L+mKv22HWa07cVkqS3ihpc4/2vVrSI5Jqkt7X9NgqSd+TtEfSZkmflDTQi3bascuJ2yx1L/BrwF2Zx+YCHwaWAq8BLgQ+MmMtM8OJ2yZJ0mOSflvSfZL2S/qcpGWSviZpr6R/krSoYf1LJD0gaZekWyW9rGlbHym2tVvS30iaLWke8DXgZEn7iuXk4mlDkr5Q7OsBSSs7/TtGxGcjYi1wKPPYn0XEtyNiOCKeBK4BLuh0G8wm4sRtU/Fu4C3Ai4F3UE+yv0f9KLQP+A0ASS8GvkT9CPUE4CbgHyQNNWzrZ4GLgDOAc4H3RcR+4GJgS0TML5YtxfqXANcCC4Ebgf89XiOLL4Rd4yx/2oHXAeANwAMd2pZZW3xuzqbiMxGxDUDSt4HtEXF3cf966qcPAN4D/GNE3FI89kfAh4DXAbcW6/yvI0lZ0j8AK1rs+58j4qZi/f9L/UshKyLOnewvNhmSfglYCby/m/sxa+YjbpuKbQ23D2buzy9unww8fuSBiKgBTwCnNKz/VMPtAw3PHU/z+rN7cXFQ0juBjwMXR8SOmd6/HducuK2btgAvPHJHkoDTgCfbeO60h60szoHvG2e5ehrbvQj4c+AdEfH96bbTbLJ8qsS66TrgKkkXArdRP01yGPhOG8/dBiyRtCAidk9l5xHxI1N5XnEOvg8QMChpNjAcETVJb6Z+QfJdEXHHVLZvNl0+4rauiYhHgF8APgPsoH4h8x0RMdzGcx+mfmFzY3Ex8eRWz+mgb1A/5fM6YHVx+w3FY/8JWADc1HD0/rUZbJsZ8kQKZmbV4iNuM7OKceI2M6sYJ24zs4px4jYzq5hKdAcc0uyY03d0XUbUaj1qjZmV2V6e3RERJ0xnG29907zY+cxYy/W+d9/hmyPiounsayoqkbjn9M3ntfPecVRsbN++HrXGzMrsn+LLj7dea2I7nxnjjptf0HK9/uXrl053X1NRicRtZjaTAqhR3v/qnbjNzJoEwUi0PlXSK07cZmYZPuI2M6uQIBgrcVW5E7eZWUZt+gNUdo0Tt5lZkwDGnLjNzKrFR9zTFLWa+22b2YwJYMTnuM3MqiMInyoxM6uUgLHy5m0nbjOzZvXKyfJy4jYzS4gx1OtGjMuJ28ysSf3ipBO3mVll1PtxO3GbmVVKzUfcHaCmyXqizJcOzEqi+XMzGcfwZ8xH3GZmFROIsRLP7Ni1lkl6iaR7GpY9kj4sabGkWyStL34u6lYbzMymqhZqufRK1xJ3RDwSESsiYgXwo8AB4HrgKmBtRJwNrC3um5mVRiCGo7/l0isz9b/AhcAPI+Jx4FJgTRFfA7xzhtpgZtaWegFOX8ulV2bqHPd7gS8Vt5dFxFaAiNgq6cTcEyRdAVwBMJu5M9JIM7MjynxxsutfGZKGgEuAv53M8yJidUSsjIiVg8zqTuPMzDIixFj0tVx6ZSb2fDFwV0RsK+5vk7QcoPi5fQbaYGY2KTXUcumVmUjcP8dzp0kAbgRWFbdXATfMQBvMzNpWvzg50HLpla7uWdJc4C3ArzSEPw5cJ+lyYBNwWRvboW/w6KbWhoc72FKz56e+oaE0tnhhEqvt3pPGDhzoRpOmJlNINLB0cX7dDvwPf+TiZFl1NXFHxAFgSVNsJ/VeJmZmpTXmknczs+ooe+WkE7eZWUath71GWnHiNjNrUh9kyonbzKwyAjHSw5L2Vpy4zcyaRNDTAptWnLjNzBK9LbBpxYnbzKxJ4CPu6evvo++4444Kxa5d7T233RlAMrN9RC3ae267juEZRWwGZN7rfaednMQOnrUkic1Z/3QSqz26Kd1Hh9/D/YvT4fgPvfpFSWz3mYNJbP8p42z0Y9NtVZ0vTpqZVUjQ24kSWnHiNjNrEsBID8ciaaW8LTMz6xmVejxuJ24zsyZBuSsny9syM7MeGiuOuida2iHpIkmPSNogadw5diW9WtKYpJ9ptU0fcZuZNYlQR464JfUDn6U+vPVm4E5JN0bEg5n1PgHc3M52nbjNzJrUL052pOT9PGBDRGwEkHQt9QnTH2xa74PA3wGvbmej1UjcQ4PUXnjSUaH+4+an6w2mv07t+DlJ7PCS2elzlf7bM7B/JI3tTAeX14GD6fYysTh0OImN7dufPrdd7hd+7MpNLHDySUls7787IY2dliak2lA6Z/fcXbuT2NizaSzbvP7MPl778iT28C+n6/31G69OYqcNpJ+nsXHKLM7oSD9udaoA5xTgiYb7m4HXHLUn6RTgXcCbeV4lbjOzGVS/ONnWOeylktY13F8dEasb7uc20vyV82ngdyNiTJkDyBwnbjOzjDYrJ3dExMoJHt8MnNZw/1RgS9M6K4Fri6S9FHibpNGI+PvxNurEbWbWpIOVk3cCZ0s6A3gSeC/w74/aV8QZR25L+ivgqxMlbXDiNjPL6sRkwRExKukD1HuL9AOfj4gHJF1ZPJ6e0G+DE7eZWZMIGKl1pswlIm4CbmqKZRN2RLyvnW06cZuZNamfKilvfaITt5lZhscqMTOrkEl0B+yJSiTukfn9PPW6BUfFBg8cn643L32hc4OtD7xobxI7acGeJLZ7eCiJPb19QRKbtWlpEpu3Od3v8ZvSgp45G59JYvH0zjR2IC38qY2Mpjtpl4t3qmGciUD6jz8uidWWLkxi+09KC1z2vSCtXDm0JE0FCxe8NIkd9/ihbHua7XxpWvh24K3p5+6+89NTvdfvPzWJ3X4gLbhbNjheMdBTrRvYkk+VmJlVTpnnnOzqV4qkhZK+LOlhSQ9Jeq2kxZJukbS++JnOXWRm1kP1XiX9LZde6fb/An8CfD0iXgq8AngIuApYGxFnA2uL+2ZmpXGkAKfV0itdS9ySjgfeAHwOICKGI2IX9ZGx1hSrrQHe2a02mJlNVQ21XHqlm0fcZwJPA38p6W5JfyFpHrAsIrYCFD/TYckASVdIWidp3ejBaYygZ2Y2SUd6lRxzR9zUL3y+CviziHglsJ9JnBaJiNURsTIiVg7MmdetNpqZZdWir+XSK93c82Zgc0TcXtz/MvVEvk3ScoDi5/YutsHMbNIixGj0tVx6pWt7joingCckvaQIXUh91ocbgVVFbBVwQ7faYGY2VWU+VdLtftwfBK6RNARsBH6J+pfFdZIuBzYBl7XayPwlB7jgfd87KtafjEUOK497NIm9d37aGf/Pd5+exL71zEuS2IJZabHB65dvTGLnX/DDJHbZ/LQ44Bcf//Ekdvut5ySxk+5IC3rmP/xsEhvYnxblMDqWhOJQ+nvEwTRWy8zQMy4X8PRULfO379+VFrjM3ZYW6hzIFOUMn5m+H3b9SFowtq8//bufeFy634uXpp/FX1/y3SS2YTRNQX2k+zgU6Xp7xzIzWXXIMV05GRH3UB8kvNmF3dyvmdl0HbOJ28ysijo4kUJXOHGbmWWUueTdidvMrEkEjHZoIoVucOI2M8vwqRIzswrxOW4zswoKJ+7pmd03wjlztxwV2zy8OFnvph3nJrE//kHa8/DZp9K+rYM7BpPYQGbM+Ec4K4n94+BrkthH56X9zOecnk7WsPo96UDyf/Dqn0piT/5jOrj8ovXpRApztqTjuvTtT/tnK9Nnuy/TtxsgDhxMYmO5PuTZJ7u/97SM8/pF2l2f2JW+v+Y/lk44cuDEdDKQ4UXppCHLTkon+fixE9KahUsW3J3EVgylSe++kXQf9x46LYltOLQsid39bPr+n90/3kQit40TnxxfnLTKyiVts+e7CJ/jNjOrGDHmXiVmZtXic9xmZhVyTI9VYmZWSVE/z11WTtxmZhnuVWJmViHhi5NmZtXjUyXTtPPwPNY8ev5RsaefTgsLYjgdIF7D6b87/YfTb9K+TEFDXzqOPP2ZupP+4TSmWrrfWJ8WPvzKg1cmsRU//oMk9sFf+0IS+49f/4Uktvj+dB/zt6SFCrN2po3uO5T+wrniHYCBfekLUXt2Vxobp6gnUaZCHc3AkVbu953mfjV3ThKrDaafib5M3Ur/wfT9uudQexMVLOtP/8b3DKfPvXlvWiB3+zOnJ7FNuxYlsb0703lnh46fxMQfU+BeJWZmFRLhxG1mVjnuDmhmVjE+x21mViGBqLlXiZlZtZT4gJvyfqWYmfVKcXGy1dIOSRdJekTSBklXZR6/VNJ9ku6RtE7S61tt00fcZmY5HTjkltQPfBZ4C7AZuFPSjRHxYMNqa4EbIyIknQtcB7x0ou36iNvMLKNDR9znARsiYmNEDAPXApcevZ/YF/Fvl0Ln0cZXRiWOuEdH+5OCm9kbZyXr5QpmBjLzAPRlCmZyRTR9o+nrp0yhjjIvc7vPnbMzja3f8uIk9rtvOCWJ3feuP0li5y1/fxIb/td0xp95T6WFGYP709e0fyQtfAAY3D0/jc2fm8T6MrOy1PbuS2PtFupMQ99QOgNLrhCmNjLezCodlCm26Zudvv6alcYAtCQtUhk9MS1K23NW+jc5eEK6vdGT0g/A2Yt2JLF3L1yXxB4cWZLEPvNEOvPUQxtPTmIDT6czTw3tThPi8enETuw/tXvpK4BapoguY6mkxhdldUSsbrh/CvBEw/3NQDJllqR3Af8dOBF4e6udViJxm5nNqADaO6LeERErJ3g8t5HkqC4irgeul/QG4A+An5hop11N3JIeA/YCY8BoRKyUtBj4G+B04DHgZyPi2W62w8xssjrUj3sz0Dix5qnAlnHWJSJuk3SWpKURkf7LU5iJc9xviogVDd9KVwFrI+Js6iflk6usZmY9F20srd0JnC3pDElDwHuBGxtXkPQiSSpuvwoYAjInUZ/Ti1MllwJvLG6vAW4FfrcH7TAzG0f73f0mEhGjkj4A3Az0A5+PiAckXVk8fjXwbuA/SBoBDgLvabhYmdXtxB3ANyQF8H+Kk/bLImJr0eitkk7MPVHSFcAVAP1LFna5mWZmTTpUgRMRNwE3NcWubrj9CeATk9lmtxP3BRGxpUjOt0h6uN0nFkl+NcCsM04tcxGTmT3fBER7vUp6oqvnuCNiS/FzO3A99T6N2yQtByh+bu9mG8zMpkZtLL3RtcQtaZ6k447cBn4SuJ/6iflVxWqrgBu61QYzsynrzMXJrujmqZJl1PslHtnPX0fE1yXdCVwn6XJgE3BZqw1pRAw8dXQhwtyt6Xr9w+krOXAojfWNpLH+TEy5SVlquWqbNr95M8/N7WNoXxrsP5QWwrxm4PIkdsOrr05iFx/+QLqTu9LZUuY+nX6PDxzMvztHM4Uhw4vSApfZ29MCkP6daQFO34G0UioysVwfLQ2lRRxkZoMhU+CS05crwBnOVHe1219MmfdHps21BelrtfeMtHgK4NmXpAVUB1+WFjGdctJTSez1C7clsRXHbUpiVy54Mol9ZldaHPaFR5N6EvbetTSJLd6chBjak3mvH87EMp/twf1dPtNb4hO0XfvNI2Ij8IpMfCeQllWZmZVF+wU4PeHKSTOzDE+kYGZWNSXuVeLEbWaWkRs8riycuM3MmvW410grTtxmZgn54qSZWeX4iHt6+oZhflM30/lb0762fcPt9QnVWCaWmfigbySd+UCZWLtiIO0nrdFcZ/FU/6G0j+/IbenA+V846/wkdunL7ktiXznwqkz70r7Fs3fmjzpy/eNHMuVchxam/c8H96d9rGfvTPtJD+xJ+yXnXv/arLTdh05KX69Di9K+z6Oz099v8ECmn/+h9O/Ul3kr1NJdMDI/fWEOnJjud++L0/f0xa+8N90g8IfLv5nEvrD7nCR23750Ao5nh9PX5vqtK5LYp+9/cxKr/TCdQGPBhrR9Jz2V/i6znkkna+jbn8Y0mulHn/mYDOzP93HvmPY+mj3RVuWkpGQAlFzMzOx54Ug/7lZLj7Rb8v6WTOziTjbEzKxMFK2XXpnwVImkXwV+DThTUuP/28cB/9LNhpmZ9VSFz3H/NfA16pNYNs5Uszcinulaq8zMbFwTJu6I2A3sBn4OoBhXezYwX9L8iEhHpjEzex4ocwFOuxcn3yFpPfAo8C3qk/x+rYvtMjPrnaBe8t5q6ZF2L07+N+B84AcRcQb10f18jtvMnr9KPB53u4l7pBiOtU9SX0R8E1jRvWaZmfVWZXuVNNglaT5wG3CNpO1Appd8d/SNwtztR/eGn/10WpzRt/9wEssWuOQGys91+s8U6rQ91mN/pthmYOr1TkO1tC1zl6UTF3xnxxlJ7O3L78+0Jf09RtO6DEYzcxlAfgKIWn/6r+NIWn/DvlPSKpX+w2lscN/sdL3MhBdjg+l+Dy9O93twWeZvtyz9BdWX2cdw2r6+gfRFWLZkTxJ73wtvT2I/Nnd9Evv4lrSH7dcfeHkSA/jWDWkB1Zx0fgQGMxNh5CYS6cu8/Zdnio4G9qav1+DO/UlMu9LJMrKfsWkY6urEi5S6V0m7v/ql1KeN/03g68APgXd0q1FmZj1X4lMlbR0CRkTjV+qaLrXFzKwUen0qpJVWBTh7yX+vCIiISAfLMDN7PqjqRAoR0eVRXMzMyqmyR9xmZscsJ24zswqp8jluM7NjlhO3mVm15GoVyqISibtvuMa8zUd3/O9/6tl0xVxhzVibM9aMputFu89tk/oz06NkCnVQejVbh9Lionmb04qZJ799ahJ76y//TRK75fSXJbH1QycmsZHj0iIYgNk70jb2pzVRHFqaxsZekBZxzJqTzoBzaDR9vcYy0+zkCmFOWJgWgFyweGsSO+/4jUnszKHt6fb60yKTk/rTQ7KPbkmHrv8fX01LHv4qnZSI+VvS2WBe8syBdEWgb29mcM6DmT9ApnArG8vJfSays9Ok26vlPjvtFq+1qW9epmLsGNHt2iMk9Uu6W9JXi/uLJd0iaX3xc1G322BmNmklLsDpeuIGPgQ81HD/KmBtRJwNrOXocb7NzHqvjXFKennxsquJW9KpwNuBv2gIX8pz1ZdrgHd2sw1mZlNyDB9xfxr4HY6eL3lZRGwFKH6mJ1YBSVdIWidp3chIen7RzKyrjsXELemngO0R8b2pPD8iVkfEyohYOTiYGWLOzKxLRL1XSaulV7p5xH0BcImkx4BrgTdL+iKwTdJygOJnegnfzKyXOniOW9JFkh6RtEFSck1P0s9Luq9YviPpFa222bXEHREfjYhTI+J04L3A/4uIXwBuBFYVq60CbuhWG8zMpqwDp0ok9QOfBS4GzgF+TtI5Tas9Cvx4RJwL/AGwutV2e9GP++PAdZIuBzYBl7V6gsZqDOw6uj9r7N6brthuv+tMf9JO99nO9cUm14+7XZnnDm14KoktHzolif30rN9KYu9+Wzrz3F++6Lok9vBIfpyxP3z07Uns8afT2QsWHJf22f6ZF96dxH5pwT1JbK7St2ct82npI32tH89MgvH9w+lrs3k4bfPDB09OYnc/kz534wNpbNl307a86OF0coW+rTuTWBwYZ9aKzHsz2086E4vaNE7ERokrUAByOaCTOnMO+zxgQ0RsBJB0LfUOGg/+224ivtOw/neBtBijyYwk7oi4Fbi1uL2T+pyVZtZKpw8orG1tngpZKmldw/3VEdF4xHwK8ETD/c3AaybY3uW0MRF7JSonzcxmXHuJe0dErJzg8dyg3tktS3oT9cT9+lY7deI2M2sWHes1shk4reH+qcCW5pUknUu93uXi4qzEhGaictLMrHo604/7TuBsSWdIGqLeUePGxhUkvQD4CvCLEfGDdjbqI24zs4xOlLRHxKikDwA3A/3A5yPiAUlXFo9fDfw+sAT4U9U7NYy2OP3ixG1mltWhysiIuAm4qSl2dcPt9wPvn8w2nbjNzJr1uKS9FSduM7MmwlOXTV8EDB890H4cTicWmFYBwnSKDdTmNd6+zCD0uef2ZXoQ5Qawz/y+s7+/KYmdvn95Evvmg69LYn9/1gXpLs7JD/D18y+7M4n9+dlfSmIjkf4uN+xNK3o/tOmSJLZnZFYS2z8ylMSe3jM/iR3cNSeJaX9axDS4O339BzN1HfO3pO+jMzelExcMrU8na4i96aQOY5mJMWaq4GVaRTltUu493GG1g+MULHWIE7eZWdU4cZuZVYwTt5lZhfR4hptWnLjNzHKcuM3MqqWXEyW04sRtZpbhUyVmZlXiAhwzswpy4p6m0TFi57NHhWJ4uEeNyWizcCKyY+Jngm0W9MRIWpSjTGFS//1pocLijWmByuLvpoUsh1+4KLvvG898YxL74llpbHRe+toM7Up/v4FMnU9/pkZlMLPewt3pPpYcTj91/YfS13rgUPo+Gtx5IIlpx64kVtudzmwzlisMy8gWwZR9xplJyL/X29Tm+1+5orQOceWkmVkFaQYqTKfKidvMrJnPcZuZVY9PlZiZVY0Tt5lZtfiI28ysapy4zcwqpHOzvHdFNRJ3rUY0DTw/E4PBT8e0BpKfRn/eXP/ZOJD2S+ZgOgmAdqX9kgef2IJmpxMaLHt8SRJbuDHt831o0WC6n8zvN7gvbfjgnrSP9cDTmVkO9qe/X3aijdx7Jjf5RqZ/cC1TN/B874vdM+3WRXQxB7gft1VaLmmbHROivJm7zTm3Jk/SbEl3SLpX0gOS/ksRXyzpFknri5/50jwzsx5StF56pWuJGzgMvDkiXgGsAC6SdD5wFbA2Is4G1hb3zczKI9pceqRriTvqjsySOlgsAVwKrCnia4B3dqsNZmZTpVrrpVe6ecSNpH5J9wDbgVsi4nZgWURsBSh+njjOc6+QtE7SuuFob+AeM7NOOWYTd0SMRcQK4FTgPEkvn8RzV0fEyohYOSRfIDOzGRTUL062Wnqkq4n7iIjYBdwKXARsk7QcoPi5fSbaYGY2GcfkxUlJJ0haWNyeA/wE8DBwI7CqWG0VcEO32mBmNmUlvjjZzX7cy4E1kvqpf0FcFxFflfSvwHWSLgc2AZe12lAA0VwoUfJCh6hN/TtxWsU77cq8fjGaie0byT5dB9PJGYaeeTaJzVqc9vaMOUPp9vakMyREpiBoLFNs0/GCjZK/t6zQxb/TMVuAExH3Aa/MxHcCF3Zrv2Zm0xbhiRTMzCqnvHnbidvMLOeYPFViZlZZQX5QspJw4jYzyylv3p6ZftxmZlXTqX7cki6S9IikDZKSsZkkvVTSv0o6LOkj7WzTR9xmZhmd6FVSdIf+LPAWYDNwp6QbI+LBhtWeAX6DSYzb5CNuM7NmnRsd8DxgQ0RsjIhh4FrqA+09t6uI7RFxJ5AvmsioxhF3RFqAU3bTmcVmGsU70zKJNuf+HtqdxvqG0/ei5s1Nt3coHUislpvZZrTt97Y9z3V/BpyObP8U4ImG+5uB10x3o9VI3GZmM62945ilktY13F8dEasb7ufKoKf9jeDEbWaW0eYR946IWDnB45uB0xrunwpsmU67wOe4zcxSnTvHfSdwtqQzJA0B76U+0N60+IjbzCzRmbFKImJU0geAm4F+4PMR8YCkK4vHr5Z0ErAOOB6oSfowcE5EpKOsFZy4zcxyOjRRQkTcBNzUFLu64fZT1E+htM2J28ysWfR2arJWnLjNzHJ6ODVZK07cZmY55c3bTtylVNEZWHJFObXMTDlqt5iqoq+DPT+oVt73nxO3mVmzoN0CnJ5w4jYzayKiUyXvXeHEbWaW48RtZlYxTtxmZhXic9xmZtXjXiVmZpUSPlXSEe7TW0m5vt25SRPUlw5b3M2B8s0mFDhxm5lVTomPFbs2Hrek0yR9U9JDkh6Q9KEivljSLZLWFz8XdasNZmZTpYiWS690cyKFUeC3IuJlwPnAr0s6B7gKWBsRZwNri/tmZuUS0Xrpka4l7ojYGhF3Fbf3Ag9RnzjzUmBNsdoaJjElvZnZjIiAsVrrpUdm5By3pNOBVwK3A8siYivUk7ukE8d5zhXAFQCzSWcFNzPrqhJfnOz6nJOS5gN/B3x4oql4mkXE6ohYGRErB5nVvQaameUci6dKACQNUk/a10TEV4rwNknLi8eXA9u72QYzs0kLoBatlx7pZq8SAZ8DHoqI/9nw0I3AquL2KuCGbrXBzGxqol470mrpkW6e474A+EXg+5LuKWK/B3wcuE7S5cAm4LIutsHKKPOGjzbnVjCbEUFPLz620rXEHRH/DKTlcHUXdmu/ZmYdUeKLk66cNDPLceI2M6sSDzJlZlYtAXhYVzOzivERt5lZlcSx2avEzKyyAqLEcwA4cZuZ5ZR4Ig8n7m5R14eBySvxUcKE/HrZJOVmTQI6NwGCz3GbmVVIhHuVmJlVjo+4zcyqJLITXZeFE7eZWbMjw7qWlBO3mVlOiS9cO3GbmTUJIHzEbWZWIRE+4jYzq5oyX5xUlLjLyxGSngYeB5YCO3rcnFbK3saytw/K38aytw/K38Zutu+FEXHCdDYg6evU29jKjoi4aDr7mopKJO4jJK2LiJW9bsdEyt7GsrcPyt/GsrcPyt/Gsrev7HpUZ2xmZlPlxG1mVjFVS9yre92ANpS9jWVvH5S/jWVvH5S/jWVvX6lV6hy3mZlV74jbzOyY58RtZlYxpUrckk6T9E1JD0l6QNKHivhiSbdIWl/8XNTwnI9K2iDpEUlv7VH7PiXpYUn3Sbpe0sJetG+iNjY8/hFJIWlpQ6znr2Hx2AeLNjwg6ZNlap+kFZK+K+keSeskndeL9hX7my3pDkn3Fm38L0W8LJ+T8dpXms9J5UVEaRZgOfCq4vZxwA+Ac4BPAlcV8auATxS3zwHuBWYBZwA/BPp70L6fBAaK+Cd61b6J2ljcPw24maKYqWSv4ZuAfwJmFY+dWLL2fQO4uIi/Dbi1h39jAfOL24PA7cD5JfqcjNe+0nxOqr6U6og7IrZGxF3F7b3AQ8ApwKXAmmK1NcA7i9uXAtdGxOGIeBTYAJxHl4zXvoj4RkSMFqt9Fzi1F+2bqI3Fw38M/A71MXSOKMVrCPwq8PGIOFw8tr1k7Qvg+GK1BcCWXrSvaFdExL7i7mCxBOX5nGTbV6bPSdWVKnE3knQ68Erq39bLImIr1D9YwInFaqcATzQ8bTPPJamZbF+jXwa+VtzuWfvg6DZKugR4MiLubVqtLK/hi4Efk3S7pG9JenXJ2vdh4FOSngD+CPhoL9snqV/SPcB24JaIKNXnZJz2NSrN56SKSpm4Jc0H/g74cETsmWjVTKzr/RvHa5+kjwGjwDW9bF/Rln9rY9GmjwG/n1s1E+vFazgALKL+L/VvA9dJUona96vAb0bEacBvAp87smov2hcRYxGxgvpR63mSXj7B6jPexonaV6bPSVWVLnFLGqT+gbkmIr5ShLdJWl48vpz6tzjUv5lPa3j6qTz3L+xMtg9Jq4CfAn4+Io686Wa8feO08Szq5w7vlfRY0Y67JJ3UizaO8xpuBr5S/Jt9B/W5upeWqH2rgCO3/5bn/pXvyd/4iIjYBdwKXESJPifjtK9Un5NK6/VJ9saF+jfvF4BPN8U/xdEXXT5Z3P4Rjr6osZHuX3TJte8i4EHghKb4jLZvojY2rfMYz12cLMtreCXwX4vbL6b+r7NK1L6HgDcWty8EvtfDv/EJwMLi9hzg29STYVk+J+O1rzSfk6ovPW9A0x/w9dT/RboPuKdY3gYsAdYC64ufixue8zHqV6Efobjq34P2bSgSzZHY1b1o30RtbFrnMYrEXaLXcAj4InA/cBfw5pK17/XA94oEczvwoz38G58L3F208X7g94t4WT4n47WvNJ+Tqi8ueTczq5jSneM2M7OJOXGbmVWME7eZWcU4cZuZVYwTt5lZxThxW6lJ2td6LbNjixO3mVnFOHFbJajuU5Lul/R9Se8p4m+UdKukLxdjPV9TjHFi9rw10OsGmLXpp4EVwCuoj2Fyp6TbisdeSb1segvwL8AFwD/3oI1mM8JH3FYVrwe+FPVR57YB3wKODP16R0Rsjoga9VLq03vTRLOZ4cRtVTHR6Y/DDbfH8H+S9jznxG1VcRvwnmKA/hOANwB39LhNZj3hIxOriuuB11IfnS+A34mIpyS9tLfNMpt5Hh3QzKxifKrEzKxinLjNzCrGidvMrGKcuM3MKsaJ28ysYpy4zcwqxonbzKxi/j+YURf3AB7MngAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "moran_da.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using local `NetCDF` dataset\n", + "\n", + "In the earlier example we used an example dataset from xarray for building weights object. Additonally, we had to pass the custom layer name to the builder. \n", + "\n", + "In this small example we'll build `KNN` distance weight object using a local `NetCDF` dataset with different dimensions names which doesn't belong to the default list of dimensions.\n", + "\n", + "We'll also see how to speed up the reverse journey (from weights object to `DataArray`) by passing prebuilt `coords` and `attrs` to `w2da` method. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Dimensions: (latitude: 73, longitude: 144, time: 62)\n", + "Coordinates:\n", + " * longitude (longitude) float32 0.0 2.5 5.0 7.5 ... 350.0 352.5 355.0 357.5\n", + " * latitude (latitude) float32 90.0 87.5 85.0 82.5 ... -85.0 -87.5 -90.0\n", + " * time (time) datetime64[ns] 2002-07-01T12:00:00 ... 2002-07-31T18:00:00\n", + "Data variables:\n", + " tcw (time, latitude, longitude) float32 ...\n", + " tcwv (time, latitude, longitude) float32 ...\n", + " lsp (time, latitude, longitude) float32 ...\n", + " cp (time, latitude, longitude) float32 ...\n", + " msl (time, latitude, longitude) float32 ...\n", + " blh (time, latitude, longitude) float32 ...\n", + " tcc (time, latitude, longitude) float32 ...\n", + " p10u (time, latitude, longitude) float32 ...\n", + " p10v (time, latitude, longitude) float32 ...\n", + " p2t (time, latitude, longitude) float32 ...\n", + " p2d (time, latitude, longitude) float32 ...\n", + " e (time, latitude, longitude) float32 ...\n", + " lcc (time, latitude, longitude) float32 ...\n", + " mcc (time, latitude, longitude) float32 ...\n", + " hcc (time, latitude, longitude) float32 ...\n", + " tco3 (time, latitude, longitude) float32 ...\n", + " tp (time, latitude, longitude) float32 ...\n", + "Attributes:\n", + " Conventions: CF-1.0\n", + " history: 2004-09-15 17:04:29 GMT by mars2netcdf-0.92\n" + ] + } + ], + "source": [ + "# Lets load a netCDF Surface dataset\n", + "ds = xr.open_dataset('ECMWF_ERA-40_subset.nc') # After loading netCDF dataset we obtained a xarray.Dataset object\n", + "print(ds) # This Dataset object containes several data variables" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Out of 17 data variables we'll use `p2t` for our analysis. This will give us our desired `DataArray` object `da`, we will further group `da` by day, taking average over the `time` dimension." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('day', 'latitude', 'longitude')\n" + ] + } + ], + "source": [ + "da = ds[\"p2t\"] # this will give us the required DataArray with p2t (2 metre temperature) data variable\n", + "da = da.groupby('time.day').mean()\n", + "print(da.dims)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**We can see that the none of dimensions of `da` matches with the default dimensions (`[band, time, lat, y, lon, x]`)**\n", + "\n", + "This means we have to create a dictionary mentioning the dimensions and ship it to weight builder, similar to our last example. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "coords_labels = {}\n", + "coords_labels[\"y_label\"] = \"latitude\"\n", + "coords_labels[\"x_label\"] = \"longitude\"\n", + "coords_labels[\"z_label\"] = \"day\"\n", + "w_rook = Rook.from_xarray(da, z_value=13, coords_labels=coords_labels, sparse=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "data = da.to_series()[w_rook.index] # we derived the data from DataArray similar to our last example " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the last example we only passed the `data` values and weight object to `w2da` method, which then created the necessary `coords` to build our required `DataArray`. This process can be speed up by passing `coords` from the existing `DataArray` `da` which we used earlier.\n", + "\n", + "Along with `coords` we can also pass `attrs` of the same `DataArray` this will help `w2da` to retain all the properties of original `DataArray`.\n", + "\n", + "Let's compare the `DataArray` returned by `w2da` and original `DataArray`. For this we'll ship the derived data straight to `w2da` without any statistical analysis." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "da1 = raster.wsp2da(data, w_rook, attrs=da.attrs, coords=da[12:13].coords)\n", + "xr.DataArray.equals(da[12:13], da1) # method to compare 2 DataArray, if true then w2da was successfull" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using local `GeoTIFF` dataset\n", + "\n", + "Up until now we've only played with `netCDF` datasets but in this example we'll use a `raster.tif` file to see how interface interacts with it. We'll also see how these methods handle missing data. \n", + "\n", + "Unlike earlier we'll use weight builder methods from `raster.py`, which we can call directly. Just a reminder that `from_xarray` uses methods from `raster.py` and therefore only difference exists in the API. \n", + "\n", + "To access GDAL Raster Formats `xarray` offers `open_rasterio` method which uses `rasterio` as backend. It loads metadata, coordinate values from the raster file and assign them to the `DataArray`. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "[827200 values with dtype=float32]\n", + "Coordinates:\n", + " * band (band) int64 1\n", + " * y (y) float64 50.18 50.18 50.18 50.18 ... 49.45 49.45 49.45 49.45\n", + " * x (x) float64 5.745 5.746 5.747 5.747 ... 6.525 6.526 6.527 6.527\n", + "Attributes:\n", + " transform: (0.0008333333297872345, 0.0, 5.744583325, 0.0, -0.0008333...\n", + " crs: +init=epsg:4326\n", + " res: (0.0008333333297872345, 0.0008333333295454553)\n", + " is_tiled: 0\n", + " nodatavals: (-99999.0,)\n", + " scales: (1.0,)\n", + " offsets: (0.0,)\n", + " AREA_OR_POINT: Area\n" + ] + } + ], + "source": [ + "# Loading raster data with missing values\n", + "da = xr.open_rasterio('/data/Downloads/lux_ppp_2019.tif')\n", + "print(da)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACJeUlEQVR4nO39e7xtWVXfi35bH2O+1mu/965dLwrkYYwJxpRGQ2IwpIqC+BGTIxEVwxENN+cQj3lgRI/CzcOE3NzPDXhyEkNQglEjYCQaIxQVcpFrVGJVRAFBUF5VtXft93rP5+jt/tH7GLPPMcd8rTXnWmuvPX6fz/qs+RiPPsacs/XWW/u1XxNVpUSJEiVK3P4whz2AEiVKlCgxH5QGvUSJEiWOCUqDXqJEiRLHBKVBL1GiRIljgtKglyhRosQxQWnQS5QoUeKYoDToJQ4FIvIFEflLx+1cJUocJkqDXqLEHiAif01EfkNEdkXkw4c9nhIlAOLDHkCJErcpbgJvBb4c+IuHO5QSJRxKD73EYeJrROT3ReSWiLxTROoAInJKRH5FRK75935FRO5NdxKRD4vIPxKR/y4iWyLyQRE5G7z/XSLyRRG5ISL/5yIGrqr/VVXfA1xaxPFLlNgLSoNe4jDxncBLgS8Dng/8iH/dAO8EngXcDzSBf5nb9zuA7wbOA1XgDQAi8hXAvwa+C7gbOAPcywiIyBtFZH3U31yuskSJA0Jp0EscJv6lqj6pqjeBHwO+HUBVb6jqf1TVXVXd8u/9hdy+71TVz6hqE3gP8FX+9W8FfkVVP6KqbeBHATtqAKr6FlU9OepvrldbosSCUcbQSxwmngwefxHnUSMiS8C/AB4BTvn3V0UkUtXEP38m2HcXWPGP7w6Pq6o7InJjAWMvUeLIofTQSxwm7gse308/Hv33gBcAf0ZV14Bv8K/LFMe8HB7XTw5nRm0sIj8sItuj/ma5mBIlDhulQS9xmHi9iNwrIqeBHwbe7V9fxcXN1/17b57hmL8AfJOI/DkRqQL/kDHfc1X9J6q6Mupv1H4iEvkkbgwYEamLSGWGcZYoMXeUBr3EYeLngA8Cn/N//9i//lagAVwHfgv4wLQHVNVPAq/3x74M3AKemtuI+/gu3KTzr4E/7x//2wWcp0SJqSFlg4sSJUqUOB4oPfQSJUqUOCYoDXqJEiVKHBOUBr1EiRIljglKg16iRIkSxwTHqrDo7Nmz+sADDxz2MO4IfOaJzwEg4qjhCjz/q599iCMqUWJ6PPHEE9dV9dx+jvHSb1zWGzeTyRsCT/xe+1FVfWQ/55sGx8qgP/DAAzz++OOHPYxjhYfMKwtf/zPijbcEi7zfgceSdxduX6LEUYKIfHG/x7hxM+F/PHr/VNtGFz97dvJW+8exMugl9oZRRntaiBHUKuhIyZQSJY4dFLCjZYIOBaVBv0OxXyMeQm2/luEh80oes+/d1/GmGdt+z1GixH6hKF2dLuRyUCgNeonZIAZTibPHttNZ2HkyFHj+odEvjXuJw0LpoZc4dMzknYtxBtUbWFOtQmQgsWiSZOEWMQJEqNV9Gdts3/ScRWGcnLEvjXuJw4CiJEes0r406Hc6xIyPgQevSRShSQJJ4v4PbKZD24M30IEBnilpOiImL1EEagdCPSVKHAYsR+s7WBr0OwwD3rk35u6h97CTETFBtWhvD8tLb8zFCIjhoejb9p081V535HvziOGXKDENFEhKg17iyEAtEAVPF/DlDMI1qPWrgRGhlBIlbjOUHnqJI4XUiJtqFXpdZ2zdG6N3GhXbHn0S1PpkqhgE+snU0rCXuE2hQLeMoZc4LBQmQ70HrUmCaTQAsK32xPCKRNGARz+Ri64W2+0NHQP1laZW+zH6fRj5MtxS4qCgaBlyKXEEoRZNQLu9sfHpge2tcV69Woj916jdZiwtNzTUYty5xCBRhKlG/mVBk6QsVCpx9KGQHC17Xhr0OwWF3nkYOlGLbbemPl5qeKVaQTtdf4gpv91pTN0nZSWKkEoMVd/BbXsHtb2ZQzuld17iIOEqRY8WSoN+J2OvHrCYzChruz2SsjjNedUaSMMsfoUw8/E80kmrNOwlDgZCMlXf8oNDadCPOWYu8c8VEoWPszg5DBQV7Ss0koZ7EjJvXW1v8n5jUBr2EgcBlxQtDXqJBWNfOi1BCAboh0VqNcSYLM6uVkdz1vd4TmfYk+y8YzFBGqBEiUXD8dBLg15iQdi34FbOiIoRJK5gVpYhMmi7A7Nqt8gIGuSk+PiIkv90TBgBq35yKXntJQ4HtvTQS8wbc1FO9GwTiTzbxCcoZW0V4ghUHX98Z3d0mCWtPA2MeBYPzxvwPRpgtQoBE2fU8ctwS4lFo/TQS8wN85S/zRKcPtwhRpATa84L7iWw20SbLbTTGcsTT415+t929sEpL/Lgg9BMOO709dKIlzhIKEJyxLp4lgb9NsNcDXkKn/jMPPTIYG/ecjFzH2KZhhvuvOXEFwsF8fVZK0uDMc0clilR4gAxz5CLiJwE3gF8JW4B8FrgD4B3Aw8AXwD+mqreGnWM0qDfBhgy4kUJw/0aNy++NcBeSY87rUHOe9DpWPc6tpK2WOIIQxE6Gk3ecHq8DfiAqn6riFSBJeCHgQ+p6ltE5I3AG4EfHHWAha4XROQLIvJxEfmYiDzuXzstIo+JyGf9/1Mj9v0pEbkqIp9Y5BiPOoqMuRghWl4iWlnGNOrzPaHaflglz3jZ4/FKlDiOcIVFZqq/SRCRNeAbgJ8EUNWOqq4DrwDe5Td7F/At445zEAGgb1TVr1LVB/3zN+JmnOcBH/LPi/DvgIV3yT7KGBVeCSsy0yrNEg6ld17iIJH44qJJf8BZEXk8+Htd7lDPAa4B7xSR3xGRd4jIMnBBVS8D+P/nx43nMEIurwBe7B+/C/gwBUsIVf2IiDxwYKO6jSBGsM3m/op6Ai30A9dNmRCGkSjKBMPKsEuJowpVIdGpfeLrgVNbhBj4auD7VPWjIvI2Rju7I7FoD12BD4rIE8GMNNOMMwki8rp01rt27do+h3v0kTWkiCJMJXac7L0cJ4qQuOL+h1TDBcKJcFUx1Wp27iKkyovpdiVKHFVYZKq/KfAU8JSqftQ//wWcgb8iIhcB/P+r4w6yaA/9Rap6SUTOA4+JyKfnfQJVfTvwdoAHH3zwiGmf7Q3jmCyaJM57tb29edV5wy0GREEXG7rJGDRemVFIk6e5atN05WAERJzOy5QovfISBwmXFJ2PCVXVZ0TkSRF5gar+AfAS4Pf932uAt/j/vzTuOAs16Kp6yf+/KiLvA74WP+Oo6uVpZpwSBZhDkjJltOz7eFOfVt0k1O0NsmiKIMYbc1smVUscWaRJ0Tni+4Cf9QyXzwHfjYuivEdEvgf4EjCWt7wwg+4D+kZVt/zjh4F/CPwyM8w4JRaIgzSWocJiwug4eirW1Zxusim98hKHiWSOPHRV/RhQFGd/ybTHWGTg9ALw6yLyu8D/AP6Lqn4AZ8gfEpHPAg/554jI3SLyq+nOIvIfgN8EXiAiT/kZ6thjIYVDs0BMP87tk5MLia9PKhgqPfMSRxxppeg0fweFhXnoqvo54IUFr9+gYMbx4ZmXB8+/fVFjuyNR5BGPEM5Sq1nytej9hYylCKVRL3HEYadnuRwIykrROwCZp81wz07Xx5NcSCSZ2FN0uhObYs30UG8923QO2uolShwgnNBFadBLBDiIEEumseKehG8MG+55GNTQWItBIgp7jWZSuICdUZb3MfteHjKvLHnnJQ4NitCdb+n/vlEa9ENAoTbLIj3TUcdOBbm8d+y89WRPBT2F5/PXVeh5i3HMl06nH96Z4ZyHnmsoccdDlVkKiw4EpUE/QCzUCO1nUogizErdGfRuz0nlFmmOuycD58wmgzBkEnjoI7sapQqPZailxG2LqYuGDgylQT8gFBrzQDs8H8eeCqERn2bffBI06+eZIN0eUq1gGg3krnOw28RubEIcu69sYvvdgehrn5t6DUTQXs93M4qy67LdCb1B1e6721AZailxWFCOnod+tEZzTDHSMw86+gywSiZBTL90Ph+vjisuLh3SDcPHOQ974LAVF8/WrW2SWxsu/NLpIsYgXmYgz35J9dLxeulZ6GZc4VA4phmNeWnASxwl3DG0xRJTwnvJA3FnGBv3zvYrMJqpnvnAMUYdK1fsY7e3B+PeACTYZrPgdQ8fd5dGg6jhWtQRmfEl+2lvUL+vG0ruuCPGXMbOSxwVKFL2FC0xAeM81iDmPNCAIrdvEaNkmvMWaqtkx0tym6cNm2NkZRm80FZUr4ExLlzTYTiUlOq5nzkNqmi3h9Sq2PXNgWRs2fi5xFGHAt05abnMC0drNMcUKcVuJGYwXKk416z7zYxpwiFisM0WNFuFK4xRyU6JIpKb66A2E+0yJ1bR3SbJzm5pyEvcJsi0zo8MSoN+FBHGtgs88GkrPveFSccq4rADRR5+fj/b7QVsmAS7tbVnpkvJQy9xWFCOXqXo0RpNib3hsLRP9qrxErJsrGbc9yHJgRlQxtZLHAZm6Fh0ICgN+gFgZmOTGuiDNtKeeTKq8cTQtvNA2MOUguToDCiNeomDhKpg1Uz1d1AoDfpRwKIUDWcehvQ95EnjGTfhzHo9wSSyVw89RWnUSxwUXFI0murvoFDG0A8bB5HgnBIjqzpnQU5OIKw4HbU99D3z/XjoZRy9xMFipp6iB4LSoC8YEz3GI2DI5w0xksXER2xQLBlQosRtBJcUPVosl6M1vRwz3JHLf7XYTmcqga+J4ZUZQzd35P0ucag4apWipUFfEI6UcZnGKB5kDD9lt3iGyzSVrNPiSN33EscaaaXoNH8HhTLksgDM1ajkWCdTS9uGSoa51/sHK+C4HxSmvAZTiQfDN1PsF97/Mq5eYpGYc5PofaM06HPCSCM+yoBOi5EFPNPvPzSkQENlWqSTykLj3RIoOQJSrWJWV7Bb29Dp7CthWqLEvKEKXVsa9GODvBHPVAan8XzD0vpFNLjItFnyp5U9nWvfhjy9xgnXmk4cpl6DOAbfrFp9Vem0KD3zEouGC7kcLYN+tEZzG2HAmAdytqmK4FQ87hCL4KIXHHPPXu4E0bCp4/TjjhMUGdlmE4xAkmBb7cnqkzmUsfQSB4GjVim6UA9dRL4AbOFcq56qPigip4F3Aw8AXwD+mqreKtj3EeBtQAS8Q1Xfssix7gcZTW8vTSrY4z57Pe4Iz33u50mRGvEZ4v5SrSKNOlKvQ6/nTzFihTDmuGUsvcQicafSFr9RVb9KVR/0z98IfEhVnwd8yD8fgIhEwP8NvAz4CuDbReQrDmCse0KWqCy51MOYQrEx/J+tILo97I1bJDduzqfgqUSJuWO+pf8i8gUR+biIfExEHvevnRaRx0Tks/7/qXHHOIyQyyuAd/nH7wK+pWCbrwX+UFU/p6od4Of9fiWmgEQRplbHNBqupVwYApoUGvHhI1OrHwyVMVSQ9H+22STZ3nF89hnYLaNQeuclFgXr+4pO+psBMzvAIRb9i1XggyLyhIi8zr92QVUvA/j/5wv2uwd4Mnj+lH9tCCLyOhF5XEQev3bt2hyHPh5H2Uik/G6pVpFqtf/GNMlXH8fOOh8dlsZMQY4h1U6fZUxH+XMqcXvDsVyiqf72gWkc4AyLZrm8SFUvich54DER+fSU+xVNaYXZPFV9O/B2gAcffPBAeW0TG1ccIjRJXEs5mN3L9XF2xzhJXI/SsF3dIZTqm2oVqcS+h2kydUejMo5eYlGYsQXd2TSM4vF2b7sGD+kcYAX+jX9/wAH2tnQkFmrQVfWS/39VRN6HC6VcEZGLfnAXgasFuz4F3Bc8vxe4tMix7hUTjfoiKImTsJ9WdDmYivuK2G4wVy6Shz7i2NrrZrRHiUBtbzFjKFFiBswQTrkehFFGYa8OcIaFradFZFlEVtPHwMPAJ4BfBl7jN3sN8EsFu/828DwRebaIVIFX+f2OJB6z7x3t/U3J7jhySGPaYrLwy4C87ryQarB72mdGgcwVZKlVbLeH9rrjw0Fj7uVD5pVHdkVV4vZDynKZV+l/6AADAw4wwBgHOMMiLckF4NdF5HeB/wH8F1X9APAW4CER+SzwkH+OiNwtIr8KoKo94G8BjwKfAt6jqp9c4Fjngj0v6WfheB+g8dckwbZbWel91px6zmNIK1cH2EIhayigPobdjdJ9w79pkBr20riX2C/mxXLZpwOcYWEhF1X9HPDCgtdvAC8peP0S8PLg+a8Cv7qo8d0WSHnZqeeaGrRx8eNAjxz68e59U/8WGDYaqZk+Tis+XT2UcgAlDgmqQm9+laIXgPeJCDi7/HOq+gER+W3gPSLyPcCXgLFeSFn6Pyc8ZF6ZGdN5UO3S/dWagXhx2FFoKPyRGvNKjHZ7EBlotw+Mxz2k95KPiaeCYeF4ppDYHTmB5Y49zfFKlJgn5lVYNKsDPAqlQd8DhpbqaRw4MLDOcM3hZKlh9MdMmSeAY58YARHEGNRapF6DxEK3h7bbcxjADENNkkEjHoRMilYNUx1z2m1LQ17igHEUK0VLgz4DCmOuQTx50BOOhj3UvSJjd/i+m7WaM5CnT0KlgtZiEMF0E+gl2EvPZGOZW0hiWg94FEslSZxq5Azx90L530NASX0sMQqlQT9uGGPAjC/qyZJ4k5KfI9+SLF5slpeQagXOnCJZqbu0tiX7H126HuxTgf1ozAxc0JwkfGc4zlCoaNwEuaCQS34Sf8i8sjTqJYCZeegHgtKgB8j/eMMfbhojn8kgWcU06pilBvbWOrbbS98o2tj9D/ttpuyNRt29dfokRJHTOVmqYlodpNUFa9GlmitdA5DUsw2YI6MQhIqOXG/P/P2eqqXd3nMYj6x9ty9cgkdbP8tD0bcdTh1BidsGM5b1Lxx3vEEfR10bem/GH7YmiYtjq04fOkjVEFOGS73mPHJV9NoNtNN1yc7LV1C1qBikEiNLDRd+2dmFXm/6zkbMMSwzL+yFFhncN3cIl0wN8xpFyeH0M37MvtfJ9Pp9H668aigHkPLhS5QA5z/1ygYXRwMHxUFWq6jX885CJ9N2IBID1mI3tjJj4op7Yq+DYKDXw7bavqCgiXZnM+b9Ux2NePVEhK31xqx0UmbMLInpD3Z+DoCHq98x9l6UYZcSKcqQy1FD3hsMWCVziTur5EIAU1oYtdhOB3wIwA3VMWe02Qw2c8dOdnYHzzvLGJlRJiBk9PhK0qkrYqcI/2SFRgX9UKeuVJ3xs8tCavSLlcLPLu/dFzKdgMeSd8903hK3L8oY+lFEyiDJ4sjzjZnuiwOeG8e+aZC5tnemEvcLj2aJO3t+fCoFMPW4xrWgS6mNVS8B0G47/n2OBpmFVabpYDTr55if3Iq6Sk3YNwzhlDj+0NKgH01khveASusHZGC9QTWV2CVOF9nByBtyAOIYY3xjiSRx7d6mPb83rjNPWCOOnXrmEkVgJrS0m+X+5Hu35vfPJ4UJWEW93HY+jo5Usu2yRPes4ypxLHDUkqJHK6J/kAhFoPZIq9vXuYF8IdJCjXkKH8qx3R622cI2m+6v1T6Y848cljrhrXYb/CQxrTZL7kD9v/R5/r288FcyyAZK9eTzxx2in/rJUaLIyfvGlew7VerEHH+ozlecax64cz30Q/amUlqhq/b0pfozdLWfBzKPsz+oBZ9wTKjEh3EQdQZ9XLhjkZz6HLOlMPmaeuuRARUkrdw10o+7H0UFzRJzhpCULJfDR+Y9HZb+R8DESHnPBzqGNOySesBJ0o9XL3Is4+LeqZpizxYmWbMwSF5eYB5Ij5cLv2R5heB8EkWY5SX3eKmBttuOxdTrDYRsbgvGUIl9o4yhHzJCES0Xr/UfyCzx43lh3kaJfhhnUmxbkwSsIpW4MI4803lnvY5piplyx3WGfEFGMp90LUKQRNZu1xl1ESfDUHeFX/R6rl6g2epP1CWOLUotl0NGPq6pSQI9i9RqEEWIVcQsODG5KMxCP0zDG2klae4Yeznv1PATz9iq1DCJuciQ0CyTkVpst+e873abpDMo+ZtOUFKtQrUC3bKj0rGHkhVnHxXcUQY9g1/aA24Z32z135pnGPuolo3PMx497fmKkpSTMI7mOO5c055n1MpgzP79FczgF0UTb9S7PbC2v/IrcaxRslwOCSNZByErIs+QmBXTdqYvarNWtNmMHe4njS39M/Uaplp1zIxxTJIpxjgVUsM867GCQp+Z9t3PJDXu8x/1XcmzYxKLdns8XP2OvY+jxJGH+qToNH8HhTvTQ18gBmLQk0IK0x5rHsnKIIyhQUhpbMy8iGmy1zHM6GWHicWZRMPmUbG6F+RCXhJFaK/Lw5VXoVbLCtJjijLkcsA4UD5wvoBlXsebM/YcNw853PMY2xjDOrJydR7GeI9JXKlWs8lw1CTjqIsWqdSyuHuJ44uS5XInYJLB2K9kbVF1Y9r+bZKuyl6M4V5j4GOOl9IQM972PD3w3HnmKQvs7nMEvW5hviUVUEuVG0scX6iWBn3hmKtHvsCkpsSufDyjt02bqEy3y4x6UL2YFsPMo6FF6InP8R5kOYY4+Oq12wxo6Exxvql6t2ZsnnSnPSaD/XHEV5ROYug4vZlgbGWR0bHFUaMtLvybJiKRiPyOiPyKf/5CEflNEfm4iPxnEVkbsd/3i8gnROSTIvK3pznXZ5743BQDMkhccX+TSssX9WNMy++LjPkU+zqWThfb7WXGxbV466K97vA+YRJ22uTkAsM91vc7ddIDrT0V4aRho8zTH3VN4YQ0bdK76Fj+M5taWXLOE2GJownV6f4OCgfhOnw/8Kng+TuAN6rqnwDeB/xAfgcR+UrgbwBfi+uE/U0i8rx9jUKGGzlnr4/DvOPi+eOmw0gnl2mTekF15aRjFxq1g8AYI5sZxlFGdprJR3MNJ45w7uKh6NvmfswShwtFsNZM9XdQWOiZRORe4C/jjHiKFwAf8Y8fA/6Xgl3/GPBbqrqrqj3g14C/sq/B5IzaVH0+YWAiyFrCzZNOGI5vlm1n5WbPEj6adfuiffcTrvL321SrmHqtL3pVhBGTwth9ph3DtPTTSfBjKwW7jh90yr+DwqKnjrcCfx/XxjjFJ4Bv9o9fCdxXsN8ngG8QkTMisgS8fMR2iMjrRORxEXm8y+RE1ICy3ixL76DCcS8dgYoH0zdEczvmqPPAdMYn7/nPyh/fL5ffH0OTxIWkkoRUd33qcaSaL1NslxntvRj/MqxyZ8MnRaf5mwYF4enTIvKYiHzW/z816RgLM+gi8k3AVVV9IvfWa4HXi8gTwCowJHqhqp8C/hnOg/8A8LtAIf9LVd+uqg+q6oN//E//sYU0Fkj1w4+s4NIkYzSKaiimX1wUGrV88vCwjJan/YW5gmn3A0ZPAmmBVbWKVKuukXe9NmTY9/15585dNr04hpivi54PT78R+JCqPg/4kH8+FotkubwI+GYReTlQB9ZE5GdU9dXAwwAi8nxcSGYIqvqTwE/67f4J8NS0Jw5/OPtZ5ooRL28rSMR0Xt9BIxWN8mMrZH6MiteDa3JRrbrNkgTtdA5m4pqWcbLHxHR6jRJBETXSdVpKIME14R53/rEnmhBaCt4Pv4ulcT8emBdtMQhP/xjwd/3LrwBe7B+/C/gw8IPjjrMwg66qPwT8EICIvBh4g6q+WkTOq+pVETHAjwA/UbR/sN39wF8Fvn4v48j/cKY28HkjIsLCZVH3ULSTGibTaKDWIr2ezw8UGJpQGCvdt9MF36QBq54OuOBimFwl6MjNpqEmjtgPcEqSgHZ7fkLub+P44r66My+0FZ53EvbI+S8bTd/+UMDaqQ36WRF5PHj+dlV9e/D8rbjw9Grw2gVVvQygqpdF5PykkxwGD/3bReT1/vEvAu8EEJG7gXeo6sv9e/9RRM4AXeD1qnprHidPf0QTDXvKYfZe3IGEHfZwjrR1nSaJM0SxM87aag97j7njp4qLqB1YFTpju0BtdB0jU9sfhEtAxyZjs8ySZ8gKrwKZg3wxVl5oa6z08DhPPNWcCRhU00xEpVG/zaHA9B76dVV9sOiNMDztnd8940AMuqp+GLdcQFXfBrytYJtLuORn+vzPL3JMUxl2tYN9JfeCKdgeWZXnXioa0/Lybm826mOwXWZcA3ExCY99GDH0lJKo3Zm99DQnoKncbTIYDx+grqbGuBJDUKAV8vkzjz3/WQbsJwBpNFz4xip2a8vduwmff9lU+vbGnDjmheFp4IqIXPTe+UXg6qQDHbtK0VlwIDSyKYxQWi6+3/NMPfmMCe30GyGbw0sCB+PbS97Cdjr9sE6we5oklTTEBKi1mBNrrntTkjgp5bZjS6ln2BTeh3Dyq1aQeg09exo2t8FaZGkJ2drqTwT+ekYhbbwClEJetxPm8BMZE57+58BrgLf4/7806Vh3rEFfqDGflYOdD0HsYf+pEcSvnUzAoFCXbbcGt52XlEDBOEbF+PvDKfCKZzi22r5mjEQu+SnGe+TLS9h7zmEu34BqBV1qINdvuq5DPl8ixoWyTLUKkXGxdg1UIH0ISJMEmi1Mkrjfd2Kx29sDE3V6r4dWYaGXH0VItdqX3Q0Kp0ojfxQxPSVxj3gL8B4R+R7gSzia91gca4NeZLQfs+9dvGc+L+M3T2XDFKGhm2bb/Yacxhw7wx5olyFTZ6QXrxaI3LXGMebsaeyZNXon6qgIveWIykqVaLeHJAmcP42sbyOqaKuVJYpts+kMff7YuXHZze2hcQ6svsTnLAYuzbWxM42Ga4ohgrTaYGSgjV0pw3tEMedFbC48fQN4ySz7H1uDPspoL8yYz1PZLyzTXwQ0J1p1mCgw5vnJZijkkca9Pd2SPNUyKIpSq5iG286eWqNzZglbM6iAGugtxYhV1MTEGyCry7DbhHsuQLMDzRZs72Sfa/7zHXyeZOfNxpGGriRsIJ1bdfR6btIAzPlzsLWNhtz7gkKpTEog9x0pY/EHCAWdnuVyIDi2Bn2kJ16Q2Nqv4UyTcKZRd13gA8Gs0TuZwZDHqPDDNGPbiye/n2ue9p5Ns13g6WbyCo2Ge8tXiiLp/Rzc1SwteU+2SrK51eeWDwzB/+CiCHP1JtXYIK0OGIOtVRBrkS9c8glRxXa7iDFIu4Nd3xz4HIcm66JVRm4V0f8uDE9UEKwuvCefPHVpxErE/R/QhCmrVI8ASoN+uMj/CPYQf04fhzFO1IKqM0bdLtqeLEOQxmkzNkQ4nimLVaa6hhytbt+riDH0vbQRhDNm1idZ3T2yzWZm5AopiClPvtPBrK4g589CpwOtNrrbzCbLzMD2ehAZ7PZ2/7oCj9806pjlJfdekmBv3ESvXsN645mxYSIDnr8PfhXtPebsuOOue8T9GZiAxlA11U9a+fcHVnzz1g4qMR8cseLxY2fQZw2pSFzJPLtpDZ37gfc96/SHmGxvz/TDcz9kkzFLpuI/71VzBEYalLkjSaBWwyw1oBI7g97tIdb6xGKgE6M2S1y6oSpCgt3YQnab2D/+HJJ6TLzdQT7/NDRbWXs3bbUhMtlniIibSMVgVpa99+7oh3Znd2A1lKcyjppcsgl8mpXGJIxbSRV8xgPfx9xKZhTzpuS2HzBKg36EkBnLyFVadnt9jfIRP9BpmipMhSyOPYYalx4v/SGnhv8oasrkVi/abqOdjgtfnDyB3diExE8sAcMm9ZJDBgpR5Kh/9RrmD74Ez72P5sUlarVnET91Hd3YwtRW3fGMYDe3nQG3CstLIOIaNasdMuQHcR+GzjVlZWyGvEdexP4Zs0p6uPIqPtj9+alO9ciJ17oJN4og8udJLNrtop1udu/KZGwBZissOhAcO4P+mH2vizNOEYZIl93OK2TyD3/eBmEazzkwlAdqmPaC1LNMEkQFaTScNsyNmy7Jlzal8BNTqpWjSeJCHt6wkyTIyRP07jsLIsRXN5ELDXbvqmHO3YNYpXa9jVglurKBdLrY7R23MkhjztOESdIK0igaTlTudVVT5OkX0VKnGZuY7P7kq1zH1hLEFV7a+C4ebf77kYd/KPo2l69IKaxGMi5+eh6pxJkD8VD0baVRL0DZJHrBCAs0xiL9kXmDaVvt/UnY7iUxOeUP+8BCJdMiP+4gbJRCE7CbW4W7h6El58WnUgOJ0940gt64Sdxu03vevbTvO0VnxYBA42mXm4h+/wtgnWSBrK6QpOcqaso84TNZqOhakcHNjHNx0jirPK3V3KolijIKo/GPs+bT4WehNgtHjevGFSZW0+NowtC9y9colOGcApQslwPADEZVe110jLwsOPncwkRe+n695nbvdEb+SPc7zpAxcSgIJskBg+QeOL76NBNUwWQ7IJSVgKiPqVerRLd24dQSSIXGlS4qUP3s5f4EDOhW8cSxL+THOcLz3gvS3MnIsF6qy9Ppem66QZYbSL0OXZcTMPRDL2EyOPW2H2397NBxH668auB6pqkxGJA9gNJTz0GOmId+rFLnU/UUTZFqX09hhNKYb5G+dpEuyMjns8Ivuffk/c8D/v6kJe6mXnP/l5bcX8oDz3mJY483AmFuIu2Paq/fRG7cwux0iFpK7RNfJPqNT5Bcveb6e47qoToPpNcy6pomXeek78KkVYN3ILK/Zgt712nsfReQkyfAi7AVeeJF8fPUmI9dhRaMO7+9GBmcGO5kTKuFfoBG//h56NN6TtMwR9I4as8WGw6f2NRW2x8mldidzzxZqN63vwMOvzbmXqUUREQwJ0/A6jJqDFy5Bj5hNjbZN+OElte0SQ2ZfPESq1frWVz8UFcqkzDhu7TnY1hFugmd88tE9XOYMycwT13B7u66wqggPBKGVAaaaO+HqZMmav1xSk8dQMqk6KGjyNudByc79GbTL/+4opSpDh3QI/eLwNPGiCtp9yJWheMKxaeWGujZk0i7C1euods7k69rgjGfhvWReqdSiT0LIwmYPvsvCEvHWaRtUzi+Cfz78F7ueQIuqpyNIhdyuXSNWscpa7Kz66pLve5Maljy5x0IZ+3XKQjyORJFpVGHA/W+p8GxMujP/9PPgd9hmEOcw0Jof+GXvRJ7TvSM0q+zFBcF+4zV8c4284JTqXG0Ful1+/HR3LmyexfHcGLNGfNegqyuoDtNQh7+yOvII5zoQoMcbD9wv8QV/Ig0HJ1AFbOyjG02nSrinOAUE30islrp67akFapTTMap4ZSay6fQbs8+6YzIL9Drohtd91lv76RvDGwz8TstBjGDRICx++Q/m9x3Mv2u3/GJ0iO2UDxWBh0GudoDBu4g4tCpUfdsg6z7zxQUSlOtgtqpNLSLzpmdbxJjI+Qbpz/yUT/sKMJu72BUHaMkkJWdyhiMey+/QgqNWd5YqUW6LsRjN7fn/hmmevIhBgzeNKEK8ZotkyqEx322+ftAv5+tY6MMx7+ndU6y70Xq7MSVrGhdfIOUVD9+4Ds4QO3Uws/vjjXqJQ998RiZJDuomKs3sJOYDIW77oNnPsmQp+Eb9WXy6QRgO0P15v3EZKsNakk2Noa3ITV6c5ooR+U01KI7TffbSVcU8/wsRzJN9nPIMWOcMo7d11r3OYw4diJe4cQzTR6IYaMvRnyf3KjP2+90xmoLFX2/shqOIFE6bUHTLHi4+h1Z8ncct/4wcNRYLsfKoH/mic/xZ+TZgy8eFkMkf85xCUnN6ZDnMSNDYtRYBnpqjpWcnXweU4nduHyce97Iio9qNaTimjjrToLr6jyn+Pk8EGrHBM26Zx5jQTWoWi/rG7y254kiOI9adYlUErfyCipCZznW0EQRRTxy4rVor+cqd4H3X/nX040rh0zCIw0P+Wbej5x4LQAf2PipPR137rjdDLqI/C3gZ+fV03PhCPnSaSVckhyp4pw+r52pwjFhwu2olP2P9BTnDG23XRx9aYno1ImsInTfrfH2OymEUgfp82rVhW6yxhczHG/E5D+XblajzmcNmvT2vjLMEsDpeBMXckq7Qd11loe/9h8SbezCzi66tQ3GOP0dMWivh3Y6PLrz09khi7SYMnJA2/ZrRkoUYhoP/S7gt0XkfwI/BTyqetQKXh2e/6efw2OPv5uHzCv7gk1h0+QUI348c9MzDyF9BUJg2KMdwzIZGBMHnA8YhwM4b0qJlGrVeXvVqiuqCSe0RVXnTjVA3ygkijJvVKoVaHfQnd3px1E0lqFwx/6GWnTssE1f4Rj2iijCnDoJSw3sUhUSJTmxBKeXkc4psGDaXbi5ju46eeSHq9/Rd1byv4eBfIqvJoYhLrzEFVBbWFAVYkB+eA44aiGXidOdqv4I8DzgJ4H/FfisiPwTEfmyaU4gIpGI/I6I/Ip//kIR+U0R+biI/GcRWRux398RkU+KyCdE5D+ISH3ai3rMvjeLA/uDZdWcA+fwHryp1zCN+thy6b0i866TBET63ks6cYyiDGac9mC7UeGQoEgqFbva56D7Mdy4spD7MhbBtUmj7pg2vR7a67kEntWsyGkmhOynsIhmH/crZQ5JrQpLS30aYVi4NircNurzPyikv5E9jCH7nklfE0niCubMaVheQisx0fUtoi89g9lpE12+idluI50e3LjlPstGHXPxgvvtpQ4YjGdJ+b+BoiurWX7lkROv5ZFT31u4+8OVV833u6y40v9p/g4IU8XQVVVF5BngGaAHnAJ+QUQeU9W/P2H37wc+BaSG+x24Jqi/JiKvBX4A+NFwBxG5B/g/gK9Q1aaIvAd4FfDvprusfoxYmy1MJe6HCPL0vIyNspgflhtH4paKI8YwvNOY5Xp+3/QH5T2Uflx7ivMUIP3CR+fPudPtNp3eSvDjWbgRSg1vFCFx7EMYXms+jrMEoXZ7mHrNSS5Ms+oJWCST9FSmRVr8RBSh65v9PqPjdMwPe4U1DSaMMd9aT6oVtwptttD1DXdfUtXLm+tus0qMWVlGW20XZ7/7LrRRdfr53R72ytXh7lOzDLkSuzGsrvCyB/4O9BLe/9SPAy6xmq1055pUn9+h5oFpYuj/B67j9HWcMf4BVe2KiAE+C4w06CJyL/CXgR8D/q5/+QXAR/zjx4BHyRn0YGwNEekCS8ClaS5oCGr7krhDbymadFwThUVjwT9eTRLXzMFadNczfcYt60cdx/+Ykms3soIWc+ok2mpBq42kTIt5X08RF35lue+dt9qIMaCaKQKK77uZLtXDhszptQx5oOFkmfPQpw25DXQisiZrH5exRCYlllNDPymOP6KeYiGTap6bPsP3RYzFNluI16LvH1L6n4E/ZnKrl90n+9Rl93q14j5X8cwbktkmWv850O25HEvK1Y8ML13+69g03LqA3+BRC7lM46GfBf6qqn4xfFFVrYh804R934oz+KvBa58Avhn4JVwX6/vyO6nq0yLy/8Z1um4CH1TVDxadQEReB7wO4P7775/icsITzRZ7TZeWAwbtCDAu0h+VNpue5ub45QPbTBuH9cYmayKxmSA7zcVL9xZ4z3ZzG+NbwwEuD2Ktj68P9tlMwxwDBVGdHIV1wmeVeZ1SGR2KSPnmAUMpTQqqLVB6TM+bXmPR8zHIqnsjN5lljaPn/b3LrwrHVRCnhjqQYujL8Nr+89x3rl+16idcTzHOs6T25KGrHVyVikHCsGuAx+x7EZlTGOSIGfRpYuhvyhvz4L1PjdrPG/urqvpE7q3XAq8XkSdwhn7IPRaRU8ArgGcDdwPLIvLqEWN4u6o+qKoPnjt3Lnt9roUOqTGv1ZyhGBjAcAjkoCFGMCsrmLNnkBNrLiZZrWbGfey4wtcDQ2Pbrcy7CoWw5uEdpvHWoVh9yo2m74Xq7i5Sq7pYurX9pJv4MBODnqDtuhWEbbaGf8xFIZAC3rf4Yp6xse9xrxXFz/Ne+yTPPFcBLMYgcewldfdojEbF84swYeLLb5OFmoL/RRWs6iUnwvez71YqtrbX3EJwXsDlq8JJXsz8C6DuIHGuFwHfLCIvB+rAmoj8jKq+GngYQESejwvJ5PGXgM+r6jW/3S8Cfxb4mVkGMM2HN1XLupTRAO6HFXZuz5fe54xGZqD2o7U+DXzS1d5az9q8jVw+5yl3BGMMMSpcMCtyRiQrmAFkeQl6CXZrK7unUqu5ylkfJ0fVTaSV2C2rr10f1JIZOt2E0EmBUU+bOGu4+poiHJKeD3CTUiUe1CufdJzcMbNJLY4R0w/n2GZz8FrDxHHaG3WSkuKsKPLSJz3PvxfQbkfWK4ST3hzyC07bxrpGKUZ4tDX/Yidw4ZbbMeSyJ6jqDwE/BCAiL8YlQl8tIudV9aqPwf8I8BMFu38J+DoRWcKFXF4CPL6IcaZGf6JhVx8nHGMsstiqh6nXyPpcwmzL5BmKidQqttVG7PpAs+Nx+2WVrItGmOBMDV+1iqyuQK3mqIhxjGnUXUItvVe9nvNGV1ey51jFNlsDk1XR5zHUbDn0+rONhg2T0znJfbYTEqwSRc6jTxLMvRfdW09dHo6nTzJUYb0BznFIVyEpm2NohSFpqGcKEbdwHEVGdtRKc7+hnSwklQuPpY9rNRdK6vb2nMgfPqX2V9SLZlgfsQYXh8HS/3YR+QzwaVyi850AInK3iPwqgKp+FPgF4H8CH/fjfPsiBzXVUqyI5pWjUIXLRe10nGFKqVKzeGpRhKnEjlKZhk5GhQBwBto2W4NsnlHnK1r+zzLRTDsRpNdRrzmOtvc8iWPs+oZjNbTaTr1xe8eVoy81snZ1ycYmybUbbtuNTefFh0ybos+j8HK1/yNPP4s8bXEUjbFodVNADZVaDVpt7IklzLkzZGJo4bYTvNmQhmebTRc26nUHrzH8rMLPborPUOIKpl4jWl7CNBqklN2MJRVQX+fGTy+4l2rV1Rc0Gm7iC9oTDn23wrDcNJTcYJKzzRba7fHSxnctTMM99dIn/U08jkhdRP6HiPyup2v/A//6aRF5TEQ+6/+fGnecAyn9V9UPAx/2j98GvK1gm0vAy4PnbwbefBDjS/GYfe+gpx5m/mcxeGr7ib1ZGTSp95SGASDrYJN5keMwIpFV+N4Eb7FQ3IzUw8p5vSO82EzXxsNUYmy7ne1nW+3MoGiTfvwat8LRfGn6KE9yiqX/kCc7KrSSn7SGJvDgaTqsbo9obRX5wiVnSML48SxGUcNOQlNmsiexmdKJdWXZMYci4+mEtwYE1/ISwPtG/ljBOLXbyxK803yHpg7FhCu1Xj8pupBqW2CO8fE28BdVdVtEKsCvi8j7gb8KfEhV3yIibwTeCPzgqIMchod+pJF56uFydtKXqMgLmUbjZIS3kSWLfJIv7eAzdLyQ+pb+5eL3aWHQUDHNuHGMYAeIEUyj7roVNRoFsfjCixn4SxNiAz+8tDuPZz1ItdL33Nrt0YZ3Fszizc7g9YbjsrfWHRMnZFAEoZmFhLim+AwyB6Hddlr43Z5bFXkWUMhWGZz8+ucYWsVMg1EOhNrs+5xf1Y491l4+f7/fIkTDmNI7n8ZDV4dt/7Ti/xRHDnmXf/1dwLeMO05p0AuQGfUZf9AzIV1Khi3msrdksgFIE2j5tnhBrDRrNuyLPoZ++MHyWuLKwLI73GbIaFRiZHWF6PTJyZPFOBQYTu10nEduC5gSgVGRKOq3wEvfO2jkz5lYUHXx/jBpmUoY1GuD93i/Y/aT+SSjmDkIqUywMdlEmc8rpKyTodDOfscZnGNhGDPxTEV+2AumZ7mcFZHHg7/XDQ3fVdV/DLgKPOZDzxdU9TKA/39+3HCOldriPPFY8u79h18mwR/HJdD6y0LTaGRLYGfURi+DR45Hnba6qcT9RGNwLQMGp1bDrK6Atdid3azBQxiPzwSYOt0sQSm1qlvCN1tZcdZedUfyrJV0UssfL1N59F2XTKOejXfmStZpE8+TwhBico3CNRtr9nhtFZadNIDeuOUKYKYJoY2D2umah2erRkiuXutPBEVJ4txx5tKcfJFG/DDOE0CmP+V1VX1w3AaqmgBfJSIngfeJyFfOOp7SoI/BUEx9HAqoV4U9Qf37plp1Rgmc/kXYgafqmg/YGzdHn29KY5AVQYVGKWfItNN1lZjViout5qr7BrZNElBBt7ZgKzhWevxZvbEiyhr+fkm/YGXg/CS+M5BvG5dew5QFKenKSJMEqVb6Mfr8Pcrft1FQ20/sBYZSbT8hrq02khr93d1hg7oX5EMjk6AjmDzjdikK8wXHmyvmGb+/jaGq6yLyYeAR4IqIXFTVyyJyEee9j0QZcpmAMPwyVso08LZNteqYBEtLWbx5IDSRxhC7PSSO0Y1NV/683AAj6PYO9sbNfrhh1i95PrYejG/osf+B2u1tetdvuiTuhKX2gChSYPgzNkLI8JiEEZNMur9pNDDVqmP8BAlTej03AUHGu58K6XmMuCRhpYJUK/1jj0uIjrwEze7bUCFNeq86HfTmOvaZa3vTxBnFcNpLbDn/+c8S/tnrOWcd1yjMGqYKQnTzVloEZgm5jB+myDnvmSMiDVwtzqeBX8ZJr+D//9K445Qe+h5Q2OotSKKKWtRaFwoQ48u2B3tTqlUkIuNVpx56ymke+MFPm+FPkd9uzP5Fyc8hYzOG8YGEBSMBt31GDzd/HrXqCkNSymNikXoNu7nl2BFiMm1tQ9152VMyitIKU8d/7vYnhLx3PglFq4oR1+VyAwGrY9Lx85/ZIgzo7egRzzBxh6J1U3H1Zx7LdAnPKXEReJeIRDhH+z2q+isi8pvAe0Tke3D1OWNDBqVBnwJh6CXkM+c1PVKkPSqdN59Ar+BHPBQyGQ5xqFXnOUZRJkg1SjVyJIKEZr8RQX8M0+w/FgPjNfR/NHvQfskZdjGSNUPg5Aqouli0tS6EsbriJstuDza3+k2vJ5wjpZJKMAGMLTqaZswTtgmbM089WUyLKWL82TEHvg9HrMxxHgjIAEBA+e3yWPLu+Z9vTrdQVX8P+FMFr9/AFVZOhdKgT4nH7Hvdkm2a2HWQhJpmu4GXcgJJttvDiMk0ZEwU+cTbFF576qX4vpSEkgBTGowBxo3a8eGCwGDM3JYuMDTZDzL9v7qCNmrOb1lbRnbbyPIy1Kuw20Q3t4ZL48ch/HyCyWNu/VHHnDev9JgvOttTO78pvgMOUT+Ml98v3E7GVJAeBKRfyTrT9zX9vqd5Cz/Bf7Dzc4sb6xGbE0uDPgOGmC+LhjeQmUe5B3lTF0MUxBioVoYZL1MiTejR7SJeXqDwhxYyYiaNy28farsASKPuNMbBdShqO9leAFaW0JUGKoLZ2Mk6GPVlV2f8haVhEzFIFIx/0YYsW9nJ7GOegKHcxTSGMfjcUqXOAc2ifQ8qp3k0Dn4spuLO7xQcB4kGY3Vh/HgXwj0PT8VMLJcDQWnQZ8RMzJd5IAxphBVzo5Jk+ZeSBG0WFAnlfvTjfmSaJNBselZIddDLmzDmkeGAXGhJ/LGJYxdiadRdAUyz5ZQWk8Rpv/QSpNVBdnZg1YVhbGtvk1Q4loGVUZDgzucC5t0Qe6gadz9x7SI6IjAU/hqVU8nyO2Z4bPuBmCzpPMQmGgXN9TGYFPpLVzz+PGGf0oXhCIpzlSyXPWDuEpwzwvgiFVOJMwbIUIER9BN9BayErNhkgnHOtEW6PbetZ3NMzWKZAbbVxm7vOM0W36TAnDnlVBZrNbAJdDrYS5ezZtEsNYjOnx1hyPaHgcrJZA/e/0Ejl6QdQsBmGVtduiAWy746XvkxjavAljTXNOdJd/y4pvw7IJQGfY+YaNRlQrn3XqoE02VrGmuu1QYohNN4Pf1DSf9HPc1+4Q/K6uBKIaCGDV3zlAnATOIglDvodNHdJlhF1zewz1zFPuNpuEniKjOTxHWT3y+KJj7NcfJnwZiqxYljGHG8aauHTb2WTfiDb/c/84VNTiPGZwOe/qIQ6uEvhKJYeNIp/w4IZchlEQgTfEVxyHFhkzwKPGu6vo1Xuz178iqfENzHD8wZiP5XaF8VhUPX6ah+0usiu7uukEiMK0tPufPXbrhwTNbIYAovfdZr3sv1pCEG6WuUzyXhKiGLKP96enj17fqG8y0D38O9OBR+v2ziTicHX7w2Nlm+SBR9pnu9vllPfcQWbaVBnwMkMyiSxQgnqgNCFibJysa7vX5XoKGTBGyM/LKz6AczC/87uIbsrTHe1ICnl280Ma8f70A8N3Gdi1IdlCChaLd3nFaNbyxR1PosGPjg/3mNteBea5IgtdiX/1sIFCb3jBGslCJDWjiBjHo8A8SIi1OLuF6z2zvOoB808oVoIVXR3+dUMnehydHSoB8vZIqGjbrzWJqtvmEZ8wPOBLFSnjk4PjUU7zuOCpnjGYfbz3QtlTj7caYSuYXGIh9PXqQHFni36X3NEEUILjQj1Qqm0XByvNGICWaBdMSiMWvYEGUWSLEnHWqGh3RSgeH2gNPy0meEWoVOx60Qd3bBWiefsBf21F7Hkb/+9LeXqnPKgqmKKbRkuRwrPGbf67yAMK4dRdgJ+s6I1+BIeyimEJNVtiE63FUo5HnvdXlb9CNKvf84diyWbteFc45gEjCTX0jpmEtL0Gy5H3clRpLESSpME36ZBvn7Ne7+h9uGn3N/8NOdK4+C/dLCNqmaTH9nauxnYlML+ErptG/rmLh/4flmzbGMOnYUYc6dARNBuw0ry7CxBc0mL61/p9sujnl0+13jj7UfHLGfSGnQ94mUcqettmv/lteR9l/YgVZ3Rd62j49mlW0MqvU5A1EJduhvN0speWaMisIEo7ysKSmSc8eIH37GTe50+7HcSoycO4NYdYZmewfd3R1Oas467jxzRHM8+7AIBnd/M0G0cYZu2sl4xGtpxXARJXXRyMKKKa1w1HWOMOQDfXb3mMfJVmpWYWfbfQeWGsjZ03zgs/8vAB6ufge02+4/LMRrL2PoxwyzlhOH7JgBPnueb+7/Dyg2Bl1l0g5GIxNleYwL2aQhAtsb3iesNk2SrGI1a0QdriL2mEAc98PvL+eD8I8fr0Rk4RZttRER7GoNExmk20VOn0Sv3UB7vUwfp4hvPhFTGFqpxM64eEpnYUGOv65sos7yBIHoW8B7H+v9FsTTR03UC8EcYvC0Z1hZ5JwKTZK+IqmIE2sLuiDBYgz4EI6YQS9pi4eIkdTHPE0w6OySdfdJDVQYssljFtpcSNvLeZcpv1dqNczKslOPrLjwjMSVwbj2qPPPEE5IYeq10VS99P74zjdiDPaLT2HWd+DaTeytdexTvh2c75I00Ahiv0YvxyyxrTba62Z8/SGD75khphJjTqxlnZ8kdkqPEkWY1VXM2kq/MUlR45DcPc0ULuMKplEf/VksAntgkqS1DGmbvpkm1fB3MRDKUsyZ08hd5zB338XLHvg7M49rT5iWsljSFu8czFx5OkvcfI/JpoEwj/qKPTFIksDurms/5yeTST/KVE53wDuehn0jhmRnd+z1ZAwbn3xEDMmXns6qBfNe8L7iteH5Z2APFR4rjpFTdfe0lzhVzijCrm+4lUSe9z4qsRtOKr0uJAGL56h46QVGfxZef2GDDfH9BCLjjPnpU+jairuX1roitAOAUIZcShRgIL4Oe/Jm5wXn7Rnv+Q6eO+Wu22bTvzRdMZPaIHxQ5K3vJbmbDdgMTBqoazYhldhps2TVngpEfe9ulkTduG3ph8Ukdo1JMJKtCvqH0EwrBmtdmKBeg+1d7MYWUq9l3Y7SyWkqzZO0YQWwJ4XLUQjj3ZMmxRETSNZiMQsniUvgFjkCBcn//Dmy+1ytunHFMbKyjJ5YRrabWQvA9z851IN+YbjjDLrX930ceFpVv0lEXgj8BLACfAH4TlXdzO3zAiAMTj8HeJOqvnXR4z0sPBR92+Ql7Lz50wWwkzjF+aTgBAzoUI9jPez1mlKjpv1QgxhBGnWk4pPI3oDa9Y0htcN0+0F64IgxFpx7IPThVwa2VcwQEiMuBxHHoAo7TdKG0uonSXd+15Vp6pDGgr4PGTUwExAr7gEwrngui5cDGIPt7BbnfQpyAv3jJK5QK46zXgSyvOQmxChC1redtw4HaszduA/2dJNwEB769wOfAtb883cAb1DVXxOR1wI/APxouIOq/gHwVZBNCE8D7zuAsR44pi1R7vfYTAYN6iw/5uAHGGKv1aZjDU4B3W9uoaHCQ3jVxdRT32miURuzuoK99zzSTTAn1rBPXXJ8/3zCt1qBbg+bccf74834ztUKrilGrz+RhNcQRW7yIDBy+etLrOu/Wq1CpzNclDODB7xopNTagfOHnnIUjXYA/MRvm013f1O20agVUsG+WY/dSow0Gq5/ba0Ky3XYbcPWNtr2SVARPnDz387r0qfHnWTQReRe4C8DPwb8Xf/yC4CP+MePAY+SM+g5vAT4I1X94qLGeViYRW8i9ZCccQljw7N57VkvU697sW+M8rrzRn8Uk2UvksAjh9KvvNVuz8WmV5aRVg/pdJ0xHeKFe4+PimPDFF0buGpUYwqrdNMVgm6P15RxjCCFSsUZ82Yrqw7uh6L2QbGcJ4Lvl5hU4jhy9y8yLgntVS7DgqdwX/fQSREMvJ6uakZVuuYretPJVFzhniSJW+HUa9Du8IFb75j/9U+DI6i2uGgP/a3A3wdWg9c+AXwzrjfeK4H7JhzjVcB/GPWmiLwOeB3A/fffv4+hHiz2Kh6kVrOKzr2IRqXGY6w0Qd6rnsSbDuPik+LPfvuMyeHj37bV3rcnmiXQ4hiz1MBubaPXbyJnTkG7g712vR9nt0Hc2SrQGtQkyaPXG+2M5b31gnFJrZYVPw3smiZ2p/0sZ7lHgdE0q6uOl58/36QwXhZiczRBoigLZQ3RKqddgaW0zOA+h9+H8Bql0XCdqXwlKOAmZiO8/wv/YuItWDjuFIMuIt8EXFXVJ0TkxcFbrwV+XETehGuAOrIRpIhUccb/h0Zto6pvB94O8OCDDx6x2zsaA3HbnEczatssTisCVrOElZ2yl2bf8MwwEWRGoaCPanDcMIk2LnmWxWWjCERc4wyrWTu4iV2eRp0fF/8XI85wtT3V8sQq9uQy5qYz9K45R7irIsY6jn0WhvENwYNuQgMTwV4nHWOQRsN5lo06stQg2m2S3Npg5GcyTQJ5DNQq8d13DcTo0+MO1jiMPQhpnYIkiZNXmECPLOy7O3B6GQhjZTUOiXXfcd8AXMS4frv1mushay3v/9JbJ132geFOKv1/EfDNIvJyoA6sicjPqOqrgYcBROT5uJDMKLwM+J+qemWB4zxwPFx5Vd9L9dSr1DssQubhLTXAeI2QRuS8xlRXY14a0HmPK+dJjcNYOd6golKtIrFnPGzv9D38fdIK0wlOrSIk/dZ7iY+vV4bDKtmk6BUshzz07PnepV/Fe7Xa6UDTwIbjAMhSo9+ZaRRyseupOgj5e5neb3vtuj9U4BGHBhWg0x1f05Af1oSOQePez/rkWoXEYtZWvL69xZxcc4ZdxBnvp3586jEdBu6YkIuq/hDes/Ye+htU9dUicl5Vr4qIAX4Ex3gZhW9nTLjldsUHuz/Pyy6+HpaXXCz76nVvlCH01EJvVpMEvfc8KkJ0c8tVQHqa20IrBPfgEY46TlrdKUaySlOHfTQ+8AhZEVKteH0Ti+w2Ma22mzT9/RraJx1iSK2EoVj5XuGahm/56w5WUyH9c0o4Q1wZnniGN8xWHwOdrvx7qTMhxvgm5P1iq0JjnL1HPwaenwDVjrxPmRCdVVfZ2+k6JtJd56DTRc6fdkb8xga02lCrHnljftBFQ9PgMHjo3y4ir/ePfxF4J4CI3A28Q1Vf7p8vAQ8B/49DGOPCoedOkazW0dhQAewz1xgl/ZoyIcwfPYVZW3E6JZ0Cb2qRtMZJS/8JceSB7byXOWSQZg0vBJ65VGLM0lLGebbbO86It9qZ0Fi+ucMQFS89337v34hCpKwvZiDbMHXTh4H7m2tblztmKiU8cHwJjG6aVO+BpvtXK0hUc4ZdzERvXYxglpfcITsdsDoY+gsZQun4fUhMqlV41t1oFJEsVegtV1AD9Wd24MQqbG4ffWOe4k406Kr6YeDD/vHbgCGyqKpeAl4ePN8FzhzE+A4D0k2In76B3tpAg0RZyPpw3nc/RGC3tmB7x5fde42TnDEYJ3u7t4HmGhpk0gP+/VHnCEIs2RI8H8PfQ+l4flwAZmXZJT4rMbZWwbS7mOVl2NmBkyfg2g3Y3R0cb1i8Mu8JcFxycCAhPX2IY+y5guR1amQligZ7reZCaSEtUIz0heXSiXaaexMZxIdHBoTdwlVOUCgV5o20GtO8exmNBNNTaleaSKeHbVR49PdvD2NeVoqWyPD+T/1TXvbA30F7rhHyxCU0/QSeev5yahjyCda+Nzos+p9uMxXCxJlapOaMBbu7SFR1LwcNOUb1NS0MCe3XmKciT1aRM6ewaw1svUK03oRbG44aeOYUGhvkxCpSrWA3tpjLZLKPcc9y78dum6spkLjiG4I3M8PcLwoqLopKq0yHVlbTjFGMWylCdr6+6FhOAz51CqoVFz5Ui3QTKls91AimZ9GKQSPh0Sf+weRzHyHIEZOYLg36ISKlXaXynpMQNma2QRI19XozjewwnpxKlfrlcJpYm4X/7SovG+5xJUZWV92k4sM+Yen9QPelcMIBspXDiHOkx8r48ZOMWurp7jad6FWzi1Yilzhe33CND6ox9vQq0mogvR60jEsAHmQj4RSzrASm+Ez8A3fv/cSqSf/9lPVTGOveC4LPI1ylmXqtWIMmuBZNgLZfRZw7Azstqt0Eu1xDI+GDv/WmvY3pMDHHGLqI3Af8NHAXYIG3q+rbROQ0rmr+AVxl/V9T1VujjlMa9COAUOYz46eP8GZTudoixoNazRgEZmUZGk4Aim4PvPCT1GoutmwtkulqjOaZZy3gvFDWkM5IOrY4duqIPo4tvmjGxbL7q4Z8B580/i1+rLrTHNxmlFEXl8yTWg3WVtxriXWJtZVl7P3nnffX6mJubLpuNt0e6GAoamRF5zwxz4R1ELowayuOPdNquy5CXiulb7wT8nmCcOU21sCLGfqsTCUe6FaVTioDoZ0CpDo2UvWrut1dpGng3Gke/e037+0+HBHMMeTSA/6eqv5PEVkFnhCRx4D/FfiQqr5FRN4IvBH4wVEHKQ36EUNeX/0h88rMy5JaLWtX5xoo94aqPTVJHHNmRzAirsQc5zGnFLXMex7gXY8x6oEAlJjYGexAO8W9bhAx6OoydrlGdH0Trt/A1Gv+B58MaKdn19RoILVqv3oyMgh9kauRFa3qqj6104FLV9x9uec80knQmvPWWxdXqHYturaMXL6e6aKn5++PZW9Vt2MRsEDc8xHFOLMeM2DmSK0Gy0tO12R9w92PdhvtjGANheyUyCAZ82c4JNOPe/fj/kPftRnorOnKjSjiA9ffPtt1H2XMyaCr6mXgsn+8JSKfAu4BXgG82G/2LlwusjTotytCzfSX3ff9EEeuKKXZct7Y1WsDXlNmNNttbNhBSa37sZM+TQ20dZQyn7gc9yPNqg5PnYTVZfdis4W9ct0Vm3R7SLuNiWNsGpKZZLySBKpV7PmTSLPrjlGruiKStMR7cxu036UnDD2JMb7JBX6ycwa7e7KOxoJYi9zcHEzapR5zmBhdAByjo+GkBapVF9/2tL9xDZ5HHCwLbeGT1Npuu36izZZbCbkDjj1mKl2QxbRxnnf2nl9JhZ59OuHtC16g69DK9BeEGTz0syLyePD87b4ocviYIg8Afwr4KHDBG3tU9bKInB93ktKg3yZ42T3fB0sNqMQu0RfHQM/FtptNsuV1yioZ1YEoxIBWSdV1gGkNM2fC5bdaxV6/gWxuuUMGMrHas8V0t3AVAANeJlGEbu9gGnXsUo3kKx/AtBJMpwdfvIR2+5PCgJRrkriORd2e8+RVkWu3XJjJuIIiNdA9USeqncfsnkI+9+RQCGIotjyqyCk0/GOYPdnDNJ8Rxy4Ukt7jNGEZ+4KeNOQ17rj+nokRZGU5C7PoTtOFW4Iw0tgJIihS0iRBejKYsxjIyfSvaej+7AGHkrM4CExv0K+r6oOTNhKRFeA/An9bVTfT7860KA36bQLd2s4EimS3ib12o6/1DYHRnD3xlYUB4niQBgdZ0+oBbe+EIcGlUZ69ySiZzntOJ4XMC2w23fkuX8GcOYVtnMZ0esi1W47XHK4a8nkFcR3fpVbF3n2WpF6ht1IhavaItzvYiqFys4l56gqqtr9imHRvRhnzKe7pgDY7uHxF2+nUDEx2OXnYdN9RBtlN1upoqz4pjVoXAksleLs9mEHWYSCEMmkSyMY6O9QqtNtIFPHSlde4WLq//ts6/KLMtfRfRCo4Y/6zqvqL/uUrInLRe+cXgavjjlEa9NsE2unA1namFmhOn8LeWkeiCjZPeyz44Q3odgTGN0ueJUBa/g4DIkmDhTgppqiilMEmDUXnRaW/bl3fJK5UsMt1xA7z68NYb0pblEqMveccWolIlmJ6DYPpOgpc9dou5tLVrCHH0MSUl9wdR62cssgpXR2Z5SVnaH0iOg35mCVH/bS7u74FXezCS+JWGdpqYzud/pgC3nyq6pik0gFeXz0r3hGBDsV67rkx7gmB8wBBQjuOXTivKGQXFlWJIqrY7R2yAqPbGPPkoYtzxX8S+JSq/n+Ct34ZeA3wFv//l8YdpzTotwnUKrTamOUlJ7vabGJOnoAkIapWPZ+92TeigYct9ZoTwYoiZzS2d9B2e8BDy+Lj9ZpLtp064QzExmbWGCLPepjG0y2sHg1ZO6k4lrqyeNncwvQSJ2QVxyg4hkStBu32gMeuSYJubiOfadH9My+gst4m3jaoEaRn2X7uGo21GvHvfQ6sRVMRKD+GNOHnKnSnFDibgOx6IDPiEsf9LjsAIphGwyVprbokc7XqtNTVDhrzcJIJWEepBEAaO0/L6UcmXefJtAnH5QvNiOOxekTpd6Hf6LxyPMIwOjeay4uA7wI+LiIf86/9MM6Qv0dEvgf4Ek6hdiRKg36bQIw4A16vIWur6PWb2Os3svf73lzQ6UaMYzOsLEO9hi7VkK2mUxz0S+D0xynVCub0KddAoBJjl5z3JHHkmkQ8+bR7HoXnimYz8OmYcrHYLJxge9j1DaTdcTHwlJUSrBpSgxAKcGm3R/Wjf4CcPcPOV17AVoT69Q5Rx1L50nU0jUOK9ENI3iMXI6PVKsNxTmkQTSV21E118XO7u4t2OpiVFYhcMQ4wNJlqbgwDK5LwngUeb7iPNnNyyAGbaF/MmlFIJ5deF9Fo8vbp2HyoTJOEDzZ/bvI+Rxzz8tBV9ddxTn8RXjLtcUqDfrsgirC31l1RRmKR1RW02x1kkgwp3SXQtk5tz7c9y+uBh2wRqhXsSgOztYvZ2nEiSXEEqyuYixecjKlnV9DpOo8sLCiZNsZasF2/HF7Qnd1BLzVJCjv7aEK2KgHQK1eRLz+P1gy9RkRSNS4k0ai70Ae4iaLbRRJLsrkFRJmRj06fIrl5ayhs0Kc4RpmBDO9fPpwlvV42IZlGw3W5980viibA1HBHa65tgHa7br8kcffa3+OQ9pkfX2G4bdQKaV4oSr6PC1MFIZ8Pdn9+gQM7IJTiXCVmwSMnXuuWdJ6Drru76Oa2+x/EVweaNYxCQGFMGRPm7Bl0a9tzlztIs4VJEqdUuLGZ6V7LbhMqriEvcezCH80m0kuyUM9w44hBDIVrCl4PZQamKkfPGw9rqP9/P445e5qNP3s/OxcM3aW7qG5bqus9TM8S39qFRJH1TeJqBXv3edoXlqj9+u87rn5K4UzHlGsmEo5LjGRjlWrVSRwnLlxEZDAry2i7janVsNs7wwyg0Iv2nHqp+fBYow7rG24F4pPDo2Lg8zDaY3Xsp9k/5a17YbBxwmvHwph73El66CWmxEvr3+mMto+jpuqAGdKwSOQ00ENmRBYLzjYdrasSSqbK6oorSqnErjfj9g72xs3B7VNj2247DXavXW5WlmG5AatVpNVGW22kavzYBo1CKEVQaLwDDMgWTEJO7Am1mXiYvbVOZfdeGjeF5hlB1GDjCmu/fxN55gbJ+jrmxJrzrp+8TD05T++rn4/pWidPvN3CbLewV6/149KjhlGtuvth1YW1dnZdJWSjge56eVwK6JwD9yhI9p5wXrp95prTyk+NY57FNOM9GrqGoUlh77OCGHGTvG/xJ7Wa0ycqCK/lC+dud5QGvcQQbLeHWNfkImxWMWD8Uk8wUGYc13ghTZ65J6mRTCAxYAS9cdMZ6FAnPP8jz5KPZMeRyCe20iYE9RrmrnOutH5nN2N36OYWttnCVFwhTCYBXAkMdsqHNnbQMI9iY4RGPCwuOnsGvbXuPFx/f+KdHtsXY9RAbSNh+ZNXYXsHVleQZtMZn1oNzp52HruF3koF6SmmHaEnltELJ4ieuk7v0jO5YQyW3lOvOXmFtHlGFGXx7TBROES/FN/sIc11pIlrYzCnT7quPbtNF25ptd3KycviTuVJ55KoUvPVmmGFcXCcTPdnVk9dDCkXfogKeYyNuQu5HK2YS2nQjwJSY23EFefkvPO+jjYusdeow+7uxLZhWWx5IPaa9M/l6Y5u8+m+mI473oIbt5Azp9DlumvxttOG02uocT9uqVSIul3srXX3POd5mxNrIILd2s4MjbbbWRNioL8aCYS7ZKmBnjuFtLrYlQZac63sOLuGabaRdo/uXWtc/ro6GsOZTyY0nt6h9Zyz7F64yOknrmMuXkCrFXonG5h2D+lZoq0W0S0LsWHzy0+y8qVdoisboEp87gxJunpJKzaXfRf6bg977YYz7OnqKjchj4wlQ9YpKa34lKUl5+nvNtGb6/39fQJ7VOhqHLLK2l7P5VIoDoEN5EJmmTRC9ko63nRFmV9JHTOU8rklijEugZXR1gSb6npPeUyg8Mc5iy55qCUjSw1Hr/MeunQTos0d6CXOEBvfVq/dzjxWs7oCS0uws+Mol0nitFuSBLO26ihvG5sudLG6gn3mapY7MCc9fTJJoJdg7z3vFBUbNf7o70UsNTrsfO4EGivRziqVbVADZz+eoJGw/mURG88+wdmPd1i60qV9zxrSU6pXtog2m6T879a9J6hdc/d29Q83MRu70O3CUgO9ftNNQN2eC4vVa+69ZstVbHa6QzIHefnY9D5mieuh5GigOd/zHrn2Rc0GmoLP4j3nEpfiJ/d8EnUgCT1rHL2owjR8L67NdrzbCaVBL5HiITOWUjqEmeKcOc9oZEOKoEgkfX+kB2iMM2aAvXodbtx0Rj7lrCfWhR6iyCkePn3ZhRFWV0jOrqJyEulZTKeHjQ3S7iK3tmB1GanX0GoFbVSQpfuQ3bZbCSwvoY0q0nUGXTo9tp6zStyyLC9tsbNb41u/8Te5WN0A4P/62IupfrrBxnMi7n33F1h+6izSTeicbmA66QQmaGxoX1zFRoJWhOqtDlqJaJ+tY2NB7AqNp3cwX3yGzYe+HBSqWwn13/i0k0hoNp2GzIBevIsjZ2Gk3D12D1P54sH3ZbmB1L065s4O5sJZdHPbr8T20aIvN5nnJ3IxnsoZmb7Y25RFVJn+OQxPNuHKMrH9VdcxQtngosTBIBB/Mo062usFdLuctx7wmx19TxiQW42DAhARdGPLhRV8rFSbLaTddomwTtcZJl/ABECnC70e0UYTFUGrfsnfsyRrDfTUErYSoZHTXhF18e/IGPTkMrZeIWlE9JYibCTUbnWprfewNcOFf1qltxrz4Ytfzz968zt4unuab/2K3+E/fe7PknShd985xFo0NpiepXrVUQd3nnuKXmON3nJE3LJ0ViOe+ZolVr8EzfMgvoD1XHeJeO1Z1NZ71H7rD5wn7sWxTKNB0nEa5K5i0sW/Zdk3mthpBvz2fjgim1jDiVStmwh2my4PUK0iDQbCN3v9HmT/Rxhpta7YylRi7CTJ4v5O/XBKBNrrYuq1QuXGVKv9g83jw2zJoFo2uCjhMKt3PoBxJdzemJvVVadauLyEtNpYL686RG0MfvSaJJjlJUwcOzpiwHPXhKwoJu/Fa+KW8hJFvgy84/TTE4ucOuk8d3Dl/L5a0zZqxNe3YWcX1lbonl0mvrGLbO3AypKbCBpVok4PW12mstXj0ovq2GpE+64eX/bcy3z29++BquXsR+FNb/5e6rcSSJT7mi1MJ0GsJdpoYpdrVG420WqMrceIwuYDFXbugd6KsPbcW/Q+c4rmOUEFNIbuKohVol//OLERWFrCrNUyMTBV61rfpSsbI26VUq0i3S4sg4lMMUsmjS+rdVW8K8voxmZf+rjTdQnc9P6OMrShamPBOSDUMC/4zvjJXJOEZGd3eP8xkg7p/rKyDM1+jgNRl5gWyUJuj7Z+tvg4xwFHy56XBv0wsC9jDhO9J4icXka77Tyn3WZxU+ngWGmi1PqiHvdWnls+2ltMGTeJT+RlWh1e7tcuVdHYgAXT8bFca10Yp9NFLGijAmYZub7uJoQogrsvULnZpHeiTnUTbAXkjzcxopz/shucauzywq99mvf8+tdx/6OwfV+FqBsTtZXapqXz7GUa17tEOz20Yog221z9UzHVTXjW+3dJahG1z25xcbnnQjw9b1S3tr0sry+p397JYtwhG8k19WiAqpNIsOoMfSVGGg1swIIwK8tIo+7yCJ0OUq07o9dqDzCNCkNe4zxsd8Pdv3SCgaxxiFh1dQhpgVZYfDZldW8+iZo2rdCdpmtc3um6vq7VCnrZ60dFER/Y+KnJx7+NUYZcSjiEP5L9aG8UeOuZtGynQ/L0M9n7k6RVwx6TU7eoK9JlSY3LUsMZZd9JSBLF3PICY+sbroGzD2HET113zTjiCCoV17TBWri5DmuryEqN2oaSfNsN/tLFP6JtY1iDX3v3n2btFW3+xJ/8Ajd+7QGWr/SobCV012I6q4blp1pIojz1l5Z51i/fQiPhWf/qUy5EtL1DlOYFdsDeuIlUq9id3eyabbPlL9MxkAYaZvesE/5Kxb887NbW0L1xN0ihWnGqmeubzsimoatAu2VWvvlAsw6vcy5rq644KTLopSue6STFIZzwu1ZgvIfO5bdTq0hKQ40MbGzBidVjp3k+EkomlndUsHCDLiIR8DjwtKp+k4i8EPgJYAXXI+87VXWzYL+TwDuAr8Tduteq6m8uerwHAZOqzMWx01VJBY5yvN1C9kn4w0u1TaJoJENmZmbEOMbCqO1zY848/GYL2h1kZRkDzqC1O66ytNly70fGacisLJGs1NFqRNzpoidX4Mln4L67SFbrYBXTVewvnOHX7RnUQP2WZa1m+f1fej5xC+o15ZE3/f/46M0H+Nyn7ufLfr7D1R9os3FlldXPQOfMErVPfgmWllwlbLOVUSFJEleUlBrzoBgn1GE3J0/461bsZvC5ZbdjWJEya9W2s+tCTAFSBku+peBEemLATsm6WamrZSCK0M0t2NmdrvFFwWtFBV4SRZjlJRdGiyPodLDPXMVubrukaqPB+//wn48e83HE0bLnB+Khfz/wKWDNP38H8AZV/TUReS3wA8CPFuz3NuADqvqtIlIFlg5grAtF2gzaNOqukXFQMg8M09tSFHHFU+562OYsQCZ/65sHHxhSdoNaR10U43RURNzzOHbL9HNnnBAYOOOw28REAm2DLtUgUXjW3Whs0NjQOVnB9KC2YTEJNE8btu+JSCpQvwVJFUxPefe//0b++d/8Sb7mubd45uVCVw2v+dh307p2kvXn17hw6QT2S087lcpn3QvtjjNM2zuuWMnEmXbKgFFLhby2dxznPElcOKaZ9JPKvklIpr0yQkp2IIa+tORlGWxfmSkZ0Sik8Ha7UJf6lQRq0a3u+DzLKKSsl3SCMAa7szt8L+pVt+pK3DWnnv/7r/3E9Oc6JrijQi4ici/wl4EfA/6uf/kFwEf848eAR8kZdBFZA74B1yAVVe0A89E3PQQ8ZF6Z/YilEiOnTzoe99XrLoYacI1D2leKkQY5x13PjES1OiDHmumdz4LcMjw858A24evpMjyUIkgcP106HR+f9zTK9Q1nxOo1p0q4vQNXrmPWVrAbm07DxFrEGCqNOhWRrIpST67Q/NozxE0lagtJDTSCrXsN/8/X/QzPq9ykQsRdkeUNTz3Ea573W/zaqefz8Y8/i927znPys+c4+Xs34epN7MZW/5rS1m5FZfJiMl68vXAKrcZET10n8vFzKhXPv++AtSS3Nkg99OGOP/3VmPR6mTRw2C1qYrgrLBwrSnaPqCAeiTDUIooYk3WLCqUbSBL0qcsQKFhqr8ejOz89/bmOEe40lstbgb8PrAavfQL4ZpxQ+yuB+wr2ew5wDXinD9E8AXy/qu7kNxSR1wGvA7j//vvnOfZ9I5/87HOW1XGrz5/1Hp1Fr9/wnl2BAQ/DGvnY+hDHGAg7/UyKf48ory9s+DAKYfl4ECpQ60MJnW6WLE2vLDOavR7WOmaE9rpOxMq6Rg/OuFpsy3HMswrNTodzH9p1RUzAzp+44JQVVfkXP/wd/NN/9m/4jn/wN/kLf/ujdGzEf7/5XC5tr3Hm2be4eWKFnc06p3bbTmvFCFgnHyxLDZcMLbp2ta64Z3ML0+thL55zRs0Y103qhG8pZwza7mST61jDrBbbamOqlX6ycka9eX/TpzvfhGOFTJhs9ZgePxUQC9QtAT7Yuf0lcPeMO0ltUUS+Cbiqqk+IyIuDt14L/LiIvAnXjaPI846Brwa+T1U/KiJvA95IQWjGN1p9O8CDDz54xG6vR1iCb5Xk0hXMzZrTEomMM2KehVLY2MC9URxTDxF4yaHHlhmocEgZGyJgRYTiWREBd3362OtQOXkwlkzHfIBF4/tapi3tPA/bxYLNIDtHrUtCrS1Dt4u9fjOLaUcdS1IRUPjhN7yOmloev34flSjh6vYKGzdXiK9UOPVHwvlf+FT2O5Q4dgnEVjvz0KniWSHD12tbbbftzXXXBMSrJNor1wZXSH6CGrzpwyE1MYLd3B4MaeyhgGjPfPVwTOlzzTXk9oqTcLyUEvcLV1h0tEzOIj30FwHfLCIvB+rAmoj8jKq+GngYQESejwvJ5PEU8JSqftQ//wWcQb89kS2j+4JZttlEOh0XU853miky3PmY6CjveeBcvuFCNRoM56Q/Yt8+jEqMpJNOWgyjmvGiJ2LKkExYdDLQdSivsmjViXwlyYADZFZXnWBVJYZuNxMCEwvVWx2ny9LuOiqkKp//7/fQfrabKJ7zLqWyvoF55ubgJFGJnYE+dYLuxRNEOx3MjU2nzyL97k/ZGAMvuHf95sC4NfGFXEmCGB9ii9NeokFrv8jpz0i95nMdXtMGt6qZemU04p7nE6xDyFWuhuMyqytor+cSnTiqJapOP6jEMPZQvLtILKweV1V/SFXvVdUHgFcB/01VXy0i5wHEWZAfwTFe8vs+AzwpIi/wL70E+P1FjXVReMy+l8fse/sv6KBORtrAYGzbsLxxD1+bQvAoNT7GGw+pVjGNuvsBB80ptNNxHYKiCO10sSE3elrkr6EgH1A4bs+LVusacGTeZrXi+ewVolR90BhY33AhgSTBnj1JvNUlvraFuXQduXbL/W01uf8DO1z81Qr3vi+mcyL28gFeDTCNyXe6roF0JSapRSTLTqvFLC/5JGkQP07vZy6/kf6h1vd3VWRt1RUM5YS61KtqaqeL7jQz2lumR75fpBzzSbUK+Umg0XDGO4qyyT1DZNCdJtpq89KV1+x/jMcIojrV30HhMHjo3y4ir/ePfxF4J4CI3A28Q1Vf7t/7PuBnPcPlc8B3H/hI54QBox5gIMY+wjhnZeUwKNA0xX6Ak3g9fxatREjPIjduoe1O39PsdMnobkXHmUbdb2Kh0+Dx0vFlKpBFoRvf7IEocnowqtg0Du/vQXTmFGogavsiJWvR0ycRVSclUDGc+OQtUKV7doVkpU58swLNVtY4Qq3FRBFYS/13Po+qhZVlJ2mQNncOCn5cGIohg5giOuVpjcYglYq7zl6Y6AzCTz1Lsr7eP0xKP91DyGVm5L432nQGO9WUT8dgt7b6jKnE7j20cxxxJ8XQQ6jqh4EP+8dvw1ES89tcAl4ePP8Y8OBBjO+oIi1icRQyQeJecfMLGIrPSuqFN+qOXpYKJDXq6MbWwL6pxnZGgfQl/ES+4tRM2cqswPMeei/gzw8h5H+r9dRAR5HLGCBx7Pt2NrB3nUUSxRqnmKgXztA91cBW3Ll6S4Zot4K5tU31yZtoo4qeOQFnT8Lla6CKObHmujZ96enMW9Zmyz0u6DU6aXJzErgN1xxjTFK6UH8+neDyCoj5e7kX5MNi+TCgimO3RBWyDzvj4idZgjvTVC8BlFouJTweir6t0LsOk1MSRa7RwYlV7FIVc30DNrYwtarzsiOTVWGS6pundLK01Ht7J0vUpTFxzXmcrrhmCalVHVUtVUxMl4riVbMmxGQz5b6MgpmTZM3FpMP903EM9OpcbvS95Gavv6KoxI4e+JnPoyIYVVdNurNLpXsSu1zD1iNEI2w1wmxsOerklosLs9SARt11bfKt9WRjM6Mwamdwsilsp1aQ71CrWeXoSLZKWHhVFOfWoBo1jhHPSR8bE899DgPnHJWPyTGTst3S2oF0LDku/kgJiTsVd1BStEQBHq68ajAJKK4PY7isB2fQzMk1l5Ts9pCmwJIzcMkpnwxs9TCtjjPqqmBvOW9btc8aST2xoDx90Ovz3nKzhbbbTmuk14N2G6lWiU6sOQ32sGAoj5RTHTvq3qjwTbod+IbINl0hOCMhyw2MGGcUez1ILMm1G4E36ZQNs+NbBXUTlF3fdEleazFPtvrJoWoFvecCWonQSkRvqYKoEjV7ROu7JCeXMM0ushP7Rhq+2US+SUX+OgqQNZIAHPe/eBUyabWTJYqTxMkTRzVn2NOcxzhu+uCARp8kNxGB6yaVOefVKo/u/DQPV15Fyp0fKjC606GULejuVLy08V0ubFKruSSJT/6liUqp1xzTIbGZcp/d2sacPU1yaoVkuUL1mU3YbRJ5bWmNnK63rtRdwm/pLqdo+KXLfU+cAqOUS8w6z8uFF8QnQsWIi6l63rEzVAkhzXEgbKA2kIsdPo87eGBgrHWeNo7+lXo6mRGMY9c8IunHnFOWSV/VsT1wLu10XFLX00MBR4P8/FNZV6DaxfMkJxqY3Q567QayXKN9fpmaKrK5FYQ9NPNQJ4VZspZ0Xis+YwqNC0FNgp9AtdkapBTOipDuOoqBBP3vIWSrvEfOvq6kKU5C6aHfWUgNOZGj0rmYcOIZFh1XRn7fXdhqjHnSOrqYSEYj09UltGIwncR5k7UKctk1L3ZxbgPnT7sk3IZr9hxKto40RuGPvKA4KexFme3i9ULAJy3z9LhpCmE8T942Wxiz5Mrnod9gOIpcC7ZWe3T5exCP73usvh9mWviSn7R8VapWIjf5gTP6iVJ/ch195trgymJEsdT48bhCo2xCCCpC94SBugIYW/0Zfp7p9efPnb6eN+ZZuMu6RG6t6kXVEh459b13jtjWXjAney4iPwWktTtf6V87DbwbeACne/XXVPXWuOOUBn2BeOnyXwcjmLXVrA+m1mLssvPkpJ04A6nq+NNrq64lmwhaiSESpNUl/qNLLumXxi/PnUHSkEqzhTQ7zphYHWAiTBUuGGVsAmMikTPmsuYLfns97Ppm1plnVlmBlIoITrBK0rJ5qyQbm4MhlnBCSZsYJwmm6il2vZ6jWAZ89rSRdbafGDC487S6yKVrbvtOB9PuYutVzMXz8NTlAapmFv7KF/0Ued5i0HbbtaoDt7LRCXzwaVBklNPXizCJ0jrqdSNIqi+Uhuf8SuiRs68D4APX3z7j4I8/xM4t5vLvgH8JhBoKbwQ+pKpvEZE3+uc/OO4gpUFfAB459b3I6gr6J5+HGnHl69UIW1vBRkLnRIxGIKk3bKC6mbD0+XWX9DMGabYdU8KHZ8AZKanE8MxVZ1zrNScsdekZshZwMJx0TJGvPIUgnEJ2jvw2muDi6M0WZnkp855n4k3nmRvtdhYyCUMned2T0KiqlwgQUezubiYMNXiJSqqYlB2r10XiCnZr28nWpjH/SoxevuoLeiw64sdZ1B8UyJXbO6aI03Ch//qc2CmmWh2gFKrVgRXMQE4mfZx+rj4WP9BsI/iOpFILg6f1fVyTxH0nofTW81DmVlikqh8RkQdyL78CeLF//C4cU7A06AeFP/8t/5zazQ7meffTvtAg3nG9M21FMD2ledZ1y7GREHUUjSBqq2trBq7BwvZu31iRcpOD5gedDirGJf8aDcebpp9YHGnMYXDJHXh+abJrrAiYD8GkBT1Ta6UH5xnUeUkTca4v5ZDMb54nnYp++XCVK87pDLyfniN8nj7OcgSZ4ctJ3w5VtRYb44yTjSvWUp+07u+zGBaI+4zi4ok0nZSjCJMWMyXWhU4qFeh0smYdtEd/P4YSnp5CaU6fzKpvS/QhzFQ0dFZEHg+ev93LlozDBVW9DKCql9OizHEoDfoe8dCf+zHaZ6okFcky3bZmsJUIW4mo3uoQbbXonlmieq2FWd+i/qUadqUOPYu5ehOWl2Bnl96zLhB/8YrjQ6fMD1/koV4eQILiHzGuvZfd3cWcPtXnjG9s+krIMSGXEUvyIQM9YmmeJg1NNeWSR8PGOHe+TNgp530DmWZI/vWi1zJPOMcI6p9K+hrxIySIw2sbZKEM6s2MDE2lFMulJeTkCaTZxG5ueYmEGVQtCzRUhhgs4b2bwHBJE8HaanuKatetSMCNLY5d2G5AcMv2pQhIJyvP6U/bBYJLYPsQWYkcpjfo11V14XU1pUGfES/9mn+AdBOkGhPvJtjVmO6yAXEUpqidYGOhtxzTXVmhdqPlGhWvLsGTz2QsAlUXdiCxxJ+75DyqM6eQ7V1XDBTH6LpbvqtXT0zpjVJ3ol5Sr6NrK0i749q4RZHrR+mRhVKCmHQekxJ+mWEMQzTVikueJYmjGBbvmO075AnntERSOmLGW88dJ0ReeGwg1ODbxWXPo2hA4Cvtbj+gN54zoBPvBfSN4/UbWSeglNqXT8iOg6n0f36jKjCnDdukKxhtt/vX26i7783SkhOAC5uoaNoU3DqBspVl9PRakNgVR5tc33bGfHtI6LQELHrVckVELnrv/CJwddIOpUGfEo+88EfpnF9GT9ep3Gpj6xHxVodop0fDCLZqqFzfQbZb6LIrWU+WfNik03MsirTaMV+YEhn0vovYpQqSnCSpx3ROVqhuniHe6mCevOIaL7faLoa8upL9yKTZzhg02ulmzJOsn+TqCvQS14S40ylsvBA2ych3bR82oNadJxOZMv33AyOeGdN2u8+G6R+0/zAhM/qzcJwzzncUYU6ddLK16xve2/S6876Nne1tQlxzSVFAeyMmoVGrk9x1mXNnXMXt5av9z5TpjW8YIpFqFTl7Gr1xy/Uy3d3tHyccz6QkKOFn5btY7e5iTp7IGn2H26RKmuKbSHNyDa1Vsr6vu/cuUdlJqNSrRDe3Jl/TnYg5xtBH4JeB1wBv8f9/adIOpUGfAg9/3T+EpSrVS1vY5RrRxi7RFzcGquaiyJA8/34iEccDt5bIU7+sj2n2OdXBt8AbMXP1Jr3nXYSKIdrtUQWaF2rUIyGWu5yMmgW6CfqZz7uwgxHXxzEbhIFeGv9xjBe6PVeQ5MW2ChEkCY2nrw0bAbLHYmzWvs2sLLuq1FR7RdV5sJBpmw+cJ4+CApdpILHrzSmnT7o4sbXI8pJbAXkPk0oMnS7m7Bk3rijCXrtBX054RHxkVOioEmNWV9yk0eog6X3t7S0Bqt2eC5e12q4NXq+H8aG1MFYuRjCNFdTarMdpdq5cmKofUvFFWM2WKxQbusTBnIRcvQGdDqZew959nsYzLaRnIZI7r63cDJgXy0VE/gMuAXpWRJ4C3owz5O8Rke8BvoTrHzEWpUGfArYaIYkizTbR1RvuxdjHG5PEeYetdhY6yQps8lrehE/7lDyJIpL7zmE6FluLsI2YVBa2fbJCdznCVgyV7YTGp5+BtVVXhFSvOcU+6PfmjGP0xk2013Peo7XorfXiBgoBpBI741ytui9pp5st08OmxZmnmhb5VGJYXnIt5nw4w968NTAhFF3/fpB6l3RwBvXGLXd9Rtw1+ASevXbDhbIadWcwjWBOrGLXNwZiyYXjy3vF6njyyc11p4We57lPHvRw+Eptxh4Kw2MDlEsvp6DW9pUi8yi4t6nI10BfVILkt090S4SLvbfb7hytNubWJuapJvaBizz6m2+afG13LHRuIRdV/fYRb71kluOUBn0K/NeP/J889KJ/7LjFcQS9hPdf/r8Htnnpymv6SajUWPhQCEVhjtQwxjGcPIGtRmw+u0FSFeK2svJkm7VPXIftXddy7f4TdNYi6mvLSGKd8TaCrCxjr99057EW4sh1QlrfxO7uDnt0IyBR5BpugPufJO74UcX3vOwNJBrNqqdN+iQanY4rCNradoYnP3nkGTa51/IqjOG+A5NIsL9UK/2EpL+X2mpjmxuD17vrEnxy8bxbrTRbLn8RxuwLim2gry0TMmUmTk4FyVjHva9mCex0VeOSwgUyAUEIbGhlNc3kmEoMpBTOAjpq+rrEBjmxhrTaLuRz7QZmaYlHf/vNk89zJ0M5csyf0qBPicf++4+Mff/R7Xfx0vp3Dnh8eZGn1HgNFMyows11Ks0WZz6vdJ53F9F2F9PqoLHB3nuW9tk6SVVY+4MNF1Jp1NFajLS60EsyI2jXNzDtjtP3brUxYTIsM4gaGIv+l9G22kTNFnr+DNLtuRVCHGcTwlCBT+yMkt30IZ9UGRFc4+N2GxnVLNkdcPB/eosKvN3Ue5UlX1marj58SCvtWpQ15WgOHxdwlNAbN7MJdigclKdzTkPNLLiGAepkOIF5TzjrjBSwWEaeY78rmyLaaNHqo9t1xrzTQeLKHdnweU9YbAx9ZpQGfd6YJUGmrk8l1QrS6dD7srvZfFYN06tl3cQlUarblsp2Qvd0g8q1bdfgYWfXMWU8xMetOXUC2dh0xUy7uy4kYqTvGaZFPElC2LJcjLhxbO24Sabnmm+YRt2FT0zcVwBcXnLD39l1HnrPKSGmfUDTsUi16mL4KeUuR/3Lx+bDsQwlSKMIOXPKMYQuPUNaYWuWl6BaBVWSK9f6+/vVRtpARHd2YWe3f9+LYvuh51q0upiAbCXhWUB2py9qplYhZdYkCeqPOZU0w7QYtU8u4Z2uPsLuSUC2sny0+e+nP+cdjjupBd0dg0dOvDZbek1M7KUeUxRhzp91iUsj9O4+Q/NCndqmpb1mSGruR7b8TEJls0u02cbc2HDnWWo4Slmj4TxlgN0mLLt2YayuIM1WsKTHJ1F7jqGRVmq22lCJXTeaJMHeuIk0Gk7Pe9cZP+vFoaSx7DxvI45W2Ww5Wpxv8pwZjQTY3XWStCvL6JXrQEBPDD39AspkSEM09VomuIUIbG55DroPYzWbTu53cztjyUij0b/VYcel0HhOKoYiMM456uXQRB0yYDyt1KwsQ6WCAV9G71cqSXCOcQVIBRNe0dj6FzoivJXb11RiNyFXXELZ7uz2q3SXl9znuWt5uPod2TEfS949epwlypDLsUQUDSr/wVhGR0a5a7awF8/RPd1wLBZvyyo7SmdNMF3YPR/TPhHRuFnBPmsF01WWPnkZWVtzxrgWI7tt8OwLrbmE6gA3OoVV91evOVbIUsNVp3oD7RKNHR/O8FWC9Ri11nm8ccz2n7yArRiijqV+pUn0R13XkzMwImrVhW12mpgTTpvG3lrPmBeZjrtal5RL9wkNlVo36Z1Yg6UGemIFVUWaHYwRV8bedfRJ9fdUuz2X0FXNKJrpscd+LsFnEz43nvapO7suf0LkQ1YyZEDFl+Ubv4qw5086xkqn46UFgolgQvHWwJjz4ZzIUTLN0pJrML617a7bTDbqAyqU1notfTd2u73j9HpqNaerz2CYrUQBVPtyG0cEpUGfB3KNI0iLZ4qWvrkfqNlpUbu+TnLvWXbuqrJ0pUt31Vm56rYStZS1T91Eepbu+VUnE9BqO156p4O5/x60UXUUs+1dp5veqMOFc+jTlxEiFwJYXeknMUXoPes8veUK1Ru7mKeuoru2z11vNNx27TbJc+6GROHmFlQrrPzW592XuObi5drpZJ6p7XgOtJG+9kuj7lhAafEQYE6fQleXkW7P6dCoIiRZTDy7Xd2uWy2cPUFvtYpGgvSW4N6TmHaCdC1mqwmXrvhenrbP4x6F/Ocyxqii6qiP993lOrzvtrHPXHXj9eO0aVtA3/HHXr/h+nO2wtBWmvSNsolL4srIRGXROLP9Uj2XUL0z3WVcRWmQJNVmwKIJ5IbDFY3xx31p47vKEMw4lB768cMHNn7KJUQLMBBmCPnCSeLib1vbznB1E9Y+32TnnjqtU4Z4F5audJ0BF4Gb68SXrjhKXtVzsM+ccoe9etN14en1XIFIJSJZqSNnVoiubGBPr9A6t4QaiHcTomYXFCrrbYwvGjF3nYdaDa1XUFXsUpXmxSVnJIwQn6r57VYx7YRop+NWBimzx4gzAn6pLlHkpAt6vcGKVTHYGzddl6FuN/PU1SrYPi1PvPofSYLGxhnwxCI9S7JU6cd9PctmUqf7QW8zyj6bUduKEWR5CV1bJlmuYbqJu89hX80hg+s1b5pNFyNPVxyRgR7esNsshBOydtKxZ9+XnBdvqlGWC9FO13nRxiBnT7sJdXvX00U7U7NghhLT4mmMs1Iy72SUBv144tHWzwK+tVyuYGXgR5r+eJKE5NaGez2OMU9ewT73HhpX2jSuCdF2l+jzl9z+atHE9hkSVW/Qdnbh1Ak4ecJ9seo1136tFhM/fcN5tnedRHqWymaH+NoWnXtOsnPvEkuXW3RP1th+4B5EXfLVxkJ3WZyYWFdZutJj6XefxN59FvPUVVfAE8fY0yvYRgWqMaYWY1q+0fSNW06SoNP1cgW4661GmLUV6HRdEljE67Z3svuTYqCU/+wZUEu00SRZq2N22kgnwXzxGVcpu7LsNj19Em6uDykGZseMon58PS3VB8eWCSmBaUjMT0B2cws2t4iqVZcPaLackU7CXQZbtDlj6FUYu37F1kuvMeWE02+xd+Y0qGKfvpwlqtOxyqmTaKMGkcCTz7iagrSsv1qFWhW9ej1TUUwnolFVuUXPU4Odxtfp9SAKvH6i0ksfBaUfwjoiWLhBF5EIeBx4WlW/SUReCPwEsIITbf9OVd0s2O8LwBbuV9A7CGGbeSBNIj0UfdvIGORAoi7pL3ujT30Ref59SDtBnrzsKht3djOvUKoVxBgXMz13huT0smtDt77lCooqEeaZm3DhFL17z7L5nAaNq13i3R67F+vUlivEO13WPnaT3vkTxDtd6k+u0zuzwvrzG9hYOPnZFre+vI5FaJ+KqD5wAdPqohfOOAmDSOicbtBdieg1hPqNGlHbYjoJ0VIN/ewX/YTjjVtknKd79qSjGDY7sLHlNGAClUUJvFkxLmlMzZfqx6afF1CF0ycde2Zzy5X2+3vUD2v0BieGtDPSuTNOZ/7yVTc5JokLfXj2SRZzT41jWpq/1IBuF7nrPFy74cSvut2seGqgAYX/P16+2OURJIrcpLy8hDlzGvXiamZt1U1WImijgq1XkOfd7ya0Jy+h3R7J+vpwWCbBxcEhGFtBiKnIg4+i/vcsigYNVRlLH4HZq4MXjYPw0L8f+BSw5p+/A3iDqv6aiLwW+AHgR0fs+42qev0Axjh3pIb94cqr+nHOIM4+8IP34luIQT7xR87bBdRrnPeFpHxxi7WItURfeCZjtWAMdrmGMSdp3bXMzl0xaoTNZ1cxHWcY2yeqrH4JkJNoJPSWYjqna6jgBMUacOMr66BQbapLyl6sI1on6iimbbEVQWNBrLL6+RbRTtvx4bd3nAcOWaNhZ/h66M4u0uu5MnS8sfFt9KRa6TeFaNShEpOcaKDGEK/vul6gsUE6PZKVOqYau/ZxcQ2Wa0jPOr77TjMLZZhKPGi4/L21T1/OlBohNeDDxjf97F5a/85+orVRR1NGkZdyyCOdRPbStu1ld/3vTnStY9CzJ0lOLCGJJanH2KrBVA3Rxi7Uaq6hh1XHlAmZL/jVhfE8+k6XIXmDIJRjUh0XyJQ8M/qpj/OXnvkYKHdWUlRE7gX+MvBjwN/1L78A+Ih//BjwKKMN+m2PD3Z/3nV86XRdp3mffEqb/vaNuzMupGHkMFmXGifrk2DViit3b7edwfGiVNHNJajXMBeWidvQqyvSATVOjx1Rtu6rAlWWr/TYvhijMag/VdRxNElJlF7dUNvoUf/cDVjf7OuB3HcXWnE0QvP0Nde5KJigxEgmx2q9YUgNoDTqaNvHeHu27xW2287Qnl7DNmpOZqHXw9Yqjqq5tQ3WEq8sw4lVWvedwMbumkzXUm21vSa5Ojpes8Vwu7bhMFiIInpeGkY7CLz/mX819NpL//SbqX7+MnrmFETiJB1SNlKKXKLdNluut+kUhkb9CkWqFRf2yTUSH6n9U6KPOyyG/lbg7wOrwWufAL4Zpxz2SuC+Efsq8EERUeDfjBKDF5HXAa8DuP/+++cz6jkjbN31yOm/MfhmmijLo6ByMfWWXnbub6I9ZwQHwjrVCjTqxNtdqnVDdRPinYTOyZhew6A9SGouVr59T4z0yCrdkhpoBNsXI6pbytrnm671Xc8pAKZiYHLpKnj9GJvnZafeok/cZRWT3Z6jVDa7fUMjpt+JyXPapd3DWJBegsYRsrnteNypAFKni0ZC7fIWrXvWnOfaTkjOnSTq9tDNrYztMq3Q11HmWT/6xD/gkVPfi/7RFwBvZEdoz6d5Gk0SkrSAahzScEyv2w855XIZs4il3bG4Uwy6iKQNT58QkRcHb70W+HEReRNOHnKUG/AiVb3ku3Q8JiKfVtWP5Dfyhv7tAA8++ODRursF+MDNfzv2/Ycrr8oef7Dzc4XbzFKW/Zf+wj+hdqNDXaF1toqNDb01yJrbCsRN96cCpz7bJt7oOAbOyrILpYgAXgWwuz14giK6XSV2qn3bO35VURlMWEpf3jcV1aLTRW/eQk6dxJ5Y8j+UFSf6tbIEWzsukfr5pzCNBnWge3YZ07Gu+cfmFllzkGNkiD5w6x1ZPmZcRylgsHBpSrjm0J6qWJGS1TIT9M4x6MCLgG8WkZcDdWBNRH5GVV8NPAwgIs/HhWSGoKqX/P+rIvI+4Gvph2qOLfYSfx2H//prPwzAw1//j4h3LVHTsnQFqptdOmsV2qciWqcMtQ1l6UqX2tOb0O2hN26RPPc+R/Db2u4b7pz3O9TLMjKO8x7HmOVlp1HuQyEDvUO7PaAFz7kPuglcuebCUiKoMZhWh97ZZTizRLTVwegSEpksoWqu3CD28XQSiw067Exj/GYxekcBM01S+XqHIkmA7POKMLXYqy1qlocoMQWU/urxiGBhBl1Vfwj4IQDvob9BVV8tIue9kTbAj+AYLwMQkWXAqOqWf/ww8A8XNdY7AR/8zcE0xUN/7seobLsippN/2KHxyUvuy9npuj6lqkSXrrsqyWSEEQfX9QYcBU8MnD6JXa2jxhBtNeGe80i75xKSYaLSa8dgLb0zS1S2luBkhd65VbprVSSpIarOA+/00Gs3kErFlfqrYnd2nTEHUl2XiRSywKAd5VBLHkXMqZGce2+oU/GvgR6kgZFPk56pxo/Uauju7sD7JabAHeShj8K3i8jr/eNfBN4JICJ3A+9Q1ZcDF4D3ieMLx8DPqeoHDmGsxxaP/bqTBF77gw2SlRr27EnM5Wv9xJiqM55hYw7fDWiglRnemFcqWUNiaUcuVNJL0JSJ4ql+JD4ZJ45NYXqW+MYu3WefR43QXYuxcb9Pa9RMsHevEq/WiDaamDhGU4VHVbQSIUnIWgHE8FhSHK66nfFY8u6BkNxIpJXKkUGimpukw88wDdH4+HlK3cwaYI/rEVsiwNEr/Rc9YjPMfvDggw/q448/PnnDEhkeOfFa1yjDa6MM6beH1Yt55DXKY9/RZ2U5042n2XLSrNs7fdVFyDjemiSOO336JPR6JOdP0brYcMtZgcbTO5CoY7vEsWvW0em4uL7/MZmTay55u7Xlh6wj8w/HCQ+ZEQ1sRoWT8qGYnLRuum907gyI8P6nfnyOoz1aEJEn9lvbciI+p19/8q9Mte2jN/7tvs83DW6vQGKJ+UPVaaanZfgT4qd5oauU5SJZc4wqdq3hhZ/EqyK2ho/jG0xrt4f6pgrsNF0D7p4iidJ4ahtzfQPT7qKn11zVpK/yFNOPC9ut7b48r5g7wpgDPGbfW/yG2kHvOv88fS2HjMIo0lfxLDEeqeDdpL8DQln6f4cjE2ZKcu3NCppgQL8sfvBF42iKjXpW0dm9a414vYnsmCHRrfS4AwnVes0rRgoYoXatibm24aonb65nx0hb6WWywOCSqUds6XtQGGXUHzKvLA6ZjBCMy/TaE+MapZw7s4DRHkMcsQhH6aHf4dBULRD6nlzABBEjmEqMaTQwjYZv3hC7pFq10t8PvA5IhHQT4hu7yM1NdGt7rGaLGGfAtZPK8ArStSSNCiw3nFJjp4Pd2XUefS4clDdQZWWjw2P2vaM9+ACpzo2pVt1nXK+5yl1VXvbA3zmAkd7GSNs+TvN3QCg99BIORUtwIyAV17ChUceeO4HZbEK74+iI4JUfq85zP7lG87lnqV/edgJdm1tDTSb6p+sXwjjtER8Xt5bGF9fRazewrfawBxRMNvOmeB5HpEZ9ZLwdvEyDb+3X7SGdjstrBNK8JUbgiHnopUEvARR4z2myrBK7UEi7jXQTl+A8c8KVl+82EVXsXachUVSE3pKhd6JO5coNVx2aM+YjE6w+1m4ueemeTtd5/CljI9BcuZ0oh0cFj9n3Dhj1gedqnbRDpjNkEGYrYLszoUeOs18a9DscaQLRyf4OQ7s92Nx0HPOnrjhdmJ1mpu0ip06ilYj2+TrdlYilyy2kk6C7zcIydTFS6FmnevLa9uGZQPmwpM/NB/kQzDQhmRJjcCfK55a4PZCpQ1a/AwhobGrR7R1sGiJJRbgqcb8DUatH1PJ0xF5CtL7jGlingl4BVW4UAyUVwnrk9N/IpG0LW8iVKHGUcMScjdKglwD6HnpYiZgPjQwIcSW+ZdzODhIZzEqNeLPl2tl5YzygwMh06oWp1k3msZfGvMQRhXL0vp+lQS8xgKIY9zhD/LIL/xuAq9a09HW1fTI0FX+alRueP+eokFCJEocGvTMbXJS4DbDXROP7r/zr7PFL/9Sb3QPVvixwQWPsgxxfiRKLxFFLih6r0n8RuQZ8cU6HOwschW5J5TgGUY5jEEdlHHB0xjLNOJ6lquf2cxIR+YA/1zS4rqqP7Od80+BYGfR5QkQePwp9TMtxlOO4HcYBR2csR2Uch4GyUrREiRIljglKg16iRIkSxwSlQR+Nwh6mh4ByHIMoxzGIozIOODpjOSrjOHCUMfQSJUqUOCYoPfQSJUqUOCYoDXqJEiVKHBPc0QZdRL4gIh8XkY+JyFDvOhE5ISL/WUR+V0Q+KSLffYhjOSUi7xOR3xOR/yEiX7mgcZwUkV8QkU+LyKdE5Otz74uI/LiI/KEfy1cf0ji+XER+U0TaIvKGRYxhynF8p78PvycivyEiLzykcbzCj+FjIvK4iPy5wxhHsN3XiEgiIt+6iHFMMxYRebGIbPh78jERedOixnJkoKp37B/wBeDsmPd/GPhn/vE54CZQPaSx/HPgzf7xlwMfWtA43gV8r39cBU7m3n858H5AgK8DPnpI4zgPfA3wY8AbFvgdmTSOPwuc8o9fdoj3Y4V+TuxPAp8+jHH41yPgvwG/CnzrIX42LwZ+ZVHnP4p/d7SHPgUUWBURwf1gbgK98bssDF8BfAhAVT8NPCAiF+Z5AhFZA74B+El/no6qruc2ewXw0+rwW8BJEbl40ONQ1auq+ttAd57n3sM4fkNVb/mnvwXce0jj2FZvxYBl3Hf3wMfh8X3AfwSuznsMexjLHYU73aAr8EEReUJEXlfw/r8E/hhwCfg48P2qC1PjmTSW3wX+KoCIfC3wLOZvPJ4DXAPeKSK/IyLvEJHl3Db3AE8Gz5/yrx30OA4Cs47je3Crl0MZh4j8FRH5NPBfgNcexjhE5B7grwCL7o4x7Wfz9T5k+n4R+eMLHtOh40436C9S1a/GLZVfLyLfkHv/pcDHgLuBrwL+pfcMDmMsbwFOicjHcB7Q7zD/1UIMfDXwr1X1TwE7wBtz2xS0G5q7NzjNOA4CU49DRL4RZ9B/8LDGoarvU9UvB74F+EeHNI63Aj+oqotWrZpmLP8Tp9nyQuD/Av7Tgsd06LijDbqqXvL/rwLvA742t8l3A7/owwt/CHweF78+8LGo6qaqfreqfhXw13Ex/c/PeRhPAU+p6kf981/A/Wjy29wXPL8Xt4I56HEcBKYah4j8SeAdwCtU9cZhjSOFqn4E+DIRmVY4ap7jeBD4eRH5AvCtwL8SkW+Z8zimGov/zWz7x78KVBZwT44U7liDLiLLIrKaPgYeBj6R2+xLwEv8NheAFwCfO4yx+Ix+2rX3e4GPqOrmPMehqs8AT4rIC/xLLwF+P7fZLwN/3bNdvg7YUNXLhzCOhWOacYjI/cAvAt+lqp85xHE81+d68MyjKjDXyWWacajqs1X1AVV9AGdk/3dV/U/zHMe0YxGRu4J78rU4e7eICffI4E7WQ78AvM9/3jHwc6r6ARH5mwCq+hO4Zeu/E5GP40INP6iqi5AHnWYsfwz4aRFJcF/c71nAOMCFc37WTx6fA747N45fxTFd/hDYxa1iDnwcInIX8DiwBlgR+dvAV8x7kps0DuBNwBmcJwrQ08Uo/U0ax/+Cm2i7QBP4tiBJepDjOEhMGsu3Av+biPRw9+RVC7onRwZl6X+JEiVKHBPcsSGXEiVKlDhuKA16iRIlShwTlAa9RIkSJY4JSoNeokSJEscEpUEvUaJEiWOC0qCXKFGixDFBadBLlChR4pigNOgljiW8HvfviUjdV+J+UhakIV+ixFFBWVhU4thCRP4xUAcaON2Pf3rIQypRYqEoDXqJYwtfEv7bQAv4swegAFiixKGiDLmUOM44jWtMsorz1EuUONYoPfQSxxYi8svAzwPPBi6q6t865CGVKLFQ3MlqiyWOMUTkr+OUD39ORCLgN0TkL6rqfzvssZUosSiUHnqJEiVKHBOUMfQSJUqUOCYoDXqJEiVKHBOUBr1EiRIljglKg16iRIkSxwSlQS9RokSJY4LSoJcoUaLEMUFp0EuUKFHimOD/D8x5G2eVRAGfAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "da.where(da.values>da.attrs[\"nodatavals\"][0]).plot() # we can see that the DataArray contains missing values." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll look at how weight builders handle missing values. Firstly we'll slice the `DataArray` to reduce overall size for easier visualization.\n", + "\n", + "This time we'll create `WSP` object using `da2WSP` method inside `raster.py`. Since our DataArray is single banded and all of its dimensions belong to the default list, we only have to ship the DataArray and the type of contiguity we need." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Slicing the dataarray\n", + "da_s = da[:, 330:340, 129:139]\n", + "w_queen = raster.da2WSP(da_s) # default contiguity is queen\n", + "w_rook = raster.da2WSP(da_s, \"rook\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After plotting both contiguities and sliced `DataArray`, we can see that the missing values are ignored by the `da2WSP` method and only indices of non missing values are stored in `index` attribute of `WSP` object. " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAAETCAYAAAA2zVvwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACcRElEQVR4nOy9e5gcZZn3/7l7ejqdyflEyJEwTEIIxIQQDIcIQYhDBBf9uaIgioIcVdYX3YV911X3fcXV1dddD5wCREBOi5xERWMgBJSFkANJhhwZOslkcj5nkjn09NT9+6O7QqftnqrurpmezNyf66orM11PfbuqU/1Mfet56v6KqmIYhmEYhmEYhmEYXZVQqXfAMAzDMAzDMAzDMNrDjKthGIZhGIZhGIbRpTHjahiGYRiGYRiGYXRpzLgahmEYhmEYhmEYXRozroZhGIZhGIZhGEaXxoyrYRiGYRiGYRiG0aUx42oYhmEYXRAReVhEvl/q/UhHRO4TkX8NSOuwiFQGoWUYhtHRiMj/FpEHA9JaLSKzgtDqSZhxNQzDMIwiEJFNItKUMmI7Uoazb6n3q1hE5Esi8tf011T1ZlX9v0Hoq2pfVY2l3qvLmXTD6Omk+oAaEWlM9W33iMiAUu9XZyAis0SkPv01Vf2Bqn4lCH1VPV1VF6Xe63si8lgQut0dM66GYRiGUTyfUNW+wFTgTOCfS7s7hmEYhSMi3wR+BPwjMAA4BxgH/FlEyku4a0YPxoyrYRiGYQSEqu4A5pM0sACIyN+lpoUdEJFFInJa2rrTUq8dSLX5u2y6ItJPRF4VkZ+LiGRZP1hEfiUi20Rkv4i8kLbuBhGpFZF9IvKiiIxMW6cicrOIvJfa7m5JchpwH3BuaiT5QKr9MSOjIvJPIrI99b5fSelVpdYtEpGvpLU9ZgTXbSsiNwKfB/4p9V6/E5F/FJFnM47xFyLyX17/B4ZhFIeI9Af+Dfi6qv5JVVtVdRNwJXAycHWqXWZ/cMwopYiMFJFnRWS3iGwUkdvS1oVE5E4ReV9E9orI0yIyOLVuXKp/uFZE6kRkj4j8Szv721tE/p+IbBaRgyLyVxHpnVrXXv+7SUS+JSKrUtv9t4hERaQP8EdgZKpPOpw6lmNGRkXki6n33Csi/5rSu8TnZ7NJRC4RkUuB/w18NvU+K0XkMyKyLOMYv5ner/dUzLgaeZPl4iPw55QyOwfDMIzjAREZDcwBalO/TwCeBL4BDANeAn4nIhFJjlr8DvgzcALwdeBxETk1Q3MI8Arwhqrepqqa5a1/DVQAp6e0/jO17UeBfyd5wTkC2Aw8lbHt5cDZwJRUu2pVXQvcDLyZmtI7MMuxXgrcDlwCVAEX+vqQMlDVucDjwH+k3usTwGPApSIyMPVeYeCzqeM0DKNjOQ+IAs+lv6iqh0kauo95CYhIiGT/thIYBVwMfENEqlNNbgM+SbLfGAnsB+7OkJkJnJra9jvppjODnwBnpfZ7MPBPgNNe/5u27ZXApSQN+YeAL6nqEZL9+LZUn9RXVbdlHN8k4B6SN91GkByVHuX1uWSiqn8CfgD8d+p9pgAvAidnHO81WP9nxtXIjojMFJH/Sd2B2icib4jI2dnapj+ndLyRacINw+hYUne3VUSG5lj/DyLybuoO+TfSXp8iIm9K8nmr36VGBLze60+pu+y/D/AQcvGCiDQAW4BdwHdTr38W+IOqLlDVVpIXWL1JXmCdA/QFfqiqcVVdCPweuCpNdyTwGvAbVf12tjcWkREkL7JuVtX9qdGR11KrPw/MU9XlqtpCcgrzuSIyLk3ih6p6QFXrgFdJGy324ErgV6q6WlUbSY7QBIKqbgdeBz6TeulSYI+qLsu9lWF0HY7zvm4oye9bIsu67SRNoBdnA8NU9f+k+rcY8ADwudT6m4B/UdX6VN/0PeDvUzepXP5NVZtUdSVJAzwl801SBvk64B9Udauqtqnq/6Q02+t/XX6uqttUdR9Joz3Vx7EB/D3wO1X9q6rGge8A2W4q5k1q3/+bpFlFRE4nOU27M/6WdWnMuBp/Q6qT/D3wC5J3rkaRvCBpKeV+5SKjk+sx720YXZXUlKiHs7w+BpgN1OXY7gzgBuDDJC9QLheR8anVDwJ3qupk4HmSz1158WPgC3kfQGF8UlX7AbOAiSQv/CBpPDe7jVTVIWluR6XWbUm95rKZY+/aX0byQuu+dt57DLBPVfdnWZf5/oeBvRnvsSPt50aSZtoPI0kei8uWXA0L5BFSF27YaIPRBenGfd0eYGiOa5wRwG4fGieRnGp7wF1ITokdnrb++bR1a4G2tPXgr28aSnJ0+P0s69rrf/N5j2wc0/+lbt7t9bmtHx4BrhYRIfl/+3TK0PZozLga2ZgAoKpPpu5cNanqn1V1VbbGcuwzTe09Z3BOahT3QGoO/6w0jZNF5DURaRCRBXxw0Zft/WaJSL2I3CEiO4BficggEfm9JJ+j2J/6eXTaNl8SkVhKf6OIfF5yP8PVS0R+IsnnKnZKMv6hd673LuaDNowexn+SnMKV6670acBbqtqYutP/GvCp1LpTSY7AASwAPg0gImUi8mMRWSLJ55RucsVU9RWgoQOOIyepkc6HSd7ZB9hG8gKN1P4KSaO5NbVuTGrEwGVsap3LA8CfgJck+dxVNrYAgyU1rTaDzPfvAwzJeI+ch+OxfjswOu33MRnrj5CcvuxyYp7v9QLwodRF/uUkpxMbxvHA8d7XvUlysOL/S38x1X/MSe0vtP8d3wJsVNWBaUs/Vf142vo5Geujquqnb0pnD9AMnJJlXXv9rxd59X+p68QhaeuL6v9U9S0gDnyE5DPFduMOM65GdjYAbSLyiIjMEZFBeWyb6zmDUcAfgO+nXv8W8KyIuNNNngCWkTSs/xe41uN9TkzpnATcSPJc/lXq97FAE/BLONrR/pxkB9kvtW8r2nmG60ckzftUks9tjSI5BSTXexuG4YEkiw5tTU35ysW7wAUiMkREKoCP84EZehdwCxd9Ju3164GDqno2yalpN4jIyYEfQH78FzBbRKYCTwOXicjFknym9ZskLwj/B1hM8uLmn0SkPHUz7xP87TOoXwPWA793b6Klk5pW+0fgntRNvHIRuSC1+gngyyIyVUR6kXyWanGq0IoXO4HRcuzzYOk8ndI+LfX/9Z2M9SuA/09EKlI3N6/3eK9jaiWoajPwTOoY3k5NZTaMLk136OtU9SDJmXa/EJFLU33KOOA3JI2iexNpBfBxSRaHO5Hks6QubwOHUjf6e6eM9xnywWNn9wF3ichJACIyTESuKGBfHWAe8FNJFlAqE5FzU/1de/2vFzuBIZI7/ucZ4BMicl6qj/w3IL1w3gpyfzbZ3mtcxk1MgEdJXssmVNUea8OMa17I8f28gm9U9RDJB+KV5N3+3ZKsRDm8ve2k/ecMrgFeUtWXVNVR1QXAUpJf6rEkO+F/VdUWVX2d5HMG7eEA3021b1LVvar6bOruZQNwF8cWCnGAM0Skt6puV9XVOY5BSE7f+V+qui+l9QM+eCbjb97bYz8No8cgIotFZAXJqW5/JyIrUssVwL/wt8bmGFI3k35EcpThTySfaXKfsboO+KokKy32I3knGpJFQr6Yet/FJO94j6eEqOpukhcc/6qq60n2f78gecH3CZLROfHUc1F/R3IEYw/JQh9fVNV1GXpK8ibZFuC3IhLN8rZfAFqBdSSfsf1GattXgH8FniU5QnAKx/Zn7bEQWA3sEJE9WY7zjyRvCr5KshjVm6lV7nS2/yT5/7ST5LS39kZMHwImpf7uvZD2+iPAZGy0wehC9IS+TlX/g+TU3p+QHM3dSHIE8RJNFi+C5PdyJbCJZJG5/07bvo1kfzc1te0ekp+XawR/RrII0Z8lWR/gLWBGgbv7LaAGWALsI/nZhtrrf70EU/3wk0As1S+NzFi/mmRBvadI9q0NJPtet//L+dlk4Tepf/eKyPK0138NnIH1fx+gqrakLSSfT3o4y+tjSEYcbAaGZll/Bsm7ZBVAGHgZGJ9atwS4MPXzdcD/9bEfF5P8gv2+C3wmE0mazCdTv38J+GvaeiU5MnlC6ue+WTTuITmV40DacgS4k2SBkt0Z7f8deKyd/6OtGa9VAPen/n8OpRYFylLrq0n+gThAcuR3Yo5jcY8hfT8PAodzvbcttthy7JLZj5I0HrtI/gHfRPICrQ440UPnB8CtWV6fQHIEDpKGrNpjX0rej/aEheT0xzYgHKDmWJLPnfUv9fHZYkvm0pP6OpLXr1uAsaX+3LviQvLZ2ARwcoCavUka4vGlPr6ustiIq3+O9+cVCkaTd50eJmnO26O95wy2AL/WY59l6KOqPyR5p2pQxvNbY712K+P3b5L8nGeoan/AnSYnqWOYr6qzSRYVWEdyJDmbzh6S04xPT9vPAaqa/rB+IFXjDKOnoKo1qnqCqo5T1XFAPTBNk5mnxyAiJ6T+HUvy+aonM14PAd/mg2JF84FbUtPAEJEJkvtZUCNgRORTkoz2GURylON3mr0SaSHaIZJxO09pciaQYXRpunNfp6rzSI7AnufVtqcgIp9IPQrRh+TIdA3JGxZBcQuwRFXfC1DzuMaMqw+6w/MK+SAiEyUZdDw69fsYkvEMb7W3nbb/nMFjJJ8FqE69HpVkoaPRqrqZ5Ijuv6UugGaSHG3Oh34kDecBSQZYu1EUiMhwSQZQ9yE5heMwyVEByHiGK3UMDwD/mfbHY5R8kDtmGEaApPqKl9JeelZE1pB8XOCr+kGl3KtEZAPJG0/b+KAw2oPAGmC5iLxLcuZFOKX9F5JTsC6WZFE1+x4Hz00kK4y+T7JfvSUI0VR/fYhkZdbvejQ3jC5Pd+jrVPXXqpr5DH5P5gqS/0fbSE7b/pymhkqLRUQ2Af9AcmDGSCEBfb7HPSKyGOhFcqh/MB+UMP8uyTtMH1PVg6kTabqq/s3zPiJyPfBVksZoDdCkqv9LRCaSfA5oCMn5/Lep6hAReYZk2HFjSmIAcJOq/jmlNwv4lqpeHvwR50aShZT+EzgfGEhyuuzvgX9U1UMi8iXgK6o6M9VeSU5jqJVk4ZB/J2nQ+5Kc31+tqk0iMgP4D5JTadpIPrh/i6rWiUglyWeZziT5nNR6YKCqulEI6fs3i+Q04vRqbiNJFvCYTrID+X8k71KWk8wbe4rkcxZK8oH5W1V1TcqwPg+cCziqOjT1/Nh3SD4HNpRk9bl7VfXn2d7bMAzDMAzDMIyOxYxrBilj8iVV/VLq98nAK3xgLkeTNEYfzjb1I03nB0C9qt6T8foEksbnwyLyLDBXVee3sy+dblwN43hFRC4lWfChDHgwNRU9ff1Eknevp5EMPv9J2rr/BXyF5M2NGuDLmqxqahiGYRiGYZQYmyrsQXd+XsEwuhMiUgbcTbJC6ySS060mZTTbB9zGBxmb7rajUq9PV9UzSBpfv5VXDcMwDMMwjA4mXOodOJ5JTU99UD8IU35WRIaQjCTIfF7hq6mfn+PY5xXGkXxeQUg+J/TJlPZfSFbz7Ssi9cD1uUZmDeN4pvqiPrp3X5tnu2WrWuar6qXtNPkwUKuqMQAReYrk8ydr3AaqugvYJSKXZdk+DPQWkVaSVaq3+T8KY+jQoTpu3LhS74ZhdFuWLVu2R1WHebc0OhLr6wyj48nV35lxzUBVFwGL2lk/Lu3nbSSLMLm/fyTHNj8jOX0x83WH5POz/zvLuqxahtHd2LOvjcXzvR8ZLh/x/kQRWZr20lxVnZv2+yiS1atd6vGZCaeqW0XkJySfbW8C/uw+a274Y9y4cSxdutS7oWEYBSEim0u9D4b1dYbRGeTq78y4GoZRYpQ2dfw03KOq09tZL1nFfZCK8rgCOJlkMbLfiMg1qvqYn+0NwzAMwzCMjsWecTUMo6Qo4KCeiw/q+SBqCj4opOaHS4CNqrpbVVtJTum3rDrDMAzDMIwugo24ApHyPhrtNTBw3QkTRwSqV7MvZxHjgikPB5IT3+Fo1sG04jmt/6hA9Rri7waqB1AhvkYj86KsA+5ZLVvVUvDzVw6BHOMSYHwqC3kryeJKV/vctg44J5XB3ARcTDJb2DAMwzAMw+gCmHEFor0GMmNKIJnpx7DgjW8HqnfyY/8eqB7AyOEHAtfsCFrbyjpE9+1LfxCo3sJNpwaqBzAt0ujdKE/6h3oHrlk24r2Cnr9SlLYAYrlUNSEiXyNZrbsMmKeqq0Xk5tT6+0TkRJKGtD/giMg3gEmqujiVq7wcSADvAHOzvY9hGIZhGIbR+ZR0qrCIXCoi60WkVkTuzLJeROTnqfWrRGSan21F5OupdatF5D8641gMwygMBVpxPBdfWqovqeoEVT1FVe9KvXafqt6X+nmHqo5W1f6qOjD186HUuu+q6kRVPUNVv6CqLR11zIZhGIZhGEZ+lGzENS1zcTbJZ9OWiMiLqromrdkcYHxqmQHcC8xob1sRuYhkkZUPqWqLm6FqGEbXxeczrIZhGIZhGEYPpZQjrkczF1U1DriZi+lcATyqSd4CBorICI9tbwF+6I6WpHIbDcPooijQpuq5GIZhGIZhGD2XUhrXbJmLmZVycrVpb9sJwEdEZLGIvCYiZwe614ZhBI7jYzEMwzAMwzB6LqU0rn4yF3O1aW/bMDAIOAf4R+BpEfmb9iJyo4gsFZGlra1H/O+1YRiBoihtPhaje+A4wdyGCEqno3RdnZ6mFzRd/Xi7+udnlI6ufm509e9CV9cLmq5+vF3l8ytlVWE/mYu52kTa2bYeeE5VFXhbRBxgKLA7XVhV55KqGtq/7yi7KjaMUqHQZt/AghGRS4Gfkayk/KCq/jBjvaTWfxxoBL6kqsu9thWRrwNfI1ll+Q+q+k9B7G8oFGLBggVF68yePTuAvflbgt6/nqYXNF39eLv659edsL4uWLr6d6Gr6wVNVz/ervL5lXLE9WjmoohESGYuvpjR5kXgi6nqwucAB1V1u8e2LwAfBRCRCSRN7p4OPxrDMApCEVp9LMbfklaobg4wCbhKRCZlNEsvcncjySJ37W6bUeTudOAnHX80hmEY2bG+zjAMKOGIq5/MReAlknfOaknePftye9umpOcB80TkXSAOXJsafTUMowuigGPf0EI5WqgOQETcQnXp1dmPFrkD3hIRt8jduHa2tSJ3hmF0JayvMwyjpFOFUdWXSJrT9NfuS/tZga/63Tb1ehy4Jtg9NQyjI2mzEdVCyVaoboaPNrmK3LnbukXu7gKagW+p6pIA99swDCMfrK8zDKO0xtUwDEMx41oEnVHk7mySRe4qM2eviMiNJKfkMXbs2Dx22zAMIy+srzMMo6TPuBqGYQDgqHguRlaKKXLX3rZHi9yp6tskE4mGZr65qs5V1emqOn3YsGFFHYhhGEY7WF9nGIYZV8MwSos74uq1GFnpdkXuYrEYixYtIhaLdcbb5U3Q+9fT9IKmqx9vV//8jiOsr+tkuvp3oavrBU1XP97O+vxsqrBhGCVFEVq1rNS7cVzS3YrcxWIx5s+fTyKRYO3atVRXV1NZWdnRb+uboPevp+kFTVc/3q7++R1PWF/XucRiMf64YAGJyIDAvgu/e+tdaGkMUG81NDcEp7d4DTQe6LL/H79bsgEObA/ueJe9B/vqA9P7w/+sgP1bO/zzM+NqGEZJsWdci6M7Fbmrq6sjkUjQMvESWPcydXV1Xeriwd2/xnO/BJE+PN8cJlIbydr2/rrFR3+Ox6NZ28TjVSTOHwcioNp19eJHqHjzYfv/KFSvi35+xxvW13UedXV1JCIDaD7nWpoTLTzfHCrqu9AUn4BOOw0QmlubA9Zr4vnmsiL1TkXPPC15QfI/D3W5/4/X9veheeIlEOlDc6Kp6L6pqfVU9IzTQKA5HoTeRPSsiXBkb4f3dWZcDcMoMUKb2lMLRrLoydq1a2kcfirh2kVdrgiKu39E+tD/jfvbvas8e/ZHjv6cK7TdHXU5dP5NXV4vHA7b/0cRel3x8zNKx/HS1zUnWkCEmZGtzKgakbWt13dhyb4y3tgdovz1+zh8zpdBhAsi9ZxdNbIgvTf3lvH2HiH8+r0cPud6kBAXRbYwrWpUQXp/2R1m+T4IL7qHw+d/heYZ1zAwWp9VqxT8eWc5R/qOpO+iezh8/s1AiOrIJs6oyn7OeB3vS9vL2XioDRb+nMMXfBURYU5kI5OqTipI78Wt5WxtS+AsvIfDndDX2dWiYRglRQGHkOdidH8qKyuprq4mHA53ualaEPz+9TS9oOnqx9vVPz+jdHT1c+Po/pWFmBXdxpt6Mlsa8/87vGRfGW/uK+eGU1qZc/GFhMtCXBDdwRtaybam/Pfrzb1lLNtfzg2nJJhz8SzCZcL50R28rqewszl/vb/sDrPqYJibTkkwZ/ZFhEPCOdHdvKZV7G3JXy9o/ryznNiREDePb2PO7NmEQ8JZ0X0s1Akcas1f76Xt5WxtCnHLeIc51dWEBaZED/Iyp3I4kb/ei1vL2R0PcdN4Tep1wvlsV4OGYZQcK85kuFRWVhKJRLrchZxL0PvX0/SCpqsfb1f//IzS0dXPDXf/ZlSN4NOj4jy7NZKXeXVN6/XjmukT/kDv3KrhfHJknKfro3mZV9e0XjeumYo0vZlVw7n8xDhPbonmZV5d03r9uGaiaXoXVg2jenicx+qiJTWvrmn9yrgWwqEP9u+S8YO5YFichzdF8zKvrmm9flwLoTS96vEDOX9wK/M2RfMyr65p/fJJx+p19PlsxtUwjJKimizO5LUYhmEYhtH5jKlw8jKvmaY1k3F9nLzMa6ZpzaSqn5OXec00rZlM7O+U1LxmmtZMpg508jKvmaY1k7MGt+VlXjNNa2diz7gCokqopYAx8k5GneDPjvotQwLXPGHEgcA1O4L+0WYufvX2QDWjZdWB6gEMjR4JXLNXqCPO9/cK2ipZnMnuoRmGYRhGVyXdvH56VJwxFU7Wdl6m1SXdvF45upmRvbO38zKtLlX9HC4naV6vGtPM8Ox1hDxNq8vE/g6QNK/XjG1mSK/cbYPEy7S6TB2Y3L+HN0X50rhm+pdnb+dlWl3OGtwGwLxNUa4b10zfHJ9NKU0r2IirYRglJ1mcyWsxDMMwDKN0eI28+jWtLl4jr35Nq4vXyKtf0+rS2SOvfk2ri9fIq1/T6uI18lpq0wpmXA3DKDFBFmcSkUtFZL2I1IrInVnWTxSRN0WkRUS+lfb6qSKyIm05JCLfCOwgDcMwDKMbkMu8PvNOfV6m1SWXeX1i6Za8TKtLLvP68Fub8zKtLp1lXn++qDYv0+qSy7z++OUNeZlWl1zm9fvz15XctIJNFTYMowvQpsUXXxKRMuBuYDZQDywRkRdVdU1as33AbcAn07dV1fXA1DSdrcDzRe+UYRiGYXQz0s3r2dsOsn5nA08ur8/btLqkm9cZOxtYvuUAL6zalrdpdUmfNnze7sO8/v5e/rh2Z96m1SV92vD5+xsZM6gif5F2+PmiWt6u25+3aXVJnzZ8weFmHn6rjtU7GvI2rS7p04YvPBLnnr/G2LS3seSmFcy4GoZRYhQJ6hnXDwO1qhoDEJGngCuAo8ZVVXcBu0TksnZ0LgbeV9XNQeyU8bfMnj273fX31y0+JjsuG47jEOqgv6BB719P0wuarn68Xf3zM0pHVz83it2/s7cd5I7fvkt5WYiHrzmLQRWRovTO2rKf259bRbQ8qdc/WrjebGDqxr189ZmVVETKePQL0+kTad/2eOlNqd3D159ZyS/+fkpg5tU1rfOuPouIh2v12r9Jq7fzxUeXMbRvhF9dcxZhj/PGS+/5ldv4/CNLGN6/Fw9ePa0oPZdiz2frJQ3DKCkKtGrYc/HBKGBL2u/1qdfy5XPAkwVsZ3QiXf0iP+j962l6QdPVj7erf35G6ejK58b6nQ2Ul4VQhfoDBQSzZrBu52EiZSESDmw7WPy83PU7DxMNl5FoU3YeLCDoNYMLqoZy+0Xj+fozK9myv7FovXxMqx/WbG+gb68wR1oS7G+MF623esch+vUK09Cc4FBTMEU9iz2fu+63wTCMHoEitKn3AgwVkaVpy40ZUtnmG2s++yIiEeDvgN8UdjSGF46TvRJlqXQ6StfVMT3Ty0fP6D509XOjWN1n3qnnyeX1zLv6TO76xCS+/fs11Gw7WLDeE0u38MKqbTx8zTS+N2cid/z2XdbtbChY7+G3NvPHtTt59AvTuHP2BG5/vobY7sMF67nMrBwciHl1TeuDnzuTSDhU9P/Hj1/ewOodDTx+7Vlcf944bnpqBbsPF27Wvz9/HZv2NvLYtWdxzdljueHJ5ew7UrwZLvY4SzpVWEQuBX4GlAEPquoPM9ZLav3HgUbgS6q6vL1tReR7wA3A7pTM/1bVlzr+aAzDKBSfxZf2qOr0dtbXA2PSfh8NbMtzV+YAy1V1Z57bGT4JhUIsWLCg3TbxeNSzjdcUt0IJev9MrzC60/GW8nw2SkdXPzeK2b/06sFD+kYZ0jfK9y+fxJ0vrGo3KieXXnr14IEVvZhW0YvvzpnIN59d0W5UTi699OrB/aIRzj15CHfMnsDXf/NOu1E5fv8/LqgaCsAtTy4rKConvXpwNDV9uZj/j/TqwZFwmMtOHwHAdY8uaTcqJ5deevXgSDjMp6aMBODaRxe3G5XTGedzyUZc0wqpzAEmAVeJyKSMZnOA8anlRuBen9v+p6pOTS1mWg2jC6NKUHE4S4DxInJyauT0c8CLee7OVdg0YcMwDMPISq7Im8kjB7QblZOLXJE308YMajcqJxe5Im/OPXlIu1E5+XJB1dCCqg3nG3njRa7Im8tOH9FuVE4uckXefGrKyHajcjqLUk4VPlpIRVXjgFtIJZ0rgEc1yVvAQBEZ4XNbwzCOCwTHx+KFqiaArwHzgbXA06q6WkRuFpGbAUTkRBGpB24Hvi0i9SLSP7WugmQ9guc66EANwzAM47jFK6fVK+c1E6+cVq+c10y8clq9cl7zJd+onM4yrS5eOa+ZeOW0euW8dgalNK5+CqnkauO17ddEZJWIzBORQcHtsmEYQaMENuKKqr6kqhNU9RRVvSv12n2qel/q5x2qOlpV+6vqwNTPh1LrGlV1iKoW/pCOYRiGYXRDvEyri1/z6mVaXfyaVy/T6lIq89rZptXFr3n1Mq0upTavpTSufgqp5GrT3rb3AqeQzGTcDvy/rG8ucqNb5CWeKL4ymGEYhaEIrVrmuRiGYRiG0fn4Na0uXubVr2l18TKvfk2rS2eb11KZVhcv8+rXtLqU0ryW0rj6KaSSq03ObVV1p6q2qaoDPEByWvHfoKpzVXW6qk6PhIMNEjYMIz/aCHkuhmEYhmF0LvmaVpdc5jVf0+qSy7zma1pdOsu8ltq0uuQyr/maVpdSmddSXg36KaTyIvBFSXIOcFBVt7e3beoZWJdPAe929IEYhlE4Cjga8lyMnkEsFiMejxOLxUq9K1kJev96ot6iRYu69P51ZT2j+9DVz41YLEZza4I3dofyNq0u6eZ1ce12mlvbeHuP5G1aXdLN65LabTS3trF8H3mbVpd087q8dmvR/x/p5nVFbT2/WraTDQecQExrLBajqbWNjYfa8jatLunm9d3aOppaHbYeTuRtWl3Szeua2s2dcj6X7GrQTyEV4CUgBtSSHD29tb1tU9v8h4jUiMgq4CLgf3XWMRmGUQhCm4/F6P7EYjHmz59PIpFg/vz5Xe6CLuj966l6NTU1XXr/uqqe0X2IxWL8cf4CEgmnS54bsViMF97dgSNllL8+l511he/fmAqHc2Uji5pH4UiI8Otz2VGE3rg+DjNkMwubRyf1Ft3PtiL0qvo5TJfNLGgcFch3dWJ/h6myhfnNY9kVGoQsuoe6TcX3Jc9tBiUEC+9mUxF6Uwc6TGIbf2galxw4WHhPUXpnDW7jVN3B744E8/l5IaqZj5X2PAb0GannnHZj4Lrzl34vUL1xj/4oUD0ATQRvCE4YcSBwzY6gfzSAuSEZRMuCny8xNHokcM1eoeD384GzH13mkbOaldFnDNDbnj7Ps90dp/+pIH2jc5g+fbouXbrUV9tcOW+LFi2ipqaGxnO/RMWbDzN58mRmzZqVtW1H5l567t+sr4Eq4XCYSCSStW366/F49tD2eDxOIpGAcAQS8Z6jJ9KzPj8RKhb9sujzWUSsD+wCBNXXrXxvM80zbySy6kXOHN6rS/V1T769kbre46C8N7Q2Ey4LFfVdaIon0FAZIAHptaGhULB6Ekr2Ta1NhMvKitNrbUuazC6r56BISq+RcFlxfV1SD0i0BNLXQe7+roCBdcMwjOBQFSu+ZAAwduxY1q5dC5E+hMNhxo4dW+pdOoaj+6dK/zfup7q6msrKyqxtZ8/+yNGfc10cuiNyh86/yfS6uV5XPJ+N0uH2Jc2JZuKnX4pEd5V6l46ydF8ZOwdMoO/rczl8zpdBhPMi2zm3anjW9l7fhTf3lvH2HiH8+r0cPuc6EGFmZCszqkb8TVs/en/ZHWb5PggvuofD510PIlwQqefsqpEF6S3cFWb1fiW06B4On3cjSIiLIluYVpUZdOJPb8HOctYfcJBFv+Tw+TeDCBdH6phaNbogvZe2l7PxUBss/DmHP3IriDA7sokPVWXvT7z0XtxWztaGBM7Ce5J6hKiObOKMAvWeqy9nd1sriYX3crgT+jp7cMwwjJITVByOcXxTWVlJdXU14XC4XdNQKoLeP9MzPaNncvTcKCujOrqFFTqGdYdK/3duaaoQ0w2ntDLn4gsJl4X4aHQri/UkNh3Jf//cQkw3nJJgzsWzCJeFmBXdxpt6sq+c10zcQkw3nZJgzuyLCJeFuCC6gze00lfOayYLd4VZ31DGTePbmDP7YsJlwvnRHbyupxRUsGnBznLePxLi5vFtzJk9m3BIOCe6m9e0ylfOayZuIaZbxjvMqa4mHBI+HN3DqzqBA9kHP9vlxW3l7G4JcdN4Pap3VnQfC3WCr5zXTJ6rL+dQIsQN40nqdUJfV/pviWEYPRoFHMRzMXoGlZWVRCKRLnuRH/T+mZ7pGT0T99yYWjWaa8Y2M39npKTm1TWt16UKMbn7d3bVSK4c3cwL2yJ5mdfM6sGu3oyqEb5yXjPJrB7s6p1bNdxXzmsmrmm9/uQWIqEP9GZWDS+o2rBrWt1CTK7ehVXDfOW8ZpJZPdjVu6hqKJecEOeRzdG8zKtrWt1CTK7eJeMH+8p5zcQ1rV8ce6xeR/d1ZlwNwygxYiOuhmEYRo9lSC9Kal4zTWsmI3uTl3n1irzxynnNxCvyxivnNZNM05pJvlE5maY1E6+c10y8Im9OH+DkZV4zTWsmXjmvmWSa1s7ErgYNwygpyTgc8VwMwzAMo7tSKvPqZVpd/JpXvzmtfs2r35xWv+bVy7S6+DWvXqbVxa959ZvT6te8eplWF7/mtZSmFaw40wcEXV1ZhOrp3wtUMvxPwf93JfZHA9dsdYIvtLN/Z7/ANVuGHQ5cs0+vAh468CAkwVf+PmtQXeCaxdBm99AMwzCMHo5rXh+riwJxJvZ3OvT9/JpWF9e8Pl0f5ZMj44zrc+z++TWtLunm9dOj4oypOFbPr2l1STevV45uZmTvY9f7Na0uVf0cLidpXq8a08zwjEtmv6bVJfn/mTSv14xtZkivY9f7Na0upw9I6j2yOcq1JzUzMKMwsF/T6jJ1YFLv4U1RvjSumf7lx64vtWkFG3E1DKPEKEJCyzwXwzAMw+judNbI63Mrt+ZlWl1yjbw+sXRLXqbVJdfI68Nvbc7LtLrkGnm9/6+xvEyrS66R11+89n5eptUl18jrj1/ekJdpdck18nrX/HV5mVaXXCOv3/nDmpKbVrARV8MwSowqtNlUYMMwDMMAjh15nVK7hwuqhgaq/9zKrTyxtD5v0+qSPvJ61pb9rNt5mBdWbcvbtLqkm9eztx1kWd0B/rh2Z96m1SXdvM7Y2cBr7+3mtdo9eZtWl/SR1/N2H+YPa3ayePO+vE2rS/rI6/n7G3lqWT2rdzTkbVpd0kdeZx5sZt5bm9i4tzFv0+qSPvJ6weFmfvFajF0NLSU3rWDG1TCMLoA9w9qz8Aogv79u8THZcdlwHIdQB/0FDXr/TM/0Snk+G6Wj2HPj3H2N/MOzKwECM6+uaX3gqjMZVBFpt63X/s3Y2cDtz60iUhbi0S+eRf9ocXpnbzvIP/32XXqHy/j1tdPpE2nfpnjpnbVlP//r2VX06RXmsS+cRbQIvdnA1I17ufU3KxkQDfPrL55NxMO1eulNqd3DDU++w5CKCI988SzCHn2Al94Z63bx5ceXcWK/Xjz4+WlF601avZ0vPLqM0QOizL3qTM8+qjP6OuslDcMoKYrgaMhzMYx0uvpFftD7Z3qmZ/Q8Thpcwc8+PYWfvvoer9fuKVovH9Pqh+VbDhAtD+EAtbuPFK23rO4AvcNlJFSJ7Sleb8nm/fSJlNHa5rBpfwFBrxksrTtA315hmhMO9fsbi9ZbvGkf/aNhjsQTbD9YQHBspt7mfQzsXc7B5lZ2NxRfc2Xxpv0MqihnX2OcvY3B1HAptq+zntIwjJLThnguRvfAcYIpNuLqmJ7pdSc9o/sQ1P/pmIHRQMyra1rv/+wUBlVEit6/J5Zu4YVV25h39TT+44oz+Lc/rmP5lv0F6z381mb+uHYnj3xhGnddPolv/34NNdsOFqx3/19jvFa7h0evmcZ350zkjt++y7qdDQXr/eK191m8eR+PfeEs7pw9gdufryG2u/Ainz9+eQOrdzTw2BfP4vaPjufrz6xkSxFm+K7569i4t5FHvzCNr37kFG59ekVRZvg7f1jDroYWfn3NNK4/bxw3PbWC3YeLN9fFnnc2VdgwjJLixuEYPYNQKMSCBQvabROPRz3buFPw/Oj5IR+9oPfP9EzPa0qpcfwR5Lnhjrx+9allrFyZf7Xh9OrBQ/pGi96/9OrBAyt6MbCiFz+64gy++eyKrNWGvfTSqwf3i0aYPDLC9y+fxJ0vrMpabdhLL716cEU0wrQxEb47ZyLffHZF1mrDXnrp1YOjkTDnnjyEO2ZP4Ou/eSdrtWEvvfTqwZFw+Og08FueXJa12rCXXnr14Eg4zCUTTwDghseXZK027KWXXj04HA5z2ekjALju0SVZqw176aVTbF9nI66GYZQYqypsGIZhGO1x0uCKgqoN5xt540WuyJuJw/v5ynnNJFfkzeSRA3zlvGaSK/Jm2phBvnJeM8kVeXPuyUN85bxmkivy5oKqob5yXjPJFXlzycQTfOW8ZpIr8uay00f4ynntaMy4GoZRUtyqwl6LYRiGYfRk8o3K6SzT6pIrKicXXjmtuaJycuGV05orKicXXjmtuaJycuGV05orKicXXjmtuaJycuGV05orKqczMeNqGEbJseJMhmEYhuGNX/Pa2abVxa959TKtLn7Nq5dpdfFrXr1Mq4tf8+plWl38mlcv0+ri17x6mVaXUptXuxo0DKOkJKsKey9+EJFLRWS9iNSKyJ1Z1k8UkTdFpEVEvpWxbqCIPCMi60RkrYicG9AhGoZhGEZgeJnXUplWFy/z6te0uniZV7+m1cXLvPo1rS5e5tWvaXXxMq9+TauLl3n1a1pdSmlezbgahlFyHMRz8UJEyoC7gTnAJOAqEZmU0WwfcBvwkywSPwP+pKoTgSnA2mKOyTAMwzA6ilzmtdSm1SWXec3XtLrkMq/5mlaXXOY1X9Pqksu85mtaXXKZ13xNq0su85qvaXUplXktqXH1MToiIvLz1PpVIjItj22/JSIqIsEkNhuG0SEokHDKPBcffBioVdWYqsaBp4Arjnkv1V2qugQ4ppsVkf7ABcBDqXZxVT1Q/NEZ+RKLxYjH48RiscD0Fi1aFKhe0PtneqZn9DyCODfSzetrtbt58u2N/HV3KBDTGovFaG5t4+09krdpdUk3r2/W7qS5tY3l+8jbtLqkm9fFtdtpam1j9X7N27S6pJvXJbXbaGptY/0BJ2/T6pJuXpfXbqWptY2Nh9ryNq0u6eZ1RW09Ta0OWxsSeZtWl3Tzuqq2jqZWh91HWvM2rS7p5vXd2rpO6etKZlx9jo7MAcanlhuBe/1sKyJjgNlAXQcfhmEYxeJjmrDPqcKjgC1pv9enXvNDJbAb+JWIvCMiD4pIn/wOxCiWWCzG/PnzSSQSzJ8/v+g/gK5eTU1NoHpB75/pmZ7Rs4jFYvxxwQISbU7R58aQXnCh1PJW03DqoidT/vpcdtYVf+7+dvUuHAkRfn0uO4rQG9kbzpcYrzeNTOotup9tReiNqXA4VzayqGkkSojQovuo31S43rg+DjNkMwubR6OEkEX3UFeEXlU/h+mymQXNY1FCsPBuNhWhN7G/w1TZwvymscn4wIX3FKV3+gCHD0k9f2walxw4WHhvUXpTBzpMYht/ODyyU/o6UdUOE2/3jZPPj31PVatTv/8zgKr+e1qb+4FFqvpk6vf1wCxgXHvbisgzwP8FfgtMV9V2E5sH9Bmp50y8IcjDAwm+Cur7/xR87G5if47wqSIYOLrwwOhc7N/ZL3DNAcMKD47ORZ9eedQc98nQ3kcC1zxrUPD3dP5t8ovLVHV6vtsNmniCfnTe33u2e+78ezcD6d/luao61/1FRD4DVKvqV1K/fwH4sKp+PVNLRL4HHFbVn6R+nw68BZyvqotF5GfAIVX913yPp7MRkUtJTnMuAx5U1R9mrJfU+o8DjcCXVHW5z22/BfwYGObVj06fPl2XLl3qa59z5bwtWrSImpoaGmd9DVQJh8NEItkD6NJfj8ezf+/i8TiJRCLZHwepF45AIt5z9s/0itMToWLRL5k8eTKzZs3K2tZPtqGIFNTHdhe6W1+3csNGmi+4BRIthENS1LnWFE+goTJAgtVz2gL5LjTF29BQKLl/rc2Ey0IBfLcciEQD0WtqbUuaTAlm/47VayJcVlaknoMCSKhr6yVaAunrIHd/F7wT8k+20ZEZPtqMam9bEfk7YKuqrpR2zKOI3EhyFJdoZEBhR2AYRiD4HFHd43HRVg+MSft9NLDN5y7UA/Wqujj1+zPA3zyC0NVIm30ym+QxLBGRF1V1TVqz9JkrM0jOXJnhtW0pZq6MHTuWtWvXgir937if6upqKisrs7adPfsjR3/OdXHojngdOv+mLq2XSCQIh8Nddv9Mr3i9cDjM2LFjs7YzvOmufV1zaxOIMC2ym4uqsj/Z5nWuLdlXxhu7Q5S/fh+Hz/kSiDA9sosLq4YVpPfm3jLe3iOEX7+XwzO+VPR34S+7wyzfB+FF99Daqx8t0z/LeZHtnFs1vCA9SPtuzbwFRJgZ2cqMqhEF6S3YWc76Aw6y6JccPu8mEOGCSD1nV40sSO+l7eVsPNQGC3/O4Zm3goS4KLKFaVXZJ4B56b24rZytDQmchfdw+CO3gggXR+qYWjW6IL3n6svZ3dZKYuG9R/VmRzbxoars/ZOX3tNbIhxqa6Fl4X0c7oS+rpTPuGa7Us0c/s3VJuvrIlIB/AvwHa83V9W5qjpdVadHwhWeO2sYRsegENRU4SXAeBE5WUQiwOeAF33tg+oOYIuInJp66WJgTTubdBU8n+tN/f6oJnkLGCgiI3xs+5/AP/G3/XKHUVlZSXV1taeJ6256kydP7tL7Z3pdQ6+H0z37urIy5kTrWKWjWX0w/0vyJalCTDec0sqciy8kXFZGdbSeFTrGV85rJm4hphtOSTDn4llFn7tuIaabTkkwZ/ZFTB13Ah+NbmWxnuQr5zUXH3x+IWZFt/Gmnuwr5zUTtxDTzePbmDN7NuGyEBdEd/CGVvrKec3ELcR0y3iHOdXVhMuE86M7eF1P8ZXzmolbiOmm8ZrUCwnnRHfzmlb5ynnNxC3EdMN4jup9OLqHV3WCr5zXTJ7eEqHFgevGS1KvE/q6UhpXP6Mjudrkev0U4GRgpYhsSr2+XERODHTPDcMIlCCMq6omgK8B80lWBH5aVVeLyM0icjOAiJwoIvXA7cC3RaQ+VZgJ4OvA4yKyCpgK/CD4Iw0cP8/15jNzZRQcO3Ml6B32orKykkgkEtgfvuNBb9asWV16/0yv6+j1YLptX/ehqrFce1IzL++K5GVeXdN6faoQk6s3tWq0r5zXTDKrBxd77mZWD3b7urOrRvrKefXC3b8ZVSN85bxmklk92NU7t2q4r5zXTDKrB7t6M6uG+8p5zSSzerCrd2HVMF85r5lkVg929S6qGuor5zUT17R+fkz8GL2O7utKaVz9jI68CHwxVV34HOCgqm7Pta2q1qjqCao6TlXHkeycpqVGUwzD6IIoQkJDnosvLdWXVHWCqp6iqnelXrtPVe9L/bxDVUeran9VHZj6+VBq3YrULIwPqeonVXV/hx10cJR05oqI3CgiS0Vk6e7duz131jAMo0C6dV83MEJe5jXTtGbilfOaSaGRN7nwirzxynnNF6+c10y8Im+8cl4z8Yq88cp5zcQr8sYr5zUTr8gbr5zXTDJNa2dSMuPqZ3QEeAmIAbXAA8Ct7W3byYdgGEYQaGBThXsiJZ25kv7IxbBh2Z+nMgzDCIBu39f5Na9eptXFr3ntbNPqUirz6jen1a959ZvT6te8+s1p9Wte/ea0+jWvpTStUOIcVx+jI6qqX02tn6yqS9vbNov+OK/qcIZhlJYAn3HtidjMFcMwegI9oq/zMq9+TauLl3ktlWl16Wzz6te0uniZV7+m1cXLvPo1rS5e5tWvaXXxMq+lNq1Q2qrCXQcFnGAlRQMW7CDCg5oDj8TZvyP46JpBJzYErhkpawtc84SK4CN2OsK0HW4LPgapGMyYFoaqJkTEnX1SBsxzZ66k1t9HcubKx0nOXGkEvtzetiU4DMMwjHbpSX2da14f2RwF4rjhIc+8U5+XaXVxzetjdcfqPbF0S6Cm9eG3NudlWl1c8/p0fZRPjiw+UjDdvH561Ad6v3jt/bxMq0u6eb1y9Adu88cvb8jLtLpU9XO4nKR5vWrMB3p3zV+Xl2l1mdjfAZLm9ZqxH+h95w9r8jKtLqcPSOo9sjnKtSd9oHfni++W3LSCGVcD2HTTtwLVO+mh/whUz+jeKDaiWgyq+hLJC7b01+5L+1mBr/rdNkubccXvpWEYRnH0pL4u3bxOXr+L/Y1xnlxen7dpdUk3r1Nq91B/oIkXVm0L1LT+ce3OvE2rS7p5PWvLfqaNGVTU/qSb17O3HWTRe3tYvHlf3qbVJd28ztjZwO9qtrN6R0PeptUl3byet/swTy6vZ+PexrxNq0u6eT1/fyMP/M8mdjW05G1aXdLN68yDzfzstVoa420lN61gxtUwjC5Am8/iS0b3wCuA/P66xcdkx2XDcRxCqb+gx7ueH7rT8Zpe+3pG96HYc2PmwWauf2I5ZSHh0S+cxaCKSFF65+9v5Kan3qG8LMSvv3gW/aPF6QH86s1N/GndLuZ9fhp9IsXZihk7G7jjt+/y3TkTmTZmUNGf39nbDvKPL7xL/2iYx754NhEP1+qld9aW/Xzj2VUMrijn0S9OJ+zxnW1PbzYwdeNebv3NSk7o24t510wrWm9K7R6+8uQ7jBoQ5cGrzvTsU7z0zli3iy89tpSTh/ThniunFKXnUmxfZ72kYRglRa04k1EAQV/km57pdSc9o3vwRmwPvcJCSGD5lgNF6/3l/b1Ey8sAWFF/qGi9h9/aHJhpBZg4vB8/uuIM/u2P61i+pfjC/ove20P/aJiWhMP6XcU/cvbK+t0MrCjnSLyN2t1HitZbuGE3gyvKOdjcSt3exqL1Xl6/i2F9Iuw7EmfrwQKCYzP1NuxieP8oOxua2dlQ/DRuKL6vs57SMIySoyqei9E9cJxgnv93dbq6XtB09eM1veL0jO5Dsf+nz7xTz5PL63nwqjO577Nn8svXY7yyflfBek8s3cILq7Yx7+oz+eVnpvDTV9/j9drC65e604MfvGpqIKbVJSjz+ovX3mfx5n08es1ZfP/ySXz792uo2XawYL0fv7yB1TsaePSaaXx3zkTu+O27rNtZuBm+a/46Nu5t5OFrpnHn7Anc/nwNsd2F10n5zh/WsKuhhYc/fya3f3Q8X39mJVv2F26G73zxXRrjbcy7aipf/cgp3Pr0CrYHYIaL/V7YVGHDMEqMjaj2JEKhEAsWLGi3TTwe9WzjTiHr6npB09WP1/SK0zO6D8WcG+nVg4f0TRZTvOfKqdzw+BJqampSzyD610uvHjywohcDK+AXfz+FW55cxsqV8dQzkv710qsH9/OYblwIrnn95rMr+OTIOOP65Ld/6dWDo5Ewk0cO4PuXT+LOF1bx6VFxxlTkp5dePTgSDjNtzCC+O2ci33x2BVeObmZk7+zHkUsvvXpwJBzm3JOHcMfsCXz9N+9w1Zhmhueon5lLL716cDgc5oKqoQDc8uQyrhnbzJBe+emlVw8Oh6dwycQTALjh8SVce1IzA3P8l3dGX2cjroZhlBwbcTUMwzCM3JE3IwZEfeW8ZpIr8mbMoApfOa+Z5Bt5UygTh/crKConV+TN5JEDfOW8ZpIr8mbamEG+cl4zyRV5c+7JQ3zlvGaSK/LmgqqhvnJeM8kVeXPJxBN85bx2NGZcDcMoKZbjahiGYRjeOa1eOa+ZeOW0euW8ZtJZptUl35xXr5xWr5zXTLxyWr1yXjPxymn1ynnNxCun1SvnNROvnFavnNfOwIyrYRilRaFNxXMxDMMwjO6Kl2l18WtevUyri1/z2tmm1cWvefUyrS5+zauXaXXxa169TKuLX/PqZVpd/JpXL9PqUmrzasbVMIySothUYcMwDKPn4te0uniZV7+m1cXLvJbKtLp4mVe/ptXFy7z6Na0uXubVr2l18TKvfk2ri5d59WtaXUppXs24GoZRYrynCdtUYcMwDKM7kq9pdcllXvM1rS65zGupTatLLvOar2l1yWVe8zWtLrnMa76m1SWXec3XtLrkMq/5mlaXUplXM66GYZQcVe/F6BnEYjHi8TixWKxH6AVNVz9e0zOMJLFYjObWBG/sDuVtWl3SzeurtXtobm3j7T2St2l1STevr9Xuprm1jeX7KLlpdUk3r2/W7qSptY31B5y8TatLunldXLudptY2Nh5qy9u0uqSb1yW122hqddjakMjbtLqkm9fltVtpanXYfaQ1b9Pqkm5eV9TW09TqcKixJW/T6pJuXlfV1nVKX2fG1TCMkmNThQ1IXsjNnz+fRCLB/Pnzi/4D2NX1gqarH6/pda3zxSgdsViM3/9lKY6UUf76XHbWFX5uDIzARbKBt5uH4UiI8Otz2VGE3pBecKHU8lbz8KTeovvZVoRe0IzsDedLjNebR6CEkEX3ULep8P0bU+FwrmxkUfMolBAsvJtNReiN6+MwQzazsHl0svjkwnuK0qvq5zBdNrOgeQwKJBbeW5TexP4OU2UL85vHokDLwvuK0jt9gMOHpJ4/HhnZKX2dqA1lMKBipJ5z6g2BakoHfK61/zv4rCyA2iu/HajeSQ/9R6B6AINOLDzkOReRsrbANUf0PRS4ZkdMkz21f+Eh5rn4f1OfXqaq0/PdrnfVSK36qff3790r/k9B+kbnMH36dF26dKmvtrly3hYtWkRNTQ2Ns74GqoTDYSKR7P1e+uvxePZ5SvF4nEQiAeEIJOLB6YlQseiXTJ48mVmzZmVt25G5nMf959fT9AI6X0TE+sAuQFB93cr1G2m+8ObkuRaSos61pngCDZUBAomWAPTa0FAIECIrf8uZw3t1qb7uV8t2sqtsMET7QWsz4bJQccfb2pY0rSIB6TkogIQ6QK+JcFlZl9JrTCg4DrTFA/vbmKu/6wID/4Zh9HTaHBtRNWDs2LGsXbsWVOn/xv1UV1dTWVmZte3s2R85+nOuixt3xOvQ+TcFrhcOhxk7dqzfQ+sUjqfPr6fpdcXzxSgd7ne1ubUZEKaU7+WSqsFZ23qda2/uLePtPUL49Xs5fM6XQYRpkd1cVDW0IL2/7A6zfB+EF93D4fOuI356NRLdnecRdhwLdpZzpO9I+i66h8Pn3QQinBfZzrlVw7O29zrel7aXs/FQGyz8OYdn3gIizIxsZUbViIL0XtxWztaGBM7Ce47qXRCp5+yqkQXpPVdfzu62VhIL7+XwzFtBQlwU2cK0qlEF6T29JcKhthZaFt7H4Y/cCiJcHKljatXogvSeqIvQx2mi5dW5ndLX2VRhwzBKjk0VNgAqKyuprq4mHA63axq6i17QdPXjNb2udb4YpePouVFWxmW961jNSFYcyP+S3C3EdMMpCeZcPItwWRlzonWs0tG+cl4zcQsx3XRKgjmzLyJcVkZ1tJ4VOsZXzmtH4xZiunl8G3NmzyZcFuKj0a0s1pN85bxm4hZiumW8w5zqasJlIWZFt/Gmnuwr5zUTtxDTTeP1qN4F0R28oZW+cl4zcQsx3TCelJ5wfnQHr+spvnJeM3ELMV03XpJ6IeGc6G5e0ypfOa+ZPFEXQYDrJpR1Wl9X0rNQRC4VkfUiUisid2ZZLyLy89T6VSIyzWtbEfm/qbYrROTPIpL9FodhGF0Cxdu0mnHtOVRWVhKJRAL7w9fV9YKmqx+v6RlGEvfcOKNqLF8+qZnXdkfyMq+Z1YNdvQ9VjfWV85pJZvVgV29q1WhfOa8dTWb1YHf/zq4a6SvnNZPM6sGu3oyqEb5yXjPJrB7s6p1bNdxXzmsmmdWDXb2ZVcN95bxmklk92NW7sGqYr5zXTFzTetXY5PThzurrSnYGikgZcDcwB5gEXCUikzKazQHGp5YbgXt9bPtjVf2Qqk4Ffg98p4MPxTCMIlEfi2EYhmF0R/pHyMu8ekXeeOW8ZuIVeeOV89rReEXeeOW8ZuIVeeOV85qJV+SNV85rJl6RN145r5l4Rd545bxmkmlaO5NSjrh+GKhV1ZiqxoGngCsy2lwBPKpJ3gIGisiI9rZV1fTqOH2wa17D6NpocFOFfczimCgib4pIi4h8K2PdJhGpSc3W8Fd5wzAMwzACwK959ZvT6te8+s1pLZV59ZvT6te8+s1p9Wte/ea0+jWvfnNa/ZpXvzmtfs1rKU0rlNa4jgK2pP1en3rNT5t2txWRu0RkC/B5bMTVMLo86ojn4oXPWRz7gNuAn+SQuUhVp1rlTsMwDKOz8TKvfk2ri5d59WtaXTrbvPo1rS5e5tWvaXXxMq9+TauLl3n1a1pdvMyrX9Pq4mVeS21aobTGNduVaOboaK427W6rqv+iqmOAx4GvZX1zkRtFZKmILI0nGn3usmEYHYGq9+IDz1kcqrpLVZcArYEfhGEYhmEUSS7z+sTSLXmZVpdc5vXhtzbnZVpdOsu8/uK19/MyrS65zOuPX96Ql2l1yWVe75q/Li/T6pLLvH7nD2vyMq0uuczrnS++m5dpdcllXm9/blXJTSuUNg6nHhiT9vtoYJvPNhEf2wI8AfwB+G7mClWdC8wFGNBruIb2B5u/6QwbGKgeQGtD8Dmu5f3iVD39/UA1JVweqB5AeSj4zNXyDshx3dtcEbjmKf33Bq65u6Vv4JqFohBU8aVsMzFm5LkrfxYRBe5P9RGGYRiG0am45vVXm6NMWr2dg00JXli1LW/T6uKa10c2R5m8fhdb9jfxx7U78zatLq55fawuypTaPVyQI3qnUH7x2vss3rwvb9Pq4prXp+ujnLVlP6+s383qHQ15m1aXdPN69raDvFiznY17G/M2rS7p5nXGzgaeWLqFXQ0teZtWl6p+DpeTNK/n7T7M3Dc30Rhvy9u0ukzs7wBJ83r+/kb+89VaQiIlN61QWuO6BBgvIicDW4HPAVdntHkR+JqIPEXyAvSgqm4Xkd25thWR8ar6Xmr7vwPWdfyhGIZRMAr4M65DM549nZthLv3M4miP81V1m4icACwQkXWq+noe2xs+8Qogv79u8THZcdlwHIdQ6i9yV9cLmq5+vKZXnJ7RfSj23JjZ0Mx1jy+jLBTisS+eRf9o+wMYnnoHm7n+iWVEwiEev/Zs+kTatwFeeufvb+Trz6wECMy8uqZ13tVnEfFwrV77N2NnA994dhUDK8p57IvTCXt8x7z0zt52kH984V2G9inn4S8Ur3fWlv38wzMrGTEgyryrp3n2Ae3pzQambtzLLU+v4KTBvbnvs2cWrTeldg/XP7GcCSf04ZefOROYXLCeS7F9Xcl6SVVNkJzGOx9YCzytqqtF5GYRuTnV7CUgBtQCDwC3trdtapsfisi7IrIK+BjwD511TIZhFIbPqcJ7VHV62pI5IupnFkc7+6DbUv/uAp4nOfXY6KIEfZHf1fWCpqsfr+kZBryyfjfRcBkhgb+8X/zsq/lrd1IRKQPgrY37itYbM6iCX/z9FH766nu8XrunaL18TKsfflezncEV5TTF21i19WDRei/WbGdon3IaWtpYu6OhaL0XVm1neL9e7G9sZcPuI0Xr/bZmOyP7R9nZEGfT3uIfg3xh1TbGDOpN/YFmtuwP5rHKYvu6Uo64oqovkTSn6a/dl/azAl/1u23q9U8HvJuGYXQ0wdT+9jOLIysi0gcIqWpD6uePAf8nkL0yjiGokSVXx/RMrzvpGd2HYv9Pn1i6hRdWbeOhq8+kpU255b9XAHDZ6SMK0nv4rc38ce1OfvX5aRxucbj16aTexaeeUPA+AowaEOUXfz+l6JFX17Q++LkziYSL/279+OUNrN7RwMPXTCO2t4k7fvsu350zkWljBhWkd9f8dWzc28i8z09j/a4jfPv3a/j+5ZOYPHJAQXrf+cMadjW0MO/qM1m1vYE7fvsuP7riDCYO71eQ3p0vvktjvI0HrprKki0Huf35Gn76qclUDivs0bDbn1tFSIQHPncmf43t4+vPrOQXfz+FMYOKeySu2P/XkhpXwzAM8Fc12AtVTYiIOxOjDJjnzuJIrb9PRE4ElgL9AUdEvkGyAvFQ4HkRgWS/+ISq/qnonTL+hlAoxIIFC9ptE49HPdu4U/C6g54futPxml5uPaP7UMy5kV49eGBFLwDu/exUrv/1EtasWcPUgU5eeunVg/tFI/SLwj1XTuWGx5dQU1PD6QPy00tn9uzZR0deb3lyGStXxlPPSPonvXpwNDV9uZjPL716cCQcZuLwfvzoijP45rMr+OTIOOP65He86dWDI+Ewk0cO4PuXT+LOF1bx6VFxxlTkp5dePTgcDjNtzCC+O2ci33x2BVeObmZk7/yON716cDg8hXNPHsIdsyfw9d+8w1VjmhkezU8vvXpwKDT56M2IW55cxjVjmxnSKz+9dIrt6+z2nmEYpSXAHFdVfUlVJ6jqKap6V+q1+9yZHKq6Q1VHq2p/VR2Y+vlQqhLxlNRyurutYRiGYXQmuSJvhveL+sp5zSRX5M2IAVFfOa9+GTOooqBqw/lG3niRK/Jm4vB+vnJeM8kVeTN55ABfOa+Z5Iq8mTZmkK+c10xyRd6ce/IQXzmvmeSKvLmgaqivnNeOxoyrYRilR30shmEYhtGN8cpp9cp5zcQrp9Ur5zVf8o3K6SzT6uKV85qJV06rV85rJl45rV45r5l45bR65bxm4pXT6pXz2hmYcTUMowsgPhbDMAzD6J54mVYXv+bVy7S6lMq8drZpdfFrXr1Mq4tf8+plWl38mlcv0+ri17x6mVaXUptXM66GYZQeG3E1DMMweih+TauLl3n1a1pdOtu8lsq0uniZV7+m1cXLvPo1rS5e5tWvaXXxMq9+TatLKc2rGVfDMEqPGVfDMAyjB5KvaXXJZV7zNa0unWVeS21aXXKZ13xNq0su85qvaXXJZV7zNa0uucxrvqbVpVTm1YyrYRilRUEd8VyMnkEsFiMejxOLxXqM3qJFi7r0/ple19Ezug+xWIzm1jbe3iN5m1aXdPP68nv7aG5tY/k+8jatLunm9dXaPUWfu+nm9bXa3fxq2U7WH3ACMa2xWIym1jY2HmrL27S6pJvXN2t30tTqsLUhkbdpdUk3r4trt9PU6rD7SGveptUl3bwuqd1GU6vDocaWvE2rS7p5XV67lcaE0tzclLdpdUk3rytq6zulrzPjahhG6bERV4Pkhcj8+fNJJBLMnz+/6D+Ax4teTU1Nl94/0+saekb3IRaL8fu/LMeREOHX57KjrvBzo38ELpYNLGsZikOI8KL72VaE3sAIXCQbeLt5GAnHKfrcHdILLpRa3moezq7wUGTRPdRtKv679dwmByUEC+9mUxF6I3vD+RLj9ZYRKOAsvKcovTEVDufKRha1jEKBxMJ7i9Ib18dhhmxmYctoFGhZeF9RelX9HKbLZha0jAXHoeWVuUX9/07s7/Ah3cL8IyM6pa8TVbsiHNBruJ434upANZ1hAwPVA1h3c45gpyIo71fYXZb2SDSVB6457ISDgWtGwm2Ba4oE/306pf/ewDU7gkdnzFumqtPz3a7XuNF64rf/wbNd3Q3/VJC+0TlMnz5dly5d6qttrpy3RYsWUVNTQ+Osr4Eq4XCYSCSStW366/F49n4sHo+TSCQgHIFEvOvqifSs4+1peiJULPolkydPZtasWVnb+sk2FBHrA7sAQfV1K9e/T/OFt0JbK2GhqHOtKd6GhkKAQKKFcEiK15NQsm8KQq+1LWkyO0KvtYVwWbF6TvL+uISgtZlwWahb6zUmFBwHQmXQ2kS4rKxgPceBZiel1xYPpK+D3P1dARMJDMMwgqUD/L5xHDJ27FjWrl0LqvR/436qq6uprKzM2nb27I8c/TnXxaE74nXo/JtMz/RKqhcOhxk7dmzWdkbPw+3rmuNNiAhnRA9SXTUwa1uvc+0vu8Ms3wfhRfdw+LwvAyGmlO/lkqrBBekt3BVm9X4ltOgeDp/3FRBhWmQ3F1UNLUhvwc5y1h9wkEW/5PB5N4II0yO7uLBqWEF6L20vZ+OhNlj4cw7PvBkkxIzIdmZWDS9I78Vt5WxtSOAsvIfDM28BEc6LbOfcAvWeqy9nd1sriYX3HtWbGdnKjKoRBek9vSXCobYWWhbed1Tvgkg9Z1eNLEjviboIfZwmWl6dy6GZt4KEuCiyhWlVo/LWcxx4bEsEbWmk8dUHOqWvs6nChmGUFj/ThM3Y9ggqKyuprq4mHA63axpMz/R6op7RfUg/Ny7vXcd6OZFl+8ry1nELMd10SoI5sy8iXBbmst51rGGkr5zXTBbuCrO+oYybxrcxZ/bFhMvKmBOtY5WOLqhgk1uI6ebxbcyZPZtwWRnV0XpW6BhfOa+ZuIWYbhnvMKe6mnBZGbOj9SzVk3i/IX89txDTTeM1pRfio9GtLNaTfOW8ZuIWYrphPEf1ZkW38aae7CvnNRO3ENN14+Wo3gXRHbyhlb5yXjNxCzFdN6Esef6VCedHd/C6nuIr5zUd17T2DsG1E8Kd1teZcTUMo8QIOD4Wo0dQWVlJJBIJ7A+f6Zled9Izug/uuTGp6iSuG9fMG/vK8zKvmdWDXb0zqsbypXHNvO6R85qJa1qvP7mFSOgDvQ9VjS2o2nBm9WBXb2rVaF85r5lkVg929aZVjeKqMc38bkckL/OaWT3Y1Tu7aqSvnNdMMqsHu3ozqkb4ynnNJLN6sKt3btVwXzmvmWRWD3b1ZlYN95Xzmk66af3MmGP1OrqvM+NqGEbpsRFXwzAMo4fSN0xe5tUr8qZ/OXmZ10zTmkm+UTlekTdeOa+ZeEXeDI+Sl3n1irzxynnNxCvyxivnNROvyBuvnNdMvCJvvHJe08lmWjsTM66GYZQeM66GYRhGD8avefWb0+rXvHqZVhe/5tVvTqtf8+o3p9WvefWb0+rXvPrNafVrXv3mtPo1r35zWv2Y11KbVjDjahhGqVFAxXsxDMMwjG6Ml3n1a1pdvMyrX9Pq4mVe/ZpWFy/z6te0uniZV7+m1cXLvPo1rS5e5tWvaXXxMq9+TatLe+bVcZySm1Yw42oYRhdA1HsxDMMwjO5OLvP68Fub8zKtLrnM6/1/jeVlWl1ymddfvPZ+XqbVJZd5/fHLG/IyrS65zOtd89flZVpdcpnX7/xhTV6m1SWXeb3zxXfzMq0uuczr7c+tysu0umQzr47jcNuzNSU3reDDuIrI10RkUEe8uYhcKiLrRaRWRO7Msl5E5Oep9atEZJrXtiLyYxFZl2r/vIgM7Ih9NwwjQGyqcMFYP2oYRk+gJ/V16eb1+ZXbePitzfxx7c68TatLunn9w+rt3P/XGK/V7snbtLqkm9dX1u/iF6+9z+LN+/I2rS7p5vX12j38+OUNrN7RkLdpdUk3r4s37eOu+evYuLcxb9Pqkm5el2/Zz3f+sIZdDS15m1aXdPNas+0gd774Lo3xtrxNq0u6eV23s4Hbn1tFSCRv0+qSbl5rdzVw27M19I+GS25awV+O64nAEhFZDswD5qtq0ZeRIlIG3A3MBupT7/Giqq5JazYHGJ9aZgD3AjM8tl0A/LOqJkTkR8A/A3e0uzNlZeiAvsUe0rHH1xz8f+5p/xW85rp/7B+4ZijSFrjmgcMVgWtOGrEjcE2nA6a0HmqNBq6ZcLrWZAsbUS2MLtWP5oFXAPn9dYuPyY7LhuM4hFJ/4U3P9LqTnvG39NS+7sIjcb7w66WEQ8ITXzqbPpH2L9u99C443My1v15Gr3CIJ689m2iRejMPNnPd48voEynjiS99mIiHa/XSO39/Izc8+Q79o2Ge+NLZhD2+E1565+0+zK2/WcnginIe/eL0ovVm7GzgH55ZyfB+vXj4mrM8v7NeemdvO8i3nq9h9MDePHDVmUXrnbVlP7c9s5JThvbh3s+eCUwuWG82MOX9Pdz6m5WcNrwfP/jE6cDpRe0fFN/XeW6pqt8m2Qk8BHwJeE9EfiAipxT8rkk+DNSqakxV48BTwBUZba4AHtUkbwEDRWREe9uq6p9VNZHa/i1gdJH7aRhGR2PPuBZKj+1Hg77INz3T60563ZAe2de9WLOdivIQZSHhz2t3Fa333Ipt9EsN2b7y3u6i9Z5ZsZWBFeUkVPnL+3uK1ntqWT1DKiLEEw7/E9tXtN6Ty+s5oW8vjsTbWFZ3oGi9J5ZuYcSAKAebE6zYerBovceXbmH0wN7sORJn9Y6GovUeW7KFkwdXsO1gM+t2FqfnOA5PLN/KKUMq2Lyvkdjuw0XvHxTf1/naOjXCuiO1JIBBwDMi8h9FvPcoYEva7/Wp1/y08bMtwHXAH4vYR8MwOho/04RtRDYXx10/6jhOoDqmZ3rdSc/ISY/r69zpwfM+P40Hr5rGY0vqeH7ltoL13OnBv7rqTOZedSYPvbmZP6zeXrCeOz34V1dP494rz+SXr8d4ZX3h5tqdHvyra87kF5+Zwk9ffY/Xaws3w+704Aevnsp/fmoy//7n9SzeVLgZdqcHP/i5qfzoijP4tz+uY/mW/QXrudOD7//sFL5/+SS+/fs11Gwr3Ay704Pv/exUvjtnInf89t2Czav7TGv/aJi7r5zKHbMncPvzNYGY12K/F55ThUXkNuBaYA/wIPCPqtoqIiHgPeCfCnzvbEMomZenudp4bisi/0LSZD+e9c1FbgRuBIiWBz9d1jCMPDBjWihdph8dO3as174CybutCxYsaLdNPB71bONOwTM90+tOekZOelRfl149uF80AsADV03j2kcXs37dOs4anP2RrFx66dWDK6IRKoD7PzeV6x5dwpo1a5g6MLuZyKWXXj04GgkzIhLmniuncsPjS6ipqeH0AfnppVcPjoTDjBkU5hd/P4VbnlzGypVxJvbPTy+9enAkHKZyWF9++qnJfP037/CJE+Oc0i8/vfTqweFwmInD+/GjK87gm8+u4JMj44zrk59eevXgcHgKk0cO4PuXT+LOF1bx6VFxxlTkp5dePTgUmsy0MYP47pyJfPPZFVw5upmRvbPKZdVLj7y5aGCcUOh0zj15CHfMnsDXf/MOV41pZniOJ9g6o6/zM+I6FPj/VLVaVX+jqq0AquoAlxfx3vXAmLTfRwOZt5JytWl3WxG5NrVvn8/1PK6qzlXV6ao6PRLuU/BBGIZRPFZVuGC6TD86bNiwgg/CMAzDgx7T1+WKvBncJ+Ir5zWTXJE3w/pGfeW8ZpIr8mbEgKivnNdMckXejBlU4SvnNZNckTeVw/r6ynnNJFfkzcTh/XzlvGaSK/Jm8sgBvnJeM8kVeTNtzCBfOa/ptJfTeu7JQzxzXjsDP8+4fkdVN+dYt7aI914CjBeRk0UkAnwOeDGjzYvAF1OV4s4BDqrq9va2FZFLST5Y/3eq2ljE/hmG0VkENFXYR9XJiSLypoi0iMi3sqwvE5F3ROT3hR9Mp2L9qGEYPYEe0dd55bR65bxm4pXT6pXzmolXTqtXzmsmXjmtXjmvmXjltHrlvGbildPqlfOaiVdOq1fOayZeOa1eOa/ptGdaXdrLee0sSlYNIPUw/NeA+cBa4GlVXS0iN4vIzalmLwExoBZ4ALi1vW1T2/wS6AcsEJEVInJfZx2TYRj5IwrieC+eOh9UjpwDTAKuEpFJGc32AbcBP8kh8w8k+5TjAutHDcPoCfSEvs7LtLr4Na9eptXFr3n1Mq0ufs2rl2l18WtevUyri1/z6mVaXfyaVy/T6uLXvHqZVhc/5tWPaXUptXktIA0qOFT1JZIdTfpr96X9rMBX/W6ber0q4N00DKOjCaZq8NHKkQAi4laOPBqXoKq7gF0iclnmxiIyGrgMuAu4PYgd6gysHzUMoyfQnfs6v6bVxTWv8zYlHzbMfObVr2l1cc3rw5uiQPxvnnn1a1pdXPP6yOakXuYzr35Nq4trXh+rS+plPvPq17S6uOb1yS1RPsHfPvPq17S6uOb16fpo1mde/ZpWl3Tzmu2ZV7+m1SXdvGY+85qPaXWp6udwOUnz2t4zrx2B1V83DKP0BDNV2G/lyFz8F8lic1be0zAMw+gU8jWtLrlGXvM1rS65Rl7zNa0uuUZe8zWtLrlGXvM1rS65Rl7zNa0uuUZe8zWtLrlGXvM1rS7ZRl61ANPqUqqRVzOuhmGUHJ/FmYaKyNK05cZMmSzSviyviFwO7FLVZcUdiVEssViMeDxOLBYzPdMzPaPbEovFaG5tY/k+8jatLunmdf57B2hqbWP1fs3btLqkm9eX39tHU2sb6w84eZtWl3Tz+mrtHppa29h4qC1v0+qSbl5fq91NU6vD1oZE3qbVJd28/rV2J02tDruPtOZtWl3SzeubKb1DjS15m1aXdPO6uHY7jQmlubkpb9Pqkm5eF2/YRpOjaEtj3qbVJd28Lq/d2il9nRlXwzBKj78R1z1uVcfUMjdDxU/VyVycD/ydiGwiGU7/URF5rLCDMQolFosxf/58EokE8+fPL/oPoOmZXnfSM7oPsViM37+xHIcQ4UX3s62u8HOjbxguYT0rmgehhAgtuo/6TYXr9S+Hj8oGljUPRQkhi+6hrgi9gRG4SDbwdvMJKCFYeDebitAb0gsulFreahmOAs7Ce4rSGx6FC+R93mgeiQKJhfcWpTeyN5wvMV5P6bUsvK8ovTEVDufKRha1jAbHoeWVuUX1JeP6OJytm1nUOgYch8ZXHihKr6qfwzTdzILGEzulr5Mclb97FAMqRuq5468PVvQ4CRNf94/BZ9iGyrPnixVDWTj4z3PSiB2BazrBPKt5DOFQ8MeecIK/Z/X7C365TFWn57tddNQYHXur9yOl73379nb1RSQMbAAuBraSrCR5dVoRjvS23wMOq+rfFGkSkVnAt1S1mLivHsf06dN16dKlvtrmynlbtGgRNTU1NM76GqgSDoeJRCJZ26a/Ho9nv1scj8dJJBIQjkAibnqmVxo9ESoW/ZLJkycza9asrG39ZBuKSEF9rBEsQfV1K9e+R/NFX4O2BGHRos61pngbKiEQgbY4YaE4vda2pMkUgUQL4ZB0MT0neT9bQsHrtbYQLgtSr5lwWagovcaEJn1FqKxoPceBZqcj9NqgrTWQvg5y93clLc5kGIYB+I67aVdCNSEibuXIMmCeW3Uytf4+ETkRWAr0BxwR+QYwSVUPFb8HRrGMHTuWtWvXgir937if6upqKisrs7adPfsjR3/OdXHojngdOv8m0zO9kuqFw2HGjh2btZ3R83D7uuZ4EwKc1ruBj1cNyNrW61xbuCvM6v1KaNE9HD73ekSEM6IHqa4aWJDegp3lrD/gIIt+yeHzbgBCTCnfyyVVgwvSe2l7ORsPtcHCn3N45s0gwrTIbi6qGlqQ3ovbytnakMBZeM9RvemRXVxYlT1f10vvufpydre1klh4b0ovxIzIdmZWDS9I7+ktEQ61tdCy8D4Oz7wFRDgvsp1zC9R7oi5CH6eJllfnciilNzOylRlVI/LWcwsxaUsjja8+cFTvgkg9Z1eNLEjvkbpeDIk30PDqQ53S19lUYcMwSo7PZ1w9UdWXVHWCqp6iqnelXrvPrTypqjtUdbSq9lfVgamfD2VoLLLR1tJQWVlJdXU14XC4XdNgeqbXE/WM7kP6uXF5RR3vy3De2uudy5qJW4jppvFtzJl9cVKvdx3r5URfOa+ZuIWYbh7fxpzZswmXhbmsdx1rGOkr5zUTtxDTLeMd5lRXEy4rY060jlU62lfOayZuIaabxutRvepoPSt0jK+c10zcQkw3jOeo3uxoPUv1JF85r5m4hZiuGy8pvRAfjW5lsZ7kK+c1E7cQ03UTypLnS1mIWdFtvKkn+8p5TSe9evC1E8JH9S6I7uANrfTMec2m90hdLwaWO1wzIdJpfZ0ZV8MwDKPLUFlZSSQSCewPn+mZXnfSM7oP7rkxqWoc149rZsn+8rzMa2b14A/0TvKV85pJZvVgV++MqrG+cl4zyawe7Op9qGqsr5zXTDKrB7t6U6tG+8p5zSSzerCrN61qlK+c10wyqwe7emdXjfSV85pJZvVgV29G1QhfOa/pZIu8cfXOrRrumfOaTc81rZ8a1XqMXkf3dWZcDcMoPcHE4RiGYRjGcUdFmLzMq1fkTa6onFx4Rd7kisrJhVfkTa6onFx4Rd7kisrJhVfkTa6onFx4Rd7kisrJhVfkTa6onGz4yWnNFpXTnl6mae1MzLgahlFafEwT9jtV2DAMwzCOR/yaV785rX7Nq9+cVr/m1W9Oq1/z6jen1a959ZvT6te8+s1p9Wte/ea0+jGvfkyrix/zWmrTCmZcDcPoCjg+FsMwDMPoxniZV7+m1cXLvPo1rS5e5tWvaXXxMq9+TauLl3n1a1pdvMyrX9Pq4mVe/ZpWl/bMq+M4vk2rS3vm1XGckptWMONqGEaJEWzE1TAMwzAgt3m9/6+xvEyrSy7z+ovX3s/LtLrkMq8/fnlDXqbVJZd5vWv+urxMq0su8/qdP6zJy7S65DKvd774bl6m1SWXeb39uVV5mVaXbObVcRxue7YmL9Pqks28Oo7DLU+vLLlpBYvDMQyjK2DG1DAMwzCAD8zrQ5uiPLWsnoNNcV6r3ZO3aXVxzeu8TVGeX7mN+gNNLN68L2/T6uKa14c3RZm0ejtrtjewekdD3qbVxTWvj2yOMnn9Lt7atI+NexvzNq0urnl9rC7KlNo9vLx+F7saWvI2rS6ueX1yS5QzN+3j+VXbaIy35W1aXVzz+nR9lLO27OexJVsIieRtWl3SzetZ9ft54M06+kfDXDSwML1083r29oP87LUYI/tHOW/InoL0gsSMq2EYpcVGVHscXgHk99ctPiY7LhuO4xBKXTGYnul1Jz2j+1DsuXFhY5zPP7qUcEj47y+dTTTS/mW7p96RONc8uoRoOMRTX55BxMO1euldcLiZLz66jL69wjz55bMJe5zDXnozDzbz5ceXMbB3OY9dO71ovfP3N/KVJ99hWJ8Ij37hLM/vmJfeebsPc8vTKxg5IMpDV08rWm/GzgZue2YlJw+u4P6rpgGTi9I7q34///jb1Zw6rC8/+MTpwOlF6Z25eR/feK6GD40cwHc/fhpwWlF6UHxfZ8YVQBVpbQtWsjz//Cxv0eCv7st7Bz/k35YI/o+v40jgmmt3Zg+DLoZThnXA3agOeL5zf0vv4EWLwYyrkSdBX+Sbnul1Jz2je/Dfy+vp16uMhKO8ULODz501uii9x5duYUDvcuIJhz+s3sGnpowsSu/ht+oY2jfCkZYE89fu5LLTRxSlN++tTZzYrxcHmlt57b09XHzqCUXpPfA/mxg1IMq+I3H+GtvHBVVDi9Kb++YmThrcm50NcZbUHWDGuMHF6b2xkVOG9mHbwWaWb9nPtDGDCtZyHIcH3qzj1GF9qTvQRM22g0weOaBIvc1MGt6P93YfZt3OBiYO71ewnkuxfZ0ZV8MwSo5Y8aUeQ1AjS66O6Zled9Izug/F/p/e/9cYr9XuYd5VZxJ34IYn3wEo2Lz+4rX3Wbx5H7+6ehqNrQ43PLkcoGDz+uOXN7B6RwMPXX0mB5sT3PTUCoCCzetd89excW8jc6+ayt4jCW59OqlXqHn9zh/WsKuhhbmfncL2hjhff2YlQMHm9c4X36Ux3sY9n5lC3f5mbn++hn/+2KkFm9fbn1tFSIS7PzOFDbuPcMdv3+W7cyYWZF7dZ1r7R8N8/7LTWL2jgW//fg3fv3xSQebVfaZ1ZP8o/3rpqazYepA7fvsuP7rijKLNq424GoZx/GMjrj2GUCjEggUL2m0Tj0c927hT8EzP9LqTntF9KObcSK8eXBGNUAE8cNWZfPGRxbz33gbOGZJ9lmAuvfTqwdFImGgEHrhqGtc+upj169Zx1uD89NKrB0fCYYb1DXP/56Zy3aNLWLNmDVMHZr8bnUsvvXpwJBxmxIAw91w5lRseX0JNTQ2nD8hPL716cDgcZsygML/4+ync8uQyVq6MM7F/fnrp1YPD4SlUDuvLTz81ma//5h0+cWKcU/rlp5dePTgUmszE4f340RVn8M1nV/DJkXHG9fGvlx55c9HAOKHQ6UweOYDvXz6JO19YxadHxRlTkZ+eWz34vCF7CIVOY9qYQXx3zkS++ewKrhzdzMgck/Y6o68r6e09EblURNaLSK2I3JllvYjIz1PrV4nINK9tReQzIrJaRBwRmd5Zx2IYRoGoz8UwDMMwujm5Im8GVkR85bxmkivyZnCfiK+c10xyRd4M6xv1lfOaSa7ImxEDor5yXjPJFXkzZlCFr5zXTHJF3lQO6+sr5zWTXJE3E4f385Xzmk57Oa2TRw7wzHnNppcr8mbamEGeOa+dQcmMq4iUAXcDc4BJwFUiMimj2RxgfGq5EbjXx7bvAv8f8HpHH4NhGMFgcTiGYRhGT8crp9Ur5zUTr5xWr5zXTLxyWr1yXjPxymn1ynnNxCun1SvnNROvnFavnNdMvHJavXJe02nPtLq0l/OaTc8rp7W9nNfOopQjrh8GalU1pqpx4Cngiow2VwCPapK3gIEiMqK9bVV1raqu77zDMAyjaGzE1TAMw+jBeJlWF7/m1cu0uvg1r16m1cWvefUyrS5+zauXaXXxa169TKuLX/PqZVpd/JhXP6bVxY959WNaXUptXktpXEcBW9J+r0+95qeNn20NwzhOsBFXwzAMo6fi17S6eJlXv6bVxcu8+jWtLl7m1a9pdfEyr35Nq4uXefVrWl28zKtf0+rSnnnNx7S6tGde8zGtLqU0r6U0rtnyTTIvT3O18bNt+28ucqOILBWRpfFEYz6bGoYRJEoy8sdrMQzDMIxuRr6m1SWXec3XtLrkMq/5mlaXXOY1X9Pqksu85mtaXXKZ13xNq0su85qvaXXJZl61ANPqks28agGm1aVU5rWUxrUeGJP2+2hgm882frZtF1Wdq6rTVXV6JFyRz6aGYQSI+FyMnkEsFiMejxOLxUzP9EzP6LbEYjGaWttYvV/zNq0u6eb1pfcO0tTaxvoDTt6m1SXdvM5/7wBNrW1sPNSWt2l1STevL7+3j6ZWh60NibxNq0u6eX21dg9NrQ67j7TmbVpd0s3ra7W7aWp1ONTYkrdpdUk3r3+t3UljQmlubsrbtLqkm9c3NuykyVG0pTFv0+qSbl7f3LCdJkcpjzfkbVpd0s3rktptndLXldK4LgHGi8jJIhIBPge8mNHmReCLqerC5wAHVXW7z20NwzhesGdcDZIXcvPnzyeRSDB//vyi/wCanul1Jz2j+xCLxfj9GytQQoQW3Uf9psLPjYowzGYdNS0DUELIonuoK0KvbxguYT0rWgahCCy8m01F6PUvh4/KBpa1DElOsFp4T1F6AyNwkWzg7cakXmLhvUXpDekFF0otbzWfiAItC+8rSm94FC6Q93mjeSQ4Di2vzC3quz+yN5yrMf7aOgoch8ZXHihKb0yFwwzdyOvx0eC00fDKQ0XpjevjcLZuZuGR4Z3S14lq6a4IReTjwH8BZcA8Vb1LRG4GUNX7RESAXwKXAo3Al1V1aa5tU69/CvgFMAw4AKxQ1er29mNA7xF63slfDvTYtNx/aXH/osH/X73/r9HANdsSwd8PkVDwx14WDn7+6SnD9gSuGZbg93N/S44QriJ4Y/aPl6lq3hFUFcPH6Pirbvdst+pntxekb3QO06dP16VLl/pqmyvnbdGiRdTU1NA462ugSjgcJhKJZG2b/no8nv3uczweJ5FIQDgCiXjX1RPpWcfb0/REqFj0SyZPnsysWbOytvWTbSgi1gd2AYLq61auXk/zxbdBW4KwaFHnWlNrG0oo2Ze0tQanp22BfBeaWp3k/WeRpF5IgvluRSog0VK03gf7FwpErzGhyYdHQ2XQ2kK4rHA9x4FmJ12vmXBZKAC9NgiFg9NrawOnNZC+DnL3d2FfW3cQqvoS8FLGa/el/azAV/1um3r9eeD5YPfUMIwOxUZUDWDs2LGsXbsWVOn/xv1UV1dTWVmZte3s2R85+nOui0N3xOvQ+Td1ab1EIkE4HO6y+2d6xeuFw2HGjh2btZ3R83D7uuZ4E6LKhIojfKKqf9a2Xufan3eWs+GAgyz6JYfPvQFBOa33YT5eNaAgvZe2l7PxUBss/DmHA/guvLitnK0NCZyF95AIRWk+78tMKd/LJVWDC9KDtO/WzJtBhGmR3VxUNbQgvae3RDjU1kLLwvs4nNKbHtnFhVXDCtJ7oi5CH6eJllfnpvYvxIzIdmZWDc9bzy3EpC2NNL76AIdm3gIinBfZzrkF6j1S14sh8QYaXn3oqN7MyFZmVI0oSG/e5l6c0HqIA6/O65S+rpRThQ3DMJLYVGEDqKyspLq62tPEdTe9yZMnd+n9M72uoWd0H9LPjb/rs4U6OYG/7sl/LOnPO8uJHQlx8/g25syendSr2EJMhvvKec3ELcR0y3iHOQGcu24hppvGK3Oqq5ly6slc1ruONYz0lfOai6OfX1kZc6J1rNLRvnJeM3ELMV03XpLHW1ZGdbSeFTrGV85rJm4hpusmlB3dv9nRepbqSb5yXtNJrx587YRwSi/ER6NbWawneea8ZtNzCzFdMyFyVG9WdBtv6smeOa/Z9OZt7sXwXg5XTejVaX2dGVfDMEqLgjjeix9E5FIRWS8itSJyZ5b1E0XkTRFpEZFvpb0eFZG3RWSliKwWkX8L7gCNfKisrCQSiQT2h+940Js1a1aX3j/T6zp6RvfBPTcmVo3j+nHNrDwQzsu8uqbVLcSUrnfduGaWeuS8ZpJZPbjYczezerDb151RNdZXzqsX7v59qGqsr5zXTDKrB7t6U6tG+8p5zSSzerCrN61qlK+c13SyRd64emdXjfTMec2ml1k92NWbUTXCM+c1m55rWj8x8li9ju7rzLgahlFygshxFZEy4G5gDjAJuEpEJmU02wfcBvwk4/UW4KOqOgWYClyaKghnGIZhGB1KNFUd2K95zTStmVSkqgP7Na+FRt7kwivyxivnNV+8cl4z8Yq88cp5zcQr8sYr5zUdPzmt7eW8ZtPzirxpL+c1m16mae1MzLgahlF6gpkq/GGgVlVjqhoHngKuOOZtVHep6hKgNeN1VdXDqV/LU4tNUDYMwzA6Bb/m1cu0uvg1r51tWl1KZV795rT6Na9+c1r9mFc/ptXFj3n1Y1pd/JjXUptWMONqGEYXIIgRV2AUsCXt9/rUa/72QaRMRFYAu4AFqro4j0MwDMMwjKLwMq9+TauLl3ktlWl16Wzz6te0uniZV7+m1aU98+o4jm/T6tKeeXUcx7dpdWnPvCYcp+SmFcy4GoZRavyMtiaN61ARWZq23JihJDnU/e2GapuqTgVGAx8WkTPyPBLDMAzDKIpc5vXni2rzMq0uuczrj1/eEKhpvWv+urxMq0tnmdc7X3w3L9Pqksu83v7cqrxMq0s28+o4Drc9W5OXaXXJZl4dx+GWp1fmZVpdspnXhONw01PvlNy0QonjcAzDMATfxZf2eGQY1gNj0n4fDWzLd39U9YCILCKZH/1uvtsbhmEYRjG45vWhTVEeXbyZA02tvF23P2/T6uKa13mbojy1rJ4t+xtZvaMhUNO6cW9j3qbVxTWvD2+KMmn1di47PXs0i19c8/rI5iiT1+9iwfpdNMbb8jatLq55fawuypTaPbywahshkbxNq4trXp/cEmXKxj08vnQr/aNhLhpYmJ5rXp+uj3Lm5n088OZmRvaPct6QPQXppZvXM+v388vXY1QN7ct02VeQXpCYcTUMo/QE8zTpEmC8iJwMbAU+B1ztZ0MRGQa0pkxrb+AS4EeB7JXxN3gFkN9ft/iY7LhsOI5DKHUFcrzr+aE7Ha/pta9ndB+KPTc+Gk9w5by3KQ8JT183g4iHa/XSu6g5zud+tYRoeRlPX/dhwh7nnJ9z964/rWPjvkbu+9xUTz0vLjjczE1PrQDgstNHFP35zTzYzJceW8rw/lEe/vw0z++Yl975+xu5/onljBnUm4euPguYXJTeObsauPU3KzllaAU/+MQU4PSi9M7efpBvPFfDpOH9+O7HTwNOK0rvzPr9/NNvV3PmqAH888dOBU4tSg+K7+uslzQMo+SIqufihaomgK8B84G1wNOqulpEbhaRmwFE5EQRqQduB74tIvUi0h8YAbwqIqtIGuAFqvr7DjpcIwCCvsg3PdPrTnpG9+Ch/9nEwGiYSDjEU8u2eG/gwf1/3cTQPhFCAs+8k/eEpL/hrvnBmVaAYX2j3P+5qTz05mb+sHp70Xo/e62Wk4f04VBzK6++V9joYzr/+WotE07ow94jcV6vLU7PcRz+67UYpw3vx/aDLSzeVNxopuM4/Oy1GB8aOYCN+xpZvmV/UXoJx+GXr8c4c9QA1u86TM22g0XpuRTb19mIawoty/Z4XBFIwHqQLOcVMKf8nybe/07vQDWdhvJA9QC0LPgCr20dcJ2wrvnEwDUrR+4OXLNPeWHTUToE/1WDvaVUXwJeynjtvrSfd5CcQpzJKuDMYPbCaI+gRpZcna6uFzRd/XhNrzg9o/tQ7P/pzxfV8nbdfh66ehptwHWPLQPgizNOKkjvxy9vYPWOBh68+kyaEw7XP/4OAJ87K9ufRG/c6cH3XPmhQEyri2te00deC+HOF9+lMd7GL/9+MruPJLj16aTexaeeUJDe7c+tIiTCzz89ha0Hm/n6MysBuKBqaN5a7jOt/aNhvn/ZaWza28jtz9fwzx87lRnjBhekd8vTKxnZP8q/XnoqG3Yf4Y7fvst350xk2phBeeu5z7RWDe3LHZeMZ/WOBr79+zV8//JJTB45IG+9zH0t5nthxtXgvc98O1C9cXN/HKie0f3xWTXY6AaEQiEWLFjQbpt4POrZxp1C1tX1gqarH6/pFadndB+KOTfSqwdHI8lL9XnXnMXnH3qT92MxZg5N5KWXXj04Eg4TCcNDnz+TL/xqMe+9t4FzhrTlpZdePTgSDt5KuOb1ukeXsGbNGqYOzD5wk2v/0qsHh8NTGDEgzD1XTuWGx5dQU1PD6QPy00uvHhwKTWbMoAp+8fdTuOXJZaxcGWdif/966ZE3Fw2MEwqdTuWwvvz0U5P5+m/e4RMnxjmlX356bvXg84bsIRQ6jYnD+/GjK87gm8+u4JMj44zrk5+eWz14uuwjFDqVySMH8P3LJ3HnC6v49Kg4Yyry+/zSKbavs9t7hmGUnmByXA3DMAzjuCZX5E2fSNhXzmsmuSJv+kcjvnJeM8k38qZQhvWNFlRtOFfkzYgBUV85r5nkirwZM6jCV85rOu3ltFYO6+uZ85pNL1fkzcTh/TxzXrPp5Yq8mTxygGfOa2dgxtUwjJIjjvdiGIZhGN0Zr5xWr5zXTLxyWr1yXjPpLNPqkm9UjldOq1fOayZeOa1eOa/ptGdaXdrLec2m55XT2l7OazY9r5zW9nJeOwszroZhlBZNThX2WgzDMAyju+JlWl38mlcv0+ri17x2tml18WtevUyri1/z6mVaXfyYVz+m1cWPefVjWl38mFc/ptWl1ObVjKthGKXHpgoXjIhcKiLrRaRWRO7Msl5E5Oep9atEZJrXtiIyWEQWiMh7qX/zr+5gGIYRIN25r/NrWl28zKtf0+riZV5LZVpdvMyrX9Pq4mVe/ZpWl/bMaz6m1aU985qPaXVpz7zmY1pdSmlezbgahlFSBBtxLRQRKQPuBuYAk4CrRGRSRrM5wPjUciNwr49t7wReUdXxwCup3w3DMEpCd+7r8jWtLrnMa76m1SWXeS21aXXJZV7zNa0uucxrvqbVJZt51QJMq0s286oFmFaXbOZVCzCtLqUyryU1rt357plhGHmg6r0Y2fgwUKuqMVWNA08BV2S0uQJ4VJO8BQwUkREe214BPJL6+RHgkx18HEeJxWLE43FisViP0Auarn68pmcUSLfs65pa29hwwMnbtLqkm9ffvXeIptY2Nh5qy9u0uqSb15feO0hTq8PWhkTJTatLunl9+b19NLU6HGpsydu0uqSb11dr99CYUJqbm/I2rS7p5vXVDbtpchRtaczbtLqkm9e/bNhJk6OUxxvyNq0u6eb1jZRen9ZDeZtWl3Tzurh2e6f0dSU7Dbvz3TPDMPLDRlwLZhSQnkpfn3rNT5v2th2uqtsBUv8WFnyXJ7FYjPnz55NIJJg/f37RfwC7ul7QdPXjNb2udb4cZ3S7vu6l195CEWTRPdRtKvzciIbhYtaxpnkAisDCu9lUhF5FGC5hHTVHKlDAWXhPUXpB078cPiobWNY4EAVaFt5X1P4NjMBFsoG3m4eD49DyytyivqtDesFHtJa34yeC49D4ygNF6Q2Pwkx9n/9pHQlOGw2vPFSU3sjecK7G+GvrKHDaOPDKvKL0xlQ4zNCNLGo8oVP6ulLmuB69AwYgIu4dsDVpbY7ePQPeEhH37tm4dra9ApiV2v4RYBFwR0cfjGEYBaIg2SPkDG8ky2uZNj9XGz/btv/mIjeSvKnI2LFj89k0K3V1dSQSCRDh0Pk38XxzmEhtJGvb++sWH/05Ho9mbROPV5E4f1zwevEjJBIJ6urqqKys9HdwnUCHfX7hiOkVoyfSJc+X44xu19fp4b2QaOHwuTcUfa41tY6HcAgSzRwO5NythFACjuzF6YLn7p76GNENr9B8wc0c/sitPN8sRR1vY2I8hBwIlXGoSD3HgWbnlID1KpPxCqEyDs0MQu9koA1CYQ7NvIXnm0NF6o2DsjZwWju8ryulcc12B2yGjza57p652x5z90xEOuXumWEYRWAjqoVSD4xJ+300sM1nm0g72+4UkRGpPnQEsCvbm6vqXGAuwPTp04v+Xxw7dixr164FVfq/cT/V1dU5//jNnv2Roz/nCjxPH/EKh8OB6wVxARskHfX5HTr/JtMrUq8rni/HGdbXkf1ce2l7ORsPtcHCn+P0sL6uubUZEKaU7+WSqsFZ23od7xN1Efo4TbS8OpdDM28GEaZFdnNR1dC89dxCTNrSSOOrD6T0QkyP7OTCqmEF6T1S14sh8QYaXn3oqN6MyHZmVg0vSG/e5l6c0HqIA6/O49DMW0CE8yLbObcAvYQD8zb1YkTiAHtffbhT+rpSzlgv+d0zEVkqIkvjbY35bGoYRsDYVOGCWQKMF5GTRSQCfA54MaPNi8AXUzUDzgEOpm7utbfti8C1qZ+vBX7b0QcCUFlZSXV1teeFV756kydP7pJ6QdNRn5/pdQ29Ho71dVl4aXs59U0hbhnvMKcn9nVlZVzWu47VjPSV85rJE3XJUcbrJpQd1ZsTrWOVjvaV85pOevXgayeEj+pVR7ewQsd45rxm03MLMV0zIXJUb3a0nqV6kmfOazY9txDTVRN6pfRCfDS6lcV6kmfOayauaR1T4XDlhN6d1teVcsS1y9w9G9B7hF0WG0apUKz4UoGoakJEvgbMB8qAeaq6WkRuTq2/D3gJ+DhQCzQCX25v25T0D4GnReR6oA74TGcdU2VlJZHaSGB/+CorKwP9Ixq0XtB0xOdnel1Hr6difd3f4prWr6QKMfXUvu6MqrGMjTfzq81RIM7UgY6v7V3TenWqEJOr96GU3iMpvdMHeOtli7xx9aZWjWZMSzOP1SX1Jvb3p5dZPdjVm1Y1ilHNzTy5JconiHNKP396mdWDXb2zq0YyqqmZp+ujfHJknHF9vPXSTeucE4/V6+hzppTG9egdMGAryTtgV2e0eRH4WuoZ1hmk7p6JyO52tnXvnv2QTrx7ZhhG4diIauGo6kskL9jSX7sv7WcFvup329Tre4GLg91TwzCMwrG+7gMyTWtPp38EvnySf/OaaVozcasN+zGvfnJa3WrDfsyrn5xWt9qwH/PqJ6fVrTbsx7xmM62dSclOd1VNAO4dsLXA0+7dM/cOGslOJkby7tkDwK3tbZva5ofAbBF5D5id+t0wjC6KkKw54LUYhmEYRk/HTGt2XPP6WkbOayZeptUlV85rOn5Mq0u2nNdsen5zWrPlvGbT85vTmi3nNZNSm1Yo7Yir3T0zDMNyWg3DMAzDB2Za28dr5NWvaXVpb+TVcRzfptWlvZFXx3F8m1aX9kZeE47j27S6tDfyGk84JTetUNriTIZhGIAVZzIMwzCM9vjxyxvMtPog18jr7c+tAvybVpdsI6+O43DbszV5mVaXbCOvjuNwy9Mr8zKtLtlGXhOOw01PvZOXaXXJNvIaTzjc8OTykptWKPGIq2EYBmBxOIZhGIaRgx+/vIHVOw6ZafVJ+sjrpNXbeWX9bkQkb9Pqkj7yevraHfz23Z30j4a5aGBheukjr5M37OLJ5VsZ0T/K+UP2FKSXPvI6eeMe5r25maqhfZku+wrSSx95nbJxH3f/NcaUUQOY3La/IL0gMeNqGEbJsRHVnsXs2bPbXX9/3eJjsuOy4TgOodQVnJeeHzpSL2g6+/Mzvc7VM7oPQZwbP355Pat3NPDg1dMIB3CO9KS+bmZDM198dCkjBkR5+JrpwOSi9M7b38iXn1jOuMEV/OATU4DTi9I7Z+9hbnxqBROG9eV7Hz8NOK0ovQ/vauCrv1nJh0YM4J8/dipwalF607ce5BvP13D22EHc/tHxwPii9KD488V6ScMwSosCjnovhpFG0BdKXV0vaLr68ZqeYbgjrcGZVuhZ5+6PFmxgwgn9ONSc4A+rtxel5TgO//7ye5wxoj+7D8d5ZX3WtM389Ba8x9RRA6g/2MTrtYWNtrokHIcfvbyBD48ZxPt7DrN4U2GjrS7xhMN/LHyPc8YNYvWOQyzfEsxoa7Hni424GoZRcqxqcM8hqLvzPXWEKujPz/S6lp7RfSj2/9SdHjz3c1MDM63HE8V+frc/twoR4WefPoPdR+Lc8t8rALjs9BEF7cttz9bQPxrm+5edxs6GOLc+ndS7+NQTCtK75emVjOgf5TuXnsqWA838w7MrAbigamjeeu4zrVVD+3LHJePZtLeR25+v4Z8/diozxg3OW899pnXKqAF8Y9YpbNh9hDt++y7fnTORaWMG5a2XTrH/r2ZcARQk3hawaBvaOxKw5vFBZE/wp1V8cND/Px2DxoP/47JpZ/6dmBcTR+4IXLMoAqoqLCKXAj8jGTL/oKr+MGP9ROBXwDTgX1T1J6nXxwCPAicCDjBXVX8WyE4ZxxAKhViwYEG7beLxqGebIKa4HY8E/fmZXtfSM7oPxZwb6dWDI+GeealezOeXXj04FJrM8H5R7v3sVK7/9RLWrFmTM+c1m1565M1FA+OEQqczYkCUe66cyg2PL6GmpiZnzmsuPbd68PlD9hAKncZJgyv42aen8NWnlrFyZe6c11x6bvXg6bKPUOhUKof15aefmszXf/MOnzgxd85rNr30yJvJbfsJhcYzcXg/fnTFGXzz2RXt5rx2Rl/XM78NncSfVvyfUu+CYRwXBPGMq4iUAXeTzG+uB5aIyIuquiat2T7gNuCTGZsngG+q6nIR6QcsE5EFGdsahmEYRodikTfFkSvyZni/aLtROdloL6d1xIBozqic9vRyRd6cNLgiZ1ROe3q5Im8qh/XNGZWTi/ZyWicO75czKqczsa+EYRilRX0u3nwYqFXVmKrGgaeAK455K9VdqroEaM14fbuqLk/93ACsBUYVflCGYRiGkR9mWovDK6c1V1RONtozrS7ZonLa0/PKac0WldOenldOa7aonFy0Z1pdskXldDb2tTAMo6QIIKqeiw9GAVvSfq+nAPMpIuOAM4HF+W5rGIZhGIVgprU4vEyrix/z6se0uvgxr35Mq4sf8+rHtLr4Ma9+TKtLqc2rfTUMwyg9jo8FhorI0rTlxgwVyaKc1yRkEekLPAt8Q1UP5XUMhmEYhlEAZlqLw69pdWnPvOZjWl3aM6/5mFaX9sxrPqbVpT3zmo9pdSmlebWvh2EYpUVBHPVcgD2qOj1tmZuhVA+MSft9NLDN726ISDlJ0/q4qj5X7GEZhmEYhhdmWosjX9Pqks28agGm1SWbedUCTKtLNvOqBZhWl2zmVQswrS6lMq/2FTEMo8Rosqqw1+LNEmC8iJwsIhHgc8CLfjYUEQEeAtaq6k8LPhSjaGKxGPF4nFgsVupdOS4J+vMzva6lZ3QfYrEYTa1tbDzUZqa1AGKxGI0Jpbm5KW/T6pJuXv+8fh9NjqItjXmbVpd08/rKhj00OUp5vCFv0+qSbl5f3bCbJkfp03oob9Pqkm5e/7JhJ02OMjBxIG/T6pJuXt+s3dkpfZ19TQzDKDmi3osXqpoAvgbMJ1lc6WlVXS0iN4vIzQAicqKI1AO3A98WkXoR6Q+cD3wB+KiIrEgtH++gwzVyEIvFmD9/PolEgvnz59vFfp4E/fmZXtfSM7oPsViM37+5CkVg4d1s2mTnRj7EYjGe2dkfHIeWV+YW9d3qH4GLdAPvJIaB49D4ygNF6Q2MwIW6gaWtw8FxaHjloaL0hvSCj2gtb7eOAKeNA6/MK0pveBRm6vv8T+soaGtj7ysPF6U3sjfM0BivNw7tlL7O4nAMwyg9AeW4qupLwEsZr92X9vMOklOIM/kr2Z+RNTqRuro6EokExI+QSCSoq6ujsrKy1Lt13HD08xPh0Pk38XxzmEht9jzx++s+qD0Wj0eztonHq0icPw7CEdMrRk/EzmfjGOrq6tADW0Gh6ZQL7NzIkz8dPhFohFCIQxd8leebKfi76jjQ7IwHcSBUxqGP3MrzzdLF9E4B2iAUDkivMqlXFubQzCD0ToayBDiJDu/rzLgahlFaNNm/G8bYsWNZu3YtRPoQDocZO3ZsqXfpuOLo56dK/zfup7q6OufFw+zZHzn6c67AeHfE8ND5N5lekXp2PhvpuN/V5kQzzgnj2VsxrtS7dNzwRF2EaLQNeeMRDp1/EyLCGdGDVFcNzNq+ve+qW4hJWxppfPUBDs28GRCmlO/lkqrBBek9UteLIfEGGl59KKknwrTIbi6qGlqQ3rzNvTih9RAHXp2X0gsxPbKTC6uG5a3nFmIakTjA3lcfPqo3I7KdmVXDC9J7cFMvRif2sevVRzulr7OpwoZhlB5HvRej21NZWUl1dTXhcLhd02BkJ+jPz/S6lp7RfUg/Nz7Zt57dZYN5eWd5qXery+MWYrpuQtnRz+/y3nWslxNZtq8sL6306sHXTkh+R8NlZVzWu47VjPTMec2m5xZiumZC5KjenGgdq3S0Z85rNj23ENNVE3od1auObmGFjvHMec0kvXrwlRN6H9WbHa1nqZ7kmfOaTe/BTb2o6uPw6Ql9Oq2vM+NqGEbJCSjH1egGVFZWEolE7CK/QIL+/Eyva+kZ3Qf33JhQVclXTm6h9nDIzGs7ZFYPdj+/SVUncd24Zt7YV+7bvGaLvHH1zqga65nzmk0vs3qwq/ehqrGeOa/Z9DKrB7t6U6tGe+a8ZpIt8sbVm1Y1yjPnNZuea1ovGX6sXkf3dSUxriIyWEQWiMh7qX8H5Wh3qYisF5FaEbnTa3sRGSIir4rIYRH5ZWcdj2EYRRJMVWHDMAzDOO4IhzDz2g5ekTd9w/g2r35yWtvLec2m5xV5017OazY9r8ib9nJeM/GT09pezms2vUzT2pmUasT1TuAVVR0PvJL6/RhEpAy4G5gDTAKuEpFJHts3A/8KfKtjd98wjMBQwPGxGIZhGEY3xcxrdvzmtPoxr35Mq4sf8+rHtLr4Ma9+TKuLH/Pqx7S6+DGvpTatUDrjegXwSOrnR4BPZmnzYaBWVWOqGgeeSm2Xc3tVPaKqfyVpYA3DOA4QvKcJ21RhwzAMo7tj5vVY/JpWl/bMq+M4vk2rS3vm1XEc36bVpT3zmnAc36bVpT3zGk84vk2rS3vmNZ5wSm5aoXTGdbiqbgdI/XtCljajgC1pv9enXvO7fbuIyI0islRElsbbGvPd3DCMILGpwoZhGIZh5jXF7c+tAvybVpds5tVxHG57tiYv0+qSzbw6jsMtT6/My7S6ZDOvCcfhpqfeycu0umQzr/GEww1PLs/LtLpkM6/xhMN1TywruWmFDozDEZGXgROzrPoXvxJZXgvs6lVV5wJzAQZER9hVsWGUCgXa7CtoGIZhGPCBeX1wYy/ufv19vnrBKaXepU7l9udWISJ5m1YX17zO2xTl2XfqebV2L/2jYS4aWJiea15/tTnKae9u43fv7mRE/yjnD9lTkJ5rXh/ZHGXS2h389ztbqRral+myryA917w+Vhfl9HW7eGRJHVNGDWBy2/6C9Fzz+uSWKGe8v4f73tjIueMGM6HlQEF6QdJhxlVVL8m1TkR2isgIVd0uIiOAXVma1QNj0n4fDWxL/exne8MwjhNsKnDPYvbs2e2uv79u8THZcdlwHIdQqGcWxg/68zO9rqVndB+KPTcuTjh8+fFlAD3GvLqm9f99ajIwud22Xp/fRxqa+fyjSxk1sDe//MwU4PSi9M472Mi1jy2nckgF3/v4acBpRemds7+R659YzmnD+/LPHzsVOLUovbN3H+bm/17B1FH9uf2j44HxRelN39HA159ZyTnjBqXOv/bPwc7o60rVS74IXJv6+Vrgt1naLAHGi8jJIhIBPpfazu/2hmEcL9hUYSNP7CK/OIL+/Eyva+kZ3YNIOMSvPn8Wb27cx92vv1/q3elwjjWtxeE4Dt/703omjxzAweZWnl+5zXsjL70/rmfamIHsOhznD6u3F6WXcBy+98e1nDNuEHX7m3llfXFjcPGEw//50zpmVg7hvT1HeL22sNHgdL3v/3kdF40fSs22QyzeVNhocCbF9nUdNuLqwQ+Bp0XkeqAO+AyAiIwEHlTVj6tqQkS+BswHyoB5qrq6ve1TGpuA/kBERD4JfExV13TOYRmGkT9mTHsSQY0suTqmZ3rdSc/oPgT1fxoOwbzPnxXYyGtX/S64pvXHV5x+jG6h+3TbszX0j4b5/mWncaApwQ1PLgfgU1NGFqR3y9MrGdE/yncuPZXdR+Lc8t8rALjs9BF567nPtFYN7csdl4xnZ0OcW59O6l18at5le44+0zpl1AC+MesUthxo5h+eXQnABVVDC9K77ollnDtuMLfMPJlNexu5/fka/vljpzJj3OC89dIp9jwpiXFV1b3AxVle3wZ8PO33l4CX/G6fWjcusB01DKPjUcy49iBCoRALFixot008HvVs407B86Pnh+6kF/TnZ3qdp2d0H4I8NyIh+NXnz+KqB/9KXd2WogrkdMW+Lr16cCg02bdets8vPfLmooFxQqHTGdwnwgNXTePaRxezft06zhrclpeeWz34/CF7CIVOY3i/KPd+dirX/3oJa9asYerA7Jl9ufTc6sHTZR+h0KmMGBDlniuncsPjS6ipqeH0Af710iNvJrftJxQaz0mDK/jZp6fw1aeWsXJlnIn989NzqwdPaDlAKHQKlcP68tNPTebrv3mHT5wY55R+/vUyKbavK9WIa9eiLQH7DgQq6Rw+QnXvLwSr2XJ8pPyc1AGau247L3DNhsrgw0GdaPCabYeCryq4uml04JpFYTmthmEYhpGTSDh0tGATlJe8umtQ5Bt50x7t5bQO7hM5WrAJyGleM/VyRd4M7xc9WrAJ4jnNa6ZersibEQOiRws2QTyneU2nvZzWkwZXHC3YBLnNa6ZersibymF9jxZs+gS5zWtHY/NSDMMoOeI4nothGIZh9GS6W1ROZ5lWl/ZyXrPpeeW0tpfzmk3PK6e1vZzXTNozrS7t5bxm0/PKaW0v57WzMONqGEZpUcBR78UwDMMwejjdxbx2tml18WNe/ZhWFz/m1Y9pdfFjXv2YVhc/5tWPaXUptXk142oYRonxUVHYnoE1DMMwDOD4N6+lMq0u7ZnXfEyrS3vmNR/T6tKeec3HtLq0Z17zMa0upTSvZlwNwyg9ZlwNwzAMwzfHq3kN0rRqAabVJZt51QJMq0s286oFmFaXbOZVCzCtLtnMqxZgWl1KZV7NuBqGUXrMuBopYrEY8XicWCwWmN6iRYt6lF7Qn5/pdR09o/sQxLmRbl6f3XCky/dN96xqpLm5KRDTWlsbo8lRtKUxb9Pqkm5e/7j+AE2OUh5vyNu0uqSb1z+v30eTo/RpPZS3aXVJN6+vbNhDk6MMTBzI27S6pJvXhRt20+QowxL7Ci70lW5e/1q7s1P6OjOuhmGUFlVoa/NejG5PLBZj/vz5JBIJ5s+fX/QfQFevpqamR+kF/fmZXtfQM7oPQZ4b4RB8VNcSO9jGyrXvddm+6Q+LV3Ok4RAtr8wNRO+lZRvAcWh85YGi9PqG4RLWs6qpApw2Gl55qCi9/hG4WDbwTlNfcNo48Mq8ovQGRuAi2cDSxv7Q1sbeVx4uSm9IL7hQalnSOBDaEux65dGi9IZH4QJ5nzf3lndKXydqIxkMKB+m5w38dKCazuEjgerB8ROH0xH05DicDqE8+O/95uvuWKaq0/PdbkCv4XreiKs92/1p838VpG90DtOnT9elS5f6apsr523RokXU1NTQeO6XINKHcDhMJBLJ2jb99Xg8+932eDxOIpGA+JGepScCqqbXVfTiR6h482EmT57MrFmzsrb1k20oItYHdgGsr+tCel39u9/T9ALq6yB3f2c5roZhlBa3qnAAiMilwM+AMuBBVf1hxvqJwK+AacC/qOpP0tbNAy4HdqnqGYHskJEXY8eOZe3atVS8+TDhcJjq6moqKyuztp09+yNHf851cZg+qmF6pldqvbFjx2ZtZ/Q8rK8zve6s15F9nRlXwzBKTwAzP0SkDLgbmA3UA0tE5EVVXZPWbB9wG/DJLBIPA78EHi16Z4yCqKyspLq6mrq6OsaOHZvzD6npmV5P1DO6D139XDM90yulXnuYcTUMo/QE88jCh4FaVY0BiMhTwBXAUeOqqruAXSJy2d/ugr4uIuOC2BGjcCorKwP9o2d6pted9IzuQ1c/10zP9EqplwsrzmQYRokJLMd1FLAl7ff61GvdEhEZLCILROS91L+DcrS7VETWi0itiNzptb2IzBaRZSJSk/r3o511TIZhGJlYX2cYhosZV8MwSovit6rwUBFZmrbcmKEkOdS7K3cCr6jqeOCV1O/HkDZ9eg4wCbhKRCZ5bL8H+ISqTgauBX7doUdhGIbRPtbXGYYBmHE1DKMr4G/EdY+qTk9b5mao1ANj0n4fDWzrrEMoAVcAj6R+foTsz+0enT6tqnHAnT6dc3tVfUdV3c9tNRAVkV6B771hGIY/rK8zDAMw42oYRsnRZFVhr8WbJcB4ETlZRCLA54AXO3TXS8twVd0OkPr3hCxt2ps+7Wf7TwPvqGpLYHttGIaRH9bXGYYBWHEmwzBKjYJq8fm3qpoQka8B80nG4cxT1dUicnNq/X0iciKwFOgPOCLyDWCSqh4SkSeBWSSnJNcD31XVh4resSIQkZeBE7Os+he/Elle83UXQEROB34EfKydNjcCNwIW9WEYRsFYX2cYhh9Eg6nmmd+bigwG/hsYB2wCrlTV/VnaZc1kzLW9iMwGfghEgDjwj6q60Gt/BpQP0/MGfrro40rHOXwkUD0Ap6U5cM3jhV23nRe4ZkNl8WYpEycavGaHUB78937zdXdkDYv2YkB4mJ7b/5Oe7ebvf7Ag/e6KiKwHZqnqdhEZASxS1VMz2pwLfE9Vq1O//zOAqv57e9v//+3da4xdVRXA8f+qpCJQ+rAtlEB4SHgkmjRYSjCCUJRgMWji44MamkZDMJHoB8IzJBpJLGBCIH5QgtEmxhhsQEpAKA8lRkOxhZZSoQFkeBXBChWNEYKz/HD2yDC5c3tnuOfec2b+v2Tn7rnn7DNrdc7s6b7n7H0i4nDgAWBtZv6hl3hWrFiRW7Zs6Vt++zI6OsqcOf27acjjebymHy8iZmUfaF/X/nPX43m8qR5vsv5uWLcKO9FeUiWz18WZ9G4bqfo5yuvtHfbpdvt0x/YRsQC4E7i81//IDUM//5B6PI830443w9jXeTyP5/Gq9n2KY6qcaC/pHf15HM5ssw74VEQ8BYzdbUJEHBYRd0F1+zQwdvv0E8AtmbmzW/uy/7HAVRGxrZROc8IkaRDs6yQBw5vj+q6J8pN0FJ0m2p8yhfZOtJdaIkdbcot1g2Tm34GzOry/G1g97uu7gLum0P5q4Oq+BitJ02RfJ2lMbQPXNk2033/OQT2GJKn/vKIqSZKk7mobuGbmJyfbFhGvRMSycRPlX+2wW7dnMk7avky0vw04PzOf6RLfTcBNUC3O1Gtekvos6fVxN5IkSZqlhnWr8NhE+XX0MNEeeIlqov2Xu7Wf7kT7N97es+fuPT9+blqZNMdiqsWp2q5zHjdsGHwk781M+XlA77kcOe3v0IfH4UiSJGnmGtbAdR1wS0R8DXge+CJUE+2pHnuzerJnMnZrz7sn2l9V3js7Mztd0f2/zFzSx9yGIiK2zIRl8s2jeerOJTNJVw2WJElSF0MZuDrRXtJ46a3CkiRJ6mJYV1wlCYB/8vo9943esriHXWfKrdcz0tatW/dExGRTLtp+67zxD5fxV6Y/HUN9Y1/XaMY/XP2Mv2N/58B15rhp2AH0iXk0T625ZOY5dR5fg9FtykXbb503/uEyfjWJfV1zGf9wDSL+OXUeXINTVkluPfNonpmUiyRJktrJgaskSZIkqdEcuDZQRIxExI6I2BYRWzpsnx8Rd0TE9ojYGRFrp9D24ojIiOhlTmEj84iIiyJiV2lzbd151JVLRCyPiIfG3o+IlQ3PY0FEbIiIJyPiiYg4tby/KCLujYinyuvCuvNQ67T9qr3xD5fxqy3a/rM2/uEy/n2ITFfzbJqIGAFWZGbHCc4RcQUwPzMvjYglwC7g0Mx8q1vbiDgCuBk4AfjoZMfvlzryiIgzgSuBczPzzYhYuq/HHfVDTblsAq7PzN9ExGrgksw8o8F5rAd+n5k3R8Rc4IDM3Fs+PHgtM9dFxGXAwsy8tM48JEmSNLt4xbWdEpgXEQEcBLwGvN1Du+uBS0r7JphOHt8A1mXmmwCDGLT2aDq5JHBwqc8HdtcXXs865hERBwOnAz8ByMy3MnNvafNZYH2prwc+N8iAJUmSNPM5cG2mBDZFxNaIuKDD9h8CJ1INdHYA38rM0W5tI+I84KXM3F5z7OP1PQ/gOOC0iNgcEQ9GxMl1JjBOHbl8G7guIl4AfgBcXlv075huHscAfwN+GhGPRsTNEXFgaXNIZr4MUF6X1p6FJEmSZpfMtDSsAIeV16XAduD0Cdu/QHX1NIBjgWeBgydrCxwAbKa6BRRgBFjctjzK148DN5Y2K0ubaGkuNwKfL/UvAfc1NQ9gBdUV5FPKfjcA3yv1vROO8XrdeViGV0r/sQPYBmzpsH0+cEc5v3YCa/fVFrgOeBJ4DLgNWNCm+Mdtv5jqw6Ha+te64gcuopoasBO4tk3xA8uBh8beB1Y2NP4FwIZyrj8BnFreXwTcCzxVXhfWFb9l6Oeqfd2Q48e+bhDxL6Cmvq6WZC19PXG+A1w84b07gdPGff1Ap5N3rC3wEeDVchKOUA1Anqeau9iaPEr9buCMcdueAZa07WdS6v/gnXnmAbzR1DyAQ4GRce+fBtxZ6ruAZaW+DNg1yDwsgy3s44Mv4ArgmlJfQnW7+dxubYGzgf1K/Zqx9m2Jv2w7ArgHeK7b8ZsYP3AmcB/w/vL10pbFvwn4dKmvBn7X0PjXA18v9bmUQQtwLXBZqV9W5/lvGdjP2r6ugfHb1w0s/tr6Om8VbpiIODAi5o3VqTq5xyfs9jxwVtnnEOB44C+Ttc3MHZm5NDOPysyjgBeBkzLzr23Ko7T5NbCqbDuO6hei7kWm6splN/CJUl9F9QlUI/Mo58oLEXF82e8s4M+lvhFYU+prgNtrS0JtkExxvndmbsrMsX0eAg6vN8Suphx/cT3NWENgOvE3ae2A6cSfNGe9gI7xu07AjGRfN1z2dbOxr6trpG6Z9iccx1Bddh+79H5lef9C4MJSP4zqU5cdVAOPr3Zr2+F7jFDzrcJ15UE1UP152f8RYFVbfybAx4GtZdtmqpWeG5lH2bac6taUx6g+QFhY3v8gcD/VwPt+YNGwf48stZ5Hz5bfva3ABR22zwN+C7wM/ItqBfCe2pZ97hh/3rUhfuA84IZSr7V/rSn+bcB3Sz/0IHByy+I/kepDtxeAl4AjmxZ/6T8fBn4GPEq1wv+BZdveCcd4va74LcM9Vye0t68bfPz2dTXHX3dfV0uyFovFYpmZhRrme49reyXVvK/a5q33O34GvIZAHf/+DHDtgJriH9h6AdONH9cJaF2xr7Ova2D8s76v81ZhSVLPMnN3eX2V6j9eKyfssha4NStPU/0xO2FfbSNiDfAZ4CtZ/qK1JP4PAUcD28tzkg8HHomIQ1sSP1TTR8baPAyMAotbFP8a4NZS/1WHYzYh/heBFzNzc9lvA3BSqb8SEcsAymtTHvM2q9nX2dc1MP5Z39c5cJUk9aSu+d4RcQ5wKXBeZv67TfHnANcQaPvaAW1fL8B1AmYP+zr7uobGb1831Uu0FovFYpmdhfrmez9NNWdnWyk/alP8E77HCDXdPlfjv/9A1g6oMf6BrBfwXuIv25bjOgGtKDWeq/Z1w/33t6+rOf6ybTk19XVjj+KQJEmSJKmRvFVYkiRJktRoDlwlSZIkSY3mwFWSJEmS1GgOXNVoEXFyRDwWEfuXVc52RsSHhx2XJEmSpMFxcSY1XkRcDewPfIDq2VDfH3JIkiRJkgbIgasaLyLmAn8C/gN8LDP/O+SQJEmSJA2QtwqrDRYBBwHzqK68SpIkSZpFvOKqxouIjcAvgaOBZZn5zSGHJEmSJGmA9ht2AFI3EXE+8HZm/iIi3gf8MSJWZeYDw45NkiRJ0mB4xVWSJEmS1GjOcZUkSZIkNZoDV0mSJElSozlwlSRJkiQ1mgNXSZIkSVKjOXCVJEmSJDWaA1dJkiRJUqM5cJUkSZIkNZoDV0mSJElSo/0PZGKBUeQImgYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "f,ax = plt.subplots(1,3,figsize=(4*4,4), subplot_kw=dict(aspect='equal'))\n", + "da_s.where(da_s.values>da_s.attrs[\"nodatavals\"][0]).plot(ax=ax[0])\n", + "ax[0].set_title(\"Sliced raster\")\n", + "splot.plot_spatial_weights(w_rook, data=da_s, ax=ax[1])\n", + "ax[1].set_title(\"Rook contiguity\")\n", + "splot.plot_spatial_weights(w_queen, data=da_s, ax=ax[2])\n", + "ax[2].set_title(\"Queen contiguity\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### `higher_order` neighbors\n", + "\n", + "In some cases `Rook` and `Queen` contiguities don't provide sufficient neighbors when performing spatial analysis on a raster data, this is because `Rook` contiguity provides max 4 neighbors and `Queen` provides max 8.\n", + "\n", + "Therefore we've added `higher_order` functionality inside the builder method. We can now pass `k` value to the weight builder to obtain upto kth order neighbors. Since this can be computionally expensive we can take advantage of parallel processing using `n_jobs` argument. Now lets take a look at this functionality." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# Building a test DataArray \n", + "da_s = raster.testDataArray((1,5,10), rand=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below we can see that builder selected all the neighbors of order less than equal to 2, with `rook` contiguity" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/anaconda/lib/python3.8/site-packages/scipy/sparse/_index.py:124: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.\n", + " self._set_arrayXarray(i, j, x)\n" + ] + }, + { + "data": { + "text/plain": [ + "(
, )" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAFPCAYAAACcQ8AlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAArU0lEQVR4nO3df3TcdZ3v8dd7kkzSlhZKmxb6YxpGilB+l6yoC15RswEWl4IKFcHCehbcXXR3r/cc8bK7eo7LPVfdXV31iuKKtKwIVEDrIoSAFkUQDFD6u7Qd2mmaNpS2tKF0Mp3O5/6RiYaQNEln5vvz+TgnJ5PvJDPvz/fz+Wbe+c7MK+acEwAAAKov4XcBAAAAcUHjBQAA4BEaLwAAAI/QeAEAAHiExgsAAMAjtX4XMFpTp051TU1NfpcBAAAwoueff/4151zj4O2habyamprU0dHhdxkAAAAjMrOtQ23nqUYAAACP0HgBAAB4hMYLAADAIzReAAAAHqHxAgAA8AiNFwAAgEdovAAAADxC4wUAAOARGi8AAACP0HgBAAB4hMYLAADAIzReAAAAHqHxiqhiseh3CUdluLqjNh4ET1jnKqx1j0VYxxjWukcrrOPzu+5aX+8dVZNIJNTe3u53GWPW0tIy5PaojQfBwxoLLuYmmJiXo8MZLwAAAI/QeAEAAHiExgsAAMAjNF4AAAAeofECAADwSEUaLzO708xeNbPVA7Ydb2btZrax9HnygOu+YGabzGyDmbVWogYAAICgq9QZr7skXTxo2y2SnnDOzZX0ROlrmdk8SQslnV76me+YWU2F6gAAAAisijRezrlfS9ozaPPlkhaXLi+WtGDA9nudc73OuVckbZL0rkrUAQAAEGTVfI3XdOfcDkkqfZ5W2j5T0rYB39dZ2gYAABBpfry43obY5ob8RrMbzazDzDp27dpV5bIAAACqq5qNV7eZnShJpc+vlrZ3Spo94PtmSeoa6gacc3c455qdc82NjY1VLBUAAKD6qtl4LZO0qHR5kaSfDdi+0MzqzewkSXMlPVfFOgAAAAKhIv8k28x+LOn9kqaaWaekL0r6v5LuN7NPScpK+pgkOefWmNn9ktZKKkj6W+fc4UrUAQAAEGQVabyccx8f5qoPDvP9t0m6rRL3DQAAEBYk1wMAAHiExgsAAMAjNF4AAAAeofECAADwCI0XAACARyryrkbERyaTUTabVSqVUjqd9rucskVtPAge1lhwMTfBFPV54YwXRi2TyaitrU2rVq1SW1ubMpmM3yWVJWrjQfCwxoKLuQmmOMwLZ7wwatlsVoVCQYUTTlPuxHlq75moKZ3Jit7H8p+vGfa6116r7H3t7mnUG2dertoda6Wd65TNZiP51xX803/MSFKhUGCNBQhzE0zZbFYHTn6/ihOna9zvfxTJeaHxwqilUimtW7dO2rlODa9tVEtrq9KzJlb0PlpaTh/2uvb29oreVya/S21Pt6lQKKi2tlapVKqitw/0HzOsseBhboLpzZnnqvjmBDlLRHZeaLwwaul0Wq2trZF57j1q40HwsMaCi7kJnvX7E9qk6bpswno9ku+bnyjOC40XxiSdTkfqQIjaeBA8rLHgYm6CY/tB06PdSV2XymlKfZOe2JSM7Nzw4noAAOCbvXlpaWe9rpyR15R6v6upPhovAADgi1xBujvboJZpeaUmFP0uxxM0XgAAwHOFovTDrfVqnnxIpx8bj6ZLovECAAAeKxalu7fWq2l8Ue+dctjvcjxF4wUAADz1QFdS42qdLjnxkN+leI7GCwAAeOax7jrtO2S6ambe71J8QeMFAAA88ezuGm3sqdH1c3qViGkHEtNhAwAAL63fn9Cze+p0Q1NOtTHuPmI8dAAA4IX+gNRPpHIaH/PodhovAABQNXELSB0JjRcAAKiKOAakjoTGCwAAVFxcA1JHQuMFAAAqKs4BqSOh8QIAABUV54DUkdB4AQCAiol7QOpIaLwAAEBFEJA6MnYLAAAo2/r9Cf2OgNQRsWsAAEBZ+gNSryUgdUQ0XgAA4KgRkDo25pzzu4ZRaW5udh0dHX6XgSorFotKROiFAVEbD4KHNRZccZibN3IFLfqvDv31BWl96NRpFbvdj/7gWf3kU+dX7PYG8mpezOx551zz4O3RXhEInaj9koraeBA8rLHgivrc5AtF3XjvC7ri7BkVbbqqze95ifaqAAAAFVcsFvWZpSt03uzJuvZPUn6XEyo0XgAAYEz+8eF1mjSuTp/74Fy/Swkd3nsAAABG7ZvLN6m7J6fvLzzX71JCicYLAACMyn0vdOrpV/ZoyXXNvr9WKqxovAAAwIiWb9yl+17o1J3XzFeShNSjxp4DAABHtGbHPn3jV5v0Hx85S8eNT/pdTqjReAEAgGFtf/2gbv35Wn3p0nmaPXm83+WEHo0XAAAY0hu5gj77k5d08/veoXNmHet3OZFA4wUAAN4mrAGpQUfjBQAA3oKA1Oqh8RqgWCz6XcJRCWvdCL+wrr2w1j0WYR1jWOserbCMb3BA6lB1h2Usg/ldN3ESAyQSCbW3t/tdxpi1tLT4XQJiimMmuJibYArDvDzWXafsmwn95ZxetbfvlDT0vFRzLPl8Q9Vu2+81xhkvAAAgSXp2d4029tTo+jm9Ih+1OtitAABA6/cn9Ls9dbqhKSfyUauHXQsAQMxtP2h6tDupa1M5jedFSFVF4wUAQIztzUtLO+t15Yy8ptT7XU300XgBABBTuYJ0d7ZBLdPySk0I57sUw4bGCwCAGCoUpR9urVfz5EM6/ViaLq/QeAEAEDPFonT31no1jS/qvVMO+11OrNB4AQAQMw90JTWu1umSEw/5XUrs0HgBABAjj3XXad8h01Uz836XEks0XgAAxAQBqf5jtwMAEAMEpAZD1WPSzGyLpB5JhyUVnHPNZna8pPskNUnaIukq59zeatcCAEAc9QekXkdAqu+86nkvcs6d45xrLn19i6QnnHNzJT1R+hoAAFQYAanB4tfJxsslLS5dXixpgU91AAAQWQSkBo8XjZeT9JiZPW9mN5a2TXfO7ZCk0udpHtQBAEBsEJAaTF480/unzrkuM5smqd3M1o/2B0uN2o2SlEqlqlUfAACRQkBqcFX9jJdzrqv0+VVJD0l6l6RuMztRkkqfXx3mZ+9wzjU755obGxurXSoAAJFAQGpwVbXxMrMJZjax/7KkP5O0WtIySYtK37ZI0s+qWQcAAHFBQGqwVfupxumSHjKz/vu6xzn3qJn9XtL9ZvYpSVlJH6tyHQAARF5/QOpN6RwBqQFV1cbLOZeRdPYQ23dL+mA17ztIMpmMstmsUqmU0um03+UAgccxE1zMTTBlMhm90J3XtuPP1E3vCHdAaiaTUT5/sjKZTCTXWIinJhwymYza2tq0atUqtbW1KZPJ+F0SEGgcM8HF3ARTJpPRI7/6jTZPPE11zyzRzmx45yWTyeiR9l+pUChEdo2RX1tl2WxWhUJBklQoFJTNZiPZwQOVwjETXMxNMGWzWRXf3C85pwPzr9ZDuVolNyUreh/fyz475PZ8vqGi99ObP1mH33ealD8Q2TVG41VlqVRK69atU6FQUG1tLbEYwAg4ZoKLuQmm/nlRXb0m/eobam1trXiz0tJy4ZDb29vbK3o/d2yQenasU3LVw5FdYzReVZZOp9Xa2sprIoBR4pgJLuYmmPrnZWneqtJ0eeWBzjodM870oZSU1ZmRXWM0Xh5Ip9ORXDxAtXDMBBdzE0zpdFraoNDOzePdddqTT+hTTb1KJKK9xnhxPQAA8E3Hnhpt6KnRDU29sYjAiMEQAQBAEL3ck9Bvd9fp+qZwR2CMRUyGCQAAgqTroPSLnUldMzunCTF64RONFwAA8NS+vLS0s0ELZuTVWNlEisCj8QIAAJ7JFaQl2QZd1JhX04Si3+V4jsYLAAB4oliU7tpar3OPK+is4+LXdEk0XgAAwCNLsknNGlfUBVMLfpfiGxovAABQdQ901imZkC6bccjvUnxF4wUAAKqqPyB14ay836X4jsYLAABUTdwCUkfCLgAAAFURx4DUkbAbAABAxcU1IHUkNF4AAKCi4hyQOhIaLwAAUDFxD0gdCY0XAACoCAJSR0bjBQAAKoKA1JHReAEAgLIRkDo6NF4AAKAsBKSOHo0XAAA4av0BqYsISB0Vc875XcOoNDc3u46ODr/LCKRisagEqx0YNY6Z4GJujl7Lt59S+80XVOW2h5uXpza/pn/75Sbd+Yn5mjw+WZX7rjSv1piZPe+cax68ndUdAfySAsaGYya4mJtgGmpe1nf36GtPbNTXrzwzNE2X5P8aY4UDAIAx2bk/p1uWrdYXLzlVTVMm+F1OqNB4AQCAUTuQL+jmpS/p0xekNX/2ZL/LCR0aLwAAMCqFYlE3/fhFffiME3TxadP9LieUaLwAAMCofGbpSzpzxiQtOn+O36WEFo0XAAAY0T89vFbj6mr0+ZZ3+l1KqNX6XQAAAAi27/xmszr3HtQPrjnX71JCj8YLAAAM68GXtuvJjbu1+Nr5vkcxRAGNFwAAGNJTm1/T3c9t052fmK+GJC1DJdC6AgCAtwlrQGrQ0XgBAIC3ICC1emi8AI8Vi0W/SzgqYa17tMI6vrDWHVdhmK+hAlLDUHdY8IQt4LFEIqH29na/yxizlpYWv0uoKuYFXqjmOnNqKPu2i0Xpjlfqdcaxh1XTuVLtnX3bWWeVwxkvAAAgSVqSTWrWuKIumFrwu5TIovECAAB6oLNOyYR02YxDfpcSaTReAADE3OPdddqTT2jhrLzfpUQejRcAADHWsadGG3pqtKipV+SjVh+7GACAmHq5J6Hf7q7ToqacknQEnmA3AwAQQ10HpV/sTOqa2TkdQ8aBZ2i8AACImX15aWlngxbMyKuxwe9q4oXGCwCAGMkVpCXZBl3UmFfTBIJRvUbjBQBATBSL0l1b63XucQWddRxNlx9ovAAAiAkCUv1H4wUAQAwQkBoMNF4AAEQcAanBQeMFAECEEZAaLEwBAAARRUBq8DANAABEEAGpwUTjBQBAxBCQGlw0XgAARAgBqcHmW+NlZheb2QYz22Rmt/hVBwAAUUFAavD50niZWY2k/yfpEknzJH3czOb5UQsAAFFBQGrw+XXG612SNjnnMs65vKR7JV3uUy1AJGQyGS1fvlyZTMbvUjAA8wIvZDIZyUmHe3MEpAacX43XTEnbBnzdWdoG4ChkMhm1tbVp1apVamtr40E+IJgXeCGTyejBTK8kKffL77HOAs6vxsuG2Obe9k1mN5pZh5l17Nq1y4OygHDKZrMqFPqeWigUCspmsz5XBIl5gTeefc10uHGuJCk35z2ss4Dzq/HqlDR7wNezJHUN/ibn3B3OuWbnXHNjY6NnxQFhk0qlVFvbF9RTW1urVCrlc0WQmBdU38s9Ce089hQd8/sfSZIOzz5LhZln+VwVjsSvSLXfS5prZidJ2i5poaRrfKoFCL10Oq3W1lZls1mlUiml02m/S4KYF1RXf0DqtXNy6qm7UEvz0qXjOvWEO0XpA3mliZIIJF8aL+dcwcxultQmqUbSnc65NX7UAkRFOp3mgT2AmBdUw+CA1MZ0WtognXFySlNzOd27rUEfn53TdMJTA8e3HC/n3C+cc6c4597hnLvNrzoAAAiTkQJST2iQ/vyEvO7d1qAeUiUCh+R6AABCYrQBqXMnFnXB1ENavKVBeZ5xDBQaLwAAQmIsAannTT6seZMKumtLvYo0X4FB4wUAQAg82FmnZEJjCkj9wLSCGuuLuqczWcXKMBY0XgAABNzj3XXanU9o4az8mH/2ipmHdLgo/byrrgqVYaxovAAACLCOPTXa0FOjRU29Shzlo/Z1qby6cgk9ucuvFCn0o/ECACCgXu5J6Le767SoKadkGY/YiYR0Q1OvVu6r1YrXeej3E3sfAIAA6g9IvWZ2TsdU4ERVMiEtSuX05K6kMgd4+PcLex4AgIAZHJBaKZOS0tWzc1rWlVR3rnK3i9Gj8QIAIEBGCkgtFwGr/qLxAgAgIEYbkFouAlb9Q+MFAEBAjCUgtVwErPqDxgsAgAA4moDUchGw6j0aLwAAfFZOQGq5CFj1Fo0XAAA+qkRAarkIWPUOjRcAAD6pVEBquQhY9Q57FwAAH1Q6ILVcBKx6gz0LAIDHqhWQWi4CVquPxgsAAA9VOyC1XASsVlcATm4C8dPS0uJ3CWNWLBaV8OuVvx5hXlBthWJR9716nK48d5quf/ecit72VzY8VbE13CJpxsou3dOxTUuuPY91VkHsRQCjwi/dYGJewuWzS1fqjBmTKt50VcOCs2boA6c06qb7VvhdSqRwxAIA4IF/fnitGuoSuqXlnX6XMmqfviCt9JQJ+p8Prfa7lMig8QIAoMq+85vN2rb3oP51wRl+lzJmX7z0NB06XNT/eWy936VEAo0XAABV9OBL2/Xkxt26/aqzQ/vU8H989Cyt2/mG7vzdFr9LCb1wrgAAAELgqc2v6e7ntun2q89RQzK872erTST0vYXn6JE13Xp4zQ6/ywk1Gi8AAKpgfXePvvbERn39yjN1/ITw/xPq8claffuqs/X9p7eoY+tev8sJLRovAAAqbOf+nG5ZtlpfvORUNU2Z4Hc5FTN9YoO+evkZ+nLbemV2veF3OaFE4wUAQAUdyBd089KX9OkL0po/e7Lf5VTcKdMm6paWU/S5n67Wa2/0+l1O6NB4AQBQIYViUTf9+EVddvoJuvi06X6XUzXvOWmKFp2f0t/cv0K5PPH2Y0HjBQBAhYQpILVcAwNWi8Xg/eujoKLxAnDUwvrLNqx1j0VYxzhU3WEZy+CA1DCPZbDhxhLGgFW/5yC8720F4LtEIqH29na/yxizMP5PxrGK0tyEYSyPd9fplQMJfaqp9w+1ej+Whqrd9pHG8t46afH2pD67eLk+PONQVe6/kvw+/jnjBQBAGTr21GhDT40WNfUqpPmoZbsulVdXLqEnd3E+ZyQxXSIAAJTv5Z6Efru7TouackrG+BE1kZBuaOrVyn21WvF6jHfEKLB3AAA4Cl0HpV/sTOqa2Tkdw4keJRPSolROT+5KKnOA9mI47BkAAMZoX15a2tmgBTPyamzwu5rgmJSUrp6d07KupHbl/K4mmGi8AAAYg1xBWpJt0EWNeTVNCOe7FKvphAbpz0/I655tDeoh4uttaLwAABilYlG6a2u9zjm2oLOOo+kaztyJRV0w9ZAWb2lQnt30FjReAACM0pJsUjPHFXVhI6dyRnLe5MOaN6mgu7bUK6TxZVVB4wUAwCg82FmnuoRCkVUVFB+YVlBjfVH3dCb9LiUwaLwAABjB49112p1P6OOz8n6XEjpXzDykw0Xp5111fpcSCDReAAAcAQGp5SNg9Y9YQgAADIOA1MogYPWP4j16AACGQUBqZRGw2ie+IwcAYBgEpFYHAas0XgAAvAUBqdUV94BVGi8AAEoISPVGnANWabwAACghINU7cQ1YpfECAEAEpPohjgGrNF4AgNgjINU/cQtYpfECAMQaAan+i1PAKksMQOBkMhktX75cmUzG71IwSJTmJpPJ6MFn1uo3uxKhD0jNZDKSU2jnZWDA6uMb90RmjQ0lxMsMQBRlMhm1tbVp1apVamtri+wv3zCK0txkMhk9/PQKbZx4ump/9196NRvusbS1tUlSqOclmZAu0st6vvd4vbi9J9RjORJzzvldw6g0Nze7jo4Ov8sAMEh7e3tFb2/58uVatWrVH74+88wz9f73v7+i99HS0lLR2wuqSs/NT55Zr4ymyh0zRaprkGSSVfQuZMPcoFOFH6vcwAvWf+cVNtwNVmss/V9EYF4O5TR++bdCffyb2fPOuebB26P/ZCqAUEmlUlq3bp0KhYJqa2uVSqX8LgmSth80ZY8/U+OfWaID86/WpF99Q62trUqn0xW9n+EeFCvZROYK0nc318mtfUKHZp2j2p5uLWiqCeVYpD+e8dp/0d+Hel4k6Wcb39CGN+pU/9QdkT3+abwABEo6nVZra6uy2axSqVTFH0Awdnvz0tLOen10Vl6F952vh3K1VXlw90J/QOp5xx/WzLNnaUv2Ba2Z+UHtPFZK67Df5R2V/mNmad5COy+StOL1GmVtqhZMXKeuM8+M7PFftcbLzL4k6a8k7Spt+t/OuV+UrvuCpE9JOizps865tmrVASB80ul0JH/hhlGuIN2dbVDLtLxSE4pSOq3kpmRo5+ctAamNfevs3YXD+s8tDTq21un0Y8OZ5JlOp6UNCu28bH4joSd31emGppwm1Z2kU04+ye+SqqbaZ7y+7pz714EbzGyepIWSTpc0Q9LjZnaKcy6cf2oAQEQVitIPt9arefKh0DYkAw0XkDq+VrouldPirQ2aWFtqMOGZ7pz08x1JLZyd06QYRHn58a7GyyXd65zrdc69ImmTpHf5UAcAYBjFonT31no1jS/qvVPC/3fxSAGpk5PSR2f26sGupHb3elxcjPUUpHu3NeiyE/I6ocHvarxR7cbrZjNbaWZ3mtnk0raZkrYN+J7O0jYAQEA80JXUuFqnS04M/7/PGW1A6qzxThdPz+tH2Qa9yb9qrLp8UVq8pUEXTj2kkyfG5yxjWY2XmT1uZquH+Lhc0u2S3iHpHEk7JP1b/48NcVNDvh/VzG40sw4z69i1a9dQ3wIAqLDHuuu075Dpqpnh//c5L/ck9NvddaMOSD11UlHnH39Id22tVyE+vYDnikXpri31mjepoPmTw39GdSzKeo2Xc+5Do/k+M/u+pP8ufdkpafaAq2dJ6hrm9u+QdIfUl+N19JUCAEbj2d012thTo5vSudD/+5yug9Ivdib1idk5HTOGR7vzpxzW64WEFm+t1w1z+DdC1XDPtqSm1Rf1gWnxO7VYteVkZicO+PIKSatLl5dJWmhm9WZ2kqS5kp6rVh0AgNFZvz+hZ/f0vbOsNuTNxr68tLSzQQtm5NV4FK8dap1+SJNqnZZuT1a+uJhb1lWnoqQFM8P/NPbRqOah9VUzW2VmKyVdJOkfJMk5t0bS/ZLWSnpU0t/yjkYA8Nf2g6ZHu5P6RCqn8SFPeMwVpCXZBl3UmFdTGe9Q/MjMvN4smB7ZGYO32nnkyVdrtSOX0LWzw/809tGq2uHlnLvuCNfdJum2at03AGD0+gNSr5yR15R6v6spT39A6jnHFnTWceW9SCuRkK6b06vvv1Kvp3fXROLdnX5a8XqNVu6vjcTT2OWI8dABAG8LSA25twSkVkBtQlo0p1cde+u0Zh8PmUerPyB10ZzRvckhymI+fACIrygGpCaHCEgtV3/AavurSWUP8LA5Vv0BqVfHJCB1JKwgAIihqAakLhwmILVcBKwenTgGpI6ExgsAYiiOAanlImB1bOIakDoSGi8AiJk4B6SWi4DV0YlzQOpIaLwAIEb6A1Kvj0AwaH9A6jVjDEgt1/lTDusdxxS1eGu9ijRfQ4pzQOpIQn7YAQBGi4DUyiFgdXhxD0gdScgPPQDAaBCQWnkErL4dAakjo/ECgIiLYkDquceVH5Barv6A1S0HEnp6d42vtQRBf0DqDVV+k0PYsWsAIMKiGJA6a1xRF0wNxmuHCFjtkzlAQOposXsAIKKiGpB6WYUDUssV94DV7py0rIuA1NEK+TP9APzW0tLidwljViwWlYj4cyHFYlE/3TNFfzp3oj73wbkVve3vZZ9VS8uFFb3NfsPNzcaGtHJ1r+sH15wb2Lmb17VPt/73Wn37Y2dr9uTxw46lWsfMVzc8VbXbHm4s577nffqrH7+of7xkrt5z0pSq3Hel+X38B3P1AkAVBfWBu5L+8eF1mjSuruJNV7UNNTcPvrRdT27crduvOjvQc3fGjGP1DxedrL97YKVefzMf6FrHaqix5PIF/c39K3T9+anQNF2S/8d/dFYFAECS9M3lm9Tdk9NX/uJ0v0sp21ObX9Pdz23T7Vefo4Zk8J+kef/cRl09f5Y+ff8K5SOcsFosFnXTfSv0wVMadflZM/wuJ1RovAAgQu57oVNPv7JHt18V3KfkRmt9d4++9sRGff3KM3X8hPDkZV09f5be03S8/vr+F1WMaMLqPzy0WukpE3TTBWm/SwmdcB+VAIA/WL5xl+57oVPfvfocJUOekLpzf063LFutL15yqpqmTPC7nDH7u/efrOkTG/SFn6/1u5SKu61tvQ4Xi/ripaf5XUoohfvIBABIktbs2Kdv/GqT/uMjZ+m48eE5OzSUA/mCbl76kj59QVrzZ0/2u5yj9i9/fppefzOvf//lRr9LqZgfPLNF67vf0Dc+cpbfpYQWjRcAhNz21w/q1p+v1ZcunafZk8f7XU5ZCsWibvrxi/rwGSfo4tOm+11OWRKJhL71sXPUkd2rH/1+m9/llO3h1Tv06NpufW/hOaoN+dPYfmLPAUCIvZEr6LM/eUk3v+8dOmfWsX6XU7bPLl2pM2dM0qLz5/hdSkUkaxP67sJz9OBL2/XEhlf9LueodWzdq+8/s0XfufpsjQ/BmxyCjMYLAEIqXyjqxntf0BVnz9CHTp3mdzll+6eH16qhLqHPt7zT71IqalJDUt/86Nn61pOb9dL2fX6XM2aZXW/oy23r9dXLz1DjMT78R/KIofECgBAqFov6zNIVOm/2ZF37Jym/yynbd36zWZ17D+pfF5zhdylVMfO4cfqXy+bpnx9eq2173/S7nFF77Y1efe6nq3VLyyk6ZdpEv8uJBBovAAihsAakDiUsAanlGhywGnRhDUgNuuiucACIKAJSwyssAasEpFYPjRdCIawhhGGtO47CMleDA1KHqzsM4xkqIDUMdZejWCyGImB1cEBqUOsMI3PO+V3DqDQ3N7uOjg6/y4CP2tvb/S5hzML4D6TjLOhrbP3+hNq6k/qrk3IaXzo5dKQ1Vq3xfGtTgz5zcq6s29iXl+7a2qDLZ+TVNOGPD+pxOGb652XptqSKkq6eXZmnHb+yoUGff2d58yJJy7rq9Poh0yfn/LGuOMxLpZnZ88655sHbOeMFACGw/aDp0e6krk39sekKq1xBWpJt0EWNb2264uYjM/N6s2B6ZGed36X8wZOv1mpHLqFrK9QM4u1ovAAg4PbmpaWd9bpyRl5T6v2upjzFonTX1nqde1xBZx0X36ZLkhIJ6bo5vdpyIKGnd9f4XY5WvF6jlftrdUNTryL8HgffsWsBIMByBenubINapuWVisDZoSXZpGaNK+qCqQW/SwmE2oS0aE6vOvbWac0+/x6SMwcSenJXnRbNySlJZ1BV7F4ACKhCUfrh1no1Tz6k048Nf9P1QGedkgnpshmH/C4lUMbXStelcmp/NansAe8flrtz0rKupK6endOk4DzrGVk0XgAQQMWidPfWejWNL+q9Uw77XU7ZHu+u0558Qgtn8dqhoUxOSh+d2asHu5La3evd/fYUpHu3NeiyE/I6gVB6T9B4AUAAPdCV1Lhap0tODP/ZoY49NdrQU6NFvHboiGaNd7p4el4/yjboTQ+eic0XpcVbGnTh1EM6eWL4z6iGBYcAAATMY9112nfIdNXM8J8derknod/urtP1Tbx2aDROnVTU+ccf0l1b61XNfNViUbprS73mTSpo/uTwn1ENEw4DAAiQZ3fXaGNPja6fE/6zQ10HpV/sTOqa2TlNCHkEhpfOn3JY7zimqMVb61Wt3NJ7tiXVWF/UB6bxJgevhfywBoDoWL8/od/tqdMNTTnVhvy38768tLSzQQtm5NXIa4fGrHX6IU2qdVq6PVnx217WVaeipCtmhv9p7DAK+aENANFAQCoG+8jMvA5UOGCVgFT/0XgBgM8ISMVQEgnpk3N69UqFAlYJSA0Gdj0A+IiAVBxJbUK6vgIBqwSkBge7HwB8QkAqRqPcgFUCUoOFxgsAfEBAKsbiaANWCUgNHhovAPBBFANSee1QdY01YJWA1GDiEAEAj0U1IDXsERhhMNqAVQJSg4vDBAA8REAqyjWagFUCUoMr5Ic9AIQHAamolCMFrBKQGmwhP/QBIByiFJDqHAGpQTBUwCoBqcFH44VYy2QyWr58uTKZjN+lIKIymYwe/fWzui9bG4mA1E2bMjp4WGpyuwhI9dnAgNWHN+6TnPTiXvEmh4BjahBbmUxGbW1tWrVqldra2mi+UHH9a2zlxLNVs+YxFbo3+V1SWTKZjH66s14qFtT5+H9xzARAbUL6gNug1blJkqS6p+5U5xbmJchCfsIbOHrZbFaFQt8LTwuFgrLZrNLptM9VIUr611jita3Knfw/9FCuVslNlf2nx9/LPjvsdfl8ZV98lc+frMOTCtKbezlmAmRn5xY1rHlEufOvU/HNfcxLwNF4IbZSqZTWrVunQqGg2tpapVIpv0tCxPSvMa1/TLWbfqnW1taKPyC2tFw47HXt7e0Vva/+M3gcM8HSv84Sz/yQeQkBGi/EVjqdVmtrq7LZrFKpFH8houKitsaiNp6oYF7ChcYLsZZOp/klhaqK2hqL2niignkJD15cDwAA4BEaLwAAAI/QeAEAAHiExgsAAMAjNF4AAAAeKavxMrOPmdkaMyuaWfOg675gZpvMbIOZtQ7Yfp6ZrSpd900zs3JqAAAACItyz3itlnSlpF8P3Ghm8yQtlHS6pIslfcfMakpX3y7pRklzSx8Xl1kDAABAKJTVeDnn1jnnNgxx1eWS7nXO9TrnXpG0SdK7zOxESZOcc88455ykJZIWlFMDAABAWFTrNV4zJW0b8HVnadvM0uXB2wEAACJvxOR6M3tc0glDXHWrc+5nw/3YENvcEbYPd983qu9pSf73FAAACL0RGy/n3IeO4nY7Jc0e8PUsSV2l7bOG2D7cfd8h6Q5Jam5uHrZBAwAACINqPdW4TNJCM6s3s5PU9yL655xzOyT1mNm7S+9m/KSk4c6aAQAAREq5cRJXmFmnpPdIetjM2iTJObdG0v2S1kp6VNLfOucOl37sryX9p/pecL9Z0iPl1AAAABAWIz7VeCTOuYckPTTMdbdJum2I7R2SzijnfgEAAMKI5HoAAACP0HgBAAB4hMYLAADAIzReAAAAHqHxAgAA8Ij1/cvE4GtubnYdHR1+lwGMSbFYVCLB3zeonqitsaiNJyqYl7Ezs+edc82Dt7MXgSriFxWqLWprLGrjiQrmpXLYkwAAAB6h8QIAAPAIjRcAAIBHaLwAAAA8QuMFAADgERovAAAAj9B4AQAAeITGCwAAwCM0XgAAAB6h8QIAAPAIjRcAAIBHaLwAAAA8Ys45v2sYFTPbJWlrlW5+qqTXqnTbYcD4GT/jjy/Gz/gZf3XMcc41Dt4YmsarmsyswznX7HcdfmH8jJ/xM36/6/AL42f8Xo+fpxoBAAA8QuMFAADgERqvPnf4XYDPGH+8Mf54Y/zxxvg9xmu8AAAAPMIZLwAAAI/QeAEAAHgkVo2XmX3NzNab2Uoze8jMjhtw3RfMbJOZbTCz1gHbzzOzVaXrvmlm5kvxFWBmHzOzNWZWNLPmAdubzOygma0ofXx3wHWRH3/pusjP/0Bm9iUz2z5gzi8dcN2Q+yJqzOzi0hg3mdktftfjBTPbUlrPK8yso7TteDNrN7ONpc+T/a6zUszsTjN71cxWD9g27HijtvaHGX9sjn0zm21mvzKzdaXf/X9X2u7vGnDOxeZD0p9Jqi1d/oqkr5Quz5P0kqR6SSdJ2iyppnTdc5LeI8kkPSLpEr/HUcb4T5P0TknLJTUP2N4kafUwPxOH8cdi/gftiy9J+l9DbB92X0TpQ1JNaWxpScnSmOf5XZcH494iaeqgbV+VdEvp8i39vxej8CHpfZLmD/z9Ntx4o7j2hxl/bI59SSdKml+6PFHSy6Vx+roGYnXGyzn3mHOuUPryd5JmlS5fLule51yvc+4VSZskvcvMTpQ0yTn3jOublSWSFnhdd6U459Y55zaM9vtjNP5YzP8oDbkvfK6pGt4laZNzLuOcy0u6V31jj6PLJS0uXV6sCK1x59yvJe0ZtHm48UZu7Q8z/uFEcfw7nHMvlC73SFonaaZ8XgOxarwG+Uv1ncGQ+iZi24DrOkvbZpYuD94eRSeZ2Ytm9qSZXVjaFpfxx3X+by497X7ngFPtw+2LqInLOAdzkh4zs+fN7MbStunOuR1S3wOVpGm+VeeN4cYbpzURu2PfzJoknSvpWfm8BmorfYN+M7PHJZ0wxFW3Oud+VvqeWyUVJP2o/8eG+H53hO2BNZrxD2GHpJRzbreZnSfpp2Z2uuIz/sjM/0BH2heSbpf0ZfWN58uS/k19f4yEesxjEJdxDvanzrkuM5smqd3M1vtdUIDEZU3E7tg3s2MkPSDp751z+4/wUl1P9kHkGi/n3IeOdL2ZLZJ0maQPlp4+kvq62tkDvm2WpK7S9llDbA+skcY/zM/0SuotXX7ezDZLOkUxGb8iNP8DjXZfmNn3Jf136cvh9kXUxGWcb+Gc6yp9ftXMHlLf0yjdZnaic25H6en1V30tsvqGG28s1oRzrrv/chyOfTOrU1/T9SPn3IOlzb6ugVg91WhmF0v6vKS/cM69OeCqZZIWmlm9mZ0kaa6k50qnIHvM7N2ld7N9UtJwZ01Cy8wazaymdDmtvvFn4jJ+xXD+S79s+l0hqf9dT0PuC6/r88DvJc01s5PMLClpofrGHllmNsHMJvZfVt+bjVarb9yLSt+2SBFZ40cw3HhjsfbjdOyXfm//QNI659y/D7jK3zXg97sOvPxQ3wvltklaUfr47oDrblXfOxg2aMA71yQ1q29hbpb0bZXS/sP4ob6DrFN9Z7e6JbWVtn9E0hr1vZvjBUkfjtP44zL/g/bF3ZJWSVqpvl82J460L6L2IelS9b3LabP6nor2vaYqjzddOsZfKh3vt5a2T5H0hKSNpc/H+11rBcf8Y/W9lOJQ6dj/1JHGG7W1P8z4Y3PsS7pAfU8VrhzwuH+p32uAfxkEAADgkVg91QgAAOAnGi8AAACP0HgBAAB4hMYLAADAIzReAAAAHqHxAgAA8AiNFwAAgEf+PwX4dDJ8WXO7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "w_rook2 = raster.da2WSP(da_s, \"rook\", k=2, n_jobs=-1)\n", + "splot.plot_spatial_weights(w_rook2, data=da_s)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Few times we require the kth order neighbors for our analysis even if lower order neighbors are absent, hence we can use `include_nas` argument to do the same.\n", + "\n", + "We can also look in both the examples we used `n_jobs` parameter, and assigned -1 which equats to all the cores present in the computer for multithreading" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(
, )" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAFPCAYAAACcQ8AlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABFkUlEQVR4nO3deXxU5b0/8M9zMjMZAglrSMjusK+Cplitu00RK4IUgWpr5Hpdbmt729vfvbXbr+3tr5u9vV2uV8Vey6YtiIobKsQFK2rxIvtOGJJJCIQQCAkJkzOT8/z+yERjTEgmc5Y553zer1deJGfCzPeZs8w35zzzGSGlBBEREREZT7G6ACIiIiK3YONFREREZBI2XkREREQmYeNFREREZBI2XkREREQm8VhdQF+NGDFCFhUVWV0GERERUa8+/PDDU1LKzK7LbdN4FRUVYevWrVaXQURERNQrIURld8t5qZGIiIjIJGy8iIiIiEzCxouIiIjIJGy8iIiIiEzCxouIiIjIJGy8iIiIiEzCxouIiIjIJGy8iIiIiEzCxouIiIjIJGy8iIiIiEzCxouIiIjIJGy8iIiIiEzCxsuhNE2zuoR+6alup42Hko9d15Vd646HXcdo17r7yq7js7puj6WPToZRFAVlZWVWlxG3kpKSbpc7bTyUfLiNJS+um+TE9dI/PONFREREZBI2XkREREQmYeNFREREZBI2XkREREQmYeNFREREZBJdGi8hxJ+FECeFEHs6LRsmhCgTQhyO/Tu0023fE0KUCyEOCiFm6VEDERERUbLT64zXcgA3dln2IIA3pJRjAbwR+xlCiEkAFgOYHPs/jwghUnSqg4iIiChp6dJ4SSn/BuB0l8VzAayIfb8CwLxOy1dLKVullEcBlAOYqUcdRERERMnMyDleWVLK4wAQ+3dkbHkugKpOv1cdW0ZERETkaFZMrhfdLJPd/qIQ9wohtgohttbV1RlcFhEREZGxjGy8aoUQowAg9u/J2PJqAPmdfi8PQE13dyClfFxKWSylLM7MzDSwVCIiIiLjGdl4vQigNPZ9KYAXOi1fLIRIFUJcBGAsgA8MrIOIiIgoKejyIdlCiL8CuBbACCFENYAfA/gVgKeFEHcDCAG4DQCklHuFEE8D2AcgCuDrUso2PeogIiIiSma6NF5Syi/3cNMNPfz+zwH8XI/HJiIiIrILJtcTERERmYSNFxEREZFJ2HgRERERmYSNFxEREZFJ2HgRERERmUSXdzWSewSDQYRCIRQUFCAQCFhdTsKcNh5KPtzGkhfXTXJy+nrhGS/qs2AwiA0bNmD37t3YsGEDgsGg1SUlxGnjoeTDbSx5cd0kJzesF57xoj4LhUJoHZyPaOZohAcMRllTOoZX+3R9jE0v7e3xtlOn9H2s+qZMnJs6F57j+4AT+xEKhRz51xVZJxQKoeWiKxAt/AwQbcW6cAp85fpux0tDW3S9v2Slqn5d7y+sjoF27USgTQW0NqwLe7hu+kHv9aKqYxC9eiwQVZH2t0cceVxm40V9NihvHNq8Ar4d6+BVBEpmzUIgL13XxygpmdzjbWVlZbo+VlCtw4b3NiAajcLj8aCgoEDX+yeK5E5D2/nBQFsEgMBsXxCTxhTp+hglJVfpen/JSs/9P6oB/33Yg7ZDf0M0dxq8p45g7pg03V/g3bBu9D4uv3L4LPa0DIQUimOPy2y8qE8aVIHDqUX4YvYhnJg8yRHX3gOBAGbNmuXouQRknSNNCvYhBzelHcIGtQiTvWfwFiZgnBaGh5M8LKNpwPLKVEwaomH05EwEQ/+LvYXXo2GoBMBPr7PSgUYF5cjCzQMP4FW1/fjsxOMyGy/qVUsUePWEF18cFUGGtwgTRhdZXZJuAoGAI3dsslZtGHjphA9fzg8jy1+At8p9uHHMELxe24Zllam4u7AVCpsvS6yp9mGIV6IkKwKgff+/LBrFn4/6keGRGJOuWV2iKx07L/BarQ9fLQhjeGoR3ij3OfbYzF2fLiiiAS8d9+GGkRFkeKXV5RAlvcYIsLrKjznZKrK6TH/5fFYEQ70Sa3SeG0l9s/64F2FNYH6O+onl6R5gcX4YL5/w4UTYouJc7IwKrK1OxfwcFcNTra7GeGy8qEeaBF4+7sNnh0Ux0s+mi6g3qgasrPTjqhERjO7hzMmCPBWtmsD6416Tq3O3zac8CLUoKC3o/mxjlh+YM0rFmio/GiPm1+dW4SiwKuRHyUgVBQPdcbaRjRd1S0qgrNaL8eltKHTJzkCUCE0DllWkYkpGFJcMvfBcoTsLWhFqUbD5FGd7mGH3WQXbGjxY0ssl3tGDNFyTGcGKSj9UHvYMF9WAZZWpKB4aweTB7nnC2XhRt94/7cEQn8SkDE42JeqLp6p8yE7VcO3IaK+/qyjAksJWbGvwYHcDD8NGqmxW8MZJH+4sCMPfhz53+pA2TM2IYllFKjT39AKm0zRgVWUqitI0XDHcXa8z3OPpU3adTUFLm8DMob2/gBAR8MKx9suGc3P7fo3K7wFKC8J4o86HimYeio1Q3wqsq/FhYV4rhsQxre7akVGMStXwZBXn4hnl2RofBngkZo9y33Vd7u30CUfOKahoVnB9ZgRCWF0NUfLbdNKDE60K7shXe//lLgb7gIV5rXi+xoc6TurWVXMUeDLkx+xsFTkD4p+jektuBAqA549xLp7eNtZ6cTYisDA3/n3GCdh40UeOhwW2NXhwU3YECpsuol5tb0jBnkYPlhT1Px4iZ4DE7GwVf6nyo5knmXUR1YDlFX5cPjyC8QnEQ9yer+Jkq4K3TnIunl621KfgcFMK7nJxpIpLh01dNagCm+q8mDNKZbgjUR8caVLwtzovSovC8CW4z4xP13DF8AiWV/gR5byihHQEpI5Lb8PMYYnNHVIU4K6iVuxt9GDbmRSdKnSvA40Ktpz2YkmRu0OEXTx06vBRQGp2BH4eW4h61RGQujg/jHSdToZ8Zlgbxqe3B6xyUnf/fTIgNXE+BSgtCuOdU16UN/Els786AlLvKAgjzeUnELkVuRwDUonic6GA1EQxYDUxPQWkJooBq4lxW0Bqb9h4uRgDUoni05eA1EQxYLV/egtITRQDVvvHjQGpvWHj5VIMSCWKTzwBqYliwGp8+hqQmigGrMbHrQGpvWHj5VIMSCWKTzwBqYliwGrfVTYreDOOgNREMWC1b9wckNob7tEuxIBUovj0JyA1UQxY7V1HQOptcQakJooBq71zc0Bqb7g3uwwDUonik0hAaqIYsNqzRANSE8WA1Z65PSC1N2y8XIQBqUTx0SMgNVEMWP00vQJSE8WA1U9jQGrv+LS4BANSieKjZ0Bqosana7icAasA9A1ITRQDVj/pQKOCvzMgtVd8alyAAalE8TEiIDVRMxmwCkD/gNREMWC1XUdA6lcYkNor924lLsGAVKL4GBmQmii3B6waFZCaKLcHrDIgNT5CSnu8GBcXF8utW7daXYattGkSP99wAHOmjsKMvCFWl9MnmqZBcdDEAKeNx+la1ChKn/wQpTMLcPOUUbrd74IntuCZuy/T7f7uX70dgRED8W+fH+eabWzVB5V4bf9JrPjqpfAk6Xg/qDyNX2w8iD99eQYyB/ldsW7OhaMofXIr/unKAD4/YaRu96v3PtOZWetFCPGhlLK463JnbxEuJqXEf/3tCK4cPcI2TRcAxx2knDYeJ9M0Dfev2YFZE7J0bbqM8PDCi7Hz2Fms3FLpim1s4/5aPL/7OJYumpG0TRcAzCwchnsuL8LX1uxEixp1/LpRoxruXb0Nt16co2vTZTSr14uztwoXe2prFXIy/Lh+XKbVpRDZwree242xmYPwj1cUWV1KrzyKgqWLZuCFPcexYX+t1eUYant1Ax7ZHMTDC6ZjkBkJqQn64pRRmDUxC/ev3oGogyfjaZqGb6zdgUvzh+IrnymwuhxbYePlQK/tq0VjOIrbZuRaXQqRLfzstQMAgB/dOMHiSvpukN+D/75tOh59J4htVWesLscQladb8JNX9uOXcyZj1OAkm3B3Af94RRHGZQ3Ct57dbXUphvnh+v3IGODFd24Ya3UptsPGy2E+qDyND6sacN/nLoJgQipRr/707lEcrjuH38+fanUpccvO8OOXt0zGT189gIr6ZqvL0dWZFhXffm4XvnP9WEzMzrC6nLj9cNYEpAjg31/db3UpuvvjpnLUNoXx61smW12KLbHxcpCDtU14ftdx/OsNY5HChFSiXr285zg2HjyJxxZNt3zeR39NzM7Ad64fi28/txtnWpLr3X79pUbb59vdfmkerh4zwupy+u1386fiyKlmPP7uUatL0c2abdV47+hpPLpwhm33GavxWXOImrNh/Om9CnyvZDx8TK4j6tWWitN44v1KPLpwOtJ8yT936EKuHjMCdxTn4f7VO6DaPGG1/U0O23FVYDgWzMizupyEKIqCpYum4/WDJ/HCrhqry0nYpsN1WLOtGo8tms7XmQTwmXOAhvMR/PbNw/jXz49Fug0mnxJZrbzuHH6x8SB+M28KRgxyRvDQghl5uHrMcNy/Zjs0G0/q/u6Le5Ez2I8HrhltdSm68Ps8eGThdCzfEsL7R+utLqff9h4/i9+/VY4/fGkahqS5M0dOL2y8bC4cacMvNx7E168KICvdPpNPiaxSdy6Mf31+D77/hfEYkznI6nJ09fWrRyN38AD82wt7rS6lXx56/RCawlH8+00TrS5FVyMGpeK386bgV2WHcOhkk9XlxO1Yw3n84KV9+MlNk5A/NM3qcmyPjZeNtWkSD71+CIsvzUNgxECryyFKei1qFF97eifuvrwQlxUNs7ocQ/zs5kk41xrFQ68fsrqUuKz6oBI7j53FwwsvduTcoUDmIPxg1nj82wt7UHfOPvH258JRfPOZnXjg6tGYnjfY6nIcwXlbt0vYNSCVyCp2CkhNVOeAVTvYYJOA1ER1DVhNdnYNSE12zt3CHY4BqUTxsVNAaqLsFLC6vboBj75jn4DURNklYJUBqcZh49WJXSakdg1ItUvd5Dx22fa6BqTape5EpPmUpA9Y/Sgg9ZaPA1Kdvm40TbNFwGrXgNTu1otd15XVdfNDsrsoKysz/DESceScgr2NKbh5VAQdUV0lJSXWFkWuluz7zKaTHhw8l4J7ilrRcRXL7H3GyA/8vZCysjLUnBd4ujoVd+SHkZlE779pjgL/c9SPG7NVjE//+IXQDcezjn3myUofBnkk5uVGLK7okzbWehFqUfAPhb3vM0bt//9V7sc3xhgzF86sbYwfku0Ax8MC2xo8uCn746aLiHq2vSEFexo9WNKp6XKbnAESs7NV/KXKj+YkmVYU1YDlFX5cPjzyiabLbW7PV3GyVcFbJ5PnEuuW+hQcbkrBXYXu3WeMxqfVJhpUgU11XswZpYK5dUS9O9Kk4G91XpQWheFz+T4zPl3D5cMjWF7hh9X5qpoGLK9Mxbj0Nswc1mZtMRZTFOCuolbsbfRg25kUq8vBgUYFfz/txZKiMF9nDMSn1gZaosCrJ7z4YnYEfuv3TaKkVxsGXjrhw+L8MNKT52SCpWYOa8O49DYsq0yFlVNc1lT7MMQrUZKVXJfXrOJTgNKiMN455UV5k3UvycfOC7xW68NXCsJI4z5jKDZeSS6iAS8d9+GGkRFkeO0xH4/ISo0RYHWVH3OyVWQl0ZymZFCSFcFQr8SaamuSx9cf9yKsCczPccZnSuol3QMszg/j5RM+nLAg4uuMCqytTsX8HBXDnfFBDkmNjVcS0ySw/rgPnx0WxUg/my6i3qgasLLSj6szIxjt4rlDF7IgT0WrJrD+uNfUx918yoNQi4LSAs4d6k6WH5gzSsWaKj8aTTwZGI4Cq0J+lIxUUTCQ+4wZuPknKSmBslovxqW3oZA7A1GvNA1YVpGKKRlRzBji7rlDvbmzoBWhFgWbT5lzTWl3g4JtDR4s4YTtCxo9SMM1mRGsqPRDNeGwH9WAZZWpKB4aweTBfJ0xC3eBJPX+aQ+G+CQmZfAFhKgvnqryITtVw7Ujk+Ste0lMUYAlha3Y1uDB7gZjXwYqmxW8UefDnQVhuCAfNWHTh7RhakYUyyqMnYunacCqylQUpWm4YjhfZ8zExisJ7T6bgpY2gZlD+QJC1BcvHGu/bDY3yfKQkpnfA5QWhPFmnQ+Vzca8FNS3AutqfFiY14oh1kwrs6VrR0YxKlXDU1XGPWnP1vgwwCMxexT3GbOx8UoyR84pONqs4PrMCASzuoh6temkB7WtCu7I54TteA32AbfltWJdjQ91Ok/qbo4CT4b8mJ2tImcA56jG65bcCASA54/pPxdvY60XZyMCC3O5z1iBjVcSYUAqUXw6AlLvcnFAaqKMCFhlQKo+jAhYZUCq9fi0JwkGpBLFhwGp+tEzYJUBqfrRO2CVAanJwfCnXghRIYTYLYTYIYTYGls2TAhRJoQ4HPt3qNF1JDMGpBLFhwGp+tMrYJUBqfrSK2CVAanJw6ye9zop5fROHxb5IIA3pJRjAbwR+9mVGJBKFB8GpBon0YBVBqQaI9GAVQakJherTjbOBbAi9v0KAPMsqsNSDEglig8DUo3X34BVBqQaq78BqwxITT5m7B4SwEYhxIdCiHtjy7KklMcBIPbvSBPqSCoMSCWKDwNSzRNvwCoDUs0Rb8AqA1KTkxm7yOeklJcAmA3g60KIq/v6H4UQ9wohtgohttbV1RlXoQUYkEoUn6eqfBjFgFRTxBOwWtms4E0GpJqmrwGrDEhNXoY3XlLKmti/JwGsAzATQK0QYhQAxP492cP/fVxKWSylLM7MzDS6VNMwIJUoPh0BqbcwINU0fQlY7QhIvY0BqabqS8AqA1KTl6GNlxBioBAiveN7AF8AsAfAiwBKY79WCuAFI+tIJgxIJYoPA1Ktc6GAVQakWutCAasMSE1uRp/xygKwWQixE8AHANZLKV8D8CsAJUKIwwBKYj87HgNSieLDgFTrdRewyoDU5NBdwCoDUpOfoVfkpZRBABd3s7wewA1GPnYyCQaDOHSsDjVZxbh9tGRwHVEvgsEgdp5owdHhM3DPaAakWm18uoazkfaA1Ru0fdigFiDPV4+ZwwZaXZqrdQSsPh70I3K2Do2nalE1bCruG23vgNRgMAhVHYNgMIhAIGB1Obqz8aqxh2AwiNc2lmF3ShHOb/4raiqDVpdElNSCwSDWv7MVhzKmwrvlr6gLcZ9JBjOHtSFbq8cLrQGoZ2px8o2VCAa5bqzmU4BrcQjbW4fhSPokeN9fiRM23meCwSBeLXsL0WgUGzZscOQ2xvegGCwUCqEtoiJ1xzpobRGEQiFHdvBEejlcXYuWSxYCKT60zFiAdWEFvnJ9Z24vDW3R9f56c/Z8BAueMPcxAUBV9U2YPd/mBTwC2pAcNH7uPqwLe2y/bqyg93pR1SJAtgEpPjRfssjU9aL3WMLqGGhXTwS0KKLRqCNfM9l4GaygoAD79+9HNBqBx+NBQUGB1SURJS1VAw5kXYXU/ZvQOvoqQAiU+CoxbUy+ro9TUnKVrvfXmwVPbMEzd19m6mMCQFlZmW73tfmUB9vrJZQ3H8a5z92HjHeXYtasWbq/KJq9bqyg53oB2s8SbdiwAY3Xfcv09aL3WB4/CDQd34/osCLHvmbyUqPBAoEAZs2ahalTpxqyMxA5RUdA6sVDgVum5cCTIjDTX4dNGIswk1cs1RGQes/oNsyeNQsej4fHsyTS8ToDCFuvl2ervRg0wIdbC+DobYxnvEwQCAQcufEQ6ekTAakjA/CV+3DdmBHw10ewrDIV91zUausJw3bVEZBaWtgekBoItK8bHtOSSyAQAA7Ctuvl9VovTqsK7i5qhaI4exvjYYyILHehgNTLh7ehaKCGVZUXTuom/TEglcyw9XQKDjalYIlLYmNcMEQiSmZ9CUidnR1Bmkfi2Rq++puFAalkhkNNCt6t9+KuIntHYMTDJcMkomQUT0DqbbkqGiMCG2s/ndRN+mJAKpmh5jzwygkfbs8PY6CLJj6x8SIiSxxpUvC3Oi9Ki/oWkKooQGlhK8rPKdhSn2J8gS6lacCyylSMS2/DzGH8cGUyxlkVWFvtx7wcFZn6JlIkPTZeRGS62jDw0gkfFueHkR7HX7oeBbirsBVbTntxoJGHLyOsqfZhqFeiJIsfrkzGCEeBlSE/rstUUTTQfWdUeeQiIlM1RoDVVX7MyVaR1Y+/dNM8wB0FYbxW60N1Cz/0VE/rj3sR1gTm5/DDlckYmgYsr0zFjCFRTBvivqYLYONFRCZSNWBlpR9XZ0YwOoG5Q8NTgfk5Kp45looz7BF0sfmUB6EWBaUF7nhnGVljZciHvAEarhzh3nA+7l5EZIqOgNQpGVHMGJL43KGCgRpKRqpYFfIzYDVBHQGpSwrZdJFxnq32wqcAN+e4+zI2dzEiMsUnAlJ1Mnmwhs8MbQ9YjbrzqkXCOgJS7yxoD0glMkJHQOriPJ6iZuNFRIa7UEBqohiw2n8MSCUzuC0gtTd8CojIUH0JSE0UA1bjx4BUMoMbA1J7w6eBiAwTT0Bqohiw2ncMSCUzuDUgtTdsvIjIEPEGpCaKAat9w4BUMoObA1J7w8aLiHTX34DURDFgtXcMSCWjuT0gtTc8MhGRrhINSE0UA1Z7xoBUMhoDUnvHxouIdKNXQGqiGLD6aQxIJTMwILV33P2ISBd6B6QmigGrH2NAKpmBAal9w12QiHTxVJUP2ToHpCZq8mANxS4PWK1sVvAGA1LJYAxI7Ts2XkSUsI6A1LkGBKQm6goXB6x2BKQuZEAqGagjILWUAal9wr9/uigpKbG6hLhpmgaFWztZpCJtDJpS6rH8zkt03Q6XhragpOQqXe6rBMB3X9iDt1WBX8yZ7Ip95kyLiqdPpOO7XxiDq8eM0PW+9Vw3Xblh3Rj1OvPQwc2G3XdP62VAYAY+qCjHstJLMDRNv+7eyduYs7dul3D6QYqS18t7jmPjwZN4dNH0pN8OfzlnEk42teKPm8qTvtZEqVEN96/ZgdsvzdO96TKa09eNXXW3Xg7UNuE3bxzG7+ZP1bXpMprV2xi3cCLqly0Vp/HE+5V4dOF0pPmS/+S5oih4ZOF0vFdxGmu2VVtdjmE0TcP9a7bjqsBwLJiRZ3U55FAnGsN48MU9+PHsCSgaPtDqcmyFjRcRxa287hx+sfEgfjNvCkYMSrW6nD7zeRQ8tnA61myrxqbDdVaXY4jvvrgXOYP9eOCa0VaXQg7VrEbxwNqduP/KAC7JH2p1ObbDxouI4lJ3Lox/fX4Pvv+F8RiTOcjqcuI2JM2HP3xpGn7/Vjn21Jy1uhxdPfT6ITSFo/j3myZaXQo5VFTTcN9ft2POlGzcODHL6nJsiY0XEfVZixrF157eibsvL8RlRcOsLqff8oem4adfnIQfvrwPxxrOW12OLlZuqcTOY2fx8MKLLZ/DQs71jbU7MTUnA6WXFVpdim1x7ySiPmmfO7QDsyZk4eYpo6wuJ2EX5w7GN64ZjW8+sxPnbJ6wumF/LV7YcxxLF82Ah00XGeRH6/dhgDcF3y0Zb3UptsY9lIj65FvP7cbYzEH4xyuKrC5FNzeMH4n5F+fi3tXboNo0YXV7dQMefSeIhxdMxyAmpJJBHnnnCKrPnMd/zJtidSm2x8aLiHr1s9cOAAB+dOMEiyvR3x2fyUdxwVB8Y+0OaDZLWK083YKfvLIfv7xlMkYNtuATyckVntt5DG8frsejvIytCz6DRHRBf3r3KMrrzuH386daXYph/uX6sRiS5sMP1++3upQ+O9Oi4tvP7cJ3rh+LidkZVpdDDrX5yCms+qAKjy2eDr8NYmPsgI0XEfXITgGpieocsJrs7ByQSvZh14DUZOfsIykR9ZvdAlITZZeAVQakkhkYkGocNl5EJrPDPKLuAlLtUHciNE2zRcBq14BUp68Xp7HD+uouINUOdduF8/+MJUoyiqKgrKzM6jJ61BgBllX4cXO2iqM73sfR2HI7foB8PDqvl4XZwG/KDuDovp3IS5MJ37eq+nVZ5+uPe3GyVUFpQSvKymoAOH+9OI2R+79E4tuZpgGPH03FlMFtSKnehbLYyV9uZ/rhGS8i+oiqASsr/bg6M4LR6e79C3d4KjA/R8Uzx1JxRrW6mnabT3kQamlvuhw+3Y4stDLkQ94ADVeOsHe2XTLj7ktEANr/0l1WkYopGVHMGNJmdTmWKxiooWSkilUhP6zOV93doGBbgwdLCtl0kXGerfbCpwA350SsLsXRuAsTEQDgqSofslM1XDuSf+l2mDxYQ/HQCJZVpsKqfNXKZgVv1PlwZ0EYzEclo7xe68VpVcHivCQ5xetgbLyICC8c8wIA5ubyL92urhjehqKBGlZVpsLs+cX1rcC6Gh8W5rViCN/NTwbZejoFB5tSUFrEM6pm4FNM5HKbTnpwolXBHfn8S7cns7MjGOCReLbGvO6nOQo8GfJjdraKnAGJT/An6s6hJgXv1ntRWhSGjx2BKfg0E7nYtjMp2NPowRL+pdurhbkqGiMCG2q9hj9WVAOWV/hx+fAIxrv4TQ5krJrzwCsnfLg9P4xBvIxtGh5qiVzqSJOCd07xL92+UhSgtLAVR84p2FKfYtjjaBqwvDIV49LbMHMY3+RAxjirAmur/ZiXoyKTH/NpKh5uiVyoNgy8dMKHxflhpPMv3T7zKMBdha3YctqLA43GHD7XVPswxCtRksX5dmSMcBRYGfLjukwVRQN5RtVsbLyIXKYxAqyu8mNOtoos/qUbtzQPcEdBGK/V+lDdInS97/XHvQhrAvNzON+OjNFxRnXGkCimDWHTZQU2XkQuwoBUfRgRsMqAVDIDA1Ktx92byCUYkKovPQNWGZBKZmBAanLgLk7kEgxI1Z8eAasMSCUzMCA1ebDxInIBBqQapyNgdWU/AlYZkEpmYEBqcuEqIHI4BqQab3Z2BGkeiWeP9b17YkAqmYEBqcmHq4HIwRiQap6FuSoao30LWGVAKpmBAanJiYdiIodiQKq5+hqwyoBUMgMDUpMXD8dEDsSAVGv0JWCVAalkNAakJjfLGi8hxI1CiINCiHIhxINW1UHkNAxItdaFAlYZkEpGY0Bq8rOk8RJCpAD4bwCzAUwC8GUhxCQraiFyEgakJofuAlYZkEpmYEBq8rNq958JoFxKGZRSqgBWA5hrUS1EjlBeHsQj+zXkyVMMSE0CHQGry496cV6NYmu9YEAqGSYYDAISaGsNMyA1yVl1CMgFUNXp5+rYMiLqh2AwiJcONaD13Fkcf31V+0GYLDegvhzy2H5IkYKU91aiJsT1QvoLBoN4LtgKAAi/uZT7f5Kzatptd58s+6kgGyHEvQDuBYCCggKjayKyrVAoBKUqCBRdhsYrv4Z1YQFfub6JnEtDW3S9v96cPR/BgifMfUxV1XdSXFgdAy3HB2htOD/lZlSEPkQgEND1MYi2nBJoyxwLAAgXXo5QKMTtLIlZ1XhVA8jv9HMegJquvySlfBzA4wBQXFzMhEGiHhQUFGD//v3AllUIf+bLuNZXhUvH6HsSuaTkKl3vrzcLntiCZ+6+zNTHLCsr0+2+mqPA40e8SNn1Es6PvwFKpAVVOVfqdv9EQHtA6onB4zDonf/BuSvvQ1v+NET9DVaXRRdg1aXG/wUwVghxkRDCB2AxgBctqoXI9gKBAGbNmoWLL8rGlf4T2CxHo5FvnLNMR0Dq5zI13HzpaHg8Hswb2Yyod2CfAlaJ+qIjIPUrhRHMvr79D6ObBlRjL3IQbOZkwmRlyRkvKWVUCPEAgA0AUgD8WUq514paiJwiEAh8dHlhYIOKFSE/7gswPNVsnwpIHRaAr9yHMWMCKNJasTToxxCPhsuG8w0Q1H9dA1IzAwHgIDBlTAFGhMNYXeXHl/PDjJRJQpYdkqWUr0gpx0kpR0spf25VHURONH2IhmmDo1hWEf8HN1NiLhSQ6lGAJUXhCwasEvWmt4DUbD/wxWwVq6v8aGKqRNLhnk/kUNdkRpHj1/Bklb6T7KlnfQlIvVDAKlFv+hqQOjZdw5UjIlhR4YfKP76SChsvIgebkxOBAmDdMc4rMlo8AandBawS9UU8AamXDm3DpIwolvPMd1Jh40XkcLfnq6hrVfDmSX5oo1F2n1WwrcETV0BqR8DqqpAfYV4Ooj54rtoLn4K4AlKvHxlFZqqGv1TzzHeyYONF5HCKAtxV1Ip9jR5sO5NidTmOU9ms4M2TPtxZEIY/zt528mANxUMjWFaZiijPSNAFvF7rRb2qYHFe/KdIb82NoE0DXqrhme9kwMaLyAV8ClBaFMY7p7w43MTdXi/1rcC6Gh9uy2vFkH6eULhieBuKBmpYWcnLQdS9radTcLApBaVF/f/Iqa8WqKgJK3i7jme+rcYjMJFLpHuAxflhrD/hw4mw1dXYX3MUeDLkx+xsFTkDEst3np0dQZpH4tljvBxEn3SoScG79V6UFiUWDaMowJKiVuw668GOBr70W4nPPpGLZPmBW3JUrKnyM2A1AR0BqZcPj2B8uj6nqRbmqmiMCgas0kc6AlJvzw9jkA4nqnwKUFoQxtt1PgasWojPPJHLBAZquCazPWCVbzOP36cCUnWiKEBpYSvKm1KwpZ5z8dyua0CqXjJ8wKL8MF6s8aGWZ74twcaLyIUYsNp/FwpITRQDVgnoPSA1UQxYtRb3bCKXYsBq/PoSkJooBqy6W18DUhPFgFXrsPEicjEGrPZdPAGpiWLAqnvFE5CaKAasWoONF5HLMWC1d/0JSE0UA1bdpz8BqYliwKr52HgRuRwDVi8skYDURDFg1T0SCUhNFANWzcXGi4g+EbBazoDVj+gRkJqojoDVVQxYdSw9AlITxYBV8/AIS0QAPg5YfZkBqwD0DUhN1OzsCAZ4JJ6t4eUgp9ErIDVRDFg1D59dIvoIA1bbGRGQmqiFuSoaIwxYdRK9A1ITxYBVc/CZJaJPcHvAqlEBqYliwKqzGBWQmigGrBqPjRcRfYqbA1aNDEhNFANWncHogNREMWDVWElwcpPIfUpKSqwuoVclAH6x8QBeOhvGw7dNh6ZpUKya+WuS7aIQvoHNeGThxbqOdWloC0pKrtLt/i4504IH1u7EdZdPcsV6cZKopmHNySGYP2Mk7vpsoa73/euDm3U7tpQAyNlVg79srcLKr1zK7UxHfBaJqEff/8IEpCgKfvrKfscfdFd9UImdx87iYZ2bLiPkD03DT2+ahB++vA/HG1utLofi8M21uzAlJ0P3pssI86bl4PpxmbhvzQ6rS3GU5D66EJHlfnfrFATrm7F0c9DqUgyzcX8tnt99HEsXzYAnyZuuDtPzBuMb14zGN5/ZiXNMWLWF/7t+H/xeBQ+WjLe6lD67/8oAAsMH4l/W7bG6FMewxxGGiCyjKAqWLpqONw7V4YVdNVaXo7vt1Q14ZHMQDy+YjkFmJ6Qm6IbxIzH/4lzcu3obVCasJrVH3jmCqjPn8R/zplhdStx+fNNERNo0/GLjAatLcQQ2XkTUK7/Pg8cWzcDyLSG8f7Te6nJ0U3m6BT95ZT9+OWcyRg1OoreWxeGOz+SjuGAovrF2BzS3vRPCJp7beQxvH67Hoza4jN2TPyyYhv0nzuHPf6+wuhTbs+cWQESmGzbQh9/Om4JflR3CoZNNVpeTsDMtKr793C585/qxmJidYXU5CfmX68dicJoPP1y/3+pSqIvNR05h1QdVeHTRdPh99jqj2plHUbB08XS8urcW6/cet7ocW2PjRUR9FsgchB/NmoB/e2EPapvsG/KjRjXcv2YHbr80D1ePGWF1Obr41ZxJqG0K4w+byq0uhWIO1DbhN28cxu/mT8Wwgfb/1IE0nwcPL7wYf3qvAlsrz1hdjm2x8SKiuBQXDsU9VxThgad3okW136RuTdNw/5rtuCowHAtm5Fldjm4URcGjC2fg/aOnsWZbtdXluN6JxjAefHEPfjx7AoqGD7S6HN1kpfvx0Nwp+NmGAwjWnbO6HFti40VEcfvi5FGYPTkL963egajN5hV998W9yBnsxwPXjLa6FN35PAoeWzQda7ZVY9PhOqvLca1mNYoH1u7E/VcGcEn+UKvL0d24kel4sGQcvvP8Hpw6xziTeLHxIqJ++YfPFmFi9iB869ldVpfSZw+9fghN4Sj+/aaJVpdimCFpPvzhS9Pwu7fKsafmrNXluE5U03DfX7fj5snZuHFiltXlGObyi4aj9LICfO3pHQjb8My3ldh4EVG/ff8LE+CJBawmOzsFpCaqc8DqsYbzVpfjKnYKSE1U54BVvqO275x99CEiQ2mahv+0QcBq14BUN7xITMtJt2XAanfrxi7rq2tAqp3H0lVPY7FjwKrV68C+720lIsspioKysjIsHAk8vvs8GmoqcMnQNl3uW1X9KCsrS/h+KpsVPF/jQ2lhGO+/8xYAe3xWZqIURYEW2olpg1Jw5/L3cM9FrfDo9Ke2XuumO92tm47tLJm9XuvF0WYFdxe1flSr+WOxZr1c4QVWHPPhmys2YU6OPh8ub/Y2Ziae8SKihPkU4K6iMN455UV5U/IcVupbgXU1PtyW14oh9n83f79cMbwNRQM1rKpMhU1PtiS9radTcLApBaVFrXD4VewefbVARU1Ywdt1PJ/TG5duIkSkt0EeYHF+GC+f8OFEEkR8NUeBJ0N+zM5WkTNAWl2OpWZnRzDAI/FsjUu7TwMdalLwbr0XpUVh+Fz8iqoowJKiVuw668GOBhc/EX3AZ4eIdJPlB27JUbGmyo9Gfa449EtUA5ZX+HH58AjGp/M0DwAszFXRGBHYWOu1uhTHqDkPvHLCh9vzwxjEEz3wKUBpQRhv1/kQbGZ70RM+M0Skq8BADddkqlhR6YdqQc+jacDyylSMS2/DzGH6zDdzAkUBSgtbUX5OwZb6FKvLsb2zKrC22o95OSoy7fkxn4bI8AGL8sN4scaHuiQ4852M2HgRke6mD9EwbXAUyyrMn1e0ptqHIV6JkiwLT7klKY8C3FXYii2nvTjQyMN/f4WjwMqQH9dlqigayDOqXWX7gS9mq/hLlR9N9nlDrWm45xGRIa7JjCLHr+HJKvPmFa0/7kWrJrAgTzXtMe0mzQPcURDGa7U+VLcIq8uxnY4zqtMHRzFtCJuunoxN13DliAhWVFhz5juZsfEiIsPMyYlAEcC6Y8bPK9p8yoNQi4I7C/gRJr0ZngrMz1HxzLFUnGGPGpeVIR9yB2i4KpOncnpz6dA2TMqIYrkFZ76TGRsvIjLU7Xkq6loVvHnSuNnHu88q2NbgwZJC976dP14FAzWUjFSxKuSHjfJVLfVctRdeBbplVbnB9SOjyEzV8JdqvqO2Aw9RRGQoRQHuKmrFvkYPtp3Rf1J3ZbOCN0/6cGdBGH6+sywukwdrKB4awbLKVER5RuKCXq/1ol5V8GVexo7brbkRtGnASzV8Ry3AxouITGBUwCoDUhPHgNXeMSA1cQxY/Rg3ISIyhd4BqwxI1Q8DVnvGgFR9MGD1Y+4ePRGZSq+AVQak6o8Bq5/GgFR9MWC1nXtHTkSWSDRglQGpxmDA6icxINUYDFhl40VEFkgkYJUBqcZhwGo7BqQay+0Bq+7ds4jIUv0JWGVAqvHcHrDKgFRzuDlglY0XEVkmnoBVBqSax80BqwxINY9bA1bZeBGRpfoSsMqAVPO5MWCVAanmc2PAKg9hRGSp3gJWGZBqHTcFrDIg1TpuC1hl40VEluspYJUBqdZzQ8AqA1Kt56aAVW5iRJQUOgesflh+DK2qipUVXgakJoHOAavBYBCqqiIYDFpdVsKCwSCee38f3qlTbB+QGgwGAQnbrpfOAauvHz7tmG2sOzbezIjIabL8wExRidfDuWhTvBCHNsNbV251WYT2gNVTzRE8fzSCaDSKDRs22PqFMRgMYv17O3A4fTI8f38SJ0P2HsuGDRsAwNbrxacA1+EQPmwdhmibtPVYLkRIaY+/JIuLi+XWrVutLoOIuigrK9P1/jZt2oT/PS2gTfwCEDkPj8cDn0/f64x6319vzp6PYPAA8+evqKq+85XCahSakgJICQgBQAA6J06IHu5QQufXKtn5G9Hx4Drr6Q6NGkvHDw5YL21RpL35O0ydOhXXXnutrg9RUlKi6/31RAjxoZSyuOty519MJSJbKSgowP79G9DiH4y2URMxN60CY8YEdH2MkpKrdL2/3ix4YgueufsyUx8T0LcpPnZeYE3IgwHvL0fzJYuQ8e5SzJo1C4GA3uum+xdFPccSjgKPHfFC7nsDkbzp8DTVYl5Rii3HAnx8xqvxum8h463f23a9AMALh8/h4DkvUjc/Do/Hg4KCAl3vPxnwUiMRJZVAIIBZs2bh0rQG5A0E3vNOsLok1zujAmurU7Egrw03XX0ZPB6PIS/uZugISL10mMTci/NQ3LwN3twJODF4rNWl9VvHPgMI264XANjRkIKQGIF56TW4eOpUW4/lQgw74yWE+AmAewDUxRZ9X0r5Suy27wG4G0AbgG9KKTcYVQcR2U8gEPjogPtkqD1g9dZcZitZIRwFVoX8KBmpomCgBgQC8JX7bPuC+ImA1Mz27eyz0Tb8T4Ufgz0Skwfb862bgUAAOAjbrpcj5xS8XefFkqIwMrwXYdyYi6wuyTBGn/H6nZRyeuyro+maBGAxgMkAbgTwiBCCn8hKRN3qS8AqGSOqAcsqU1E8NGLbhqSzngJS0zzAVwvCKDvpQ6iZF4LMVhsGXjruw6L8MDJcEOVlxRY2F8BqKWWrlPIogHIAMy2og4hsoLeAVTKGpgGrKlNRlKbhiuFtVpeTsN4CUof6gAW5rXiuxod6fiqVaZqiwOoqP27OVpHtt7oacxjdeD0ghNglhPizEGJobFkugKpOv1MdW0ZE1K2eAlbJOM/W+DDAIzF7lP0v8fY1IDUvTeLGLBVPhfxoccnHJFlJ1YAVFX5cNSKCMen2P6PaVwkdwYQQrwsh9nTzNRfAowBGA5gO4DiA33b8t27uqtv3owoh7hVCbBVCbK2rq+vuV4jIJToHrJ4IW12Ns22s9eJsRGBhrv0/PudQk4J36719DkidkKHhsmERLHfBxyRZSdOA5RWpmJQRxSVD7X9GNR4JNV5Sys9LKad08/WClLJWStkmpdQA/AkfX06sBpDf6W7yANT0cP+PSymLpZTFmZmZiZRKRA6Q5QduyVGxpsqPRvufiElKW+pTcLgpBXc54APJa84Dr5zw4fb8MAbFMUXwsuFtGD1IwwoHf0yS1f5S5cPIVA3Xj3TfqUXDdishxKhOP94KYE/s+xcBLBZCpAohLgIwFsAHRtVBRM4SGKjhmkwVKyr9UPmiqKsDjQq2nG5/Z5nH5k3XWRVYW+3HvBwVmf2YOzQrK4IMj8TaY/yQUL29WOOFBmCeS9+pbOSu9ZAQYrcQYheA6wB8GwCklHsBPA1gH4DXAHxdSumu84xElJDpQzRMGxzFsgqekdDLsfMCr9X6cEdBGGk2fwNpOAqsDPlxXaaKooH930C+lKuiJSrw6gkXvNXOJG+f9OB4WMFX8u1/Gbu/DGu8pJRflVJOlVJOk1LeIqU83um2n0spR0spx0spXzWqBiJyrmsyo8jxa3iyimckEtURkDo/R8XwVKurSUxHQOr0wVFMG5JYV64owFcLW1HRrOC9er6jNlE7GlKwq9GDJb28ycHpXDx0IrK7OTkRKKI9YJX651MBqTb3iYBUHXgUoLSwFVvPeLH3LF8y+6sjILW0sG9vcnAylw+fiOyOAav958SAVF83AamJYsBqYtwWkNobbkFEZGsMWO0fpwakLu4hIDVRDFjtHzcGpPaGjRcR2R4DVuPnxoDURDFgNT5uDUjtDY9QROQIDFjtOzcHpCaKAat94+aA1N6w8SIix/hEwKr9ewpDMCA1cQxY7Z2bA1J7Y/Pdjojokz4KWA0xYLUrBqTqhwGrPXN7QGpvbL7rERF9GgNWP40BqfpjwOqnMSC1d2y8iMiRGLD6MScGpM4YknhAaqIYsPpJDEjtGz41RORYDFh1ZkBq3gANV45IjrlDDFhtF2xmQGpf8ekhIkdzc8CqUwNSb9Y5IDVRbg9YrQ0DL9YwILWv3HckIiJdlZSUWF1Cr65Ro7jzyQ/x2ax8zJ2WA03ToDj8WoimaXj+9HB8bmw6vnPDWF3ve2loC0pKrtL1Pjv0tG4O+wMIexvwxO0zknbdTao5ix+8vA8P33Yx8oem9TgWo/aZhw5uNuy+exrLjMuvxj1/3Y4fzh6Lyy8abshj683q/T85t14iIh35fR48tmgGlm8J4f2j9Un7wq2nH67fj4wBXt2bLqN1t26e23kMbx+ux6MLL07qdTclZzC+fd0Y/POzu9DQoiZ1rfHqbixhNYqvPb0Dd11WYJumC+h+LKY+vqWPTkRkkmEDffjtvCn4VdkhHDrZZHU5hvrjpnLUNoXx61smW11KwjYfOYVVH1Th0UXT4fcl/0Waa8dmYtElebj/6R1QHZywqmka7luzAzeMy8TcaTlWl2MrbLyIyDUCmYPwo1kT8G8v7EFtkzPj7ddsq8Z7R0/j0YXJe0murw7UNuE3bxzG7+ZPxbCB9nl36qJL8nB50TD809PboTk0z+Tb6/YgMHwg7rsyYHUptmPvvZKIKE7FhUNxzxVFeODpnWhRk+OdcXrZdLgOa7ZV47FF0+GzeULqicYwHnxxD348ewKKhg+0upy4/fO1Y5CV7sf3XtpndSm6+/mGA2jTNPz4polWl2JL9t4ziYj64YuTR2H25Czct3oHog45I7H3+Fn8/q1y/OFL0zAkzT5nh7rTrEbxwNqduP/KAC7JH2p1Of32/744EQ0tKv7zzcNWl6KbJ96vwIHac/j9l6ZZXYptsfEiIlf6h88WYWL2IHzr2V1Wl5KwYw3n8YOX9uEnN01C/tA0q8tJSFTTcN9ft2POlGzcODHL6nISoigK/uu26dgaOoOn/rfK6nIStn7Pcby2rxZLF0+Hx+aXsa3EZ46IXOv7X5gAj6Lgp6/st7qUfjsXjuKbz+zEA1ePxvS8wVaXk7Bvrt2FqTkZKL2s0OpSdOHzKHhs8XQ8t/MY3jh40upy+m1r5Rn86f0KPLLoYqTZ4E0OyYyNFxG52n/eOgXB+mYs3Ry0upS4qVEN967ehlsvzsHnJ4y0upyE/Wj9Pvi9Cr5bMt7qUnSV4ffhjwsuxn+9fQQ7j521upy4BevO4WcbDuChuVOQOciCTyR3GDZeRORqiqJg6aLpeONQHZ7fVWN1OX2maRq+sXYHLs0fiq98psDqchL2yDtHUH3mPP5j3hSrSzFE7pAB+H83T8L/Xb8PVWdarC6nz06da8V3nt+DB0vGYdzIdKvLcQQ2XkTkeh0BqytiAat2YNeA1O7YJSA1UV0DVpOdXQNSk51zt3AiojjYKWCVAan2ZZeAVQakGoeNF9mCXUMI7Vq3G2maZouA1a4BqT1tY3bY9roLSLVD3YnQNM0WAatdA1KTtU47ElJKq2vok+LiYrl161aryyALlZWVWV1C3OzwAdL0sY5tbEeDgndO+XBfIAyfDn+e/le5H98Yk3gjd6BRwYZaH+65KIy02MmhC21jRu0zeoznrAosr/Rjbo6KooEfv6i7YZ/pWC9rq3zQACzK1+ey468P+vHd8YlvZy/WeNEQEbiz8OO63LBe9CaE+FBKWdx1Oc94ERF1MX2IhmmDo1hWkYpk+UP/2HmB12p9+ErBx02XXYWjwMqQH9dlfrLpcpsv5apoiQq8esJrdSkfefukB8fDCr6iUzNIn8bGi4ioG9dkRpHj1/BklfUp8GdUYG11KubnqBieanU1idE0YHllKmYMiWLaEPc2XQCgKMBXC1tR0azgvfoUq8vBjoYU7Gr0YElRKxz8HgfL8aklIurBnJwIFAGsO2bdGYlwFFgV8qNkpIoCB5wdWhnyIW+AhitHOOtzMvvLowClha3YesaLvWete0kONit4u86L0kJ9Lq9Tz/j0EhFdwO15KupaFbx50vzre1ENWFaZiuKhEUwebP+m69lqL3wKcHNOxOpSkkqaB/hqQRhlJ30INZv/slwbBl6s8WFRfhgZyXPV07HYeBERXYCiAHcVtWJfowcfnjHvcpCmAasqU1GUpuGK4W2mPa5RXq/14rSqYHEe5w51Z6gPWJDbiudqfKhvNe9xm6LA6io/bs5Wkc1QelOw8SIi6oVPAe4qCmPzKS8ON5lz2Hy2xocBHonZo+x/dmjr6RQcbEpBKecOXVBemsSNWSqeCvnRYsKVWFUDVlT4cdWICMak2/+Mql1wFyAi6oNBHmBxfhjrT/hwwuCIr421XpyNCCzMtf/ZoUNNCt6t9+KuIs4d6osJGRouGxbB8spUGJmvqmnA8opUTMqI4pKh9j+jaifcDYiI+ijLD9ySo2JNlR+NBvVEW+pTcLgpBXcV2v/sUM154JUTPtyeH8ZAm0dgmOmy4W0YPUjDikrj4kz+UuVDZqqG60fyTQ5ms/luTURkrsBADddkqlgR8kPV+UXxQKOCv5/2YklRGB6bH53PqsDaaj/m5ajI5NyhuM3KiiDDI7H2mP5xJi/WeKEBuDXX/pex7cjmuzYRkfmMCFhlQCp19aVcFc06B6wyINV6bLyIiPpBz4BVBqRSdxQFuLOwFUd1ClhlQGpy4FNPRNRPegSsMiCVLsSjAHfpELDKgNTkwaefiCgBiQSsMiCV+iLRgFUGpCYXNl5ERAnob8AqA1IpHv0NWGVAavJh40VElKD+BKw6MSCVc4eMFW/AKgNSkxN3ESIiHcQTsOrUgFS7R2DYQV8DVhmQmry4mxAR6aQvAasMSKVE9SVglQGpycvmuz0RUXK5UMAqA1JJLxcKWGVAanKz+a5PRJR8OgJW/9wpYNVJAalSY0BqMuguYJUBqcmPjRe5WjAYxKZNmxAMBq0uhRzmmswocv0anjgs0aqqWBPyOCIgtbw8iPOaRJGsY0CqxToHrK4/fBaQwPYz4JsckhxXDblWMBjEhg0bsHv3bmzYsIHNF+lucvggGs6cRpviRcrejYjWlltdUkKCwSCeP5EKaG2ofv1J7jNJwKMA18uD2BPOAAB4N/8Z1RVcL8nM5ie8ifovFAohGm2feBqNRhEKhRAIBCyuipwkFArBt3s3wpcvQXjMNVgX9sBXru+HHi8NbenxNlXVd/KVqo5BW0YUaIug8XP3mT4ep9B/vQQAGQUi56G1nOWxLMmx8SLXKigowP79+xGNRuHxeFBQUGB1SeQwHduY8v4yeDwezJo1S/cXxJKSq3q8raysTNfH6jhL3LHPmD0epzB6vfBYltzYeJFrBQIBzJo1C6FQCAUFBfwLkXTntG3MaeNxCq4Xe2HjRa4WCAR4kCJDOW0bc9p4nILrxT44uZ6IiIjIJGy8iIiIiEzCxouIiIjIJGy8iIiIiEzCxouIiIjIJAk1XkKI24QQe4UQmhCiuMtt3xNClAshDgohZnVafqkQYnfstj8KIUQiNRARERHZRaJnvPYAmA/gb50XCiEmAVgMYDKAGwE8IoRIid38KIB7AYyNfd2YYA1EREREtpBQ4yWl3C+lPNjNTXMBrJZStkopjwIoBzBTCDEKQIaU8n0ppQSwEsC8RGogIiIisguj5njlAqjq9HN1bFlu7Puuy4mIiIgcr9fkeiHE6wCyu7npB1LKF3r6b90skxdY3tNj34v2y5L87CkiIiKyvV4bLynl5/txv9UA8jv9nAegJrY8r5vlPT324wAeB4Di4uIeGzQiIiIiOzDqUuOLABYLIVKFEBehfRL9B1LK4wCahBCfjb2b8U4APZ01IyIiInKUROMkbhVCVAO4HMB6IcQGAJBS7gXwNIB9AF4D8HUpZVvsv/0TgP9B+4T7IwBeTaQGIiIiIrvo9VLjhUgp1wFY18NtPwfw826WbwUwJZHHJSIiIrIjJtcTERERmYSNFxEREZFJ2HgRERERmYSNFxEREZFJ2HgRERERmUS0f2Ri8isuLpZbt261ugyiuGiaBkXh3zdkHKdtY04bj1NwvcRPCPGhlLK463I+i0QG4oGKjOa0bcxp43EKrhf98JkkIiIiMgkbLyIiIiKTsPEiIiIiMgkbLyIiIiKTsPEiIiIiMgkbLyIiIiKTsPEiIiIiMgkbLyIiIiKTsPEiIiIiMgkbLyIiIiKTsPEiIiIiMgkbLyIiIiKTCCml1TX0iRCiDkClQXc/AsApg+7bDjh+jp/jdy+On+Pn+I1RKKXM7LrQNo2XkYQQW6WUxVbXYRWOn+Pn+Dl+q+uwCsfP8Zs9fl5qJCIiIjIJGy8iIiIik7Dxave41QVYjON3N47f3Th+d+P4TcY5XkREREQm4RkvIiIiIpOw8SIiIiIyiasaLyHEb4QQB4QQu4QQ64QQQzrd9j0hRLkQ4qAQYlan5ZcKIXbHbvujEEJYUrwOhBC3CSH2CiE0IURxp+VFQojzQogdsa/HOt3m+PHHbnP8+u9MCPETIcSxTuv8pk63dftcOI0Q4sbYGMuFEA9aXY8ZhBAVse15hxBia2zZMCFEmRDicOzfoVbXqRchxJ+FECeFEHs6LetxvE7b9nsYv2v2fSFEvhDiLSHE/tix/59jy63dBqSUrvkC8AUAntj3vwbw69j3kwDsBJAK4CIARwCkxG77AMDlAASAVwHMtnocCYx/IoDxADYBKO60vAjAnh7+jxvG74r13+W5+AmA/9PN8h6fCyd9AUiJjS0AwBcb8ySr6zJh3BUARnRZ9hCAB2PfP9hxXHTCF4CrAVzS+fjW03iduO33MH7X7PsARgG4JPZ9OoBDsXFaug246oyXlHKjlDIa+/HvAPJi388FsFpK2SqlPAqgHMBMIcQoABlSyvdl+1pZCWCe2XXrRUq5X0p5sK+/76Lxu2L991G3z4XFNRlhJoByKWVQSqkCWI32sbvRXAArYt+vgIO2cSnl3wCc7rK4p/E6btvvYfw9ceL4j0spt8W+bwKwH0AuLN4GXNV4dfEPaD+DAbSviKpOt1XHluXGvu+63IkuEkJsF0K8LYS4KrbMLeN36/p/IHbZ/c+dTrX39Fw4jVvG2ZUEsFEI8aEQ4t7Ysiwp5XGg/YUKwEjLqjNHT+N10zbhun1fCFEEYAaALbB4G/DofYdWE0K8DiC7m5t+IKV8IfY7PwAQBfBUx3/r5vflBZYnrb6MvxvHARRIKeuFEJcCeF4IMRnuGb9j1n9nF3ouADwK4GdoH8/PAPwW7X+M2HrMcXDLOLv6nJSyRggxEkCZEOKA1QUlEbdsE67b94UQgwA8C+BbUsrGC0zVNeU5cFzjJaX8/IVuF0KUArgZwA2xy0dAe1eb3+nX8gDUxJbndbM8afU2/h7+TyuA1tj3HwohjgAYB5eMHw5a/5319bkQQvwJwMuxH3t6LpzGLeP8BCllTezfk0KIdWi/jFIrhBglpTweu7x+0tIijdfTeF2xTUgpazu+d8O+L4Twor3pekpK+VxssaXbgKsuNQohbgTwXQC3SClbOt30IoDFQohUIcRFAMYC+CB2CrJJCPHZ2LvZ7gTQ01kT2xJCZAohUmLfB9A+/qBbxg8Xrv/YwabDrQA63vXU7XNhdn0m+F8AY4UQFwkhfAAWo33sjiWEGCiESO/4Hu1vNtqD9nGXxn6tFA7Zxi+gp/G6Ytt3074fO24/AWC/lPI/O91k7TZg9bsOzPxC+0S5KgA7Yl+PdbrtB2h/B8NBdHrnGoBitG+YRwA8jFjavx2/0L6TVaP97FYtgA2x5V8CsBft7+bYBmCOm8bvlvXf5blYBWA3gF1oP9iM6u25cNoXgJvQ/i6nI2i/FG15TQaPNxDbx3fG9vcfxJYPB/AGgMOxf4dZXauOY/4r2qdSRGL7/t0XGq/Ttv0exu+afR/AlWi/VLir0+v+TVZvA/zIICIiIiKTuOpSIxEREZGV2HgRERERmYSNFxEREZFJ2HgRERERmYSNFxEREZFJ2HgRERERmYSNFxEREZFJ/j8NfQ5MQzNM7AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "w_rook2 = raster.da2WSP(da_s, \"rook\", k=2, n_jobs=-1, include_nodata=True)\n", + "splot.plot_spatial_weights(w_rook2, data=da_s)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Additional resources\n", + "\n", + "1. [Reading and writing files using Xarray](http://xarray.pydata.org/en/stable/io.html)\n", + "2. [Xarray Data Structures](http://xarray.pydata.org/en/stable/data-structures.html)\n", + "3. Dataset links:\n", + " - [ECMWF_ERA-40_subset.nc](https://www.unidata.ucar.edu/software/netcdf/examples/files.html)\n", + " - [lux_ppp_2019.tif](https://data.humdata.org/dataset/worldpop-population-counts-for-luxembourg)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/examples.html b/notebooks/examples.html new file mode 100644 index 000000000..39df8433a --- /dev/null +++ b/notebooks/examples.html @@ -0,0 +1,1053 @@ + + + + + + + + Datasets for use with libpysal — libpysal v4.9.0 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+

This page was generated from notebooks/examples.ipynb. +Interactive online version: +Binder badge

+
+
+

Datasets for use with libpysal

+

As of version 4.2, libpysal has refactored the examples package to:

+ +

This notebook highlights the new functionality

+
+
+

Backwards compatibility is maintained

+

If you were familiar with previous versions of libpysal, the newest version maintains backwards compatibility so any code that relied on the previous API should work.

+

For example:

+
+
[1]:
+
+
+
from libpysal.examples import get_path
+
+
+
+
+
[2]:
+
+
+
get_path("mexicojoin.dbf")
+
+
+
+
+
[2]:
+
+
+
+
+'/home/serge/Documents/p/pysal/src/subpackages/libpysal/libpysal/examples/mexico/mexicojoin.dbf'
+
+
+

An important thing to note here is that the path to the file for this particular example is within the source distribution that was installed. Such an example data set is now referred to as a builtin dataset.

+
+
[3]:
+
+
+
import libpysal
+dbf = libpysal.io.open(get_path("mexicojoin.dbf"))
+
+
+
+
+
[4]:
+
+
+
dbf.header
+
+
+
+
+
[4]:
+
+
+
+
+['POLY_ID',
+ 'AREA',
+ 'CODE',
+ 'NAME',
+ 'PERIMETER',
+ 'ACRES',
+ 'HECTARES',
+ 'PCGDP1940',
+ 'PCGDP1950',
+ 'PCGDP1960',
+ 'PCGDP1970',
+ 'PCGDP1980',
+ 'PCGDP1990',
+ 'PCGDP2000',
+ 'HANSON03',
+ 'HANSON98',
+ 'ESQUIVEL99',
+ 'INEGI',
+ 'INEGI2',
+ 'MAXP',
+ 'GR4000',
+ 'GR5000',
+ 'GR6000',
+ 'GR7000',
+ 'GR8000',
+ 'GR9000',
+ 'LPCGDP40',
+ 'LPCGDP50',
+ 'LPCGDP60',
+ 'LPCGDP70',
+ 'LPCGDP80',
+ 'LPCGDP90',
+ 'LPCGDP00',
+ 'TEST']
+
+
+

The function available is also available but has been updated to return a Pandas DataFrame. In addition to the builtin datasets, available will report on what datasets are available, either as builtin or remotes.

+
+
[5]:
+
+
+
from libpysal.examples import available
+
+
+
+
+
[6]:
+
+
+
df = available()
+
+
+
+
+
[7]:
+
+
+
df.shape
+
+
+
+
+
[7]:
+
+
+
+
+(98, 3)
+
+
+
+
[8]:
+
+
+
libpysal.examples.summary()
+
+
+
+
+
+
+
+
+98 datasets available, 27 installed, 71 remote.
+
+
+

We see that there are 98 total datasets available for use with PySAL. On an initial install (i.e., examples has not been used yet), 27 of these are builtin datasets and 71 are remote. The latter can be downloaded and installed.

+
+
+

Downloading Remote Datasets

+
+
[9]:
+
+
+
df.head()
+
+
+
+
+
[9]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameDescriptionInstalled
010740Albuquerque, New Mexico, Census 2000 Tract Dat...True
1AirBnBAirbnb rentals, socioeconomics, and crime in C...False
2AtlantaAtlanta, GA region homicide counts and ratesFalse
3BaltimoreBaltimore house sales prices and hedonicsFalse
4BostonhsgBoston housing and neighborhood dataFalse
+
+
+

The remote AirBnB can be installed by calling load_example:

+
+
[10]:
+
+
+
airbnb = libpysal.examples.load_example("AirBnB")
+
+
+
+
+
+
+
+
+Downloading AirBnB to /home/serge/.local/share/pysal/AirBnB
+
+
+
+
[11]:
+
+
+
libpysal.examples.summary()
+
+
+
+
+
+
+
+
+98 datasets available, 28 installed, 70 remote.
+
+
+

And we see that the number of remotes as declined by one and the number of installed has increased by 1.

+

Trying to load an example that doesn’t exist will return None and alert the user:

+
+
[12]:
+
+
+
libpysal.examples.load_example('dataset42')
+
+
+
+
+
+
+
+
+Example not available: dataset42
+
+
+
+
+

Getting remote urls

+

If the url, rather than the dataset, is needed this can be obtained on a remote with get_url. As the Baltimore dataset has not yet been downloaded in this example, we can grab it’s url:

+
+
[13]:
+
+
+
balt_url = libpysal.examples.get_url('Baltimore')
+balt_url
+
+
+
+
+
[13]:
+
+
+
+
+'https://geodacenter.github.io/data-and-lab//data/baltimore.zip'
+
+
+
+
+

Explaining a dataset

+
+
[14]:
+
+
+
libpysal.examples.explain('taz')
+
+
+
+
+
+
+
+
+taz
+===
+
+Dataset used for regionalization
+--------------------------------
+
+* taz.dbf: attribute data. (k=14)
+* taz.shp: Polygon shapefile. (n=4109)
+* taz.shx: spatial index.
+
+
+
+
+
[15]:
+
+
+
taz = libpysal.examples.load_example('taz')
+
+
+
+
+
+
+
+
+Downloading taz to /home/serge/.local/share/pysal/taz
+
+
+
+
[16]:
+
+
+
taz.get_file_list()
+
+
+
+
+
[16]:
+
+
+
+
+['/home/serge/.local/share/pysal/taz/taz-master/taz.dbf',
+ '/home/serge/.local/share/pysal/taz/taz-master/taz.shp',
+ '/home/serge/.local/share/pysal/taz/taz-master/README.md',
+ '/home/serge/.local/share/pysal/taz/taz-master/taz.shx']
+
+
+
+
[17]:
+
+
+
libpysal.examples.explain('Baltimore')
+
+
+
+
+
[17]:
+
+
+
+
+
+
+
[18]:
+
+
+
balt = libpysal.examples.load_example('Baltimore')
+
+
+
+
+
+
+
+
+Downloading Baltimore to /home/serge/.local/share/pysal/Baltimore
+
+
+
+
[19]:
+
+
+
libpysal.examples.available()
+
+
+
+
+
[19]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NameDescriptionInstalled
010740Albuquerque, New Mexico, Census 2000 Tract Dat...True
1AirBnBAirbnb rentals, socioeconomics, and crime in C...True
2AtlantaAtlanta, GA region homicide counts and ratesFalse
3BaltimoreBaltimore house sales prices and hedonicsTrue
4BostonhsgBoston housing and neighborhood dataFalse
............
93tazTraffic Analysis Zones in So. CaliforniaTrue
94tokyoTokyo Mortality dataTrue
95us_incomePer-capita income for the lower 48 US states 1...True
96virginiaVirginia counties shapefileTrue
97wmatDatasets used for spatial weights testingTrue
+

98 rows × 3 columns

+
+
+
+
+

Working with an example dataset

+

explain will render maps for an example if available

+
+
[20]:
+
+
+
from libpysal.examples import explain
+explain('Tampa1')
+
+
+
+
+
[20]:
+
+
+
+
+
+
+
[21]:
+
+
+
from libpysal.examples import load_example
+tampa1 = load_example('Tampa1')
+
+
+
+
+
+
+
+
+Downloading Tampa1 to /home/serge/.local/share/pysal/Tampa1
+
+
+
+
[22]:
+
+
+
tampa1.installed
+
+
+
+
+
[22]:
+
+
+
+
+True
+
+
+
+
[23]:
+
+
+
tampa1.get_file_list()
+
+
+
+
+
[23]:
+
+
+
+
+['/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.shp',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.prj',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/2000 Census Data Variables_Documentation.pdf',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.kml',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.dbf',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.kml',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.sbn',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.mif',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.prj',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.sqlite',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.shx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.sbn',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.sbx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.gdbtablx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.gdbtable',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.FDO_UUID.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000002.gdbtable',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByName.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.gdbtablx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000003.gdbtable',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.gdbindexes',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000002.gdbtablx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.CatRelsByType.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.spx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.gdbtable',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByDestItemTypeID.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.gdbtable',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/timestamps',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.CatItemTypesByName.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000003.gdbtablx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.gdbtable',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.gdbindexes',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.gdbtablx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.CatItemTypesByUUID.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.CatItemTypesByParentTypeID.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.CatItemsByType.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.gdbindexes',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByForwardLabel.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.gdbtable',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.gdbtablx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.FDO_UUID.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByUUID.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.gdbindexes',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.TablesByName.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.gdbtablx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.gdbtable',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.CatRelsByOriginID.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000003.gdbindexes',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.gdbindexes',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.spx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.gdbtablx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.CatItemsByPhysicalName.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.gdbtablx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.gdbtable',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/gdb',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.gdbindexes',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.spx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByBackwardLabel.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.gdbindexes',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.CatRelsByDestinationID.atx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.mid',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.sbx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.geojson',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.mid',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.xlsx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.mif',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.dbf',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.shp',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.gpkg',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.gpkg',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.xlsx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.shx',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.sqlite',
+ '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.geojson',
+ '/home/serge/.local/share/pysal/Tampa1/__MACOSX/TampaMSA/._2000 Census Data Variables_Documentation.pdf',
+ '/home/serge/.local/share/pysal/Tampa1/__MACOSX/TampaMSA/._tampa_counties.sbn',
+ '/home/serge/.local/share/pysal/Tampa1/__MACOSX/TampaMSA/._tampa_final_census2.sbn',
+ '/home/serge/.local/share/pysal/Tampa1/__MACOSX/TampaMSA/._tampa_counties.sbx',
+ '/home/serge/.local/share/pysal/Tampa1/__MACOSX/TampaMSA/._tampa_final_census2.sbx',
+ '/home/serge/.local/share/pysal/Tampa1/__MACOSX/._TampaMSA']
+
+
+
+
[24]:
+
+
+
tampa_counties_shp = tampa1.load('tampa_counties.shp')
+
+
+
+
+
[25]:
+
+
+
tampa_counties_shp
+
+
+
+
+
[25]:
+
+
+
+
+<libpysal.io.iohandlers.pyShpIO.PurePyShpWrapper at 0x7febc3b1bd00>
+
+
+
+
[26]:
+
+
+
import geopandas
+
+
+
+
+
[27]:
+
+
+
tampa_df = geopandas.read_file(tampa1.get_path('tampa_counties.shp'))
+
+
+
+
+
[28]:
+
+
+
%matplotlib inline
+tampa_df.plot()
+
+
+
+
+
[28]:
+
+
+
+
+<AxesSubplot:>
+
+
+
+
+
+
+../_images/notebooks_examples_40_1.png +
+
+
+
+

Other Remotes

+

In addition to the remote datasets from the GeoData Data Science Center, there are several large remotes available at github repositories.

+
+
[29]:
+
+
+
libpysal.examples.explain('Rio Grande do Sul')
+
+
+
+
+
+
+
+
+Rio_Grande_do_Sul
+======================
+
+Cities of the Brazilian State of Rio Grande do Sul
+-------------------------------------------------------
+
+* 43MUE250GC_SIR.dbf: attribute data (k=2)
+* 43MUE250GC_SIR.shp: Polygon shapefile (n=499)
+* 43MUE250GC_SIR.shx: spatial index
+* 43MUE250GC_SIR.cpg: encoding file
+* 43MUE250GC_SIR.prj: projection information
+* map_RS_BR.dbf: attribute data (k=3)
+* map_RS_BR.shp: Polygon shapefile (no lakes) (n=497)
+* map_RS_BR.prj: projection information
+* map_RS_BR.shx: spatial index
+
+
+
+Source: Renan Xavier Cortes
+Reference: https://github.com/pysal/pysal/issues/889#issuecomment-396693495
+
+
+
+
+

Note that the explain function generates a textual description of this example dataset - no rendering of the map is done as the source repository does not include that functionality.

+
+
[30]:
+
+
+
rio = libpysal.examples.load_example('Rio Grande do Sul')
+
+
+
+
+
+
+
+
+Downloading Rio Grande do Sul to /home/serge/.local/share/pysal/Rio_Grande_do_Sul
+
+
+
+
[31]:
+
+
+
libpysal.examples.remote_datasets.datasets # a listing of all remotes
+
+
+
+
+
[31]:
+
+
+
+
+{'AirBnB': <libpysal.examples.base.Example at 0x7febc78c00d0>,
+ 'Atlanta': <libpysal.examples.base.Example at 0x7febc4a5efb0>,
+ 'Baltimore': <libpysal.examples.base.Example at 0x7febc4a5ed40>,
+ 'Bostonhsg': <libpysal.examples.base.Example at 0x7febc4a5ef50>,
+ 'Buenosaires': <libpysal.examples.base.Example at 0x7febc4a5efe0>,
+ 'Charleston1': <libpysal.examples.base.Example at 0x7febc4a5ef80>,
+ 'Charleston2': <libpysal.examples.base.Example at 0x7febc4a5ee90>,
+ 'Chicago Health': <libpysal.examples.base.Example at 0x7febc4a5ef20>,
+ 'Chicago commpop': <libpysal.examples.base.Example at 0x7febc4a5f070>,
+ 'Chicago parcels': <libpysal.examples.base.Example at 0x7febc4a5f0a0>,
+ 'Chile Labor': <libpysal.examples.base.Example at 0x7febc4a5f100>,
+ 'Chile Migration': <libpysal.examples.base.Example at 0x7febc4a5f130>,
+ 'Cincinnati': <libpysal.examples.base.Example at 0x7febc4a5f1f0>,
+ 'Cleveland': <libpysal.examples.base.Example at 0x7febc4a5f190>,
+ 'Columbus': <libpysal.examples.base.Example at 0x7febc4a5f250>,
+ 'Elections': <libpysal.examples.base.Example at 0x7febc4a5f0d0>,
+ 'Grid100': <libpysal.examples.base.Example at 0x7febc4a5f220>,
+ 'Groceries': <libpysal.examples.base.Example at 0x7febc4a5f160>,
+ 'Guerry': <libpysal.examples.base.Example at 0x7febc4a5f280>,
+ 'Health+': <libpysal.examples.base.Example at 0x7febc4a5f040>,
+ 'Health Indicators': <libpysal.examples.base.Example at 0x7febc4a5f2b0>,
+ 'Hickory1': <libpysal.examples.base.Example at 0x7febc4a5f2e0>,
+ 'Hickory2': <libpysal.examples.base.Example at 0x7febc4a5f310>,
+ 'Home Sales': <libpysal.examples.base.Example at 0x7febc4a5f340>,
+ 'Houston': <libpysal.examples.base.Example at 0x7febc4a5f370>,
+ 'Juvenile': <libpysal.examples.base.Example at 0x7febc4a5f3a0>,
+ 'Lansing1': <libpysal.examples.base.Example at 0x7febc4a5f3d0>,
+ 'Lansing2': <libpysal.examples.base.Example at 0x7febc4a5f400>,
+ 'Laozone': <libpysal.examples.base.Example at 0x7febc4a5f430>,
+ 'LasRosas': <libpysal.examples.base.Example at 0x7febc4a5f460>,
+ 'Liquor Stores': <libpysal.examples.base.Example at 0x7febc4a5f490>,
+ 'Malaria': <libpysal.examples.base.Example at 0x7febc4a5f4c0>,
+ 'Milwaukee1': <libpysal.examples.base.Example at 0x7febc4a5f4f0>,
+ 'Milwaukee2': <libpysal.examples.base.Example at 0x7febc4a5f520>,
+ 'NCOVR': <libpysal.examples.base.Example at 0x7febc4a5f550>,
+ 'Natregimes': <libpysal.examples.base.Example at 0x7febc4a5f580>,
+ 'NDVI': <libpysal.examples.base.Example at 0x7febc4a5f5b0>,
+ 'Nepal': <libpysal.examples.base.Example at 0x7febc4a5f5e0>,
+ 'NYC': <libpysal.examples.base.Example at 0x7febc4a5f610>,
+ 'NYC Earnings': <libpysal.examples.base.Example at 0x7febc4a5f640>,
+ 'NYC Education': <libpysal.examples.base.Example at 0x7febc4a5f670>,
+ 'NYC Neighborhoods': <libpysal.examples.base.Example at 0x7febc4a5f6a0>,
+ 'NYC Socio-Demographics': <libpysal.examples.base.Example at 0x7febc4a5f6d0>,
+ 'Ohiolung': <libpysal.examples.base.Example at 0x7febc4a5f700>,
+ 'Orlando1': <libpysal.examples.base.Example at 0x7febc4a5f730>,
+ 'Orlando2': <libpysal.examples.base.Example at 0x7febc4a5f760>,
+ 'Oz9799': <libpysal.examples.base.Example at 0x7febc4a5f790>,
+ 'Phoenix ACS': <libpysal.examples.base.Example at 0x7febc4a5f7c0>,
+ 'Pittsburgh': <libpysal.examples.base.Example at 0x7febc4a5f7f0>,
+ 'Police': <libpysal.examples.base.Example at 0x7febc4a5f820>,
+ 'Sacramento1': <libpysal.examples.base.Example at 0x7febc4a5f850>,
+ 'Sacramento2': <libpysal.examples.base.Example at 0x7febc4a5f880>,
+ 'SanFran Crime': <libpysal.examples.base.Example at 0x7febc4a5f8b0>,
+ 'Savannah1': <libpysal.examples.base.Example at 0x7febc4a5f8e0>,
+ 'Savannah2': <libpysal.examples.base.Example at 0x7febc4a5f910>,
+ 'Scotlip': <libpysal.examples.base.Example at 0x7febc4a5f940>,
+ 'Seattle1': <libpysal.examples.base.Example at 0x7febc4a5f970>,
+ 'Seattle2': <libpysal.examples.base.Example at 0x7febc4a5f9a0>,
+ 'SIDS': <libpysal.examples.base.Example at 0x7febc4a5f9d0>,
+ 'SIDS2': <libpysal.examples.base.Example at 0x7febc4a5fa00>,
+ 'Snow': <libpysal.examples.base.Example at 0x7febc4a5fa30>,
+ 'South': <libpysal.examples.base.Example at 0x7febc4a5fa60>,
+ 'Spirals': <libpysal.examples.base.Example at 0x7febc4a5fa90>,
+ 'StLouis': <libpysal.examples.base.Example at 0x7febc4a5fac0>,
+ 'Tampa1': <libpysal.examples.base.Example at 0x7febc4a5faf0>,
+ 'US SDOH': <libpysal.examples.base.Example at 0x7febc4a5fb20>,
+ 'Rio Grande do Sul': <libpysal.examples.base.Example at 0x7febc78c0130>,
+ 'nyc_bikes': <libpysal.examples.base.Example at 0x7febc4a5fb80>,
+ 'taz': <libpysal.examples.base.Example at 0x7febc4a5fc70>,
+ 'clearwater': <libpysal.examples.base.Example at 0x7febc4a5fbe0>,
+ 'newHaven': <libpysal.examples.base.Example at 0x7febc4a5eec0>}
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+ +
+
+
+
+

+ Back to top + +
+ +

+ +

+

+ © Copyright 2018-, pysal developers.
+ Created using Sphinx 7.2.6.
+

+
+
+ + \ No newline at end of file diff --git a/notebooks/examples.ipynb b/notebooks/examples.ipynb new file mode 100644 index 000000000..5905f568d --- /dev/null +++ b/notebooks/examples.ipynb @@ -0,0 +1,1093 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Datasets for use with libpysal\n", + "As of version 4.2, libpysal has refactored the `examples` package to:\n", + "\n", + "- reduce the size of the source installation\n", + "- allow the use of remote datasets from the [Center for Spatial Data Science at the Unversity of Chicago](https://spatial.uchicago.edu/), and other remotes\n", + "\n", + "This notebook highlights the new functionality" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Backwards compatibility is maintained" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you were familiar with previous versions of libpysal, the newest version maintains backwards compatibility so any code that relied on the previous API should work. \n", + "\n", + "For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.examples import get_path \n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/home/serge/Documents/p/pysal/src/subpackages/libpysal/libpysal/examples/mexico/mexicojoin.dbf'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "get_path(\"mexicojoin.dbf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An important thing to note here is that the path to the file for this particular example is within the source distribution that was installed. Such an example data set is now referred to as a `builtin` dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import libpysal\n", + "dbf = libpysal.io.open(get_path(\"mexicojoin.dbf\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['POLY_ID',\n", + " 'AREA',\n", + " 'CODE',\n", + " 'NAME',\n", + " 'PERIMETER',\n", + " 'ACRES',\n", + " 'HECTARES',\n", + " 'PCGDP1940',\n", + " 'PCGDP1950',\n", + " 'PCGDP1960',\n", + " 'PCGDP1970',\n", + " 'PCGDP1980',\n", + " 'PCGDP1990',\n", + " 'PCGDP2000',\n", + " 'HANSON03',\n", + " 'HANSON98',\n", + " 'ESQUIVEL99',\n", + " 'INEGI',\n", + " 'INEGI2',\n", + " 'MAXP',\n", + " 'GR4000',\n", + " 'GR5000',\n", + " 'GR6000',\n", + " 'GR7000',\n", + " 'GR8000',\n", + " 'GR9000',\n", + " 'LPCGDP40',\n", + " 'LPCGDP50',\n", + " 'LPCGDP60',\n", + " 'LPCGDP70',\n", + " 'LPCGDP80',\n", + " 'LPCGDP90',\n", + " 'LPCGDP00',\n", + " 'TEST']" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dbf.header" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function `available` is also available but has been updated to return a Pandas DataFrame. In addition to the builtin datasets, `available` will report on what datasets are available, either as builtin or remotes." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.examples import available" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "df = available()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(98, 3)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "98 datasets available, 27 installed, 71 remote.\n" + ] + } + ], + "source": [ + "libpysal.examples.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that there are 98 total datasets available for use with PySAL. On an initial install (i.e., `examples` has not been used yet), 27 of these are builtin datasets and 71 are remote. The latter can be downloaded and installed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Downloading Remote Datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameDescriptionInstalled
010740Albuquerque, New Mexico, Census 2000 Tract Dat...True
1AirBnBAirbnb rentals, socioeconomics, and crime in C...False
2AtlantaAtlanta, GA region homicide counts and ratesFalse
3BaltimoreBaltimore house sales prices and hedonicsFalse
4BostonhsgBoston housing and neighborhood dataFalse
\n", + "
" + ], + "text/plain": [ + " Name Description Installed\n", + "0 10740 Albuquerque, New Mexico, Census 2000 Tract Dat... True\n", + "1 AirBnB Airbnb rentals, socioeconomics, and crime in C... False\n", + "2 Atlanta Atlanta, GA region homicide counts and rates False\n", + "3 Baltimore Baltimore house sales prices and hedonics False\n", + "4 Bostonhsg Boston housing and neighborhood data False" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The remote `AirBnB` can be installed by calling `load_example`:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading AirBnB to /home/serge/.local/share/pysal/AirBnB\n" + ] + } + ], + "source": [ + "airbnb = libpysal.examples.load_example(\"AirBnB\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "98 datasets available, 28 installed, 70 remote.\n" + ] + } + ], + "source": [ + "libpysal.examples.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And we see that the number of remotes as declined by one and the number of installed has increased by 1." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Trying to load an example that doesn't exist will return None and alert the user:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example not available: dataset42\n" + ] + } + ], + "source": [ + "libpysal.examples.load_example('dataset42')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting remote urls\n", + "\n", + "If the url, rather than the dataset, is needed this can be obtained on a remote with `get_url`. \n", + "As the `Baltimore` dataset has not yet been downloaded in this example, we can grab it's url:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'https://geodacenter.github.io/data-and-lab//data/baltimore.zip'" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "balt_url = libpysal.examples.get_url('Baltimore')\n", + "balt_url" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Explaining a dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "taz\n", + "===\n", + "\n", + "Dataset used for regionalization\n", + "--------------------------------\n", + "\n", + "* taz.dbf: attribute data. (k=14)\n", + "* taz.shp: Polygon shapefile. (n=4109)\n", + "* taz.shx: spatial index.\n", + "\n" + ] + } + ], + "source": [ + "libpysal.examples.explain('taz')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading taz to /home/serge/.local/share/pysal/taz\n" + ] + } + ], + "source": [ + "taz = libpysal.examples.load_example('taz')" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['/home/serge/.local/share/pysal/taz/taz-master/taz.dbf',\n", + " '/home/serge/.local/share/pysal/taz/taz-master/taz.shp',\n", + " '/home/serge/.local/share/pysal/taz/taz-master/README.md',\n", + " '/home/serge/.local/share/pysal/taz/taz-master/taz.shx']" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "taz.get_file_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.explain('Baltimore')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading Baltimore to /home/serge/.local/share/pysal/Baltimore\n" + ] + } + ], + "source": [ + "balt = libpysal.examples.load_example('Baltimore')" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameDescriptionInstalled
010740Albuquerque, New Mexico, Census 2000 Tract Dat...True
1AirBnBAirbnb rentals, socioeconomics, and crime in C...True
2AtlantaAtlanta, GA region homicide counts and ratesFalse
3BaltimoreBaltimore house sales prices and hedonicsTrue
4BostonhsgBoston housing and neighborhood dataFalse
............
93tazTraffic Analysis Zones in So. CaliforniaTrue
94tokyoTokyo Mortality dataTrue
95us_incomePer-capita income for the lower 48 US states 1...True
96virginiaVirginia counties shapefileTrue
97wmatDatasets used for spatial weights testingTrue
\n", + "

98 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " Name Description Installed\n", + "0 10740 Albuquerque, New Mexico, Census 2000 Tract Dat... True\n", + "1 AirBnB Airbnb rentals, socioeconomics, and crime in C... True\n", + "2 Atlanta Atlanta, GA region homicide counts and rates False\n", + "3 Baltimore Baltimore house sales prices and hedonics True\n", + "4 Bostonhsg Boston housing and neighborhood data False\n", + ".. ... ... ...\n", + "93 taz Traffic Analysis Zones in So. California True\n", + "94 tokyo Tokyo Mortality data True\n", + "95 us_income Per-capita income for the lower 48 US states 1... True\n", + "96 virginia Virginia counties shapefile True\n", + "97 wmat Datasets used for spatial weights testing True\n", + "\n", + "[98 rows x 3 columns]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.available()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Working with an example dataset\n", + "\n", + "`explain` will render maps for an example if available" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from libpysal.examples import explain\n", + "explain('Tampa1')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading Tampa1 to /home/serge/.local/share/pysal/Tampa1\n" + ] + } + ], + "source": [ + "from libpysal.examples import load_example\n", + "tampa1 = load_example('Tampa1')" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tampa1.installed" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.shp',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.prj',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/2000 Census Data Variables_Documentation.pdf',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.kml',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.dbf',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.kml',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.sbn',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.mif',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.prj',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.sqlite',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.shx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.sbn',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.sbx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.gdbtablx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.gdbtable',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.FDO_UUID.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000002.gdbtable',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByName.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.gdbtablx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000003.gdbtable',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.gdbindexes',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000002.gdbtablx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.CatRelsByType.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.spx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.gdbtable',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByDestItemTypeID.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.gdbtable',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/timestamps',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.CatItemTypesByName.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000003.gdbtablx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.gdbtable',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.gdbindexes',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.gdbtablx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.CatItemTypesByUUID.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.CatItemTypesByParentTypeID.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.CatItemsByType.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.gdbindexes',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByForwardLabel.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.gdbtable',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.gdbtablx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.FDO_UUID.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByUUID.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.gdbindexes',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.TablesByName.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.gdbtablx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000009.gdbtable',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.CatRelsByOriginID.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000003.gdbindexes',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.gdbindexes',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a0000000a.spx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.gdbtablx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.CatItemsByPhysicalName.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.gdbtablx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByOriginItemTypeID.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.gdbtable',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/gdb',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000001.gdbindexes',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000004.spx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000007.CatRelTypesByBackwardLabel.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000005.gdbindexes',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/TampaMSA.gdb/a00000006.CatRelsByDestinationID.atx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.mid',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.sbx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.geojson',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.mid',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.xlsx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.mif',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.dbf',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.shp',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.gpkg',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.gpkg',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.xlsx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.shx',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_final_census2.sqlite',\n", + " '/home/serge/.local/share/pysal/Tampa1/TampaMSA/tampa_counties.geojson',\n", + " '/home/serge/.local/share/pysal/Tampa1/__MACOSX/TampaMSA/._2000 Census Data Variables_Documentation.pdf',\n", + " '/home/serge/.local/share/pysal/Tampa1/__MACOSX/TampaMSA/._tampa_counties.sbn',\n", + " '/home/serge/.local/share/pysal/Tampa1/__MACOSX/TampaMSA/._tampa_final_census2.sbn',\n", + " '/home/serge/.local/share/pysal/Tampa1/__MACOSX/TampaMSA/._tampa_counties.sbx',\n", + " '/home/serge/.local/share/pysal/Tampa1/__MACOSX/TampaMSA/._tampa_final_census2.sbx',\n", + " '/home/serge/.local/share/pysal/Tampa1/__MACOSX/._TampaMSA']" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tampa1.get_file_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "tampa_counties_shp = tampa1.load('tampa_counties.shp')" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tampa_counties_shp" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "tampa_df = geopandas.read_file(tampa1.get_path('tampa_counties.shp'))" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASUAAAGdCAYAAABU/mVvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXmElEQVR4nO3dd3xUVdoH8N+dnjKZ1EknBEJJCJ1QQ1FpLqJY1saCroVFAou4uoriur4uxl2xsa7YURYpFpCsIALSpQdCqAnpIYX0mUmbet4/JgwEkpAyd+bO5Pl+PqPkzp07z0155txzz3kOxxhjIIQQgRA5OwBCCLkeJSVCiKBQUiKECAolJUKIoFBSIoQICiUlQoigUFIihAgKJSVCiKBInB2AvVgsFhQXF0OpVILjOGeHQwi5AWMMOp0OYWFhEIlabw+5TVIqLi5GZGSks8MghNxCYWEhIiIiWn3ebZKSUqkEYD1hHx8fJ0dDCLmRVqtFZGSk7W+1NW6TlK5esvn4+FBSIkTAbtW9Qh3dhBBBoaRECBEUSkqEEEGhpEQIERRKSoQQQaGkRAgRFEpKhBBBoaRECBEUSkqEEEGhpEQIERRKSoQQQaGkRAgRFEpKhBBBcZsqAaS5qjoD9maUgTHg6hLIjDHbv8GAq19dv0Yya/racnVfxmyzuq+9ll13zJvf28IYLOzae16PXfe+V782MwazmVn/b7E+rro6oZwDd92/rU+IOOCxMT3h5yVrz7eEuAhKSm7os/05WLUvG1V1BmeHwru7BoVRUnIzdPnmhk4VVneLhARYW2XEvVBLyY00Gs3YeLwQBy9VODsUh6Gk5H6opeRGCqrqkVdZB22jydmhOMz1/U/EPVBSciMxQd5Iza92dhgOZbE4OwJib5SU3MiCb04i/bLG2WE4lJku39wO9Sm5gYLKeuy7VI7jeVXODsXhqE/J/VBScgMVdXqsO1qAqvruccftehYe+5RMZgsMZgsMJgtMFtZ8jNV1/2s+zsv6hYizjqsq0+oRo/aGQirmLU53w7EbR7e5KK1WC5VKBY1G022XWFq0/hR2X7iCOoPZ2aE4TIzaG95yCUScdekeEXdtoCXHWZPD1QQh4jiYLQwGswXGpofBZIHRzGAwXUtAV/9tj070J8ZF428z4+xwpq6vvX+j1FJyE4wxvHpXLIwmC7afK3V2OA6TVVbr7BBaNLKnP4wWC54aH+3sUFwOJSU3Mu29/aiuNzo7DALgbzPjEB+ucnYYLonuvrkJjuPgKaPPGKEorKp3dggui5KSG+kT7O3sEEiTN346j+puMtXH3igpuYnU/Cocyq50dhikSbGmEfd/fAgf78vG4exKfHu80NkhuQxq77sBg8mCNYfzYTDR8GYhySmvw1s/XwQAjIjyw4MJkU6OyDVQUnJxmVd0ePGHdJwqqHF2KKQNb90/yNkhuAy6fHNhZdpGfHUoD78fHolAb7mzwyGtUEhF8KeaT+1GScmFqX0UePPegXh0VA8MDO+eA0ZdgdHMUFGrd3YYLoOSkpvo4e/p7BBIK8wWhqnv7ce7OzJgNFtuKhFMmqOk5CZobpXwfbQ3G2Pf2o0vDuY6OxRBo6TkBsq0jdh0qsjZYZBbMFkYynV6HOhGlUE7g5KSG1D7KPDA8Ahnh0HaqY+aBrm2hZKSG8go1eFoDg2cdBVf/JaLlzefcXYYgkVJyQ0U1zTgJI1TchmMAZmlOl5rQbmyDiWl5ORkJCQkQKlUQq1WY9asWcjIyGi2T21tLRYuXIiIiAh4eHggNjYWq1atuuWxa2pqkJSUhNDQUCgUCsTGxmLbtm0dO5tu6NsThfh0f46zwyAdlFpQjVHJv+KKttHZoQhOh5LSvn37kJSUhCNHjmDnzp0wmUyYOnUq6urqbPssWbIE27dvx9q1a3HhwgUsWbIEixYtwpYtW1o9rsFgwJQpU5CXl4fvv/8eGRkZ+OyzzxAeHt75M+sGsstr8eHuLBymSzeXwxhQrtPj0c+OODsUwenQNJPt27c3+3r16tVQq9VITU3FhAkTAACHDx/GY489hkmTJgEA5s2bh08++QQnTpzAPffc0+Jxv/zyS1RVVeHQoUOQSqUAgKioqI6eS7ditjDsuViGV2bE4pXNZ1BRSzPSXVGj0VoBUyqmnpSruvSd0GisK2f4+/vbtiUmJiIlJQVFRUVgjGHPnj3IzMzEtGnTWj1OSkoKxowZg6SkJAQHByM+Ph5vvvkmzObWy7rq9Xpotdpmj+5ELOLw1Phe6B+iRN9gpbPDIZ1UVNOAvRnlVObkOp1OSowxPPfcc0hMTER8fLxt+8qVKxEXF4eIiAjIZDJMnz4dH330ERITE1s9Vk5ODr7//nuYzWZs27YNy5YtwzvvvIPly5e3+prk5GSoVCrbIzKy+83AZoxBKhbhtn5qZ4dCuuDpNSfw1JoTqOmGCz+0pNNJaeHChUhPT8f69eubbV+5ciWOHDmClJQUpKam4p133sGCBQuwa9euVo9lsVigVqvx6aefYvjw4Xj44YfxyiuvtNlBvnTpUmg0GtujsLD71avhOA5hvh4wWiwI9pEjTKVwdkikk1Lzq7Fw3Sk0dKNFH1rTqdIlixYtQkpKCvbv34+IiGuD9hoaGvDyyy9j8+bNmDFjBgBg0KBBSEtLw4oVKzB58uQWjxcaGgqpVAqx+NpUidjYWJSWlsJgMEAmu3mGtVwuh1xOM+MBINzXA0eW3gELAyb8aw+KahqcHRLphINZFcirrENsaPeeXN2hlhJjDAsXLsSmTZuwe/duREc3X6nBaDTCaDRCJGp+WLFYDEsb6yuPGzcOWVlZzfbJzMxEaGhoiwmJNHfPkHAYzBb89ft0FGsoIbmyA5fKnR2C03UoKSUlJWHt2rVYt24dlEolSktLUVpaioYG6x+Cj48PJk6ciBdeeAF79+5Fbm4uvvrqK6xZswb33nuv7Thz587F0qVLbV8/88wzqKysxOLFi5GZmYmtW7fizTffRFJSkp1O0/3JJWL87a44TIkNdnYopAu627LrLenQ5dvVPp6rt/uvWr16NR5//HEAwIYNG7B06VLMnj0bVVVViIqKwvLlyzF//nzb/gUFBc1aU5GRkdixYweWLFmCQYMGITw8HIsXL8aLL77YydPqfiwWhuN5VWgwUp+EK9t9sQxZZTrEqLvvHVVaIddNXLqiw/y1qcivrIeJpi+4tEn9gvDVH0c6Owy7a+/fKI3YcgOvbTmLe/7zG7LL6yghuYG9GeX496+Xms2N25pegs8P5OBytfuvJ0ctJTfw1NcnIBYBJ/KqUUmD8NzGkEhfhPkqoGs04VB2JcwWBomIw7sPDcHdg8Nafd3jq4/hzvgQjO0diEgBVSRt798orWbi4kxmC8b0DsD9w8Jxxzv7nB0OsaO0whqk3TD8zmRh+PJgLtIKauCtkGBi3yAMifQFAFTVGfDct2k4klOJvRnlUHlIseoPwzC2d6Djg+8Caim5kXd3ZmLlr5ecHQZxsHBfD4zo6Qddowm7L5Y1e07lIcXAcBXmTeiFCX2DnBShFbWUuhlNvRG5FXW33pG4naKaBhSltTw+TdNgxMGsCuj0JozvEwiO4xwcXcdRR7eb0JvM2HPDpyQhV50v1kDvIisoU1JyE+eKtRD+ZyBxFqOZYW+Ga4wWp6TkJrLLa6HTm5wdBhGwj/ZmOTuEdqGk5CYm9QuCr6fU2WEQAUu/rIGm3ujsMG6JkpKbiFEr8fzUfs4OgwjcY6uP4VD2tXXnGGM4W6SBWUCDbikpuZGccrr7RtqWVliDRz87ivn/TcWBS+VYuO4U7vr3QXy8L9vZodnQkAA3se1MCb78jZaDJu2z/Vwptp8rtX296eRlJN0W48SIrqGWkpugkhekK7LL63C6sMbZYQCgpOTSrp+waTS7xhgUIlwLvjmJM618uDHGsDejDJ/tz0FOeS2vcdDlm4v6039P4FB2Jf44Lhqjo/1xsqDa2SERF1dU04Cn1hzH4ZfugEhkHfV24FI5LpRo8c3RAuRXWisU/OuXi3jz3oF4YHgELyPEae6bizpdWIP7Vx0CAwR154S4vtfvHoC5Y6JwPK8a89emoqqVyhNPjIvG32bGtfu47f0bpaTkghqNZmSX1+KTfTlIOV3s7HCIG/KQittVxfTDR4firkGtl1G5HhV5c2NmC4OPQoq/3z0AT4yLhojmlxA7a29Z5TweJoFTn5IL8pJL4CW3/uhevSsWUjGHT/bnODkq0h2JRfZv11BLycXpTRbsOH/F2WGQbkrMQwahpOTiDlyqoDpKxGkk1FIi19M2GpG87YKzwyDdmERs/w5NSkou7NKVWhR2g9UtiHCJeBinREnJRf18pgRPfHUcRrNbjOggLkrMw61fSkouSNtoxNYzJdA0CL82DnFvlJQIAKBOb0I2lSkhAiCmyzcCAKEqD3w0e5izwyCEOrrJNb4eUgR4yZwdBunmqKOb2ORV1qHOQAsFEOfio0+Jppm4oON5VXh2QxoajVRDyZX4e0nRR60EADDALZbEkksoKREAgyN80djOCZNEOHwUUhzNrXJ2GHb1x3E97X5MunxzQan51ahspcYNIY5FLaVuTdtoxJpDeTQBlwgGD/3clJRcQZmuEV8cyMU3RwtQS6vgEgHho1+MLt9cgFqpwO391Qj0lmFYD19nh0OIDR81uikpuQCj2YKvD+fhg4eHwkMmxpv3DuSl2UxIR/Hxa0iXby5AKhbho9nDAQBfPp4Ag8mCnPJafH6QFp8kzkV9SgRyiRhyiRjhfh7ODoV0EB+XOs7GxynR5ZsL2pdZjk0ni5wdBiHgeLiAo6TkgkQccKaIlukmAkAtJXKxVIuqOgP8PKXODoUQ6ugmQB+1ErP+8xvNeyOCwEfdU0pKLqRWb4JUzGFqXDD2ZJSj3mBu9kl1dZInA8AYg4jjIBZxEIk4iJv+zXHWwlwcBzB24y+V9QjXL5p8/fM3rqV8dT+RiIPZYn0/xpjtuNcfx8wYLOy6WeXs6v+aH5QDB8vV43IccDVeWDtVOY6DiLP+W8Rxtq+v7m/dz/o6UdO/r36PWNP7iTkOIs76fRE1Hcf6NSACB07ENb3WGg/HNYXbxizaNlsMTT8UkYhzv5VneMhKlJRcyL6MMpzIr0Z+ZT0ajWaYLW3/RlgYg+kW+xDSFTd+qNgDJSUXUFNvwP9OF+O1lHOgHEOEhI913ygpuQALA17dcs7ZYRByEyry1o38cq4UBy9VoE+wN/57ON/Z4RDSIhrR3Y3U6U3IKNVh7dH8mzqYCREKGjzZjdw3LALfzh+DLx4bgSCl3NnhEOIwHUpKycnJSEhIgFKphFqtxqxZs5CRkdFsn9raWixcuBARERHw8PBAbGwsVq1a1e732LBhAziOw6xZszoSmtsaHOELo5nGJBFh4qFLqWNJad++fUhKSsKRI0ewc+dOmEwmTJ06FXV118ZeLFmyBNu3b8fatWtx4cIFLFmyBIsWLcKWLVtuefz8/Hw8//zzGD9+fMfPxA2lX67BzH8fRE09rYRLuo8O9Slt37692derV6+GWq1GamoqJkyYAAA4fPgwHnvsMUyaNAkAMG/ePHzyySc4ceIE7rnnnlaPbTabMXv2bLz++us4cOAAampqOnYmbuRCiRZb0orx1aFcGrlNBE1wRd40GuukUH9/f9u2xMREpKSkoKioCIwx7NmzB5mZmZg2bVqbx/q///s/BAUF4cknn2zXe+v1emi12mYPd/H6/87h433ZlJCI4Anq7htjDM899xwSExMRHx9v275y5Uo8/fTTiIiIgEQigUgkwueff47ExMRWj/Xbb7/hiy++QFpaWrvfPzk5Ga+//npnwxesv35/Gkdy3GsZHuK+BFWje+HChUhPT8f69eubbV+5ciWOHDmClJQUpKam4p133sGCBQuwa9euFo+j0+nwhz/8AZ999hkCAwPb/f5Lly6FRqOxPQoLCzt7KoJRWFWPb09cdnYYhLSbYFpKixYtQkpKCvbv34+IiAjb9oaGBrz88svYvHkzZsyYAQAYNGgQ0tLSsGLFCkyePPmmY2VnZyMvLw8zZ860bbNYrJctEokEGRkZ6N27902vk8vlkMvd61Z5hJ8HJscGY9cFWkKJuAY++pQ6lJQYY1i0aBE2b96MvXv3Ijo6utnzRqMRRqMRohvmw4jFYluiuVH//v1x5syZZtuWLVsGnU6HDz74AJGRkR0J0aVV1hkoIRGX4vR6SklJSVi3bh22bNkCpVKJ0tJSAIBKpYKHhwd8fHwwceJEvPDCC/Dw8EBUVBT27duHNWvW4N1337UdZ+7cuQgPD0dycjIUCkWzPikA8PX1BYCbtru7K9pGeMrEqDfQktzENTj97tuqVaug0WgwadIkhIaG2h4bN2607bNhwwYkJCRg9uzZiIuLw1tvvYXly5dj/vz5tn0KCgpQUlJiv7NwEwPCVLhnSJizwyCk3ZzeUmLtmIQVEhKC1atXt7nP3r1723z+q6++6kBU7qPRaMapghpnh0FIu9FqJm5OIRXjz3f0cXYYhLQbTch1c0dyKrH7YpmzwyCk3ail5OakYhE2naRxSqR7o6QkEI1GM97bmUnlbolLEczgSWI/epP19v/W9BIczKpwcjSEdAwffUqUlJzsbJEW/9p+ERdK3GdCMek+qKXkhkxmC47m0gRc4pqoo9sNDe3hh1OvTsGXj49wdiiEdBhdvrkZXaMRFgtwIKsC/9md5exwCOkwunxzM0qFFIB1OaWMKzonR0NIxzm9Rjexv7VH8rE1neYBEtfk9Am5xL4MJgs+3Z/j7DAI6TRBVZ4kXbfy10soqKp3dhiECAolJSfZm1GGj/ZS5zZxbXT55ibyK+vwty3naEoJcXl0+eYm/rblHF22EbdAgyfdxNkijbNDIESwKCk5WL3BBL2JFpkk7oGKvLmBrLJa1BlMzg6DELugyzc3YLIwtKPUOSEugZKSG9h1ntZ1I+6DhgS4ASpTQtwJDQlwA8vv7V4LbBL3xkdPBCUlB/vpNE2+Je5DTJdvrs9MvdyEtInqKTnYfUPDEeQth4UxrNqbjco6g7NDIqTTLDx8yFJLycF6BXljZLQ/zhZpKCERlyfmocobtZQczGxhePuXDKRfrnF2KIR0GZXDdWGNRjP+ezgfvdVeyCqrRXW90dkhEdJlIurodl1rDufhYFYFXvguHaN6+WNElJ+zQyKky2ickosymS2Y0DcIb90/EFMHhOB38aFYeHsML9fjhDgSHyO66fLNASRiEZ786gR6BXkh0t8TP58tRW5FLcxU5Y24OD4+VikpOQBjDGIRhwOXKpwdCiF2RRNyXVTGFR1VmiSknSgpOcCJvGpnh0CIy6DLN57pTWZE+ntiYt8gXLqiQ7Gm0dkhEXKTMJUCiyf3aff+VwdyK6Riu8dCSYknH+y6hBi1N05frsGn+3NwZ3wI7h8ega1nSpBTXufs8AhpxtdThocSejg7DACUlHjzu4EhyKusR7lODwD4+Wwp5BIR1ecmgiSk+8CUlHjSJ1iJPsFKGM0WbD5VBACUkIhgMQFVr6CObh41Gs04lF0BmYS+zUTY+BgE2VnUUrIzxhj++n064sNVuFSmw9ojBc4OiRCXQknJzgqq6vFd6mV8l3rZ2aEQ4pLousLOzhZpnR0CIR1GfUpujBaaJKRrKCnZ2e+HR+CnRYl4ZKQwxnwQ4mooKdkZx3Hw95LhYFa5s0MhpN0EdPVGScnedI1GzPniKAqrGpwdCiHtJqRVdigp2dmZIg2yaRoJcTEWAdX2oqRkZ+eL6e4bcT0mV01KycnJSEhIgFKphFqtxqxZs5CRkdFsn9raWixcuBARERHw8PBAbGwsVq1a1eZxP/vsM4wfPx5+fn7w8/PD5MmTcezYsY6fjZMdyq7AB7suOTsMQjqMCWj2W4eS0r59+5CUlIQjR45g586dMJlMmDp1Kurqrl2uLFmyBNu3b8fatWtx4cIFLFmyBIsWLcKWLVtaPe7evXvxyCOPYM+ePTh8+DB69OiBqVOnoqioqPNn5gC6RiP+tf0itp8txaUrOry86Qx0ehoSQFyPgLqUwLEujJoqLy+HWq3Gvn37MGHCBABAfHw8HnroIbz66qu2/YYPH47f/e53eOONN9p1XLPZDD8/P3z44YeYO3duu16j1WqhUqmg0Wjg4+PT8ZPphO1nSzF/bSo8pGI0GM0OeU9C+BDu64HfXrqd1/do799ol/qUNBoNAMDf39+2LTExESkpKSgqKgJjDHv27EFmZiamTZvW7uPW19fDaDQ2O+6N9Ho9tFpts4ejnS+xviclJELsp9NJiTGG5557DomJiYiPj7dtX7lyJeLi4hAREQGZTIbp06fjo48+QmJiYruP/dJLLyE8PByTJ09udZ/k5GSoVCrbIzIysrOn0imNRjO2nSlx6HsSwhchTTPp9ITchQsXIj09HQcPHmy2feXKlThy5AhSUlIQFRWF/fv3Y8GCBQgNDW0zyVz1r3/9C+vXr8fevXuhUCha3W/p0qV47rnnbF9rtVqHJqaLpTpkldU67P0I4ZNwUlInk9KiRYuQkpKC/fv3IyIiwra9oaEBL7/8MjZv3owZM2YAAAYNGoS0tDSsWLHilklpxYoVePPNN7Fr1y4MGjSozX3lcjnkcnlnwu8SxhjSCmvw1+/THf7ehPBFQA2ljiUlxhgWLVqEzZs3Y+/evYiOjm72vNFohNFohEjU/KpQLBbDYmm76uLbb7+Nf/zjH/jll18wYsSIjoTlMAWV9Vi88RTOXNYIalwHIV1lEVBW6lBSSkpKwrp167BlyxYolUqUlpYCAFQqFTw8PODj44OJEyfihRdegIeHB6KiorBv3z6sWbMG7777ru04c+fORXh4OJKTkwFYL9leffVVrFu3Dj179rQd19vbG97e3vY61y57b1cmThXUODsMQuxOOCmpgx3dq1atgkajwaRJkxAaGmp7bNy40bbPhg0bkJCQgNmzZyMuLg5vvfUWli9fjvnz59v2KSgoQEnJtU7ijz76CAaDAQ888ECz465YscIOp2g/dw8JQ6C3zNlhEGJ3AmoodW2ckpA4apxSXkUdFq4/ScXciFsJ9JbhxLIpvL6HQ8YpdUc9A73w8u9inR0GIXYlpKYJ1ehup3PFGqw9UgBNgwFGM8OIKD/rlBJmnTdkYdYbAWYLg9HCIAIgFnHwkkvgIRPDbGGoqjNALOKgN1kgEXHgAHCc9RfCwgARZ63HZGEMlqZjcRwHT6kYfl4y1DaaIBVzkDetSmo0mSFuuqngKRMjp+LadJ/rf8muzmviwIHjABFn/T8Ha8kKf0+Z9ZjMuqJvvcEMjrPGf/U11v052xE5WA/AcYCY4yAVi1BQVYcQlQekYpFtn2O5VRgYoYJCIgK7LgYLY+A4AIzD9TOvWNN/rPtaY9WbzWAMMFsYGo1m6/eOu3qOHNjV1ze9TnTdwhwcOJgsFhRU1sPYdHNCzFk/XK6eH8AgFonAcQyMcTCYLU3nZP1ZnC/RAQDiQn1gu4fDrOfeGo7jbtlRc/V7ynHWkxU1va663oDs8jpIRRyG9PBt9prWkge7+l/GWc+Lu/Y9vPo8d+P+7Np3XirmsCWt+bSuqyuccLavr3uuaeu0AcGQiO3btqGk1E4BXnLU6k3YdqbU2aG0aFS0Py5Xd66Gkz1rP5Vo9M2+ViokSL+ssdvxu0KpkECpkEDbYOpQeZl+wUqYGbON4Ofb0B6+EHHAgHAfHM+rdsh7AsCh7KoOv+biG9MhsfPK3ZSU2ilEpcB7Dw6GrtGIvRlUVbK9dI3CmaCsazR1Kh4fDwlqHTjRurrOgCGRvjjpAnd6+VgujpJSB5wqrIFYQIv2EcdwZGsFAPIq65FXWe/Q9+wsDvb/e6Ck1AEJPf2hninH/kvlMJoF1DMIYY0zId0HH5/RdPetHX5IvQxNgxEAEOnnCU+Z8HI5td+IM/Bx146SUjvEhvrAbLHgUqkOl8pq8cas+Fu/yMGEdEuXdB98VKwU3ke+AMWFWQd6+XtZJwD3C1Fi7eF8HMvr+N0KvhhMbc8tJIQP1FISiBN5VQjzbb2sijOcL9FA5SF1dhikm6E+JYHoEeCJe4dF3HpHBzKYGfoFC2fyMuke+Lj7RkmpE9RKBeQSEQZHqJwdSnM0XIE4mIhaSsIxulcAHhjh2BK8bekXrMSxXOH0cZHugePhg5CSUhcMjfR1dgg29h7qT0h78NE2p6TUBZF+npCKhXHJZKZKmMRNUFLqgm9PFApmZLdJIHGQ7oXuvgnMhL5BeGZSb2eHAUBYa8GT7oP6lASmj9obvQK9nB0GAEpKxH1QUuqCzDIdXtp0xtlhAACMNKKbONiAMH7KTlNS6oL+IT5YMKk3Bkf6Ikzl3BHeRmopEQdTK/lZd5GSUhc9N6Uv/nx7DIKdnZTM1FIijrU3sxwFPNR9ogm5XfD5gRzU6k2IDvRCUSdL0dqLiZIScTC+KlNQS6kLBkf64kReNXSNJpTp9Ld+AY9onBJxBrWP/S/hKCl1wYgoP0T6e2LZj2edHQoMZiaYgZykexBxgEJq/6kElJS6gOM4XCwVzqKUHjz8ghDSGr4a55SUukBvMuNskTCWDwIAA/UrEQcS81EiAJSUuqS4plEw00wIcTS5hJ/0QUmpC7LLap0dQjMSEf04ieuj3+Im286UYN6aE6g3tH/RwV8vXuExoo7zklOfEnEcvqY20TilJueKNcgqq+1QZ/Efx0UjTOWB71Ivo6DK+YsHesooKRHHMZktYIzZfVIuJaUmISoP/GF0VIe+wX2Dlejh74lzxVpBJCU+6iUT0hoLs95ckdu5wiBdvjU5VVCNwE7M5fnlXCm2nyvlIaKOoy534mi0xBJPNPVG/HiqCHX69vcnAcDZIg3+tuUcT1ERImx+nlJehgVQUgLgrZDA11OGQ9mV7Z6ucbm6Hsk/X7At501Id3NbfzWkYvunEEpKsA4C+2j2MBzLrcTiDadQbzAh5XQxfkovbvU1gd5yDI/yx2ABLR5APUrEkXacuwK9yWz341JSajK6VwA+mj0c+zLKMWr5r9A1GuEtl+BskQashQtnhVSMxXf0wedzR0DG0yCyjuJjHhIhranVm3ipDS+MvyaBGB7lh//MHobBkb7ILqvD+D5BiFF749cLZbC0cFl3pkiD5J8vCKaFQtNMiKNZeOjppiEBN5jQNwgT+gbZvhaLxJjYLwgHsioQ4CVDVIAntqaX4FRhDUpqGrD/UoUTo23ObKGkRByLjzu+lJRaoTeZbeMvpGIRJl6XqCb1U0MuFWHJxtPOCq8VQmmzke6C8fA5SJdvLaio1WN/ZustoBCVApW1BgdGRIgwmXm4fKOk1IJTBTUYEeXX5j5HciodFE37UTuJOFqDke6+OcTFEi22nS1pcx++6hNfr6Pj0qrrqfVGHCcqwBMKHu48U1JqwcVSHT7el93qQMqCynpU8ZwAZg4Ow7qnR0PSlJlCVQr0DPBsc5lkWpCSOFJRdQMv9cQoKd2g0WjG+RItYoK8Wy11u/9SOU4V1PAaR25FLWJDfbDxT6MR6C1DdKAXXpjWH3+d1h9RAZ4tvqalYQuE8MVkYTDxcMeX7r7dYOf5K8itqENeZR1mDg7DgDDVTfvkV9bxHsfZIi3GvbUbh5fejhPLpjR7bt6EXvhwdxbe25XZbLu/twx1Vc5d6ol0L3oeVmamltINNh4vBGAt9Xl7f3WL+1TWOabvplZvwqaTRTdtF4s43Dcs/Kbtch7mIRHSlgYDdXTzqkzXiN+yrUMBEmOC4Ospa3G/GLW3w2J66+eLSL9cc9P2Um3jTdsCvPlZRpkQR6KkdJ3KWoNtffS2FtkzmhzXd9NgNOPD3Vk3bT+RV93sa6VcwtuSN4Q4EvUpXSc21Acrfj8Yb/18EeG+Hq3u92PazZdUfPr1YhkMJkuzib9brovhwRERWHZXHCQiDtX1Rqz4JQObTzk2RtI98TH3rUMtpeTkZCQkJECpVEKtVmPWrFnIyMhotk9tbS0WLlyIiIgIeHh4IDY2FqtWrbrlsX/44QfExcVBLpcjLi4Omzdv7tiZ2IHeZEbPAC9MHxACWSv9MzvPX0Ghg0vfmi0M/959qdm2p8b3AgAEeMnw2swB8FFI4SmTINzXAyN6tj3wkxB74WO5+A4lpX379iEpKQlHjhzBzp07YTKZMHXqVNTVXbsbtWTJEmzfvh1r167FhQsXsGTJEixatAhbtmxp9biHDx/GQw89hDlz5uD06dOYM2cOHnzwQRw9erTzZ9YJn+3PQaS/J55IjMbTE3q1uE9UgCdEdi6U3h7/3p2FVXuzbV/fOzQc4b4e0DQY8cPJy832HSKgGk+EdFSHktL27dvx+OOPY8CAARg8eDBWr16NgoICpKam2vY5fPgwHnvsMUyaNAk9e/bEvHnzMHjwYJw4caLV477//vuYMmUKli5div79+2Pp0qW444478P7773f6xDqjwWhGan41vOStX9X2UXvDw0mrhvx4qsj2ySQWcVAqJDBZGCL8ml9qDghTYfEdfZwRIulmBFcOV6OxLlnt7+9v25aYmIiUlBQUFRWBMYY9e/YgMzMT06ZNa/U4hw8fxtSpU5ttmzZtGg4dOtTqa/R6PbRabbNHV0lEIrzw/WkY2hh7cbm6wWklcF+bGWf7Jais1UPbYET/ECXG9g68ad8lU/riw0eHUquJ8Mq7jQ/wzur0ERljeO6555CYmIj4+Hjb9pUrV+Lpp59GREQEJBIJRCIRPv/8cyQmJrZ6rNLSUgQHBzfbFhwcjNLS1lcJSU5Oxuuvv97Z8FskFnHIKa9Do8ncajVJZ03EnTYgGGNjriUfX08ZPpkzAlIJ12rFybsGheGuQWE4XViDez/6je7OEbuz95pvQBdaSgsXLkR6ejrWr1/fbPvKlStx5MgRpKSkIDU1Fe+88w4WLFiAXbt2tXm8G0/uVovcLV26FBqNxvYoLCzs7KlciwHWzL8tvaTV+twZpbouv09HBXjJ8Mas+GbbxCIOAyNU6B/ic8vXD470xeheAXyFR7oxIw/VTjvVUlq0aBFSUlKwf/9+RERE2LY3NDTg5ZdfxubNmzFjxgwAwKBBg5CWloYVK1Zg8uTJLR4vJCTkplZRWVnZTa2n68nlcsjl9h8sGKP2Rm6FteP+rkFhNz1/uoWBjHybHh8CtVLRpWP8cVw0Zg0JR05FHdIKq3G+WAttY8eWlCLkRrpG+3dldKilxBjDwoULsWnTJuzevRvR0dHNnjcajTAajRCJmh9WLBbD0sbEvTFjxmDnzp3Ntu3YsQNjx47tSHhdZrQwBHjJUFhVj5p6w00TXHecK8WQSF8Eerc80psP4/sE4oHhEbfe8RamxAXjwYRIvHRnf/z97gEQ8dBBSboflYf9/xY6lJSSkpKwdu1arFu3DkqlEqWlpSgtLUVDg3USqI+PDyZOnIgXXngBe/fuRW5uLr766iusWbMG9957r+04c+fOxdKlS21fL168GDt27MA///lPXLx4Ef/85z+xa9cuPPvss/Y5y3bSNhhhtDA8PaEXPKRi/HrhSrPnD2ZV4LMDuYgPV0HlIeU9nn7BSnz+2AgM7WHfcUf9Q3ywYFJvux6TdE8SZ999W7VqFTQaDSZNmoTQ0FDbY+PGjbZ9NmzYgISEBMyePRtxcXF46623sHz5csyfP9+2T0FBAUpKrhVRGzt2LDZs2IDVq1dj0KBB+Oqrr7Bx40aMGjXKDqfYfqWaRoyK9kegtxw/ni7G31LOoVyntz1fUWv9996McjTyUHHvRk9P6GX3ddqvenhkD9wz5ObLU0I6wukLB7S0/tmNQkJCsHr16jb32bt3703bHnjgATzwwAMdCcfuimoa0DvIC9+lXkZNvRE1MOK3rArMGhoOxhjOFGls+/JRsuFGtyrJ2xU+CinefmAwZg0JR2F1PUo0jdAbLbhcXY8LpVoUUgkU0g58rKBDc9+aNBrNqKzVQyYRYWCECjMGhsJbLoGvp/UyzTq9xHF/qEq5BMU1DVBIxQhRda2TuzUyiQijewUgptYbgd5yeMjEKNM1ItBLjtOXayDiODy7Mc3W8U/Ijer09r9ioKTUJKNUB4lYhGAfBUZFByAqwAs19Ub0CbaWKSnR3FwqhE+hvgq8v+sS5k3oZZek1Gg0I6e8DrsuXIGIu7aartnC4K2QwFsuQZivB4wmC4rljbZBlw8lROKtny92+f2Je+JjNRNKSk16+HvCUyZGZZ0B/ztdjJmDw6CQirEvoxxT4oKRVljjkDiUCgn+MqUvNA0mqH3kmBzX+rCIjmAMCPCWIem2mFtODSjX6fHN0QI0Gs14d0cmOM4xCyUQAlBSshGJOKx5YiT+9UsGfjxVhOFRfugTrESojwIlmgaHlQIZEeWHzw/mQttgxJGX77DbcT1k4nbP2QtSyvHA8AgMe2MnPGRiHFxyG2QSEYxmhmO5VUhad9JucRFyI0pKTbLLa/HRniz8Y9bAZpdLIhEHb4UUgd4yVDhgAco9GeUAgEdGRiKtoAYyiQgeMjHEIg69g7whdVDJW4VUjBen94evpxRqn2vfjxmDQnGqIBqfH8x1SBxE2Npz86ujKCk1qa4zYNeFMpTXpmJL0rhmzx3KquAtIYk467ihEk0DHhnZA4+M7AGlQgIfhdTpAxwfG9uzxe2LJ/fB1jMlDu9nI8Jj4KEKKyWlJsfzqiHigCWTby75kZpf3cIruk7lIcW/HhiEaQNC0Gg0tzqxVmiUCimen9oPf/nutLNDIU7m9CJv7uxQdgXeum8QJvVrvoJJTb0B/2tlcm5XLZjUG9MGhACAyySkqwqrHVt9syURfh7YsWQCpsQFt7lIJ+GPkYdxSpSUAJRprbfAH0yIvOm593ddwhWtvoVXdd3UpoTkiu4eHIY/tVKd01EuVzfgnR0Z6B3kTXcHnaSah+XGKCkBWH+sEH8YHXXT9lMF1fj6cB4v7+mjkGDTDWVsXUlUgJdTlgmXS0T44OEhWP3HBADWRTv/OK6nw+MgVnxUnuz2fUqaeiO2nyvFottjbnquqs7A2ydwgLccP58txbwJvaBU8D+5117MFobMKzqs/i0XP5wsgljE8dKv0JpnJ/fFPUPC0Wg0441Z8fCUinHaQWPIyM34uBvc7ZPSnowy+HtJUVGrb3brG+B3FLdYxOGf9w9ymYRUpmtEmVYPsYhDH7U3/nn/ILx570Acyq7EifxqbE0vRk5FHa+XUTKJCE+Nt5bLUUjFmNPUuqVxU87DR1det798SyuswfiYIKg8mycHg8nC2+XVwHAVnkyMxtoj+Vh/rKDV/W6s5+QsBZX1MJoZ4sNViA31gUQsAsdxkIhFmNA3CHPHRGFyXDDCVK2vldcey2bE4sjS1geMGkyWFit/mniofkjah1pKdlarN2H/pXKEqhSQSkR4MvFa0bpD2RU4WVDDy/tmXNHhtS3nYDBbsPlUEfIr6/Hi9H43lf/99kQhHh7Zg5cYOqJHgGebz6fmV+PT/TmQt1LX/FYGhPlg5uAwPDyyB4qqG+CjkLRYFdPPU4oYtTcajWYwBtsIdX8vxxXdI83xMfetW7eUUvOrMTBchekDQmwJSddoRFF1Pd7cdoG39zWYLDBc9+n+8b5svP6/80jNr2q2364biswJVe8gLyTGBMKjE8MaRkb7Y/280Zg/sTe85RLUGUyQtVJDStNgxPazpaiqM+C/R/IAWCcaB3rbvywycZ5unZSO5VZCqZBAcl0T9LsThVi66Qwyr9Q6NJavDuXh9x8fxg+pl8EYQ73BhH2Z5S5RNsTfS47oQK8O3YmRijn8dXo/rH96NHyu61c7mV8NbSt1ny0MeO7bNBTVNODBEZH4/EAOfv/xYXyyP6fL50A6h/qU7Cz9sgYjovzxSNMlUqPRDLMF2H+pwinxWBjwl+9OY/g/dmHBNydhNLM2+5yEYteFK7hYqmv3VJxAbxk2LxiHBZNurljAGNq8DLQw4GKpDr6eMvh4SHGmSNPmOn2EX3wMC+m2SYkxhvPF2ptmzg+KUDkpomuq6gzY2zQxNzW/2iGld7tCJhZ1aOmpDfPGID685e+z0WyG7harrMibWrZXyxMT56GkZEdXtHpU1RugkIqsyw01GLHhWAF2nBdWP05qfjWe+Oo4NhwrcMqac+3RI8ATPQO92rVvuK8HYtTerT7PwKGPuvmxnhjXfNUcC2OorNVj1d7sjgdL7IqPO5/d9u5ban41HhoRiYl9rXPdjuZU4kKpDueuq8MtFIeyK3EouxIKqQj/eXQYNh4vxG391bbLznqDCZ4y5/0oh/XwQ0apFjKxqFkHfkt0jUaYzJZm/XjXC1Up0NDUMhwS6QuJiMMrM2JxKLsCF5uSsp+XDO/vunTLFhXhn8lMLSW7+S27ApoGI745mo9vjxdCxHFgjOFssdbZobWq0WjBovWnsOP8FSzddAYjl+/C+7sy8cPJIjQYnHeJxxiDheGWCQkAtI0mnL7ceuIP8VEgOtAbc0ZH4bWZcRjdKwAiDni2qXrDhL5BiA3xgcFkQf8QJaJuMVyB8IuPy7du21JKK6hBXJgPDmRWYEpcMA5mVeDbE8Kfi1Z/XfIp0+nx/q5LkIlF2HX+Cl69K67NSyO+MAbEhfq0u2RwVRuTOMfGBGJsTCAAoE5vwuAIX3Ach6lxIZgcG4w374vH2SIN9maWwVMmQZ3ejGAfOSwMzZbDIo5hotVM7MNsYcgqr0W4nweG9vBFQk8//ODCk2MNZgv2ZZbjyZoGhycli4Vh6vv7OzR0oaidZU+85Nd+PUUiDh//YRgWb0wDYwwjovxt8+4qavWo1ZsoKTkBH/Meu2VSKtE0QMQBYSoFJvQJQq3BjPxK59cH6qof04owvk/gTSPD+cRxQHSgFyyMobimAY3GW39yXulk8uA4Dpp6I/7vngHwkktgYQxmC8MbP53H0dyqWx+A2B0VebOT/Mp6NBotOFusxanCGoT6KFodsOcqegV6IcRHgXs/OuTQ9+U4Di9M64dGg7ldCQmw3lSo03e8k5oxhjVPjESvIG8E+ygQqvJAhJ8n/nn/IHjLu+Xnq9MZqaPbPvIq6xDio8DC22Pw0IhIvPHTeZe/k5NTUYfPD+Ri4W3XSrDwUdT9ep/uz8Y9Hx7EhmOFCOjAVI+TBTX44mBuh+OTiEUt1i339ZRhwW29O3QsYh98DAnonkmpog6l2ka8sukMvvotF5sctHwS32YMCoXJwnAirwqXq+tx4FIFNhwr4C059fD3RIS/Jwzmjt/5e3dnJl7efBZ6k33uGs6f0BsDWxmQSfhDi1HaSXFNI2RiERbcFoOP9mQ5Oxy72XyqCEdzKqHTm6BrNKFXoBdi1N6YOiCEl5n0l6sbYDBZIBGJEBXgiTMdHONVbzBBbKf+L5GIw9I7++PRz4/a5XikfYzUUrIPs4Xhjlg11h7JR7GbLRNUrGm0XYrmVNQhKsCTt5bSU+N74bO5I/D3uwd0aspHQk//VgdRdkZCtD/+MLoHJvULstsxSdvq9PYfH9ctk1KISoF6g9k2QtidfXYgFz+ll9xyv9yKOvz3cF6nl5PylnesgibHAf1DlJ16r9ZIxSI8PrYnLpQIdwCsu6FxSnYyOFKFlNP8LJskRDnltfgty1r5wFsuweBIX5jMFqTmV+NobhU0DUb0C1Hi7iHhUHl0rjxvbKiyQ/WfPnxkGEb09O/Ue7Xls/25vK0+Q25G45TsxEMqQaC3rM2Rxe7k68P5+PpwPgBrQbZRvQIgE4twR6wa8yf2hqyTFSOvMpot2NqO1thVQyJ9MWNQaJfeszXpApy76M707RwG0hHd8vJNxMG2CGR3k11ehw3HCvDIyB4Y3yeoywmp0WjGqz+eRU4HRnSP6R3Qpfdsy8iefrwdm9ys0U53T6/XLZNSpL8nRBzXbVdVtTBg3n9PoEzXtU5+xhgWbziFDccLO/S6zgycbK9gleLWOxG74WP2QLe8fOsd5I1fL17BiB5+ON7Jjl1XV1LTiJP51Zge37HLqON5VXhl8xl4yiTQNhqRU97xcr2/ZVXAYmEtDoTsquE9qKXkSDIeVjPpli0lmUQEpVyKKXHBzg7FaXoFeeG2/uoOv65Ob0JeRT1MFgtmDgrD6F4d76zOLq/DpwfsX1fbYmFY5wLlg0nbumVSAqxjWnoFeSOxqUyGu7t7cBieGBdtS8QXS3VYtvlsh4+TW1GHO2LVuL2fGgHeMpR1cnLtv7ZfxI5zpZ16bWssjGH3hbJm2+JCfTq99BO5NZqQa0cT+wZh65kShLh5H0SgtxzPT+2LlY8Mxd9mxuGTPwzH7wZaO/l/OHkZeR3ooLZYGL4+lIc/jI6CXCrGlwdzO3X5Blj7tZb9eBZZZfZbNUYiFuHgi7fjX/cPAmAtvTu2dwD0tLAAb/gostdtk9KwHr7IKNVBwkO/hpBU1OpxoeTaIFGD2YK7B4cBsCaGnIr2JwUzY+gZ6IVxMYEY3yewWcG5zijT6THt/f3YfMp+taxUnlJMGxCC56f2xV+n98MXv+Xa7djkZnyskNttkxLHcXh0VA8EKeXo44RqjY609UwJnl5zAnsuluEfW89j/tqTtuc+P5Db7uXBpWIRPpkzHAAwKMIXf5rY9Zn5ZgvDc9+exu6L9luwQeUpxYMJkVi1Nxs8F0ro9vIq7b8uYbdNSgBw/7AInCqo4WWms5BIRBxqG004W6RBpJ8nvn5iJOZN6AUA0DYaOzQ0Qn7d6rVzRkfZLgW7gjFgxzn7riKz4peMbjGNyOl4+NPp1knJQybGPUPCcEd/NUJ8FJg5OAyDO7Dum0IqwvyJvRHp79Hi81KxMC4NTRaGU4XVeGdnJpJ/voifThfj3qHh+MeseFy6UtvpP16ZRIS/TO1nl2Wza+08dml0L/4GaBJ+deukBAD3DAnH+RItBkX4YOmd/bHxT2Pwxqx4jGnHL7XJzHD/sHC8fGcsRvb0h4e0+cKWfJQL6azrq0J+l3oZZTo97h0ajuim8iadVVLTiIpaPe4bFo5hPXw7fRx7d5jas/oAcaxu/5OTSUSYMzoK50t02HyqCKWaRswZHYW1T43Cottj2mztmCwMT685AalYhFG9/PHMpGt9LP1DlJCIhPntVXlIMSraHzvPX0Gwj6JLnZWJfQKx7ulRWPHAYGyYNwafzR2B2FCfDh9nZLR9WzZUKcB1CfOvxsGmx4diSKQvRkT5YfHGNPz1+9OoM5jwl6n98J9Hh7XZ55JXWY+n1pzAjnNXMLPprhYAfP3ESMFOY+nh7wm5RIRZQ8PRR+3d5eqPY3sHQiTiIJOIMCUuGNv+nIjv54/B0B6+7R7xG2vnMibdZfyZs/HRG9stp5m0JOm2GNz5wQFIRBxOF9YgROWBRbfHYOqAELz34BC8+EN6m+NdQlQKRAd6YdqAYCT09EewjwIigWalM0UapJwuRmJMIB5KiAQH+8bJcRxG9PTH5gXjUKZrRHqhBtvPlaKyVo/U/GoopGJ4yMS2FWSUCgmClF3vl7pe7yD3vqPqzigpNYkN9cE9Q8KwJc1aZ2nlr5cwb0IvSMUicBxuOQDvbJEGjUYzHh7ZAxP6BGH72RIUVAl32abFG9IQ4CVD76bpJk8kRje7s2YvaqUCk+MUmNw0ktxgssBotqBOb8LLm88iv7IOCdH+dp/Y6eclxffzx+DdnZk4kVfdrtV7iTBQUrpO8n0DkVdRh5zyOswYFIqLJVqkFdbg3qHhmByrRnmtAadbWQW2ss6A1b/l2fqV+CgTam+VdQZU1hlwLK8aa48UYN3ToxAV4MXre8okIsgkInjJJfj8sRG8vY9cIoa/lwwDI1Q4c1lDScmFUJ/SdTxlEnzxeALUPnKkX9bg4U+P4NP9OaisM+AfswZi2oC2J/C+uzPDtlLs279kOCJku+A4oMFohq+HcO4WdlVOeS1m/vsgPtmXAx2PpVKI/XUoKSUnJyMhIQFKpRJqtRqzZs1CRkbzPz6O41p8vP32220e+/3330e/fv3g4eGByMhILFmyBI2Nji/qH+gtx9qnRsHCGEwWhvuHRyDAS4YQlQJDInwxLqb1u0SjewUg0FuGt3+5KNhO7hv9fngEti+egA3zRkPl2blSuEJQUFmPHedK8a/tFzHsjZ2Y+t5+1HVxGgy5NT7G4nXo8m3fvn1ISkpCQkICTCYTXnnlFUydOhXnz5+Hl5e12V9S0rws6s8//4wnn3wS999/f6vH/eabb/DSSy/hyy+/xNixY5GZmYnHH38cAPDee+918JS6LlTlgR+eGYuXNp3B9rOlGBntj8SYQIyNCUR+VT20DSa8df9AHMqqxNs7MmBo6m8aFe0PpUKKMF8Plyi1KxVzeGF6P6iVrj0pubimAX/86hj0JgssFmb7QCH842M8WIeS0vbt25t9vXr1aqjVaqSmpmLChAkAgJCQ5tMOtmzZgttuuw29evVq9biHDx/GuHHj8OijjwIAevbsiUceeQTHjh3rSHh25SWXYOXDQ/DBr5fwyqYzmNpUPnd4lB82LxgLiViEAWEqBCnleP670zBdV7Rs9qgo/O90MY7kCHt9+2cn93X5hARYS5aE+3lCbzSjsKre9iFB+CflYUJ7l9KcRmMt0u7v33KhrytXrmDr1q148skn2zxOYmIiUlNTbUkoJycH27Ztw4wZM1p9jV6vh1arbfawN47j8OzkvlgypS++O1GIA5fK0cPfE/lV9fjmaD6O51XhdwND8c1ToyAVcxgfc229sQAv+97itrcHR0RgwST3WOq6TKeHpsEIvcmCIKUcFjefyygkTm8pXY8xhueeew6JiYmIj49vcZ+vv/4aSqUS9913X5vHevjhh1FeXo7ExEQwxmAymfDMM8/gpZdeavU1ycnJeP311zsbfof8fkQkIvw88fx3p/HN0XxIxSIU1TTgiqYRtY0m3NZfje/mj0Vc2LWRzEqFsG9s3js0gpf6ys4Q5C1HQpQfijUNKHWzxUWFTsJDn1Kn09zChQuRnp6O9evXt7rPl19+idmzZ0OhaPsSYe/evVi+fDk++ugjnDx5Eps2bcJPP/2EN954o9XXLF26FBqNxvYoLOxY8fqOGtM7AGueHIn0yxqUNq1CW1FngLip+Tok0tf2bwDNEpQQHc6ucHYIdnOhRIsvfsvFibxq1DQYm83zI/zio0Z3pz7OFy1ahJSUFOzfvx8REREt7nPgwAFkZGRg48aNtzzeq6++ijlz5uCpp54CAAwcOBB1dXWYN28eXnnlFYhamEMml8shlzv2Eql3kDfWPDESC745id8NDIVCKmp1ImmoquXKAc40PMoP+ZV1kIhE+P2ISGeH02VphTX48VQRHh/bE9sXT4DeZMbr/zsPwP41fkjL+Jjf2aGkxBjDokWLsHnzZuzduxfR0dGt7vvFF19g+PDhGDx48C2PW19ff1PiEYvFYIyBCax/QO2jwDsPDsZDnxxBjNob/UN8WhxwOCLKDzKJSDCdrm/dNxDxYSr4eknh5ymDl1zYl5e3oms04tkNp9A/xAdqHzk8pGIsXH+q08uOk86RSpw8JCApKQnr1q3Dli1boFQqUVpqLfyuUqng4XGtZaDVavHdd9/hnXfeafE4c+fORXh4OJKTkwEAM2fOxLvvvouhQ4di1KhRyMrKwquvvoq7774bYrH9pz50VVSAF5b+rj+St1209R0VVtVj98UyDIn0xeBIX/h5ybDothi8szPTydFaF9+8d1g4L9NInKHRaMayH8+ib7ASz0/riwc/OYx6g9k2l444jtTZLaVVq1YBACZNmtRs++rVq23jigBgw4YNYIzhkUceafE4BQUFzVpGy5YtA8dxWLZsGYqKihAUFISZM2di+fLlHQnPoe4eHAaJSIRF604hws8DCqkYFbV65JTXol+IEgqpGPMm9sI3RwtQqnVu52tCT3+3SUgmswXLt55HiaYBE/uq8d7OSzhbRGVKnIWPjm6OCe36qJO0Wi1UKhU0Gg18fBzTybz+WAGWbjoDwLqO2l0DQ5FXWQ+pWIQX77QOSnxvZyY+2psFo9l53+a/TOmLRXf0cdr729Pbv1xEbaMJ9w+PwIodmdAbzRBxHDQNRhRrGlBTb3R2iN3KG7PiMWd0VLv2be/fKM1964IHR0Sif1MdIImIg7bRhFBfBe4ZEgal3DplY8mUvohR27dWUHv5e8mw+o8JeHpC6wNXXUn65Rr8Z082xvcJwoFLFWCMwc9TBqPZgkajmdZ3cwIxD8NK6KfYBWIRhzdmxSNIKUfmlVpIxRz+OLYnIv09UapthNlsweHsSjw4IoKXka+3Ehfqg9zyOuRV1qFM5/rjdwaGq/D9/DGo1ZtwuboeUQGeCFTK0SvICyOj/SERidBH7Q2li3fiuxLGQ5k3SkpdlNDTHykLxyFUpcBnB3Lxv9MleC3lHF798SyO5VXh433Z2HamBJPjOr5EdldxnLUy4Kq92QiyQ3F/Z+M4Dr+cK8UPJy+D4zhU1xux9kg+9CYLynV6FNU0gAGQUovJYQp4uLlAPz07CFV5YNUfhsPXU4pApQwcrOuZySVixKi9YbYw9At2/GDKtIIafHM0Hw0Gs1uM3jaZLTCaGcb3CURBZT1O5FUhoacffjlbitOXawAAWWW1MJosUEjpV9sRzhRp7H5MaufayZBIX4zrHQgROOgajVgypS/Ol2hRXWfAlLgQOPrDe0CYD4xmi6BWVOkKxqyLVqacLoZSIUG4rwfCfT1wIr8ajAGNtdeqMlD9JMc5U6QBY8yuH3qUlOxo7pgo7L5Yht8NDMGFYh0O51Sgd5A3xsUEOHwQ5ZheARjSwxcjovyha3TtO1L7Msvx4vfptn4xXaOJFpoUCLOFod5gtutgXGrj2tHIaH/syywHY0BWuQ7Do/wwLiYQA8JU2H2xDIB1eSNH+PxgLl798SzOl2jQJ9g5d/+6otFoxsbjBfj6UB5+SL2MUm0jqESS8MSHqew+O4BaSnbEcRzuHRoOsYhDyuli7FwyAeuPFWLb2RL8eKoICqkI2xaPx4vfp+O37Are17mvrjdiaKQfv2/CA4PJgv/sycK/d2dZO+spGQlWfHj7V5RuL0pKdvbA8Ai8uzMT3nIJlv14DiOj/VBRC3z7pzH4+WwpCqvq8dfp/XDfR5UwOeCv7YeTlzGhbxD6CrS1ZLYw/JRejF8vlCGnohZmC1BTb0BdU78QJSRh69HKkvVdQUnJzgK85WgwmjFjUCi+PpSPEVF+mDU0HAPCVPjg10tgjOEvU/uhf6iS9+kRgd5y/C+9BPsvVWDNEyN5fa/OuHRFhwc+PgxNg2v3eRH7oj4lHiyY1Bv5FfXwkIrxzs5M7Dh3BQCw+vEEPJEYDYVUjI8eHY5QlQIje/rzcodscqwaKUlj8frdA/DpnOF2P749/JReQgnJxfHRkKWkxIMYtRJ3xAVjUIT1ejvCzwNLNqbhh5NFtrlZPQI88WPSOCT2CcT4PteWmJaJreuije8TiHDfzjWNHx/bEyt+PxjZFXX4e8o5wRbR/+O4nvCm0dcujY/La/qN4Mmc0VHwUUiQVliDD3Zdwp8m9sKXB3NRqzdh918mQiIWIdhHgT/f0QdnizQYEOaD6QNCEe7nAb3JDAsDTuRV4fHVxzv83p4yMZK+OYnfsisBAEeyK20r1AqJr6cMMwaGYuMJfquGEv5QS8nF3DMkHM9P7Qed3oR/785Crd6Ezx8bcVOx9fhwFeZN6I0eAZ4Qizh4yiTwlks6PeP9swM58LquRni+gJcPH9LD19khEIGhlhLPnkyMxt7MMtTqzVg+K75Dd8GyymoxtIcvNA1GlOv00DW2b6Sy0WydPX+VkBcxMNJy2i6tj9rb7seklhLPRCIOf7trALLLaiFrmmtSVNNwy9eZLQzFNQ0wmi3wlIkR4ddyLfDWnC3SIMrf+pq4UOEuYrDhGF26ubJYHn63KCk5QL8QJQaE+eA/e7Kw+dRlfHu87T9Ei4Vh+vv7selUEc4WaXG2SAtNfcdW3I1Re+OLxxMwIMwHAwS6ssrZIg2yymqdHQbpgrPF9p+QS0nJQe4fFoGf0kuw5nA+fjcwtNUFEYxmC3Iram/qByru4HpmdXozqusM+ODhoYKtELDz/BUY6PLNpZVr9XY/pnA7G9zMhL5BiA70QlphDR769DC++9MY9AlWwmJhOFesxW/ZFfCWS/DOjgx4ySWYP6EXVu7O6vT77bpwBXqTGf99cpQdz8J+CqvqEebr+kuGd3d8jDOjlpKDhKgUEHMcfj88AgqJGEdyq3AkpxIj39yFmR8exPazpegb7I1DL92Bf8yKxy/nSvHs5D7wkHa+4L8Q+5J0jUaYLQxv/HQeL/5wxtnhkC7iY4l0aik5UI8AT1ws1eEPo3tgQkwgdl0sQ0VTHaDRvQIwrIcfFm9IQ4mmAY+M7IHxfQIRG+oDT5kY7+zIRFphTbvfa9HtMXhsbE9+TqSTNPVG/GdvFtYfLaCaR25CzEOZZ0pKDhTio4BMLMKx3CqkFdZg5uAwAICvpxQ9AzwhEYvwt5lxCPa5dlnTu2nRgUajBV8dyoVEJMLFUi2utHEt7y2X4A+joxAooBK4aYU1eHbDKeTR2mzkFigpOZBSIUFUgCeMJgtyKuqsq3L89TZoGoy2BHJ9Qrpe32BvjOkVgIW390Gt3oSsslqsPZKPvRnXWluB3jJM6qfGo6N6CCYh1epNeP7b0/jlfCnN+CftQknJgSQiDhdLddhzsQxf/XEk/L1k8PeSIfPCFfQLaXtQpUQsgqFp7ThvuQRDIn0xJNIXZgvDpTIdZGIRogO9BHWnrdFoxu8+OIACAY8oJ8JDScmB9CYLGgxm/Gf2MPQJ9obFwiAScfDxkEIqbvueg1opb3GZJrGIQ/8Q4XVoA8BbP1+khOTmaEKui9PpTXhmUm+YLQyxf9uOngFeeG5KX1vfUlukYhEW3h7jgCi7rkTTgP/sycLaIwXODoXwjNZ9c3G6RhMi/DxwKLsSjAG5FXX44mAuGo3mdr1eSJdmbfm//52nhNRN8FEVh5KSAxlMZqg8pCisvnZJMzLaH4oujEUSonuG3LrlR9wDH5dvlJQcaGpcCDiOQ/11Y3T4GOfhbJP6qREffq2fa1S0P964ZwDG9ApwYlSED3xcvlGfkgPdPzwCABDuZ60oKROL0CvQy5kh2cXVDvv9meWorjfgniHh2DhvDL5PvYz+IUr0D/XBqr3ZOJFf5exQiZ1RS8lNlGr0kIlFkEtELr+CrcXCsP1cKRqNZuRX1eMv357GvsxyeMklmDM6CpfKavHshlP4eF82jGYaqORuLDx0KlFLyQnmTeiFlNNF+OO4nhge5Xrrsl3v14tl2J9ZjmU/noW2wQiTheG9nZkY3csf648W4O//O+/sEImLoaTkBFlltTCaGTxkEvh6um5LiTGGzw/k4Ghu88uyM0UaLFp3Cqn51U6KjDgK1eh2EwPDVeA44EhOJS/NX0fZdLLopoQEWKtm7jh/BZV1HStMR1yPmS7f3EOPAE+8OL0/QlqZ5+YKimoaUENrtnV71FJyI/Mn9oZCKsbPZ0udHUqnvLsjE18ezMVQWo2kW+OjpU9JyYmmx4egqk6POherLZRWWIMfTl5GUU0D8irq4IZDrUg78VHkjZKSk80cHIZLLlY8/5N92bZ/V9cbeZlqQLovSkpO5uspE2TZ2tZcLNXil3OueckpVJH+Hvh0znB4ylxvuhEfH0jU0e0gdXoTSjQNiFE3r5tUqmnEn9am4svHRiBAIIXZ2pJRqsPdg8NgsjBYGAMHDgwM3nIJPKRi5FTUgeM4SERc02UdB44DxBwHiZiDWMRBxF19ABIxB6lYBBHHgTFmm3TMGINULIJELIJYBIg4DlzTa6RNA08ZA0wWBhFnna7jLZfAYLaAMetlBWPWpaZ8PKTIKNWiVKOHl1wMk4XBUyaGtsEIvcmCIZG+0DYa4SEVQ9NgBAcOIlv8zVnjAA5nVyKvsg6hKg/4e8kwKEIFqfhqTBYYTBYYzQxcU7wSkfV115/fVcN6+CHS3xPf/mkMMq/obHe0uOu+J6zpfADr1I5r/8ZN268e2Wy2wMIAUdP7WhiD2cJgNFvXFBSLOAQp5bg6z5tr+lldPW3rvznb81fPnWt6Xw7W1Z3tjZKSg3x9OA+f7MvBgDAf/H5EBO4dap1yYmEMw3r4uswcuHuGhOOeIeHODqPDhkT62vV4fHwP4sNVvPyRuxq6fHOQwqp66BqNCFV52BISYG1BDY/yw4FLFbZtDQYzLWdNui1KSg6SfN8gPDEuGvcNu/YJW1NvwDs7MtEvWAmDyQJdo3XcT2p+9S0rURLirug334EGRqiw/bpxSW//kgEzY5BLxAhVKZBbUYfCqnrUGVxriAAh9kRJyYHUSgVOX66xff3Xaf3RR+2Nn8+WYGxMIOr0ZnxxMBd39Fc7L0hCnIySkgOpPKTILa+z3XlReUrx4IhIpBXWYPGGU1i6KR0DwnwgoUs30o3Rb78DRfp7QKc34VhuFXSNRmjqjXhpUzoOXqqAykOKDfPG4PcjIp0dJiFORUMCHOjqGJU5XxyDWMRBKuYwbUAIlt87EL2DvJ0cHSHCQEnJgQ423fbnOGDu2Cg8ldgLQUrhD5gkxJE6dPmWnJyMhIQEKJVKqNVqzJo1CxkZGc324ZpG3t74ePvtt9s8dk1NDZKSkhAaGgqFQoHY2Fhs27at42ckYH6eUsSovbH1z+Ox9M5YSkiEtKBDLaV9+/YhKSkJCQkJMJlMeOWVVzB16lScP38eXl7WAvglJSXNXvPzzz/jySefxP3339/qcQ0GA6ZMmQK1Wo3vv/8eERERKCwshFLZ9lLWrmZUrwDsem6is8MgRNA4xjpfe6C8vBxqtRr79u3DhAkTWtxn1qxZ0Ol0+PXXX1s9zscff4y3334bFy9ehFQq7VQsWq0WKpUKGo0GPj6uM8GVkO6ivX+jXbr7ptFoAAD+/v4tPn/lyhVs3boVTz75ZJvHSUlJwZgxY5CUlITg4GDEx8fjzTffhNnc+sqxer0eWq222UMIqusM+OZovrPDIMRldTopMcbw3HPPITExEfHx8S3u8/XXX0OpVOK+++5r81g5OTn4/vvvYTabsW3bNixbtgzvvPMOli9f3uprkpOToVKpbI/ISGHcSj+eV4VlP55FPY3KJqRTOp2UFi5ciPT0dKxfv77Vfb788kvMnj0bCkXbtagtFgvUajU+/fRTDB8+HA8//DBeeeUVrFq1qtXXLF26FBqNxvYoLCzs7KnY1YUSnbNDIMSldWpIwKJFi5CSkoL9+/cjIiKixX0OHDiAjIwMbNy48ZbHCw0NhVQqhVh8rchVbGwsSktLYTAYIJPdvAyRXC6HXC68u1fZ5bWIC/WBp4xGWxDSGR1qKTHGsHDhQmzatAm7d+9GdHR0q/t+8cUXGD58OAYPHnzL444bNw5ZWVmwWK6V68jMzERoaGiLCUnItI1GRAV4OjsMQlxWh5JSUlIS1q5di3Xr1kGpVKK0tBSlpaVoaGhotp9Wq8V3332Hp556qsXjzJ07F0uXLrV9/cwzz6CyshKLFy9GZmYmtm7dijfffBNJSUmdOCXn6hnghTCVh7PDIMRldega42ofz6RJk5ptX716NR5//HHb1xs2bABjDI888kiLxykoKIBIdC0fRkZGYseOHViyZAkGDRqE8PBwLF68GC+++GJHwhOEIZG+2JNR5uwwCHFZXRqnJCRCGadUbzDhz+tP4bWZAxDpT5dxhFzlkHFK5GaeMgk+/sNwlOn0zg6FEJdESYkHErEIw6P8nB0GIS6JkhIhRFAoKRFCBIWSEiFEUCgpEUIEhZISIURQKCkRQgSFkhIhRFAoKRFCBIWSEiFEUCgpEUIEhZISIURQKCkRQgSFkhIhRFAoKRFCBMVtqttfrVUnlPXfCCHNXf3bvFVdSbdJSjqddWkjoaz/RghpmU6ng0qlavV5tymHa7FYUFxcDKVSCY7j7H58rVaLyMhIFBYWus2y4HROrsFdzokxBp1Oh7CwsGY1+m/kNi0lkUjU6hp09uTj4+PSvxgtoXNyDe5wTm21kK6ijm5CiKBQUiKECAolpXaSy+V47bXXBLlUeGfRObkGdzyntrhNRzchxD1QS4kQIiiUlAghgkJJiRAiKJSUCCGCQkmpSWZmJu655x4EBgbCx8cH48aNw549e2zPnz59Go888ggiIyPh4eGB2NhYfPDBB7c8bmlpKebMmYOQkBB4eXlh2LBh+P777/k8FRu+zgkADh8+jNtvvx1eXl7w9fXFpEmT0NDQwNep2PB5ToB11PGdd94JjuPw448/8nAGN+PjnKqqqrBo0SL069cPnp6e6NGjB/785z9Do9HwfTpd5jYjurtqxowZ6Nu3L3bv3g0PDw+8//77uOuuu5CdnY2QkBCkpqYiKCgIa9euRWRkJA4dOoR58+ZBLBZj4cKFrR53zpw50Gg0SElJQWBgINatW4eHHnoIJ06cwNChQ13ynA4fPozp06dj6dKl+Pe//w2ZTIbTp0+3OXVA6Od01fvvv8/LNKW28HFOxcXFKC4uxooVKxAXF4f8/HzMnz8fxcXFDvtQ7DRGWHl5OQPA9u/fb9um1WoZALZr165WX7dgwQJ22223tXlsLy8vtmbNmmbb/P392eeff961oG+Bz3MaNWoUW7Zsmd1ibS8+z4kxxtLS0lhERAQrKSlhANjmzZvtEXab+D6n63377bdMJpMxo9HY6XgdgS7fAAQEBCA2NhZr1qxBXV0dTCYTPvnkEwQHB2P48OGtvk6j0cDf37/NYycmJmLjxo2oqqqCxWLBhg0boNfrMWnSJDufRXN8nVNZWRmOHj0KtVqNsWPHIjg4GBMnTsTBgwf5OI1m+Pw51dfX45FHHsGHH36IkJAQe4feKj7PqaXX+Pj4QCIR+AWSs7OiUFy+fJkNHz6ccRzHxGIxCwsLY6dOnWp1/0OHDjGpVMp27NjR5nFramrYtGnTGAAmkUiYj4/PLV9jL3yc0+HDhxkA5u/vz7788kt28uRJ9uyzzzKZTMYyMzN5OIvm+Po5zZs3jz355JO2r+GglhJj/J3T9SoqKliPHj3YK6+8YoeI+eXWSem1115jANp8HD9+nFksFnb33XezO++8kx08eJClpqayZ555hoWHh7Pi4uKbjnv27FkWFBTE3njjjVvGsHDhQjZy5Ei2a9culpaWxv7+978zlUrF0tPTXfKcfvvtNwaALV26tNn2gQMHspdeesklz2nLli0sJiaG6XQ627auJiVnn9P1NBoNGzVqFJs+fTozGAydPidHceukVF5ezi5cuNDmo6Ghge3atYuJRCKm0WiavT4mJoYlJyc323bu3DmmVqvZyy+/fMv3z8rKYgDY2bNnm22/44472J/+9CeXPKecnBwGgP33v/9ttv3BBx9kjz76qEue0+LFi22tlKsPAEwkErGJEye65DldpdVq2ZgxY9gdd9zBGhoaOnUujibwi8uuCQwMRGBg4C33q6+vB4Cb7h6JRCJYLBbb1+fOncPtt9+Oxx57DMuXL+/0ccVicbPjdoSzz6lnz54ICwtDRkZGs+2ZmZm4884723MKN3H2Ob300kt46qmnmm0bOHAg3nvvPcycObM9p3ATZ58TYC0ON23aNMjlcqSkpEChUHTgDJzI2VlRCMrLy1lAQAC77777WFpaGsvIyGDPP/88k0qlLC0tjTF2rdk8e/ZsVlJSYnuUlZXZjnP58mXWr18/dvToUcYYYwaDgcXExLDx48ezo0ePsqysLLZixQrGcRzbunWrS54TY4y99957zMfHh3333Xfs0qVLbNmyZUyhULCsrCyXPacbwYF33/g4J61Wy0aNGsUGDhzIsrKymr3OZDLxfl5dQUmpyfHjx9nUqVOZv78/UyqVbPTo0Wzbtm2251vrI4iKirLtk5ubywCwPXv22LZlZmay++67j6nVaubp6ckGDRp00xABVzsnxhhLTk5mERERzNPTk40ZM4YdOHDA5c/peo5KSozxc0579uxptS8rNzfXIefVWVS6hBAiKDROiRAiKJSUCCGCQkmJECIolJQIIYJCSYkQIiiUlAghgkJJiRAiKJSUCCGCQkmJECIolJQIIYJCSYkQIiiUlAghgvL/hODAVLRXoYoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "tampa_df.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Other Remotes\n", + "\n", + "In addition to the remote datasets from the GeoData Data Science Center, there are several large remotes available at github repositories. " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rio_Grande_do_Sul\n", + "======================\n", + "\n", + "Cities of the Brazilian State of Rio Grande do Sul\n", + "-------------------------------------------------------\n", + "\n", + "* 43MUE250GC_SIR.dbf: attribute data (k=2)\n", + "* 43MUE250GC_SIR.shp: Polygon shapefile (n=499)\n", + "* 43MUE250GC_SIR.shx: spatial index\n", + "* 43MUE250GC_SIR.cpg: encoding file \n", + "* 43MUE250GC_SIR.prj: projection information \n", + "* map_RS_BR.dbf: attribute data (k=3)\n", + "* map_RS_BR.shp: Polygon shapefile (no lakes) (n=497)\n", + "* map_RS_BR.prj: projection information\n", + "* map_RS_BR.shx: spatial index\n", + "\n", + "\n", + "\n", + "Source: Renan Xavier Cortes \n", + "Reference: https://github.com/pysal/pysal/issues/889#issuecomment-396693495\n", + "\n", + "\n" + ] + } + ], + "source": [ + "libpysal.examples.explain('Rio Grande do Sul')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the `explain` function generates a textual description of this example dataset - no rendering of the map is done as the source repository does not include that functionality." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading Rio Grande do Sul to /home/serge/.local/share/pysal/Rio_Grande_do_Sul\n" + ] + } + ], + "source": [ + "rio = libpysal.examples.load_example('Rio Grande do Sul')" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'AirBnB': ,\n", + " 'Atlanta': ,\n", + " 'Baltimore': ,\n", + " 'Bostonhsg': ,\n", + " 'Buenosaires': ,\n", + " 'Charleston1': ,\n", + " 'Charleston2': ,\n", + " 'Chicago Health': ,\n", + " 'Chicago commpop': ,\n", + " 'Chicago parcels': ,\n", + " 'Chile Labor': ,\n", + " 'Chile Migration': ,\n", + " 'Cincinnati': ,\n", + " 'Cleveland': ,\n", + " 'Columbus': ,\n", + " 'Elections': ,\n", + " 'Grid100': ,\n", + " 'Groceries': ,\n", + " 'Guerry': ,\n", + " 'Health+': ,\n", + " 'Health Indicators': ,\n", + " 'Hickory1': ,\n", + " 'Hickory2': ,\n", + " 'Home Sales': ,\n", + " 'Houston': ,\n", + " 'Juvenile': ,\n", + " 'Lansing1': ,\n", + " 'Lansing2': ,\n", + " 'Laozone': ,\n", + " 'LasRosas': ,\n", + " 'Liquor Stores': ,\n", + " 'Malaria': ,\n", + " 'Milwaukee1': ,\n", + " 'Milwaukee2': ,\n", + " 'NCOVR': ,\n", + " 'Natregimes': ,\n", + " 'NDVI': ,\n", + " 'Nepal': ,\n", + " 'NYC': ,\n", + " 'NYC Earnings': ,\n", + " 'NYC Education': ,\n", + " 'NYC Neighborhoods': ,\n", + " 'NYC Socio-Demographics': ,\n", + " 'Ohiolung': ,\n", + " 'Orlando1': ,\n", + " 'Orlando2': ,\n", + " 'Oz9799': ,\n", + " 'Phoenix ACS': ,\n", + " 'Pittsburgh': ,\n", + " 'Police': ,\n", + " 'Sacramento1': ,\n", + " 'Sacramento2': ,\n", + " 'SanFran Crime': ,\n", + " 'Savannah1': ,\n", + " 'Savannah2': ,\n", + " 'Scotlip': ,\n", + " 'Seattle1': ,\n", + " 'Seattle2': ,\n", + " 'SIDS': ,\n", + " 'SIDS2': ,\n", + " 'Snow': ,\n", + " 'South': ,\n", + " 'Spirals': ,\n", + " 'StLouis': ,\n", + " 'Tampa1': ,\n", + " 'US SDOH': ,\n", + " 'Rio Grande do Sul': ,\n", + " 'nyc_bikes': ,\n", + " 'taz': ,\n", + " 'clearwater': ,\n", + " 'newHaven': }" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.remote_datasets.datasets # a listing of all remotes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/fetch.html b/notebooks/fetch.html new file mode 100644 index 000000000..084b7365d --- /dev/null +++ b/notebooks/fetch.html @@ -0,0 +1,943 @@ + + + + + + + + <no title> — libpysal v4.9.0 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+

This page was generated from notebooks/fetch.ipynb. +Interactive online version: +Binder badge

+
+
+
[1]:
+
+
+
import libpysal
+
+
+
+
+
[2]:
+
+
+
libpysal.examples.fetch_all()
+
+
+
+
+
+
+
+
+downloading dataset from https://s3.amazonaws.com/geoda/data/guerry.zip to /home/jovyan/pysal_data
+Extracting files....
+downloading dataset from https://github.com/sjsrey/rio_grande_do_sul/archive/master.zip to /home/jovyan/pysal_data
+Extracting files....
+downloading dataset from https://s3.amazonaws.com/geoda/data/ncovr.zip to /home/jovyan/pysal_data
+Extracting files....
+downloading dataset from https://github.com/sjsrey/nyc_bikes/archive/master.zip to /home/jovyan/pysal_data
+Extracting files....
+downloading dataset from https://s3.amazonaws.com/geoda/data/SacramentoMSA2.zip to /home/jovyan/pysal_data
+Extracting files....
+downloading dataset from https://s3.amazonaws.com/geoda/data/south.zip to /home/jovyan/pysal_data
+Extracting files....
+downloading dataset from https://github.com/sjsrey/taz/archive/master.zip to /home/jovyan/pysal_data
+Extracting files....
+
+
+
+
[3]:
+
+
+
from libpysal.examples import nat
+
+
+
+
+
[4]:
+
+
+
nat.fetch_nat()
+
+
+
+
+
+
+
+
+already exists, not downloading
+
+
+
+
[5]:
+
+
+
from os import environ
+
+
+
+
+
[6]:
+
+
+
environ.get("PYSALDATA")
+
+
+
+
+
[6]:
+
+
+
+
+'/home/jovyan/pysal_data'
+
+
+
+
[7]:
+
+
+
from libpysal.examples import south
+
+
+
+
+
[8]:
+
+
+
sd = south.fetch_south()
+
+
+
+
+
+
+
+
+already exists, not downloading
+
+
+
+
[9]:
+
+
+
from libpysal.examples import guerry
+
+
+
+
+
[10]:
+
+
+
guerry.fetch_guerry()
+
+
+
+
+
+
+
+
+already exists, not downloading
+
+
+
+
[11]:
+
+
+
libpysal.examples.explain('guerry')
+
+
+
+
+
+
+
+
+
+guerry
+======
+
+Andre-Michel Guerry data on "moral statistics" 1930 crime, suicide, literacy and other “moral statistics” in 1830s France.
+
+- Observations = 85
+- Variables = 23
+- Years = 1915-1934
+- Support = polygon
+
+Files
+-----
+Guerry.dbf  Guerry_documentation.html  Guerry.geojson  Guerry.prj  Guerry.shp  Guerry.shx  README.md
+
+
+Variables
+---------
+
+dept, code_de   Department ID: Standard numbers for the departments
+region  Region of France (‘N’=’North’, ‘S’=’South’, ‘E’=’East’, ‘W’=’West’, ‘C’=’Central’). Corsica is coded as NA.
+dprtmnt         Department name: Departments are named according to usage in 1830, but without accents. A factor with levels Ain Aisne Allier … Vosges Yonne
+crm_prs         Population per Crime against persons.   A2. Compte général, 1825-1830
+crm_prp         Population per Crime against property.  Compte général, 1825-1830
+litercy         Percent of military conscripts who can read and write.  A2
+donatns         Donations to the poor.  A2. Bulletin des lois
+infants         Population per illegitimate birth.      A2. Bureau des Longitudes, 1817-1821
+suicids         Population per suicide.         A2. Compte général, 1827-1830
+maincty         Size of principal city (‘1:Sm’, ‘2:Med’, ‘3:Lg’), used as a surrogate for population density. Large refers to the top 10, small to the bottom 10; all the rest are classed Medium.      A1. An ordered factor with levels: 1:Sm < 2:Med < 3:Lg
+wealth  Per capita tax on personal property. A ranked index based on taxes on personal and movable property per inhabitant.     A1
+commerc         Commerce and Industry, measured by the rank of the number of patents / population.      A1
+clergy  Distribution of clergy, measured by the rank of the number of Catholic priests in active service population.    A1. Almanach officiel du clergy, 1829
+crim_prn        Crimes against parents, measured by the rank of the ratio of crimes against parents to all crimes – Average for the years 1825-1830.    A1. Compte général
+infntcd         Infanticides per capita. A ranked ratio of number of infanticides to population – Average for the years 1825-1830.      A1. Compte général
+dntn_cl         Donations to the clergy. A ranked ratio of the number of bequests and donations inter vivios to population – Average for the years 1815-1824.   A1. Bull. des lois, ordunn. d’autorisation
+lottery         Per capita wager on Royal Lottery. Ranked ratio of the proceeds bet on the royal lottery to population — Average for the years 1822-1826.       A1. Compte rendu par le ministre des finances
+desertn         Military desertion, ratio of number of young soldiers accused of desertion to the force of the military contingent, minus the deficit produced by the insufficiency of available billets – Average of the years 1825-1827.      A1. Compte du ministère du guerre, 1829 état V
+instrct         Instruction. Ranks recorded from Guerry’s map of Instruction. Note: this is inversely related to Literacy
+Prsttts         Number of prostitutes registered in Paris from 1816 to 1834, classified by the department of their birth        Parent-Duchatelet (1836), De la prostitution en Paris
+distanc         Distance to Paris (km). Distance of each department centroid to the centroid of the Seine (Paris)       Calculated from department centroids
+area    Area (1000 km^2).       Angeville (1836)
+pop1831         Population in 1831, in 1000s    Taken from Angeville (1836), Essai sur la Statistique de la Population français
+Details
+
+Note that most of the variables (e.g., Crime_pers) are scaled so that more is “better”.
+
+Values for the quantitative variables displayed on Guerry’s maps were taken from Table A2 in the English translation of Guerry (1833) by Whitt and Reinking. Values for the ranked variables were taken from Table A1, with some corrections applied. The maximum is indicated by rank 1, and the minimum by rank 86.
+Sources
+
+Angeville, A. (1836). Essai sur la Statistique de la Population française Paris: F. Doufour.
+
+Guerry, A.-M. (1833). Essai sur la statistique morale de la France Paris: Crochard. English translation: Hugh P. Whitt and Victor W. Reinking, Lewiston, N.Y. : Edwin Mellen Press, 2002.
+
+Parent-Duchatelet, A. (1836). De la prostitution dans la ville de Paris, 3rd ed, 1857, p. 32, 36
+References
+
+Dray, S. and Jombart, T. (2011). A Revisit Of Guerry’s Data: Introducing Spatial Constraints In Multivariate Analysis. The Annals of Applied Statistics, Vol. 5, No. 4, 2278-2299., DOI: 10.1214/10-AOAS356.
+
+Brunsdon, C. and Dykes, J. (2007). Geographically weighted visualization: interactive graphics for scale-varying exploratory analysis. Geographical Information Science Research Conference (GISRUK 07), NUI Maynooth, Ireland, April, 2007.
+
+Friendly, M. (2007). A.-M. Guerry’s Moral Statistics of France: Challenges for Multivariable Spatial Analysis. Statistical Science, 22, 368-399.
+
+Friendly, M. (2007). Data from A.-M. Guerry, Essay on the Moral Statistics of France (1833).
+See Also
+
+The Guerry package for maps of France: gfrance and related data.
+
+Prepared by Center for Spatial Data Science. Last updated July 3, 2017. Data provided “as is,” no warranties.
+
+
+
+
+
+
+
+
[12]:
+
+
+
libpysal.examples.get_path('Guerry.geojson')
+
+
+
+
+
[12]:
+
+
+
+
+'/home/jovyan/pysal_data/guerry/Guerry.geojson'
+
+
+
+
[13]:
+
+
+
libpysal.examples.explain('south')
+
+
+
+
+
+
+
+
+
+south
+=====
+
+Homicides and selected socio-economic characteristics for Southern U.S. counties.
+---------------------------------------------------------------------------------
+
+- Observations = 1,412
+- Variables = 69
+- Years = 1960-90s
+- Support = polygon
+
+Files
+-----
+south.gdb     README.md  south.dbf      south.gpkg  south.kml  south.mif  south.shp  south.sqlite
+codebook.pdf  south.csv  south.geojson  south.html  south.mid  south.prj  south.shx  south.xlsx
+
+Variables
+---------
+NAME    county name
+STATE_NAME      state name
+STATE_FIPS      state fips code (character)
+CNTY_FIPS       county fips code (character)
+FIPS    combined state and county fips code (character)
+STFIPS  state fips code (numeric)
+COFIPS  county fips code (numeric)
+FIPSNO  fips code as numeric variable
+SOUTH   dummy variable for Southern counties (South = 1)
+HR**    homicide rate per 100,000 (1960, 1970, 1980, 1990)
+HC**    homicide count, three year average centered on 1960, 1970, 1980, 1990
+PO**    county population, 1960, 1970, 1980, 1990
+RD**    resource deprivation 1960, 1970, 1980, 1990 (principal component, see Codebook for details)
+PS**    population structure 1960, 1970, 1980, 1990 (principal component, see Codebook for details)
+UE**    unemployment rate 1960, 1970, 1980, 1990
+DV**    divorce rate 1960, 1970, 1980, 1990 (% males over 14 divorced)
+MA**    median age 1960, 1970, 1980, 1990
+POL**   log of population 1960, 1970, 1980, 1990
+DNL**   log of population density 1960, 1970, 1980, 1990
+MFIL**  log of median family income 1960, 1970, 1980, 1990
+FP**    % families below poverty 1960, 1970, 1980, 1990 (see Codebook for details)
+BLK**   % black 1960, 1970, 1980, 1990
+GI**    Gini index of family income inequality 1960, 1970, 1980, 1990
+FH**    % female headed households 1960, 1970, 1980, 1990
+
+
+
+
+
[14]:
+
+
+
libpysal.examples.get_path('south.shp')
+
+
+
+
+
[14]:
+
+
+
+
+'/home/jovyan/pysal_data/south/south.shp'
+
+
+
+
[15]:
+
+
+
libpysal.examples.get_path('missing.shp')
+
+
+
+
+
+
+
+
+missing.shp not found.
+
+
+
+
[16]:
+
+
+
pth = libpysal.examples.get_path('south.shp')
+
+
+
+
+
[17]:
+
+
+
pth
+
+
+
+
+
[17]:
+
+
+
+
+'/home/jovyan/pysal_data/south/south.shp'
+
+
+
+
[18]:
+
+
+
import geopandas as gpd
+
+
+
+
+
[19]:
+
+
+
df = gpd.read_file(pth)
+
+
+
+
+
[20]:
+
+
+
df.head()
+
+
+
+
+
[20]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
NAMESTATE_NAMESTATE_FIPSCNTY_FIPSFIPSSTFIPSCOFIPSFIPSNOSOUTHHR60...BLK90GI59GI69GI79GI89FH60FH70FH80FH90geometry
0HancockWest Virginia540295402954295402911.682864...2.5572620.2236450.2953770.3322510.3639349.9812977.89.78579712.604552POLYGON ((-80.6280517578125 40.39815902709961,...
1BrookeWest Virginia54009540095495400914.607233...0.7483700.2204070.3184530.3141650.35056910.9293378.010.21499011.242293POLYGON ((-80.52625274658203 40.16244888305664...
2OhioWest Virginia540695406954695406910.974132...3.3103340.2723980.3584540.3769630.39053415.62164312.914.71668117.574021POLYGON ((-80.52516937255859 40.02275085449219...
3MarshallWest Virginia540515405154515405110.876248...0.5460970.2276470.3195800.3209530.37734611.9628348.88.80325313.564159POLYGON ((-80.52446746826172 39.72112655639648...
4New CastleDelaware10003100031031000314.228385...16.4802940.2561060.3296780.3658300.33270312.03571410.715.16948016.380903POLYGON ((-75.77269744873047 39.38300704956055...
+

5 rows × 70 columns

+
+
+
+
[21]:
+
+
+
from libpysal.examples.sacramento2 import fetch_sacramento2
+
+
+
+
+
[22]:
+
+
+
fetch_sacramento2()
+
+
+
+
+
+
+
+
+already exists, not downloading
+
+
+
+
[23]:
+
+
+
libpysal.examples.explain('sacramento2')
+
+
+
+
+
+
+
+
+
+sacramento2
+===========
+
+2000 Census Tract Data for Sacramento MSA
+-----------------------------------------
+
+- Observations = 83
+- Variables = 66
+- Years = 1998, 2001
+- Support = polygon
+
+Files
+-----
+ SacramentoMSA2.gdb       SacramentoMSA2.kml   SacramentoMSA2.shp
+ README.md                SacramentoMSA2.mid   SacramentoMSA2.shx
+ SacramentoMSA2.csv       SacramentoMSA2.mif   SacramentoMSA2.sqlite
+ SacramentoMSA2.dbf       SacramentoMSA2.prj   SacramentoMSA2.xlsx
+ SacramentoMSA2.geojson   SacramentoMSA2.sbn  'Variable Info for Zip Code File.pdf'
+ SacramentoMSA2.gpkg      SacramentoMSA2.sbx
+
+Variables
+---------
+ZIP ZIP code
+PO_NAME         Name of ZIP code area
+STATE   STATE
+MSA     MSA
+CBSA_CODE       CBSA code
+MAN98   1998 total manufacturing establishments (MSA)
+MAN98_12        1998 total manufacturing establishments, 1-9 employees (MSA)
+MAN98_39        1998 total manufacturing establishments 10+ employees (MSA)
+MAN01   2001 total manufacturing establishments (MSA)
+MAN01_12        2001 total manufacturing establishments, 1-9 employees (MSA)
+MAN01_39        2001 total manufacturing establishments, 10+ employees (MSA)
+MAN98US         1998 total manufacturing establishments (US)
+MAN98US12       1998 total manufacturing establishments, 1-9 employees (US)
+MAN98US39       1998 total manufacturing establishments 10+ employees (US)
+MAN01US         2001 total manufacturing establishments (US)
+MAN01US_12      2001 total manufacturing establishments, 1-9 employees (US)
+MAN01US_39      2001 total manufacturing establishments, 10+ employees (US)
+OFF98   1998 total office establishments (MSA)
+OFF98_12        1998 total office establishments, 1-9 employees (MSA)
+OFF98_39        1998 total office establishments, 10+ employees (MSA)
+OFF01   2001 total office establishments (MSA)
+OFF01_12        2001 total office establishments, 1-9 employees (MSA)
+OFF01_39        2001 total office establishments, 10+ employees (MSA)
+OFF98US         1998 total office establishments (US)
+OFF98US12       1998 total office establishments, 1-9 employees (US)
+OFF98US39       1998 total office establishments, 10+ employees (US)
+OFF01US         2001 total office establishments (US)
+OFFUS01_12      2001 total office establishments, 1-9 employees (US)
+OFFUS01_39      2001 total office establishments, 10+ employees (US)
+INFO98  1998 total information establishments (MSA)
+INFO98_12       1998 total information establishments, 1-9 employees (MSA)
+INFO98_39       1998 total information establishments, 10+ employees (MSA)
+INFO01  2001 total information establishments (MSA)
+INFO01_12       2001 total information establishments, 1-9 employees (MSA)
+INFO01_39       2001 total information establishments, 10+ employees (MSA)
+INFO98US        1998 total information establishments (US)
+INFO98US12      1998 total information establishments, 1-9 employees (US)
+INFO98US39      1998 total information establishments, 10+ employees (US)
+INFO01US        2001 total information establishments (US)
+INFO01US_1      2001 total information establishments, 1-9 employees (US)
+INFO01US_3      2001 total information establishments, 10+ employees (US)
+INDEX   Index
+NUMSEC  Number of sectors represented in ZIP code
+EST98   Total establishments in ZIP code, 1998
+EST01   Total establishments in ZIP code, 2001
+PCTNGE  National growth effect, percent (N)
+PCTIME  Industry mix effect, percent (M)
+PCTCSE  Competitive shift effect, percent (S)
+PCTGRO  Percent growth establishments, 1998-2001 (R)
+ID      Unique ZIP code ID for ID variables in weights matrix creation window
+
+Source: US Census Bureau, 2000 Census (Summary File 3). Extracted from http://factfinder.census.gov in April 2004.
+
+
+
+
+
[24]:
+
+
+
libpysal.examples.get_path("10740.shx")
+
+
+
+
+
[24]:
+
+
+
+
+'/home/jovyan/libpysal/examples/10740/10740.shx'
+
+
+
+
[25]:
+
+
+
from libpysal.examples.nyc_bikes import fetch_bikes
+
+
+
+
+
[26]:
+
+
+
fetch_bikes()
+
+
+
+
+
+
+
+
+already exists, not downloading
+
+
+
+
[27]:
+
+
+
libpysal.examples.get_path('nyct2010.shp')
+
+
+
+
+
[27]:
+
+
+
+
+'/home/jovyan/pysal_data/nyc_bikes/nyct2010.shp'
+
+
+
+
[28]:
+
+
+
from libpysal.examples.rio_grande_do_sul import fetch_rio
+fetch_rio()
+
+
+
+
+
+
+
+
+already exists, not downloading
+
+
+
+
[29]:
+
+
+
libpysal.examples.get_path('map_RS_BR.shp')
+
+
+
+
+
[29]:
+
+
+
+
+'/home/jovyan/pysal_data/rio_grande_do_sul/map_RS_BR.shp'
+
+
+
+
[ ]:
+
+
+
from libpysal.examples.taz import fetch_taz
+fetch_taz()
+
+
+
+
+
[ ]:
+
+
+
libpysal.examples.get_path('taz.dbf')
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+ + +
+ +
+
+
+
+

+ Back to top + +
+ +

+ +

+

+ © Copyright 2018-, pysal developers.
+ Created using Sphinx 7.2.6.
+

+
+
+ + \ No newline at end of file diff --git a/notebooks/fetch.ipynb b/notebooks/fetch.ipynb new file mode 100644 index 000000000..c8f002b9d --- /dev/null +++ b/notebooks/fetch.ipynb @@ -0,0 +1,887 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import libpysal" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "downloading dataset from https://s3.amazonaws.com/geoda/data/guerry.zip to /home/jovyan/pysal_data\n", + "Extracting files....\n", + "downloading dataset from https://github.com/sjsrey/rio_grande_do_sul/archive/master.zip to /home/jovyan/pysal_data\n", + "Extracting files....\n", + "downloading dataset from https://s3.amazonaws.com/geoda/data/ncovr.zip to /home/jovyan/pysal_data\n", + "Extracting files....\n", + "downloading dataset from https://github.com/sjsrey/nyc_bikes/archive/master.zip to /home/jovyan/pysal_data\n", + "Extracting files....\n", + "downloading dataset from https://s3.amazonaws.com/geoda/data/SacramentoMSA2.zip to /home/jovyan/pysal_data\n", + "Extracting files....\n", + "downloading dataset from https://s3.amazonaws.com/geoda/data/south.zip to /home/jovyan/pysal_data\n", + "Extracting files....\n", + "downloading dataset from https://github.com/sjsrey/taz/archive/master.zip to /home/jovyan/pysal_data\n", + "Extracting files....\n" + ] + } + ], + "source": [ + "libpysal.examples.fetch_all()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.examples import nat" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "already exists, not downloading\n" + ] + } + ], + "source": [ + "nat.fetch_nat()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "from os import environ" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/home/jovyan/pysal_data'" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "environ.get(\"PYSALDATA\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.examples import south" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "already exists, not downloading\n" + ] + } + ], + "source": [ + "sd = south.fetch_south()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.examples import guerry" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "already exists, not downloading\n" + ] + } + ], + "source": [ + "guerry.fetch_guerry()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "guerry\n", + "======\n", + "\n", + "Andre-Michel Guerry data on \"moral statistics\" 1930 crime, suicide, literacy and other “moral statistics” in 1830s France.\n", + "\n", + "- Observations = 85\n", + "- Variables = 23\n", + "- Years = 1915-1934\n", + "- Support = polygon\n", + "\n", + "Files\n", + "-----\n", + "Guerry.dbf Guerry_documentation.html Guerry.geojson Guerry.prj Guerry.shp Guerry.shx README.md\n", + "\n", + "\n", + "Variables\n", + "---------\n", + "\n", + "dept, code_de \tDepartment ID: Standard numbers for the departments \t \n", + "region \tRegion of France (‘N’=’North’, ‘S’=’South’, ‘E’=’East’, ‘W’=’West’, ‘C’=’Central’). Corsica is coded as NA. \t \n", + "dprtmnt \tDepartment name: Departments are named according to usage in 1830, but without accents. A factor with levels Ain Aisne Allier … Vosges Yonne \t \n", + "crm_prs \tPopulation per Crime against persons. \tA2. Compte général, 1825-1830\n", + "crm_prp \tPopulation per Crime against property. \tCompte général, 1825-1830\n", + "litercy \tPercent of military conscripts who can read and write. \tA2 \n", + "donatns \tDonations to the poor. \tA2. Bulletin des lois\n", + "infants \tPopulation per illegitimate birth. \tA2. Bureau des Longitudes, 1817-1821\n", + "suicids \tPopulation per suicide. \tA2. Compte général, 1827-1830\n", + "maincty \tSize of principal city (‘1:Sm’, ‘2:Med’, ‘3:Lg’), used as a surrogate for population density. Large refers to the top 10, small to the bottom 10; all the rest are classed Medium. \tA1. An ordered factor with levels: 1:Sm < 2:Med < 3:Lg\n", + "wealth \tPer capita tax on personal property. A ranked index based on taxes on personal and movable property per inhabitant. \tA1\n", + "commerc \tCommerce and Industry, measured by the rank of the number of patents / population. \tA1\n", + "clergy \tDistribution of clergy, measured by the rank of the number of Catholic priests in active service population. \tA1. Almanach officiel du clergy, 1829\n", + "crim_prn \tCrimes against parents, measured by the rank of the ratio of crimes against parents to all crimes – Average for the years 1825-1830. \tA1. Compte général\n", + "infntcd \tInfanticides per capita. A ranked ratio of number of infanticides to population – Average for the years 1825-1830. \tA1. Compte général\n", + "dntn_cl \tDonations to the clergy. A ranked ratio of the number of bequests and donations inter vivios to population – Average for the years 1815-1824. \tA1. Bull. des lois, ordunn. d’autorisation\n", + "lottery \tPer capita wager on Royal Lottery. Ranked ratio of the proceeds bet on the royal lottery to population — Average for the years 1822-1826. \tA1. Compte rendu par le ministre des finances\n", + "desertn \tMilitary desertion, ratio of number of young soldiers accused of desertion to the force of the military contingent, minus the deficit produced by the insufficiency of available billets – Average of the years 1825-1827. \tA1. Compte du ministère du guerre, 1829 état V\n", + "instrct \tInstruction. Ranks recorded from Guerry’s map of Instruction. Note: this is inversely related to Literacy \t \n", + "Prsttts \tNumber of prostitutes registered in Paris from 1816 to 1834, classified by the department of their birth \tParent-Duchatelet (1836), De la prostitution en Paris\n", + "distanc \tDistance to Paris (km). Distance of each department centroid to the centroid of the Seine (Paris) \tCalculated from department centroids\n", + "area \tArea (1000 km^2). \tAngeville (1836)\n", + "pop1831 \tPopulation in 1831, in 1000s \tTaken from Angeville (1836), Essai sur la Statistique de la Population français\n", + "Details\n", + "\n", + "Note that most of the variables (e.g., Crime_pers) are scaled so that more is “better”. \n", + "\n", + "Values for the quantitative variables displayed on Guerry’s maps were taken from Table A2 in the English translation of Guerry (1833) by Whitt and Reinking. Values for the ranked variables were taken from Table A1, with some corrections applied. The maximum is indicated by rank 1, and the minimum by rank 86. \n", + "Sources\n", + "\n", + "Angeville, A. (1836). Essai sur la Statistique de la Population française Paris: F. Doufour. \n", + "\n", + "Guerry, A.-M. (1833). Essai sur la statistique morale de la France Paris: Crochard. English translation: Hugh P. Whitt and Victor W. Reinking, Lewiston, N.Y. : Edwin Mellen Press, 2002. \n", + "\n", + "Parent-Duchatelet, A. (1836). De la prostitution dans la ville de Paris, 3rd ed, 1857, p. 32, 36 \n", + "References\n", + "\n", + "Dray, S. and Jombart, T. (2011). A Revisit Of Guerry’s Data: Introducing Spatial Constraints In Multivariate Analysis. The Annals of Applied Statistics, Vol. 5, No. 4, 2278-2299., DOI: 10.1214/10-AOAS356. \n", + "\n", + "Brunsdon, C. and Dykes, J. (2007). Geographically weighted visualization: interactive graphics for scale-varying exploratory analysis. Geographical Information Science Research Conference (GISRUK 07), NUI Maynooth, Ireland, April, 2007. \n", + "\n", + "Friendly, M. (2007). A.-M. Guerry’s Moral Statistics of France: Challenges for Multivariable Spatial Analysis. Statistical Science, 22, 368-399. \n", + "\n", + "Friendly, M. (2007). Data from A.-M. Guerry, Essay on the Moral Statistics of France (1833). \n", + "See Also\n", + "\n", + "The Guerry package for maps of France: gfrance and related data. \n", + "\n", + "Prepared by Center for Spatial Data Science. Last updated July 3, 2017. Data provided “as is,” no warranties.\n", + "\n", + "\n", + "\n", + "\n" + ] + } + ], + "source": [ + "libpysal.examples.explain('guerry')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/home/jovyan/pysal_data/guerry/Guerry.geojson'" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.get_path('Guerry.geojson')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "south\n", + "=====\n", + "\n", + "Homicides and selected socio-economic characteristics for Southern U.S. counties.\n", + "---------------------------------------------------------------------------------\n", + "\n", + "- Observations = 1,412\n", + "- Variables = 69\n", + "- Years = 1960-90s\n", + "- Support = polygon\n", + "\n", + "Files\n", + "-----\n", + "south.gdb README.md south.dbf south.gpkg south.kml south.mif south.shp south.sqlite\n", + "codebook.pdf south.csv south.geojson south.html south.mid south.prj south.shx south.xlsx\n", + "\n", + "Variables\n", + "---------\n", + "NAME \tcounty name\n", + "STATE_NAME \tstate name\n", + "STATE_FIPS \tstate fips code (character)\n", + "CNTY_FIPS \tcounty fips code (character)\n", + "FIPS \tcombined state and county fips code (character)\n", + "STFIPS \tstate fips code (numeric)\n", + "COFIPS \tcounty fips code (numeric)\n", + "FIPSNO \tfips code as numeric variable\n", + "SOUTH \tdummy variable for Southern counties (South = 1)\n", + "HR** \thomicide rate per 100,000 (1960, 1970, 1980, 1990)\n", + "HC** \thomicide count, three year average centered on 1960, 1970, 1980, 1990\n", + "PO** \tcounty population, 1960, 1970, 1980, 1990\n", + "RD** \tresource deprivation 1960, 1970, 1980, 1990 (principal component, see Codebook for details)\n", + "PS** \tpopulation structure 1960, 1970, 1980, 1990 (principal component, see Codebook for details)\n", + "UE** \tunemployment rate 1960, 1970, 1980, 1990\n", + "DV** \tdivorce rate 1960, 1970, 1980, 1990 (% males over 14 divorced)\n", + "MA** \tmedian age 1960, 1970, 1980, 1990\n", + "POL** \tlog of population 1960, 1970, 1980, 1990\n", + "DNL** \tlog of population density 1960, 1970, 1980, 1990\n", + "MFIL** \tlog of median family income 1960, 1970, 1980, 1990\n", + "FP** \t% families below poverty 1960, 1970, 1980, 1990 (see Codebook for details)\n", + "BLK** \t% black 1960, 1970, 1980, 1990\n", + "GI** \tGini index of family income inequality 1960, 1970, 1980, 1990\n", + "FH** \t% female headed households 1960, 1970, 1980, 1990\n", + "\n" + ] + } + ], + "source": [ + "libpysal.examples.explain('south')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/home/jovyan/pysal_data/south/south.shp'" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.get_path('south.shp')" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "missing.shp not found.\n" + ] + } + ], + "source": [ + "libpysal.examples.get_path('missing.shp')" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "pth = libpysal.examples.get_path('south.shp')" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/home/jovyan/pysal_data/south/south.shp'" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pth" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas as gpd" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "df = gpd.read_file(pth)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NAMESTATE_NAMESTATE_FIPSCNTY_FIPSFIPSSTFIPSCOFIPSFIPSNOSOUTHHR60...BLK90GI59GI69GI79GI89FH60FH70FH80FH90geometry
0HancockWest Virginia540295402954295402911.682864...2.5572620.2236450.2953770.3322510.3639349.9812977.89.78579712.604552POLYGON ((-80.6280517578125 40.39815902709961,...
1BrookeWest Virginia54009540095495400914.607233...0.7483700.2204070.3184530.3141650.35056910.9293378.010.21499011.242293POLYGON ((-80.52625274658203 40.16244888305664...
2OhioWest Virginia540695406954695406910.974132...3.3103340.2723980.3584540.3769630.39053415.62164312.914.71668117.574021POLYGON ((-80.52516937255859 40.02275085449219...
3MarshallWest Virginia540515405154515405110.876248...0.5460970.2276470.3195800.3209530.37734611.9628348.88.80325313.564159POLYGON ((-80.52446746826172 39.72112655639648...
4New CastleDelaware10003100031031000314.228385...16.4802940.2561060.3296780.3658300.33270312.03571410.715.16948016.380903POLYGON ((-75.77269744873047 39.38300704956055...
\n", + "

5 rows × 70 columns

\n", + "
" + ], + "text/plain": [ + " NAME STATE_NAME STATE_FIPS CNTY_FIPS FIPS STFIPS COFIPS \\\n", + "0 Hancock West Virginia 54 029 54029 54 29 \n", + "1 Brooke West Virginia 54 009 54009 54 9 \n", + "2 Ohio West Virginia 54 069 54069 54 69 \n", + "3 Marshall West Virginia 54 051 54051 54 51 \n", + "4 New Castle Delaware 10 003 10003 10 3 \n", + "\n", + " FIPSNO SOUTH HR60 ... BLK90 GI59 GI69 GI79 \\\n", + "0 54029 1 1.682864 ... 2.557262 0.223645 0.295377 0.332251 \n", + "1 54009 1 4.607233 ... 0.748370 0.220407 0.318453 0.314165 \n", + "2 54069 1 0.974132 ... 3.310334 0.272398 0.358454 0.376963 \n", + "3 54051 1 0.876248 ... 0.546097 0.227647 0.319580 0.320953 \n", + "4 10003 1 4.228385 ... 16.480294 0.256106 0.329678 0.365830 \n", + "\n", + " GI89 FH60 FH70 FH80 FH90 \\\n", + "0 0.363934 9.981297 7.8 9.785797 12.604552 \n", + "1 0.350569 10.929337 8.0 10.214990 11.242293 \n", + "2 0.390534 15.621643 12.9 14.716681 17.574021 \n", + "3 0.377346 11.962834 8.8 8.803253 13.564159 \n", + "4 0.332703 12.035714 10.7 15.169480 16.380903 \n", + "\n", + " geometry \n", + "0 POLYGON ((-80.6280517578125 40.39815902709961,... \n", + "1 POLYGON ((-80.52625274658203 40.16244888305664... \n", + "2 POLYGON ((-80.52516937255859 40.02275085449219... \n", + "3 POLYGON ((-80.52446746826172 39.72112655639648... \n", + "4 POLYGON ((-75.77269744873047 39.38300704956055... \n", + "\n", + "[5 rows x 70 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.examples.sacramento2 import fetch_sacramento2" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "already exists, not downloading\n" + ] + } + ], + "source": [ + "fetch_sacramento2()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "sacramento2\n", + "===========\n", + "\n", + "2000 Census Tract Data for Sacramento MSA\n", + "-----------------------------------------\n", + "\n", + "- Observations = 83\n", + "- Variables = 66\n", + "- Years = 1998, 2001\n", + "- Support = polygon\n", + "\n", + "Files\n", + "-----\n", + " SacramentoMSA2.gdb SacramentoMSA2.kml SacramentoMSA2.shp\n", + " README.md SacramentoMSA2.mid SacramentoMSA2.shx\n", + " SacramentoMSA2.csv SacramentoMSA2.mif SacramentoMSA2.sqlite\n", + " SacramentoMSA2.dbf SacramentoMSA2.prj SacramentoMSA2.xlsx\n", + " SacramentoMSA2.geojson SacramentoMSA2.sbn 'Variable Info for Zip Code File.pdf'\n", + " SacramentoMSA2.gpkg SacramentoMSA2.sbx\n", + "\n", + "Variables\n", + "---------\n", + "ZIP ZIP code\n", + "PO_NAME \tName of ZIP code area\n", + "STATE \tSTATE\n", + "MSA \tMSA\n", + "CBSA_CODE \tCBSA code\n", + "MAN98 \t1998 total manufacturing establishments (MSA)\n", + "MAN98_12 \t1998 total manufacturing establishments, 1-9 employees (MSA)\n", + "MAN98_39 \t1998 total manufacturing establishments 10+ employees (MSA)\n", + "MAN01 \t2001 total manufacturing establishments (MSA)\n", + "MAN01_12 \t2001 total manufacturing establishments, 1-9 employees (MSA)\n", + "MAN01_39 \t2001 total manufacturing establishments, 10+ employees (MSA)\n", + "MAN98US \t1998 total manufacturing establishments (US)\n", + "MAN98US12 \t1998 total manufacturing establishments, 1-9 employees (US)\n", + "MAN98US39 \t1998 total manufacturing establishments 10+ employees (US)\n", + "MAN01US \t2001 total manufacturing establishments (US)\n", + "MAN01US_12 \t2001 total manufacturing establishments, 1-9 employees (US)\n", + "MAN01US_39 \t2001 total manufacturing establishments, 10+ employees (US)\n", + "OFF98 \t1998 total office establishments (MSA)\n", + "OFF98_12 \t1998 total office establishments, 1-9 employees (MSA)\n", + "OFF98_39 \t1998 total office establishments, 10+ employees (MSA)\n", + "OFF01 \t2001 total office establishments (MSA)\n", + "OFF01_12 \t2001 total office establishments, 1-9 employees (MSA)\n", + "OFF01_39 \t2001 total office establishments, 10+ employees (MSA)\n", + "OFF98US \t1998 total office establishments (US)\n", + "OFF98US12 \t1998 total office establishments, 1-9 employees (US)\n", + "OFF98US39 \t1998 total office establishments, 10+ employees (US)\n", + "OFF01US \t2001 total office establishments (US)\n", + "OFFUS01_12 \t2001 total office establishments, 1-9 employees (US)\n", + "OFFUS01_39 \t2001 total office establishments, 10+ employees (US)\n", + "INFO98 \t1998 total information establishments (MSA)\n", + "INFO98_12 \t1998 total information establishments, 1-9 employees (MSA)\n", + "INFO98_39 \t1998 total information establishments, 10+ employees (MSA)\n", + "INFO01 \t2001 total information establishments (MSA)\n", + "INFO01_12 \t2001 total information establishments, 1-9 employees (MSA)\n", + "INFO01_39 \t2001 total information establishments, 10+ employees (MSA)\n", + "INFO98US \t1998 total information establishments (US)\n", + "INFO98US12 \t1998 total information establishments, 1-9 employees (US)\n", + "INFO98US39 \t1998 total information establishments, 10+ employees (US)\n", + "INFO01US \t2001 total information establishments (US)\n", + "INFO01US_1 \t2001 total information establishments, 1-9 employees (US)\n", + "INFO01US_3 \t2001 total information establishments, 10+ employees (US)\n", + "INDEX \tIndex\n", + "NUMSEC \tNumber of sectors represented in ZIP code\n", + "EST98 \tTotal establishments in ZIP code, 1998\n", + "EST01 \tTotal establishments in ZIP code, 2001\n", + "PCTNGE \tNational growth effect, percent (N)\n", + "PCTIME \tIndustry mix effect, percent (M)\n", + "PCTCSE \tCompetitive shift effect, percent (S)\n", + "PCTGRO \tPercent growth establishments, 1998-2001 (R)\n", + "ID \tUnique ZIP code ID for ID variables in weights matrix creation window\n", + "\n", + "Source: US Census Bureau, 2000 Census (Summary File 3). Extracted from http://factfinder.census.gov in April 2004.\n", + "\n" + ] + } + ], + "source": [ + "libpysal.examples.explain('sacramento2')" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/home/jovyan/libpysal/examples/10740/10740.shx'" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.get_path(\"10740.shx\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.examples.nyc_bikes import fetch_bikes" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "already exists, not downloading\n" + ] + } + ], + "source": [ + "fetch_bikes()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/home/jovyan/pysal_data/nyc_bikes/nyct2010.shp'" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.get_path('nyct2010.shp')" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "already exists, not downloading\n" + ] + } + ], + "source": [ + "from libpysal.examples.rio_grande_do_sul import fetch_rio\n", + "fetch_rio()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/home/jovyan/pysal_data/rio_grande_do_sul/map_RS_BR.shp'" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.get_path('map_RS_BR.shp')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.examples.taz import fetch_taz\n", + "fetch_taz()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "libpysal.examples.get_path('taz.dbf')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/io.html b/notebooks/io.html new file mode 100644 index 000000000..e64be2bed --- /dev/null +++ b/notebooks/io.html @@ -0,0 +1,412 @@ + + + + + + + + <no title> — libpysal v4.9.0 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+

This page was generated from notebooks/io.ipynb. +Interactive online version: +Binder badge

+
+
+
[1]:
+
+
+
import sys
+import os
+
+sys.path.append(os.path.abspath('..'))
+import libpysal
+
+
+
+
+
[2]:
+
+
+
w = libpysal.weights.lat2W(5,5)
+
+
+
+
+
[3]:
+
+
+
w.n
+
+
+
+
+
[3]:
+
+
+
+
+25
+
+
+
+
[4]:
+
+
+
w.pct_nonzero
+
+
+
+
+
[4]:
+
+
+
+
+12.8
+
+
+
+
[5]:
+
+
+
w.neighbors[0]
+
+
+
+
+
[5]:
+
+
+
+
+[5, 1]
+
+
+
+
[6]:
+
+
+
w.neighbors[5]
+
+
+
+
+
[6]:
+
+
+
+
+[0, 10, 6]
+
+
+
+
[7]:
+
+
+
libpysal.examples.available()
+
+
+
+
+
[7]:
+
+
+
+
+['georgia',
+ '__pycache__',
+ 'tests',
+ 'newHaven',
+ 'Polygon_Holes',
+ 'nat',
+ 'Polygon',
+ '10740',
+ 'berlin',
+ 'rio_grande_do_sul',
+ 'sids2',
+ 'sacramento2',
+ 'burkitt',
+ 'arcgis',
+ 'calemp',
+ 'stl',
+ 'virginia',
+ 'geodanet',
+ 'desmith',
+ 'book',
+ 'nyc_bikes',
+ 'Line',
+ 'south',
+ 'snow_maps',
+ 'Point',
+ 'street_net_pts',
+ 'guerry',
+ '__pycache__',
+ 'baltim',
+ 'networks',
+ 'us_income',
+ 'taz',
+ 'columbus',
+ 'tokyo',
+ 'mexico',
+ '__pycache__',
+ 'chicago',
+ 'wmat',
+ 'juvenile',
+ 'clearwater']
+
+
+
+
[8]:
+
+
+
libpysal.examples.explain('baltim')
+
+
+
+
+
[8]:
+
+
+
+
+{'name': 'baltim',
+ 'description': 'Baltimore house sales prices and hedonics 1978',
+ 'explanation': ['* baltim.dbf: attribute data. (k=17)',
+  '* baltim.shp: Point shapefile. (n=211)',
+  '* baltim.shx: spatial index.',
+  '* baltim.tri.k12.kwt: kernel weights using a triangular kernel with 12 nearest neighbors in KWT format.',
+  '* baltim_k4.gwt: nearest neighbor weights (4nn) in GWT format.',
+  '* baltim_q.gal: queen contiguity weights in GAL format.',
+  '* baltimore.geojson: spatial weights in geojson format.']}
+
+
+
+
[9]:
+
+
+
pth = libpysal.examples.get_path('baltim.shp')
+
+
+
+
+
[10]:
+
+
+
pth
+
+
+
+
+
[10]:
+
+
+
+
+'/home/serge/Dropbox/p/pysal/src/subpackages/libpysal/libpysal/examples/baltim/baltim.shp'
+
+
+
+
[11]:
+
+
+
shp_file = libpysal.io.open(pth)
+
+
+
+
+
[12]:
+
+
+
shapes = [shp for shp in shp_file]
+
+
+
+
+
[13]:
+
+
+
shapes[0]
+
+
+
+
+
[13]:
+
+
+
+
+(907.0, 534.0)
+
+
+
+
[14]:
+
+
+
w = libpysal.io.open(libpysal.examples.get_path('baltim_q.gal')).read()
+
+
+
+
+
[15]:
+
+
+
w.n
+
+
+
+
+
[15]:
+
+
+
+
+211
+
+
+ + +
+ +
+
+
+
+

+ Back to top + +
+ +

+ +

+

+ © Copyright 2018-, pysal developers.
+ Created using Sphinx 7.2.6.
+

+
+
+ + \ No newline at end of file diff --git a/notebooks/io.ipynb b/notebooks/io.ipynb new file mode 100644 index 000000000..76f11e123 --- /dev/null +++ b/notebooks/io.ipynb @@ -0,0 +1,310 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "import os\n", + "\n", + "sys.path.append(os.path.abspath('..'))\n", + "import libpysal" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "w = libpysal.weights.lat2W(5,5)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "25" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "12.8" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.pct_nonzero" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[5, 1]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.neighbors[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[0, 10, 6]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.neighbors[5]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['georgia',\n", + " '__pycache__',\n", + " 'tests',\n", + " 'newHaven',\n", + " 'Polygon_Holes',\n", + " 'nat',\n", + " 'Polygon',\n", + " '10740',\n", + " 'berlin',\n", + " 'rio_grande_do_sul',\n", + " 'sids2',\n", + " 'sacramento2',\n", + " 'burkitt',\n", + " 'arcgis',\n", + " 'calemp',\n", + " 'stl',\n", + " 'virginia',\n", + " 'geodanet',\n", + " 'desmith',\n", + " 'book',\n", + " 'nyc_bikes',\n", + " 'Line',\n", + " 'south',\n", + " 'snow_maps',\n", + " 'Point',\n", + " 'street_net_pts',\n", + " 'guerry',\n", + " '__pycache__',\n", + " 'baltim',\n", + " 'networks',\n", + " 'us_income',\n", + " 'taz',\n", + " 'columbus',\n", + " 'tokyo',\n", + " 'mexico',\n", + " '__pycache__',\n", + " 'chicago',\n", + " 'wmat',\n", + " 'juvenile',\n", + " 'clearwater']" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.available()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'name': 'baltim',\n", + " 'description': 'Baltimore house sales prices and hedonics 1978',\n", + " 'explanation': ['* baltim.dbf: attribute data. (k=17)',\n", + " '* baltim.shp: Point shapefile. (n=211)',\n", + " '* baltim.shx: spatial index.',\n", + " '* baltim.tri.k12.kwt: kernel weights using a triangular kernel with 12 nearest neighbors in KWT format.',\n", + " '* baltim_k4.gwt: nearest neighbor weights (4nn) in GWT format.',\n", + " '* baltim_q.gal: queen contiguity weights in GAL format.',\n", + " '* baltimore.geojson: spatial weights in geojson format.']}" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.explain('baltim')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "pth = libpysal.examples.get_path('baltim.shp')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'/home/serge/Dropbox/p/pysal/src/subpackages/libpysal/libpysal/examples/baltim/baltim.shp'" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pth" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "shp_file = libpysal.io.open(pth)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "shapes = [shp for shp in shp_file]" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(907.0, 534.0)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "shapes[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "w = libpysal.io.open(libpysal.examples.get_path('baltim_q.gal')).read()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "211" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/voronoi.html b/notebooks/voronoi.html new file mode 100644 index 000000000..05050d3cd --- /dev/null +++ b/notebooks/voronoi.html @@ -0,0 +1,536 @@ + + + + + + + + Voronoi Polygons for 2-D Point Sets — libpysal v4.9.0 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+

This page was generated from notebooks/voronoi.ipynb. +Interactive online version: +Binder badge

+
+
+

Voronoi Polygons for 2-D Point Sets

+

Author: Serge Rey (http://github.com/sjsrey)

+
+

Basic Usage

+
+
[24]:
+
+
+
import sys
+import os
+sys.path.append(os.path.abspath('..'))
+import libpysal
+
+
+
+
+
[25]:
+
+
+
from libpysal.cg.voronoi  import voronoi, voronoi_frames
+
+
+
+
+
[26]:
+
+
+
points = [(10.2, 5.1), (4.7, 2.2), (5.3, 5.7), (2.7, 5.3)]
+
+
+
+
+
[27]:
+
+
+
regions, vertices = voronoi(points)
+
+
+
+
+
[28]:
+
+
+
regions
+
+
+
+
+
[28]:
+
+
+
+
+[[1, 3, 2], [4, 5, 1, 0], [0, 1, 7, 6], [9, 0, 8]]
+
+
+
+
[29]:
+
+
+
vertices
+
+
+
+
+
[29]:
+
+
+
+
+array([[  4.21783296,   4.08408578],
+       [  7.51956025,   3.51807539],
+       [  9.4642193 ,  19.3994576 ],
+       [ 14.98210684, -10.63503022],
+       [ -9.22691341,  -4.58994414],
+       [ 14.98210684, -10.63503022],
+       [  1.78491801,  19.89803294],
+       [  9.4642193 ,  19.3994576 ],
+       [  1.78491801,  19.89803294],
+       [ -9.22691341,  -4.58994414]])
+
+
+
+
[30]:
+
+
+
region_df, point_df = voronoi_frames(points)
+
+
+
+
+
[31]:
+
+
+
%matplotlib inline
+import matplotlib
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+
+
+
[32]:
+
+
+
fig, ax = plt.subplots()
+region_df.plot(ax=ax, color='blue',edgecolor='black', alpha=0.3)
+point_df.plot(ax=ax, color='red')
+
+
+
+
+
[32]:
+
+
+
+
+<matplotlib.axes._subplots.AxesSubplot at 0x7f85e38b94a8>
+
+
+
+
+
+
+../_images/notebooks_voronoi_10_1.png +
+
+
+
+

Larger Problem

+
+
[33]:
+
+
+
n_points = 200
+np.random.seed(12345)
+points = np.random.random((n_points,2))*10 + 10
+results = voronoi(points)
+mins = points.min(axis=0)
+maxs = points.max(axis=0)
+
+
+
+
+
[34]:
+
+
+
regions, vertices = voronoi(points)
+
+
+
+
+
[35]:
+
+
+
regions_df, points_df = voronoi_frames(points)
+
+
+
+
+
[36]:
+
+
+
fig, ax = plt.subplots()
+points_df.plot(ax=ax, color='red')
+
+
+
+
+
[36]:
+
+
+
+
+<matplotlib.axes._subplots.AxesSubplot at 0x7f85e39dae10>
+
+
+
+
+
+
+../_images/notebooks_voronoi_15_1.png +
+
+
+
[37]:
+
+
+
fig, ax = plt.subplots()
+regions_df.plot(ax=ax, color='blue',edgecolor='black', alpha=0.3)
+points_df.plot(ax=ax, color='red')
+
+
+
+
+
[37]:
+
+
+
+
+<matplotlib.axes._subplots.AxesSubplot at 0x7f85e1fbd240>
+
+
+
+
+
+
+../_images/notebooks_voronoi_16_1.png +
+
+
+
+

Trimming

+
+
[38]:
+
+
+
points = np.array(points)
+maxs = points.max(axis=0)
+mins = points.min(axis=0)
+xr = maxs[0] - mins[0]
+yr = maxs[1] - mins[1]
+buff = 0.05
+r = max(yr, xr) * buff
+minx = mins[0] - r
+miny = mins[1] - r
+maxx = maxs[0] + r
+maxy = maxs[1] + r
+
+
+
+
+
[39]:
+
+
+
fig, ax = plt.subplots()
+regions_df.plot(ax=ax, edgecolor='black', facecolor='blue', alpha=0.2 )
+points_df.plot(ax=ax, color='red')
+plt.xlim(minx, maxx)
+plt.ylim(miny, maxy)
+plt.title("buffer: %f, n: %d"%(r,n_points))
+plt.show()
+
+
+
+
+
+
+
+../_images/notebooks_voronoi_19_0.png +
+
+
+
+
+

Voronoi Weights

+
+
[40]:
+
+
+
from libpysal.weights.contiguity import Voronoi as Vornoi_weights
+
+
+
+
+
[41]:
+
+
+
w = Vornoi_weights(points)
+
+
+
+
+
[42]:
+
+
+
w.n
+
+
+
+
+
[42]:
+
+
+
+
+200
+
+
+
+
[43]:
+
+
+
w.pct_nonzero
+
+
+
+
+
[43]:
+
+
+
+
+2.915
+
+
+
+
[44]:
+
+
+
w.histogram
+
+
+
+
+
[44]:
+
+
+
+
+[(3, 3),
+ (4, 28),
+ (5, 52),
+ (6, 65),
+ (7, 34),
+ (8, 10),
+ (9, 5),
+ (10, 2),
+ (11, 0),
+ (12, 1)]
+
+
+
+
[45]:
+
+
+
idx = [i for i in range(w.n) if w.cardinalities[i]==12]
+
+
+
+
+
[46]:
+
+
+
points[idx]
+
+
+
+
+
[46]:
+
+
+
+
+array([[16.50851787, 13.12932895]])
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+ +
+
+
+
+

+ Back to top + +
+ +

+ +

+

+ © Copyright 2018-, pysal developers.
+ Created using Sphinx 7.2.6.
+

+
+
+ + \ No newline at end of file diff --git a/notebooks/voronoi.ipynb b/notebooks/voronoi.ipynb new file mode 100644 index 000000000..27276c168 --- /dev/null +++ b/notebooks/voronoi.ipynb @@ -0,0 +1,476 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Voronoi Polygons for 2-D Point Sets\n", + "\n", + "Author: Serge Rey (http://github.com/sjsrey)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Basic Usage" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "import os\n", + "sys.path.append(os.path.abspath('..'))\n", + "import libpysal" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.cg.voronoi import voronoi, voronoi_frames" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "points = [(10.2, 5.1), (4.7, 2.2), (5.3, 5.7), (2.7, 5.3)]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "regions, vertices = voronoi(points)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[1, 3, 2], [4, 5, 1, 0], [0, 1, 7, 6], [9, 0, 8]]" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "regions" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 4.21783296, 4.08408578],\n", + " [ 7.51956025, 3.51807539],\n", + " [ 9.4642193 , 19.3994576 ],\n", + " [ 14.98210684, -10.63503022],\n", + " [ -9.22691341, -4.58994414],\n", + " [ 14.98210684, -10.63503022],\n", + " [ 1.78491801, 19.89803294],\n", + " [ 9.4642193 , 19.3994576 ],\n", + " [ 1.78491801, 19.89803294],\n", + " [ -9.22691341, -4.58994414]])" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vertices" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "region_df, point_df = voronoi_frames(points)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3WlwW1eaHuD3YN8IAiRALBegNlKbtdgWJVmmtdvdPT2Ztnu32227k644lequLJX8mEz/yFRSnZqaSjI1lZqkxpP0uLvjrT3dnnZEyS2ZlGjtEi3LEleJkrgAJAGQADcBIAjg5AdIiZS4ExcXwP2eKhZFELz3o2m+Fzz3nO8wzjkIIYQUP4XUBRBCCMkNCnxCCJEJCnxCCJEJCnxCCJEJCnxCCJEJCnxCCJEJCnxCCJEJCnxCCJEJCnxCCJEJldQFzGSz2fjatWulLoMQQgrK559/Psg5ty/2vLwK/LVr16KpqUnqMgghpKAwxrqX8jwa0iGEEJmgwCeEEJmgwCeEEJmgwCeEEJlYdeAzxryMsdOMsTbGWAtj7F9PPV7GGDvFGLs99d66+nIJIYSsVDZe4ScB/DvO+RYAzwD4CWNsK4A/BVDPOa8GUD/1MSGEEImsOvA55/2c82tT/x4D0AZAAPAigF9OPe2XAF5a7bkIIYSsXFbn4TPG1gJ4CsBlAA7OeT+QuSgwxiqyeS5CVmJkZASTk5NQqVRQKpVQKBSPvWeMSV0mIaLIWuAzxkwAfgvg33DOR5f6S8MYexPAmwBQWVmZrXIIeUw0GsXf/u0/YHRUCa93PYA0OE8BSANIAUiB8zRUKgVUKuWs92q1EkqlAhqNctZjM99rNMp5LyJK5dyfm/43XWhILmQl8BljamTC/h3O+e+mHg4wxlxTr+5dAIJzfS3n/C0AbwFATU0N7ahORDE5OYmTJy9jYmI9IpHb2Lv3wLzPTafTSKdTSKczF4BUKoV4/OFj05/n/PHHGJtE5uKRuYgwNvOC8vA95ykwNn3BefxCM32ByVxMlFCrH30s8z5zAVr6hWWux4h8rDrwWeZlyf8B0MY5/+8zPvUxgDcA/MXU+9+v9lyErEQ6nUZj41UEAhXYtm0Tbt26ing8Cp3OMOfzp19xA+qc1cg5RzqdfnARWfmFJnNBmftCk/nazIXo4V830xeRmReU+S4203/hTD+20AVlsc+R3MvGK/xaAK8BuMkYuz712J8hE/S/YYz9GEAPgO9m4VyELAvnHJcvX0dHhwZe71YwxmC3r4PP14qqqhqpy3uAMQalUglACSkvNOl0CslkGolECtHowhebzMUjgYd/zTx+gXn0r5pEIobR0R782Z/9hEJfAqsOfM75OQDzDT4eXe3xCVmNlpYONDVF4fXuezBG7nJVoa+vLa8CXyq5vtB0djYjGOxCMBiE0+kU/XxkNrrEkqLV1dWNxsY+CMKeqVDL8Hg2IBj0IZlMSlidPAWDPdBo7Lhzxy91KbJEgU+KUjAYxIkTHaio2Au1WjPrcyaTGUajDYHAPYmqk69wuBfV1XvQ2hqkC64EKPBJ0RkZGcGxY1/AYtkNnc4453Mcjmr4fK05rkzeotH7iMVG4HSuRzJpQ39/v9QlyQ4FPikqsVgMx49fgVK5AybT/O2bvN4NCAS6clcYQSDQC6vVBoVCAb1eQEcHDevkGgU+KRrTc+2j0Q0oK3Mt+Fy73Y1UChgennN5CBFBKORDWZkAALBYHLhzZxjxeFziquSFAp8UhXQ6jc8+a0J/vw0VFeuX9DUORzV6e2lYJ1fCYR8cjszPRqlUIp12wu/vk7gqeaHAJ0Xh6tUv0d6ugtv9xJK/RhA2oL//tohVkWmJRAKjowHY7WsePGY2e9DS4pOwKvmhwCcFr7W1A1eujEMQnl5WPxqXax2GhyOIx6MiVkcAIBTyw2y2QKN5OGOqpKQcfv8ExsfHJaxMXijwSUHr7u7B6dO+x+baL4VGo4HNtoZm6+RAIOBDebl71mOMMSgUArq76VV+rlDgk4IVCoXwySftsNv3Qq3WrugYLlcV/P5bWa6MPCoc7oXdvu6xx0tLBTQ302ydXKHAJwVpdHQUx45dQ0lJDfR604qP4/VWIxTyIZ1OZ7E6MlM6nUYk4ofT+fjNdKOxFENDCoTDYQkqkx8KfFJw4vE4jh+/DMa2o6SkbFXHMpnM0OvLaNWtiEKhPuh0+nm7k6pUHnR10av8XKDAJwVlcnISp05dxvj4+sfGhFfK6axGb29LVo5FHhcM+mGzzf+zKisTcPNmH/2VlQMU+KRgpNNpnD37OXy+MjgcG7J2XI9nAwYGurN2PDLb4GAP7Pb5d7PTag2IRk0IhUI5rEqeKPBJwWhquoG2NgUEYVtWj2u3uzE5maRVtyIZGuqF01m14HM0Gg86O2m2jtgo8ElBaGu7hcuXRyEIu7K+96tCoZga1qHpmdkWiYSgUilgMlkWfJ7V6kJbG3XQFBsFPsl7PT29aGjohSDsXfZc+6Vyu6vQ339HlGPLWWb+/eIbnajVGiQS5dRBU2QU+CSvZebat61qrv1SCMJ6DA8PIZGgZl7ZFAr1wGbzLum5BoOHOmiKjAKf5K3pufZG465VzbVfCo1Gg7KySvT00LBONoXDPjidS7vBTh00xUeBT/JSPB7HiRNXwNg2mM3lOTmny7UB/f206jZbxsdHMTkZhdW6tL1rlUolOKcOmmKiwCd5J5lM4tSpyxgdXYvyciFn5/V6qxEI9NJ88CwZGOhBebljWV9jMgnUQVNEFPgkr2Tm2jfB57MuOpUv28xmC/R6C626zZJQqBc22/zz7+diNtvQ10cdNMVCgU/yyrVrN9HayiAI2yU5v8NRBZ+vXZJzF5uhoR5UVDzeMG0hmSm3buqgKZKsBD5j7BeMsSBjrHnGY3/OGPMzxq5PvX09G+cixau9/TYuXRoRZa79Unk8VRgYuCvJuYtJPB5DLDYCu31pM3Rmslg81EFTJNl6hf82gK/N8fhfcc6fnHo7nqVzkSLU2+tDfX03XK49UCpVktVRUSEgkUhidHRQshqKQSDQ82DD8uUyGksRDisQiUREqEzeshL4nPPPAFB/U7Iig4ODOHGiFTbbXmg0OklrUSgUqKjYQNMzVykYfLhh+UoolR7cu0fDOtkm9hj+TxljN6aGfKwin4sUoLGxMRw79jmMxqdhMJRIXQ4AQBCqMDDQKXUZBW1oqBcOx9oVf31ZmYDmZuqgmW1iBv7/ArABwJMA+gH8t7mexBh7kzHWxBhrom558pKZa38ZwBMwm21Sl/OAx7MBkcggrbpdoYcbli/vhu1MWq0B9+9TB81sEy3wOecBznmKc54G8HcA9szzvLc45zWc8xq73S5WOSTPJJNJ1NdfwcjIGpSXe6QuZxaNRguLxQOfr0PqUgpSKNT32IblK6FWC+jspJu32SRa4DPGXDM+/CaA5vmeS+SFc45z5z5HT08pnM5qqcuZk8tVhb4+mp65EoFAL8rKXIs/cRFlZW60t1MHzWzK1rTM9wBcBLCJMeZjjP0YwF8yxm4yxm4AOAzg32bjXKTwXbt2E83NHG63NHPtl6KyshqBAO11uxKZDcvXrvo4mQ6aZRgYGFh9UQQAkJX5b5zzV+Z4+P9k49ikuNy61YmLFyPweGpXNGUvV8xmK7RaE4LBbjidKx+Llpt0Oo1w2I9nn/1GVo6n1wtob++Fx5Nfw36FKn9/40jR8fv9OHWqCy7XXknn2i+Vw1GF3t42qcsoKIOD/dDr9TAYstPd1GJx4s6dYUxMTGTleHJHgU9yYmhoCHV1zbDZ9kg+136pPJ4qBIPUV2c5AgFfVsbvpymVSqTTDvh8dPM2GyjwiejGx8dRV/c5DIanYTCYpS5nyRwOL2KxCYyO0prCpRoc7IXDsSarxywp8aC1lQI/GyjwiagmJiZw4sRlpFJbUFpaWNNuFQoFHI4NtNftMoTDvaioWJ/VY5rNNvh8Mdy/fz+rx5UjCnwimlQqhfr6Kxge9i55m7t8k9kUhVbdLkUkEoJSCZjNZVk9LmMMjAno6aFWC6tFgU9EwTnH+fOfo7u7BE7nRqnLWTGPZwPC4SASiYTUpeS9zPj98jY8WarSUgE3blDgrxYFPhHFF1804+bNNNzuHVKXsio6nR4Wixt+Py3CWkwo1Au7Pbvj99NMJgt10MwCCnySdbdv38GFC2G43bvyeq79Urlc1fD7qc3CYjLj9+KtWVAqBXR10c3b1Sj830aSV/r6+nDq1F04nXugUqmlLicrvN4qhEI9tOp2AePjo0gmoygvd4t2DqtVwM2bfvo5rAIFPsmacDiMurqbKC/fC61WL3U5WWOxlEOpNCIU6pW6lLw1MNAj2vj9NJ3OiPFxIwYHaXOalaLAJ1lx//591NU1Qa8vrLn2S+V0VsHno+mZ8wmFenPS9VSj8aCzk27erhQFPlm1zFz7S5ic3Fxwc+2XKrMpCq26nU847BN1/H5aWZkbbW3UQXOlKPDJqqRSKTQ0XMHQkAC7vVLqckTjclUiFothfHxY6lLyTjwew/37kZystaAOmqtDgU9WjHOOCxeu4d49E9zuzVKXIyqFQgG7fQN6e1ukLiXvBAI9sFjKoVLlpiGeXi/g1i2arbMSFPhkxa5fb8GNG0kIwk6pS8kJQahCXx+tun1UMOgTdXbOoywWJ27fjlAHzRWgwCcr0tl5F+fPD8LtrimKufZL4fFswNBQgFbdPmJoyAenM7v9cxYy3UHT7+/L2TmLhTx+U0lW9ff34+TJO3A69xbNXPulyKy6daGv75bUpeSNyclJjIwMrGrD8pUoKfGgpYVm6ywXBT5Zlkgkgrq6Gygr21NUc+2XyumsolW3MwSDfpjNpavesHy5qIPmylDgkyXLzLW/Cq32KRiNpVKXIwmvtwrBYJfUZeSNYDC7G54sFWMMCgV10FwuCnyyJIlEAp98chmJxCZYLBVSlyMZq9UOhUKPUKhH6lLywtBQT07m38/FbBbQ3EyzdZaDAp8sKpVK4fTpKxgacovWDbGQOJ3VtNctHm5Y7nDk7obtTCaTBaEQqIPmMlDgkwVxznHx4he4c8cAp3OT1OXkBY+HVt0CwNDQAPR6XdY2LF8JlcpDHTSXgQKfLOjLL1tx/XoCgvAkGGNSl5MXHA4votH7iEZHpS5FUpkNT3I3/34uVquAlpY+6qC5RBT4ZF537tzDuXNBCMJu2cy1XwqVSgW7fR16euS96jYU6pG8nYZOZ8TYmIE6aC5RVn6LGWO/YIwFGWPNMx4rY4ydYozdnnpvzca5SG4MDAzg5MlO2c21XyqXqwp9fbelLkNS4XAvnM4NUpcBlUqgDppLlK2XbW8D+Nojj/0pgHrOeTWA+qmPSQEYHh7GsWNfwmLZDa3WIHU5ecnj2YDBwQHZdm0cHh6CQpHO+oblK1Fe7kZ7O3XQXIqsBD7n/DMA4UcefhHAL6f+/UsAL2XjXERc0WgUdXVXodE8CZPJInU5ectgMMJsdqCvT56LsAYGelBenvv593NRq7WIx60IBAJSl5L3xByYdXDO+wFg6v2ck7cZY28yxpoYY02hUEjEcshiMnPtLyEer4bVKu7uRcXA5aqS7ebmmQ1P8qcdtsHgQUcHDessRvI7cZzztzjnNZzzGru9ODfPKATpdBpnzlxFKORERcVaqcspCF5vFQIBeS7AikRy2zBtMRaLE52d1EFzMWIGfoAx5gKAqfdBEc9FVoFzjkuXvsDt2zq4XFukLqdgZPZw1WBwUF6vLMfHR5FIjMNqdUpdygNKpRLJZAX6+qiD5kLEDPyPAbwx9e83APxexHORVWhubse1a3F4PE/RXPtlcjiqZLfqdmCgB1arI++m6paUeNDaSouwFpKtaZnvAbgIYBNjzMcY+zGAvwDwAmPsNoAXpj4meebevS40NvbD7aa59iuRWXV7V+oycioU8sNuF387w+UqLbWjpydKHTQXkJU9yTjnr8zzqaPZOD4RRyAQwCef3ILT+RzU6ty2ty0WLtcaXLo0jmh0FAaDWepycmJoqAfr1j0vdRmPYYyBMTd6e/3YvHmj1OXkJXpJJ1OZufbXaa79KqlUKthsa2QzrJPZsHwoJxuWr0RpqQc3b8rrnspyUODLUDQaxfHjV6FW74TJRAugV8vtls+q22DQB6vVlrMNy5fLZLJgcDDzgoY8jgJfZiYnJ3Hy5GXEYlV5NcuikHm9VRga6pPFSs/MhuWC1GUsSKn04N49epU/Fwp8GUmn02hsvIpAoEKyTSuKkcFggtFYgf7+4n+VPzjYk/frNKY7aHLOpS4l71DgywTnHJcvX0dHhwYu11apyyk6mb1ui3vVbTKZxMjIAByO/H6xoNMZMTqqB63cfxwFvky0tHSgqSkKQaC59mLweqswMNAtdRmiCoWmNyzXSV3KotRqD+7coTn5j6LAl4Gurm40NvZBEPZAqVRKXU5RstmcAJQYGirelZ4DA72SbFi+EuXlbrS1BZBKpaQuJa9Q4Be5YDCIEyc6UFGxl+bai6zYV92Gw76CufejVmsxMWHFwMCA1KXkFQr8IjYyMoJjx76AxbIbOp1R6nKKniBUYWDgjtRliCKdTiMS8cPhWCt1KUum11MHzUdR4BepWCyG48evQKncQXPtc8TtXofR0RFEo+NSl5J14XAQWq2moFYTWywOdHZGkEgkpC4lb1DgF6HpufbR6IaCGXMtBpm9btfC5yu+YZ1Mw7TCWrehVKqQSlXA76ebt9Mo8ItMZq59E/r7baioyJ9+5XLhclWhv/+W1GVk3dCQL+/n38/FZKIOmjNR4BeZq1e/REeHCm73E1KXIkuVldUIhfxFt+p2aKgHTmdh3LCdiTpozkaBX0RaWztw9ep9CMLTNNdeIplVtzYEAsVz83Z4eAiMpWA226QuZdlmdtAkFPhFo7u7B6dP++B276a59hJzOKrh8xXPqttAoBdlZW6py1ix0lIBzc00WwegwC8KoVAIn3zSjoqKZ6BWa6UuR/YqK6swMNAldRlZEwr15m075KUwmawIhaiDJkCBX/BGR0dx7Ng1lJTU0Fz7PGGzuZBOM0QixbHoJxzuLaj593NRKAR0ddGwDgV+AYvH46iruwzGtqOkpEzqcsgMmVW3rVKXsWrR6DgSifGCHtIBgLIyD5qb/bLvoEmBX6AmJydx6tRl3L+/HuXlhf3LWIwEYQP6+wt/r9t83bB8uXQ6I8bG9BgcHJS6FEkV9k9RptLpNM6e/Rw+Xxkcjg1Sl0Pm4HKtw8hIGPF4dMXHcJ95B0d/vBb/5EUFjv54Ldxn3slihUsTCPSivNyT8/OKQa0WcOeOvG/eUuAXoKamG2hrU0AQtkldCpmHRqNBefka+HwrG9Zxn3kHO//mTRhC3WCcwxDqxs6/eTPnoR+JFP74/bSyMgGtrfLuoEmBX2Da2m7hypUxCMIummuf59zuavj9K1t1u+XXP4NqYvZfB6qJKLb8+mfZKG1JEokJjI8PwW5fk7Nzikmt1iIet8i6gyYFfgHp6elFQ0Mv3G7qay+2bAyneL1VCAZ9SKfTy/5a/WDPsh4Xw8BALyyW8rzdsHwl9HoPbt2S72wd0QOfMdbFGLvJGLvOGGsS+3zFKjPXvg12+16aay+ybA2nmExmGI1l6O9f/qrbmK1yWY+LIRjshdWa+wkBYt67sFqduH07LNsOmrl6hX+Yc/4k57wmR+crKtNz7Y3GXdDrTVKXU/SyOZzicFTD719+98y2136OpNYw67Gk1oC2136+7GOtVDjsy3n/HLHvXUx30OzrK96dyRZCQzp5Lh6P48SJK2BsG8zmcqnLkYVsDqesdK/bvkOv4sufvIWofQ04Y4ja1+DLn7yFvkOvLvtYK5FMJhGJ9OV8w/Jc3LswGgW0tspztk4uBuc4gJOMMQ7gbznnb+XgnEUhmUzi1KnLGB1dC6dTkLoc2YjZKmEIPR7SKxlOsdlcSKXSGB4OwmKpWNbX9h16NWcB/6hQyA+TqSTnG5bn4t5Faakd3d3XEY1GYTAYFv+CIpKLV/i1nPOnAfwRgJ8wxg7M/CRj7E3GWBNjrCkUCuWgnMKQmWvfBJ/PCqezSupyZCWbwykKhQIVFRsKbtVtMOiDzZb7Fxm5uHeRWUQmzw6aogc+57xv6n0QwEcA9jzy+bc45zWc8xq73S52OQXj2rWbaG1lEITtUpciO9keTnG7q1Z041ZKg4O9kkzHzNW9C4vFI8sOmqIO6TDGjAAUnPOxqX9/BcB/EvOcxaC9/TYuXRqBx/MszbWXSDaHUwRhPa5e/RjxeBQ6Xf4PIUxvWL5v39dzfu7p/+Zbfv0z6Ad7ELNVou21n2d9aMtkssLnS2NkZASlpaVZPXY+E3sM3wHgo6nQUgF4l3P+icjnLGi9vT7U13fD5XoOSmXxzH+Ws8yq20r4fO2oqnpa6nIWFQ4HodGoJNuwPFf3LhQKD7q6fNi5Uz6BL+qQDuf8Lud859TbE5zz3M0pK0CDg4M4caIVNtvenN8sI+JyOjcUzF63mf45xd+Qz2oVZNdBk15C5omxsTHU1V2D0fg0DIYSqcshWZJOp9Hf341QqBfNzecxPh6FVmuc8WaAXm+cejNApzNBp9NL2p1ycLAXTmfuFnhJRa83YWgo00FTLvcPKfDzQGau/WVwvrUg9w0ls6XTafT1daGnpx39/R3Q6bQQhE343vf+PdLpNGKxMUxM3EcsNo779/sQDkcxMRHDxEQM8XgcyeQkNBo9dDoTtFoj1GoDdLpHLw5G6HSZ99lufRAO92Lnzueyesx8pVYLuHvXT4FPciOZTKK+/gpGRtbA6SyONrRylE6n4fffexDyBoMebvdGvPDCa8u+iCeTScTj44jFxqbejyMeH0M8PoSxsV5MTEQRj8cxORlHIjEBpVIDjcYAjcYArdY4dXEwTf3FYIROp4deb4LBYIJGs3BbjtHRCIDUstcMFKqyMgEtLbdQU5OSRX8qCnwJcc5x7tzn6OkphcdTLXU5ZJkeDXmjUQ+XayO+8pXXV/WXmkqlgslkgclkWfS5nHNMTMQQi40iGh2bcZEYQzg8gERi+i+HGBKJODhn0Gim/2J4fGhpcHAApaXy+StTrdZiYsKCQCAAt7v471tQ4Evo2rWbaG7m8Hpprn2hSCaT6O/vRk9PG/r7b8Fo1EMQNmH79tWF/EoxxqDTGaDTGWC1Ohd9fiKRQDz+8OLw6NBSODyIaDSMaHQcBoM8+jbpdB50dPgo8Il4bt3qxMWLEXg8tQW/fVyxy7eQXw2NRgONxrZg3U1Np1Ff//c4evQNyaZm5lKmg+ZN1NYmoNFopC5HVBT4EvD7/Th1qovm2uexZDKJvr576O3tmAp5IwShGtu3/whmc3FvGF9TcxjXrqnw6adv48iR15c0tFTIlEoV0mkH+vr6sHbtWqnLERWlTY4NDQ2hrq4ZNts+mmufZ6ZDvru7HYHALRiNJng8m2QR8o96+un9YAyor38bhw+/XvTfv8EgoK2tkwKfZM/4+Djq6j6H0bhLFn8qF4L5Qn7nzn9a9CG3mKee2g+lUoWGhl/hyJEfFtzw1XKUltrR1VX8HTQp8HNkYmICJ05cRiq1BVZr8f7iFIKHId+GQOA2TCYTBIFCfi47duyDQqFEQ8OvcOjQD4t2uqZCoQBjmQ6amzYV74w5CvwcSKVSqK+/guFhL5xOr9TlyFIymYTffwc9PR1TIV8CQdgoeci7z7wjeqOw1dq2LbOHckPD/8WRI8Ub+mazgObmLynwycpxznH+/Ofo7i6Bx7NR6nJk5WHItyMQ6HwQ8k899eO8uBE5vZ3f9A5P09v5Aci70N+yZRcYYzh9+tc4dOjVJU0BLTQlJWVF30GTAl9kX3zRjJs30/B4dkhdiizMFfIez+a8CfmZFtrOL98CHwA2b34aCoUKZ868g/37vw+brfhWhisUQlF30KTAF9Ht23dw4UIYgvAszbUXUTKZRG9vJ3y+jrwP+ZlysZ1ftm3cuAMKhQKNjR/g4MHiC32r1YPm5ovYsWNrUe5FQYEvkr6+Ppw8eRcu136oVGqpyyk60yHf09OOUOgOSkpK82q4ZimyuXduLlVVbXsQ+s899x04HLnfGUssmQ6a2qLtoEmBL4JwOIy6ups01z7LHg15s9kMQdiCXbsOFUzIz9T22s9njeED4mznJ4b167eCMQXOnfsQtbXfhtO5TuqSskat9hRtB00K/Cy7f/8+6uqaoNc/TXPtsyCRSMDvv/tYyNfUHIbRWNjjrLnazk8s69ZthlKpxPnzv8Ozz74El2uD1CVlhdXqRmtrcXbQpMDPosxc+0uYnNxclK8OcmV2yHfCbLZAEDZj9+4jRXcRzdV2fmKprKwGYy/hwoV/xDPPfAOCUPhTGjUaHeLx4uygSYGfJalUCqdPX0U47IHLld9jsPkokUjA5+tEb++tqZC3QhA2FWXIFxuvdwMUim/j4sXfYu/er8Pr3SJ1Saum1Qq4fdtPgU8exznHhQvXcPeuEV7vJqnLKRgPQ74dodBdmM1WeL3F+Uq+2AnCWtTWfgcXLvwDOE+jsvIJqUtalbIyF27dasG+fcXVQZMCPwu+/LIVN24k4fHskrqUvDcz5AOBTlgs5VMh/zyFfIFzudagtvZ7OH/+N0ilUli3rnDXniiVKiSTdvT392PNmuKZhUSBv0qdnXdx7lwIgkB97eeTSCTQ03MLfv8tBAKdsFpt8Hg2Yffur8hmkw25cDq9eO657+PcuQ/BeRrr1z8pdUkrZjR60NraSYFPMvr7+3Hy5B04nc/RXPtHTIf89HBNWZkNHs8WCnkZcDg8OHDg+/jssw+QTqdQVVWYf/mWltrR3V1cHTRFD3zG2NcA/DUAJYD/zTn/C7HPmQuRSAR1dTdQVvYMtFq91OXkhflCfu/er1HIy4zd7sbBg6/g7NkPkE6nsXHjbqlLWjaFQgHOXUXVQVPUwGeMKQH8DYAXAPgAXGWMfcw5bxXzvGLLzLW/Cq32qYKfC75aicQEenpuU8iTx9hsThw8+DIaGz9AKpXEli37pC5p2UpLPWhpuUGBv0R7AHRyzu8CAGPsfQAvAijYwE8kEvjkk8tIJDbBbi/ONrGLeTTkrVYbvF4MxTAQAAAWTElEQVQKefK4sjIHDh9+FadPvwMgjS1baqUuaVkyHTRTGB0dhdlc+JMKxA58AUDvjI99APaKfE7RpFIpNDRcwdCQGy5X8dzIWYqHId+GUOgeysoq4PFswr59X4dOVxzjm0QcFkv5VOi/i1QqhW3bDkhd0rJMd9DcsWOr1KWsmtiBP1e7OT7rCYy9CeBNAKiszN8FS5xzXLz4Be7eNcDjkcdc+7lC3uvdgn37/phCniyLxVKOo0d/iIaGd8F5Gtu3H5K6pCWzWAQ0N1/C9u1bCr6DptiB7wMwc4snD4C+mU/gnL8F4C0AqKmpmXUxyCdfftmK69cT8HqfKfgf+kIo5IlYzGYrjhx5FadPv4dUKoUnnzwqdUlLYjCUwOfTYmhoCDZbYW9PKnbgXwVQzRhbB8AP4GUAPxD5nFl35849nDsXhCA8V5Rz7R8N+fJyBzyezRTyJOvMZguOHn0VDQ3vgfMknnrqq1KXtCSZDpo+CvyFcM6TjLGfAvgDMtMyf8E5bxHznNk2MDCAkyc74XTWFtVc+3g8hp6e2/D7Ox6EvNe7lUKeiM5kMuP5519Fff27SKWOo6bm61KXtCir1Y2WlluoqUkX9Is+0efhc86PAzgu9nnEMDw8jGPHvoTFshdabeGH4HTI9/a2YWiom0KeSMZgMD14pX/lysfYs+cbUpe0II1Gh1isFIFAAC6XS+pyVoxW2s4jGo2iru4qNJonC3JzjWkzQz4c7kZZWSbka2v/hEKeSMpgMOLIkVdw+vT7uHz599i790WpS1qQTufBrVs+Cvxik5lrfwnxeDUqKhxSl7Ns8XgM3d0d8Pk6EA53o7zcCa93C4U8yTsGgxFHj/4ADQ3vT7VX/mbeDplkOmg249lnJ6FWF+bwLgX+I9LpNM6cuYpQyAW3e63U5SzZdMj39rYjEulBebkTa9Zsxf79L9I2iySv6XR6PP/8D9DQ8AEuXvwt9u37dl6GfqaDZgX6+voKtqEaBf4MnHNcuvQFbt/WwevdLHU5i3r4Sr4d4XAm5Neu3YoDB16ikCcFRaPR4siR7+PMmQ9x/vyHqK39bl6GvtEooLX1DgV+MWhubse1a3F4vfvydq79zJAfGuqBzTb9Sp5CnhQ2jUaLQ4e+hzNnPsTZs+9j//6X8y70S0sr0N39JWKxGPT6wmuaSIE/5d69LjQ29sPtzr+59vF4DF1d7fD7OzA01AO73Y01azZTyJOio9FocOjQd9HY+Ft89tl7eO6570Olyp+Ymu6g6fP5UV1dJXU5y8Y4z5/FrTU1NbypqSnn5w0EAvjooxuw2WrzZvplNHofPT234PO1IRz2wW53w+vdgsrKJyjkSdFLJpNobPwdGIvhwIFX8yr0x8bC0Olu4FvfOiR1KQ8wxj7nnNcs9rz8+a8okcxc++soLZV+rv10yPf2tiESyYR8Zkz+WxTyRFZUKhUOHvwWPvvsH9HY+A4OHsyf0DeZrPD7kwXZQTM//gtKJBqN4vjxq1Crd0o2136uV/Lr1m3FwYPfKarNkwlZLpVKhQMHXsK5cx/j9Olf4uDB1/Lid4IxBoXCU5AdNGU7pDM5OYm6unMYGlqLiop1OTnntGj0Prq7M2Py4bAPDocAQdiCysptefE/NCH5JJ1O4+zZjzExMYhDh17Pi9+RaHQMqdQlvPLK83kxwYOGdBaQTqfR2HgVgUAF3O7chP10yPt87YhE/HA4BKxf/wQOHKBX8oQsRKFQYP/+b+D8+To0NPw9jhx5Q/IhToOhBL29moLroCm7wOec4/Ll6+jo0MDrFffPsWh0fGoxVBtGR/tht7uxYcMT8Hi+SyFPyDIoFArU1v4xLl48gU8/fRtHjrwu+apxtdqDe/f8FPj5rKWlA01NUdHm2s8O+T5UVHhQVbUNHs/3KOQJWQWFQoF9+/4Ily//AQ0Nb+PIkR9JGvplZQKam89g167teTeVez6yCvyurm40NvZBEJ6DUqnM2nGj0XHcu9cGv7/jQchXV++AIFDIE5JND0P/FOrr38bhw69Lto+yRqNDPF5YHTRlE/jBYBAnTnSgoqIWavXqQ3g65H2+doyN9cNup5AnJFf27n0BV68qpl7pvw6DQZrpkVqtgNu3C6eDpiwCf2RkBMeOfQGLZQ90OuOKjzNXyG/cuBOC8H0KeUJybPfuo2hqUqC+/pc4evQNSULfanWho6MF+/YVRgfNog/8WCyG48evQKncAZPJuuyvHx8ffdDWYGbIe72v5M1CEELkqqbmMK5dUz24kZvr9TQqlRrJpB39/f2orKzM6blXoqgTa3JyEidPXkY0ugEVFUv/k+vRkHc4KinkCclTTz+9H0plZnjn0KHXYTaX5fT8RqMHra13KfCllJlr34SBATvc7vWLPn865H2+NoyPB+BwVGLTpqfg8VDIE5Lvdu6shUKhREPDr3DkyA9hNuduqmQhddAs2iS7evVLdHSoFpxrP1fIb968Cx7PZgp5QgrM9u3PQKlUor7+Vzh8+IewWCpycl6FQoF0ujA6aBZlqrW2duDq1fvweB6faz8+Pjo1hbJ9KuTXUMgTUiS2bt0NxhRoaPg1Dh9+FVarMyfnNZsFNDffpMDPte7uHpw544fbXftgrv2jIe90rsGWLbsgCBTyhBSbLVt2QalU4syZd3DgwCsoL3eLfs6SkrKC6KBZVGkXCoVw4kQ77PZaxGIxtLdfh9/fhvHxIJzONdi6tQZu9yYKeUKK3MaNTwJQ4MyZd3Hw4Muw2Tyino8xBsYE9PT4sW0bBb7oRkdH8cEHn6G/34ibNz+cEfK7KeQJkaGNG3dAoVCgsfEDHDjwXdjt4s6isVo9uHHjEp54YnNedNCci2gpyBj7cwD/HEBo6qE/45wfF+t8/+W//DV8PsBgsGDNmm1Yu/ZPoNeXZGVVLSGkMFVVbYNCocDZsx+itvY7cDjE23zcYCiBz6dBOBxGeXm5aOdZDbFf9v4V5/y/inwOAMC//JevY3JyEvfvTyAcjmJ4uBkjIzHE4xyMGQAYwLkBSqUBWu30mx5KJb3yJ6SYrV+/FUqlEufOfYja2m/D6RSvJbpK5cHduz7ZBn7OrFkz95V7cnIS0Wj0wdvIyDjC4SAikShCoSiSSRUYM4CxzAVBrX54QdBo9AXTBY8QMr81azaBMQXOn/8dnn32JbhcG0Q5T1mZgJaW/O2gKXbg/5Qx9jqAJgD/jnMeefQJjLE3AbwJQJSVamq1GqWlpSgtLZ3z8/F4HNFoFLFYDNFoFJHIMCKRPkQiUQQCcaTTGgCGB28azcwLgi5vx+oIIbNVVlaDsZdw/vw/Yt++fwJB2JT1c2g0OsRi+dtBc1VbHDLGPgUw10TXnwG4BGAQAAfwnwG4OOf/bKHj5XKLw6XgnD+4EESjUdy/H50aLopheDiKsbEEAD0YMyCd1kOhmDlcZIBarZX6WyCEPMLv78KlS7/Fnj1fh9e7JevHD4V6UF0dxP79i+44mDU52eKQc/78Eov5OwDHVnMuKTDGYDAYYDDMvclCOp2eNVw0NhZFJNKPSCSK4eEoYrH0vPcPNBo9VKr8765HSLERhLV49tnv4MKFf0AqlcLatduyenyr1YX29hY880z+ddAUc5aOi3PeP/XhNwE0i3UuqSgUCphMJphMc2/AkEwmH7l/EMXw8CAikcxfCpOTilkXBJVq9gUhm5u0EEIecrnWoLb2ezh//jfgPI1163Zk7dj53EFTzDH8v2SMPYnMkE4XgH8h4rnykkqlgtlsnnflXSKRmHVBGB4eRTg8gOHhKILBGFIpNRSKzMXg8fsHerp/QMgqOJ1e7N//Ms6ezYT++vVPZu3YRqMHbW3510FTtMDnnL8m1rGLhUajgUajgcXyeA9vzjkmJiZm3T+IRMKIRHyIRKIYGpoA57oHs4sA/WP3D+iCQMjCKioEHDz4Chob30M6nURVVXbG3UtLK3Dv3vW866BZNNMyiw1jDDqdDjqdDmVlj/f3TqfTs24oj49HMTwcnLqpHMX9+5OzhosevaFM9w8IybDZnDh8+AdobHwf6TTHxo27V31MhUIBzvOvgyYFfoFSKBQwGo0wGufesjGVSs0aLhodjSIcDiMSiSISiSKRwAIL0gx0/4DISlmZA4cO/QBnzryHVCqJLVv2rfqYZrMHLS3NFPhEfEqlEiUlJSgpKZnz80tdkDa9/oAWpJFiZ7Xacfjwqzh9+l1wnsLWrc+t6niZDpqTedVBkwJfphZakDbz/gEtSCNyYrGU4+jRH6K+/h2k0yls23ZwxcfKxw6aFPjkMTPvH8zl0QVp4+NRRCKhBwvSBgdpQRopXGazFUeP/hANDZnQ37HjyIqPZbUKaG6+kjcdNCnwybIttiAtlUrNuiDQgjRSaMxmC55//jU0NLyDVCqFp556YUXHMRjM8PnUedNBkwKfZJ1SqVz2grRIZBDDw4svSNNqDXT/gOSEyWTGkSOvoqHhPaTTJ7Br1x+t6DhKpYB79/KjgyYFPsm51SxICwRiU/cP9Jj7/gEtSCPZYzKZ8fzzr6K+/l1wfhw1NV9f9jHKygQ0Nzfi6ael76BJgU/yzmIL0mZ2OF1sQRpjDy8EtCCNrITBYMLRo5lX+leufIw9e76xrK/XavUIhcwIBoNwOnOzqfp8KPBJQWGMQa/Xz7t6ca4FaZHIwIP1B9FokhakkWUzGIwPXulfuvQRnnnmm8v6eq3Wg9u3fRT4hGTTYgvSksnkrAsCLUgjS6XT6XH06A9w+vQHuHDhH/DMM99a8hBNvnTQpMAnsqJSqWhBGlmxTOi/goaGD3Dx4m+xb9+3l/QzV6nUmJy0Sd5Bc1UboGRbvm2AQshMcy9Ie/g2OkoL0uQikZjAmTMfQqdT4bnnvrek0A+H++FydeErX1l924ZH5WQDFELkhBakkWkajRaHDn0PjY2/xdmz72P//pcXDX2LxYF7975EPB6f9/8hsVHgE5IlYi5Iy9w/oF/XfKLRaHDo0HfQ2PhbNDa+g/37X4FKNf/PSKFQIJ3OdNCsqhJnE/XF0JAOIXlicnJy1gUhsyAt+uCCkEhkFqRNTzmlBWn5IZlMorHxd2AshgMHXl0w9EdHh2AyNePFF1feo2cuNKRDSIFRq9VQq9XzLkibmJiYdUGYa0Fa5mKgB+ezLwa0IE08KpUKBw9+C2fP/iPOnPk1Dh16bd7Qz3TQTGBsbGzeiQNiolf4hBSBmQvSHu6QFsXwcAyRSBRjYwsvSNNopBlTLibJZBLnzn2MyckIDh58DRqNZs7n9fW1oraWYdu2LVk791Jf4VPgEyIDcy9Ii9KCtCxLp9M4f/7/IRoN4vDh16HRPH4jPhodBedX8P3vH83aX100pEMIeYAWpOWGQqFAbe2f4Pz5OjQ0vI0jR9547K+nTAdNFSKRyJzbl4qJAp8QQgvSsigT+n+MS5c+QX392zh8+HXodLNnbimVHty758t54NOQDiFkVZa2IE2L+TucFu+CtIsX/4BI5A6OHPnRrNCfmIjh/v3P8NprL2TlYkhDOoSQnMjmgrSZN5S1Wn3BL0jbt++ruHz5FD799Bc4cuRHMBgye0RkOmiW5LyD5qoCnzH2XQB/DmALgD2c86YZn/sPAH4MIAXgX3HO/7CacxFCCtNKFqSFw8MP1h/E44W9IG3v3hdw9apiakz/dRgMmWm3Wq0HnZ257aC52v9SzQC+BeBvZz7IGNsK4GUATwBwA/iUMbaRc55a5fkIIUVmsR3S5l6QNji1/8HDBWnTw0X5uCBt9+6j+PxzFT799O9x5MgbMJkssFpdaGtrwd69ueuguarA55y3AZhr/O1FAO9zzicA3GOMdQLYA+Dias5HCJGfpSxIm31DOT8XpO3adRAKhQL19W/j6NEfwWSyIJm0YWBgAF6vNyc1iPW3kADg0oyPfVOPEUJIVmm1Wmi1Wlit1sc+N/eCtCFEIr1TfyEkcrog7amn9kOhUDx4pW8weNDW1pU/gc8Y+xTAXINMP+Oc/36+L5vjsTmnAzHG3gTwJgBJ+0QTQorPzB3S5tpEfLEd0kKhFBjLzC7K1oK0nTtroVAo0dDwKxw69APcuzeSsw6aiwY+5/z5FRzXB2DmJcsDoG+e478F4C0gMy1zBecihJAVkWpB2vbtz0CpVOL06f+LjRt35qyDplhDOh8DeJcx9t+RuWlbDeCKSOcihBBRiLkgbfPmXVAolLhx4yTWrk3kf+Azxr4J4H8AsAOoY4xd55x/lXPewhj7DYBWAEkAP6EZOoSQYqNWq1FaWorS0tLHPjdzQdr0orRIZBiRSB8ikSgCgThKSrRYs8aLCxe+wAsv7Jlz2CmbVjtL5yMAH83zuZ8D+Plqjk8IIYVq5oK0uVoopNPpBzeU+/v75x1Wyqb8XrFACCFFSqFQPFiQZrPZcnPOnJyFEEKI5CjwCSFEJijwCSFEJijwCSFEJijwCSFEJijwCSFEJijwCSFEJijwCSFEJvJqT1vGWAhA9xyfsgEYzHE5+UKu37tcv2+Avnf63pdvDefcvtiT8irw58MYa1rKBr3FSK7fu1y/b4C+d/rexUNDOoQQIhMU+IQQIhOFEvhvSV2AhOT6vcv1+wboe5cr0b/3ghjDJ4QQsnqF8gqfEELIKuVt4DPGvssYa2GMpRljNY987j8wxjoZYx2Msa9KVWMuMMb+nDHmZ4xdn3r7utQ1iY0x9rWpn20nY+xPpa4nlxhjXYyxm1M/6yap6xETY+wXjLEgY6x5xmNljLFTjLHbU++tUtYolnm+d9F/1/M28AE0A/gWgM9mPsgY2wrgZQBPAPgagP/JGJt7p+Di8Vec8yen3o5LXYyYpn6WfwPgjwBsBfDK1M9cTg5P/ayLfXri28j8Ds/0pwDqOefVAOqnPi5Gb+Px7x0Q+Xc9bwOfc97GOe+Y41MvAnifcz7BOb8HoBPAntxWR0S0B0An5/wu5zwB4H1kfuakyHDOPwMQfuThFwH8curfvwTwUk6LypF5vnfR5W3gL0AA0DvjY9/UY8Xsp4yxG1N/Bhbln7gzyPHnOxMHcJIx9jlj7E2pi5GAg3PeDwBT7yskrifXRP1dlzTwGWOfMsaa53hb6BUdm+Oxgp5qtMh/h/8FYAOAJwH0A/hvkhYrvqL7+S5TLef8aWSGtH7CGDsgdUEkZ0T/XZd0E3PO+fMr+DIfAO+Mjz0A+rJTkTSW+t+BMfZ3AI6JXI7Uiu7nuxyc876p90HG2EfIDHF9tvBXFZUAY8zFOe9njLkABKUuKFc454Hpf4v1u16IQzofA3iZMaZljK0DUA3gisQ1iWbqf/pp30TmZnYxuwqgmjG2jjGmQeYG/ccS15QTjDEjY6xk+t8AvoLi/3k/6mMAb0z9+w0Av5ewlpzKxe+6pK/wF8IY+yaA/wHADqCOMXadc/5VznkLY+w3AFoBJAH8hHOekrJWkf0lY+xJZIY1ugD8C2nLERfnPMkY+ymAPwBQAvgF57xF4rJyxQHgI8YYkPndfJdz/om0JYmHMfYegEMAbIwxH4D/COAvAPyGMfZjAD0AvitdheKZ53s/JPbvOq20JYQQmSjEIR1CCCErQIFPCCEyQYFPCCEyQYFPCCEyQYFPCCEyQYFPCCEyQYFPCCEyQYFPCCEy8f8B6hdEGySK3VIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "region_df.plot(ax=ax, color='blue',edgecolor='black', alpha=0.3)\n", + "point_df.plot(ax=ax, color='red')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Larger Problem" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "n_points = 200\n", + "np.random.seed(12345)\n", + "points = np.random.random((n_points,2))*10 + 10\n", + "results = voronoi(points)\n", + "mins = points.min(axis=0)\n", + "maxs = points.max(axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "regions, vertices = voronoi(points)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "regions_df, points_df = voronoi_frames(points)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnX2IZWd9x7+/mewWBvFtdqPBZuaWoq02DdEdRdD6kioEKWr/aEuZliUJDB1EomitMmCxsCCxKPqHyFKXTTPTgOJrpa1Ng1UKNWU2JOnaGGPp7ia6NeumRWWlJru//nHuzd65c8+9zznnefk9z/l+4HDnnrn3nuf1+/ye3/MmqgpCCCH5s5A6AIQQQvxAQSeEkEKgoBNCSCFQ0AkhpBAo6IQQUggUdEIIKQQKOiGEFAIFnRBCCoGCTgghhXBNzIcdOnRIB4NBzEcSQkj2nDp16seqenje56IK+mAwwO7ubsxHEkJI9ojIWZfP0eVCCCGFQEEnhJBCoKATQkghzBV0EbleRL4hIo+IyHdE5I7h/ReKyL0i8tjw9QXhg0sIIaQOFwv9GQDvU9WXA3gtgHeJyCsAfBDAfar6UgD3Dd8TQghJxFxBV9XzqvrA8O+fAngEwEsAvAPAXcOP3QXgnaECSQghZD6NfOgiMgDwSgD3A3iRqp4HKtEHcK3vwJExdnaAwQBYWKhed3ZSh4gQYgxnQReR5wD4AoD3qOpPGnxvQ0R2RWT3woULbcJIdnaAjQ3g7FlAtXrd2KCoE3/QYCgCcTlTVEQOAPgagK+r6seH9x4F8CZVPS8i1wH4Z1X9tVm/s7a2plxY1ILBoBLxSVZXgTNnYoeGlMbIYLh06eq9pSXg+HFgfT1duMiziMgpVV2b9zmXWS4C4LMAHhmJ+ZCvAjg6/PsogK+0CShx4Ny5ZvcJacLW1l4xB6r3W1tpwkNa4+JyeR2APwZws4g8OLzeBuCjAN4qIo8BeOvwPQnBykqz+4Q0gQZDMbjMcvkXVRVVvVFVbxpef6eqF1X1t1X1pcPXp2IEuJccO1Z1gcdZWqruE9IVHwYDffAmyHelaJ8K0Pp65c9cXQVEqlf6N4kvmhgM0+odB+3toKrRriNHjqgXtrdVl5ZUq+JTXUtL1X1CSHO2t1VXV1VFqtdpdamu3i0v7703ulZX04SzQADsqoPGOs1y8YW3WS6c9ZGWnZ1qwOzcuapbfuwYewt9oK7e1SECXLni7/k7O8BttwG/+MXVewcPAidOFF/+vM1yMQkHcdLB7nU4rLsRm9Yv34P2d9yxV8yB6v0dd/h9TsbkKeic9ZEOTnELQw4NZV39Wl6OM2h/8WKz+z0kT0EvedbHzg5w6FDVXRWp/rZUqdk7CkMODWVdvfvkJzlob4Q8Bb3UWR8jH+G4xXHxInDrrXZEnb2jMKRsKF1dPanr3fJys/t9xGXk1NflbZZLqayuTp8tEGrGQBs4wygMdXkfOt995GesMrG9rXrgwN7nHDjQi7IHx1kuFHRLiNQLukjq0F2lp1PHgpKqofTRkMRsjHpa9ijoORLaQu9pZajFWnqkCE+dEdHEgPDxG2QmZQt67IIf63nb26oHD+6vGD66lXSV7IXpUZGLhW6t8Y1MuYIeuyKmeN74yrvlZT/PSuWjtQrToyIHHzob34IFPXZFLKXis1u8F6bHVXxYvyEt6FLqYAdcBT2/pf8LC1V2TuJ7mXGq54WC2yXsxXp6cHuFq5RSBztQ7tL/2POgS5l37bIYy/rSc59YXpyWw6rRmJRSB2PgYsb7uuhDT8ysbnFJ8XTF6kAbXQx76WPZnADF+tBVy53lkhKKiB3o399PH+rgDFwFPT8fOgkD/ZR2sO7f9wXHCZwp14deCtb81fRT2sGyf98XIccJrNWtmLiY8b4urhQdYtEnaDFMVkjR3S/dxRDKxVdoOUbRPvTcseqvLl1E2lCKQFjL21DjBFbrVkco6JbhoFc+lCAQFhulUOlqoW4FaDxdBZ0+9BTQX50PJRzoYfHwjFDjBKnrVuI1BBT0FPRh0KsUUguEDyw2SqEOy0hdtxI3nhT0FKQ++YW4k1ogfGC1UVpfr6ZhXrlSvfoo/6nrVuLGk4KeihCFuQ/EnpKWWiB8UEKj1ISUdStx40lBJ+1IMdc3lX8y98a3hEYpFxI3nlwpSpozEtZxX+HSUniR6MsKSpI3AVbAcqWoFUpctZZq4GeamM+6H5sS85o0J2GP7ppoT+ojk5bsyEUA5N3dTTXws7gIXL48/X5qSs1rkhV0uYSkVBdBqniJ1P8vYjmeSql5TUzgzeUiIidE5EkROT127yYR+baIPCgiuyLymq4BLhKL8399kGrgZ3W12f2YlJrXJVOgi8zFh34SwC0T9+4E8BFVvQnAh4fv02A5U6zO/51Gk3ScNmvi6NHKhx4yHyxPv8spr0nyFZ3BcNkfAMAAwOmx918H8AfDv/8QwN+4/I73vVws7lExTorTldrsIdE1nL5OjncJu7VNpkZYL4uxsJo/k2S2Rw98bs41RdBfDuAcgMcB/ADAqsvveBf0HDIlVgHvIihd07Hr90sRw1zELBQ55aOFTbwa4CroToOiIjIA8DVVvWH4/lMAvqmqXxCR3wewoapvqfnuBoANAFhZWTly1ucUM56yc5Uug3Jd07Hr9zmgmD87O5XbbdosJIv5mFmZCz0P/SiALw7//jyA2kFRVT2uqmuqunb48OGWj6uBfsurdBmU65qOXb/PAcW8Gfmjp4k50D4fQ46PWR6P6UBbQf8hgDcO/74ZwGN+gtMQy5kSe7C2i6h2Tceu32fDnDfTFpqN0yYfQw9alrodwjyfDIB7AJwH8DSAJwDcDuD1AE4BeAjA/QCOuPh3ghxwYdFvmcKX6GNgs0s6dvl+Tr5Xsp86f3SXfMxhfCwi4IlFCUlVGC02bq7kHPa+U1feFxfb52Nmg5ahcRV07uXiShMXSp3P8OzZsG6YnHcFzDnsfafO5XbXXe3zkW64VlDQXWjqz6srdCLlLWQgJIQ/2vL4mGEo6C403V1wWmEU2T+1L/W5jiQ9llc6N8F3D6vUQcvAcHMuF9rMs57cE7lu/n0f58yTilT7ypPs4H7oPmnjz5u0WOo2kKJPsL8kPlCYlAcF3QUf/jxfPsFSuugk7YIqlqMycZkK4+vKetqij2l1PuZ6c752RQnTHFNOb+1TOSqgrIDz0AvEVQAKKMAzKUWQUsUjdENiqfyFSuPIcaSgl4jLYotSxG4WJa0ibCoMXVfk1qWdr0U71spfiLKSII4UdF9YsjZcCmdKsYuVVn1dRdhFSKZ9N0QZsdbYhigrCeJIQZ9Fk8MULFkbLuFJJXYx08qaaMSiS7xnWeY+88paYxuirCSIY/mCHuN0HovCMS/eqcIc87nWGtpYdBGSWRto+exNWaszIcoKLXTPgh7rdB5r1oYLbdOmq7skdlpZcoXFIoSF7luELDa2vssKfeieBb1L4WwiPNasDVfaDLR1LaC5plVO+PahhxKh1I1tjOdzlotHQe9iDTYRnlmVIHWh9YkPMbZomZWIj1kuJZTZOgoth2ULehcBaprh0ypBboVmXkX25S4Znxa3uHg1T6ymC4lLjAal0J5i2YKe+nSenAqNS1r5jE9ujR2JQ6xyYWncy2MDVragq6btPloqNPNwEWuflS2nxs4CfXCDqMYrF1bKn+cGrHxBT4mVQuOCa+PjS1hyaOysiGifejOxyoWVNPWsERT0kFgpNC7EbnysN3Yh865pQ+E7raw0VNOIvU4hdTp4bsAo6KGxUGhcaCJgPuJkvbELJSxt4u2z0ltPd+vh8w0tdBIMF6H2WeEsN3ahuv5tKrDPSh9z4RCnTc6PC33oJCnWXSW+CBXPNg2Fz0ofw0fdNyu7Dtd04CwXkowcBjN9EEqU2jYUbVb1Tvt8jAa5L43+PBKkAwWdNMNXIc2hWx0ijDGs13krl0M/vy+N/jy42yIF3Tw+BKHvXfLQjdm8Rjf18/tCXTosLgYr6/0Q9ByswZzo0wraHEltIfe9wR4xLR0Cp0f5gj4tUUVUNzf9PYM0I7XgjCi1obfQYJaatk3Z3r66X1GE/Chf0OsKt0h/C1lqrAhOqVZkyXHLkYgGjKugLyBXzp2bfl8V2NqKG5ZS2dkBBgNgYaF63dmZ/fljx4Clpb33lpaq+yGfO87WFnDp0t57ly6VUSbW14Hjx4HVVUCkej1+vLpP4rOy0ux+DFxU39cVxULPcdTdYje2rTXYNS5drVArbh9SPhF7TPDlcgFwAsCTAE5P3H83gEcBfAfAnS4P8+5Dr6u8OQ3CWe1Gp3KfdH2uBbcP6Q+RjDGfgv4GAK8aF3QAbwbwTwB+afj+WpeHtRL0WQm2ublf1C2IYROsClAqS7frcy00kBZ7XCRrvAl69VsYTAj65wC8xeW741djQXepnLlXHqsuglwtdNW0ZcJCg0KKI7SgPwjgIwDuB/BNAK+e8d0NALsAdldWVprFwqr16pPUcawTv1TClLsgps5PUiShBf00gE8BEACvAfBfAGTe7zS20H1Yr9Yt+JQCNu/ZqdLOep5NMh7eGAP1uaUP6UxoQf8HAG8ae/+fAA7P+53Ggt7V2snF2ktVQWlNdmfWqsEQaZpLmSZeCS3ofwLgL4Z/vwzA40Es9K6Fl4I1G6v++5yYNX02hODmXKbZs2iNz1ku9wA4D+BpAE8AuB3AQQDbQ9fLAwBudnmY91ku85glWKUWribxylkcrDDPzeK7bOXaCLNn0QmvFrqvK/pui3WCtbxcZuFqWmlYyboTu1HMtRHONdxGcBX0fJf+u1C3FB0oc3l402XvXEreHV/bHVh9ni/qtuqou0/a4aL6vq4k+6FPc0Hk2m2dR6nxsk5s912O7kJa6J2Ao4Uu1WfjsLa2pru7u9GeV8tgAJw9u//+6ipw5kzs0Pij1Hjt7FS9jHPnqo2Pjh1jLyI3dnaAjY29PcilJfYIHRGRU6q6Nu9zZbtc6si12zqPEuM1EoKzZyub7uzZ6n2THRhJeujei0I/LXSgXKuvtHiV2usgpAGuFnp/BZ3kwcJCZZlPIgJcuRI/PKRfGDGQ6HIhZRDqEIEuh2iQfpChu4+CPgkrui1CjAtkWFFJAjI8/YqCPo6Pis4GwS8hBtMyrKgkMNPqbY5z513mNvq6ksxDb0JfNgPrO6XM189xPrpF6urt8rKZufPgStEWdG2RafnlgcXDfZtCt5E/6uot0N3dF7nHTkEfp2tFz7GL1kdKmK9fkvGQ2k1ZVz+feqqbuy9Fo+tixvu6zLtcuF2vf6y6BayGy5WS3EYh3JQWdh31+Lvgbost6VLR6UPfC9MjHK5iYb3hCiGmVnYd9djoUtC70rYiWK9AMWGPJRwuIrS5uV9UrDWoIXoabcpdiHpLC90ItCz9UIpbwCqzRGjWrqKWGtQQjb6VcudRRyjoXaBl6YdS3AI5MutoPEsNagjjyVL99VS2KehdsNLC545LZWVvKAyzjsZLZZjUidu8nkZTQSywTFHQu2Cphc+deRWSaR2GunQdnacbmzYi20WYC+v1UdC7UGALb5aQvaHCKnUjppVhkWqgNAVtGm429s/iKuhcWDSNkjbjT71oYx4hd1Ps80rKaWX47ruBT386TXjaLLrjQr3muKi+rysbC70UcuhphApjTOuuzz0BV2ihdwJ0uZBsKkQIQYw1sJ1Do2mB2D70wqCgk37P1vHVmHFQ1x9tZ6z4aOwz70VR0Em/xcaHdefyG31uNHOhzVYAxsSfgk7YZe1aMV0axD43mrnQJI+M1hlXQech0aVj5JDbLHE5oHo0m2Z8K9ulpXxnRZVIk4PGB4NqRtQkq6vAmTMhQucED4kmFevrVUG8cqV6DSUy1qdHtsFlSmVJU1xLpcnU2MynSlLQSXdc5nxbFPx5YXI9CCNWoxkTi/nVliYHmuR+mpWLX8bXlZ0P3eDgSHKmpck8H2UMv2TTvHINU05lwOeMEIN+5E64po3RuMPXoCiAEwCeBHB6yv/eD0ABHHJ5WFaCbjRjk1KXJtPEfHymR+iBwzZ5NWs3QuvCPQ2f5bXvA70GG3FXQZ87KCoibwDwMwB/rao3jN2/HsBfAfh1AEdU9cfzegNZDYoaHRxJSl2aLC4Cly/vvz9KqyaDUj7DNSuv6sI0IreBTZ/lNXR+kcZ4GxRV1W8BeGrKvz4B4AOoLPTyyHxwJAh1cb98ebaPMrRfsk1ezXt2bgcu+yyvufuRe0yrQVEReTuAH6jqQ57DYwcW6v3UxX00s6NupkeTQSmf4ZqVV9PCNElOjbfP8ho6v0g4XPwyAAYY+tABLAG4H8Dzhu/PYIYPHcAGgF0AuysrK+GdTb6gD30/VvenbhuuWQO6ufmMfZdXg37kPgOfK0UnBP03UQ2SnhlezwA4B+DF834nq0FRVRbqaVhNky7hKqXxtr7vSdc8sljuIhFM0Kf8b6aFPn5lJ+ikTKaJQ88F41lCNW5de3clNLgd8CboAO4BcB7A0wCeAHD7xP8p6CQfKA6zCTVlscvvWppGmajh92qh+7oo6JlRotVqSRxi0DQPQ+0e2eV3rexomdAYcBV0Lv0n0yn1CLc+TUdtk4ehZnd1+V0rM862tvZuwgaYm95KQc+RGPtsZFB4W2FFHGLQJg/rpnP+7GfdylmXqZBWplHmYAy4mPG+rmgulxJdBSNidfusdHN90ycfets83N5WXV7e/72u6ZT7LJeE7jr01odeeoWNVahK9jVbEIcYlDIQaYUMfOjlCXrpBZGHHxNXuuRhqT20rhif5VKeD32enyv3fZ5j+YB5cEP+dMnDHMYaUtRl63vfu6i+ryu5hV6C1VlCHIh9rJcz6+HzDHrrcpmV0aW4Y/riA+4C06g7ltOwlLrsiKugl3lIdN3ByNznuR/w4Oby6VldLvuQ6Hm+szo/1zy/YO7+9VwInc6lzqEfp+9lNYSPv4Q0dTHjfV1eXC6hNvnpmU8uGTHSufQZGiyrYbYLNpymKNaH3tV3VucX7JlPLhkx0rn0vCw9fq749PEbT1NXQc/Phx7Kd9Yzn1wyYqRz6T50llX/GE/Tcn3oFjcP8kkJfrxZxEjn0ufQWymrJVFKmrqY8b6u5D70FL+bWxhC04c4hoZp6B/jaYpifeiqNo/I8oFvP17q+NRhNVw5wTT0j+E0dRX0/HzoJePTj1e6H5mQHlGuD71kfPrxYs/FLt33T8qg8HJKQbeEz438Y27GX+rpRqQselBOKeiW8Dk7I+aofajeQOHWFInAeBk6erT4FcQUdGvM2p6zicDFPLYrRG+gB9YUCcxkGbp8efrnLB0h1xEKei40FbhQc7GnNSohegN92I/FCqX2hKaVoWnkNtd8Fi5TYXxd0c4ULREfUxq7Tsuqm6u7uel/Dm/p+7FYwfj8607UlaEM44qi56H3ka4C56Pizjs8xOccXuN7a2TJtDwqOZ3r4ra4aHKu+Swo6KXRteL5qLgxreaSLccU1KVnneVaQk+ooDLkKuj0oedC10FOHwOXMWfOlL4fS2zqxiQWF6d/vgS/ch/LkIvq+7pooXdkvMu8vFxdrl1HXz74Qiye3jHLn8w8NQ9ooRfIaErj3XcDP/85cPGi+5Q+H9MYS7V4Sp3lMU6dxT3Kw7Z52oe0ywkX1fd10UL3RFtr2/DmQ8noS68jRDz7knYGAAdFC4ZT+vyRwywPXw0xZyJli6ugc7fFHBkMKjfLJKurlUuGuGP8pBrTu2ZaT7uC8LbbooicEJEnReT02L2Pich3ReRhEfmSiDy/a4B7SxsfZMxl/aVj/aQayytmraddD3EZFD0J4JaJe/cCuEFVbwTwPQAf8hyuftB2v5LQg5N9Guiy0jjWpXnMXTObYiXtyFVc/DIABgBO1/zvdwHsuPwOfegTWPRBhh7osjgwmzpMs9LcYhkZJ3Tapc4bI8DnoOgcQf9bAH/k8jsU9AksDm6GFJC+zIpoKkLztlSImWapBXRyrcXBg+WXFweiCDqALQBfAqrB1ZrvbgDYBbC7srISJ/a5YNH6CtnIWIpvyHNpmwrwvDSPJbKpG9xpz7dSXhITXNABHAXwrwCWXH5DaaHvJ3UFmkZI0bXSIwmZ7m3SL2VDN95YLC6mFdC6dEhdXgwQVNBRDZL+B4DDLt8fXRT0KaTu4k4LjyWxC4G1RitVw+5qEccSUJftbmmhdxN0APcAOA/gaQBPALgdwPcBPA7gweH1GZeHUdAzwZI7IgRtRdclTXJaxetqEXcV0K5pl7K8GDG4vFrovi4KOjFRQZqKbpOGyEqj5UKMAyA2N/c/p0naHTjQbBM6nxjKSwo68YsFIfZF04rapgHIIa1CHwCxvV3faOSQdlZchEpBzwdLBbiOtpaK5bg1CZuVwVzfhLZAZ7lQrKfd9rapsFPQc8BQl24mbSyVXOLmQgxLLVXjF/K5s1w6lgc25w0Wu4bdY9pS0HPAUJduJm0s1Fzi5kKM1bOlNH7j1JUBEVtxmxTe5eV6MXfNF895SkHPgVy68m3EOZe4udLF2pr33ZIav3G2t6tBzcl4bW6mDtlVXKduji7XfPecp66CzhOLUpLLbnVtNmHKJW6ujE6LunKlem1yos+8Ddi6bsBleTM1kb3vDx4EXve6eM+flzbTdrOsY3XVPd9Tbarmovq+LlroE4Tsavv2jTb9vVLdCE1xsdTm7eUyK90tp3PqnodL2rguZmqapoksdAp6akIMSlmp5JZnucTCxfVUl1+bm/PzMbVoziK1261LY7q83K3s0odOnHARScuVvG+45sW0fHX5bmrRnEXqctilMTXWS6agl4hr4bNcyftGF8FwycfUojmL1D3FLo2pMSjoJeJaQC1X8j7SVjBc8jG1aM4jpVhaT5sGlCnoGbSkQXG1vAsqyL3GNR/7Xi9mUUjalCfoFKlmlnchBbn3MB+Jugt6PvPQLZ9+Hosm88HbzpsmtrCYj77mvVueP58p16QOgDOWTz+Pxagyb21V8V5ZqcTcQiUn/WC0UGpkXI0WSgHNyqGv3yF7kMqaj8Pa2pru7u62+/JgUGX6JKurleVCSGns7NhrvH3VQ9bnRojIKVVdm/e5fFwubZafE5IrLlsGpMBXT5k97iDkI+jr68Dx41ULLlK9Hj+e3mIh4emjr9XqmJGvPXpK2+vHCPkIOmBzgIiExaqlGhqrFqyvnjJ73EHIS9CJH3KyeK1aqqGxasH66imzxx2EfAZFiR8mZxcAlWVktTItLFSW+SQiVU+tVHLLJxKU8gZFiR9ys3itWqpdmddLogVLWkBB7xtWfbN1lOhrdR0X4JgRaQgFvW/kZvGWaKnm1kvKndBjRpbGpFz2B/B1cbdFA6TYE4f7keyF2xvHo5ADvlHc5lwuUDjciJlO3FRtP9zeOB6h0zpSXvZP0CkcNkklXpYbd5bVeITuDUXqbbkKejk+dGt+SUt+tZSkGISdNuh4663AoUM28qPEcQGr1I0NLSz4KQPWxqRcVN/XFdRCt+SXpAV2lRQWet0zmR/9Y1pd9FkG6EMPhCW/pKWwpCZF41bXuDM/+sn2turiYrgyEMG95yro5awUtbSyrq+rG+uIvQ1s3dask/Q1P/pI5nXS20pRETkhIk+KyOmxey8UkXtF5LHh6wu6BrgzTfySof3b1vxqqYm9QObYMeDAgfmf62t+9JGe1EmXQdGTAG6ZuPdBAPep6ksB3Dd8nx4X4Yixe1+JqxtzYn0deO5zZ3+G+dEvfNTJHCY6uPhlAAwAnB57/yiA64Z/XwfgUZffMbGwKJZ/2/K0uT4wy4/O/OgnXepk4okO8OlDF5EBgK+p6g3D9/+rqs8f+///qOpct4uJ3RYz96URR3jEGfFJ4vJkZrdFEdkQkV0R2b1w4ULox82nJ7603kO3F/FJJpvatRX0H4nIdQAwfH2y7oOqelxV11R17fDhwy0f5xFW9H7AxTvEJ5kYgm0F/asAjg7/PgrgK36CEwFW9P7A7WeJLzIxBOf60EXkHgBvAnAIwI8A/DmALwP4HIAVAOcA/J6qPjXvYSZ86IQQ0obY6ynGcPWhl7OwiBBCCsXMoCghhJA4UNAJIaQQKOiEEFIIFHRCCCkECjohhBRC1FkuInIBgMO+plM5BODHHoOTA4xzP2Ccy6drfFdVde7KzKiC3gUR2XWZtlMSjHM/YJzLJ1Z86XIhhJBCoKATQkgh5CTox1MHIAGMcz9gnMsnSnyz8aETQgiZTU4WOiGEkBmYFPRsDqb2SE2cPyYi3xWRh0XkSyLy/Fm/kRvT4jz2v/eLiIrIoRRhC0FdfEXk3SLyqIh8R0TuTBW+ENSU65tE5Nsi8uDw8JvXpAyjb0TkehH5hog8MszTO4b3g2uYSUFHTgdT++Mk9sf5XgA3qOqNAL4H4EOxAxWYk9gfZ4jI9QDeimpr5pI4iYn4isibAbwDwI2q+hsA/jJBuEJyEvvz+E4AH1HVmwB8ePi+JJ4B8D5VfTmA1wJ4l4i8AhE0zKSgq+q3AEzur/4OAHcN/74LwDujBiow0+Ksqv+oqs8M334bwC9HD1hAavIZAD4B4AMAihrgqYnvJoCPqur/DT9Te/pXjtTEWQE8d/j38wD8MGqgAqOq51X1geHfPwXwCICXIIKGmRT0Gl6kqueBKsEAXJs4PLG5DcDfpw5EaETk7QB+oKoPpQ5LJF4G4LdE5H4R+aaIvDp1gCLwHgAfE5HHUfVISut5PouIDAC8EsD9iKBhOQl6bxGRLVTduJ3UYQmJiCwB2ELVDe8L1wB4Aaqu+Z8C+JyISNogBWcTwHtV9XoA7wXw2cThCYKIPAfAFwC8R1V/EuOZOQm688HUJSEiRwH8DoB1LX+O6a8C+BUAD4nIGVQupgdE5MVJQxWWJwB8USv+DcAVVPt+lMxRAF8c/v15AEUNigKAiBxAJeY7qjqKa3ANy0nQ8z2YuiUicguAPwPwdlW9lDo8oVHVf1fVa1V1oKoDVGL3KlX978RBC8mXAdwMACLyMgAHUf6mVT8E8Mbh3zcDeCxhWLwz7GF9FsAjqvrxsX+F1zBVNXcBuAfAeQBPo6rUtwNYRjUy/Njw9YWpwxkhzt8H8DiAB4fXZ1KHM3ScJ/5/BsCh1OEDSnCeAAAAa0lEQVQMnMcHAWwDOA3gAQA3pw5nhDi/HsApAA+h8i0fSR1Oz3F+PaqB34fH6u7bYmgYV4oSQkgh5ORyIYQQMgMKOiGEFAIFnRBCCoGCTgghhUBBJ4SQQqCgE0JIIVDQCSGkECjohBBSCP8PxhnmVdWIztcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "points_df.plot(ax=ax, color='red')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD8CAYAAACVZ8iyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuQZOV55/nvczLznLxV9f1aTdG0aInbABIFlozAkowlpNCgtdYXWK2tXWuXkceKtWO9saNLzMbseBwxszu2PLvj0RjNeCzPyMZaIxAhY2mQkFFAC0Q314YGuqEbaBrTDU1fqqvyet7945y8VWVVZV1OZnb37xORUZknT1a+dWje57zPezPnHCIicn7zBl0AEREZPAUDERFRMBAREQUDERFBwUBERFAwEBERFAxERAQFAxERQcFARESA9KAL0Kv169e77du3D7oYIiJnlT179rzlnNuw0HmJBwMzOwScBupAzTk3YWZrgb8CtgOHgF9xzr0z3+/Zvn07u3fvTrawIiLnGDN7pZfz+pUm+rBz7mrn3ET8+ovAD51zO4Efxq9FRGRABtVn8CngG/HzbwD/zYDKISIi9CcYOOC/mtkeM7s9PrbJOfcGQPxzY7cPmtntZrbbzHYfO3asD0UVETk/9aMD+Xrn3BEz2wjcb2bP9/pB59wdwB0AExMTWmtbRCQhibcMnHNH4p9HgbuB64A3zWwLQPzzaNLlEBGRuSUaDMysYGYjjefAR4G9wL3AZ+PTPgt8J8lyiIjI/JJOE20C7jazxnf9hXPue2b2GPAtM/sc8CrwywmXQ0RE5pFoMHDOvQxc1eX428DPJ/ndw+bUqVPk83nS6bNmnp+InEe0HEUfTE5O8tWvfoO//Mu/4cyZM4MujojILAoGCSuXy3zve49y5AgcPDjKt771EG+88cagiyUi0kHBIEH1ep0HHvgpx49vI5cbYd26beRy7+fb336OJ57YSxiGgy6iiAigYJAY5xy7dj3OwYNFtmx5D85FFX+hsIqtW29k165p7rvvx5w6dWrAJRURUTBIzFNPPcdTT1UZG2v1n5tFlzudzjA+fi0PPXSa//Jf7qVSqQyqmCIigIJBIvbu3cu99z7H2Ni1eF50iZ2bPYG6XC5x5EiBBx74KfV6vd/FFBFpUjBYYfV6nQcf3MuJE1ELoF0jMDRMT59gx45rOHiwwK5dj3cNGCIi/aBgsMIOHHiZt97KUip1DiHtVtFPTr7DyMh6tm69iqeeqvHEE3v7VUwRkQ4KBiuoXC6za9fLbNv2Xkqlbh3D1nw2NTVJKgXZbB7P8xgbm2DXruO8+OKB/hVYRCSmYLCCnn32RSqVbaxevYVKZarjPedCrBULOHXqHQqF0ebrdDrDli0/w/33H+Lw4df7VWQREeAs2gN52E1OTrJ79xE2bPgwmYxPKuUxPT1FLpcHwDmwtmgwOXmSfH6k43f4fpb163+GP/uzu7n66nFGR0dIp73mI5XyyGRSpNMenhc9UqlU1+e9HBMRaVAwWCGPP74Pz7uYTMYHIAhyTE+fbgaDaI+fllOn3iGfX9PlNxn79x9l8+af4623MjgXEoZ1wjDEubD52qwGhDhXxyzELATCjmOt1yHRFtRhxyOV8pqPRpBpvE6nU2Qyrde+n4qPt87PZOYPPL0GqvYgKSKDoWCwAo4fP87evScZG7umeSybzXPmzCRr124CGi2D1t34mTPvsGHDhlm/6/nnH2bLlkvYtOnCRMvsnJsRYKKftVqdSiWcMwg1Xjd+QhSUWo/OQDQzCDk3+3UqZR1Baa4gNbN11EtrqdcWk1pLcr5TMFgBjz76HLncJR2Vie/nmZ5uH1HkOu6Az5x5hx07Lu34PbVajYMH9/LhD//3SRcZMyOVSgGpxL9rITMDjHMh9Xqdej2kXA7b3q/POqdba6nxMJvdGmoEp26tJefCGa2jzuA0s7U0Myil01ELqtfW0nyBSq0l6TcFg2U6cuQIL78ccsEFYx3Hc7kCU1Onm69nDi2dnj7ByMi6jmMHDjzGqlVjzdbE+SIKoh6pAccl51zcYqrP2VqaHYRmB6ooyFSYu7XUGYiiz3QGqlSKjiA0M0g1jrUHovZW1EKtpcUEKjk/KBgsQxiGPPzwPlavvmrWnVw2W2R6un1EkWv+j1WpVKhUpigWV3d8Zv/+3Vx99SeSLrbMwcwws6GoABtpvEZgagSeajWkXK731FqKgkyVmS2g2S2m9tbS7EC1mNbSzKDUGgAxd/9Rr4FKraVkKRgsw8GDhzh6tMj4+PpZ7+Xzo7zzzqvN1+0tg8nJd8jlCh2Vzmuv7cPzslxwwbuSLbScFRppvNSgm0vQEZRaraWQSmX+FtL8raXGoIfeAtPM1tLMFlPrZys4LdRa6iUQzRWUzsXApGCwRNVqlYce2s/69T/b9f1cboRyuXMWcqMD+fTpEx1zDACef/4nXHzxtckUVmQZGhXhoLUPemgPTrNbS7NbVO3ByayKWedghrn6lxpBqZHmc64eB6bZKbr2QNUYfdd+XvuIvPlaS2ZGvV6nVqtRKpXYuHEja9euTfz6Khgs0fPPH2BqajNr1450fT+fX0Wp1N5n0Hrv1KkTFAqrmq/feut1JidP8653XZFYeUXOdp2DHjILnZ6oRoCp12tUKiUmJ89QKk0yPX2G6elJyuUzlMtnKJWmmJ4+xfT0JNPTk2QyXjwB1fA8I5WCdNrFrR5HOg3pNGQyHkHgEQQpdu7cwW233Zb435RoMDCzC4A/BzYThdo7nHP/xsz+GfA/A8fiU7/snLsvybKspOnpaR555BU2bvzQnOfkcqMz1idyeF7UtJycPEGx2JpjsG/fQ2zf/j7tjyySoEqlQq1WoVIpU6tVqVRKVColSqUpKpUy5fIZarUK5fI0lUqJWi16v1otU6lMUyqVqVanqFbLzdFuYRj1BUZ3+tacf+P7KTKZFEGQxvdTFAopgsBn/fo1FIs5RkfzjI4WKBaLFArRz2KxyMjICMVikXQ63fdUVNK1Tw34Xefc42Y2Auwxs/vj977qnPvXCX9/Ip566nnCcDu+n53znGw2j3M1KpUKvu939BlMT59g8+ZoWOnU1CnefPM1rrnmk4mXW+RsUKvVmhV2rVamUqnEd+Bl6vUa5fIU5XIprrSnOyrtzufR56vVGvV6Bec8wrBGGNKWnknjeWlSqXTcpxBV4r6fxvfT5PMpstkUvr+KbDYdPzKsWTPK2rUjrFu3mlWriuTzeTKZDJlMBt/3mz+Hoc+nV4kGA+fcG8Ab8fPTZrYPGJv/U8Pt5MmTPPHEMbZs+ciC5wZBjqmp0/h+NIS00WcwOfkOo6NRp/O+fQ8zNnY5+XwhuUKLJKBWq8UVbjW+ey7Hx8pUq43jlWal3F55R+eXqFanqVZL1GqV+NxKvB2sYQbOGdECjy5OtRqel4or8RTpdCZ+Hv1Mp9PkckVWrYoqb9/3yGYzBEGKIIju2rPZNKtWjbBqVYFCISCfz5DLZQgCv6Myb38+DH0mSetbXsLMtgPvBR4Frge+YGa/Duwmaj280+UztwO3A4yPj/erqPN67LHn8P13k0otfOlyuTzT05OsXr2O118/TKUS/UOP5hisp1KpcPDgXm666Tf6UHI5X4VhGKdFys2Ku72irlYrbZV2dBdeq5XjlMp0fHfeSJ2U48+XqderQGN2PUSVtjVbwY3K27kolZLJBKTTOXw/RyYTkMlkyWQKpFLp5sipVmeq4fut/LnvG5lM9EinIZv1yeUy5HI++XyGbDZDPh89n3l33vg5iNTL2aQvwcDMisBdwO84506Z2deA3yNasOf3gD8AZtWIzrk7gDsAJiYmBr7zy9GjR3nxxRJjY70FpiDIc+bMaUqlad566w3OnDlNoTBCOh3949y372HWrdvO6tXrFv5lcl5o5LU7K+9WpV2vtyrver1ReVebn4l+lqlUpqhUStTrFarVMo21scyiO2znohnxjYo8OmbxOa2KPJPxyWSypNNZfL/AyMh6UqmAIMjFlbmPmRd3hqaIbqAtTsNYnEePKnWzKlDFuQpQJZMxstmoQs/logq9UGhV8nPdpatvLRmJX1UzyxAFgm86574N4Jx7s+39rwPfTbocy+Wc4yc/eY5i8dKem4zZbIHp6TMcPXoY56q88spLBEGWYnGEMAzZv38P11xzS8IllyTMzGs30iJRuqPacccdVdbltso6OlavNyr3crMSj5bViCpmM0crPeLiYY42604caLsbtzj/HZDNFkmnA3w/G9+V+6TTAamUHx/zm490Olpp1/M6J96FYS1uAVSBSlyhV3AuqtTNzhAE6bgyp3mnnstFd+pBMPsuvfH8fEi9nE2SHk1kwH8E9jnn/rDt+Ja4PwHgF4Gh3+Lr0KFDHD6cYXx8c0/nb/27b/Llr/0m+eloeOnnMPzH7mxub1P9+u/w1gc/w8Zb/peESiwQpUhmpkeiDslqW2Xeedcdho3Ku9a8s46OVeJjZZyDdDpFVDlHQwWjXLeLx7c3KvLoZ3vFDTTvyht36Z6XwvfzzQo7nQ7iSjqIK/KoMm9V4AG+H3Q8jz6bBlyzpdDeagjD6I68Uak7Nw2cAqp4Xp0gyDTvyhuVeS4X3a1nMgV8f82su/RMJqPUyzki6ZbB9cCvAc+Y2ZPxsS8Dt5nZ1UT/lxwC/lHC5ViyWq3GCy8c4M47f8zBg2+zb9+zjI6uZ/XqTaxZs5W1a7fMGlW09e++yXv/8Nfw2patzs5YwtqvTPMbD/wHHr/6Qxz50Gf68rcMs0Zee3Zuu0a1Wp6RKqm1VXbljhx34069Xo8q8jAMSaVSZDKZOI2RIZUywrBxJx3GFXJUkTfKElXkjbtza96dp1Jg5hOGdWq1etxpmSOdzsTpFL9ZcUeVd7atEo8q76jizhAEuWYl7vt+x/VoVeSdKaB6vYpzjQp9GucqVCpVyuXoWCoF+bxPNpthZKRVqTfy6r7ffdSLUi9iZ8sm7BMTE2737t19+74wDDl06BV27drP6dMb2LDhEur1kHfeOcbx429y6tQxTp06yunTxwiCgNHRtYyObmDNmi385j/5IP6M2cdzccB37z07/hs0RHntVsqjUml1QNbr7ZV3rdnR2Bgt0rjDbqRHonRJdCydTpNKZdoq73RztEgqlaZeh+iKtVIn0azQVqXe+Z6Ll06oUq02vqeGc9ZWWUdpkyidEpBKtd+R+83Ku1WRt871/WDeVIdzrqMSb6/Y6/XOu/T2XLpzVYIg1ewUbe8obaRe5sqnn01DGaU/zGyPc25iofN0O9DFiy++yJ49Bzl+fBXr17+fbdtaS0fk8wXGxrY3X4dhyMmTb/P2229y4sQxDh16gUyPgaDh8q/9Y579zX+3UsVvagz9i8ZnVxcY+td+V12dUVm3Uij1ejXuLJxdaafTftuYbZ9UysfzwPOibT2z2eifW6vijibtNNIqrVRM9F2VSokzZybjMoSkUpm4os42K+tUKtdRebdy4UHc2RgQBNm40z4b34kv7p991Gppvzsvcfr0qTj10lmhN/Lp0bF63EGaoVhsVOqtCt738/j+6q536cqnS78pGLR5++23efTR5/j2t3/C9HQdz/Pw/UfIZHyCIEsmkyMIsvh+niAoEAR5crkCQVBg3bqNrF69llOnNi7qOw246Ht/whOf+2rXoX+NiTadlXaUt27cYbbuPBvHooo+WnEyHT+iyrtRYUcVpR/fdUdpi1wuRzo9ilnj7tK15b4bFXdUabc6PRtlrFAuTzXvwqOy1uLfn2negTeGFDbuzGfmwlsVdqZ5R954vdwKspFeasw0bc+pRxV4FbPG3Xnjzr1KKuWad+nFYvvdevQ8kxmdc9SL8ulytlAwAE6dOsXjj+/juecmyecv4ZZbPoiZUamU47VFzlAuT1MqTVMuT1MuT3Hy5CnK5b9vTqLZv/9pyuUpoM6iu4RdyD33/FF8R51u3mlHlbZPKpVp3nmnUhkKhYB0utC8+47SGz6N1Eir0m6kbMpxOStUq6W4sm5V3o0g1EqjuI5RJ41KPCpDo3OzGFeEflvF3ejMzPaURlmKRuqlvWO0vdUSrYxZbY56aVTs7amXaAap3zE2PQh8fL/YdYy6Ui9yPjivg8H09DTPPPMCjz9+lHT6YsbGrp2xW1lUoY2OdturuFMYhhw9+jqHDx+Ah7+x6LJ89KP/I9VqqbleSqMSbzzq9TKl0pm2IYqtR5QPr7elUVp33FEOPGhLoxQoFHyCIEcqlY4r7s4RKTM7M5PQnnqZWbHXapV4ZcnZd+lmNYIgTT7vUyh0jk3P5/049TL7Lv18mUUqslTnZTCoVqs8//wBHn30Fer17Wza9GHS6eWtguh5Hps3X8DmzRcs6fM//vFf43lRXrs9hRLdnY/Gk3Bmjkrx8f3ciqVRliJKvXRW6O1DGRt36DM7ST3PdUw0isamt8ao+/5I105SpV5EknFeBYMwDHnppYPs2hUtP71x44fmXWxuKb9/ampySZ+95ZZ/vGLlWCznXMdwzZmjX2aOeml1knbOIh0dbeXTo+GNrdTLzIpdQxlFhst58X+kc47XX3+dhx56nuPHV7Fu3c/OuQ/BTGEYUipNUypNcubMJOXyNFNTpymVzjTXLC+XzzA9fZpqtYTvB9ya8N8zX1nnGpveSL10dpI28uq15mqM7ZV5awGvHJnMaNd8ulIvIueGcz4YHDlyhDvvvI8jRzzM1pHPpzhy5JF4N6RqvElFtKsQRHvIVirTHD36ejNXHy2ilYnvan3y+RGKxTWMjKxl48YtrFq1kdHRtWSzxahy/Mb/tuhy3nPPv407Kj08LxXveNT50/OiGa+pVIrNm9dQLAa0Lw2QSoUEQVSRj4xE6ZfOBbyKc+bTlXoROb+d88EA4Nix41QqIxSLjlSqhu+n8LyAVKoYj4tP4Xnp5nOzFNPTp9rutMuUy43NLsrxOP1J/v7v3+a1156lWq1glorz/VmWsjPBhz70K82dk9o3No/WX2+9rtdrnDjxHDfdtIOxsTEt4CUiK+Kcrz22bt3K7/3e/8qLL77ET35ykFptjI0bdy67w3imSqVCpTJFqTQJX1/851ev7m1+wokTR9mx4zRXXXXV4r9ERGQO53wwAEin01x22XvYseNCnn32RXbvfoBU6mI2bLhoxXLe0cgen2Jx9ZI+X6vVerqzP316Px/5yMVL+g4RkbmcF8GgIZvNcs01V/Ke9+zg8cf38cwzB8nnL2HdurEVy5lPTp5Y0ufuuecP2bRpnG3bLmNs7JKuY/1Pnz7O+vUltm7dutxiioh0OK+CQUOxWOTGG6/liiuO8+ijz/Hyyy+zatWlrFq1YVm/98UXH+OZZx7kV82wRS4AePPNn+eVV15g//6neeyx77F+/Wa2bbuU8fHLyWbzAJw4cYBPfOJidfaKyIo7L4NBw9q1a/n4xz/IG2+8wcMPP8Orr+ZZv/4y8vnRhT/cZmrqFI88cg9TUxVuvPG/4/lXn+bSH/1neqmyHfDc1ksJw5DLL7+Wyy+/llJpmldf3c/rr7/Ak0/+iDVr1rFp00WMjZUYH19w8UERkUU7r4NBw5YtW/j0pzdx6NArPPzwIxw/vpENG95DEOQW/OyBA7t56qkHufDC93HjjTeQTqf540uv5zemp3nfI3cB87cQjl7589zzK19h//3/ieuuu4ULLngX2WyOd7/7St797iupVCocPnyAl19+ghtuGNe4fhFJhIJBzPM8duy4iPHxC3jhhQP85CcPUq9fyMaNF3cdedRoDZw5U+KDH/xVNm3aBkTBoV5Pc/iLf8URz+OBB/6aXbv+gi9/+a+5995v8vTTf8uXv/znHZ3FVwLr1m3lkUfu4fjx93PVVdc33/N9nx07LiMITnLJJe9K/DqIyPlJwWCGdDrN5ZdfwrvetZ1nnnmBPXseIJ3eyYYN25t35QcOPM5TT/2oozUAUKmUeOaZB3n/+3+peW6hsIYNGy7E8zxGRlaTTo90HTU0NvYefuEXNvDQQ3dy/PgbXH/9P8T3g+b7zp1k1apVfbgCInI+UjCYQzab5dprr+KSS6KRR3v3HsTztrF//085fXqqozXQ8NRTP2D9+ovZsuXC5rF8fpQwrAOwffsOnPvZOb9zdHQtH/3o7Tz66N1873t/xg03fJo1azZQLk8xOpoiCII5PysishxKQC9gZGSEn/u567j11qvJZJ4mDDN84hOfmxUITpw4yquvvsB73/vhjuPF4ijVahQMon0C5o+/6XSa66//ZXbuvJIf/vDPOXjwec6cOcmWLWoViEhyBtYyMLObgX8DpID/4Jz7l4MqSy/WrVvHJz95A9Xqy10r9D17/padO3+WYrFzJNLatRtYv35L83Wvw0IvvfQDrF27lV277iKXW83ExAeW9weIiMxjIC0Di/ZV/GPg48BlwG1mdtkgyrIYGzduJJ8/He9o1nLo0F4mJ6e47LJrZ33GzCOXi+YJhGEIPQ04jWzadCEf+9j/RCYzTT6/cktti4jMNKg00XXAAefcyy7a7eRO4FMDKkvPPM/jH/yDrRw/frh5rFar8fTTP+C9772pa4uhfSiocyGet7gJY/n8KJdeeiVr1iy825qIyFINKhiMAa+1vT4cH+tgZreb2W4z233s2LG+FW4+O3ZcQL3eCgZ79z5IsbiV8fGdXc/3PI8wjOYaRJvLL372sHMlslm1DEQkOYMKBt1qxFmzs5xzdzjnJpxzExs2LG+piJWyevVqNm40Tp8+zuTkCV566UmuueamBT4VAlEwWOykMeccZhWNJBKRRA0qGBwG2jcL3gYcGVBZFu2KK7Zx8uRh9uy5jwsvfB+rVq2d52yLWwTEQ0wXd8mr1TL5vDafEZFkDSoYPAbsNLOLzMwHbgXuHVBZFm18fBuTk/s4fvwtrrzy+nnP9TyPxpp1UctgcZV6pVJiZEQpIhFJ1kCGljrnamb2BeD7RENL/9Q59+wgyrIUuVyOYrHGFVd8qOtS0zM1WgZRymdxwaBaLbFpk4KBiCRrYPMMnHP3AfcN6vuX66qrLuP55xce4RP1EbQHg8WniUZHFQxEJFmagbxEhYJPrVbp4UxrG020uHkGAJXKtNJEIpI4BYMlyud9wnDhYOB5Ho3MUBiGix5NZFYml1MwEJFkKRgsUTTUs9zTuY2WAYBziw0GmmMgIslTMFgi3/cx661lEKWHljaaCBQMRCR5CgZLFI0i6i0YNETLUSx20pmCgYgkT8FgiYIgwLne0kQQ9Rc4Fy5qNFHUx1Ajk5m905qIyEpSMFiiXlsG0FifKFz02kTVaoliMdDsYxFJnILBEmUyGTwvjJelXkh0mRe7aqlmH4tIvygYLEOvcw3MaLYMFpMm0oQzEekXBYNlyOV8qtWF+w2iABC1IhaT8qlUSgoGItIXCgbLsLhZyCEQEm3y1pt6XWkiEekPBYNl6D1N1OgzWOw8Aw0rFZH+UDBYhkIh6DFNtLShpWYlbWojIn2hYLAMi0kTLaXPQC0DEekXBYNliOYa9NIyiALAYkcTafaxiPSLgsEyBEGA5/XWZ9DqQO7tktfrNTIZp9nHItIXCgbL0Oss5EafQRj23oFcrZY1kkhE+kbBYBl6X5KikSYK6fWSa/axiPSTgsEy9LpYXWPSWTS0tLdLXq1qwpmI9E9iwcDM/m8ze97Mnjazu81sdXx8u5lNm9mT8ePfJ1WGpGUyGcxqzQ3v59JYqA5670CuVKJF6kRE+iHJlsH9wBXOuSuBF4Evtb33knPu6vjx+QTLkCgzI5vN9DS8NEoR9d6BHIYlRkZyyyyhiEhvEgsGzrn/6pyrxS8fAbYl9V2DVCj4VKvzB4PG0NLFdCBrwpmI9FO/+gx+A/jbttcXmdkTZvagmd3QpzIkolAIqNUW6jfwlrBqqeYYiEj/pJfzYTP7AbC5y1tfcc59Jz7nK0AN+Gb83hvAuHPubTO7BrjHzC53zp3q8vtvB24HGB8fX05RE5PP+7z5Zu9pol47kDXhTET6aVnBwDl303zvm9lngU8CP+/iXlYXDb8px8/3mNlLwLuB3V1+/x3AHQATExPz99IOSLG48JIUjQAQXQK1DERk+CQ5muhm4J8AtzjnptqOb7B4HWcz2wHsBF5OqhxJ6y1NZDgXxnsaL3zJa7UqQZAilep9uWsRkeVYVstgAf8WCID74w7UR+KRQzcC/9zMakAd+Lxz7niC5UhUEPjA5LznRENLXdxnsHAHsiaciUi/JRYMnHMXz3H8LuCupL6333zfx6z3PoNeGmPVaonVqxUMRKR/NAN5mXqbhey1pYl6bRloWKmI9I+CwTL10jJopYYcnrdwP0C1WmLVKrUMRKR/FAyWyfd9nFs4TRStWhr29DudK5HPKxiISP8oGCxTIxjMtz5RNIKoMc9g4ZaBmYaVikh/KRgsk+d55HJparXqnOeYGc65nlct1YQzEek3BYMVkM8vNPHMwzlHGDoaexvMT8FARPpLwWAF5HLzBwOzaGipcwtPOovSTRUtUicifaVgsAKKxWCBYODFrYKF5xnUahVyuXTPaxiJiKwE1TgrIFrGeu65Bq0lrBduGWj2sYgMgoLBCigUFkoTeXGaaOEO5EpF212KSP8pGKyAXC4A5p9r0AgGC11y7X0sIoOgYLACorkG8y1J0RpBtFDLQMFARAZBwWAFLLQkhZnFO53Ve+gYLpHLKRiISH8pGKyAaBjofB3I0QzkXtJEZmXNMRCRvlMwWAELrU8UzTPobQayc9MKBiLSdwoGK8D3febrQI5GE0FveyCrZSAi/adgsAJSqRSZjFGv1+Y4o7dtL6P3q3FwERHpHwWDFVIoBPNOPAvD+oJbXlarZQoFv6etMUVEVpKCwQqZb7G6aA/ksIdgoNnHIjIYiQUDM/tnZva6mT0ZPz7R9t6XzOyAmb1gZh9Lqgz9FC1JMVe/gUe9XlswGGgpChEZlHTCv/+rzrl/3X7AzC4DbgUuB7YCPzCzdzvn6gmXJVGFQkCt1j1N5HmGcwuniSoVbXcpIoMxiDTRp4A7nXNl59xB4ABw3QDKsaLmbxlAvR6y0F4G9XpZLQMRGYikg8EXzOxpM/tTM1sTHxsDXms753B87KyWy80318AMVEvfAAAO0UlEQVQjDGt43kIdw9rURkQGY1nBwMx+YGZ7uzw+BXwNeBdwNfAG8AeNj3X5VV03EDaz281st5ntPnbs2HKKmrj5ZiFH8wzcgmki7X0sIoOyrD4D59xNvZxnZl8Hvhu/PAxc0Pb2NuDIHL//DuAOgImJibl3nB8C861PZBbNIVg49ioYiMhgJDmaaEvby18E9sbP7wVuNbPAzC4CdgI/Taoc/TLfLORoobr6gmki5xQMRGQwkhxN9H+Z2dVEKaBDwD8CcM49a2bfAp4DasBvne0jiWD+Zawbm9vM14Fcr9dJpepkMpmESigiMrfEgoFz7tfmee/3gd9P6rsHIeozmK9lMP+kM004E5FB0gzkFZJOp0mlHPV690bOQmmialXDSkVkcBQMVtBcS1KYeYRhnfkud6UyrR3ORGRgFAxW0HzBoF5fKE2kloGIDI6CwQqaa+XSKAjMv3x1va4+AxEZHAWDFVQozL1y6Vx9CS0aVioig6NgsIKKxWCONJEtuJ+BWSkekSQi0n8KBison/ep12eniaL0kMNs7sutCWciMkgKBitorlnIvXQgK00kIoOkYLCCgiCYc32iaD+D7p+r1ar4vpFOJ729hIhIdwoGKyhqGXQfTRTNQO5+uavVMsWiWgUiMjgKBisoWp+oeweyc3OniapV7XAmIoOlYLCC5ksTheHc+xlUKiWKRY0kEpHBUTBYQel0GrNavHdBSzSaqD5nmija+zjXhxKKiHSnYLCCzIxcbvbEs2htorlbBs6VyOfVMhCRwVEwWGFzrU803xLW2u5SRAZNwWCFFYuz1yeKOpDnThNpjoGIDJqCwQrr1jKIJp3NnyZSMBCRQVIwWGGFgk+12hkMPM/DLKTb5XbOAWUFAxEZKAWDFRYtVjd74plzdE0T1WpVcrn0vMtbi4gkLbH1D8zsr4D3xC9XAyecc1eb2XZgH/BC/N4jzrnPJ1WOfvN9H7NTs44757ouR6G9j0VkGCQWDJxzv9p4bmZ/AJxse/sl59zVSX33IEXBYHaayDm63v1XKiXWrNGwUhEZrMRXRrOo1/RXgI8k/V3DoNvKpVF6yNEtK1etlrT3sYgMXD8S1TcAbzrn9rcdu8jMnjCzB83shj6UoW+iDWq69Rl0H00UzT5WMBCRwVpWy8DMfgBs7vLWV5xz34mf3wb8Zdt7bwDjzrm3zewa4B4zu9w5NyvRbma3A7cDjI+PL6eofdNtsTrPszgYdIu9JXK50f4UTkRkDssKBs65m+Z738zSwKeBa9o+Uya+dXbO7TGzl4B3A7u7/P47gDsAJiYm3HLK2i9Rmqja0RJoBAHP6zbPoEQ2u7F/BRQR6SLpNNFNwPPOucONA2a2wcxS8fMdwE7g5YTL0TfR+kRparVq27FGn8FcwUBpIhEZrKQ7kG+lM0UEcCPwz82sBtSBzzvnjidcjr7K56MlKTIZv3ksDN0ccwk04UxEBi/RYOCc+x+6HLsLuCvJ7x20fN7nxIlWv0ErCHQGgyiVVIk7nUVEBkfTXhNQKMxcn8jiZSc6VatlCgV/zjWLRET6RcEgATNXLm2MJprZgawdzkRkWCgYJGB2yyAyc2ipJpyJyLBQMEhAEHTOQm6MJpoZDCoVBQMRGQ4KBgkIggCzVprIzOJtL9UyEJHhpGCQgG7rE8HsPgNtdykiw0LBIAHRUNHOoaXdl6NQMBCR4aBgkIBofaL2NJGH2ewOZDNNOBOR4aBgkIBui9V16zPQ3sciMiwUDBLgeR5BkGquT9RtnkEYhnhejUwmM6hiiog0KRgkJNoLOWodNFoE7S2DajWacKbZxyIyDBQMEpLL+c1ZyGazO5ArFe19LCLDQ8EgIbNnIc8OBppjICLDQsEgIe3BIBpa2rm5jSacicgwUTBISOdidQaEtF/uWk1pIhEZHgoGCclmW8NLG5PO2je30exjERkmCgYJ6bYkRXufgVlZm9qIyNBQMEhI+2J1jZZB5x7IJXK53EDKJiIyk4JBQjpbBlEQSKVal9u5kloGIjI0lh0MzOyXzexZMwvNbGLGe18yswNm9oKZfazt+M3xsQNm9sXllmEYtS9JMXOhunq9RibjNPtYRIbGSrQM9gKfBn7cftDMLgNuBS4Hbgb+nZmlzCwF/DHwceAy4Lb43HNKdNffWqyufQ9kTTgTkWGTXu4vcM7tA7otq/Ap4E4XLd950MwOANfF7x1wzr0cf+7O+NznlluWYZJKpchkjHq91jbPIIq91WqJtWsVDERkeCTZZzAGvNb2+nB8bK7j55xcrjHxzABH43JXq2VNOBORodJTy8DMfgBs7vLWV5xz35nrY12OtWrE2ce7fe/twO0A4+PjPZR0uBQKPlNTFXw/jXNhs2WgNJGIDJuegoFz7qYl/O7DwAVtr7cBR+Lncx2f+b13AHcATExMdA0Yw6xQCDh5skw2W8S51jyDMCxRLGpYqYgMjyTTRPcCt5pZYGYXATuBnwKPATvN7CIz84k6me9NsBwDk89HaaJGi6C1lLWGlYrIcFl2B7KZ/SLw/wIbgL8xsyedcx9zzj1rZt8i6hiuAb/lnKvHn/kC8H0gBfypc+7Z5ZZjGBWL7cEgbFuoTktRiMhwWYnRRHcDd8/x3u8Dv9/l+H3Afcv97mGXzweEYTS8NBpZavFzBQMRGS6agZygmbOQW2sTKRiIyHBRMEiQ7/uYNba+jOZi1GpVgiBFKpUacOlERFoUDBIUdRK3twyMSmVacwxEZOgoGCQoWp+otSSF53lUq2WKRQUDERkuy+5AlrnN7DNwzqhWS4yMaFipiAwXtQwSlMlk8LyQMAybfQbVaonVqzXhTESGi4JBwgqFaK5BY6E650rkcmoZiMhwUTBIWC7nU62WyWQCPM/T3sciMpQUDBLWaBls3LgFz8ugOQYiMowUDBJWLAbxMtbROnuafSwiw0jBIGH5fJQmaqlokToRGToKBgkrFHzq9Wh4aa1WIZ/PNFcxFREZFqqVEta+F3K1WqJYVKtARIaPgkHC2tcn0naXIjKsFAwS1j4LuVotKRiIyFBSMEhYEAQ4VyYMQ2o1BQMRGU4KBgnrXJ+oQi6nYCAiw0fBIGGZTAazGtE8A80xEJHhpGCQMDMjl8sQhiFQVjAQkaG0rGBgZr9sZs+aWWhmE23Hf8HM9pjZM/HPj7S993dm9oKZPRk/Ni6nDGeDQiEaTqrZxyIyrJa7n8Fe4NPAn8w4/hbwD51zR8zsCuD7wFjb+59xzu1e5nefNfJ5H3BkMi7uQxARGS7LCgbOuX0QpUJmHH+i7eWzQNbMAte+7dd5pFCIAkCxGMy6ViIiw6AffQb/LfDEjEDwn+IU0T+186B2bMw6HhlRikhEhtOCLQMz+wGwuctbX3HOfWeBz14O/Cvgo22HP+Oce93MRoC7gF8D/nyOz98O3A4wPj6+UFGHVpQmUjAQkeG1YDBwzt20lF9sZtuAu4Ffd8691Pb7Xo9/njazvwCuY45g4Jy7A7gDYGJiwi2lHMMgCHw8z7FqlYKBiAynRNJEZrYa+BvgS865h9uOp81sffw8A3ySqBP6nBYEAel0qJaBiAyt5Q4t/UUzOwx8APgbM/t+/NYXgIuBfzpjCGkAfN/MngaeBF4Hvr6cMpwNfN/H90MNKxWRobXc0UR3E6WCZh7/F8C/mONj1yznO89GUTBw5HK5QRdFRKQrzUDuA9/3CQKnloGIDC0Fgz5opIm03aWIDCsFgz7wPI/f/d3fVstARIaWgkGfrFu3btBFEBGZk4KBiIgoGIiIiIKBiIigYCAiIigYiIgICgYiIoKCgYiIoGAgIiKAOXd2bBNgZseAVwZdjjmsJ9r3+Xyn69Cia9GiaxEZ1HW40Dm3YaGTzppgMMzMbLdzbmLQ5Rg0XYcWXYsWXYvIsF8HpYlERETBQEREFAxWyh2DLsCQ0HVo0bVo0bWIDPV1UJ+BiIioZSAiIgoGy2JmN5vZC2Z2wMy+OOjyJM3M/tTMjprZ3rZja83sfjPbH/9cEx83M/t/4mvztJm9b3AlX1lmdoGZ/cjM9pnZs2b22/Hx8/FaZM3sp2b2VHwt/s/4+EVm9mh8Lf7KzPz4eBC/PhC/v32Q5V9pZpYysyfM7Lvx67PmOigYLJGZpYA/Bj4OXAbcZmaXDbZUifsz4OYZx74I/NA5txP4YfwaouuyM37cDnytT2Xshxrwu865S4H3A78V/7c/H69FGfiIc+4q4GrgZjN7P/CvgK/G1+Id4HPx+Z8D3nHOXQx8NT7vXPLbwL6212fPdXDO6bGEB/AB4Pttr78EfGnQ5erD370d2Nv2+gVgS/x8C/BC/PxPgNu6nXeuPYDvAL9wvl8LIA88DvwM0eSqdHy8+f8K8H3gA/HzdHyeDbrsK/T3byO6CfgI8F3AzqbroJbB0o0Br7W9PhwfO99scs69ARD/3BgfPy+uT9y8fy/wKOfptYhTI08CR4H7gZeAE865WnxK+9/bvBbx+yeBc2VP2D8C/ncgjF+v4yy6DgoGS2ddjmloVss5f33MrAjcBfyOc+7UfKd2OXbOXAvnXN05dzXRnfF1wKXdTot/npPXwsw+CRx1zu1pP9zl1KG9DgoGS3cYuKDt9TbgyIDKMkhvmtkWgPjn0fj4OX19zCxDFAi+6Zz7dnz4vLwWDc65E8DfEfWjrDazdPxW+9/bvBbx+6uA4/0taSKuB24xs0PAnUSpoj/iLLoOCgZL9xiwMx4t4AO3AvcOuEyDcC/w2fj5Z4ny543jvx6PpHk/cLKRQjnbmZkB/xHY55z7w7a3zsdrscHMVsfPc8BNRB2oPwJ+KT5t5rVoXKNfAh5wceL8bOac+5JzbptzbjtRXfCAc+4znE3XYdCdLmfzA/gE8CJRjvQrgy5PH/7evwTeAKpEdzafI8pz/hDYH/9cG59rRKOtXgKeASYGXf4VvA4fJGrSPw08GT8+cZ5eiyuBJ+JrsRf4P+LjO4CfAgeA/w8I4uPZ+PWB+P0dg/4bErgmHwK+e7ZdB81AFhERpYlERETBQEREUDAQEREUDEREBAUDERFBwUBERFAwEBERFAxERAT4/wEjrIAp2XE+JQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "regions_df.plot(ax=ax, color='blue',edgecolor='black', alpha=0.3)\n", + "points_df.plot(ax=ax, color='red')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Trimming" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "points = np.array(points)\n", + "maxs = points.max(axis=0)\n", + "mins = points.min(axis=0)\n", + "xr = maxs[0] - mins[0]\n", + "yr = maxs[1] - mins[1]\n", + "buff = 0.05\n", + "r = max(yr, xr) * buff\n", + "minx = mins[0] - r\n", + "miny = mins[1] - r\n", + "maxx = maxs[0] + r\n", + "maxy = maxs[1] + r" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl0W2l63vm7IIiNIAjuAMF9FxdJlEjtS5Vq7Uq33fbYHrs7mTiZpJ2knXQySc7xuB3b7Uk5OY4zc3wSO07HjuN0Knbi3tJd3dXVtWqXuEmUSFHcCYIgQRIEARAEQQDEnT8uwCJFgrxYRErVfM65B8BdP9z73fd7v3d5XkEURQ5xiEMc4hDPPxQH3YBDHOIQhzhEenAo0A9xiEMc4lOCQ4F+iEMc4hCfEhwK9EMc4hCH+JTgUKAf4hCHOMSnBIcC/RCHOMQhPiU4FOg/IRAEYVIQhJeTPFYrCML3BUHwCILwV9F1/1IQBKcgCI70tvQQhzhEsjgU6IeQg58DioF8URR/XhCEMuCfAk2iKJqexgUFQcgTBOE7giCsCIJgFQThCzKOUQmC8FgQhOkn1n9OEIR+QRB8giDcEgShadM2tSAI/58gCDOCICwJgvBHgiBkbtr2p9HrLwuCcE8QhM9sOvaMIAjvCYLgEgRhQRCEvxIEwbxp+28LghCKXje2VKfnDu16H4oEQfiL6H/yCIJwUxCE00/s84Xo/1oRBOG7giDkbdqW8L0/xLOBQ4F+CDmoAIZFUQxv+r0oiuJ8oicSJMjpd38IBJEGki8C/0EQhOY9jvnnwJY2CYJQB7wF/D3ACHwf+J4gCMroLr8GtAMtQD1wAviN6DYlYAMuAznAvwD+pyAIldHtucDXgUqke7IM/NkTbfofoijqNy3jMv57qtADXcBJIA/4c+AHgiDoAaL38T8CfwPp/vqBP9p0fDL3/hDPAkRRPFx+AhZgEvi/gUfAEpLg0US3/TJw44n9RaAW+BrSyx0CfMCvAKtAJPr7v0T3PwPcAtxAH/DCpnN9DLwJ3IweW7tHW7Oi16zftO4bwL/e5ZgqYBD4DDC9af2vAj/Y9FsRbcNL0d/dwM9v2v4FwLbLdR4A/1ucbSeA5U2/fxv4b0k+r98G/ifwX5EGigGgPYXn7wVORr//LvDfN22rid7v7GTu/eHy7CyHGvpPFr4IvIb0AtfziSYaF6Io/haSAIhpmv8RSWjORH//siAIFuAHwL9E0gj/GfAtQRAKN53qbwBfQhIaVkEQfk0QhLfjXLYeWBdFcXjTuj5gNy3x3wG/jiSsN0OILk/+btlle6kgCDlPXkAQhOJo2wbitOHSDts+FzXJDAiC8Pd3af9O+CngL5FmFt8D/v2mtvyRIAh/FO/AJ9p9HFABo9FVzUj3EwBRFMeICnGSu/eHeEZwKNB/svDvRVG0iaLoQtKYfylN5/3rwA9FUfyhKIoRURTfQ9J839i0z38RRXFAFMWwKIohURT/tSiKn41zPj3geWKdB2kw2AZBEH4GUIqi+J0dNr8HXBYE4QVBEFRIQl8F6KLb3wG+IghCoSAIJuAfRdfrNp8kald/C/hzURQf79CGo8BvIpl9YvifwBGgEPi7wG8KgpDIPb8RvafrSFrysdgGURT/gSiK/2CvEwiCYIge+zVRFGP3dLf7m9C9P8SzhUOB/pMF26bvVqAkTeetAH5eEAR3bAEuAOZN+9h2PnRH+ADDE+sMSKaHLRAEIQv4PeAf7nSiqPD9m0ja7SxQgGR2ijlO3wTuAfeRTEbfRTIvbdjiozb/byBpsb+6QxtqiQ4Moihe33TtR6IozoiiuC6K4i3gD5AczHKxOYLID2g22f73hCAIWiSfwR1RFP/Vpk273V/Z9/4Qzx5kd45DfCpQtul7OTAT/b7CJo00qqkmAhvwDVEU/+4u+yRC6zkMKAVBqBNFcSS67hg7mzrqkJyS1wVBAEn7zomGU54RRXFSFMVvAt8EEATBCPxtJKchoiiuIgnpX41u/xLQE9WKEaST/imSg/ANURRDmy8uCEIF8D7w/4ii+I09/pfIVvPOU4MgCGqkwcmO5PfYjAE2afvRyBs10n2PIP/eH+IZw6GG/pOFLwuCUBoNUft14H9E1/cBzYIgHBcEQYPkkEsE/w3JVvyaIAgZgiBooiaO0mQaKYriCvBt4HcEQcgSBOE88NNIWvKT6EcaqI5Hl78DzEW/2wAEQTgZbVchUnTH92NmE0EQLIIglESjb84gRbL81qbz/wcks8nnosJ/A1HfwYfAH4qi+MdPNkwQhJ8WBCE3eu5TSOac/7Vp+6QgCL+c6P3ZC1Hz0DeR/An/hyiKkSd2eQvpeV2MznB+B/i2KIrLCd77QzxrOGiv7OGyPwtbo1zcSKFsuk3bvwo4kYTgXyca5RLd9ttsitYAXmBTJEl03WngKuACFpCcpOXRbR8Df+eJ/X8deGeX9uYhaZgrwBTwhU3bLgK+OMft1LYbSCYDF5JAz9q07VL03viBIeCLm7ZVRO9DAMkUEVu+GN3+W9Htm7f5Nh3/F8BidP1j4B9t2qaKtqkxzv948p5XRq+ljP7+Y+CP4xx7Obqv/4m2Xdy0zxei93UFaZDJk3PvD5dnexGiD/AQhzjEPkIQhAvAl0VRTJdj+hCHOBTohzjEIQ7xacGhDf0QhzjEIT4lOBTohzjEIQ7xKcGhQD/EIQ5xiE8J9jUO3WgsEEtKKvfzkmmD1+smK8tARsanewwURfD5PGg0WjIzVQfdnB0RDK4RCgXJytq/5EVRhOXlJfT6HBSK/e0DkUgEn89DVlY2GRnPdupIKBQkEPCj1+cQzQuQDa93iexsY8LHPe8IBPyEQkF0umwyMjJ23GdwsMcpimLhjhs3YV97R0lJJd/4Rvd+XjJt6O29Rn5+CRUVtQfdlKeK4eEBPB4HHR0vHXRT4qKn5wYFBYVUVDTs63V7e2+Qk1NITc3+XhfAZhtjYmKYCxde2/cBRS4CgQA3b/6IY8fOUFCQWG6a37/C7dvv8tJLP/uUWvfsIRKJ0Nd3i5WVFdrbL6LR6OLu294uWOWc89nsGc8g8vOLWVxMmC32uYLfv4LN9pgjRzoOuilxEYlEcLnmKC4u23vnNKOkpJy5uUQYDNKHsrIatFo1g4MPD+T6cvDwYRcmkyVhYQ7g83nR6fRPoVXPJoLBIJ2d7xMOi5w589KuwjwRHAp0mcjPN7O09OkW6IOD97BYqtDrn6TyeHawuDiPVqtN2wuQCIqKSlld9eD3r+z7tQFaW88wOzuKy+U8kOvvBqt1nNVVDw0NbUkdv7LiQ6fLSnOrnk34/T5u3/4Ren0+J0+eR6lMn6HkUKDLhF5vwOt1Mz8/s/fOzyHm5mZYXl6ktvboQTdlV8zPzyalAaYDCoWCvLxiZmen9975KUCj0dHQcJyHDzsJh8N7H7BP8PtXGB29z9GjZ5IWTn6/D63200/o6HY7uX37x5SWNtDScjLt5rM9zyYIQpkgCB8JgjAY5XT+SnR9XrT81kj0MzetLXvGMDIyiFarpq/vNk7np0tTj0QiPH58n4aG42nVFp4GnM4ZioqSoohJC0pKKnE4pg7s+mVlNej1OoaHnx2urAcP7lJWVovRWJD0OVZWvGRnb6Og/1TB4Ziiu/sqTU0dT80PI2d4CAP/VBTFI0hVab4sSDUZfw34QBTFOuCD6O9PJex2K1NTg1y69DmOHz9LX991bLbJg25W2jA6OohOp8ZsrjjopuwKv3+FUChAXl7RgbWhsLCE1VXvgZldAJqbzzA7O/ZMmF7GxoaIRILU1rbsvfMuWF31odN9ejX0iYlBBgZ6OXHiMmbz0/P/7CnQRVGcFUWxN/p9GanMlwWJge3Po7v9OfD5p9XIg4TL5WRwsJuTJy+h0+kpLCyhvf1FRkfvMTKyf1pS7jtv0fLZSk50KGj5bCW577yVlvM+D47QGObmZsjPLz7QNigUCgoLTdjtB6elazQaGhvbDtz04vG4mZjo5+jRcymZDiKRCIHACllZz67vJhUMDHQxNTXB6dMvkZeX/CxGDhJ6CtHiuG3AXaBYFMVZkIQ+cHBq01OCz7dMb+8NWlo6tkwnc3LyOHv2NWZnx3nwoItI5El20vQi9523qHjzS6gdVgRRRO2wUvHml9Ii1J8HR2gMkrnFctDNwGSqYH7+YKJdYrBYqsjK0jE0lJ6ol0QVBqdzng8++C46nSHlvuP3r6BSqZ55c1+iCIfDdHd/hMfj5fTpK+j1T38GIlugRyuGfwv4x6IoehM47kuCIHQLgtC9tLSQTBsPBMFgkJ6e61RV1WEylW/brtHoOHPmNfx+Dz09N56qpmT5w6+SEfBvWZcR8GP5w6+mdN7nxREK0svhdjspLDx4gS6ZXZYP1OwC0NJyhtnZiZR9OokqDFbrKH191ykvr0yLI3NlZRmtdv+jlp4mAoEAd+++h0Kh5syZF9FoNPtyXVkCPUqY/y3gLVEUvx1dPScIgjm63cymkl2bIYri10VRbBdFsT03d89Ep2cCkUiEnp4b5OXlU1MTvzauSqXi1KkrKJUK3nvvu4yMDOByOdOusavmdp7ex1svBzFHaGNj23OhGTmdDrKzs1GpDj579ROzi6xcj6cGjUZDc/NJ+vtTM73IVRgikQj9/T1YrY/o6HiJsrJa1tZSH9RWVj5dES5er5s7d94lP9/CiROpmaMShZwol1gJrkFRFP/fTZu+h1Srkejn/3ry2OcVfX2dKJXQ3Ly3XVmhUNDWdoH1dT9TU0M8etTJ++9/k9u33+fRoz5mZ20EAoGU2hMs3j5D2G29HMQcoTvNPp5FSOGK6SqBmjpKSqqYS2FATRfM5goMBgOPH/clfQ45CkMgEKCr6xo+3xJnzryOwWBEq9UTeGIgSAZ+//K+0jg8TTidDrq6PqCqqpnGxv2f+coZOs4DfwO4IgjC/ejyBvCvgVcEQRgBXon+fu4xNNSPz7dIW9ulhEbWtraLaDQ5XLjwBleu/Cy1tU1kZIhYrUNcv/42H3/8Nr29d7BaR/F6nyyqvjvsX36T9ScSadY1OuxffjOh88TwPDlCY1hcnD3QcMUnkZ9vIhBYwec7+NrJTU2nmJuzsrAwl9TxeykMXq+HO3feR6/P4tSpKxuzJJ0uPQJ9ddX3qRDoNtsYfX23aGk5e2AUIXvOtUVRvEH8wrbPLuFHEpiammRmZoSzZ19L2AxhNlcwPNyH272I0ZhPYWEJhYWSRhmJRFheduNyzeFyOZiYeEQwGCI3t4CcnAJyc/PJzS2Ie82lz3wRkKbGqrkpgsXl2L/85sb6ROByOenquk5+fuFz4QgF8HiWgAgGg/Ggm7IBhUJBUVEJMzNT1NfHN8vtBzQaDU1NJ+nv7+LixdcT7rv2L79JxZtf2mJ2iSkMDsc0/f2d1NW1UlFRR+47b23ph3OXf5rAC5/D/NF3ku6fPp+XrKznOwZ9ePgBdvsk7e0vkpNzcCk5z77xNA6e7FjJCrgYFhbmGBnpob39xaTSyhUKBRZLNRMTI7S15W/blpOTR05O3sa6QMDP0tICLtc8w8NTrKwsk5WVExXwBeTnF25px9JnvpjS/5ubm2F8/DGBgAeTycT8/MzG4POsQwpXPJjs0N1gNlcwNPTgwAV6rC0Oh43Bwfu0trYndGw8haGz9jhTA52cOHGBvLyiDedpTPCrHVY+8+3/yOzKMpb3/8eW9RVvfmnLueMhEokwO2tjetpKUVGQvLyCZ5Z8bCdEIhEePryN1+vj7NmXD4SSYjP2tQRdU1O7mA62xSc7FkgahfWrX09K6Hm9Hjo7P6C19RTFxclP6wOBANeuvc2lS59N2Ksdi+JwueZxuxfwet0oFJkYjQXk5haSm5uHwZCbcGe3262Mjz8mElmjsvIIZWU1KBQKZmetPHp0j9OnX9qXcKpUcOvW+9TUNKb0bJ4GIpEIH374XU6degmD4eA1zGAwyPXrb3P06DkKC5MfAMPhMA8edLKyskRHxycKTstnK1E7tjuCI4oMFJH1bevXTBX0vz2567VcLifd3R9RWlqFyzXP6uoqRmMRBQUmCgtN2/pmuhW5VBAMBrl37xoKhYpjx848VYd9e7vQI4riniP1c6mh7+aVT/ThBgIBenuvU1vbnLLA0Gg0FBaamJoaS1hrUyqVFBSYtvCUeL1ulpYWcLvnsVoHCYVCGAx5W8w0O3WiSCSCzTbJ5ORjlEqB2tqmbVmgZnMFgYCf7u6rnDlzJSHNYj9fqkAgwMqK+5nU0BUKBcXFFmZnbc+EQFepVNTXH+W9976N2VxKRkYmGRkZ0UWJQpFBRoYKpTIDhUJJRkYGSmXmxm+lMgNRhLGxAbKydNtMj/Gcp8IOwny3/TfD5VrAZCqjqUmSVYFAgIUFO07nLOPjD1EolOTlmSgoKKah5yMq/9WvoAgFAWkmUPk7fxvYeyaQbvj9Prq7P8JoND0VTpZk8VwK9HSF8YXDYXp6rlNUZKKyMj3cClVVjdy7d4va2iMpP2SDwYjBYKSiog6QOrvbPY/TOUdX10csLS1SXFxKQYEJvT4Hg8HIysoyU1PD6HQ6mpqOb9jxd27rEYLBAN3d1zl16kVZGsZO02650+tksLDgICcn95kNrTSbK3j06B4NDamlvkN6BkqFIoOamkaam9tZXw9vLOFwiHA4TCQSJhyWfq+vBwgGVzbWra+H8XiW8Ho9nD//yrZ7Hiwu31FDFxUKhB1CdeVEYbndTszmTxQpjUZDWVkNZWU1gKTULCzYmZ4e5eXf/0cbwnzj/4aClP3+V/ZVoLvdi9y7dw2Lpf6ZMLdtxrP5luyBeB0r0TC+vr47aDSZG9pBOmA0FqDRqJidtWGxJM6NstdL7fF4cTjsFBQUc/LkBXS6bNzuRXw+N7dv3yEvr4hjx87I5jtpaGhjbe02vb03OHXqhT0HoXTOjuRgYWFm10HpoFFQYCIUWsXr9aSkpadroHS7neTmFqfk8F5YcNDf38ncnI0jRzo2BvqdnKdhtZbB06/R1Pnj7SbQX/kawWAwmpchCfxIRNzI05C47R20tJyM25aYUlNT04zWv3NEkdKzmPL9l4u5uWn6++/S2Nie1Pv9tLGvAn19fZ1AIIBKpUpJe93NKy8Xjx71sbbm49Spl5NuRzyUlzcwOTma8APPfectKn/nb2+bUvr9K9ypPsrCwjRFRWY6Oi5tcbDm5ORFnUtTnDz5QsI28ZaW0/T0fExv723a28/vuu/TSHKKh9gLfxDxvImgqCh1s0u6BkqPZ5G6utTInwoLTZw//zqDg/e5efMHtLScprCwZJvzNFBYwtXXvsC7+WVcKirlxff+khzPIp6cfD5+9RcZVGsRrn5vo6ScIAgIggJBAEGQ3n+n04FCkboY6un5iEiEqHlGsr+nOztzcnKIsbFBjh27SEHBs8l0sq8C3e/3cePGDwmHQ1H7nRKlUkVmppLMTDWZmZkolSpUKg2ZmZmoVBqUSulTrdagVEp8D6mG8Vmto8zPT3LmTOLhiXJgNlcwOHgPj2cpoRCmst//yo5Tyuo/+Gc8/JMbHDkS39lqt0+g1+cm5eCUkqMucffu+zx82ENra3yNKV2zIzlwuZyoVKpnvpJNOswu6RgopfBY75bBXg7izQqPHTuFwzHNgwedFBeX0Nh4grmXfp7u+uPY7WNAJmVltfycuQzTh99Ee+P74F1Eq83i6NEzlL36C3teu7v7Q2Znp2TFbYcN+WR6F3dc/+KLn8frdbO4OIvDMcHgYDc6nZ68PDOFhcW7hgXvBa/XzejoQ7xezzMfRLCvAj07O4eXX5ZqBgaDQcLhEMFggLW1tej3IKFQkLW1IMvLPtbXQ4RCa4RCsc81BAGUykwys3JQ/vofo1Sqo8JfjXKoD5VKtTEQxAYBlUqzMW2cm5thdPQBp0+//NT4FRQKBWVlUgjj8eOnZB+n9GzvrABa/zL19btrqXb7GGVlyfsBlEolHR1XuHPnXUZGNNTV7WwbTMfsSC4OsphFIigoMBEOryU8gG9GOgZKr9eFWp2VULTFXqYek6kUo7GAgYFufvjD/45arSY/38KRI6c2Imly33mLit/9laTMRWZzFbdvf8TCwgwKhQqVKjOq5Kmiylxm9FPN2Fd+j/rf/Xso1kMbx0eUmdj++R8An5hnqqqORGd38zidMwwP32NlxUdOTgH5+ZL2Hu85xfxUbrcTj8eF1+tGEDJwOh18/vN/a984WZLFgdnQJcGrSrjslOTQCbK2tkYwGBsIJKEfDEoDQSi0SCgkbQuFgoRCISKRMBkZGczPO3jttZ976kk1FRWNXL/+NoHAUVmdIJWMQ5/Pi8/nS5lnWeKmeYlbt95FpVLvqDWlM8lpLzidMzQ1JVfSbL9RXGxhZmY6aYGejoHS7XaSk5NYXoEcU49Go+HkyQssLTlpbW3fFg2WirkoEPBjNpdhsVRElbw1QqEgfr8/+v6ubTh0e7LzqP/ZX+HyjyXTjtdYwK3P/jITeSUoe25EZ/CZZGZ+MiAYjUUUFZUjiiJerxOvdxGbbZhIRMRoLEKny0KtzsTjceF2u6KRZEYMhgIqKhoxGgtwu51YrY+feWEOz6FTVDLTKBMO4I9EIvj9K9y48cOEtb5kog80Gg0FBXuHMC4sOJicHMHjmed0lgHNynYiy7Bh95d0amoYs7lqT7+EnP+h0ehob3+RDz/8Ln6/n6qq+m0dOdUkJznw+1cIBv1PtZhFOsMvzeYK7t+/zZEjrUkdL3egDAaD+P1eVldXWFlZZmVlmbU1P6urKzgcNhoa5M8IITFTj0ajQaVSp3SOJ7GwYKempgmTae+Q4dx33sJy/fuovIusFZdi/zu/ifLyT1EZCm4If2lQWGV11Us4HIwOBqHo9likj4jHs4jdPolarae6upGiIhPV1c1kZ+dse4/c7iUMhsTMWAeF506gJ/sSKhQKNBptUtdLNvogXghjOBzGbp/Eah0BQlRUNNDWdpaZ0B9R+bW/hSK885RyJ0QiEWZmpjh1ancWBrn/IxwOMzbWj1arZ2VlkevX3yYnpwiLpYLiYsu+hQ/Oz8+Ql1f41OJ70xVVIsX8j2G1DjI/76Cz8wOOHj2flDa39JkvsvDK/47f79sQ2v6BLlZXVwgE/Kyu+hFFEY1Gj1arR6vVodfnUVRUuuFn6O7+EJ+vUbadN1FTz06JiMmaiwIBP8vLy7IUrCefl2bORsO//QoajVb28woGg4yP9zM1NUZjYwf19U1kZe3tn3G7nVRUVMu6xkHjuRLoqb6ESqVyxw65G1KZThqNBahUmczN2TGbywgE/ExOjmKzjZKTk0NDQ+uW6Wsy5oy5ORs6Xc6eERZy/ofH46Kv7wZ6fREvvfR5lEpldPCZwGYb4vHjHgoLyygtrXqqlVecznn6+joxGrPx+bxPxTyWalRJMBhkamqYyclhsrPzaGho58IFE4ODD7h9+0e0tp6moMC87TipOo+flRUvfv+yJLT9vg2BHQyG0Gp1aLV6NJostNosjMYitNosdDr9ngNFRUUDAwM9nD79gqz7kIipJxaZkso5YgiHwwwO9iEISllKQirPKxwOMz7+CJtthLw8CxcuvJGQqXd52UVu7mnZ+x8kniuBno7QLkEQCIfDsjXNVKMPMjPVXL36A3JyCvB6F8nPL6S1tQOTaWd7d6LmDJttFIulas/99vofExODjI8/or7+JGVllRvblUolFRV1VFTU4ff7mJ4e5+HDW0QiCkpKKikrq0rYDxIPgYCfR4/u43bPcexYO4HAGnfvvk9eXhF1dUfTKtiTfa6BgJ/x8UfMzloxGotpb7+8hQ+nufk4BQVF9PXdxWjMRa83Egj4olp2gEBgFZVKi1ari2raWeTnl5KVpUeny0Kj0aY0K6mubmJm5ofY7VZZYbPp8Ikkco5gMMjk5Ag22wgajQZBCHP37se0tnbs2o+SeV6RSITJySEmJgYxGovo6Hg54dBSn28ZpTLjwDla5OK5EujpCO3KyFAmVIAileiDsbEB/P5V3njjl1hZcbO8LC2Dgz3093eRk5OPwZCP0ZgXN41/N/j9PpaXPZw4sXdb4v2PtaIyuro+JBAIcfr0q7tO1XU6PfX1R6mvP4rLNY/NNsatWz9CrzdiNldhNpcmxWchaVBD2GyPKSmp5OjRz20MuNXVjUxMDKVdsCf6XH0+L+PjA8zN2Skurtj1XhUXl5CT8yrvvPMtLBapwpHJlEVWVjY6XZYsgZ2KabGpqZ3792+TlWXAaNzbSZuIEhHv3dnrHIFAgMnJYez2UYzGAtrbL23kTwwPS7Oa6uqjVFXV7Xh8Is8rEolgt09ETYc5nDx5OWkSuqWlRQyGg2NPTBTPlUBPR2iXIAhEImFAnuBJNvrAah1hamqM06dfQqfLwmDI2cKnEmNbXFqaZ3T0ASsrXtTqLIzGQozGPIzG/B0dNFuvMUxBQZms2caO/0Ot5f0rP4tGk8PJk23kv/sXsoVIXl4ReXlFRCIR5uZsTE+PMzx8j/x8MxZLJYWFJlmCa3bWxuPHfWRn6zh9+pVtwlqlUtHQ0EpVVQMTE8Pcvfs+ubmF1Na2pkSnK/e5ut1Oxsb6WVpyUVpay8WL8ojXNBodR4+ewuNxxBVS8ZCqaVGl0uJ2O+ns/DGCoNzg/zEac6OZzPsXrREI+BkbG2JmZpyiIhOnT7+85RkrFAoaG49TUlLJw4e3mZmZ4tixU9sGS7nPa3bWyujoQxQKNc3Np1MiKQMpUSs7+1CgPxWkI7QrUQ09mSmp3T7ByMgAp069GHcaqdHoMJsrNoR8JBLB63VFKXUdTE5KnOl6vRRClZ+fv+VljEQiOBxTtLVdSup/+PNNfPDSL6D4wv9Fq7ksaSGiUCg2/kcgEMBuH2Nk5D79/UHM5ipKSyt3nOZ6vR4GB++xtualqenEnsRokmBvoaqqnomJYTo7PyQ3t4C6uqNJCfa9nuvc3DQTE49YXQ1QVlZHa+u5hGcfZWVVjI31Ewj4E5qypxYGKJHNdXS8QEVF3SbFYYHJyUcsL3vJzFRjMOSTk5NPbq40Q5Qz+Mazoe8En2+Z8fHHOBxWzOYyzp9/bdcEMYPByNmzrzExMcidOz+msrKJ6uqGjXbt9bypHlw+AAAgAElEQVQWFmYYHu5jfR3q64/LipqRA49nkfr61Hl69gvPHX1uqqFmH3/8fU6evER29tPhfZibm+bhw85tttVksFOSQ+xlBFhednP58hsJnnOV+/dvsr4u0NZ2ZmPAiUeNKocCdSd4PC7s9nFmZqysr0sVfjIzM6MJH06CwWXq61upqmpKymYs2WKHmZoaJi+vgNra5AT7ZsSm6lbrEOvrUFnZSFlZZUo27b6+LtTqDBobT8g+5kSHAmGH91IUBHq74isj4XCYzs6r5OXl7nq9GIunx+PE613C7/eRlWUkJ+cTIb+TOen27fepq2vZNSrF6/UwOjqAyzVLaWkVlZVNCc8IfD4v/f13CIdFWltP7Rrb73LNMzLyAL8/QG1tyxb/T6qIRCK8//63uHLlZw6cHO5TS5+bagy0QqEkEofuM1U4nQ4ePrzL8eMX01I4QqPRYDKVb6n7GXsZbbaRDeIjuQJnYWGGBw/uYDbX0tjYsuW4dHO0hEJhgsEI6+siWq0avV6LVpsFKPD5FikvP0ZNTVNS54YYVWwLlZX1TE6O0Nn5YdKCPRwOMzU1gtU6jFqtp7b2aNo0vKqqejo736e29qhsoZCsafHBg05Zg0csoxIkU1CMi9/tdjI/b2V09D7r65EtPp4YnYAo7jyguN2LjIw8wuOZp7y8jpaWz+05o4mnnOn1Bs6ceRWrdYiurg8pLa2jvn5rf/V4XIyM3Mfj8VJT00x5eU3aQ1y93iU0Gu2BC/NE8Py0NE1QKIS4nTIVSCF/N2ltPSuLuCfZmcZmSt2urg8YHHxIc/OxXY+RHE/3sdunaGk5Q3HxdvbCdPgnAoEANtsEMzMTiGKYkpJKLl9+Y5u5IRBYIRxOz6AqCfZmKivrmJwc4e7dD8nLy6O29uienCaSo+4xdvs4BkNh3GeXyqzQYMghOzsfu31igwZ5LyRjWnz8+AGrqx5On35F1jU2Yycu/s2mmomJfpaXvbhcTnJycrewXzqd84yNPcLvd1NeXkdb21lZAlCOia+iooHi4jL6++9w48aPaGk5hUqlYmTkAYuL81RWHuH48UvbrpeuhLGlJdeBlpNLBj9xAj0jQ4qtTie8Xjfd3R/T2Ni+o7B8EulKamltPc/Nmz+kqKg4rvPH7/dx794NlEoN58+/GteWm6x/IhKJMD8/g802gds9R0GBiebmE7tOyzUaLW53YoWy90JMsFdXNzA+PkRX18fk5u4s2P1+H2NjAzgcNgoKSunoiF9xKB3PqqKiltHRB7IFeqJ+m6mpCRyOibSSze3k45mfn+Hx4z7W1m5QWFiK1TpGKOSjqqqRsrLEiqrL9RNImctXsNnGuHv3x6ythWhsbOPSpVM7zgDSyde/tLRIbu7zkSEaw3NnQ08Vd+58QE3NkbRxbPv9Pu7efY+qqlYqK+VV+k6nvXpubppHj3o5e/bVbbbK2VkrAwPdlJc3yiLiT0Sz8fmWmZoaZ3Z2Ao1GTWlpNWZzlSzHocMxxdTUBKdOXZb3J5NAOBxmcnIEq3UIo9FIba1EbjY+/ojFxTnM5mqqqur3jKFP17P66KO3aW1tTzvZmJSEdT06KMU3NaVLa5Xs9NdwOMbp6HgRi2VvyomdkIyf4P79W+h0hl2dlOl8t65e/QHHjp3GaHx6SXRy8am1oaeKjAwl6+vp0dADgQDd3R9SVtYoW5hDeu3VxcWlzM/b6e/vor39IiBpUwMDXTidc7S1XSI/v1DWufbyT0hZo1PMzk7g87kxm8s34okTgUajY21tNaFjEoVSqaS29siGKebq1R+wvr5OU1M7zc07a3c7IR3Pam5uhmAwxO3b73LmzCtpUyZ8vmX6+m7R0nJ6T2GeLq1VqVTS3NxGMOjbqCqUDJIx8a2vh9Bqd0/VT9e7FQwGWVtbSYrD5SDrnn5qBHowGIyyL8aYGIObmBjXosQ8a0xPTxCJRDAai5KOxw0EAszOTtDXdxedLgu9PotgMChbSKSbU/zIkZPcuPED+vq6KS42MTrah1pt4Pz519NSuNbtXmRqapy5uSkMBiNlZdWYzRVJO6EkgR5IuV1yEBPsxcUl3LnzPhUVtQndk2SfVTAYxGabYHp6DIUiQmNjE4KQSX9/L3r9IPX1bQkPhJshKRPXqKk5smfIZ7qrTGVn5xAMriXU559EMia+UGhtz3c2Xe+Wx+NCrzck3Mf3u0Tjk3imBHokEtkiiIPBQDRaYm0Tm9on3z+h1vykYIZEm6kiM/MTGk2NRk12tgGVSkVpaSXz83auX38bk6mKmppGWanrwWAQh2MKh8OKx+MmN7eYlpbTrK+vMzExQl/fXfR6Pbm5hdGkG1Pczp5OTvFIJMLU1ASrq6uEQpOMj/cBShoaSqNp5sm9cFJMuRW7fZz19TVKSir3jCWWC5VKQzi8llCETqrIzs6hqMjE2NjQnk7kzUj0WXm9HqamRpmdnSQvL3+bP6G0tJKJiWG6uj6moKCYxsa2pJhD79+/RWFhkaxauOmOYFIoFKjVOubnpygtlT8z3Yxk8jvW1gI7sj1uRqrvVjgcZnbWytBQHwqFIOuYzdjvEo1PYl8F+tpagMePHxIMBrZwHUvCOcj6usRZLgnizA1u4xjBvVarITvbgFqtjlY4Um8Ur0hEMMQq3o+ODnDz5o8oLCylurpxm2MsHA6zsGBnZmaCxUUnRmMRZnMNJ06UPuF8aiEcDrO05MTlcjI5uVXA5+ebyM0t2hCu6eIUdzrnefSoB5Uqg3PnXt3Q+DweF9PTY3R1fYBanYXZXInFUiZLcMzNzWCzjeNyOSgoKOLIkWNpr+mpUCjIzMwkGAzsK0dGXd0xbt16l5qaOtnXlfusHI5prNZRlpcXKSmpiDv4KRQKamoaKSurZmRkkBs33qG0tIrq6hbZg29fXycZGciuhZvuGeH8vB2PZ5GHD3sYG3tEfr6Z4mIL+fnysoNjSDQEORQKoVbvzpiazLsVy3aenbWyuDhPdrYU/mqzjXH//g2OHj0n+3/tZ4nGnbCvTtGqqiPim2/+xUZZuViZOanCkCrlWqPJIBa6Nj09htFYTE1NI8FggJmZSZxOB9nZuZjNFRQXlyZkookJ+MXFBdzuebzeRbKysjcEfH6+KemIhNVVP4OD9/F45qmvPxaXnCsSibCwMIPdPsnjxw8wGHJQqVTRuo4CoEChUKBQCCgUCmZn7RQWFlJV1YjFUpMWc008XL36PVpazsq278eQqn1yYKCLSESxa5k9uQgGg1itY0xPj5GZqaCsrA6LpSqh5+r3rzA09BCXa4bq6iNUVDTs+g4MD/czP29NKKLlSTMARIs4f/XrCSsRNtsYw8N9HDt2gYKCIlwuJ/PzsywszLC6ukxeXiGFhSUUF1vSOlhHIhF+/OO/4tVXfz4tMiL2bkhC3IFGY6SkpByzuWzjPQ+Hw/T03ECphLY2eVE86U7Qi0GuU/QnLsolHqSoiMf09FyjoMBCeXk9ZWUVaeuUmwW8yzWHz+ciKysbo7GQggJ5Aj4SiTA6OojN9hiLpSqhZJWuro8wmSoxm8uIRCIbldhj3yUtxY7VOkRHxwt72ndTEayBgJ8f/egv0WiyaW7ukJ3dl6hgihWDWF72sLLiwedbxudzMzU1xU//9F9POsbY41nCah1lbm6K/PxCKisbUy7E4XYvMjT0kLU1L3V1x7bw/sRgt1sZHu7l7NnXEu6X6XDUjYz0Mz09zokTF3e8d4GAn7k5B07nDIuLc2Rl6SgoMFNcXJpypEgg4OfGjR9tlLBMFi7XPHb7BPPzdlSqLEymciyW8rhm13A4zL17t4EgbW2X93zf0jl4bsahQE8Sjx51k5GhSangrxzEBLzTucDS0t4C3uGY5vHj++j1Ohob2xNmHHz8uBfIpLFx94o6NtskQ0M9nDhxMa6QSqXTRiKRKHNiCXl5eQwN3UMUlTQ2HtuTSCme9hMoLuODP70RreAj8Yz7fD7W19fRavVkZWWTlZUT/dSzuOjA4bBz/vwrsrW9Twa8EVZW3Fgs1VRW1qfdZDQ3N8PQUB9KpUBj44mNZ+ByObl37yrt7S+m5ExNFgMDXSwuLtDeflmWzykSibC4OM/c3CxO5wzh8Br5+UWYTGXk55sTc0wHg0xPj/P4cR8vv/wzCc8cYzQUc3PTKBQqTKZySkrKyc6W9w5JPos7BAJe2tuvJJ0BmwoOBXqSsNnGmJub2QgBTBVyH+5OAl6vN6DXG/H5fITDfhoa9iaxige7fYKZmWk6Ovb+Xw7HNP39dzl27OyO9vNkppVOpwOHw4bNNkokIvKZz/zihjCdnh5ndPQhWVm51Ne37qj9ra2tcfa8hp3cVCLwH/7wQzQaffSeZZOdnbOr4Ll79wOMxuI9B+5AIMDU1Bh2+xgqVSbl5fVxY6/T9SJLVZAmGR/vx2AwUFpaT39/J83NJ7bQQOwHJGF2g0AgRHv7xaTNcD7fMnNzMzidM3g8CxgMRgoKSigqKt0ScrmZhsDrdeHxuAmF1tBqDVGfW5Dc3EKKisooLi6Jawb1+bzY7eM4HFNEIlBcXIHFUp5S5mdfXxfLy/O0t7+07/VFDwV6kvB4lrh+/R1effXnUrYhp6LJxgR8T88tjEYDp05dScl26PG4uH//Npcv/zVZ+y8sOOjru0Vz88lt0385SSExG6XDYcXpnCMzU0thYSnLyx5ycvQ0NBzfcmwkEmFiYpCJicfk5BSj06kJh4OsrCzj96+wvh7h1/7FL6LYgSlTVGTQ25lYbkEg4OfmzXc4efKFHXl33O5FJiZGcTptFBSYqKpq3NVs8DSm2jGe+Hv3btLUdJTW1jNJnSdZBINBens/JiNDKzulXw6kYINZ5uZmWVycQRDEqC9HQSAQICsrh+xsiT8mRhQW6/vBYJC5ORsOxxRu9yIGQz4mUxnFxaVEIlJpx7m5KdbWghQVlVFSUp6wn2Y3DAz0sbgolXzcT4f+oUBPEgMDXYyPj6DTaSgra6C6uiHpjpyqgyQQCHDt2ttcuiSPg3s3SMxx3+TKlZ+V/X/c7kV6eq5TW9u8JW09vumjnB9//WPm5mw4nfPo9UYKCy2YzaUb7H3d3dcxm0vjOnKDwSAPHtxmYmKYmpoWysqqyM42oNHoONEuxNXQe7sT78c22xgTE0OcO/cqSqVEqzw7a8NqHWVtbRmLpZry8u1FsnfC03KGAYyPD7O4aKOjY/e6selEIOCns/MDcnJMtLaefKrBCgMD93A4pjh58gIGQ67sa4XD4ahwt2KzjQMKqqqkgtNy+fiTwfDwADMzo7S3v/hUyiPuBLkCfc9/LAjCfxYEYV4QhP5N644LgnBHEIT7giB0C4KQWKnxNCL3nbdo+WwlJzoUtHy2ktx33kr6XLOzVubnZ3nllZ+lo+MKy8sLXL36NmNjQwlxqMeQagiTzTZOYaEpLdM7qUi2Dp9PPoeK0ZhPR8eLjI8PMjExuLHe/uU3WX9COwmp1Lx76fPYbFby80u4dOkNzp17mbq6I1uoWKUaofGpi1UqFe3tl7l48TVcrhmWlhY3NKGgaeeSavHW74WyshqysnT09/cyNNTPRx99D5ttiMrKGi5f/inq64/KvvdPM1zNYqlgdnYau30i5XPJgdvt4r33vklBQRnHjnU89cgzr3eJxsajGI35CV1LqVRisVRx8uQLXL78U+j1OTQ3n6C4uET2eZKRH/X1zVRUNNHV9QFer1t2e/cDcv71fwFef2Ld7wFfE0XxOPCb0d/7jtg0V+2wIojiRlZWMkLd5/Py6FE3x49LFdsNBiMnT77AyZMXcLmmuXr1bazW8YTL1yWy/klMT49RUVEv+3p7QafLZnl5ecdt8Tq2wZBDR8eLWK1jDA8/AMB28XPc/T9/E29uESICy3nFTF35OV679l3+wT+8wl/78suYP/rOtmtEIhFWV31kZe2t1ZhM5Zw79xoLC1N0dl4nGAzuOJAkm5AVQ3PzGQYG7uL3u2lvv8SZM69SUpI4B3qqz3onuN1OHjy4w40bb2MwFNLf30N394d4PK6kz7kXRkcH6en5iIyMDKanR7l79yOs1lECgaeT2RsI+PH5XBQX71xjVy5ycwvIyTFgt0/KPyYF+VFVVUd19TG6uj7E7Xam0PL0Ys9eK4riNeDJHiQCsbcyB5hJc7tkYbesrEQQDofp7b1KdfVRcnO32lONxgI6Ol6itfUUdvsw16//iNlZm6zzpiKAHI5pMjMzEgqH20vbyM7OwevdrqHv1bH1+mzOnLnCzIyNb33rP3HnzvsMtr3I9W/00N0ZZuGf/FsqP/4OmrmpXV8Mv38FjUa9o8lnp7brdHrOnn0NrVbFzZs/ZuLs61i/+nXWTBWIgsCaqSLlcDCVSkV+fhHHjp1LKXokXYNNMBhkYmKQGzd+yL17t8jMzOLs2dd54YU3eOmlz5Oba6Gr6xo9PR+nVTv0+1e4c+dD5uetnD79Cm+88UWuXPk8paWVOJ3TXL/+NjdvfsDY2BB+/0rc8ySq8drtko8iHfb5qqpmxscfy1a6UpUfFRXVNDV10NNzFafTkXB7nwaSvYv/GHhXEITfRxoUzsXbURCELwFfAtLuoU/XNPfBgzvo9fm71n6U+KJfx+GYYnT0IQ8edGIylaPV6lCr1ahUsczV2KJKKSPUZhtPiPxIDoeEwZDL9PTktmPlpCtrNDpqappRKODChc9s0WDlpjv7fJ4dsyf3antr62ns9gl6ej7GfeQ0SynapDcjGAySkZGRslkh1ezfhQUpQ9fpdJCXZ6Ku7vg2O7BSqaSmpoGKihrGx4c2yvA1NBxPyZZrtY4zOnqfsrJaams/KSQRM2lYLFWEw2GczhlmZ6eYmOhHq82msNBCSUn5hkktGR4Th8NKbW3yhU42o6DAhEajZHbWhsWytxkuHfLDbC5Docjg/v2btLaeTjoKLV1IVqD/feCfiKL4LUEQfgH4U+DlnXYURfHrwNdBcoomeb0dkY6U5snJIXy+Zc6dk1cYIFZBqLPzGvPzk5SUVOH3uwkGg4RCQcLh2GdYoi7QGVF99U82qAqUSjXq0UEyM9Wo1SoyMyVuimAwgN/vJxAIsLq6zOTkIG1tccfJbZAjVLOzc/H5+rYdK7djZ2YqUavV24Sf3ON9vmV0uu2lzeS03WKpIjs7l/v3b7C05KS1tT0tWl0wuEZmZnoyYhNNZQ8E/ExNjTIzM4FCocJsrqSpqX1Pu71Sqdwo6hErnF1QUExd3TE0Gl2UBynGhbQW7ZtrGxQbsSUcDuHxLOH3L3Plys+Qn1+86zVjfT8WwTQ3Z+POnfdQqbR0DPfR9vXfQPFENbDdeEx8vmUCgeW0UktUVTUxOjooS6CnixKhuLiEjIyL3L9/g0hkfceksP1Csm/E3wS+Ev3+V8CfpKc5iSFVIp5YRfeOjpcTFg5Hj57i+vW3qalp2jF8KUY0FgwGNr1YAdbW1ggEfHi9i6yseJiZsZGVlUVRUQkajQ6NJgu9vgifz4PNNkJV1RFZ7ZEjVHU6PaFQYBtLntyOHa/AttzjV1aWMRi2a5JyBwSDwci5c6/z8OEdbt16j+PHz8UtTCEXoVCQzMzMlM6RCGK8IdPT47jdLgoLyzh69Dx5eYlnUm4unD0+/pjvfOc/k5tbEKXVUG+Q02VkqFGpMsnMlEjqJOoNVXRwVjI83M/jx72cPHlZViieQqGguLg0GioYQfXNP6b5P39tmzDfaGec52u3WykqKt11dpRobL/JVM7IyAPm5mb2LDaTTpK8goIi2toucvPmu5jNUxQVWdDpdGRlZaPRaPeN0iRZgT4DXAY+Bq4AI+lqUCJIZZobDAa5f/8mjY3tSQkFjUaD2VzF2NgAzc0d27bnv/sXu7ZLKkxwi+PHz2yLyQbIzS2ms/N9CgstsqbTcoSqQqFAp9Pj83m3CBC5HVsS6NtfWrnHr6x4KSnZPiVNRFNSKpW0tV1gcnKIrq73aWxsl6WNxUMolD4NfTf4fF6mpoaZnZ1Co8mmtLSKtraLaZllqFQqLJYKxsaKeOONX0z4+Pb28wwN9XP79ru0tV1MKE1foVDQ+F9/D2UwvtM0UGjZkVnT4bDS2rr93YkhWSra8vIGxscf7ynQ00WS53a7mJ6ewOGwkp+fj1IpsLg4jd3uZ21NUuLUam1UYdOj1Wah1WrR6aTvOl1W2gT+nr1JEIS/AF4ACgRBmAZ+C/i7wB8IgqAEAkRt5AeBZItG9/XdID+/NCVhUFt7hGvXfkhNTeuWafJeHXF0dJDJyUe72twMhhwqK5t48OAW5849GWS0HXKFalaWgeVl9xaBLrdjKxQC6+vbBbrc4/1+344hi8loSpWVDRiN+XR1XWVycpzCwiIikQjr6xFEMcz6+jrr62EikfUoV01s3TqRSJhIRCQSCePzLZORISW0pDv7LxwOMzMzyczMOD6fD5Opatdyd8nC51vm7t2PCAbXkj5HQ0MLen023d1XOXLkRNw8gZ2wm805rNLw8au/yIMPv0tBQSlmsxQj7vUuEYmEd3X6J0tFW1ZWw/j4AC6Xc8+ZT7LyIxgMbtBLh0KrmM3lnDv36o4+okgkgt/vY3XVh9+/wurqMi6Xh5kZP4GAn7W1NVQqbdQfp0Ony0arlQaArKxsWVQLMewp0EVR/KU4m1KnqzsgDA8/IBhc5+TJtpTOo9HoMJkqGB/v30JlGq8jlvz7X+f9ogpWVz2cO7c3t3h1dQMTE4Pcvfs+lZWNuxJ4yRWq2dnGHSNd5HRshWJnk4uc44PBIJFIEK12e+dMVFOSbLgOpqbGiETCBINeQiF9lHpZSUaGJnqfFCiVSjIyMsjIUJKRoYxmJCpRKpUoFNK2kZH7dHZ+KJunZC+43U6mpkZYWJhBr8+nrKwh6jxL/7Rb4ni5QU1NA1NTI7KEWDxYLBVkZem5d+8mPp9nx5njTog3wxIVGUz9iz+h6DNf5IzPy+zsFKOjD3jw4DbhMFgsll3Pm6zTUqFQYDJV0N19k+bm4+Tk5G3JhUgFCwsObLZxFhdnyMsroK6umcLC3ePeFQpFlJJi55l2JBIhEPBHeYhWCARWcLkcrK1JPrVAQH51r5+4TNGFhRn6+jo5d+6VhF7eeLY8v3+F27d/xPnzf21Dw4ubGg+s5BeT5ZqXNb0LBoNcvfpdjEYL4fAqy8susrIM5OcXbXCsJzpldzimsFrHOH36xYSOg1ho23tcufL5hI91uZw8etTJhQtvJHzs5uvbbBPMzIyTmRmLwEgPzW+MSfDkyctJadBShaIRZmethEJhSkqqKSurSssAEQ92u5XHj7tpbu7AZCpncLCX9XWBlpbUFJVAwE9Pz000mkyOHbuQdobBQMDPtWvf58iR9l0juZLNvrXbrQwMdJGVlU1mphKfz8v6eoTsbCN6fR45Obnk5ORuoRTYDZ/0uwkyMoSNfrdffC6RSIRTpzIOa4o+iUDAT1/fHVpbzyQszOOZUPjMF8nLszA5+ZjGRkmjiaexAOgX57adI55Qf/jwFmZzDS0t0mQoHA6zuDjP4uICw8P9rKy40esN5OXJF/AGQx4+X6/s/74ZCkXGjjZ0OVhe9iZV7SjGcjg1NYbPt0hhYQltbefSXri3rq4FlUpNV9dHtLVdkK3lLizMMDU1yuLi/Ea44V6223RgeHgAu314CxeN2VwepXpNfeZ5+vSLPHjQyZ0779Le/uKuztJEZ1gajQ69PgetdnetOVFTXCgU4uHDHjyeOU6demFLHwkEAng8TtxuF/PzVsbGHhAMrpGVZUSvN2I0SkI+Rj0Qo4GYmZlkaWkBk8nCsWOnU6ZJTgaJzOz2VUOvqWkR/82/+Q5KpRKlMpOMDGX0u2pjCvw0iipEIhHcbic9PVcxm2sT1mD20hQkG+aPuXjxc6hUqh01FhEBge33Op62MTk5xNTUOOfOvRJXSG8W8EtLc6ysuDEYjGi1erRafTSEco1wOLzpM4jNNk5z8ylKS6sT4rxYW1vj/fe/ycmTlxFFMWqbFjdxq0vfRTHC+vr6xj6iGMHhmEar1XLq1AuyZhXLy15stglmZyfQ6TSUlNQkXDwiGTgcU/T3d9HSchqTaWf/Rizc0G6fICNDhcVSjcVSkZTGlmgURyQS4eHDbrzeBTo6tgvajz76X1G+8vRQ7I6MDDA9PcLx4+fJzU2N5CocDrOy4mV11UdPzzVOn36FgoL4oZIg//64XFJWrdGYS0vLaVn9JBgM4vE48XhceL1L+HweAgE/oqggElknNzcXs7lqX/rdXngmybkqK4+Iv/Ebf8b6emjDYRUKhTY5rEJEIutRO2cGSmUmCoUiWi80E4UiY+O7ZBPNQKlURRNDlNGKRxkb23w+L/PzMywtzaNS6aLXCWGx1FJd3Sh78JDDLtjbewu9Xk99/VEA9N/7M8z/7tfIXlpgrbgU9ZxtZ2KpTeeIwet109n5AadOvZzQ9D/mqOnu/pjGxhOo1RoyM6VKUEplJmq1GqVShSAIOBxWZmetrK0FMZkqKC2tjEstuplCdnnZhclUhiBI7HiCoACEjapHn6z/5LcgKAiFAng8LlZX/RQWllFRUbvtelI9x2ns9jF8PjdmczllZXW7VrR/GnC55untvU5Dw8mN4hufhBuO4na7KSoqo6ysOml7NSRXsKO39wYZGWLcYgsDA11kZKhpbDyadLuexOysjYGBzj2dpYGAP+r8W9m0+FlbW40KShG1WodGo8PvDxAOr9DaeiqlhMPNRV8aGxNz5u6EcDjMnTsfkp+fz5Ejz46b8JkU6HJt6OFwmHA4SDgsRSpIv0PRASDM+npsWY8WiQ5HBwhp30gkjNM5h1qtor6+jeLikg0Ti8/nZWTkAS7XPKWl9VRV1e8p2OXY8mJC+IUXfhq320Vf3y1KSys3HEty7YGRSIRbt97BYqnfNXM1Hnp6bqDXb6enjQev18309Chzc9NEIiJ6fQ4ajToqqMHlchEM+iksNKs8RsEAACAASURBVO9JISsHfr+Pqalhpqcn0WqzKS2twWDIidKeWtHrDZSW1mA2V+x7OcLN8Hhc9PZeJT+/DKUSZmam0GpzKC2twmIpT4vGloiN2Odbprf3Orm5+TQ3xyfMcrnmefiwm8uXk/dV7ASPZ4ne3uvk5xeSk5MXdd75tzjulMrMjVwKrVaPRqNDp9Oh1UrrnpzBLCw46O/vxmg00tTUgVq9ewHoJ+H3r9DXdxdRDHL8+IW0FDAH6Oq6Smlp5YEmCD0JuQL9mbShS2aY1Jo2PDxAKOTfJhT1egNtbRfw+bwMD9/n2rW3KS/fnSZXji3PYDCSm1vM9es/ZH09tC0kUa49cHCwB7XaEFeY7zYFnZubYXl5kWPH5PNmGwxGmpraycsrprv7GhZLLVqtlkhEGugdjllqa5uorm6Wfc7doNPpaWw8QX39cebnpxkdHWB6eoLjx89w9uzOYV874WlUhdmMnJw8Ojpe4tvf/k80NnZw6lT6ww3lRnG4XE56e29QVVVHTc3uzyEvr4jFxVkePOilvr4prhko0fuXk5PL2bMv861v/dkG1UBengmNRrcRS53oO1tYaOLixdcZHOzj+vUf0NLSLltbl2YNXZSW1lBf35rWwX9tbXXPYtT7gZij3W4fk33MMynQ0wG1Ws3qanzyIr3ewIkTl/B63YyM3Odb37qFxVKORqNDpdJEEwE0qNUa3GdfJ/jP/x1V/+lrqOZscV8Ai6WKiYnHvP76L2wLUZLjOJqbm2Z+fpazZ1/dsc27OWcXX/slHj++T2NjW8IvlsfjYmCgkzNnXqGgYKvTR6fLYni4N20CPQYptKycgoISPvzwOwlVvU824UQupIpBI4yPD2IyVeHzLaJQ7GQwSw1yEqrsdiuDg920tHTIFnY5ObksLy9w7drbFBeXU1lZt8W8lez9C4fXKSmx0N5+XlY75ECpVNLaehKTyUJ/fzczM5M0NZ2KOxCFw2EGBnpxuWY5ceKCLCdlooPX2logbdp+MnC7nVitQ8zPz5KXZ+LIEfns5J9aga5UZhIO713FJkaTu7YWwGDIJzc3PzqVXGVpyRNN3V+jR28k9Ku/F02b1kr26d5bqNXSd7Vay9raKnl5eXHjTXeL1Q4E/PT3d3L06Lm4nXm3RIu7NcfR6dSYTOUJdWApRO0q9fUntwlzkHgqhob6mJubfirEQ0qlkpycAhYXZ2VPcZNNONkLkiAfY3z8ETpdDseOSdEu4+MSX0p7+97FsxPBXrM2KZJlhPb2ywmZupRKJS0tp1CrtVitj+nu/oisLCOVlfWYTKVJ37/lZTdZWfLiuRMVopu19Zs3f0hT0/ZKWW73In19dzEYDJw//xlZCkCig1ckEiEUWkOl2t3Bne4ZYjgcxm6fYHp6lGAwRElJNRcvtiVcFelTLdBDoZDs/c3mCpaWlnZ1qsT4WSS7oZ9AYJW1tVVWV714vU6Wlz14PC5mZiYpKalMqL19fbewWGp3LZS82xR9auoxZ868klAHDofDdHd/hMVSt+H82wlVVUeYmHj01Jjk8vKKWViYkS3Q011MIhKJMD09zvj4ABpNNq2tZ7cMbtXV9SiVKn7wg7/kyJETmEwWCgvNKZsF483aFl/7JR72deL5/7l78+BG8/y87wMQBMEDIAmCAO/7aB5NNq9mnzPdc+7u7K60uiJLdsmxKrIkS1FsJSnJiuxyJCsuyS4rdiTZSmqdKDptWdld7ezs9hx9d7Ob930fIEgCIEAQAHG8BEEgf+BosonjBYiendmnisVuAi/w4sXvfX7f8/k6zAwOvnXKWhRHJBIkEikKhYLW1ks0N3exvb3OysokwT/7fXrjlNQmu35OpyPhcJKT55iOBxCx1q3WamZmnmM06mlvvwwEmJ+fYXt7ic7OAerqWpOeQwSpbl4+n0B2dnZSfZlMeYhOpz3cv7BJYaGGxsaLaLXiB3S8jB9YQs/OlnN8LJ7QdbpqVlfnz2hOxLuBYllqPp+P8fGn3LnzX7hwoTdc8pQ8gbayMoPfH6SlJfHA4nguuqtYS3V1IwUFKtELOBAIMD7+gLy8kqSDkisra1hZmWJ/35KwdC1dq6W0VMf4uHg5oEyp5EFkDN0sMlk+HR2DcTdUrbaM4mI1KpUSvX6emZnnFBaWotNVoNNVpd1k8rLX5vP5GHv+gKysY65cefeUFSqWSILB4Kk1LJVKqa5upGtmiNq/+cOY1VaQ/Pq5XHa02vKkn+m8HpRGo6W39wZPntzh2bPfo7a2iby8fJTKYpaWJtneXqOwUENxsYaSEl1CKzbVzV8QvEmt8/N+vlCNux6DYRmXy0VFRSNXrryTkW7WH1hCD4VcYhN6LOLhiz8d0jDf34sOlU1lJw5pSk+hVmv4iZ/4Bfb3LWxvr7G0NJ6wxC0UL1ticPDtpLtyLBfdn5PLg3d/isbGECmLXcDz86P4/dDXlzw+J5VKw4JHs/T13Yr5nPNYLUVFJRwfH+PxuETFLjOhkre9vc7a2ixSaQ6trf1Jm4EOD73k5xfQ2NhBY2NHdFjx7q6BpaUJ8vOL0GorKSurSvvG9HjcjIw8oLCwiIsXB8+sB7FEEgyeFcKKHn8Yu43cn5Ob9Pq5XA5R2uXpeFCRXhGTaROr1cThoQ+droZAQEp3dz+VlXWh8wwPT9/f32N7e5PZ2THk8uxwUUIparUOpbLoxVDpFDd/QfAmrbZJ10OMVHhtb2+Qm1tIdXULlZU1GU3ofm4JPZk1KJfHDrkkIh5NbSsm006U0MXcQDablfn5ccBPT8+1aJImL6+Aysr6aBPK1NRjJJJsKivrqaqqRaHIw+/3MzX1hJaWXlEkcNZFr+ajN34CfuqXo16AmAW8vj6P1WphcPAN0YuptraRjY3Z8EzQszmC81otanUZFss2tbXJ3enzqOQZjXqWl6eRSLJpbr4Ut3noZYRu9BeWm1wup7q6kerqRgKBALu7W+zubvPs2TwyWQ6lpVWUlVWKrlOPaLLU1cWvZBFLJPH0duIdHwTu/NgvsJivpla/FtOrDAQCHB66USqT9wSIJVG/34/Fso3JZGBvz4xcnodGU0F7+2XUag1SqRS5fByXyxk9RiaTUVpadsqTcjod7O9bsNmsbG6ucXjoDRO8Bunf/VW6/v2vkXUobvN/+Xs+z+eLwGzewmBYYn9/H52uhv7+23F7Ps6LzyWhi7EGZTJ5zKRoIuLR/t9DzM2NA91A4htIEDzMz09hs+3Q1HSR2trYZYYKRR4tLV20tHRhtZowGFZ4+HCW4mIdPp8XpVKbMH79Mk666EtLszgcJgZOVD8ks15Npk3W1hYZHHzzjEJkIoKUyWRUVIRU7Lq6rsa8JvGuVSyEugYdHBw4cLsd2Gy77O2JI/SXr4MYRCZNBQJSmpu7KS9PbYalIHjiuuKRip1IFYrNtovJtMnk5COMxh1KS3WE2j1eEG0wCBLJC/I1m400N7cl/PypEEmsqpy4x5fVovvH/wbMW2xsLLCyMkllZSN1dU3RcIbTuU9OjkKUAZBoDXo8LsxmA2bzNk7nPoWFGjSaCpqbu2MaNSpVMbu7sWP+L55TiEpVSG1tExBqhNvft7C/b+NRTRv6r/4sb3z0lyj3rXhLy9n8+d/CHWfteL1C0pJFMR6iIAhsba2wtbWKVCqnurqJ7u6br1x7/3NJ6GKswYiFEZoc9OJjJiIetVqLz+fB43GTl5cf9wbwlJTx+PEHlJXVcvPml0WX24XG2JXh8/kwGtcZHr7P4GDsEsVk8Hjc0UToSbxsvR5qq5j7u7/KTE0L9scfsLa2xJUrb566ecSGS+rrm3nw4Du0tJyVmo13rQ61VVgsO7hcDlwuJx7PAR6Pi6OjIxSKAvLzleTnF9LS0oVev8T09DMuXhxM65rEgtm8xcrKNMfH0NjYmbZcsiAISS23CNRqLWq1lvb2fu7d+1taW7soKXkRe36ZFKVSKW63i6WlKR4+/DYNDR1UVzeeeZ7YUFOoWfAs8SY7PjK0wum0s7Exz8OH30GjqaK+vhmHwyF6zN3La1AorWTkR36OkfxCDh/fQaOpoLq6mdLS8qT3jkpVxMrKlKj3jaD87n+l/4RxsvWLv82z/+6fYbNZsNutOBxW+PhvKCwsobhYQ3FxKUVFIY/A5/OiUiX2lhN5iHt7ZvT6Jfb2zGg0VWkPL0kXn0tCFz8yLQe/33eK0BNZOVKpFLW6lN1dI3V1TTFvgKPsHJ5+5e/zZec+jf/2V9MqW5LL5dTWtpKfX8jk5BClpdqUy5Pm58epqqo/c5N5PC4MnVe49y//HLvdis93hEqlpkiWS0tLD01NXUxPD1FSoo2Gh8SGSxSKPHS6GjY25rhwoTf690AgwMo/+A1a/82vIDsRoz3KlnPn1o+wuTJHXp6K/HxVeGBHYUxR/7KyKoaGPmZpaSoqoZAuLJYdlpenODoK0NTUcS7dewjF0JXK1GuTq6ubMRoNSSt4lEoVfX03sNmsLCxMotcv0tp66VRlkdhQ08tJ0VSPV6mK6Oq6is/nQ69f5NGjD7BarWg0GhYWptFqyxOSlN/vZ+7SDT75rT89HUoJH5dKzFipVIXH6fnSLlOs+51/iOQ3/hj1qfm2B+ztWXA49tjeHsXrPaCwsAir1cqlS8kb8056iEdHRyFr/OG38ftDeuzt7QOfmhrjSXwuCV2s6ymTZePz+U6RZTIrpbS0EqNxm7q6pugXVv7vfw3F7jYHxRpWf/Y3aShUZ6RsSaMpo6qqjomJIa5ceUP0cSc7Qh0OGzabmf19Cw6HjUAAioo0FBWVUlvbikpVHJqe9Fv/bfQmLv/pX+XO2EMGBm5TWKhOKVxSX9/Kw4d/i99/HBbsP8Dr9aJQl2H8qX/ClW99nfw9I0FpFrIjH+/e/wbbnQPsX405cvb0+8nlXL78Ok+ffkROTm7cMFYiWK0mVlam8Hp9NDV1ZizpdHgoUFqautJeZWUdq6szoglJrdZw7dqbGI0G5ucnwiqevdGqqnihJo/HhcWyze7uDjs7BsbHH1BWVo1OV31q/acSqvJ63dhseyiVSrq6BsnLU7K7u8XMzFN8viNKSiooK6ukpESH3+9LGkpJpwoqpCVeiNNpQ6OJX9IbgVjjpKBAGT6vBiBUXbS/b0UQJrFad6iqakj6Xg6HDb1+EbN5m6IiHS0tvZ+K0mYifC4JXazrGap08Z36WzIrpbS0koWFibB+jJ/7lS1YfvX3qa9vo67uAlKplMov12WssaW5uYuhoTssLc3S0pK8G9Pr9TI8fI+cnGzu3v0GcnkuRUWllJRU0dLScyYOGcti6fqDXyPwi7/DxyP3GBx8K6XYbF5ePj7fEVKpnIqKBgoKVOTnK0Ne0K2vsNvQdq7NTqHIo6/vdYaH75KTkyO6O9Jm22V5eQqPR6ChoZ3q6roMt4O702oHVygUqNVlbG+vip4PC6Fp8jpdJevryzx/fg+NRktr66VoFVAgEGBvz4TFsoPVasLn86FWl6HT1dHW1s/+/h4Wyw5LSzPk5eWh0ZRTVlYjqjFKEDwsLs5gsRior79Aff1r0WsZIVWXy4nZbECvX+Tx4w+QSuXU1V2IG0o5TxWUUlmMw7EnitDTrUCRy+XodBUUFhbzjW/8CQ6Hg6ysLICortFJ7O2ZycqS0djYwY0bXyI396yH/arlKWLhMynOJQZiLtazZ3epq2tOuSHmyZMPUCiKsdl20GrLaWnpOeU+iVFfTAUejys8z/H1uK5sIBBgbW2OjY1F5HIVzc0XKC4uSRqqSSQA9f4ffMTa2jRfdu7T/Hu/LEr1b3t7HYNhPa5Hke5QgpcR0i+5T2/vzYTt3TbbLqur07hc7jCRN7wSUa+PP/4GV6++lVZLuNm8w9LSODdvvnfmMTHr2Ofzsbw8j9G4Eu4YDWKzWcnLK6CkpBKdrpyiInXMzx0i/l3M5m0slh3gGI2mHK228sykHb/fz9raIgbDImVl1TQ3d4vyKlwuJ0NDH9LWFn++63nWhV6/wt6eid7eG0nP5bzrb2Fhir29bS5c6EUiiS/34HTus7IyQ319J42NZxPZqSppJsPnWpxLDMS4jolq0RMhEJBhtW4yOPhW7AaiDDa2wAvBqqmpIa5de+fMTbS9vc7y8hT5+cUpS+omslhqa5s4Ojribzfnee3nfovOP/835O0ZcavLGPmRX2BJW4v/2V38/iOOj4/w+Q7Z2zPR3BxfVjRTXZxqtYbOzkHGxx8xMPDGGQldu93K8vIkTucBDQ0d9PWdTSLGQzoa5EdHhynnOSLQ6SqYmxvBbreeauEXa7XK5XI6OrqpqKjmgw/+iuvX36Gz87Ko85FKpSfK/PpwOPYxm3dYWZljcnKIkhINGk0lx8dB9PoFlMoCBgffEp0AhZAu0sDALUZG7iGX58RszjrPulAqi9DrF0Sdy3l6FCwWE9vbK1y//oWk11at1qLRlDM2dp+DAwddXf2n1t+rkqdIhs8toYuBTCbHl2AaeSwIgoDX6+C1174c90vNRGPLSYQGRQSwWnd4//0/R6sNNUfI5QqsViOBgCRhF2MiJNt8lMpCHA4nz5vamfvdvyYrK5vsbDnZ2dloZXLk8hyys+XIZCFddUEQGBm5i8vVHrPMLJObXVlZFYeHPp48+YDm5i7kcgUezwF6/TI+n4+2tn56ehpTasFPx/X3+YSoNn+y1463UVRUNLC5uXyK0FO56QVBYHb2aXgojDTm2hSzUUXGr7W0dCAIHszmHdbWFrDbd7lx4wuUlqYXAy4sLKGr6ypTU09i1lmfZ12oVEUIgudMF3cspNujIAhepqaGRG+UENrIrl37IuPjD3j69GP6+q5Hj820PIVYfK4IPUJ8ofryQFj7PBCe4h4IT333RyfmHBzsEwwmF+g6ibW1RXS6yoyO3Er0eba316Ot56+//lUKC9U4nXYcjn0MhhXs9j2uXn0rLTKHxJuPXr/CysoUN29+AY2mTBQhKBR51NW1MjMzHDPsksnNzmTaZGdniWBQyujoM0pK1JSX11NWVoPdbsZgWAGCVFc3iC4dTcdy8nq9SSsWkm0U1dX1PHr0Ae3tL8poxd70TqedsbH7aLV1dHZeYWTkIX6//1TSOJ2NSqHIo7a2iUAgiNNZnDaZR1BaWkFLSzdjYw8ZHHzz1JjH86wLmUyGQqHE6bSJEilLtUcBYGLiGWVlVSmHZ2UyGQMDb7C4OMHTpx/R3X0NtVqTcS9e9Pm80ld/CV6vm8nJx+FRZcfR8WSBwDHHx0GCweMoMYdIOfJ4gGDwGHgxJUciySIrKzTZSCKRhqcWRSbmZIUnHWVjNu/w4MG3qaioo6qqKeGNKQgCRuNqXPnak0hn0ZxESCxpGpks90zruUajRaPR0tjYitm8xczMEPv7TbS0dKYcH463+Tyu7WR3fTbqXqdCCA0N7ezsrDE29ojy8mqys3OQyxXI5Qr23v07Md9P7LWKbHIbG/NIJNnU17cxOFiN0WjAYFikvb07+lyr1cTm5hJrazNotTXU1jZG52vGQzqWU6ipKHE7eLKNIi8vn+LiUra316NELOamN5u3mJ5+RnNzD7W1ocqLy5dvMzp6H7/fF+0qPY+L7/V6UCjEzdhNtulXVzciCF5GRu5z5cpb0Y32vEZQJDGa6VmyEGrQOz4WaGt7TfQxL1+H4n/0L5m7dIPx8fs0NfVQnGEvXiw+1aRoRUVj8Ld/+y8pKipBKpUik2WFR5VlnSDhEEGHZoxKwsSdFR5Ll16yy2IxsbW1gdW6TXGxmqqqRrTaqjOvt7g4jSA46e7OnN7zy9jZ2WB1dQapNIempg5RZU6h4dZP8Psl9PSkNuD6ZYTkBp4jCE56e29FN7hUk0lDQx/hcnkoLCzE7w/F10NzS4/IysqKhm1Cv3PCP9nI5RHyzwnrzoc2gkAgwObmMnr9Arm5hdTXXzh1bQKBAJ988g0uXz4bTw+NyFtie3sNuTyfqqrGuKJo6STN1teXcTp3E64LMYlyo9HAxsYsV69+AUieOFtfn2dtbZHu7mtnpI09HjfPn9+loqKGlpaucyXqx8aeUFJSmrRMNJVE38zMc5zOAy5fjj0qL1WsrMzjdtvp7j7bpXweRJLv1669m9JwlXjXYePaFxkff0hpaQ3X9bNU/eH/kpEql89kUjQ3V4HVasDnE2hubk9qTWUKkaSQz+djYWGKR48+RCLx09zcRXl5LSUlZfj9fra2lhkcTF4vnQ7S1RCByBT2t1hamuLJk+/R0TGQcus6hIhvbOwxOTlZXL78lugO2pdhtZrwej3cuvWlmJofPp8vTPChIdWHh6HfPp8Pp/OAoyMrR0ehx0NyxF6s1h3a2gbo7r4Zs9JHKpVSUdHI5uYynZ0DL10fBS0tXTQ1dbK7u8Xm5jLLyxOUl9dTW9t0Ktafjut/eCgktWDFWNs6XSVzc6M4naFh3onkc2enn2Gz7TE4eLarN/L8AW0Vn7z1k8we/QSd53DxDw89ooyEVLyAzs7LjIzcY3JyiJ6ea+euPCosLMZs3jjXa7wMn8/H5OQTOjr6U6peSnYdLl68wqNHH6DPzuXiH32MTlctOiR4XnyqhJ6Tk8vrr38VvX6R0dH7qFSlnxqxW627rK8v4HRa6eoaQKOpwGIxMT8/ydHRECBFqSxMKbsvBibTJsvLMwSDkrQ0RE6ipaULjaaMycnHWK27tLV1i7Z+XK4DRkcfUloaakl/GWJjfoFAgLm5EVpaYr93yff+ImW3enx8iOrqerq6Enfo1dQ0MDR0h/b2vpgEcVJTxeVysrm5yNDQHZTKEmpqGtHpKtNy/b1eD2p1YlEqMRuFVCqlvLz+1KYUSz53cvQugUAWV6++RSL5XIXZwLt//QfckUh4+uW/z80//b20XHxB8JCbm5zQUg1X9fa+xrNnHzE3N05n5/kGLhcWqnG7D0QlRsVicvIZGo0u5dmhca+DaZO7d79JIBCkrq4duVyB2bzDwsI4SmUROl0l5eW1aVdLicGnnhSVyULF+LW1rZ8KsRuNBtbWFsLzRS/Q03MtSkRqtYbW1k5crgMWFqax242iJVyTwWTaZHV1luNjaG6+eC4iPwm1Wsv16+8xPf0knIS5mrSMMaLk19DQGre5RazlqtcvIpfnxaw3TicxZzJtYbebY9Zov4xQd18xRqM+6XT3ggIV7e0DtLT0hKVyZ1hYGKeyspGa219LyfX1+Tzk5CTWARe7USTalFwuJ2NjDygq0tHZefbxmJbhoYfbH/4l/+dvfJ3ATwe4/v7/k3BM4ssIqSh6Ra35VBN9UqmUvr5bDA19j6UlhajGuXiQy+XI5bm4XM4zIbd0sLa2hCA46ev7YsrHxrsOEOQf/d4vYfzlf8V+9wtZar/fj9m8jdm8zcrKHHl5+Wi1VZSX12TcgPy+Nxb5/X70+kU2NhZTJvZ4CZrQKLENNjYWyMoKUl/fLmqK/OrqIpubcwwMvJn2hY6IQfn9wYxoiCTC2to8a2tzpxJmL2N7W8/CwggdHclnUr58Pbd+8bfRX/8SdvsedrsVl8vOxsYK169/kbq6pjPHpxqf9vl8PHz4Hbq6LouusDAYNtjeXuLKldRFzU7OaiwpqaCmpinm2L2X8eDBB3R1DWQsITc09DHV1Q2nNiWr1cTk5BPq6jpiNqpA4jj986c+RkcfIZUG6Ou7JdqK9XjcPH36Pd5880eSPjfdZhlB8PD06fdoaOiOu07FYHj4IWVlFVRXN6b9GhAaZTc6eo/BwbdTus8dDhtm8xbFH/wpb/7l/072kS/m8xJdk0AggMViwmTawmrdITtbRmlpBRUVdQm7eD+TMfSYJxDTYtfQ3NyRkNhjWYP1v/n38D/4Nt965++Ql5dHe/ullEqxGhtbCQYD3L//Lfr6XqesTLxVfVIMqqGhPePC9bHQ0NBGSYmOiYlH2Gy7dHT0nnLRV1bmMRgW6etLPpMyEAigv/4eE+2XcTptHBzsc3DgRDHxFKWyGJWqmMrKRhoa2pmbG6WoqPjM95OqSz47O4ZGo0vpO6qsrGFxcSyuLjvE3+hDGjea6DT12dkhJJJsqqubqKysjRvn9Pm8KBTn89pCUhI+/P5jVCoNq6tzUSPDYFhlcXGSzs7LCXMriSzkUPnca4yPP+H580/o778lKhzn8bhRKMRJGqRbqRKSc7jN8PDHKBSKtPVOVKpinE4bkD6hHx0dMTExREvLpaRk7vf72dszYTIZsNnMgBSNppLAT/4P6JsuUv1Hv4ncpD8zASpRdZFUKg1PuaogEAhgs1kxmbYZG3sMBNFqy9HpqkXJHMTC991CfxkRi319fZHCwvjEHs8aDAKzv/5HHP7oz6d0bvv7exgMa5jNm2RnyzCZjKhUBdTWtqLVVlJSUhaToC2WHVZXZxAEX1ie9dUT+csITUJ/htFoor6+lby8Ara2NrDbt7l06QaFhSXI5YpTN3io1n0Pp9OG3b6Hx+MiOzsHpbKYwsKScAOKOibJbW+vs7AweSZhl4qFbjJtsbAwyo0b76VcBTE7O45EchwzF5CqFWmx7LC5uYTNtodOV0NtbdOpphi/38+3v/2n3LjxJY6P/fj9R/j9x+HfRxwfH+P3+zg+Pub4+Cj6b7//iEDgOPwcP1JpqJpLJstGIoH9fSsFBUVIJFkEAsdcvpx86IGYzxYIBJiYeI4g2OnvfyNpMs5g2GB3V09f3+sJn5cJLC9PMzr6kNraVqRS6SmN+GAwGNWGDwYDBIMRGeDI/wN4vR5cLidXrryd9n02NvYUqTTApUuxK5ZCzVYGdnd32N/fo6CgCI2mPKrz8jIyKQPicOxjNG6xu7vF0ZEXjUZHWVktpaUVXL6cJcpC/8wRegSnQzFniT3ehQTxug2CILC9rWd7e43jYx8VFbXU1rawurqI3W6ipaWXvb1drNZtvF4XanWoTVqnq8TlcrK8PIUg+F6JGFSqMJt3eP78I8rKqtnbs2AybdHSNa7PLQAAIABJREFU0onffxyuKDlEKpXg9/txuRxhQa+yMIGHyPvlGv1ENcerq7NhTZe3oseJJVOfz8fjx9+ls7M/pnWerNbZ6XQwPPwxt2//8Jlrnq6WhyB42NhYZHt7PTweLNSBurw8zfT0GFqtmvLyahSKArKyZOFBwlnIZHKysrKinbRSaahkM/ScUIdtqAT37NrweFzMz4/icDi4du0tUckysbIFMzOj2O0m+vvfTNh7sbQ0y9GRh46OgbjPOQ9C0+xX2dxcxu+H8vIaCgsLw70kkuh1iQhgRf4f6imREBl4Hfmb3W5lc3OJw0MfNTWt1NaK7xTW69fY2Jjh+vXT1Vl2uxWzeQur1YjH40Gt1lFaWolWW560oSxT2kUvw+U6wGjcwmLZxu228+u//uOfb0KPwO/3YzAss7Y2j0qlobGxnaysLAZ+vA2lzRzzmGS7o8ViwmBYw2rdQaPRUl3dFCWWpaVZTKZ1Ll9+69SXGdq5TVitO+EORSk9Pdeprq4/N5GfV5Vtd9fI9PQTuruvo9GUEQgEePjwuzQ3t1NRURd9ns/nCxPXChaLnurqZpqaYjcriSHnubkR9vf3GRy8Hb1BxHyW8fEhsrKCMScfid0Unjz5mLq6xlOfD85vMUUG+I6OPkAiyaKv7wZabRWLi7MYjSs0N3elJeubCIuLE5jNRi5fvp1RDe2ZmXF2d9fp7z9bux/B1NQw+fl5ccfepQun045ev4jJtEVxeIh5JqVlbbZd1tfnsNttlJc30tDQnHBDdDodPH/+EQMDt8nPV2G17mA2G7BazUil2Wi1VWi15ZSUaFO6nzMtwhULguDhxo38zBC6RCL5OvBlYDcYDHae+PsvA78E+IH3g8Hg/5zszc6jthgh9qWlKWw2Gz/ktnLjP/xzJJw9/1i7oyB40OvX2NlZRyaTUFFRT2Vl46kbSK9fYW1tmqtX3024ONzuA54+vcO1a184V5MPnH9BWCwmJicfc+nS9VNxN6t1l8nJR3EnKh0cOFlYmMDt3qe19dKZ0i2xlsfk5GMOD/30998UdSOYTFvMzw9z8+ZXztX4YzBssLOzcqZvIBMWUyhBOcT16++cWgd2+x7T0yPI5Vl0dFzOaIXC7Oww+/s2Ll8ObY4+ny8c1vFxdHQUbt46ioZw/H4/R0c+jo+PwqGeI46OQv8OBPwcHR0hkUjweDzAMSpVCXl5SpTKIpTKQpTKIgoKVExOPqWqqi7l0r1YODnN3u32UFnZQE1N47nvkURwuZxsbMyzs2NAq62hoaH1TNWX3+/nwYMPyM6WkZMjx27fD80JKAnFslMRu4uFT0MmV2xSVAyhvwa4gD+JELpEIrkN/AbwXjAYPJRIJNpgMLib7M3SIfSXL5bh53+LR7UtWK1mfvze31Dz/p+cIvWTZBgIBDCbt9naWsdu30Wnq6SmpjlmgtBoNDA3NxxT2S8W5uZGODz009OTfLpJIpyHgKzWXSYmHtLdfTVm6GJycphg0Bc3XgiE62QnyMmR0dbWH820i7V0A4EAo6N3kcnyk16LZKGWVN7X7/dz7963uHLltDLgeTdIny8kBtba2huz1DQQCLCyMs/m5gJ1da00NLSf2cjSvcGfPfuQjY01CguLkMlkyGTZYTEuWTisk33iJ9SJG/l9OsQTCf+8OC+Px8XBgT3643I58XpdWCy7XL36Fg0NF5KeXzyEvL6F6DT72tomysurP9UQpCAI4XNYQ6XSUFfXQmlpyFt9/PhjdnZWaG7uRqerFDX67rOGjBE6gEQiqQO+fYLQ/zPwx8Fg8KNUTipVQk90cy70vs7MzHOurM0z+M0/PlV7q7/+Zba2NjAa18nLU1BR0UhlZX3cWJvFYmJq6rGoapAIfD4fDx58Ozz1J/0J3umGCEIW+EO6umKTeeQckxEohEhqfX2Z9fXZqP57/49dEL3R+P1+nj37kOLiilNaKy9jYuI5UulxzFBLBKlscDMzo8hkklPj8OB8FtP4+COkUjndJ+qIY8HlOmBmZpjj40M6OwejG+F5NpTJycfk55fQ1JQ+uaYKk2mL2dnntLR0p1wOGEooL2Kz2WImlL8fiMTsNzYWOToKEf3hoZ0LF3pRq0tRKoszXvv9aeBVE/oE8E3gC4AA/I/BYHA4zrE/B/wcQFlZTd+3v514gvdJJLu5BUFgevoJXu8hFy9exul0sL29jtfroKysmurq5qTWdqgm9T5dXVdSVptbXZ3FarUwOHgrpeNOIh0LPaQ/8YCLFy8nVYcLhThGuXkzdjXJSfI71Fbx7Id+jmeNbdw0rHD5//pfRROTIAg8e3aHqqrWmHXUZvMOs7PPuHHjvYTWUSqE6HDsMzJyN2ZyNB0YjXoWF6e5fv1d0dPZI4qVlZV1NDV1cemHm9L2uO7e/QZ9fbfPHQJIFaHreD9h41kEkZLPra1VUSWf3y8Eg0E++ODPqatrJz+/ELf7ALfbjtNpJxA4Ij+/gIKCUOhJpVKjVBZ/5j7DSbzqOnQZUAxcAQaA/yyRSBqCMXaHYDD4x8AfQ8hCT+VNktU1KxQKBgbeYGVlhr/92/+X1taL1Nc3odO9cPcSWWtOp4PR0Ye0t/elJR1aX9/G5uYKZvNO2gmfVLVFImTe2dkvSuqzrKyKnZ1NFhfHz1QyxGolv/En/xuaf/xvud82yP6P/jy37vwVudadpJZu5Lt49uxD5PIcqqvroo/5fD7m5kLNTclumlRqnQsLi1EoCjGbkw9hTgZB8DA7O0pv72uiyRygtraJjsmHVPz3X6LAtgsxcjqQXAc7RDSIIvNMx2wLC4sZHHyTkZH7+HyHtLZeOvOcl5uyOjquiGrK+n5hd3ebggI17e09Zx4TBIGDAztOpyNsBG7i8TiRy3PIz1eiVBaiUqlRqdSfO2s+XULfAv4mTODPJRJJANAAloydGeJbjf3+ABcv9tPTc3pEVaJWdOPtrzE6ep/Gxra0yUAqldLS0sXi4iSlpbHr1JMhFQKz2/cYHw+RudhZmwDt7b08evQdKivrRQ1YaPpPv4Pw7Q2MNU38Uc9t8vJyuXChL6m3k5dXQG/v64yM3EWhUEQ13OfnJ1CrS0RrTaciTVxVVY/BsHJuQp+aekpVVVPCafaxUPzBn1H7u7905jq+jGQiWXt7RtTq5M0k55nNmQgFBUquXHmD589DpH7x4iB+vx+jUc/m5hI+3xEVFQ3cvNnzSrVIMoXNzeW41UgKhQKFouzUjIFAIIDLdRDOMTjZ2trE7Z7i6EggP19JQYEqasmrVLH7Mz4LSJfQvwG8AdyTSCQtgBywZuyswhBjvQqCh62tZa5de/fM8fEIq+L/+HW+ma+msrKOurrYbdZiUVlZj16/iMGwkXZbsxgCczj2o95EKmQOoQXc3HyJqamn3LjxXnTjSeYBlZdXodNVsLa2yPDwJ6LmTBYWqunuvs7k5GP6+m5xeHiIzbbN9evJtVqSwe/34/G48HpdCIIbr9eN2+1keXmO/HwVVVWNooYgn3w9p9PO+vo8DscB/f23Uz6nWGvsZYgRybJaTZSVJdanifd+mRptplDkceXKm4yMPOTOnf+CVCpFqSyhoaETna4yI2GtT6MixGbbZW5uPOEs2pchlUpRqQrPeEghhVA7BwcOnE47OzsG3G4H2dnZ5OUpKSwsRqksjsbmz3ONBEHA43Hidh/g8Rzg8bjC6z3x+jqJpIQukUj+ArgFaCQSyRbwz4GvA1+XSCQzgA/4mVjhlvNCjPW6uDhDeXlNTHGheISVY96ib3GEwd/9hYwsrKamizx7dheJREJZWWXGd+9IjPPChe6klmi8G6a2tiGq/Nja2gWI84CkUilNTW1UVdWyuDjDgwffpqGhjbq61riLV6Mpo729n+fP73J8fExv73VR10QQPOEF7I7+CIKHw0MvguDF7/ejUOShUOSRk5NPbm4+Gk0Vr71Wh9O5z9jYIyQS0GpD2hgnvRG/34/dbsPh2Mfp3OfgYB9BOAivGwlHR960NuV4ayx0M0hwqbXs/NK/wpVkZqndvsfFi4Npv1+mRpvJ5XJ6e6/yne/8Fe+882Mxxwymi1flXZyE3+9nZmaIq1ffYWdnC5vNzMWL19Ku75fL5dGBMycRseYdDjtG4xbLyzP4fF5ycwtQqQopKChCpSpGqXzRsBcIBPB4XLjdzihhu90h4+TwUAAk5Obmk5tbgEKhRK0uo6qqgPx88d/BZ76xKBFCHYMfcf36ezG/sHgJR29+IfLjo4w0A4RmbN7n6MhNfn4hdvs+SqUarbaS8vKqc9fghhoi7tLaejFpFUKyhKLH4+bJk+9y+fKbqFRFaVVk2O17zM5OcHzspa2tN2HuYXT0Pk6ng9u3vxrTuvZ6PRweehAEAUHwIpNlhwk7P0rcubl55Obmk5eXJ8rVt9v32NnZwmze5Pj4EIWiEL/fx+Ghm/z8ApTKQoqKNBQWlqBSqaObksNhY2LiESqVlosX+0V3HyZKak98Y4XFxWmMxrWEDUk22y4zM6O89lpy5b9X1Zl4Ei7XASMjd7l166sZeb0IPo1zn5p6it8fpLf3GoFAgPn5SUymdTo7kxcQnBc+nw+Xy4nDsc/BgR2324HL5QjH53ORSCTk5OSGSVtJbm4++fkF5OcXkJenTGj0ZLTKJVPINKEPDz+ksLCQlpaumI/HIqwjeQ4o8sl22s48P9WFFVr49ykrq4iWzvn9fiyWbUwmA3t7ZhSKfEpLq9DpylOWBw5tWHdpbr5ITU3ykjIxN8zq6iIm0zrXr7+YmpOOC7y9rWdpaZKCggLa2vpjJo8mJx+zurqESqWKaV3n5uaGSTufvLz8jEy2OYnh4Yd4vXa6uq6eIu94CFl3z3A4HHR3D4r6vsRsinb7HlNTz8nJyebixStnvMnFxQmOjoJ0dp5N4KXzfufF3p6FhYURrl9PXVo2ETKpexILy8tTjI095Yd+6GdOGXhm8w4zM88pK6ukrS22lv6rgs22y/Pn9xgYuE1xcUna7/25UVtMFzabFZdrj56e+DXNp0I2pk0OikvZ/ZV/TeO/+JmYz0/FbTUa9czOjtHYeOFUqZdMJqO8vJby8loCgQB7eyZ2d7cZH38ESCgtDWnBJGsxdrkOGB6+S1NThygyT3T+J/9eX9+MybTJ2to8DQ1tac9GraysRaerZHV1gWfPPqSsrJbm5i78/iO2tzexWLZZWZmis/Ma7e1dn3oiLRAI4HTuMTBwS7R+tkwm49Kl6xgMq4yM3KO+vjOulG0EYsKCRUUl3LjxLisr8zx58j3q60NrJvL97+2ZaGjojPn66bzfeeHzCWRnZz7p96oGJ0fKlwXBR3V1DSsrs6cGaoSEtb7A9PQwjx69T3f39ZRyLekiNBHpMd3dVykpKX3l7wefYwv9yZOPqaysorY2eVJzcXEGi0XP5ctvI5fL03L9Qlou2+ztGbHZLFitFvr6rtLcHL+R5mU4HDZMps2oCFBJSXnMzrUImdfXt6aUtBX7uUIx+U+4fv2LGSHakN71J2xtrVJeXkVpaVl47JaCqamnlJRU0dHRk7Z1ko4XcR7ddAi1lE9MPEQuV9HVNZAxjRWn08HMzAjBoI/OzkHy81V88snf8MYbP5JxDyVVCILA/r6ZlZU5/P5Dbt/+4Yy+/qvwLmy2XSYnH1NaWkN7ew9+v5+hoe9SW9tObe1Zzf6NjRVWViZpbGxPWnN/XoyO3iMnR3nuaU3wAx5yMZm2WFoa48aNLyclifX1ZfT6Oa5ceTtKXmIWVkQL2WIxYrOZEYRDSkp0aDRllJaWhzWnX0+7TlUQPBiNeszmbQ4O7CiVGnS6SlSqIqamnlJX15zygkvlhllYmMLlstLf/0Za5x+Bx+Nmfn4cp9NCQ0MH1dVNp76TkJXyEJ8vQE/PtZRzCumSwOPHH9PQ0HSucsZQDHaU3V0jFy9mtu56bW2Z9fVpsrNzyMrK4fr1zM+yDWmw+8OSvhHp35Csr8/nIxDwc3go4HDscXgYymOoVBoKCzWYzZuo1Wo6OwczGqLIZJXL8vI0ev3ymRm7LpeTZ88+pLv7ZszvzOl0MDU1RE6OjIsXr74S73FjY5HNzTWuXXs7Ixv1DyyhBwIBHj36Hs3N7UlvVoNhg6WlMQYH3zpDvLEW1sa1L7K7u8PengmHw4ZSqaakJFSvWlT0IgYbCAS4c+e/8M47P56Rxe7z+bBYtjGbDayszNLQ0EF//2tpvZbYGyaiyNjU1JZ0nFss+P1+VlcXMBgWqa5upLGxM+HCXVycYmtrLdyRK168Px1vKlSv/5DXX/9qRr4fk2mTmZkRqqtbaG4+q92SLgTBw/3736WkRENX15XwAAx/WFzLFxXhColv+aPCXIHAcViI65hAIPL3AMfH/vDjAY6Pj5BIIhowMqTSbLKyssjKyg7/PwuPx4XRuElt7QWami6cWuM+n4+xsUdkZ0vp6Xnt+yoNLQgeHA47LtdBNMloNm+RnZ3H7dvvxTQSzOYtZmZGuHr17ZiPBwIBFham2dlZTbmvIxkcDhvDw3e5fPmtjHX9/sASul6/xvb2EteufSHh80KJkKf099+OGy8TBAGLZRur1YjNtotUmh0l8JISXdyscygk8nHGXVIIdeSNjt5ncPCdjJaMxUKk6/TGjS+lFFKIJERVKhVtbeInplssO0xNDVFd3Sp6vmQ6ibSJiefk5spjdjymC0HwMDHxiGBQRk/PlYxYdSEVwO9is+2gUpWQlZV1Qmc9G6lUFtVaz8rKQiqNCHXJwgJdWdHHZbLQ43J5dvR5iUh4e3ud+fkxOjoux5136/f7GR9/SiBwSE/Pa6+8mSYWcbtcDiSSUONTRC2yoKCInZ11FAoVra3xcw+rq7Nsb28mtJItFhMzM8/RaHS0tfWdeV6qHoXf7+fJk0jIJ/1xey/jB5LQ/X4/Dx9+h4sXLycc0RQiqvtnJGUjSUqLZQebbRev10txsTZK4mIJ1GzeYX19Ju34bDKsr89jMGxkzF1LhOnpUfx+75ku21hwOPaZnx/H5/MkLVmMB4/Hxfj4Q7KzC7h0aTApSaQzp/T+/W9x8+aXEpJuOq5/IBBgeXmKra0NOjr6E46LSwafz8fIyEMUimwuXbrxqVrACwtjGI1b9PTcoKgocXIwEAgwPT3CwYEl6bAMsRBP3IWn6rhPYnz8EWp1ObW1iQsGJicf4/MFGBi4Gfc5Pp+Pqalh3O698ISv9IXWJicfc3wsobf3mphLIRo/kIS+sjKP3W5MGPcNJfzu0dER6qh0Ou1YLNvhMMo+eXkqSkrK0Wh0qNWatKRP19eXcTp36e6OL0t7XoyO3iM7O5+urlczSSaCo6MjHj36gPb23rh1uoIgsLw8i9m8QUNDe8KmIjEIBALMzDzHZrPS03M9oUJfqjfVyso8TqeF3t74IavzJuesVhPT00NotbW0tXWnfC0ivQtKpYru7vhVWpmG3+9nYuIRh4dH9PVdT8nLWFiYCg9+eVO0RyYIHpxOBwcHTg4OHHi9qRN3PAwN3aG+vjOphlIgEODp0zuUlFRw4ULs8uYI9Po1lpcnqK9vobGxM2VjYnt7neXlWa5deyfj3swPXNmiz+dDr59nYCA+mXs8boaGPkatVmM2G5ifHwOkqNVlVFY20dWlS7hoxHayeTwucnPPWvOZTPhcvHiNJ08+wGDYOCV0lWlkZ2fT1tbL/PwoJSVlpzyCQCDAxsYqa2vTaLXl3LgRu4ErVUilUrq6rmAwrDI8/AnNzT1x3dNUy/QMhtWk0rfnbZ/XaMq4evULTE8/5unTj+nuviLau/N63QwP36ekREtHR9L7M2Pwet2Mjt4jL0/N4OCNlD2/Cxe6yM7O4enTO/T33zoVxhQEDwcHTpxOB263E7fbwcGBA6n0BXEXFhZRWVmVMnHHw+GhIGq4tVQqpa/vFk+efIBSWUhlZey8W/EHf0ZneI0dFJUy9NV/kFJXrsvlZGFhjL6+W99XnZfPDaGvrMyj0ehi1hQHAgEMhlUeP/6QnJwc1OpSCgo01Nd3ppSUEHuje71uiooqTz0v023NcrmcS5euMzp6n8LC4lcqqRpLkdFq3WV+fhypNMjAwK1XUrdbXd2ISlXM+PhDHI49OjtjN32IrZU3mbbIzpYm1fDIRPt8SF3yTVZXZ3n27EMuXOiLSxYRRMpRKyrqovIL54FYA8Jm22V8/FFKuYtYaGxsRSKBb33rTygt1QFSHA474Ke0tAKNpgylsojy8sqMEXc8+Hw+cnPFVUwpFAp6e28yMnKf/PyCMw1jL9+7qv1d3viL38eryCfP6zr73i/VzQcCASYnH1Nb255y82Cm8bkgdI/Hzfb2Cjdvnu5cEwQBvX6Bra01CgrU3L79lXOJCIm90QXBdUZf4VWIJhUVaWhoaGdi4klG4umBQACfz4fPdxgeaSZweBgadZaVlc309BiHh1683kN8PjctLd1pVcCkgsJCNdeufZHJyUc8ffpxWqWNERgMa6KGNGSywaWxsYOSEh3Dw/dZWZmntLScF1HMF0nboyM/W1vLdHT0Ul9//gEWYg0Ig2GVpaUJ2tvjJz9TQU6OnLa2Xnp7QzkXn+8QvX4Vg2GJo6ND1GrdK2/aOTo6IhgMpmQJFxVpaGvrZXz8MVevnh7IHevelfkEAio1R/4cso8Oo3+PJbS2sDCGXJ5PU1PsMuNPQ5Aset6v5FUzjMXFaSora6NfgsNhY21tDqvVhFZbw8DAmxmxYMXe6F6vm7y802WQr0o0qb6+DZvNzNzceDSeHiHmECkf4vMJHB358fkOOTryhX8OOTo6DM+aPIyWwWVny8jKyiY7Oxu5XB7+dw4KRQ7d3f34fAHM5mXeeutHRXdYnhdyuZyBgTeYmXnOt771Z7S2dqHRlFFSUiqa3F2uAxwOCz09yZNRqWrQJ4LP52NnZ4Ng8JicHDkymeTEo1lAyO3PyoKsLCnx9NJThRgDIpL87O9/I2OThGy2XYqKSqNGk0KRS2trJ/X1LWxsLDMy8oDCQhVNTV2ip3+lSnherxu5PHXrv7KyHpfLwejoY65efTOp6mj2wT7L/+w/Uf7vf40CmxlBW4nxl//VqXMzm7cwmbZjqr1GPturFiQ7ic88oTsc++ztbXPz5pcxmTbZ2FjA7fZQXd1MW1t/Rt26eDf66s/+JhaLCUEQcLtDsxlftg5eVVszhOLp77//JxiNerKypGGLOovs7MhcyWyys+XI5TlkZWWTl6dALi8Kk7YCuVyBTCYnJycHiUSS9P1ycnJYXp6gr+/Wuc9d7M1qtZowmbbo7OwnNzeH3V09i4ujyGTZFBZqUau1lJSUxo1V6/UrlJXViPJiMtE+HxrbN8/6+gKlpdW89tqXkyYZq6qaGB6+i1QqiyvUJRaJDAi/38/k5CME4ZirV98WFWsWC7vdSmXlWS9ILpfT0tJBQ0Mrev0qo6OPUKmUNDZeTBgCS4fwDg89ohK6sdZe6xd/GpfrHhMTz+ntDc3ATXTvHnzlZzj4ys9gMGywuDhGdXUTLcEgEokEQfAwM/Ocrq74ao6vUu44Fj7zVS7Pnt3D63UCQbKyFNTVtVJZWXPuMq9AIIAghGRZDw+9eDweDg8FKu9/g/6/+UOU+xacRSXce/snWb78Njk5cnJycsnJyWVnZwudTneqyuVViibp9cusry9w6VKoMuHlAcCZRqg89Lu0t186l0Kd2GuysbHA6uocnZ1XzlQtOJ129vaM7O9b2N+3IpXKKCzUUFKipaioBJfLidG4ycLCJBUV5ZSUlFFUpKWkRPfKps2EqhmmyM8vpqXlYkrWb0RwraUluXpmIsSrwBB01fzHX/8j8vJKuHTpMiXf+4uMufs+n497977JW2/9qCihM4NhnY2NefLy8mho6KC0tFz050hUljoy8glHR8e8/np8jf1Ea8/y9n/D0ND3KCtroKmpTfQ69XjcTEwMhefiXmN6eojCQm3C6plMCZL9QJQtLi1NMzT0CRcu9NHQ0CK69To0GNaL1+sOtzSH2pp9voi2toDff0h2djY5OQrk8lwUCgU5Oblh6dZcah99h8av/zY5u1tnbgS/38/z5/fJzc05Vb/9KmJlka6zgYHMuc1iYDJtsbAwymuvfSXtzSPZzRqqcX6G3b5Pb+8NlMrkBOxyOaN6OktLM5SVlVNXdwGdrhZBcLO3Z8VuD5G/RBKgqKiEwsIS1GotRUVny1RTgdVqYnFxnEBAyoUL3Sl1vJ7ESX37dHMUsUjIn5PLX7/9k+x94e9x+fLr1PzuL6H96/+A5ESY5zxGhslkYGNjiStX3hR9TKhgYY21tQVycmQ0NnaeMhLEEp4gCGxszLG9vU5BQSlOp5X29p641y/Z2vN4XDx5cofOzkHKyipT6rBeWZlndnYItbqCmzffTbimMiUZ/LkmdL/fz9TUEC6Xk66uqxQVhYjM5/NFLWpBEPB63eHEnvfUj0wmQy7PCZO1gtzcvDBZh6RaQ1auIu4XIVbrZWTkATk5crq7r70Si9nn84WFhjoz2nUmFsPDD1EqlVy4kF7HZaKb9clDD+Pj95HJcunuvpJyqZcgeHj48Dvcvv3DccMsbrcLm83K/r4Fu92K13tAYWFRWNJBi1pdJup9nU47S0ujHBy4aWrqykgZaYTU29t70tabOUlCbrWWe+/8NHvv/l2czj1qH/8tX/mrf0esAFu6+uOzsyNkZeVw4cLFlI8NBAJsbelZX59HJpPQ2NhBWVmNKOJdXZ3FaDSg09XQ2NhGQYESh2Of4eFP6O29GTOkI2ajsFpNTEw8Cc8HSC0H9/Dh+9TXd1JVlXzgTCY8988toe/tWXj27COOj0PldMfHPg4PBXw+gWDwGLlcQU5O5Cc3KhgfIWyFIu/c1SBid9VXTepjYw/IylIkrat+VYgMxLhy5e20whdxB4xoq/iD/+nfodU20NZ2Ma2wwOrqIg6HOWED0cvw+Xzs71ux2faw23e6/758AAAgAElEQVRxOm3k5uaGrXhNNEwTEWbb2zNhs+2ytrbE5cu3aWrqyGjnrt2+x8jI/XNpiYSanJ5RVKSjo6M3ukF1vFeDwmyIeUy6+uNPnnyXxsautAeiQ4jYjUYDq6tzSKVBbhqW6f6Df3qG8Bb+ye/ztL4Nq9VMeXkDTU2tZ+LmRqOBublhrl//wpnHxN7DGxuLbGwsp9wM9NFH/5UbN8SplWbCc//cNRYJgsDKyiwGwyJFRcVoNJVhks4Nj2TK+9QK9sVWrMhkMvr7X2Nk5AETE48y2sK9vj6Py+Xm2rXMthCngry8fGpqLjA/P8zAgHg3O4JYSWZ/Ti4f3v4Rmpp6qK6uS7sKwGw20NDQktL5yOVydLqKKCGFRr/Z2N/fw2o1s7w8i9NpRS5XoFaXoVbruHChH6VSg8/nybgMQ1FRCb29rzE+fh+JRJpSvsLv90eVINvb+ykvP31szu5W3GM9JWUIgpBSQUFoiLKT4uLUhmifRITY+sPENvvT/4QHVRcw/+gv8PqdvyDXakQoreTxe3+PEWUJNXlFfM27Qt2vfS0mGZaXV3Nw4GRk5C5Xrrx76vsRW8lUV9fKwYGd8fEnDAyIEyETBA8gEd1pm+7MgXTwfbfQA4EAa2uL6PXz6HSVNDV1v9KGBDFINe4VstQfIpdnZYTUIwJdAwOZU2tLFxFVxpaWjrRCA6fDAjruvfNT5P7sP402YKQTY/R43Dx9+l1u3/5aRr0ih8PG0NAnvP76e6cqQwRB4NGjD+jvvym6FC8VWK27TEw8pLv7qih9nL09M9PTz1CpNLS396Y0fjGIhLs/+8943nSRoqIiKioa0Omqk25WVquJ+fkJbt5MLIoXD4lCD/M9t1hdncdoXKO4WEtdXRu1tY2UfvhXosIVY2NDBIPCmaossZaxIAgMDX2XvLwSGhtbOT4+CpcAH5747YuWBbvdBzidDl577QsZVWlMhM9FyMVoNLCwMElBQS6trX2fWt1zMqQT9/L7/YyOhuRGz0PqPp+PJ08+oKnpUtL43KeFkCLdU65ffy8tLymkif4Iny9IX99p/el0qgCWl+fxeGxJtXRSdXVHRj6hqKg8ZoOIXr/G1tYiV68mToKlC4vFxNTUY7q7r8cVnvP7/SwujmMybXPhQk/CztRYaziIhN0f+3m2fu0P8fl8GI1bmEx6nM49NJoyqqoaKCkpO/P5HA4bU1NDCMIRb7/9Q2l9PjEb9/vv/wVvvvm16AYldrMPBAIMDd1FrS6OjoJ8GX6/H5fLjtsdEQQLzbf1eNwEAgHk8lysViMgpaqqjuzsHLKzc5DLFdGSYLk8VPorlytwOPZZWppCoZBz4ULvK2+m+kyHXOz2PebmJvD7vecujXsVSKdOWSaT0dd3g9HRR+cKv0xPP0GtrsgYmWcifldcrGFrS883v/l1dLoqCgpU5OerUKmKKSgoIj9fGfezulxOxsYeUFiopa+v/8zz0qnf39010NTUnvicUwzl2O1WHA4nly7FjsnX1jawvb2OXr/4SibdlJaW0dl5lcnJx/T0nE307e9bmJp6Sn6+OhwzTuzFJlvDcrmc2toGamsbEAQPBoOexcUpBGGI8vJqKivrOThwsLW1jMcjUFZWw/6+keHhB1y8eDllLzpZGNPv95OVJT31umJDn1KplN7e6zx9egeJREJBQRFu9wFe70H4t4fj42MUigLy8grIy1OhVpeRl1eAUqmKGhhDQx9RXd2cVMIBQuFIna6C9fVlhofvodWW09LS832PLnyqFnpNTUvwV37lX7O9rUer1YWnwFR830dvZRIRS10mI+XBAKFs/hZXrryZkWuSiQx7pO7X4/GTkxOks/MqTqcTt/sAt9uOy+Xk6MiLQpF3hug9ngOmp5/R2NhFfX3sRppUz9HlOmBo6A5vvJE43JJqKGd4+GPU6qqEM0RfjO47LVKWyXJVk2mLmZln9Pe/TlGRBr/fz/LyJNvbelpbe1+pUBuAxWJmZOQRFssmLS3dVFc3Ul5ejVQqPTXBqbv7Gmq1+PBT8moWN0+f3uHNN78m+piXsbIyx9jYYxoaLpCbGyLvggIl+fnKpB3HgiDw8OH73L79Qynfe4eHhywvz2A2b1Bd3UxTU2fGvbjPZMilubk7+B//4z18Ph82m4W9PRMulw2Vqgi1ugyttkLUdPbPOvx+P2Njj8nKCoom9YiA0uDg2xkbbHHeGtgImefnq+nqGuDJk4+oqqo5M8c15M46cDgcUaJ3Ou1sb6/R0XGFnp7EY8xSIcSlpVkEIVTOmgiphHJCcymHeP315CMNZ2fH8fnc0f6DV9FQZjCs8/jxdygp0XFw4MDj8aLTVaBUFoctzALy8yO/lRnZ/F2uAzY2ljAaN9BodDQ0tMcNIxiNeubmRmhoiL9Rv4xk12l/38rs7HNu3PiS6GNOQhA8PHp0h97ea0nF2WJhfX2e/f39c+mYO50OFhencLttNDd3ZVQH6TMZcsnOzo42x4TU2jrD5L6L1WpmcvIZR0cCxcUlaDTllJZWitZefhUIBAKnfiDA8fExx8fHBIMBgsEXj0X+Hfmt1ZazsDDBgwfforc38eR5QRCYnHxMe/tARqcUnUdfxufzMTz8MUqlJqoh09HRy8jIPXS62lMWqkwmo6io5IzSnMNhY25uhA8//P+oq2ulvLw6ZpI3lSoAs3mTCxeSD+ZOJZSzvDxFQ0Ps0XIvbzbKf/gv+GZ+EVarCY2m7JW0dns8BzQ0XKSrKxTa8Pv9eDwuPJ6QZ+TxOLHZdqKNc1lZcvLyCk6EFF4QfrIQgM1mZW1tAYfDTHl5LTdvJi/FKy+vRaksZmzsPvv7Frq6LifdVJKFgA4PBbKz5SkdcxLT0yNUVdXEJfNkRoPZbKC29nyhNJWqkIGBm1gsJubnx9HrF2lv738lifR4+L5XubwMj8eNxWIO1wCbyMrKQq3WRGvOQ6QZjJJnhEBPk2zw1O8IEUeOfXF8kEAgGH089Fgg+jeQIpGEfqRSSfi3FInkxb+l0qwYj794jsNhJxg8Ihg8Rq3WhjeqilNVFMPDH5ObW5SR6eAnka6FHiFzlaqUixdPGwUzM6P4/QKXLokf7vHhh/8VhSI3PDMzEO7aLEWj0abU/bq/v8ejR9/h7bd/PClRibXuTKZN5uYmuHXrrHUe7zUmfvF3eFDVyI0bX6J/UJaR1u4IQhU173PlivgRhB6PC7fbicdzEE72efB6Q78DgUCU6CNhiLy8fHy+QwyGNQ4PD6ipaaa2tjVlS9/v9zM7+wyHw8GlS9fPVZGl169hs+2Impz1MtbWltnZWeLatS/G3ZQTrYVQk9oH0XBLJkJokQ7ZlZUZ1OqQ0uN5xhZ+Ji10McjLy48mayAUtzQat5mbG0UiCVBV1Uxubv4JMpUhk0mQy0NEmpUlRSLJCj8uOUPAEokUmSzrBFFLo8+F0L+TzWNMBy7XARaL6f9n782DG8uy884fQBAESRDESgAEuO9Lcsk9k5m1711dUqvV1tLj0DIj2VK3Z2JGY8seeUbhsCXZVow8Y9kehyJG0igsyVK3JXV1de1VWZX7QiaTmdxJkAQBgtgIAiAIPoIgMH+AYCZJAARAMKu3L6KiqoiH9x7uu+/cc8/5zndwuRxMTj6gpKQEjUa/UzQV49Sp/oJeD/JTFYxEIty9+xFKpSHlAtPaeoJr197d9VAPgyCEEYlgYOA1xGIx4XCIlZXEgm23TxGJbKFUalGpqlCrdXsaFSeREMKaYX5+FLFYwtWr36W4uJjy8koqK1VUVqpRKrV7XphM3l2iuMXK0tIcDsciUmkZa2uBA4tLOu+7+y/+HXf+9z9lbm6cngKLslksj6iqqs1pp5b0ylMhEonsevYJup2bxUUfHs8yFy68jNFYl/dcl0gk9PYOYLVOcffux7S1nco7xr+5uYFUWpLz90KhNebmHnL27Itpf8dhu6jlZSsajXHXmBdCHVEsFlNX14zRWMvs7ATXr7+XVTP1o+L7zkNPh2g0yuzsOEtLM9TVtaXdIv8gIBaL7RazjI7e48KF56murj+Wa+XibSRao32CSlVNV1f6BWZpyYrF8ohLl9449BnMz8+wurqctqJTEMKsrLjwep0EAitsbm6iUKh3DXw0GmFqKkEP6+g4vRu6SrQ28xMI+Flb87G2tgrEqaiopKJCSWWlhooK1Z5QVyDgY3FxBpfLTnm5CrO5EaPRzPKylampB7S2nqK2tn73+Exx+KtXAty58yFvhQK0/P4/KkgMPaEv8kHWFYj5wu9f4eHDWzzzzJsFO2cg4GN4+BpqdXXaRiWZMDo6jExWTHNz+qbP+5FoL/cJBkM1TU3pG3cclk+5efN9Ghu7MRjMBdNe2Y9weJ2JiWGCQS9NTd3U1jbn9P0fWA89HSQSCe3tPVRX1zE+PoTDMU9397m8EiBfNMRiMRqNDo1Gh0RSzPLywrEZ9Gzj09kacwCTqQ67fZ65ufHdFzDdwuF22zGb69OeSyYrw2Rq2E0gCYLA6qqLlZVEsc3qqpdLl147UNSkUFSiUOxtKSYIYfx+H4GAn+VlO1NTj4hGNykrKycUCiKVllFdXX8gnPFk5yS/37NrkDLF4eXyCkymFq6u+5D+1h8VhOUyPT1CdXXzsRpzALFYQqF02ZN4slHJzZsfcfLkpZwalUQiG1RU5JYvm5kZ39WFyXjuDM9REMKsr69TVZUo6DquvgZlZeWcOnUJr9fN1NQINtsMbW39We1yc8EPjEFPQqGo5Pz5F7DZFhgevolWq6Ot7dQXzv/MFzU1DYyO3qGychydzvhUFRWTEASBu3c/QqutpbPz8IQjQFfXKe7c+ZDq6npMn38n5TY1Go0SKCnn1KnLWe8UZDIZRmMdRmMdGo0Bu3026wpVmawMg6EMg+FxXUMkEmFhYRJBsByIk++/J/M/+Bd8Wl6x2znpsJBVc3Mn1669z0T/ZVaP4L1BUibYxeXLx9sUHBLO0fb2dsZj8okjJxuVzM6O8vHHf4vBUEdxcXHKYxORgceLitU6y/a2gE5nTBk+isViRKNRtrejbG1tEQz6sVonuHz5jQPH7kem57i0NI9W+7jL2XH2NYAEMcRgqGVmZpR33/0LqqvrUKm0yOWVVFaqUSjURyKC/MAZ9CRqaurR66uZnBzhxo13aW4+ceSmAU/iabWNWl31UlwsIRDwYLPNEI1GqahQo1Il4skqlfZYNWySxryqqu7Qruiwd1xOawzc+vIvYnrvL1LGKM3/6bdQ/ov/70AJd7ZxyUgk0cgjG6R7XlKplKqqapzOpQPGfP89Nf2bX0fyW3/E+2oDb7/9X+juPk34f/4DWv7k91LOA4lEQkdHHxMTQ0eup5iZeUBNTduRnnW2c1YsLspo0I8aR9ZqDRQXF6FUKikpSf6e9CEYsViMUqlkddXPjRsfsL6+hkqlIxbbJhZLGHCIIxZLKCoSU1QkYWtri42NEE7nInV1bRlDPJnyKa6dcEsShexmBYkcoNfrZnXVjd/v2SV5dHb2cvnyK2xvxwgEVllbC2C1WgiF7hOPbyOXV1BRkajnyKVP6Q9MDD0TfD4vY2NDFBeL6Ow8e2QJgeNsVvEkBEHgxo336ek5u6vhkQw5JCVfQ6EgMlkFSqWWykpNxq49uV8/zJ07H6PX12dtzPePy1ZxCZKtzZQyrXFE/O1/m+JL33g5r7ikxTLF+rrvUM55diyG93n55Z/a/TxdrDSk0fOf/+kf0djYwcbGGsvLNsRiCQZDHTU1DSnDCEND1ykvL0tbdn4YEjUIN3n22TfzXhRymbPRaJRPP/0bXnnl76U811HiyEnpipaWvqwqLvcjEPBx69YHXLjwKsXFUsRiCRKJJOW4+P0rTE6OEImEaGnpzVlrKKmJ/sILP5lx55atMxePxwkEfKyseFldTRhxiUSCWq1FrTag0eiz8r4FIUwg4CcQWCUUCrC2tspv/MabhSksEolEfwy8Cbjj8Xj3vs/+V+D3AV08HvcedrHjMujwmAmxsDCG0VhLa2tf3i/HcSVG9mNo6DoyWQldXem32QlFwKSmt4dg0M/2dgylUodCod5lhuT6W5PG3GBopK0tu0RUunGJicSI4wcpegGlltF3bFy8XJYXtW96emxHHiLzPM6mkcaHH36LV1752u6LmzZRBmzqa3F883d3X2Kfz43NZsHjcVBWVonJVI/RWLvrTSfFwhJFYbnLDN++/SFGYyN1dbklyp5ErnP2/ff/ktde+7mU5zpKl52hoc8oLi7frV3IFS6Xg/n5Uc6ffyWn70xNjVBURE5x6dnZUdbXw3nLU8diMYLBpAeeeD+l0mKUSi1qtR6dzliwfEghk6J/CvwH4M+e/KNIJKoBXgaOli0oEMRiMU1NbZhMNYyPP+Date/S0XEqLzW040qMPAmrdY71dT+9vZnV68RiMWp11Z7kbzgcYnXVg8/nZmpqkfX1tR0KnxaVKvFPpoRUMJgoYTeZ2rI25pD+94viMaJSGZKIsPu3aEkpt9/679HKZHnHJbe2ogeKTXK5r+Tfk1TUSETYfcHS3ZMIkLkW94QYkuMfi8VwuWw4HPNMTT1ApdJjNtej15uoq+tkbOwu5869dOj9PgmXy44gRKipOVoDk9znrJhoNJrSEcj3eS0sTLG+vsHFi7lzyZMQBIGSktyMYFISeXFxnkeP7iKXl2cl9udy2Whuzi5nBPsNuBu/34tUWoxKpaO6uoYTJ04fe0L7MBxq0OPx+FWRSFSf4qN/B/wT4DsFvqcjQSYr4+TJi7hcDiYm7mOzzdLVdTanRMNxJ0ZCoTVmZh5w5sxzee0ikrzjJDMkGo3i93vx+dw4HHNMTAwiEhXthmnUah0ymYzlZSsulw2fz8v2dhSHY4719SAaTbIHZ+ZQTrpx2dTX8OFzP8XLV/4bMs8SEX0tt978ZQIvfxUt+cclt7cjWT23bJ6XVFrC5ubm7gu39I3foe5f/QpFmxspz5mq2lMsFu8mbBNqhfMsLIwzPn4PrdaMz7fC0tJ8TiXfMzMjtLScODIFN9c5u70dxeVapLxcsdM0pnQ3X5HP8woEfMzOjnL27EtHyiUIQpiSkvwIDrW1DVRX17CwMMPdu5+i0+lpaelNOYcSBVgbGdsIJvXyV1YS8e+9BryWEyfOfOEGfD/yGnmRSPQWsBSPx0cO6yIvEol+FfhV4KlpB0Ni1dZoqrBYJrl164OcuOuFTow8iVgsxsjIXerrWwsmuSmRSNBqDXu2mqFQcKexshubbQqHw05n52kaG7s5f74asVi8259zZcXB7OxDRCLJDv+7Cp1Of8DLTzcujm/+HkLraf748hucP/9KQs70k79jYCemmY96JUA0uoVEcriHftjzCgRW8Xhc3L79MQqFCqlURkxbg+5Lv8Crn3+H8pXllDmATDuyhFphG3V1bYTDIez2OcRiMdeuvcOLL341K13zpaV54nFJXrHmA+c6ZAwS3ZrceL1OVlfdLC/bUKn0RKNbbG0lNL/FYnFCMlahpuNn/yfOv/3HyH1uwloDY1//DTz9l5H63LstHJOGOxqN8uDBdVpa+o+s37+5uUF5ef5GUiKR0NzcQW1tE7OzE9y8+QHV1XU0N/fsSTg7HAvodOY99iBpwL1eF36/h0BghZKSkicM+LnvezZdVknRHQ/9nXg83i0SicqAK8Ar8Xg8IBKJFoDTX3QMPRNCoTXGxobY3AzR2Xk6qxjbcbFcpqfHWFlZ4sKF7GOER0UsFuPjj7/NCy/8VEbvKUGdW8bnc+H3ryAWF6NU7jXw6cYlFotx48ZH1Nc3U1pawcTEYFaUsky4d+9zzOb6rJJdqe5r5dWfY3Z2EpttgsbGTjQaI5ubYQRhg2DQh8fjYHs7zq//219HvrJ84Jz55EwcjkWmph6g0ehobz+VlrUSi8W4evW7dHScOVJLtyfx5BhsVtUw8d/9Bo96LrC66mV9PbRbsKVSqXn06C5nzjy7x6lINnFQvvtfaPmT36HU6yCsMTD01W8wder5XcO/tRVha2uTeDyOVColGPRhMDRz7lzmdoDZvFODg9cwmWrz7rO6H+HwOjMzY3g8NurrHzt116+/S0tLHxJJMSsriRBKMOjbNeBarQGVSv99Y8ALqra4z6CfAD4Bkq6AGXAAZ+PxuDPTeVpaeuL/9b8+PPR6x4WlJSuTk8NfGHfd719haOgzLlx49amLjl29+s5Ow+3sKVBJA5/YcnqRSKSoVPodTRodpaV7PXifz8vw8FU0mmpKS2W0teXXXDqJW7c+prm5Mytvdz9CoTUePryLWLxNT8/FPeP9pGERdCbmu87Scv0dirciu8cchdUUiUSYmHiAz7dEZ+eZlHr/CwtTOJ1LnD//Qs7nTwVBEHYW40SCThA2qKzUolTq0GiqDiTOp6ZGEYTAgSYhubJlBGGDhw9vYzI1UlfXlPb+sj3v9evv09l58kDB4FEdrERDikeEQiuo1XrGxu6jVlchl8uprNR83xnw/Ti2StF4PP4I2B3tXDz0zc0NPv/8XerrWzGZ6p+6DrrJVIdOZ2Rq6tHOCl1Y7nomRKNRRkbu0Nra94UoSMrlCgKBQE4GXaFQolAodxs6BAI+vN5l3G4rU1NDFBVJUav1Ox58FWq1Fp2uhsnJ+7z66teOfM/R6FZWSdH9sFpnmZ0doa6u7UAp+X7DUuq20xb04f7yL6K4+l3KvE7WVFrGvv5P4MWvkQ8rXCqV0tt7FpfLwfj4IE6nlY6OM7veekLGYiynBtf7IQhhPJ7lHXqcZ1cTp7JSS3d3U0pNnCdRV9fMtWvvHOgtmot6pEQi2eFLK9h6YjFMhWzPu7kpHHg/CqGvUlmp4syZZ/B63Xz44bc5e/YFamub8+L9P60alXxwqEUViUR/CTwHaEUikR347Xg8/v/mczG5vJLOzj4WFiaYnR3FbG6mrq75qa6KUqmUEycSIkKjo4M7Gh69GAy1x3ofExMjyOVyamrSezHHCblcSSgUONI5KivVe7boSQPvdM4zNTVEcbGM0lIF29vRguQHEiyM7F84QQjz6NEggrDG6dPPp7yHdIZFffMDRt93AIn+mYuL06x8/jY6XS319U05LYRJ6PXVqFSvMTHxgBs3vrfrrc/Nje+EsrKXVQ2HQ3g8y/j97p2k9jZKpQ6lUkttbSsKhSor+d+k8ZHJZOh0tVitk3t2UrmwZZJ86dVVH9vbmXNT2Zw3FouxtbWJVLr3PTyqRHGS+ut22/F4lonFtjGbG/M25oUQ7zouZMNySU1Wffx5fS4X1Omq0emqCQR8zM2Nc+3a9zAa62lsbM9J++GoSCbHEuJQbmZmHlFWVo5WW43RWFvQ/qYulwOvd5GBgS8V7Jy5oqKiEqt1LqfvHOaJJA18UkvjsYFXMDT0Ob29A0fahW1vZ5cUhcfhNJOpllOn0rf/y8awJBPMgiCwuDjN8PBVpFI5ZnMTJlNtTr9pv7c+Pv4Ah2Meg6GWe/c+Ryot3ZGGlu30rCxFJitlezuK3+9mZcWF3+8jHmeX31xf35mVRMRhxqehoYXBwSu0tPQcWvou6ExYrbOsrQUIhfw7zkEcubyCkpJinM55IpHetEYyGxaOIGxQXFx84NnlQyMWhDAu1xJe7xKrqytIpWVotdW0tyfojBbLxKGaRalwHPr3hcQXVvpfWammv/8SghBmbm6cW7feR6Uy0tjYlpc3lAtisRhDQzcQibZ54YWf2G2v5fE4cTqXGBy8ikgUp6qqmqoqU8rGudlCEARGR+/S03OuYCX8+Wz5KipUbGys5XSNXD2RpIGvq2vj0aNBbt/+gJMnn0Uqle12TI9ENolGk13Vt4hEIkSjiSRbknGR+DyCw5Hoc9nS0rW72MdiMSIRgXA4zObmxo7RnSMUWuHcuRcOTXjnQu+TyWS0tvbQ3NyN221ncXGGmZkHGI0N1NU151Sxq9dX43QacThmee21ryESidnc3CASERCEDdbWvDtSygJbW1tYrTNUVuqpr2/l9Onn82KPHGZ8KitVlJcrWVqap6amiVgsxuwv/3Pa/s//EckTdM44EA8FUL77Z2y9/PfQ6dqorFTvoewND19nZmYsrZHMhjkmCBuUlJQe+G42zywWi7Gy4sLjWWJlxYUgCKjVerRaM11dZ/fca0WFgqtXv0d9fQvl5bmFP59GjcpR8H1T+h+JRFhcnMZmm6W0VEFDQ3te2f/DjF0sFuPBg9tsb29w6tTzaQ2137+Cy7XM8vICTqcVo7GGsrIKpFIpxcUllJSUIpXKkMlKd3i8ZUil0gPnu3fvGmVlsozVoLn+vnxlCT788K957rmfzGphKUS17ODgDSYm7qHXV1NUJKG4WLpTxl1CcXHxTmf1YqTSEiSSRGf1RId1GRKJlHg8xvz8OFbrDCBBKi1ma2uT4uLiHY+2BJmsjFAoQDQaZXNzE6WyCq3WgE5nSGlwjyrrEAoFWVycxuGwIpdrqKtrQq83HbrgT04+xOOxce7cy1mNvyCEWVycxeGYRyQqxmRqwGxuyCksmE3F5/KyjTt3PkGrNRAOryGVltA7dodL3/qPlIQCe+icmcZJEMLcuPEeZ868lHbxOezdXFqy4nDMcebM8we+l+qZzfzjP2S8bwC328Hq6gplZXK02mq0WgNqtTbjM7ly5bv4/QkpW7O5Ievw19OqIt+P78ueotnQFhOdPiwsLk4RjxdRV9dGTU19Vh5yNi/r/fu3iUSCnD79wqFb52AwwNDQNVQqNWZzM1tbm0QimwiCQCSySSSywdbWJpubwq5nKZFIkEpLkEqlhMNh1teDvP76zxcsAXyUCXXjxnu0tZ1Cqz1ccvgo5d+QaHY8NnaHvr5LaDT6Q4/PfK4lRkdvc/Hiq8hkZWnngiAIeDxLeDwJtkdRUTFqtQG93ohWa9h9BoXqSLO0NI/NNoMgRHZYHo0pC02mp8dYXrZw7twreeVpvF4nNtssHo8TjevLmMwAACAASURBVMaA2dyITnf4rjGbubK8bGNs7A4nTz6DXK7cXWzymWcWyxgejytv5k4m7Z7EM/vfkLpsrKv1fP7qzzPaM4BabUCrNVJVZcx6bIPBAHfvfsyZMy/gctlYXl4AijLq9Tx5H09D52k/fmAN+pNwuezMz4+zsSFQU9NCbW1TRu/msEn48OE9QqGVrKrZXC4Hjx7dpqWlm7q61qzuNxkO2NzcRBA2GBy8iSAEUCpVaLVGTKaGI+sfH8XQjozcQKGoyqqx71EWjqQx7++/XBC9+kgkwmef/V1aMal0CAR8OJ12VledBIN+Kio0aDQGqqoMBQ3rBQI+rNYEDVGjMVBb27xbgWixTGGzTXL+/MtHriqMRCIsLVlYWppnayuK0VhPbW1TWgOUnYNzE5VKtctkSiKfeRaLxbh+/Xs0NfXkVSw1Pj6CRCKitfWxUFwoFNxZpB0EAquUl1ei0RjR6QyHMnnSYXj4NmVle2m1Pp8buz2h11NersJorE+bL/kiWC4/FA0u9Hozer0Zv9+7k0CdwGhsorGxJeXLkSm+NTo6hPHKt3juw7+ixG3L+CDm52ewWB7R13cxJwMsFouRycqQycqorFQhk0m4fPmriMVFLC1ZGR8fJhLZwGiswWisy8vYHUWWQC5Xsrbmz+o6+VbLulyOghpzYCfMJSMUCuYkfvWYldNDNBrF63Xg8SwzPHydWCyOSpUIzeh0hiMxnCor1fT0XKC9PYLdbmFi4h7j40WUlipYX/dw7tzRjTkkxqGhoYOGhg78/hVstllu3XofuVyD2dyA0Vizx8AdVqEbjUZZWVmms/NgvUA+80wsFtPZeYaRkdvodMacc0aCsI5KpcLpXMTjWcbrdbK9HUejMWAyNdPTs5cnno9hDYXW8PmW6Or68p6/J/V6otEoLpeNpaU5pqeH0WpNmM31eyQCcmlq/rTxfe2h70coFGR+fgKn04ZWa6axsZ3KysdslPSSqEauvf7zvPKt/4eizfTeSiwW49GjIfz+ZU6dei4v5bwk/P4VRkZu8Oyzb+35ezAYwOFIaKrEYlvo9Waqq+uz7gx+lC2fx+NgdnacCxeyE5DK9YVxuRyMjt6it3eg4J1YBgevYTSac9JJyYTHnp8Tvz8Rf1WpjOj1xkPjr9kg0WfzM1566adRqY4vyR+NRnf6o1oIhUI7YYPGrFgwy8s2rNaJlMqGR5lnw8PXkUrLc2KRRKNR3nvvL4nHY+h05p2dlBGlMjX9Nd/7Gxm5S0mJJCupY0EIY7fP4XAssL0dw2isx2xuKJh8dS74oQi5pIMgCFitk9jtcygUWurrW9HpDCkfclQq48OvfYMXPv5rZC7bgXMlQwiRSITh4ZuIxdv09l4+MiNlcvIR29tCxmSo37+Cw2HH5VpEJIqh19dQXV1/KIc73y2fIGxw9eq7vPLKV3P+PYfhOI05JMYTtrLWHM9ljGKxGD6fG7fbjs/nJhzeQKXKnFw9DLdvf4hWW0Nzc8fhBxcIoVAQu32WpaUFZLKKHa+9Nu1cThduSSL/eRbm+vX3OHs2fYL0SUSjUYaGPkMkktLbe46SksObRecTEkzKHA8MfCnnHZnf78Vms+By2SkrU2Iy1WUc20Ljh9qgJxGNRllasrCwMIVEUkp9fStdI9cw/6d/jtS1SFhj4PNXf47KX/uXXLwsz9jwd2joGmq1hq6uMwVpPn316nt0dmavzezzeVletuFy2ZBIQK+vxWisLxgfPhKJ4HLZuHnzA06ffoa6uvaCJWo9HicjIzfo6zseYw4JBsTS0ixnz7546LFHTVwlk6tebyK5KhYXo9NVo9Xq9yRX08FmszA/P82lS69+IY3MY7EYbrcdu32W1dVVtFoTNTWNe5Lh0WiUK1e+w+XLuRu3bJBtgjQajTI4eAWptJy+vvNZj1c+Mf6HD+8hkYgO1dfPhKSEst0+h9+/gkZTjclUn1WS+ij4oYihp8MBz+HXf4fx/l7m5saZLlVS/4cfEY1usbQ0w9mzLyKTlWUsmLh9+yOec8zR9/v/oSCJjlBojUgknFMMOdHVREtXVz9erxun08bdu58hk0mpqkqEZXINAQlCeEcyd4m1NT9KpY4TJy6xsrLCwsJ3qKoyU1fXdqRFI2nMe3uzzzfk4/lVVqqZns6OR3/U4g+ZTEZNTdNuVa/f791pvDDOw4c3USg0qNWJ8Mz+0EYkEmF6eoTe3vTFTccNsViMwVCLwVC7GzYYG7sNSHbpj6urHioqKo6tOrqhoYOlpTlstgVqaupTHpMw5p8ilVbQ13cup/HKNcYfDq/jdFp55pk3054zm3n5pISyIAgsLVmYmXnA6GgEo7EBs7n+yIqTR8EPnId+mPfl9TqxWB4xOzvJl7/893eNVbpwzLtf+VXqalvo/sPfLBgVyWKZIhj00N+fv9A/JIslElKnbreN0tLS3bBMOj2YYNC/k1RaIhwOo9EY0etN6PWmPZ5lOLzO4qKFpaU5yspkmM0tmEwNh75UyTJqj8fByooTi2WG5uY2zpw5nAYKR+XRf4tnn33r0C35USmXmRCJRPD5nLhcS/h8bra346jVj5OrMzMjbG+L6OvLrwtOtshnUUzSH71eJxsbm3R09NDScuLY7tHrdTIycpvLl984EJpIGvOSEgW9vWdzXvxynUejo0OIRLG0IdCj7uoCAR92uwWn04ZMJqe6OpGkLtSC+UMbcsk2dnb//lVKSir2JGaefAnW1XquvvbzlP/Kb3P+Z3sKWixw+/Yn1NU1F0wCFHiiktWO12untLQMvb4Gk6mBcDi0Y8QdRKMxtFoTBoMpq21gLBZjedmGzTZHKOTDaKyjrq51z24gWUadUPPzIJWWodEY0Gr1yOUKpqYeEgi4aG8/eehvPhqP/kNaW7sPVV98msUfyeSq1+vE63USCoX58pe/fqy6QEc1PpFIhIcPb7KxscmFCy8eq0heqgRpNBrl7t2PKS1V5mXMk8h2UROEMFevvsszz7yRlm1UqDmTeE+XsNstrKx4dxg69VRVVR9px/ZDa9Cz9b4SDZjfpb//mT1VYMnkJ0Tp738GqVRaUI8uwZl+mxde+Mlje1ESMVIHDscik5PDVFWZMZsbMBhMR+JXr60FWVy0sLw8T3l5OVJpKevrQTY3N3fKqA3odMaUvGePx8n4+H3Ky2V0dqbvEHWUsX748B7l5WW72jHp8EUVfywvW1lYmOXChcPj/EdBoYzP0NBniMUy+vvPF/Du9mJ/gjQSiTA4+Cnl5eq8e3nmgnB4nbt3rwECFy8e3CkkcRy7umRXq6WleTY2BAyGOszm+qwYSPvxQxtDzzZ2JpPJaG/v59Gju1y+/NpOh5417t+/RmWlihMnnjlUkCiflnMulwOlUnWk7u3ZxPEMBjMajR6v185zz32pIItHRYWCrq5+2tpOMDJym9XVVfr6zmVF49PpDFy+/BozM+PcvPnBnmYCTyLfsU40ynZhtweoqjJTUZE+Tplvh6SjIhIRKC09fkpbofREOjrO8O67/4XVVQ9KpY7y8kRrw9LSMuRyeUG48zJZGQ0N7YyPD3Hy5KWnZsy9XjdW6zR+vwulsopYrJTPPnsbnc5ATU0TWq1xz/HH0Xbyya5WwaAfh2OO+/c/p6ioBJOpEZOpruA7uR84g55LwYvJ1IDDMc/09CgaTRUPH96msbHtAE2rkC3n3G57yoYG2SBXQSyv14FCoSn4TkAikVBeXkZ5eWVWMgFJiMVi2tq6MZnqGBsbwuF490CHqFzGOsFimsdunyUS2aK6upFYLMbdu59QVWWipaU37QvxtIo/Eo2DfaysuLBYRlEojofl8yQKYXyWl62Mjw/R2tqPTmcgEtlgfX0Nt3sFQQizsREmFotRUlJGaWk5Mln5rrFPGP6KrCh7sVgMrbaasbFBvvvdP6OlpZeensLoGqW6ls22gM02QzQqUFPTzIkTZ3fvUxAE7PZ5xsaGicfvUl3dQG1tM7Kd+XdcbSch2VvgJO3tJ/F4HNjtc8zNPUKprKK6uu5AUVi++IELuUBuCSFBCPPRR/8NiaSYkycvpTW2hdL3+Pjjv+WZZ17Py7vJdSv98OEtZDIFra2ZQxD54Pr1D1Ao1Ed6+dJ1iDpsrAMBH4uLM7jddhQKHTU1jXtikIIgMD39CI9nMadesYVANBplddW90xnISzDop6SkFKVSh1yuwGodp7m5n9rawhRApcJRQkqCEGZs7C6hUJiurtMZF+xoNMr6epCNjRDr62uEw6EdY7/O5qYAiJDJyigtlVNaKkcqLQFiO4tDkI2NdTY2NpDJytjejhEO+6mqqqOj4+i9Rx//HoHVVQ9LS4vY7XPo9XoaGtoP7V/s83mx2eZwu22oVCrM5mba71/dpTw/jV1dIiRjZXl5nlAoRFVVTVqhsB/aGHo+uHv3YyorDbS1dR9+8BHgcjmYnR1hYOD1vL6fSxxPEMJ88snfMTDwatq4eb6LVDAY4Pr1d5BKZVRWVtHVdTJvrfoEje8RLpeV5ub0HaKi0SgOxwJ2+ywbGwImU2NGnZLkfU5OjhAOr9LS0lOwKtL99+/zOXdbu62vr1FerqSyUodGo0Wl0u3ZJQSDfu7e/YTu7nMYDPnt1LJBPs/Wap1hZuYh1dXNtLZ2HXlnJwgCgpAw9mtrfsbHB1EqTZjNdVRUKCgrk1NRUbm72MZiMebmxrFapzAam2lu7shDHiBhwFdWEovq5uY6FRVKFAoVfr+bra047e19WSu1JozqInb7PIKwhslUj9ncfKQq8XwQDoew2WZxOKyIxcUYjXXU1jbsOoY/NuhPYGzsHiUl8mOv2nv48B4yWckecaFckI2H7vN5WViYZmXFweZmmNrajpRe9FG8uNu3P0Wn01NX14bFMorNZqG2tp3m5o60nvBhBsbvX2F0dBCxOE539/ldOmkw6GdxcRqn00ZFhYba2uzkaJ+Ex+NkcnKEoqI47e0H+1Hmgo2NdbzehAEPBFYQhI2d5sp61GotKpX2UEPo87m5f/8aJ08+m1NXouNAMmw1MTHI9jYMDLxyLP0GhoY+A4o5dWrgsEMRhDATE/fx+by0tval5aknjk1twFWqqh2Brr35neVlK5OT91EodHR09B9wCDLN00BgFZttDqfTilwux2Rqwmise+qtMr1eJ0tLFtzuZSoqtJhM9XzlKw0/NuhJTE7eRySSHruHfuXK25w69UzehTrpjPD8P/3PPDwxsBsbNJubqK1NKEDevv0BBkPjgbBLvkyIhYVZ7PYpLl58ffdFCYWCjI3dQxA26ew8uUeoKNN97188YrEYVquFublHVFRUsr0dJRzewGhsoLa28UgaGcn46ezsQ5RKJW1tJ7PysoJBP6urLnw+D4HACtHo49ZuarUub0U/p3ORsbH7nD793B69oacFv9/L4uLMTpJei1ptYH5+lEuX8gsHZsL4+CB+f4CzZ5/Nyfh5vU4mJ4cQi2V0dZ2kslKV1oAnGpMfNOCpkOjZ+pClpXnq6jppbGxDLBbnNE+XlxPVoGtrPvR6M7W1LQVpq5gLkjo9Dsc83/jGyz826EnMzo6yubmVV8upbOH3rzA8fJ3nn/+JI53nSQ9is8rMva/8Gjfr21AoKqmtbTkQGwyHQ9y58xHNzf17PJ1cwjeJYiEfPp+X0dF7PP/8l1JO3oT3M4xSaaCjo2fXMOS6eIRCa7z33n/l3LkXMZtTa93nGy6KRqNYLJPY7VPo9bW0tj5ui5YsikqGTwIBH0VFxVRWatFoqlCpdAWt8nv06Dajo0PU1DRQWalBra6islJ7bOJO++V1q6sb9+h7T04+ZH3dx6lTzxXsmgsLUywszHD+/Et5MTYSi/wUFssYwWCIigo5lZUqlEpd1gY8HRKOyF0EIUJn50me/6XzOTs5odAadvs8y8sLSKXFmM2NGI0NT03DJYkfWtpiPigqKiIa3Tj8wCPA6XRQVZV7h6X9WH3960yffpGFhRmCQTdVVWbON3QglytSGjle/zonTz7LvXtXdhr/Jrzn9EyIGgKBVfz+Vfz+FdbWVgiHgzvJrTIkEnFaT8RorEOnMzE9PcyNG+/T2HiCurqmnGl06+trVFfXUFvbmPLzozTilUgktLV1U1fXyOTkKJ9//jYKhZJ4PE4w6Ecmk6NUajEYGujqOnusfWwFYYMLF15BLq/E5/Ngs83zySd/g0qVEPwqLZXtsEgeM0lKSxPUwVw93WQFqFptoKWlL2VRWXNzJ9evv4/TuXho0jAbuFx2LJYJzpx5Pm/6nVgspqGhA63WxNWrb3P58psFo/LJ5Qpe87kw/PvfpNTjINFM7yAy0T3l8gra23tobe3G7XZgs80zPf0IrdZATU3zsWkX5YsfCYMuFkvY3t461mt4PHY6OvLfASS8KyuLizOIxTHM5ib6+y/s6bKTzsjx+tfp7b3Aw4c3d7rdq1LSsLaKS3j/8k8yc/8alZVKKis1mEw1KJWP48IffvjXRCKRtB6I7qO/om9nUVlT6rjxpV9E0JkoddsP/qY0NDqv15XxRShEI16ZrIy+vrMMDkbw+710d59GpdJlpeRXCEQiEfz+FXp7B5BKpTtski70eiPz8zP09V1ka2uLjY0wgrDBysoqkYgdQUj0Si0qKkImK91pGp0w+Ml/EkVbYuz2WRyOOeLxIkymRjo6Tmc0hhKJhI6Ok4yP30GrrT5SbDgQ8DE6eofe3ssF2dVUVChQq6t58OAap08/X5C4daoQSypkQ/dM1n4YDOYdfRwrY2NDiETbVFc3YjY3F5RTnqTDJvI5rqy/9yNh0KVSKdvb28d2/nB4nc3N3MS4kggGAywuzrK8vIBaraGzsy9lafthRk6nq6a1tZebNz/EZGpkQ12N+Sd+hWc/+HMU/hXCWgOesy/x6tW/461v/2HaMEZZWQVrawE0Gt2Be9j/gihW3bz8rX/PSP+z9Pq9SCLC7rGZOLwrK066u0+lHZNCFc54vW4CATeXLr1xrKX4qTA3N45crj6wMDY0dBAKBZmeHuXMmWfShhMEYYNweH2H+hdGEML4/asIQuJvDoeVtrZ+OjvP51QroNdXs7SkZ3r6wa7qYK7hLUEIc//+57S2ZtfOMFtsbYXY2hLz+edvU1+fqBc5Ch011TuzH/lwzWWyMpqbO2hu7sDrdWOzzXHt2vdQqzWYzc3odPmV+QcCPrzeZVZWEgl5qbQUlaoKk6k563P8SBh0sbiI7e3IsZxbEMIMDt7A71/h7t0rFBeXIJWW7jQwlu00Pi7ZaSad6DWaLN23WmdZW1vBbG5gYODVtOXykJ2Rq6lpYnJyiEhkg9raRlT/6HeZ/cf/F5B9GKO8vIJQKLVBT/WCSDYFuuYnuP4Lv0n/t/4TioD3UF2NSCScsaFHIQpnotEoo6N36ew89dSNucfjZHp6BIlERiwWO/Byd3Wd4e7dTxkdvU9PT+qwqExWikxWCqQeJ4tlkuVlS9oGEKmQNNwnXYsEKzXYf+13KC0rzym8lZS7ra5uychOyRXLy1agmBdffB2/f4WZmTEWF9+msbGDmpqWvAxkuncmDiASEazUMPTVb1Ly/FfId4ZotVVotVW7O+yZmTHGxwcxGmuprW3N+E6vrQXweh34fC5WV1coKpKiVusxGhvo6TmXV/L6RyIp6vO5mZh4wMDAwc4s+SKZfLPZpjAaazEa69jejiIIGzt9RZMNpCNsbQlsbW0RiQjE4+D3+5FKJXR2nqKl5URWk/WwxKPf72VlxcnQ0HXeeusXDxixbBOX09MP2draTplAPizR6vO5GRu7R1HRY9bCflits3i99oyJuUJosYyODhGJrHPy5DNZHV8oBAKr3Lt3hd7e88zMPKSmpj2l4YtEIty69T61tR1Z9XhNhfv3E5pE2fzGVGO6VVwCpXKKgysHjk+VKIzFYgwNXUEiKS+o/kuiF+k7tLae3MPd9/m8zMyMsrERoKGhk5qappwM+2FzPhKJMDMzgtNpo76+i4aG/BaO/fD7V7DbF3C5rJSUlKBWGygvl7O5mWgy7/U62N7eRiQq2qHDVqHT6TPmc36cFH0CRUUSotHCxdCt1jnm5kZRKBRcvJjZs96PaDRKMLjK8nKiiCYYDFJf33KACrgfqWLiUamMa69/nXsffpuSksT2rKqqjpmZEU6cOLfn+9mGMSoqKrHbF1Iee5jnrFZXMTDwOgsLU9y79ylGYxNtbd174qFerxOt1pTxtx5ViyWhSmnl0qU3sjq+UAiH17l//xptbb3odNXEYjEmJx9iMtUeMBRSqZRTp57j9u2PKSsrz7oQ5kn09Jzl9u1PmJkZpaUlMyU31e6qeGuT+NZmyuNTzZexsXtsb4s4daqwOiw2mwWJpPxAIZZareXcuefweJzMzIxhtU7Q1HQi6wKyw8r5pVIpXV1nMJubmJgYxOFYoKvr1JFqBwRBYGMjcT2xWIrH4yYYDGE01iGVluB0OpFIxJw798KxsJ1+JAx6cbGUWOzoMXSv183ExDBicYwTJ87mleGWSCSo1TrUah1tbf3YbDNMTg4yPi6mpqYFs7nuQNw1Fosxf+FVXP/D/0H3X/wBcp+HjTI5YrGYF//097hUZcbxzd9j9dkvsbm5ya1bH2GzWXYbNED2YYzy8krW1wMp7z0bvQuxWExjYwfV1XWMjw9x7dq7tLf3o9HoWVlxMTs7RlWVIWUo4knkq8WSCLUM0t2dOUFYaAiCwODg59TWPm6ModebmZ19xPKyDZPpoKywXK6gr+8iIyM3KS19MefkokQi4eTJS9y69REKhTKjhlCu+Yf988JiGWN1dYXz518qqMxCNBplfPwuZ868nPaYpNZ8ohJ7DItljJaWE4dKNWfrGFRWqjl//hVsNgvDw1fRaMy0t/dkNX8ikQgrK66UvPne3rN7aJeBwCrLy3OcP1/4WoAkfiQMulh8NA89FFpjamqEYNBLc/OJPYbyKJBIJLtd3D0eB4uL01gsDzEY6tFodITDQVZWXASDq4kEyckX8Lz8s7QNfUrzv/0mReFEBx+Zy7Yn7tnXd5HBwSsoFKpdCmK24kNyuYJg0M/6eojy8r07j1w8Z5msjJMnL7O4aOHq1XeRSosxGmvp6OjDap1lamoEjUaPwVCDTmcqWDXe2NgwSqUyJ1reUXV8otEo9+/fQKPRHZD2bWrqYnp6LKVBB9BqDTQ1dTE0dI0LF3LncpeVldPTc56RkRuUlyvSFlOlW9A35ZUURQSKI4899f3zIiELPMOFCy8fcDaOOnaPHt0mEAgSjR6e49Lrq9Hrq3E67UxPP8JiGaWlpTfjQpaLY1BT04ReX8PU1DDXr79LU1OClvvkApaQgnDj9XpYXXURDgeprFSjUlXR3X0qI29+dHSQpqbOYzPm8CMSQ4/FYnz44bd47bWfyel7kUiE2dkJlpdnMZmaaG7uPvYy4HA4xMLCJMPDt2hs7KG2th6NpmonQZZANvHwxcV5LJaHDAy8vvsSZnr5EpWWFhYXp1hdXd2lzGk0BjSaKjQafU7FFLFYjNnZCRYXJzGZ6mlu7qG4uPiJ37nO8rIdj8dOMLiKWq1Drzej19fkXbTh8Th59OgWly59KetzHDVeH4vFGBy8gUQSTxvLvn79ezQ19WA01qQ9z9jYPYLBNc6dey4vD9himWJpaZqLF19POUczVSFPTj3gxU/+CpnHcWBe+P1eBgc/TyljcNSxs1jGWFpapK3tBKOjgwwMvJKTsVtasjI7O0ZxsZiWlp5DG5/kgkDAx9jYXba3wWxuJBxe3zXgCkVCekCjMaBWV2X1vObnZ1hetnDx4mt53c+PtVz24f33/4pXXvlaVoMfi8VYWLAwPz+GSqWls/Pksa6qqbC4aMFimWBg4JUDxinbKtBHjwYRhABnzqRvuBCNRrFap1hcnEEmU9DY2I5eX73Lg3W5HPj9bgIBH+XlStRqI1qtDo0m/UR2Ou1MTj5ALi+jvf30oSX4giDgcjlwuewEAm4qKpTo9SaMxrqsxz0SiXDjxvt0dPTl5J0ftVnEyMhdNjaCnD37QtrxWF62YrFMcunSq2nPk0w4SqUVB7TCs/WCh4dvE4sJaRPO6c6zvGxjZmaYS5fe3PMbwuEQt259SGfnmZSL0VHGzuWyMzo6yIULL1NWVs7k5H3W1kKcOZNbEjsWi7G0tMjs7CilpVKam3sKUuzj87l3mn1PIJPJaWhozcmAPwlBCHPjxvucOfNC3rIgPzbo+/DRR9/OqgrN5XIwNTWCVFpEe/vJjPS648bDh7cRhAhnz+6d5Nm+SLFYjFu3rqDVamhr69tzrCAILCyMY7fPo1TqaWxsz5gMSsrGejyOHdXBEAqFFrW6iqoqAwqFinB4nYmJYdbXV+noOIlen94jzXQdl2tpt+VdWVkZOp2Z6uq6tAtDLBbj2rUPEQQ/58+/QkWF8li7xycxNTWKx2Pl7NmDoYj9uHr1HVpb+zIqMEYiEW7f/gCTqZWmpjYgNy84Go1y584VdDp9TgJxsViMzz57D5Foi8pKDYKwTiQSwem0YzCYeeaZN1OOZ75jFwoFuX37I3p7B3bJAIm5mtAlSv72XJDYYc7t8P/LaWnpzfndTTbUdjjm2N4WUV3dsEc6IV/cu3eNiopy2ttP5n2OHxv0ffj007/j/PmX0z6cYDDA1NQIodAq7e19Be0HmgmHhUFu3foAna52j/hWLi95wjv4kO7u0+j1ZsLhEBbLGMvLNvT6Whoa2vKq9Eskg5Z3K9mCwSDb21E6Ok7S0tJdkMRZso+qy7WE272EVCpBp6vGaKzdfVn9fi+jo3fY3hYjk5UiCOtsbq5TVianvFyBQqFCoVBRUaFOuZjn62VarbPMz49x/vzLWe0ilpbmmZub5vLl9F46PPaKu7rOYjCYc76/cHidW7c+orv7VMYFNdmA3OFYxOOxU1JSsrNA65HJZJSWliORFPHo0RCRSIj+/ssH2Fz5jF1y9OIQ9gAAIABJREFU0aqpaT9A10wa+jNnXsirTVvydyUE4MaorFTQ0tKXUVQr4UDYWFqaIxDwU1VVg8lUX7CCqeVlG9PTwwwMvHGkcG3BDLpIJPpj4E3AHY/Hu3f+9vvAl4EIYAF+KR6P+w+7mMnUFP/mN/81IpEYsbgIsViMSCRCLJYgFosQicQUFRXtfC7ePS75/8nPHh8n2vl74vuQ+HtRUfK8RbvXGRr6jDNnXjhQiCEIAjMzY7jdC0+9WUI2hjm5XevuPr+H2pZLMsrrdTM4eAW1WsvaWgCjsYnGxpa0hiifRNeDB3eQyUpob+/LeNxR4PN5cThseDx2YBuxWMzW1hYtLf3U1T3WhUlQQ/2srfkJBFZZXw8QCgWQSIooL6+gvLwSpVJDRYWK2uvvUP+7/yCnOPDyso3x8XucO/dSTrrZ164luNapKIpPjrmgM/HR819F/qu/zfMvaXL2gr1eNyMj1zh37uU995dYhN14vU7cbjslJdKdfrSNGam309Nj2GxTdHef3ZOAzCeGfu/ep0il8rQt6KzWKazWOS5devVI72E0GmVhYQardQqVSk1zc8+ecIfP58Zut+DxOJDL1VRXN2A0mguaI0uGAbu7Tx85vl9Ig/4MEAL+7AmD/grwaTwej4pEon8DEI/Hf/Owi3V0nI7/6Z/eJhqNAjFisRjRaJR4PEY8/vi/Y7HE/29vbxOLxXb+ie78Pc72dnTn8xix2Pbu97e3t4nH47vfj8W2d7+zsuJEIpGhVOpQq/WoVOodLe6pnbL5vqdeUZith+PxOHj48O5uvDEffPDBt9HpTHR3n8oYHsg30TU0dJ2qKuOhDKBCdIaCBAXs44//hpdf/umsdxihUKIRQzAYYG1tlVDITySyQf/EIJfe/TPKfW4EnQnbr/0r1r78Cwe+H4lEWFycY3r6ARcuvIhKdbCaNhMSSec5Bgb2UvRSjXm0RMb7P/UNXvr0r5G5bAfOddgOYn5+hunpYUymFjY2goRCAba2kgVvMc6ff4Hq6ux3oR6Pk4cPb2M21+8J32XzPBNNJOxYLI8IhcK8+ebPZDTW9+59SlmZiq6u/oIwkObmprDZplAqNZSWyvF6l9jeFlNdXV+QkEo6jI4OEY0K9PUdrhF/GAoachGJRPXAO0mDvu+zrwA/HY/HDx3lLzLkArC1tYXP52Jlxcny8iI+n4uXXvoaKtUXEyfPJQY5OzuK07nE+fMv5uxFWK1z2O1TWXVSyjcEcf36+3R2Zm4uUYgK0CQikQifffYdXnnlazl9L9V5Et58gGDQTyiU8OiLi4uRyyuRyxXE42LW1gIEAl6k0mLC4TDPPfdWWkOQzgglKyI7Os7uKSRLN+YhjYHrb/wSL3/r/855zPz+FT777Lu0tHShVldRUaHa9dYXFqaYnR2loaH7QLw6kwFNaLjcorgYTpwYyOgAJeUtlpYW8PmcKJUqqqpqmZsbp76+M211rOq9P6f6P/wzSlx2IhWVFAthxFuPKY1HmS9Xr35AURGcOHGuoBo0qeDzeRkevsrAQGF0hJ5mpegvA3+V7kORSPSrwK8CBZHsPAqKi4t3qHFmOjtPc//+TSyWUU6ffu4LuZ9cNEuam7sJBLyMjd3PqWN6wkMZ5cSJ7L6TrzDW+voaZWWZK98KoaKYhCCEkUrzf1EO8/xCoTUCAR8TEyNsbgbp6xugv/8iUqkUi2WMwcGrnD//YkpediZtlLq6DmZmxvYY9HRjW+5zsXDxJT6XljDwvT/J2kuNRqOMjNzh1KnLKXdM9fVtaLVGRkZu4PE46OlJyAgfdu8yWRnnzz/PxMQIt269R3//5QOJR6/XjcNhxe22UVZWhtFYR1fX4yIvlUrHvXufUFFxsAH5geuvHYzi5jtfYrFt/H43L774E8fuwMViMUZH79Hamr6J+XHhSMFikUj0W0AU+PN0x8Tj8T+Kx+On4/H46Vy3qMeNnp6zbG5uMz7+xewalr7xO2zvi2NnUn87ceIifr+ThYXZrK8xNzdFRUVF1lSudAJY+/+eECOa58GDG1y58ne4XA4CgYOaIE+iUCqKABsbobyppEnDUeK0IorHdw2X6r3H01gur9jJ00R58cWfwmR63NSgqamLykoFDx7cYf8ON9OiBYnilUgkhMfj3P0805j39z/DoxOn+Zs/+B7378UYfWfhUGM2Pj5MRYU8Y/hLLldw4cKr9I3fouetek6eEdPw27+Q8d4hUQnc1dVPa+tJhoauMj8/QTAYYHx8hCtX3mZ8/DYyWQkXLrzMxYuv0dDQsceoKRRKurrOMDJyE2HftbJRR4Tc54sgCNy9+xkqlZahoas4nbnPt1wwOztBSUlxwQoQc0HeBl0kEv0CiWTp1+NPkypTQEgkEk6dGsDtdmK1zjz166++/nWsv/VHbBrqiItEbBrqMm4npVIp/f3PYLGM4PdnNp6QmMg22xTt7emlavcj3SJj//V/hdfrZGLiPjduvMdnn32XpaVFKiq0nDr1PG+88XN89NHfMjR0Hat1DkEQDpw728UiGwjCBlJpfrHPw4wuJNgio6P36O29mHLhOHHiAtvbG4yPP9zz98MWrWRDB4tlfPezTAt7orz/WWy2KZaXD8bS92N52cbKip3u7sPFszQf/CXn//h3qPR7EcXjiNLIY6T6TSZTHWfOvMj4+EM+/fTbxGIR+vsv8swzb9Ha2kN5efrdmsFQi8nUwNDQjT2y1tka6lzmi9+/wscffweNRsuLL/4Evb0XmZh4wMOHt3ZyeYVFKLTG4uIkXV2F1bvJFnmFXEQi0WvAbwLPxuPxw5fU72PIZDJOnrzMnTsfEgr592whY7HMPOQnkcuxCQHPxBpo7TzNg//4wd6PrVOPj4zHD3iBcnkl1669y6VLb6BSPW74G41GWV9fIxQKsrYWZG5ukpISaU6hif3l/WGNgVtf/iXuSWSUTjxAozHS2tp/oLAoHF6nqkqPVqvD41lkauo+5eUKNBojVVVG1Gpt1vID2UAQ1vdUz+aCw4xuLBZjePgmtbWPO9KkCtH0P/9Vbt/+AKu1Ypdlk00Yraammbm5MbxeN1pt1aGSCmVlcvr7L3H//jXKyspT0vBCoTXc7mVGRm4wMPBqVpWy2XrE6QxoWVk5Mlkxzz//MxlZMqnGrv31rzM09BmPHg3R13d29zqpxu5JZDtfQqE1pqcfsbrqRCqNU1aWYLjodAYGBl5jbOw+169/j+7ucxl3r7kmZUdH71Ff35YT+6mQyIbl8pfAcySEmV3AbwP/DCgBkm7i7Xg8/g8Pu9gXnRTNBJvNwp07V2hoaE/5uUgkAkRZnm3vsaIMXxOLxTz5CDIdKxKJdo9dWwuwsRFALBZTVqZgczPM5mYYmayU0tIKFIpKpFIZq6tefD4PRmM99fWtGRXektxyj8fByoqb7e04arVhRxxJn9GAOp12rNZJzp17CUjynJ27BUJbW1HU6mpOTt6h68//gBK37Ugsl5GRWygU2rykZw9L/I6ODrGx4d+tsM2UzLUOvMG9e5/S23sZrbYq68Tv2Ng9LJYZTKZaRKLEwvj434n5k5gLiX+LxWK83mV8Ph+nTg1QWlrG2loQv9+D3+8FYiiVakKhMMXFYvr6Lh2qApouKf8kMiUhp6ZGefDgKi0t3cjlSioqKqmoUFG2IxyXHLv6f/FLiJ/QUopJiln47T/B8/LPcPPm+9TUtNHQ0JJy7GKSYrZKy5GuBYgYalj6xu8e0nxDwGKZwOmcw2xuoqmpm1DIz9DQdZ599s09hIIE/XQIo9FMe/vJA8ybXJP4VuscNtvEngbrhcKPC4vywNWrb+fcAeaLRDAY4LPPvkNf3wWUSh1yuSLlRBKEMHNz4zgcViorq2hoaEOrrdptmpww4E7W1tZ2GiYbqKoy7CnuOMxTmZ4eIxIJ0919JuW9rq+v4Xbb8XgcBAKrlJcr0WqN6PXVeRWR3L37CTU1rRn1UdIh04s62nOJ6ekHezRwDlsAnM5Fxsbu79JKDysWm5kZZ3FxErO5Abn8MTf68S4vtu//H//32pofv9+L2+2ktbUblaoKnc64x3jPzk6wsDBOR8fJjFKz6X5XTFyEKBZjTaVl8R/+Sza/+g8OHBONRvn883doaGijqKiEUChAOBxkbS1ANCogk5Uhlyv4+//LW8hCB9U7txQaHn7qJRQKcufOR3sWxFRjd+/eJ5SXa+ns7E35W56kJ+p0xp2E5OMw1tDQZ1RU6PYU6EHi3UhIZATp6bm4Z/eTC+NLEARu3HifU6cuHUt1+Y8Neh6wWMbw+1c5derSU7tmvjzbSCTC55+/h9FYndaI7kc0GmVxcQabbYa1tRBFRUWUlyt2vHA9Gk1VTsJOT3oq9+/fRqNRUVfXtud7qX5bNBplZcWJ272E1+skFouj0VSj1xuzFgG7du17nDhxHqVSc+ixqZDq3qwDb3L37iecPv3MnpcyG3rp7OwoDoeNixdfPjCGgiAQCvkJBn1YLJPI5XJ6ey/mpKP/JO7du4JGY6axMf3uxO9f4cGDW6hUKrq6zuX1XG02C9PTD6ipaae5eW87uOnpMdbWPCl1Y6LRKKFQgEAgwFe+2pRyXxsHvvudOSoqVITDQUZH73PxYvo6C0EIc/36+/T1XdrjcMXjcRYX55mbG6WiQk5r68mUeimJhePjtDTChYVZ7tz5gKoqM1VV1ajVVXzprYasacXDw7eRSovo6sruXcwVP25wkQdqalqYm3sbQQg/FTGufLvb+3xeRkZus7Ul5MRJl0gkNDZ20NjYwfDwDYLBYFYVednQDcNhP/X1j6s1D/ttSfooQDDox+22Y7VO8ejRLRQKDVptNVVV1WmLhjY3BWSy/AtC9suqRqNRHtz8iKamjgMeVjZx8ebmbtbXA9y9+zkGg3EnJLZGKLRGPJ7o1VpWpkAQNuns7D9gzLNZ2BMNM+4zMTHCz//85Yy/T6nUcPH/b+/Mgxrv7/v++gkhBAhJgDgFSNzXcix7L7vPPvcRP3nspjnG9aTpNK3TOJMmmZytp24yTtOMk0mbTDqTurHHaZNxmiaOHfs5/Ny7LDy7y8Jy35eQQNwIIYQQkn79Q4A5dEuI3X30mtkRK4R+h/T7/D7fz/H+XH+ZwcFuOjreorHx+onjCha7Ly4uJzs7j76+Du7dW6Cx8TIKRQYOh4PZ2VGuXPEt+iaVSlGrs4PebM1mE+PjAzid29jtVt5///u8+upP+Lyhy+VpnDt3kf7+e7S2vopMJjvQXfLWlgeeT6BQKMnJyWdqatSnl6/XV+ByOZiZmUQqTcVkmmFbnk7atu3Ea4/nFLwCdmZu3vzxI8/HqokuHBIG/RAymYy8PC0GwxTV1YEnwMSCcOuy95frRuMo9fUXSUlJp7+/g5qak+PignH+fCudnR8wPNzrc9zcYUJJItrtmyiVP1quhnNsSqUapVJNRcU5dnd3WVnxKi/Ozo4gCFI0mkJycvLQaPKRSqW4XC5cLldMa3z7+7tQKNIpLa098btQk7kaTSGjo++RmqpAqcwiP1+HSqU+4hzodBV0d98hOzvv4PlQbuwbG2v0939CSkoGhYXF2O22oMp93qqoqxiNM3R13UGvrz6h1x5MLzwtTcHVqy8zMTHA/fvvUlFxntXVBVJT5TidDiyWXSQSKVKp9ODxsJPhUmWT7KOc1aXK5uJF701pP5k/OtpDZ+dtLl265dOo5+eXsLg4x8OHbSQlJbG9vUFVVROFhfqA52Gfqqpm7t59+4TsxdFZqxqm/s1XUKkykfvQaHdJkrj9yudZGe0hKysXhSKT4eFuamsvHDnuSJ21aEkY9GPodNU8fHiHysrT13QJpy7bbt+ip+ceguDmxo0fTTzxeLwCVZHE7RoaWunoeJusLE3AWHQwD9Vu30IqTT7yhY605jw5OZmCAt2BONrGxhoLCyampgbo77+PWq0hPV1FcnJK0OMLFYNhCqt1kdZW3yPrQhnssbhoYmTkES+//M8DeqZZWRqKiiro6eng6tUXD97X381v9ZXPMz4+gMk0QUVFEzpdOd3dHayvL4csxVpcrCczM5ve3nusrS0E7fL0RUXFOXJyCvnoo+9isznQ6ysYGendk+dw7clu7Mt1uJFIvFpK1F6k5d4Pj4Rd3ElSbv/Ev2O6+w5JSUlIJFKSkpJQqTIxGEb56KPv0dr6is9KkbS0dIaHH3Hp0i1KS58J6xqVy9MoLCxhbGyQxkZvaOS44VVZljn3p78BaYojHar7iBlqnD/5JVxrK0xMDGE2G1GrVSeaJmPZRBcOCYN+DJUqi7Q0ud+xYbEk1E7RuTkDIyNdFBVVnFAyzMvTMT8/E5FBl8vlNDe38ujRXTIy1H4rYIJ5qJublhN/G04XbCBUqqy9RFUjTqeT5eU5JicHMZmMbGysR6zKt8/Gxjrj44+4fDmwpEIgT3ZlZYH+/vs0N9/0acyPL73VX/p93lTlMT09TGlpbcCb3yef/BCpNJVr1145iC+rVNmsry+h01X63cbxG45CkcG1ay8wMtJPe/tbJ4S2QsHtdpGRoebFF18KOg/T5XKhfuuvqXh054gxFxEwvvJ57J/7t2S73Ad6S263C7fbg1ZbxerqMp988i45OQVUVDSgUChxuVz0999jc3OT11//2ZDncR4/L4ov/i7fTcvAZqtBocjwP2t1w/esVal1jYKC4gMHqLe3E4XiZHg2lk104RAfWcEnjJKSamZnJ099O8E6Rb0t3A8YH+/h/PkbVFc3nvBItNoSFhdNJ9478+2/4dzr3g7Ac6/rj3RBHiYrKxe9vpqeng6/jRbBGqCs1g0UiqOx7nC7YEPB4bCztDTH7q6T8vJKurtv097+HgbDRERNIk6nk+7udqqrmyMePGCxrNDT005DwzWf1VG+ulL1f/ALvLBoYHJyCKvV4vcmZ1Vlc3liiJ//6r/ixq2Mg88xO1uD1boecBvHO1/BW/pYV9dEY+N1BgYeMjjYGXL/xOLiHPfvf0BNzYWQjKlUKkX/9d8laWf7yPMCIgXdd9Bqdeh0ZZSWVlJeXk1VVT21tQ3U15/nmWde3ptdkMH9++9z5873+fjj7yKKEq5fD34zCXReKr72S9ycHWN0tBeIftaqy7XjM98Wyya6cEgYdB8UFOiw273Sq6dJIENpsazS3v4uHo+T69df8yt6pVJlIpHIWFn5USt5qBf4PuXl9cjlMgYHHwXc14EfzPhsP9/aspKerjrx+nC6YAOxsbFGV9dtHjz4kLQ0NTdvvs6NG69y69YblJdXs7Rk5KOPvkdvb2dIHbT79Pc/IDs7K+IWbavVQlfXHerrL/uUxAX/S++Kb/4+FRVN9Pa2Y/rS75+4+e0mp7B563Nc+l9fOfE56jvexuHYxul0BtzG4c7Xw+w319jt23R0vI3NZvX5uv2VxwcffIehoUdIJFLGxnoxGCZCuhFE46V6PG6SkpJJSpIxOzuNxbJBY+PlsIoA/J2XC9/5C9bXl7BYVv0aWEe6EtexhjxfDonT6UAmOxn+Ow2HJhQSZYt+GBnpxul0H8Ta4snExDAGwxBVVc0njI2vpfW9siYcjk2amq4BkQ8e6Oh4m4qKJoqK9GHt7507b9PYeCnm9bfr68tMTvazsWGlpKQKna7Cb0mjw2HHYBhjfn4aqTSNoqIytFqd39dPTo5iNk9w9eorEWlgb21t8uDB+5SVNR3RYj9OsJLHzs47pKWlcWN2lLw//U3SVhawawpY/JWvof0fX/b7OX79P/4l5eU15OUVRTV1aXJylJmZASoqGtHpKllbW2JubpqlpTmSk1PJy/OGF/arjVZWFpiY6GN720lZWR3FxXq/cexwv4cOhwOz2YjZbMBu30CjyUerLSU7O5/u7jvIZOlhXY+Bzss//N0gS0uLvLo25zOcOPFbf87oaA8vf/yPpCyZ/FapfPzx92lpuelzhRfLKpdE2WKU6PU13LnzNjU1TREPLQ4Xh8NOT88D3O7tE8MJwH/m3PHrf8b3M9R4PB4kEklEnpFMJqO5uZWurtt7U35C0xj3eDxsb9uONMhEi9doDLC9baekpJrm5meCGl25PI3q6maqq5tZXDRhMk0wMdGHRqNFp6s4Ml5vbW2F6ekBrl49WTMeCg6Hnc7OD9Hp6gMacwieS2houMzt29/n24KUjP/0VzQ0XD4496Vf+Vmf7ylbnEWtzsFiWSEvryiqfEV5ubfJ7O7dH9Lb24FKpSEvr4SLF5/zmZ/QaPLRaPJZWTEzPt7P1NSQX8MeSnXQvla62TyL1bqCRpNLWVkVublFR96vsfE67e1vYjbnh9xMFui86HTVGAxjjF18Ab789ROG1/baF7CN9vB/XvgZWlqu+93G7q7Tb4lzsAqi0yBh0P0gl6eRnZ2N0Tgd0YzDcFlYMDE4+BCttoSqKt/Ze39LyPJvfBX57/xPlpfno7rA1WoNZWX19PR0+GyQ8YXNtklKSkpMJr0sLpqYnh7a8/5qKC4ui6jSaL/G3eFwYDJN0NfXjkQiQ6stIze3gN7eDurrgw+v9oXD4eD+/fcpLKygrKwq6OuDGTW5XE5eXiEOh4vLl28eOd5An2NmZhaGPc2faDVyUlPTkcvlVFZepKSkIqS/0WgK0GgKWF6eZ3y8j5mZEcrK6tBqSw6OwV910PJLP8PinIH5+VkslkXU6my02hIuXrzh93skk8loaLhGb+89MjOzQxv7F+C8SCQSysvPMTbWT44fw1tefo47d77P2tqKz3m7LpcLt9sVN4cvFJ6YGHqoSb5YUlJShcl0uslRl8vFwEAXw8OdNDVd9akpsU8gzzs/v4T5+RkguvhdaWkNCkU6g4PdIe3/5qYloLJeKCwszNLe/jYjI31otVXcuvVj6HQVUZeNyuVyKirO8eyzn6W2tomNjUXeeedv8Xh2Ixpg7XQ6efjwAzQa3YkWcn+EkkvY2dlGry/36eH6+xwzMzVs7umFR5uvGBjoQqPJC9mYHyYnp5Dr11+ltrYJo3GEtrZ3MBpnDgTl9nMvD++7eP8v7/JBXhkfffQ9jMZRcnNzuXXrDS5deo7i4vKgToFGk09RkZ6ennshxfCDnRetthS3e8eviqVUKqW8/BzDw75zS07nDikpsSufjQVPhId+VkX6OTmFCEI3y8sLRwYSxAqrdYOeng7S01Npbf1M0Dt9II+tqEhHW9sgHo8npLppf7hcLvLy9Ny79z5O5y7l5dWo1Vl+jevmpjUig+7xeDCbDUxODgJJlJfXUVBQfGq1/zk5heTkFFJdfZ7e3gd7glq+pXF94XK5ePjwQzIycqmv960n4o9AS2+7fQujcQa5XIXVuoFUmkxSkhSpNInFlufY/Pd/TNW3/gD58hw7uUWYfvG/sPHaF5ADyckpWK0WlEp1xMv7uTkDGxtL3Lz5mbD/9jC5uVpyc7UsLpqYmPCGYioq6pHJ5JjNsywtGUlNTSU/v4S6uqaIO7ErKxt58OB9JieHqawMflMNdF4kEglVVY2MjQ2Ql6f1+d3T6SoxGscwGmcoLtYf+Z1XwvnxMuhPRFI00rFosWBoyKuKV1ZWj1KpQqlUkZGhitrwTE2NMzXVR0XFOfT60EI6wbQ37t37AJ2u4qApJxScTifr6yusri6zvr7I1pYFhUKJUpm5J961itPp3NN7KSQvr/DIjSfUWaL7eDwejMZJDIZhkpJSKS+vJT8/vHroaPF4PIyNDTA3N0Fj49WgA3w9Hg+dnR+SnJxOS8u1mOyDy+VicnLkYNZlRoYat9uFy7WLy+XG7d7F43HjdrtxuXZxuz0Hz3lzJUmsr6+Rl1dEc3Nkmjb7+igtLTcCjg48TijJvoUFI11ddxFFF1VVTWi1pSdu/JEmDe12Gx0dP6Sl5ZbPUEi4dHS8g1Zb5Tcfsrw8z8DAQ27e/LETao1G4xiXL/uWQIglT1VSNN5F+i6Xi5UVM0tLc4yP91Nd3YJUKrK0ZGBqaoOdHQcyWToZGSoUCvWekVeTlpYe1NA7HA76+jrZ2bFy+fILYdU/B/O88/JKmJ+fDmjQnU4na2tLrK4uY7Ess7Xl9fDUas2Bet/xpa/dbmNx0YjZPMnIyMMjSok22wYVFXUnzp/L5cLjOfq4vr6EyTRNamoGNTWXyM0tCPnYY4lEIqGmppHMTA29vffJzMymvv6yz+5Jj8dDd/cdJJIUmpuvxGT7ZrORkZFeMjLSuHr1ZPI7GPvD1Xd3dzCbDXR13UahyKK0tDqsc9rT84CiIn3YxjyU1XJ+fjHV1c1sb1upqmqM+H18kZamoL7+Ir2992htfTnqGHZVVTP9/Q/8Vuzk5BSSkaFgamr0INTmdDpZWVlmZ8fBxsYaqamKxyKWnvDQ8V4ga2uLrKyYWV1dYmvLilKZTVJSCnb7GrduvXHk9V7tCStW6zpWq3eo8NbWJk7nLunpGaSn72tDe//td/gtLy8wMPCA3NwCamsvxDy84HA4aGv7Ac8997kDo+zVOF9kbW2F9fVF7HYrSqWazMxcsrPzUas1YSU0vTe7eZaW5lha8nou9fXeiUje6TMigpBEUlISSUnSvdbuJARBwuzsOE1NN/xKoMab5eUF+vsfsLVlRS5PJT09HbU6h8JCHUqlN8zU3X2X3V0Xly6F12Z+GK/WzRabmxvMzIyxu2ujurolaKdmqB7s4VWPIKRQVlYTNHw1PT3O3NxY2Nrd4VyLBsMUq6vztLScVC+NxTXtnTokBqxCCZXOzg/IyiryWwCxsrLAnTtvUlRUyfb2Jjs7WyQlJSOVJgMCOzt2JBIJcnkqKSmpyOVppKUpSEtTkJqaTlqaMiqD/1R56LGcdAPeC8BqXWNpaZ61tSWs1nXS01VkZuZRUdF4ICNrMEywtnby76VS6aGW9B/hdDqx2Sxsbq5jtVpYXjZit9vweESk0hTW15e4evX5kMWEwkUul6NUahgaeohEkozFsozdvolKlYlaraGmppmsrNyobiS6UglfAAAcUklEQVRSqZT8/BLy80swGEZJScngwoVWJJKkE8JMx6mtbebRozays3P8NuLEA7t9i+HhR1ity1RXN6PVlnrVFns+YWioh+XlBXZ27LhcTiQSOS+++NmA58zhcOBwbLG9bcdut+Nw2HE4tvYe7ezuepNnu7tONjc3qK8PHuYJx4OVSCTodJXodJWYzQampoYYG+tHr6+muLj0xGditW4wOdnH5csvhP1dCGe1nJIiw+Xy3UIfi1V3Xd0lOjrexmCYQqcrO7QydB9aGbpxu/efcx95zu327OnQuNjedvLgwUfs7DhIT08nPV1JcrKMtTUzi4tGNjc3KSgoJTs7G43mHBkZ6hPnzuFwYLfb2N72fhe2trZYW1the9s7fAZEUlLke0NovIY+NTWd9PQM5HJFTMTmngiDHk2Sbx+vgZ1jbc3bIZaSkkZWVh46XbVfDW6bbSsszWqZTEZWVu6JJazD4WBtbYHZ2TGGh3uw2bYoK6uOSanfYVZWllhfX2Zz0ytfUFfXglqtObVEo8k0RWVlg18N6+NkZeXS1NRKT087SUk3Qx4kEqsGDZfLxcTEECbTOMXF5TQ1XT34DDY317FYlnn55Z9EqVThdDqZnzcwMzPMgwe3KSoqQxTFAyO9b7D3PbOUFDkpKamkpqYhl6ejUhUeeGgymfzgM7DZrIyMPOTOnbeoqWn2mz+IVNxpX9hsZWWB6elBJicHKSmpRK+vRCaT4fF46O9/QGlpTURyB+GUxEqlMnZ9CFyF+z7+kEql6PU13L79A3JyvI6KROJdEe6vDA//7FWElJCUJD34f3JyMklJclQqNUVFelyuXdbWFjCZxpmeHqeqqgmdrpacnIIQeiHke0bZd1x/Z2eH7W3bwY1/e9uGxbK+5wxsIYpuUlLke2Wk3u/RvsEP+ZyE/MozJtwsvt1uY3l5jtXVRdbXV5BIpGRl5ZOfX0pDw5WQsuwOx2ZM4rxyuZzCQj2FhXo2NtaYnBzg44//iZKS6oMLLRpcLhejo/0sLEzT1HQ5rKRopGxsrOF07pKbG56nrdHk09R0jd7eNs6fD57UilWF09ycgbGxXpRKJdevv3LkRu1wOHj06C61tRcOmnpkMhl6fSUlJeVMTQ3R1vYmNTUNpKdnoFarkMsLD7ys5OTkkPdDoVBy8eLze+qM3czOTlJT03yikStaD3a/Acj7fRuire0H5OWVAh6kUuGEjG6ohLNalslS2N3dPfF8uO/jD6vVwthYP88//9lTEdLb3rbT2HglZjLNKSkppKSk+E1gO53OPe9+i60tr8OwuWnG4Qi9dPqJMejBcDjsLC+bWVtbYH19FbfbsxcnLqSq6nzIgj6HsdttZGSE1jEZKipVFi0tz2C1Whgf76OtbZSioipKS6siMuxrayv09z8gI0PhdxrLcWLh8RoMoxQU+G/7DkROTiH19Zd49OgOFy7cClihEa0MqcWyytBQDy6XnYaGS2g0R2/QHo+Hnp675OXpfRoFiURCRcU5lpeXDqbVx4K8vCJycgqZmhqis/N98vPLqKysP/gOxFKtsqXlBna7jYmJAXp67vHTP/3FiPc7nNWy16D79tCjXXXb7Ta6uj6isrLp1FRRRVE8dQntw8hkMmQyWVQKok+sQd8faLyyssD6+jI7OztkZuaSmZmLXl8XtawqwPb2JmlppzO9W6lUc+HCM9hs1j3D/gO02gr0+qqQjLLb7WZkZICFhUlqas6HbGhi4fG6XC6Wl+e5du3VkF7vi/z8EkRRpKurjYsXb/n9vCL1VB0OB2Nj/SwtzVJeXodOV+3z4hwb60EUJdTWBk7UFhWVYTSOx8ygw49uFkVFZYyOPqKt7a09TZWymOeN0tIUNDZeZWFhFqk0uhVhqKtlmUy2p4/u8XnuI62ddzgcdHZ+SFFRDTpdZMJqoeB2u+Nq0GPBE2PQ9+dQrq56DfjWlg2VSkNmZi7nzpUHbH6JhO3tLTwe96mXIikUSs6fv4HNZmViop+7d9+isLCcsrJqv4bdYlmlr+8BqakpIXvl+8RCeH9ubhqlMifk2Lk/Cgp0ew07t7l06Tmf+jHheqoej4fp6XFmZgbJzdXyzDM/7vczXFiYxWw2ce3ai8HH8GlLGB3txmazRiQZEAi5PI2mplbW1pYYHu7CZJqk9sorPjVGom2kS06W4XBsR7RiDRdvTFuK0+mMWdjicLduZeXJ6VKxxUNSUtIpbyO2PLYG3VtKuLRnwJewWi1kZGSRmZlHVdV5srOjq9YIhMWywqNHd9nctPj1LmKNQqGkubl1b2ncT1vbmxQUlFFRUX1oOpG3IcZkGqe6+qQSYyjEorpgbm6S0tLIYrDHKS4ux+120dXlNerHDU04nuri4jwjIz2kpMi4ePHZE1VIh7HZrAwOdtLUdDOkfIpEIiE/v5TZ2THq6oJWjwXFV9iL175Aa+trGAzjPHp0B0N+ObV/PxTT+bbJySk4nTvA6Rt08HrpTqcjJgbd5XLR1fUxSmX43brh4pUWkCAIvkZcP748VgbdYllhZWWBtbVFNjbWSU1VkJmZh15fR1ZW7ql7yy6Xi7GxHubnZ6mubkEun2Rx0RiXJOM+3qXxNex2G5OTg7S1vUVBQSk5OQWMjvaSmio7MoIuXKKNzW5srLG97SAvTxvR9n2h11cjih4ePrzN5cvPHfH8Q4m12mybDA/3sLW1RnV1c9DPy+Vy8ehRG3r9uZArbQBKSsro7PwgoN5OKAQLe+l0lRQU6JiY6KO9/R10ulrKynyHjMJl38DGC+8NJPrteTweHj26Q3JyOufOXQj778PNG8XLkYs1Z2rQrVYLq6veZh6LZYXkZDmZmblotRU0NubFdAhwMNbWlhgYuEdqaiY3bryKXJ6Gx+PGZJqKq0HfJy1NQUPDFSorGxgf7+e99/6eq1efp6IiuuHV0cZmZ2fH0WrDU0EM5WIqLa3F7XbT2XmbK1eePXLD8hdrdblcjI8PMj8/QXFxJefPXwupFLSv7x7p6Zlhq2gqlSrS0tSYzYaoYumhhL1kMhl1dRcpKqpgdLSLtrZpqqsbo5ZJSE5OYWcnfgZdJkvB5WPYcrj09HTgdku4fPla2IY2kryRx+NBEELbTix1z6Mlrgbd4/FgMIyztraIxbKCx8OeRkgxdXUXo47JRnJivSV/j1hYmNtLLv7IeBcUFDM21oPDEZslYyTI5Wk0NFzB4xFicmFEK9y1tGQKKxkazsVUUXEOt9vFgwdeTz3QOTcaZxgf70WtzqS1NfQVy8zMKDbbJtevvxTyMRzGmxydiMqghxP2UirVXLr0AgsLs4yMdGE0TlFbG1nVFngN7M6O72af0yApKfrtDQ52sr29zZUrz0XkNYeTN/J4PGxubrC4aGJ7++j4PF+clXCgP+Jq0G02Kysri2Rl5VFe3hDyEIVQiOTErqwsMDBwH6VSQ2vrqycMiEwmIzu7gLm5yYjrdmNFeXkt9++/S1nZuahDT5FWF5jNBhSK7LBuvOEmYaurm3G7XQfhl+PHul+G6HY7aGy8gkbjWwXT18198spLTEwMBh0IHfB4YpAcjSTslZ9fQm5uEVNTQ9y//y4FBRVUVNSG/V1ISUnF4YjeMQiV5ORkdncjN+ijoz2srq5w9Wrkn1mgG6jVusH6+iqbm+tsbKyytbVBSkoKCoUKQfBgs20GvHnGosgglsQ1SOQt1btBaWllTI05hDdX0TtB/D69vfeorm6hpaXVrzeo1eoxm09efIE4De12hSKDzMwCZmZGon6vSDGZxikpCS8RG0kStq7uIiqVms7O2wdzMx0OBz09D+jquo1WW8TNm58JaMxPzFT9/S/i+OZ/pb7+UlTfPYlEQkGBNzkaKZHq1e+XOba2vsbOziZtbW9hMEyFtW1vTDu45xkrZLLIY+jT08OYzSYuX74VlRPj70a5naqgq+s2q6sm5PIUqqq82vm3br3BhQu30OurmZmZCPje8RYODMaTF/X3Q6gndnl5nrt338TlEmltfTXoOKucnHyczl02NnyIuvgg3AHN4VBeXovRGNmE+2ixWi3Y7eEnQyOdft7QcAWFIo2urjbGxwdpb3+L5GSBmzdfR6cLHPv2eXPfsfOZv/szPvOGLuqbbHFxGWbzbEhDFnwR7UAKuTyN8+dvcP78dYzGYdrb32N9PbTh2Ckp8qg85nDxNheFvz2jcZKpqVEuXrwVUQHA1paNuTkDQ0O9fPzyv8CVdNK7l+84+AnHJi0tz1BRcY6cnKPS0B6Pi6Gh+9y+/SZDQ72sri5zXMww0u/3afHUGPRgJ9bpdNLX9wkDAw+pqbnA+fNXQ4qLe8vV9BiNobXfhjuBPRxUqkyUypyD0WPxxGgcp6CgNOwYZjTTkxoaruFw2Jmc7OXSpeepr78Ukqfm7+Yu8XhicpNVKlWkp6vCXrkdZn+ST3enh4EfzES0PM/KyuXGjc9QVKSnu/s2vb0PcDgCe99yeepe2WJ8kMlk7O6G54AsLpoYHe3l4sVbIeUK7PYtzGYjw8P93L//Ee+//x0++eRd5uenSEoScf/Ml/CknwyPSdy7fq/LlZUFVlaWeeONf0lDwyUkEjeDg/f58MPv0tv7ALPZiMvliur7fRo8VmWL0RCoemNx0cTQUCdZWVpaW18Ne/lWVKSns/MD6uqCS96e9hKssrKOR4/aKC2tjVtZlcvlwmye5erVl8P+22iSsBKJBIVCSU1NY8hCUk6nE0eOltQlU8DXRRvn1GrLo06Oxor9Msfx8V7a298OWOYok8njWrYYroe+srJAf/99zp9/xmf3sMNhx2JZY2NjHat1Dat1HVF0o1SqUSoz0enKUas1J7z65M113/vn47p0Op30939Cff2lPZGsNLKycqmpacFms7K4aMRgGGZg4AFqTREtv/BVGv/2v5OyZPp0VbmcJr4Mh+EXfo+7hXrWhrqpq7tyINkabjWMUqlCLlewtGQiPz/wUipWGhz+UKuzSU1VYzSOBw09xAqz2UBGRnbElRXRTD+32TbIyDh6YXs8Hmw264EO/dbWBjbbJg6HHbfbjeXlz/PSt/8Eqdsd8L2juckWFBSdWudoJMhkMurrL1FcXMnw8EPm5qapqWk+IVMsk8U35JKc7F9x8TgbG2v09rbT0HCN7OwcHA7v8AiLZY3NzXU2N9fZ3XWiUqlRKLzqiCrVhZAUUcO5Lvv7O8jJKfFZIqpQKFEo6ikvr8fpdLK4aKRHIvLhr/4JaWlKcnK05OUVEtsMYegENeiCIHwTeB1YEkXx3N5zWcD/BfTADPDToij6vgXGkcOGY2FhlsHBh+QIsiNeeaRlRoWFpczNTQU16LHW4PBFRUUdAwOfUFxcGRcvfW5ukuLi+Nw8DuN0Otnc9Moez8yMYrdbsdu3cDi2kcvTSE9XkpqqQKnMpbCwnPT0DG8Fzss/hfj9b8JG4LhyNDdZqVR6kByNRedorFAq1Vy58iILC7MMD3cyO5tFbW3zwc3YKyGbhNPpjMuEnUACXYexWi20t/8QlSoHk2mK4eGH7O46ychQkpGRSUFBETU1TRHfPEO9LmdmRtna2qap6eRQDl+OoOy1L1BcXI7H42F52Tv4pbv7NpB0YNxPs6v9OKF46N8C/hz434ee+x3gA1EU/1AQhN/Z+/9vx373wsfhcDA09ACr1Upj4/UTw50jLTMqLCxhfLw36IUQC+32YGg0uchkCubmpiNq/w8Hq9XC1pY9aPL4NJifN+Jy7WK1bpKamk52dj7p6UoUioygF4jUGjiJ7ZLJo77JFhfHpnP0NMjPLyEnR8vExOBBmWNVVT1SqXSvW3Qnjgbdt4TuPhbLKh9//APS0tJQKjNQqzVUVp6LSK/dH6Fcl1arhYmJAS5ffvFEiWQwR1AikZCXV3QwhWpjY42FhVlGR7txOBxkZeWTl6clJ6fgVM97UIMuiuIdQRD0x57+LPDs3s9/BXzMY2DQzWYDQ0Nd5OXpuHHjus+61Uhj3CkpKWRn5+/pmAQWBYomxBAq5eW1jI11n7pBjzQZGgtmZ8e4fv2loKsiX/hbYouAI7eI2698gTFlNg1WS8SG43By9HGIpR8nKSmJ6upGdLoKBgcfcufOm1RWNpGcnBw3gS6pVIogSHC5XD6vx4UFEwMD97l06ZlTP4eBrku3201v710qK5t8lrWG6wjuTzSrrm4+mMlrMk0wONiJSpVNbm4ReXmFUTdTHifSqzRPFEUzwN6jX0EMQRC+KAjCQ0EQHq6vL0e4ucA4HA66uj5mbGyQpqYbnDt3wW8TQjRlRlqtnvn5mWh2NWZ4Y6PJUVVaBMPj8WA2z1JS4nsa+mmysGBCIhEjMubgv7pm+qt/zdBbRrJ/+Q/Izy+ls/MDRkf7Ii5B9CZHQx9AcBbI5WlcuPAMjY1XMBgGmZ83YbdvxW37Uqlv/ZjJyVEGBh7Q0nLzzG+IQ0MPkctV6HQVPn8fTbFDWpqC0tJarlx5gWeffYOiIj0WyyIdHe9w9+47jIz0Y7GEVnYajFN3u0RR/LooihdFUbyYmZkT8/efm5umvf0t5HIVra0vBxVbiqbMKDe3EIdjB6vVEtU+x4qKijomJwdO7f29naGZcfHkjjM5ORx0JRSIYLXeEomE8vJqrl17lfX1Ne7efQuLZSXs7RQUFGGzWbHZrBHva7zQaPK5fv01SkrKWV1djNt2k5OPGnSPx8PAQBcm0yhXr754YmRjvFlYmGVlZZGGhkt+XxOrenOZTIZWW8r58zd4/vl/Rk1NM263d2LWRx/9E319nSwuzkfsYERa5bIoCEKBKIpmQRAKgKUI3ydiHA47AwP3sNsdnD//TNBRZvtEW0aXn6/DZJp4LBJhXq2ZfhYXTUEnyEeC0Th+JsnQ5eUFdnftUYuihRL6SktL5+rVZzEaZ+jsvENhYTHV1edDbjN/XJOj/pBIJDQ1XaWt7W2/YZBYI5PJDgTBXC4X3d0deDwOrl0Lv4Q41njtyEOam28E7Es5jWIHiURyMCqwvt4bw19YmGVioo++vk/IyspDoykMa6B6pJ/mPwE/B/zh3uP3InyfiDAYxpmY6KOgoIKWloaw47vRxLj3mzgel4u3rMzrpcfaoNtsVjY3bWeSDJ2aGqG0tCaucfviYj05OfkMDXXT1vYmdXUXQj6nj3Ny1BdyeRpqdRZzczN+QwyxJDk5BZdrF4fDTmdnG0qlgoaG4ENF4kFvbwdFRRVBV/bxKHbw1tKrqapqxOFwsLhoZGnJwNhYd8jvEUrZ4rfxJkA1giCYgP+M15D/nSAIPw/MAj8V0RGEyfb2FgMD99jednLhwrMBZ1GeFipVJsnJcpaX58nJCW9A8mmg1ZYwMTHAysqCX22TSJidHaOwMP7JUItlFZttjeLiZ+K6XfAO825puc7CgomhoW7m5maoq7sYtKNYqVSRmqqKu3Z+NBQXlzMxMRwXgy6VprCyssDYWD+FhXqqqxtPfZuhMDExgNstUFUVmiR1PIod9pHL5eh0leh0lWFJfQS9WkVR/LwoigWiKCaLolgkiuI3RFFcFUXxBVEUK/ceQxM6iQKDYZSOjndQKvO4ceOVMzHm+xQUlGI0hieKdFpIJBLKymqYmIhdLH0/GVpcHP9kqNfIVJ2p95afX0Rr66skJ6dy9+5bzM1NB/2b4uJyDIbxOOxdbMjNLWJ3dztmybhAuN0eJib6qapqeGyMucWygsEwRnPz1cdipRCIcMJij/eR4J3uff/++xiNM1y8+DzV1efO/APQanWsri4cKAGeNcXFZWxt2SJK6vnCbDaQlqaOuSJmMKzWDSyWRfT6mrhu1xcymYyGhgs0N99gYmKYhw8/xHGsbO0wT1JyFLyOQGGhHoPhdCt0HA4HKysmrlx58cwrWfZxuVz09XVQU3Mh5mWDZ81jbdCnp4f55JMfkplZwPXrL/mdDB9v5HI5anXuqZYMhoNEIkGvr2Vioi8m72c0TlJUFH/vfGpqhKKi8rgk6kJFo8nl5s1XUSg0tLe/zdTUsM/XHU6OPinodFUsLhpP1THp6+tEqy05k++TP/r67pGRkXtkmM3TwmNp0G02K/fuvcv8vIlLl16kqqr+zL3y4xQW6jCbgy/F44VOV47FYom6pHLfyywoiH3VTCDs9i2Wl42PhXd+HIlEQk1NIxcvPo/ZbKK9/R2f57m4uIz5+chldeONV3Qqk7m503FMDIYpHI4NamvDnwF6WszNTbO5aaWh4fEoaog1j5eVBCYnB7l37z00mmKuXXsh7sv+UCkoKMZms2G32856VwCvh1hSUs34eHRe+uzsGAUFpXH3kqemRigs1J3ZqL9QUKkyuXbtBb8NSd6Zo97k6JNCcXEVJlPs80E22ybj4z00NV1/bJwxu93G8HA3TU1XHqtVYCwRjgu2n+rGBGEZiNQd0ACxCRI/OSSO+dNB4pg/HURzzDpRFIN2ZsbVoEeDIAgPRVF8OtdJfkgc86eDxDF/OojHMT8ea6EECRIkSBA1CYOeIEGCBE8JT5JB//pZ78AZkDjmTweJY/50cOrH/MTE0BMkSJAgQWCeJA89QYIECRIEIGHQEyRIkOAp4bE06IIgfFMQhCVBEAYOPZclCMJ7giCM7z0+HjoAMcLPMf+RIAgjgiD0CYLwj4IgxG7I4mOAr2M+9LvfEARBFAQhNKH7JwR/xywIwi8LgjAqCMKgIAhfO6v9Ow38fLebBUG4JwhCz95Es8tnuY+xRBCEYkEQPhIEYXjv8/yVvedP3YY9lgYd72DqV489tz+YuhL4YO//TxPf4uQxvwecE0WxERgD/kO8d+qU+RYnjxlBEIqBl/BKMz9tfItjxywIwnN45/Q2iqJYD/zxGezXafItTn7OXwN+TxTFZuAre/9/WnABvy6KYi1wFfglQRDqiIMNeywNuiiKd4DjkryfxTuQmr3Hz8V1p04ZX8csiuK7oijuiyHfA+IrsHLK+PmcAf4b8Ft4Zzo/Vfg55l8E/lAUxZ2918R9Athp4ueYRUC597MKmI/rTp0ioiiaRVHs3vt5ExgGtMTBhj2WBt0PIQ+mfkr518DbZ70Tp40gCG8Ac6Io9p71vsSRKuCmIAj3BUG4LQiC/+GWTw+/CvyRIAhGvCuSp231CYAgCHrgPHCfONiwJ8mgf2oRBOHLeJdxf3PW+3KaCIKQBnwZ7xL804QUyMS7PP9NvNPAhLPdpVPnF4FfE0WxGPg14BtnvD8xRxAEBfAPwK+KohgXofwnyaAv7g2k5qwGU58FgiD8HPA68AXx6W8aKAdKgV5BEGbwhpi6BUGI3Wy9xxMT8B3RywPAg1fI6Wnm54Dv7P38/4CnJikKIAhCMl5j/jeiKO4f56nbsCfJoO8PpoYzGEx9FgiC8Crw28Aboij6H5fzlCCKYr8oirmiKOpFUdTjNXQtoigunPGunTbfBZ4HEAShCpDx9CsRzgO39n5+Hnhy5vcFYW919Q1gWBTFPzn0q9O3YaIoPnb/gG8DZmAX70X980A23szw+N5j1lnvZxyOeQIwAj17//7irPfztI/52O9nAM1Z72ccPmcZ8NfAANANPH/W+xmHY74BdAG9eOPLF856P2N4vDfwJn37Dl27PxYPG5Zo/U+QIEGCp4QnKeSSIEGCBAkCkDDoCRIkSPCUkDDoCRIkSPCUkDDoCRIkSPCUkDDoCRIkSPCUkDDoCRIkSPCUkDDoCRIkSPCU8P8BsWoFgYtiECcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "regions_df.plot(ax=ax, edgecolor='black', facecolor='blue', alpha=0.2 )\n", + "points_df.plot(ax=ax, color='red')\n", + "plt.xlim(minx, maxx)\n", + "plt.ylim(miny, maxy)\n", + "plt.title(\"buffer: %f, n: %d\"%(r,n_points))\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Voronoi Weights" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.weights.contiguity import Voronoi as Vornoi_weights" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "w = Vornoi_weights(points)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "200" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.n" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.915" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.pct_nonzero" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(3, 3),\n", + " (4, 28),\n", + " (5, 52),\n", + " (6, 65),\n", + " (7, 34),\n", + " (8, 10),\n", + " (9, 5),\n", + " (10, 2),\n", + " (11, 0),\n", + " (12, 1)]" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.histogram" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "idx = [i for i in range(w.n) if w.cardinalities[i]==12]" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[16.50851787, 13.12932895]])" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "points[idx]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/weights.html b/notebooks/weights.html new file mode 100644 index 000000000..4053c792c --- /dev/null +++ b/notebooks/weights.html @@ -0,0 +1,1174 @@ + + + + + + + + Weights from GeoDataFrames — libpysal v4.9.0 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+

This page was generated from notebooks/weights.ipynb. +Interactive online version: +Binder badge

+
+
+
[1]:
+
+
+
import sys
+import os
+
+
+
+
+
[2]:
+
+
+
sys.path.append(os.path.abspath('..'))
+import libpysal
+
+
+
+
+
[3]:
+
+
+
libpysal.examples.available()
+
+
+
+
+
[3]:
+
+
+
+
+['georgia',
+ '__pycache__',
+ 'tests',
+ 'newHaven',
+ 'Polygon_Holes',
+ 'nat',
+ 'Polygon',
+ '10740',
+ 'berlin',
+ 'rio_grande_do_sul',
+ 'sids2',
+ 'sacramento2',
+ 'burkitt',
+ 'arcgis',
+ 'calemp',
+ 'stl',
+ 'virginia',
+ 'geodanet',
+ 'desmith',
+ 'book',
+ 'nyc_bikes',
+ 'Line',
+ 'south',
+ 'snow_maps',
+ 'Point',
+ 'street_net_pts',
+ 'guerry',
+ '__pycache__',
+ 'baltim',
+ 'networks',
+ 'us_income',
+ 'taz',
+ 'columbus',
+ 'tokyo',
+ 'mexico',
+ '__pycache__',
+ 'chicago',
+ 'wmat',
+ 'juvenile',
+ 'clearwater']
+
+
+
+
[4]:
+
+
+
libpysal.examples.explain('mexico')
+
+
+
+
+
[4]:
+
+
+
+
+{'name': 'mexico',
+ 'description': 'Decennial per capita incomes of Mexican states 1940-2000',
+ 'explanation': ['* mexico.csv: attribute data. (n=32, k=13)',
+  '* mexico.gal: spatial weights in GAL format.',
+  '* mexicojoin.shp: Polygon shapefile. (n=32)',
+  'Data used in Rey, S.J. and M.L. Sastre Gutierrez. (2010) "Interregional inequality dynamics in Mexico." Spatial Economic Analysis, 5: 277-298.']}
+
+
+
+

Weights from GeoDataFrames

+
+
[5]:
+
+
+
import geopandas
+pth = libpysal.examples.get_path("mexicojoin.shp")
+gdf = geopandas.read_file(pth)
+
+from libpysal.weights import Queen, Rook, KNN
+
+
+
+
+
[6]:
+
+
+
%matplotlib inline
+import matplotlib.pyplot as plt
+
+
+
+
+
[7]:
+
+
+
ax = gdf.plot()
+ax.set_axis_off()
+
+
+
+
+
+
+
+../_images/notebooks_weights_7_0.png +
+
+
+

Contiguity Weights

+

The first set of spatial weights we illustrate use notions of contiguity to define neighboring observations. Rook neighbors are those states that share an edge on their respective borders:

+
+
[8]:
+
+
+
w_rook = Rook.from_dataframe(gdf)
+
+
+
+
+
[9]:
+
+
+
w_rook.n
+
+
+
+
+
[9]:
+
+
+
+
+32
+
+
+
+
[10]:
+
+
+
w_rook.pct_nonzero
+
+
+
+
+
[10]:
+
+
+
+
+12.6953125
+
+
+
+
[11]:
+
+
+
ax = gdf.plot(edgecolor='grey', facecolor='w')
+f,ax = w_rook.plot(gdf, ax=ax,
+        edge_kws=dict(color='r', linestyle=':', linewidth=1),
+        node_kws=dict(marker=''))
+ax.set_axis_off()
+
+
+
+
+
+
+
+../_images/notebooks_weights_12_0.png +
+
+
+
[12]:
+
+
+
gdf.head()
+
+
+
+
+
[12]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
POLY_IDAREACODENAMEPERIMETERACRESHECTARESPCGDP1940PCGDP1950PCGDP1960...GR9000LPCGDP40LPCGDP50LPCGDP60LPCGDP70LPCGDP80LPCGDP90LPCGDP00TESTgeometry
017.252751e+10MX02Baja California Norte2040312.3851.792187e+077252751.37622361.020977.017865.0...0.054.354.324.254.404.474.434.481.0(POLYGON ((-113.1397171020508 29.0177764892578...
127.225988e+10MX03Baja California Sur2912880.7721.785573e+077225987.7699573.016013.016707.0...0.003.984.204.224.394.464.414.422.0(POLYGON ((-111.2061233520508 25.8027763366699...
232.731957e+10MX18Nayarit1034770.3416.750785e+062731956.8594836.07515.07621.0...-0.053.683.883.884.044.134.114.063.0(POLYGON ((-106.6210784912109 21.5653114318847...
347.961008e+10MX14Jalisco2324727.4361.967200e+077961008.2855309.08232.09953.0...0.033.733.924.004.214.324.304.334.0POLYGON ((-101.52490234375 21.85663986206055, ...
455.467030e+09MX01Aguascalientes313895.5301.350927e+06546702.98510384.06234.08714.0...0.134.023.793.944.214.324.324.445.0POLYGON ((-101.8461990356445 22.01176071166992...
+

5 rows × 35 columns

+
+
+
+
[13]:
+
+
+
w_rook.neighbors[0] # the first location has two neighbors at locations 1 and 22
+
+
+
+
+
[13]:
+
+
+
+
+[1, 22]
+
+
+
+
[14]:
+
+
+
gdf['NAME'][[0, 1,22]]
+
+
+
+
+
[14]:
+
+
+
+
+0     Baja California Norte
+1       Baja California Sur
+22                   Sonora
+Name: NAME, dtype: object
+
+
+

So, Baja California Norte has 2 rook neighbors: Baja California Sur and Sonora.

+

Queen neighbors are based on a more inclusive condition that requires only a shared vertex between two states:

+
+
[15]:
+
+
+
w_queen = Queen.from_dataframe(gdf)
+
+
+
+
+
[16]:
+
+
+
w_queen.n == w_rook.n
+
+
+
+
+
[16]:
+
+
+
+
+True
+
+
+
+
[17]:
+
+
+
(w_queen.pct_nonzero > w_rook.pct_nonzero) == (w_queen.n == w_rook.n)
+
+
+
+
+
[17]:
+
+
+
+
+True
+
+
+
+
[18]:
+
+
+
ax = gdf.plot(edgecolor='grey', facecolor='w')
+f,ax = w_queen.plot(gdf, ax=ax,
+        edge_kws=dict(color='r', linestyle=':', linewidth=1),
+        node_kws=dict(marker=''))
+ax.set_axis_off()
+
+
+
+
+
+
+
+../_images/notebooks_weights_21_0.png +
+
+
+
[19]:
+
+
+
w_queen.histogram
+
+
+
+
+
[19]:
+
+
+
+
+[(1, 1), (2, 6), (3, 6), (4, 6), (5, 5), (6, 2), (7, 3), (8, 2), (9, 1)]
+
+
+
+
[20]:
+
+
+
w_rook.histogram
+
+
+
+
+
[20]:
+
+
+
+
+[(1, 1), (2, 6), (3, 7), (4, 7), (5, 3), (6, 4), (7, 3), (8, 1)]
+
+
+
+
[21]:
+
+
+
c9 = [idx for idx,c in w_queen.cardinalities.items() if c==9]
+
+
+
+
+
[22]:
+
+
+
gdf['NAME'][c9]
+
+
+
+
+
[22]:
+
+
+
+
+28    San Luis Potosi
+Name: NAME, dtype: object
+
+
+
+
[23]:
+
+
+
w_rook.neighbors[28]
+
+
+
+
+
[23]:
+
+
+
+
+[5, 6, 7, 27, 29, 30, 31]
+
+
+
+
[24]:
+
+
+
w_queen.neighbors[28]
+
+
+
+
+
[24]:
+
+
+
+
+[3, 5, 6, 7, 24, 27, 29, 30, 31]
+
+
+
+
[25]:
+
+
+
import numpy as np
+f,ax = plt.subplots(1,2,figsize=(10, 6), subplot_kw=dict(aspect='equal'))
+gdf.plot(edgecolor='grey', facecolor='w', ax=ax[0])
+w_rook.plot(gdf, ax=ax[0],
+        edge_kws=dict(color='r', linestyle=':', linewidth=1),
+        node_kws=dict(marker=''))
+ax[0].set_title('Rook')
+ax[0].axis(np.asarray([-105.0, -95.0, 21, 26]))
+
+ax[0].axis('off')
+gdf.plot(edgecolor='grey', facecolor='w', ax=ax[1])
+w_queen.plot(gdf, ax=ax[1],
+        edge_kws=dict(color='r', linestyle=':', linewidth=1),
+        node_kws=dict(marker=''))
+ax[1].set_title('Queen')
+ax[1].axis('off')
+ax[1].axis(np.asarray([-105.0, -95.0, 21, 26]))
+
+
+
+
+
[25]:
+
+
+
+
+array([-105.,  -95.,   21.,   26.])
+
+
+
+
+
+
+../_images/notebooks_weights_28_1.png +
+
+
+
[26]:
+
+
+
w_knn = KNN.from_dataframe(gdf, k=4)
+
+
+
+
+
[27]:
+
+
+
w_knn.histogram
+
+
+
+
+
[27]:
+
+
+
+
+[(4, 32)]
+
+
+
+
[28]:
+
+
+
ax = gdf.plot(edgecolor='grey', facecolor='w')
+f,ax = w_knn.plot(gdf, ax=ax,
+        edge_kws=dict(color='r', linestyle=':', linewidth=1),
+        node_kws=dict(marker=''))
+ax.set_axis_off()
+
+
+
+
+
+
+
+../_images/notebooks_weights_31_0.png +
+
+
+
+
+

Weights from shapefiles (without geopandas)

+
+
[29]:
+
+
+
pth = libpysal.examples.get_path("mexicojoin.shp")
+from libpysal.weights import Queen, Rook, KNN
+
+
+
+
+
[30]:
+
+
+
w_queen = Queen.from_shapefile(pth)
+
+
+
+
+
[31]:
+
+
+
w_rook = Rook.from_shapefile(pth)
+
+
+
+
+
[32]:
+
+
+
w_knn1 = KNN.from_shapefile(pth)
+
+
+
+
+
+
+
+
+/home/serge/Dropbox/p/pysal/src/subpackages/libpysal/libpysal/weights/weights.py:170: UserWarning: The weights matrix is not fully connected. There are 2 components
+  warnings.warn("The weights matrix is not fully connected. There are %d components" % self.n_components)
+
+
+

The warning alerts us to the fact that using a first nearest neighbor criterion to define the neighbors results in a connectivity graph that has more than a single component. In this particular case there are 2 components which can be seen in the following plot:

+
+
[33]:
+
+
+
ax = gdf.plot(edgecolor='grey', facecolor='w')
+f,ax = w_knn1.plot(gdf, ax=ax,
+        edge_kws=dict(color='r', linestyle=':', linewidth=1),
+        node_kws=dict(marker=''))
+ax.set_axis_off()
+
+
+
+
+
+
+
+../_images/notebooks_weights_38_0.png +
+
+

The two components are separated in the southern part of the country, with the smaller component to the east and the larger component running through the rest of the country to the west. For certain types of spatial analytical methods, it is necessary to have a adjacency structure that consists of a single component. To ensure this for the case of Mexican states, we can increase the number of nearest neighbors to three:

+
+
[34]:
+
+
+
w_knn3 = KNN.from_shapefile(pth,k=3)
+
+
+
+
+
[35]:
+
+
+
ax = gdf.plot(edgecolor='grey', facecolor='w')
+f,ax = w_knn3.plot(gdf, ax=ax,
+        edge_kws=dict(color='r', linestyle=':', linewidth=1),
+        node_kws=dict(marker=''))
+ax.set_axis_off()
+
+
+
+
+
+
+
+../_images/notebooks_weights_41_0.png +
+
+
+
+

Lattice Weights

+
+
[36]:
+
+
+
from libpysal.weights import lat2W
+
+
+
+
+
[37]:
+
+
+
w = lat2W(4,3)
+
+
+
+
+
[38]:
+
+
+
w.n
+
+
+
+
+
[38]:
+
+
+
+
+12
+
+
+
+
[39]:
+
+
+
w.pct_nonzero
+
+
+
+
+
[39]:
+
+
+
+
+23.61111111111111
+
+
+
+
[40]:
+
+
+
w.neighbors
+
+
+
+
+
[40]:
+
+
+
+
+{0: [3, 1],
+ 3: [0, 6, 4],
+ 1: [0, 4, 2],
+ 4: [1, 3, 7, 5],
+ 2: [1, 5],
+ 5: [2, 4, 8],
+ 6: [3, 9, 7],
+ 7: [4, 6, 10, 8],
+ 8: [5, 7, 11],
+ 9: [6, 10],
+ 10: [7, 9, 11],
+ 11: [8, 10]}
+
+
+
+
+

Handling nonplanar geometries

+
+
[41]:
+
+
+
rs = libpysal.examples.get_path('map_RS_BR.shp')
+
+
+
+
+
[42]:
+
+
+
import geopandas as gpd
+
+
+
+
+
[43]:
+
+
+
rs_df = gpd.read_file(rs)
+wq = libpysal.weights.Queen.from_dataframe(rs_df)
+
+
+
+
+
+
+
+
+/home/serge/Dropbox/p/pysal/src/subpackages/libpysal/libpysal/weights/weights.py:168: UserWarning: There are 29 disconnected observations
+  Island ids: 0, 4, 23, 27, 80, 94, 101, 107, 109, 119, 122, 139, 169, 175, 223, 239, 247, 253, 254, 255, 256, 261, 276, 291, 294, 303, 321, 357, 374
+  " Island ids: %s" % ', '.join(str(island) for island in self.islands))
+
+
+
+
[44]:
+
+
+
len(wq.islands)
+
+
+
+
+
[44]:
+
+
+
+
+29
+
+
+
+
[45]:
+
+
+
wq[0]
+
+
+
+
+
[45]:
+
+
+
+
+{}
+
+
+
+
[46]:
+
+
+
wf = libpysal.weights.fuzzy_contiguity(rs_df)
+
+
+
+
+
[47]:
+
+
+
wf.islands
+
+
+
+
+
[47]:
+
+
+
+
+[]
+
+
+
+
[48]:
+
+
+
wf[0]
+
+
+
+
+
[48]:
+
+
+
+
+{239: 1.0, 59: 1.0, 152: 1.0, 23: 1.0, 107: 1.0}
+
+
+
+
[49]:
+
+
+
plt.rcParams["figure.figsize"] = (20,15)
+ax = rs_df.plot(edgecolor='grey', facecolor='w')
+f,ax = wq.plot(rs_df, ax=ax,
+        edge_kws=dict(color='r', linestyle=':', linewidth=1),
+        node_kws=dict(marker=''))
+
+ax.set_axis_off()
+
+
+
+
+
+
+
+../_images/notebooks_weights_57_0.png +
+
+
+
[53]:
+
+
+

ax = rs_df.plot(edgecolor='grey', facecolor='w') +f,ax = wf.plot(rs_df, ax=ax, + edge_kws=dict(color='r', linestyle=':', linewidth=1), + node_kws=dict(marker='')) +ax.set_title('Rio Grande do Sul: Nonplanar Weights') +ax.set_axis_off() +plt.savefig('rioGrandeDoSul.png') +
+
+
+
+
+
+
+../_images/notebooks_weights_58_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+ +
+
+
+
+

+ Back to top + +
+ +

+ +

+

+ © Copyright 2018-, pysal developers.
+ Created using Sphinx 7.2.6.
+

+
+
+ + \ No newline at end of file diff --git a/notebooks/weights.ipynb b/notebooks/weights.ipynb new file mode 100644 index 000000000..bb2e9fc6d --- /dev/null +++ b/notebooks/weights.ipynb @@ -0,0 +1,1263 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "import os" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "sys.path.append(os.path.abspath('..'))\n", + "import libpysal" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['georgia',\n", + " '__pycache__',\n", + " 'tests',\n", + " 'newHaven',\n", + " 'Polygon_Holes',\n", + " 'nat',\n", + " 'Polygon',\n", + " '10740',\n", + " 'berlin',\n", + " 'rio_grande_do_sul',\n", + " 'sids2',\n", + " 'sacramento2',\n", + " 'burkitt',\n", + " 'arcgis',\n", + " 'calemp',\n", + " 'stl',\n", + " 'virginia',\n", + " 'geodanet',\n", + " 'desmith',\n", + " 'book',\n", + " 'nyc_bikes',\n", + " 'Line',\n", + " 'south',\n", + " 'snow_maps',\n", + " 'Point',\n", + " 'street_net_pts',\n", + " 'guerry',\n", + " '__pycache__',\n", + " 'baltim',\n", + " 'networks',\n", + " 'us_income',\n", + " 'taz',\n", + " 'columbus',\n", + " 'tokyo',\n", + " 'mexico',\n", + " '__pycache__',\n", + " 'chicago',\n", + " 'wmat',\n", + " 'juvenile',\n", + " 'clearwater']" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.available()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'name': 'mexico',\n", + " 'description': 'Decennial per capita incomes of Mexican states 1940-2000',\n", + " 'explanation': ['* mexico.csv: attribute data. (n=32, k=13)',\n", + " '* mexico.gal: spatial weights in GAL format.',\n", + " '* mexicojoin.shp: Polygon shapefile. (n=32)',\n", + " 'Data used in Rey, S.J. and M.L. Sastre Gutierrez. (2010) \"Interregional inequality dynamics in Mexico.\" Spatial Economic Analysis, 5: 277-298.']}" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "libpysal.examples.explain('mexico')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Weights from GeoDataFrames" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas\n", + "pth = libpysal.examples.get_path(\"mexicojoin.shp\")\n", + "gdf = geopandas.read_file(pth)\n", + "\n", + "from libpysal.weights import Queen, Rook, KNN" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAADrCAYAAABuBv24AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXm4HFWd9z8JWSCAbEnYsdgx7IQ9kMAMqFijoiLuuw4iKiCMU8rgI77vaAGjuPCCijLqqIiisliKiiNJIAlrWEIIIUCxJAQISQiQhGz3/eNbbXf69lJbd9ft+n2e5z65t7vqnHPvzf2eU7912MDAAIZhGEZ5GN7rBRiGYRjdxYTfMAyjZJjwG4ZhlAwTfsMwjJJhwm8YhlEyTPgNwzBKhgm/YRhGyTDhNwzDKBkm/IZhGCXDhN8wDKNkmPAbhmGUDBN+wzCMkmHCbxiGUTJM+A3DMEqGCb9hGEbJMOE3DMMoGSb8hmEYJcOE3zAMo2SM6PUCiozjBcOALYHtoo/1oe/O7u2qDMMwslEa4Xe8YDiwLTAeGAeMRWK+LVVhr/288nXlZzQAHNPdVRuGYeTPsH5qtu54wQ7Ap5Gwj6Mq8uOQkGcxbYWh7+6eeZGGYRg9pt+EfxfgMWBUzkPPAA4H7gT+ANwEPBz6bv/88AzDKA19JfwAjhd8DbgwxyEHgIeAA+pefwJtAn8Apoa++1qOcxqGYXSMfhT+4cDHgatyGvJ+4OA217wK/AVtAn8MfXdxTnMbhmHkTt8JfwXHCx4F9sphqLXAMJI5wu+i+jQw20xChmEUiX4W/iuRozcrq4FNM9y/CAiAG4C/hb67Ooc1GYZhpKafhX84cAlwXsahngJeBA7NvCiZhP4EXI9MQstyGNMwDCMRfSv8FRwvOAX4Y8ZhngG+DZwD7JJ5UWIdcCvaBG4IffeZnMY1DMNoSV8Lv+MFI4GLgC/lMNwrwK7AkcBxwBeB0TmMW+FutAlcD8wtsl/A8YI56GdRWWOzf0H+kfrPB4DbgW+EvjujU+s0DKMxfS38AI4XfAr4YU7D7Rf67iPRuHsDVwAn1bz/CLAj8LqM8yygugnMCn13fcbxcsXxgoXATjkM9Sywv5m8DKO7lKFI27icxvldRfQBQt99FHgj8H7gcWS/PxsJ4udQnH9a9gLOB24DFjlecJXjBa7jBVmczHmSV6mPHYHv5DSWYRgxKcOJfxMU3fOfwFYZhrog9N2vt5hnWK15xvGCo4BZGeZrRK1zOAh9d3nO48fC8YIXUR2jvPg9yrv4S9GebgyjH+l74a/geMGpSGDS8q+h78ZOCnO8YEvgx8DJwNYZ5m3GWuBv0ccaqvbzYQk/htd9XeFVYIsmc3vkXxYDFPZ6moW8GkZnKY3wAzhe8D3gsylvf0fou9enmHMEcBQyAb0bOBbYOeUausk0YHIP5v0LcGrou6t6MLdhlIKyCf/ewPyUt38s9N2f5LCGM5FTuOiEwMvAgT2Y+x4UiXVLkaObDGOoUgbnbi0rMtz7uayTR6f/SVnH6RIOEv5eMBGd/M/o0fyG0deUTfhXAhenvPcQxwt+EHXlSkXou+uAN6S9vwes7fH833W84CvRhmkYRk6UytQD/2in+D7gMtSoJSlj0tqfHS8YjZ46OuEY7QS9svPX8z3gv1EPBHP8GkZGynbiJ/TdgdB3f4nEJA2bZ5h+DUpaGioUZYP6HHAvMN3xgl17vRjDGOqUTvhrSGu/Th2REzkqz0l7fw8YDxQprv5w4FHHC4bSz9AwCocJf3I+kWXSKCT0G1nG6CJ7oJo6RWI0cJnjBaf1eiGGMVQps/A/DlyX4r48yjNfCEzPYZxuUFTHahF8D4YxJCmz8E9FdXaShgw+mXXiqCzBr7OO0yV27PUCmvBpxwuGSmisYRSK0gp/5ORdC/wm4a2ZhT/it+Rfy6cT7E62/IdOMRK4yfGCPXq9EMMYapRW+CtEJYHDBLdMyRLLXzPvs6QzNfWCx3u9gCZsg2ohGYaRgNILf0SShiqTgPfmNO8rOY3TaV7q9QJasKjXCzCMoUbphT/qzfuXhLf9xPGCr+Qw/SLAipFlw+n1AgxjqFG6zN1GRKabJSSvMb9v6Ltpi75V5n4rcGOWMbpAUTJ4G7EEmBz67sN5D+x4wduBDwI/A24GdkD+jpWh7651vGAT6x9gDEVM+COiE/wFJMtWfRr5Bz4X+u79KecdDjwA7J/m/i4xEzim14towTWh774/j4EcL3gL8CHgYNRCs5Kw9xoyCW4AFgP3ocY+I1Dl1tw3HsPoFCb8NUQnvK8BByW89TlgUui7j6Wcdx8U15+mdlA3uB8JYVF5DfhA6Lu/zTKI4wV7AXNI5vMBuBuJ/5ws8xtGtyi9jb+W0HdvQAlaHyZZTZ3tgRmOF7yp9kXHC77oeMGEGPPOR/17e9JKMQZZm8d3mtHAdY4XfCfquZCWS0gu+qBSEpc7XpBXf2fD6Ch24m+C4wVjgWuBo4ExCW79L9Sfd43jBbPR08PRoe/eFWPOh4C2G0WXWYXKMxdd/Gv5QFSILzZRb+bnyd5L+HrgndZAxigyJvxtiGrBHwdcg5x7cbgTOAl4E0oQ+zfgamBZM0GIHMy3IJtxkRypTwKv7/UiErIa1UO6BlgQR4QdL7gY+GJO8/8A+PfQd4scBmuUGDP1tCH03XWh796K+uY+FPO2I4F/C333OuS0PR94MRqjGcOAi5CPoUgs6fUCUrAp+lnOB551vOCiVhc7XrApcESO858BzHO84MgcxzSM3DDhj0nou08BbwPmxbzlHMcLJoe+Oxed/l8Etmxx/ZWoftAUFD5ZFFb2egEZ2R74iuMFcx0vuMrxgu1q33S8YHtgAXBizvPugOz+WU1HhpE7JvwJCH33ceA0YF2My7cEPhDdNwcJeqvKnlOif9+Fmo4UhQ29XkBOvAH4JPBXxwvOc7xg+8iM9ysy9FhowxHAtzo0tmGkxmz8KXC84N3Al2hfovnPqNPXstB3Z7QYbyzwIDolLgNOAK6gGI3ZZyEHdz/xMnqS2QQY2+G57kPO/dc6PI9hxMZO/CkIffc36DTXLm7/TcDvgDMdL5gU2ZIbMQ41PBkAfh367gMovPMnpG8Ykxfb9Hj+TjAbmYA6LfoAhwCXdmEew4iNCX9KolT9E4FH2lw6CqX930aTSpKh7z4c+u5pwD7I1k/ouytRJnGmkhA5UNTcgrQ8ARzb5Tk/5HjBZl2e0zCaYsKfgdB3nwb+CfhhzFumtHoz9N0FtaUfQt9dBJxNb+vhr+nh3J1gGd3vKrY1cFGUK2AYPceEPyOROH8J2XLb0VL4m4x/O/DRpPflSDPz1FDkDuCwHs39bygqzDB6jgl/DoS+uxTVi2nHYY4XXO54wccdL3hDgimuB85FwtVtDmLoh3SCkrp26fEarEG8UQgsqqcJjhd8BLgh9N22Nm7HC44jefP0T4e++4MU6/oE8KOk9yWkUomywh20Tj4bClRyJHrJKmCiVfI0eo2d+JtzOPC+mNe+M8X4J6a0+f4CVYPsBOuBe9D/i6UokexeFAEzlFlIMTauzYDvO17QKpHPMDqOCX8DogbeHwR2inlLmiSd95Cixn3ou6vRRvN8ijnbsRCFH45ExcomI5u404G5uskzFMdXMRl4yPECs/cbPcOEvzFPI+G/ud2FUSOVo9BpudHHhhYf+6RZXBRN9A7yj/bZDeUT9BOzKcZpv5ZdgZ85XrBbrxdilBOz8WfE8YJrkAinqeM+I/Td1Nm5jhccAJyOHLDLUdLXjmnHi1iBQji7kdzUadaj6qJ79HohTVgB7BL6bq+T9IySYcLfBscLTkClFNYD00PfXRy9vjPwL+jRPW3bvwB4a9ba7VFG8AHIPn84MiOdl2HI2ylGuYiszEE/lyLz4dB3/6fXizDKhQl/G6Kwyz9QPTXORjbjSajEwjnAu1Ec/6dIfuI+PSoBkRuOF9xL+zpC7ZiKNrVh2VfUM9Ygk1pR7PugXg1jkB9lX7Q5XRb67tU9XZVRKkz4Y+B4wRao0uZ3adyMfT3ylwyQzm9yJvC70HczO2yjMsBPkE/HrKL32o3DvfQuaauepej3MgJtSrOAicCjwJ+A38fp1GYYWTHhT4DjBR9DrRU7UWP9FeC80Hfjln9oiuMFf0cVPrOyCDViSdp8vkgUIX6/wjQGd1ebChyPDgzLge1C3+2XUthGQbGongSEvvvfKMSzE9UWtwD+I2rBmJU7cxgD9L0uy2msXpHV2Z0njVp3jqSakb01+WzYhtESE/6ERHXVPTpTLnlX8jFLXAEkajbegjTRSkViH9T9rFfMAp5DZsBG4bvHAhOiz1cDTfs2GEZemPCnIHoU/2mHhr8666k/9N0ngUuI3yO43+lVaevbUROb7WntJN8KJc9tCvy8C+sySo4Jf3rORUW3ziffP9aDgFsdL/iU4wWpm6BE5Z3fBFyOIo4GSNdGcW3aNRSI9T2aN4mZqeLYz7Ppu2E0xJy7OeF4wb8Dfo5DrgROCn13Zh6DOV4wEolK0szcV4Fngd2RGWI4Qy/GfxHxy2/kyVT089qE9s1fnkA/47nAoaHv9lsfBKNA2Ik/Py5FzrtJSCwbkSRefyQwPCdnL6HvrkWisiThrZujHIZbUPTJEcBMFKEyVNgJCHsw7xT0M4tTmmGr6N8JwFc6tiLDwE78HcHxgtOAa1C89lz0x7wUuJFkTVWeB76J7MPfisQ769ouB85Kces9KOa8wgbk4N6q8eWJWR6N2YlQWVDZ7OM7NHY7FgI7x7iuNtzzM6HvXtm5JRllxk78HSD03euA44DL0Al5v+jzjyYcajuU2OMDsx0vyJqNC/BV4PHo89nAgjbXL2Ww6IP+7ywgnd+gnjmocf0Gsjeb2YBMLFNRn+O70KbSKPGuG6wBFse8dvOazy+IzHOGkTt24u8ijhfsjaKBkpRjvgm4FrgauDT03f/IYR2jkVlqJTJD3EhjG/iDwDgax59XaJSUlJT6JKs7UWjjRDYWwzjchjbdWtYDD6A4+d1TrjEp01HHr0XE94ncgTaKQ4AtgfeGvnttZ5ZnlBkT/i7jeMEoVEDtK8SvIXMLEtf7UOeu2TmvaXtUj+jwmpenIgFt1yzmUWDvjEu4EziywevzkDmpEunyYDRXs59buyzd5ajOUicLt61B30/95pOEGcgZfAvw5tB3exWVZPQpJvw9wvGCPZHY7pfwVi/03Ys7sJ53A79GmbqPsfEm0IpVqLNUWp5DJq0RLa55OHp/bxRh9CQqG70IOZ53ofFJvxGr0QbSibDJxcg0NqHdhS14DQUHVHwdHwB+k4d/xzAqmPD3EMcLdke1f/Yh/in0aWD/vGu4O15wFPAR4FSSlzlYTGtzUCOeie7bD5WrSMtyZMY5jvg+qw1o88jb7DOTFF3VGnAHypg+JPp6HXADcFPou51KHDRKhAl/AYiqfx6IInjiCMfBoe8+kOP8w5DzeS90ek5akTNtFc+niBfq2AnyEulalqPmKnl8T2tRuYf6SKTvoE3zl6HvLsphHqOEmPAXCMcLvgz8Z4xLfxH67gdznPe9wP/Q2tzSipeReeglFD2zJzA+xn29DLFcQme6jD2BzF9ZzD0VXkJO3mZPMj8DLgx996kc5jJKRNo/dKMzfA+ZWT7b5rqdARwvOAsIQt8N007oeMHm6Ekjy/+FLamaJUCml3bCP5XBIaLd4jlUP6cT7I6iiF5EvossbIUSzyrrfTJ6fTtkGvwwcJLjBddT9bVsQJvPfaHv/m/G+Y0+xU78BSOK3Z4POC0u+x6qFXQh8M0s9n7HC3ZBfoO8mU/zZvIryKdRTFo6ddqvJe8+AANUC73NJl6HtU+FvvujqE3oWcD9Fh5qgCVwFY4oeuOSNpe5qG1fkIOTt1NNP7agWnisnmYlLbpFN0pNT0ZinRe1pTvi/s6ucrwgAH4MfAl4S47rMYYwJvzF5Oe0Fo09gFNyatO3GvgFMhXU8ljGcXdCpQrqWUf7bOFO81oX5hhGZ56kIFm10begKq1gpl0jwoS/mKwDHmlzzSWOF+zR5pq2hL67FJ0Gf4rME2tQ5Ej9RpCGQ9H38QKK4HkY1S7qlUMXtKF2yxm6ks40gUmb0DU911UYQxYT/mKygcan5VqGA79xvODDWScLffdp4DPIWfgr4ERUnyePDOGVqOzDbsAb6H3/3ml0r/n6fkj4sz491TOc5OK/FEUBGYYJfxGJ2jvGEYvDgO/kUbo59N2BKCzwGyiJ6wvk076x007UpORS5joBI9ATT54chUplJOHK0HdX5rwOY4hiNr/iEteBtzVK68+lC1jou/MqnztecBWq5Hk16covb6A3DVBasT9KjupW5cs9oo9pwDa0L3oXh/nAmATXLwRyL/NhDF3sxF9AHC8Yg8QiLud0Yh2h774U+u7vkHi/B7g+4RDraV/krdvMoXuiD/KZzAdej7KzR6J6SGmZHo2VJDv47LxLfBhDG4vjLyCOF7wZ1eGPywBwYOi7HW2u7njBPijp6rOommacJ8angV07ua6ErEP+i6OavP8Scv6uRKK9ASWoHUTyJ+QZqNhdpRfA3ehnkSR5bE10/0pUnbVdC8d6/owiwOwP3fgHZuopGJG9fk+SnZaHATc5XvAxdDL/Vui7nQiZXIBE62PIcfm7GGsMKZbwj0Ci3yzB6nYax7u/jJ4WIH6Nn+3YuAFM3IqnFZYjU9umKOEtqegDfN9E36jHTD3FYwKyBSctwrY78HtkVkjTWrEtoe9uCH13OqrieTbVTl6tOAYVFSsa4xq8NhOJfqOG9Fui7+UY4vcbHoU2jLTMRQ78Cah4XlJeA/6aYX6jTzHhLx4XIjPP7sRv2VdhG2SmuCDvRdXxfSRKcTJgR9C5RKYsTED28vuRQA4gGzzRv0tb3DsZbbAVR3izhLBFaMNIy7oM9wLcEvpur7OkjQJiwl88PhH9+w7AI/kf/3OdDtuL4v6/R/zSC8eg3rdhp9aUkuNROel16JRfiY1/Harn04p9kJN2GrK/v4DMR7UkbRsJ2uxvj+ZvVusoLn/OeL/Rp5jwF4zohLYTMDNquvGRBLcvCH23kZmiEzyKhPylmNcfgWzV7RLTesHmqJFLbchqHP/XMej0XwnTnIKeIio29W2b3NeIDWgTGY169I4le9hnt/4vGEMME/5icjNwiOMFJwOvoHIKX45xX9d6s0YOw39BDssbo5fbifoOKEplKDgb0wY+HI+yde8lWU2gu6huInmwkuR+IqMkWDhngXG8YC/g/wHXoEJqfwDe2Oa2bUPfzRInnhjHC44F3oxKAlyPkqRacQfNwym7wTPoaWU4SuYCRScNo2paO5T0paMXoc1tAD3lxMlefgr5FQ5pd2FMbg1998ScxjL6DDvxF5goJPMUZIrYAonrF2ht9/9E7ReOF5zmeMHY6PNhjhds3YF1zkClHvYnXsZxpTn7EhTrfk/ea2rCSmSHH4dMO8ci88yU6OtJNV+nFf116CltZxSJ8zzxCt7tFt2XF7NyHMvoM+zEP8SI4vxPBv4vspvXsz5674fAs+gpYQTwntB3lztecHrou7/u4Pr2BW4C9m5z6fMo3LGyEU1FQtzJrNq55NMSsRWN8gOmITNOO/J8Ejoj9N0f5jSW0WeY8A9Rog3gbUjkD2hy2e9RxumeqH3f0cjsMLeTkT9RuehrUHZvEm5DJ++8WUG1a1UnO3/NQxtefVJb3O/rYVTBNA9OC333tzmNZfQZZuoZokTVNG9AztXrmlz2DiT6oIxbD9iLDtfPCX33ceTkvDThrfuhbNU8eRA98WQx38RhAcrUbfSzjet0fyHBte1olYdglBwT/iFOVML5vaiCZjvOQA7Yjkf/hL67JvTdLyIfRdyyxGNp3q4xLctIVskyDXPR2htlA0P8v7PJ6OkgDzrRAMboE0z4+4DQd9cDnwS+FePykcBFedTwj0PouzejJKm4Wch5Z5p22pZ5G+BQ9VU04gi0ObTjRVR5Mw9M+I2mmPD3CVFc/fko3r9dtu/55Bc22JbQd59Fvog45BnZAhsXScuTFShy5jjaP1FsCoynGjpay4vI+TsVPe04OaztVkz4jRaY8PcRkd3/G8hW/j+0Pu1+qBLm2SWuIl5C0RuQqObFevI3bQ2gZLWjE9yzmMYRS3ORiWcK+Tl2DyV7nR+jj7Gonj7G8YIJqOJkM6fma8D5oe9e3qX1bI1KObdLLIob/tiO21Fsfp7cgU7vuye8724Gl2VeiLKZ83a2Px/6bpKa/0bJsBN/HxP67lwUz9+M0cCljhekKSaWZj3LkbP3F20uPYZs5YyhM6I/DcXZJxV9mtwzlvi1jpLwbAfGNPoIE/7+5yJUergZAyijtStEUUgfplrSuBEjyV7JM89H2Wmo+1WWp5B6+/6DaHOL21s5CSb8RktM+Puc0HdfAa5sccm8bndoCn13A3BZm8sqpQ/SEqdXQBzuQzkJWZ3hr6LSDbdHH4vQib8TfpZGTmTD+Acm/OWgWRemZ+lQo/YY/AzVFWpWx+ZQ1OFrOqromYR7yc9ROo58ksr2RLb8SdHH5nROoLdqf4lRZkz4S0CUSftE3ctXA/uEvhu3jWCuhL67OvTdq5H5pFk10YPQiXg6co7OJp4JZwQqapcHY8kvKqg2tPQ4tEF1wtSTeyE+o78w4S8PV0X/bgC+C3wmMgP1lNB37wZOpfnp93ngn1FEzKGopPI0WotxnuaTTghzhQlkd2I3wk78RktM+MvDJcDbgd1C3z07crIWguip46MMbnf4PKp/U8uu6CmhVSZsnsK/GSqeljerUeG8Toj0HzowptFHWBy/URgcLzgKuAEVlAPV6j+2waVLUJLXHg3eW0E1b+E2ZF45kGoPgDQMIHNTHrkFtSxATt6DkHmm8seYpZzG08AJkXnPMBpiJ36jMIS+W6lHXyk3cCwS3HqeQkI+jcGn8dqqlNuh0tCzMy5tGBL9+mbqkC3yaK9o3DEo0e4eZPdv9D3H5R6K19TeKBgm/EahCH33SZR7ADq9N3okXY9EfTKDyyDUlntYinrZbovENKu9fgqKv6/MMwc5kR8mW5mJUShp7XBgIgofvTvlWIdE4bKG0RQz9RiFxPGCPyGnbpyOXNNQA5RFyElcqaHzAtUnggOpNjK/DT0xTGwz7lMo/r42NHQJMtFsA+wbvbYuuraR6SktC9HGdQAbm36WRa+/FM1XqX9UMUOtR32X86x3ZPQZduI3isos4rdhnAzsiGzlw5HjdyrwWPT+Pkisa5mIzCrNeBCdxNehp4YKY9HGsm/Na/eRr+iDevYeiIT+dvTEci/VzWsL5Bc4Dn3/96ANbS3tayEZJWdErxdgGE34K/DVhPcsQY7d/WpeuwcVQnsk+nop1X7A+yFBPb7m+seRzf3A6OsdkPi2KhyXV85AI7ZlcM2hPZHA166p8vRyOxtvSoYxCDvxG0UlTRTOfDYWfYDDon/HIBv/Y1SjhsYwuCn8M0jsa9kG2A2ZcxqxbYq1ZmUkjf0fk8j/6cPoM0z4jaKS1ym6Yh/fHZVeOKLmvVVsnAj2NDIXNcJB4j+dwcljcbuL5ckTNK8+elK3Kq4aQxMTfqOoPEzzOj7NmILMH40YS/Vkfiey24fIlg5ylg7QutzBBmT3fwHlGBCNsVvCdWZlHtrQmplqX49CRQ2jIRbVYxQWxws+SbXURBKmok2gEfch+31985MHqdr1G/E0yi+ordJ5B9owxqCNpd7M1CkWo6eXVvN9Apgd+m7WHAajD7ETv9F1HC+I23Hqx8DfUkwxBTlp61mBTsKN5j8Q9aqdzuBeASvQKb++NPNq4I0osmb36N6pbBwF1Am2ROUeWrEjcKzjBXk1bzf6CBN+o6s4XnAI8ILjBbu2uzbqE3B1imkW09jB+TpaF0XbFEX47Ac8hCJkpkb3HNbg+tom66Oje6cgP8LtbFxOegnaGO6L9R1os2nkO1iPRL/ZE02FKcAVwPuin7lRQBwv2LIX81o4p9Ft5iFR3BqZT9pxLbKrf5H4NfYfYXBkDigbtpUIHk7VTLR/jHnqC8jVMgn5KVaiPIIXqIaN3osE/HBkq18LPIqqdYLMTsNQ6Gn997EJSu56Pa179Z4MnABcDHzX8YL/E/ru8zG+JyMhjhccgVqKbo02+BPQ738l+j/3bVSSY2Touy86XnBsdO144BuOF/x36Ltf7uaazcZv9ATHC/4LGBX67ucT3HMr7U+6ICGdgf74RiCn7F3o1N4uKew2ZLqJw1Nkc+wuRIll69CmMDv6fBck7IuAnVrcu3OT9yo8j079RwPvDH03qbPcaILjBcNQvsQHgS/TvrDeSyhS7XqUnPg0OhBciP5Pvg8IQt/tRJnuQZjwG0MCxwvGIbGLm80L1eqeA+jEPb7FtU+hGP6dkejGIckm0YpWyWHzGOzEvQ1tZnGqhU5HTt6z0y+vnDheMAKVAd8LJc3tWff5mOZ3N+UF1NWtESeHvntLijETY6YeY6jwUsLr11H9/30/su83Ev67kDllN5Kd3mcDBydcUzNamYxWItPQblT7DOxE1UxWW4a6EUcCn866wDIQneInoZ/Xkchh302N7FoDHRN+Y6gwmnin/Q3Itr47+uMFCfQw4EnkMF2LHtPHIWFt62iuYRmK3T80wT3NuBf9DTZqHDMffS8r0VPFK8h3sQtyXO+A/BGjUGZxs9DO0cCZwOdyWG9f4njBNsB5wDuo+lk6RSuT0GcdL7gp9N2kPaaTL8JMPUbRiU5in0dOslpW0bi0wyvEy/ytJIk1ithpRiuzTBIqvQca8SByLseNunsMmR6asQbYM/TdZ+IvrxxEuSI+rZ+68uTFFnP9b+i7/9yNRVg4pzEUOJOq6D+HHKLT0Gl5GtXGLaDQy7gdrN5AMtGfSXrRX4Lq91cay7f621vW5v162jWDH4UckEYNUXTNVXRP9O9uM9eHurQOE36j2DhecDhwWfTlfGTPrnSuGhn9ux06QYPMJ52oU/MY2Wz6C1Ft/W2Q/6FZL4AHiW9Guh+Vn4jjm/ik4wXdLi1RdA7v4lxrae7UBZgR+u6ibi3GhN8oLI4XjEJ2+m+gGvub07xq55HI5p0k6icJz5AuigO0KdVuGiNu9707AAAR/ElEQVRo/re3CcrMbcd0VFn0SJR4VmEajbOWRwLvijFuKXC8YAz5RGTFZQbNo8WWAh/p4lrMxm8MDRwveBdwXQ+X8DLyB7QKCW3GLCT87UpNP4s6fsUpsHYX1UqjG5Cw7IEEfkw0Vv04d6JG7KWP53e8YApKbmvmZ8mT+9Em3ejgsBY4KfTdZsUFO4Kd+I3CE53Oju3xMkazsS8hCUfTun7PPCTc44kn+iuomnfWRmMfjiKWxqEno70Y3Bz+SOA30ZNU2dkPmd2momivTrAE/V4PprHoz0fho9MdLzjT8YKPR7kDHceE3ygkjhdMcLzgJscLnkGn7S/0eEmziF8yohGtyiuMRxtb3OJ1L6ES03NRz92jUFJXJZO3UheokYi4wM+7JTAFZjnKnJ2CTC3TUCmRPNgQjTeK5geWJ4GjQt+9C4WRXgG8HPruupzW0JKy//KN4nIi8C89nH8xsusPoFj6HRlc7nkJMv/EyQPYKxpvlwbvJe02tiuKEJmIIpgWIHt1xdb/LBu3k6zn3cAqxws+FvruhoRz9wu11U0rzvTX0M8ySy+DuWgDbxX9NQB8KPTd5dHXbwd+RRdNmXbiN4rKlajvbrd5CQn8Vsh8cgQS+33YOBJnYXTN5sjc0o7tUbbtKzWvLWPjpvBJqBR4q9jyax28W1Fty/gkOn0urbv/w8DlUY5EGWm0WY+O/n0txXjL0VPXBNr3PL449N3pNV9fhjaCrjlcTfiNQhKdROsTtjpFRRyfQKI5hcan8C1Q4bMVyIk6Eplc6uv3N+MYZPOtCMuj0Vz7RvPfk2LtOyKHcG0/4N1QSYkH0JPLZLQx1Nv8zwT+M8Wc/UCzp7S9kBM8CZXaSXGihFYDX699IfTd+7pl4qlgwm8UmVk0biieJ9OQUE5GZR7aMZ7BdX+WIvG/DdmJp9G4beQc1LhlFto8KnHdlXyEiVTzESosYvBpvZ5NGPy3fBjqH1yJWmkWivolxwtOazN+P7K6xXvHE0/856Pf6XFU23q246luVeBshQm/UVhC312KYvg7ybbopL8kwxhTUJTIcShKYzI6vd+GTvgzUWx9pbb+wajRS6ONZnTN53eggmztSi3cQWPfQS330dzuf7XjBe3ME/3GQ23e35vGjXBAwQbT0NPBAQnn3dHxgk4kGCbChN8oOl8l+aN3Eg4AHJT9G7c7VhyOiz6ORSaePagWY9uM5mUl9kb+g3uontZfRk7DO9jYpANyUsYxMayh+d/7lsC1ZbH3O15wGPCjNpdtg3629U+cM9DT3GTS6efDKNqnp5jwG4Um9N21wAfY2CmaN8PRH3i3otweQLH9jdgciXRtpu/RyA9wFNqg5tS8tz0qU9GOVqYNovlaNZvvCxwv+Cck3u2ekEA/k0pi1RPoYHAs6ZL4QMXg3hL67rK2V3YYE36j8IS+uwCFIGYxx7RjOHLQdYOVbd6vrwO/CdUY/1HIHDSHasbuSORbqN0QanmF1tU7K5wa45qhzpvZ2JzWjuOAPyNncJbexRcAl0StF3seRm/CbwwJQt+9GZllFnRwmk4+VdSS5O/u1bqvb0On1QNQOOixSJAmRa/VR+6AzEbt2jRCOYQ/qU1+E+SEzyrWewOTHC/4NO3DPTuOCb8xZAh99zngFzEufRbZZ6ehVncvIkF8rtVN6I/zbvK19TeiVZXGWqYim3AtlXDDhTQu8bs1g30icZuLHOp4Qdy2k0OV/VPck4fv46PAb4DPooY6PcWE3xhqXIzMG814BYXZbY8ccFugUMYpyCnXylw0DiVGddLkM5v2pRnWofo7U6L1PFrz3nPR668iX0A9B6OaPHdSteuPQ6f+52Osr29P/Y4XbEmy9poV8hD+peikf0K3Y/YbYcJvDCmiypKTUTx8pbbK4ujzO9D/6dqyCptRTcZy0NNAI15F8fW3k6w5S1LWoieLVoxAG1eF2n7Dlb6s+6Cqj/UisgptGpuxcTbvxOjeJegpqBlfc7zgdMcLktjBC4/jBVsDv+7hEu5BjVZO7+Ea/kHPnQyGkZTQd9ejcg5/dbzgdOCtwAdj3t4oImMWimhpFmmTF/W1flpRCfvbgY1NQ9vUfH4EWvuRKOpkBTrlH9NgvBCdOrdAm0YzXgdciyKpfhlzrYUmylG4kdbfdyvyOPGfjH4vcRO9OorV4zf6AscLdkdx8rNo39ZwG3QCm4hOx9uTzgSQhJk0FuRmLEQO2ftQHP8YtN65DLbZt+rjWqHRfe2u/1rou9cmuKdQOF4wHDgLhVGmbaIDCr89KIcl3Rz67ik5jJMZE36jr3C84Ah0+n8fg52oG1Bo3lYoGuZeJIab0llWUq3tE4eKOWrHutdnI1PNySnW8DhKIkvCSmD70He7Fe2UC5Et30V9hvPITXgwp3G80HcvzmGczJiN3+grQt+9K/Tds9Fp+Vw2bkQ+DziFao30w+is6K9A5pVbaV9vp8JydDqtF31Q+eC0623m22jFGOA8xwsKYZ6Ig+MFRwPXoIqXeSWkpTH1rGJw455bsy8lH+zEb/Q1jhecgMLo5tK6RnonmImat2yNbOxOi2sfQE8oT9C8ecdaVNo56cl9HTq9vy7hfaCnjGtRZvN1qG7Q2m6WEG6E4wWbAFuHvvti9PVBKEb/j8jk9zX01JcHD5EsDHQeqjH1TlRrH1RqY68oE73nmPAbfU8Umz6TxqfoTjKfjR2KL1A1P61H8dzLkAnqGOSYnUlzU87LSMS3afJ+K6aiDejgutcfQ2Gh7bqLrUJhqJU6MxuQ/+Gs0HdnpVhPLKKCZhNQo/JDUEjkfigyaiXwcfRzGQ/8qrIhOV5wBurpkIdjNqnw/zz03Q85XvBLqpvPSaHv/i2HteSCCb9RChwvOBe4lPjtDZtxB4q02RzZzY9Ep+Gn0cZSa8dfhwSyIpa1Dt45NM4iXY8EdSI6JdY7ne9nsHgnYTqq0vkU1XLOO6K4/11JvjmuBz5PVP8/9N36TOPUOF6wD/CvwHlI3Deh6qQdAM4Bxoe++x8197wOlWX4JvHq8cQhiWP8ZWSSW4eyzCuRk2MrTydFwITfKA2OF5wK/D7jMLUhmWuQEL8enTg3IBv9PPSHPwyJ/mFoQ3gYnVin0zqssxKLP5lqRMksqglbWUxWK5C9f1+0iQ1Dm1f995aGv6OTbawEOMcLtkDRSGOijwG0kewA/BPy0SyhuhkNoJ/xIqqNVF4CzkfC/BiqrfPeDN9DI+ahp4xW/A7lCcwPfXe24wUjUZezi1FOxRa9No/VYsJvlArHC36MzANpmUYy4b0bCVelVs5C4tXNqfAAKiqWtL7Lc2ycBNaIxWjDqgR5LEGZz07CuWo5K/TdK1pdEEXdvA01GX9XzVvPIXNYu3o6T7NxB61XUH5Cp2gn/OuAPUPfrS+ZjeMF3wWGhb77uU4tLg2WwGWUjTOAq1Ejd5dkkR8rSN4Y/fC6r5OIPqg2T9IesE+hzaaV+M9Bgr9DzWtjyV6o7lLHC24Offfx2hcdL3DQSXw/9BTUyPG6fYv11lL/RNFJ0Yf20Y8/aiT6ETcgh32hsBO/UWocL9gNPZKfxcYiWEuIQvP2RA7SbrMexZIfTDxn5VRk8liMNpoBVIpiAzKpvIZ8CM1CQ2egU+zmVJvUJOER4LvoZzUBba6rqZqUsvI82oC3zGm8djxK8zIb1wHvaWbeiprbDItr/uoWJvyGATheMArV/D8BRXAcSPUkOYPmIZbd5HZUfrme15CJZC2q5X8XKufwNHqqr9i+07CGKBQx5f0VsvoP6nkSfb+165qONroXkCO4/mkrLa2E/22h796U0zxdw4TfMBoQFSk7GRXV2gZFvTwBfJHedapaiyJMXqHqEN0D+QEmRtdU6vFXRHYxzZ9k4jKL7HWM2tnJK+veHj1lxElUW4sipSqRWg4bm9LuRiGfo8i2/seoNrL5FHK+fwe4MPTdKzOM2zNM+A0jAVG0xreBz/R6LSgbeAydzT6eh07VWf2BT6EInGabZm29oUrIaSueRd//K8gU1uqJbBoKsaxQby5r9/WTVB3e40LffdXxgvHAS6HvJvW/FAITfsNISCT+0+h8Nc92NMsFyJNWxeXWkKxx+Cr0xDKx7vUnkImqwp009gdUksZWomikSnLcTPS7aOb/+HHou59MsM6+x2r1GEZCorT79yITy/o2l3eSbiQE1UfMrEO5C/cwuDtYOzZDov84G9cuWlh3XbOyBrehnIjj2Dgj+hiUk2DExITfMFIQ+u6Toe8ejHoB9PNj84EoKxdkrpmLoosOJHm0T4U9UJQSqBzC7g2uqW0+swr5GVrlT7QK6ezn308qTPgNIwOh7/4JnUJv6MH0+9KdBvEHoxyG3ajWpR8VvZb2iWdnlGewN4NzGyYhhyooS/dp2pvV9kEb1JwG75nw12HCbxgZCX33vtB3T0UhlHO7OPUO6MTcaYbTuLLnBBTq2qqPcTP2Qmtv5iM4DJ3yRxOvc9Yo5MAdj/osGC0w4TeMnAh9927UsnBqu2tzZHX7SzrK8cjWn+RUvYZ4cf1Hk9ycNB7F3QcouernyDdg1GBRPYbRAaKM4A+gBtvtSh5n5XYUI5/W5p4HA6hA3XJkflqFBH5D9N6w6GMDKmrndHAtj6EeDF8uUmG0ImHCbxgdJErZPxS1g3w/8WrRpGEhKmGQptlKN2kWqtkJPg9cbuI/GBN+w+gSjheMAP4ZVaQ8mHwFcBVKsorb17dX5JEFnIQLQt/9ehfnGxKY8BtGj3C84GDUG/bEHIa7FzlEi8wC5Kzdtd2FObIKRVydG/ru4i7OW2hM+A2jh0Qdo65EZYqztAmMU+agl1SaqGTtgJaFvwPvLlInrF5hwm8YBcDxgh1RjPz+qAzDAShccvM2tw6gejqddiBnZQ0yRfU6kvD3oe++s8dr6Dkm/IZRUBwvGI4iYN6OuoatRw3Ha2lVS6dI5F2WOS3LgZ1D313Z64X0EhN+wxgiRM7hX6K+ARWSFkrrFJWQzWbcARzVpbW04+/AT4CfF61BSrfo9WOXYRgxCX13HcoN+C06Qc+lGKJ/HzJL3Yiidp5vcE2RtOZE4KfAV3q9kF5RpF+GYRhtiCqDng5chE6ut6KaN71iFXATKqvwU2SWqpStOB/V2gEVZisS64Dv93oRvcJMPYYxxInaRp6LNoPRXZr2NeAXwDdR7sAoVCd/AIVrjkeivx8qoXAI8HV6G9VTyypgbFlt/Sb8htEnRF2hvoXMQZ3kGeBNoe+2LUgX+SXeiExBf0QZzF/KeT2rgQvQKT4ua4CrQt/tZT+FnmHCbxh9hOMFmwFnoJLNO0QfO0b/Zn0aWIzMOt8PfTdxBcxobe8HLiffdpFfDX33ohzH63tM+A2jBEQ1g/YGLkRPBHGTxR5ETtsbgbvziIJxvGAPJP6nZB0LCIEJoe+uymGs0mDCbxglw/GC/YGvAafSPMBjGuCFvjuzQ2sYBrwT+AHZqoqeGvpuL5rgDGlM+A2jpDhesCUqmDYJJYpdh5LElgF3dqOqpeMFr0fhqfUN2OPwZ+AUq76ZHBN+wzB6iuMFmwJXAB9LcNta4MDQdx/pzKr6G4vjNwyjp4S+uxr4BPCFBLd9y0Q/PXbiNwyjMDhecC4KSW3FImDf0He70Wi+L7ETv2EYhSH03cuAc5AppxmXm+hnw078hmEUDscL9gT+C0Ue1fMiMDH03Se7u6r+wU78hmEUjtB3HwO+jbJy69kOJakZKTHhNwyjkIS+OxV4K4PFfzUlrqyZByb8hmEUltB3bwHexsbi/wDKNzBSYsJvGEahCX33r6jc82vRS89b0lY2TPgNwyg8oe/+har479Tj5Qx5TPgNwxgShL77ZxTlc2Gv1zLUsXBOwzCMkmEnfsMwjJJhwm8YhlEyTPgNwzBKhgm/YRhGyTDhNwzDKBkm/IZhGCXDhN8wDKNkmPAbhmGUDBN+wzCMkmHCbxiGUTJM+A3DMEqGCb9hGEbJMOE3DMMoGSb8hmEYJcOE3zAMo2SY8BuGYZQME37DMIySYcJvGIZRMkz4DcMwSoYJv2EYRskw4TcMwygZJvyGYRglw4TfMAyjZJjwG4ZhlAwTfsMwjJJhwm8YhlEyTPgNwzBKhgm/YRhGyTDhNwzDKBkm/IZhGCXDhN8wDKNkmPAbhmGUjP8PG5rydICc1uoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax = gdf.plot()\n", + "ax.set_axis_off()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Contiguity Weights\n", + "\n", + "The first set of spatial weights we illustrate use notions of contiguity to define neighboring observations. **Rook** neighbors are those states that share an edge on their respective borders:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "w_rook = Rook.from_dataframe(gdf)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "32" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_rook.n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "12.6953125" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_rook.pct_nonzero" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAADrCAYAAABuBv24AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXlcFWX7/z/3zJwDHJBNQEAUxRUF3Elc4Jhpam6kleZSfVu0Mssyy3UaLZfH5ddTmaZZZpq55PqoaQocFTT33JDFBUWUfYezzczvjxuVncPiksz79eIlnDNz3/cc8Jp7ruVzEVmWoaCgoKBQf2Ae9wIUFBQUFB4tiuFXUFBQqGcohl9BQUGhnqEYfgUFBYV6hmL4FRQUFOoZiuFXUFBQqGcohl9BQUGhnqEYfgUFBYV6hmL4FRQUFOoZiuFXUFBQqGcohl9BQUGhnqEYfgUFBYV6hmL4FRQUFOoZiuFXUFBQqGcohl9BQUGhnqEYfgUFBYV6hmL4FRQUFOoZiuFXUFBQqGdwj3sBjxtBEAgADQBnAA2LfTkDaKhSqTxYlvVgGMZVFEU7g8Ewhuf56Me4ZAUFBYVa8dQZfkEQWFDD7Vrqy02tVjdhWbYxADdZlhuKomhPCLEjhECtVhttbGzMNjY2sq2tLWNra8vZ2tpaaTQaRqPR4OrVq4iNjb0CIOHxXZ2CgoJC7XmqDP/ChQvXEULGchxnsLGxMWk0GsnOzo6xs7NT2dvbW2k0GmJrawuNRnP/y8bGBiqVCqjkszh37hyuX78uGo3G4wCkR3ZBCgoKCg+Bp8rwA7AJCQmRQkJCrAFY18WAkiRhz549aNq0KVNQUDAiNTV11KJFi6L0ev1GAHt5nk+qi3kUFBQUHhVEluXHvYY6QxAEH47jLo4fP96mSZMmdTLmrl275Fu3bsnvv/8+AwAFBQWIj49HdHR0/tWrVzmWZW+aTKZNoijuBHCG53nliUBBQeGJ5qky/AAwb968UJZlfx4+fLhDu3btaj3e4sWLpcGDBzO+vr5l3hNFEbdu3UJMTIzp8uXL+sLCQpFhmD0Gg2ELgIM8z+fXegEKCgoKdcxTZ/gBQBCE11q3bv3d6NGj7Wo71po1a+RmzZqhb9++pKpjMzIyEBsbi0uXLuXcuXPHSq1Wny4sLPwNwP94nleCwgoKCk8ET5uP/x6Hrl+/rrp16xZq6/IRRRFWVlZVGn0AcHZ2Rvfu3dG9e3d7g8GAq1ev9oiOju4YGxu7ZOHChXfMZvNvoij+AeAcz/NP3x1XQUHhX8FTueMHgLlz577LcdzS0NBQm7Zt24IQi2x3GebNmwdnZ2dp2LBhjJeXV43GkCQJiYmJiI6ONl28eNFoMBj0hJCtRqNxE4AjPM+bazSwgoKCQg14ag0/AAiC8DzHceuef/55t65du9ZojLS0NGzevNmUlZVFWrRoYerevbtNw4YNYWdXMy+SLMtITU3FlStXpAsXLuRlZWWxLMvuMxgMvwE48KTHBQRBcAcwuuhHuYp/AYBU8P1JAMeVYLiCwqPnqTb8c+fOXS3L8lvjxo2Dj49Pjccxm83YsGGDmJiYGKlSqVxNJlOz3r17q3r27MmxLHv/uMLCQtjY2FRr7OzsbMTExODChQs5d+7csVKpVMf0ev2vAHbzPJ9a40U/JARBeMPJyWlFy5Yt7xtxudgfUdG3JQx/6actSZJw7do1Y0FBQYrRaOzwpN/sFBSeNp5WHz8AQJblzwghrzk6OqpqMw7HcWjXrh179+5d47Rp09oJgtAsKirqpzNnzgSGhobaent7Iy8vD0uXLkXXrl2NQUFBamdnZ4vGdnBwQGBgIAIDA+0LCwsRFxenvXjxYtfr16+vWLRoUbTBYPhVluXtPM9fq8011CFckyZNxEGDBmlqOY7Vli1buPj4+KUAJtbFwhQUFCzjqd7xC4LgA+Dqm2++iZr65++xZMmSgvz8/IE8zx8uGpsQQkI5jlvdrFkzK0KIdWxsLMtx3H8BvNm8eXMycuRIW7VaXaP5zGYzrl27hsuXLxdeuXIFAJKLBYfPPq7gsCAI73bq1Gnp0KFDq/doUw6FhYX45ptvCvV6/SjQJ5yn949RQeEJ4qk2/AAwb968VxmG+SEwMFDVr18/q5qMYTabMX/+fFGWZVVp4yQIQgMArwBwAbCF5/mrgiDYqtXqkyNGjPBt3bp1ra+hvOAwgC0mk2kjgEie58VaT1KKIvG68vigS5cuiwYPHlwnldHXrl3Djh078o1GY6rJZJo9e/bs9XUxroKCQsU89YYfAARBcFapVNGhoaFu5RViVUV2djaWL1+eNWPGDKdqzJkCwLVLly6G1q1bW2VnZ8PPz6/aMYDS3AsOX758WTx//nxBdna2FSHEjAeB0/v/Fv1uSQWv3fu59HkAAJVKBZPJVO4atFqtGBISwpb7Zg2QZRk3btzAtm3bCvR6/dyZM2cuqquxFRQUylIvDD8ACILwjFqtDp88ebKNra1ttc69c+cO1q1bd+Ozzz5rXo35CIAAhmEGqVSqMQaDoT0A2Nvbix999BFb0/TS0uj1ekiSVCJd9d73lvxb3mtJSUlYvXo1QkNDERAQUCfrtITs7Gz89NNPBQUFBYvNZvNcJeNHQeHhUG8MPwAsWrRob//+/Qd26tSpWuclJydjzZo1WSaTqQnP83k1mVsQBAbAXAAzp0yZAnt7+5oM80hIS0vD8uXLwTAMZs+e/Ujnzs3NxYYNG/KzsrJSjEbjm3PmzAl/pAtQUKgH1KsOXLIsp+flVd9uN2rUCK6urhyAUTWdu2j32h8AGjRoUNNhHgkuLi4YNWoUNBrNI98VNGjQABMmTLAdOnRoc5ZldxYF6BUUFOqQemX4AcQcOXJEf/Xq1Wqf2KtXL42VldU3giDU2PgDWMYwjFxXbp6HiYeHBwoKCh7LEyEhBO3atUO/fv00KpXqwpdfflmbz1xBQaEU9crwf/7551+azeZBmzZtyti1a1dhdc719fVlevXqZcOybGBN52dZtkOPHj3+FX5re3t7EEKg1+sf2xoCAwPZ8ePHawCs++qrr67Pnz9/SiXZRgoKChZSrww/AMyZMyfcZDI1O3funJUoVi8LUqVSgWXZGjvnRVG8kZKSYqjp+Y8alUol5+TkPNY1eHl54aOPPlL17du3mYODw5dqtXqPIAg1099QUFAAUA8NPwDwPJ/LMIzBaDRWfXAxV4etrS0YhmlTi6k3Xb9+Pe/SpUu1GOLRoVarpfj4+Mce/bezs0P37t0xYcIETceOHfuzLHtUEITgx70uBYV/K/XS8AOALMvM33//XflBubmAvT0wcyaQlgbfFStACgu7fjl7drOazMnzfJbJZBq4c+fOgtTUJ06GpwyDBw9mIyIinpjML47jMHDgQHbkyJFWKpVqy+Nej4LCv5V6a/glSbLS6XSo1Pjb2QGffQZ4eAC5uWBPn4azq6vhw6+//h2E7AcAELIEhFisB8Hz/BlRFD/4/fff858Ug1oRrVq1AsMwcnp6+uNeSgnatGkDWZYdBUGocbxFQaE+U28NP4AJADIOHTqUdfv27fKPIAQYPx64fRvQ64Hjx5FVWMj+OWDAuwDeByFqAD0BOIKQT0DIjaLzPgAh3SuaWJKknzMyMmz/Dbt+jUYjJiU9Wf3kCSHo2LEjx3HcNkEQHB73ehQU/m3UW8PP8/wqnucbEkI2JyRU0hWxaVOgfXtg/37IZjMKCgo0l/38oiHL8ZBlI2Q5CLJ8EcBKACOLznoWgD8I6QBC0kGIIwgZDEKG3xuW47iIzZs3Fzzpu34XFxfu1q1bda4FVFsGDRrE+Pv7u1hbW2943GtRUPi3UW8N/z2MRuPxxMTEyvXgx4wBzp4FwsLg7OxcCGB4mWNkOR+yfKro+1DI8moAl0AF3LJBnwxeACEq/osv0qbPnj2DiYnhzN99V8dXVLf4+Pjg5s2bT1wKJSEEISEhVmazOeRxr0VB4d9GvTf8ANQqlapyw0YIsGAByMKFGNazp61KpfpOEISqdXtk2QxZPghZliHL0yHLbwMQAbzCyPKlxnfvimR9kRhlx47AokVATg7w3/8Chicj67N9+/ZIT09nJOnJKz/Iy8sDx3Epj3sdCgr/Nuq94SeEqKOjo7nExMTKD/T0BN5+G01Wr0afkBBHlUp1URCE/tWeUJaloptBzuXOnbPCv/zSLMsy8O23wIsvAnfvAt98A5jNwOuvA6+8Qs9buRJ4DEFWOzs7SJKEJ9HwOzg4wGQyeQiCULM+mFUgCEITQRA6KkVjCk8bT0yq3uNEEIRpnTt3njtkyJDK9fpFEXjzTSA0FGebNsW+fftOmkym+QD28zxfrUrgonm7qtXqXaNHj/Zo1qxZ2QPOnwcyM4GgIMDXF/jtN+DSJXpjOHcO2LGDxh9ataru1BaTmZmJ77//HjNnznxoc9SGHTt26K9cuXLaYDD0rotGLkVieoMA2HEc9z3HcTayLKeYTKbfVCpVW0mS7pjNZkmW5Q2EkGBZlhkA63mev1Xri1FQeESwX3zxxeNew2NHp9MxaWlpY1QqFePl5VXxUxDDAMHBwLvvwvmNN5Can+9kMplGyrI8PCws7FetVlu+gH0FaLXapPDw8JzU1NS+HTt2VJXR8GnUCGjWDGBZ4MMPAS8voGFDoHlzavDfeovejFxdgcBAICYGcHCgaajW1tRFVUtu3ryJ69evy0FBQU/krrd169bc8ePHXUwm0/+0Wm1ybcYSBKEZgHQAr3p7ew/08PDg3n77bRtvb28Ha2vroNatW7dzdHTsam9v7y9J0quFhYUvAOjLMMyrERER32i12icuCK6gUB7Kjr8IQRB8OI7728PDw7p///52lbZq/Osv4NdfgXXrIMsytm7dqo+Pj//baDQOvifbXOR+8ON5/ngV86rVavXB1q1bd3vxxRetayTglpsLLFkC/PgjoNUCAQHAmTP0BjBoENCkCX0qcLK4j8x9jh07hvPnz4sTJkyos8Yrdc3ff/9tPnToUKbJZOrP8/y5mo6zcOHCv7p27drn2WefZRnGMi+oyWTC0qVLRYPBwAJowvN8FT5DBYXHj7LjL0Kr1WaGh4f/lJube/3ChQvBycnJaNGihYrjyulH7+0N3LwJXL0K0qED2rZty6WlpblnZWX9X1hYWIRWq72r0+mCABw9fvx4v0OHDh3WarUZFcwrhoWFbc7Kyhqi1+udWrRoUc6EVWBlBfTpA7i7A889B4wcSX9u1oy6hk6eBC5fphXIhw8DLi5AWhq9MVhV7t26cOECAEj+/v5PbDzIy8uLcXZ2to2Li3sjKiqq16FDh2K1Wm0FxRnlIwhCDxsbmxmjRo2yYlnL73Esy8LPz4/5+++/oVKpmoeFhRXqdLpYrVZb3ctQUHhkKIa/GFqttjAkJORsWFjY8qysrHYXLlzwzsrKImazmW3YsOGDLlcMQ10q+/YB7dqBcXSEr68v5+joaB8fHz9ep9MVyrIsN2rUaFDHjh19kpOTe/Xq1WtVJfOawsLC8lQq1cAOHTrUqC8wALrTX7CApp4OHkx3+kFBQL9+QI8eQP/+1NCnpgJHjwJ79wKCQIPGDANkZACOjkDRzS4uLg6HDx9GkyZN5NatWz+xhh8A3Nzc0K1bN87GxqZlQkLCiLCwsN+1Wm22pecfPnz4LT8/v2BfX99q33itra0REBCABg0a+CYnJw81Go3XtVrtxeqOo6DwqFBcPRUgCAIHQMswTHeVSvVaixYtvEJDQ61LPAGsW0eN6Mcf3/enZ2Zm4rfffivIzs7+EcDotm3bul68eFFUqVQ/m0ym7XPmzNlbwXzvAPjBxcUlb8SIEXbu7u41W3hiIjB1Kl2bWl35sZJEnwQuXKDG/tgxICoK6NQJ8PfH0bw8JGRlyf0mTyZuNV3PY+DIkSPmI0eOGFmWDdfr9X8CuMjzfERFxwuC0IzjuOgJEyZYu7i41GruxMRE/Prrr3pZllebTKYZNe3YpqDwMFEMvwUIgmCjVqu3urq6al977TWNSqWibxiNwCef0DTMPn3uH5+fn48lS5YAQH+VSrWIYZiOfn5+5PLly39PmzatXCkHQRDe4jhurizLzn379rUKCgqq+YKTk6lv/8ABGgyuDqJI4wNXryI+IQHypk1yq6QkgtmzAZWKxgp8fGhF8xPcUCYnJwfXr19HfHy8/uLFi9YAPgawDcDN4tk/giDYEEJ+l2V56OzZs2Gpb78y8vPzsW/fvsK4uLgbRqOxfV1kGyko1CWKq8cCtFqtOSws7Hej0aiNj4939/f3V7EsS7NtGjUCNm8GunQBipq4q9VqmEwmY3JycrDJZOrBsmy/nJwcd5PJJIWFhS3XarUlkuIFQWipVqt3h4aGOl2+fJmkp6frn3nmGVWNF2xnR337eXm0MKw6MAzQuDHg5wdTq1bYYDSS3hs2ADY2QH4+kJUFvPMOTSUlBPj7bxovcHOrMl7wKLGysoK7uzvatWvHNW7cGAUFBT3y8/M/ZFm2WVhY2B6dTgedTkfUavUvTZs2HTxixAjOwaFuZH/UajV8fX1V58+ftzWbzU3DwsL2KD5/hSeJJ9pv+yTB87xkMBiGpKamnj927NgDw92lC91Vb91a4vh+/fqpCSEeANyMRuPzBoPhhNFo9AbwTDnDd/P29jb5+vrCy8urMDMzU2MyVSsztCxffw0UFFCXTw1xdXWF2WyGQaWi1zlqFDBuHHDlCrBhA40paDQ0XjBwIE0v/eUXYPly4NAhoLbXUEe0atUKY8eObTBlyhRrZ2fnUQDMHMdFEEL+q9Foho0aNcq60iyuGkAIwZtvvqlhGGYcgJZ1OriCQi1RDH814HlebzAYXg0PD2dWrVqVn5FRlKgzaxYtrrp8ucTx1tbWEoBYtVp9wmAwhABw4Xn+aOlx1Wr1ABsbGw4AnJ2dVSqV6u7KlSvza9IY/j4MA3TtCnz1FVUWrdEQDNRqtZyZmVn2TXd3+jQxdiwwbx41/nPm0NdYlt543n2X1h98/z0tOrtw4bFKUVhbW2PChAm2jRo1ksxmc3CHDh3eHjt2rEZdVSykFvO5ubmZWZYd/1AmUFCoIYqrp5potdosnU63Kj8/3yopKamjv7+/imFZmjkzYgSt7C1KB2zSpIna1tZWvHv3rg3LsqNYls3u3bv3meLjCYLAsCw7LTs7uxHDMFxkZCQnSVIHs9lccPTo0ZDk5GRz+/btmRrl9zduTOMPX38N9O5NbwbV5NSpU2Ljxo0ZV1fXyg8khGY6ubvTG86rr9LMojZtqDvs2DFgyxbgxg1g0yZg504gPp7eKFQ192pVl7i4OJw+fZpMmTIFAQEBnEajeajzeXt7W50+fTqwqMDP4iwjBYWHibLjrwE8z9+RZXlmcnJy+IoVK4wpKSk0dXLqVODTT+8f17hxYzz77LPswIEDNT179mxHCJlRzljS9OnTg/Lz8/vqdLoDKpXqEoCkGTNm8ABw5coVrlYBeA8PIC4O+H//r9qnZmdno7CwkLWqqe+eYYAWLahxX7iQxgWmTQMmTaKuosWL6VPAkiXAzz/XbI5qIEkSdu3aJWq1WtnO7qHI+5TB2dkZAQEBhOO4dx7JhAoKFqAY/hrC87zeaDS+mJeXt3fVqlWmwsJCuuMnBPjzzxLH+vv7o0ePHjCbzZ6CIDhXMN7xzz77bMCMGTP8eJ6/55tppFar4/bv329Bc+AKYBhg2TKax3/2bLVOzc3NhSzLpFwdoZqiVtPYQ8eOwLBhVGrCYKBusvPngaFD6ZPAQyAsLAwsyzLPPPPMI01HCgwMtCKEfPzll1+GPsp5FRQqQjH8tYDnecP06dNDWZZdtX79+jxoNNTV88svQHbJp3qWZeHp6akH0K8a46cYjcbAc+fOZV69erXmC/XwoPn9n35KM30sxMvLCxzHSVUql1aXW7doFXHXrkBEBP1+8WKqgOrnR2sKhgwB3niDppeKtZfAKSgowMmTJ+WhQ4eS6lTm1gVubm7o06ePjSiK2wRB8HykkysolINi+CtAEITGlsrxGo3GvwghNNPH35/m0K8qW6gbFBRkp1ar1y5YsCB9wYIFlWr43KOoQfubGzduLFy9enXuiRMnINbEEL7yCnWxREdX6zRXV1dy5cqVutVkPnuWxgMkicpN38PFBZg/n0pNzJ1L4xPHj1NRuqgo2gLTbK7RlFu2bJGaNm0q+fj41M01VJPu3e+Xb1Tdx0FB4SGjGP5yEAShCYBEtVq9xIJjObVa/Z/AwED7+y8OG0bz3Y8cKXGsr68vM3XqVOvx48c7y7Lsa+l65syZs0cUReekpKSx+/btw61bNVQAHjiQGv9Sqaf3kCQJW7ZswapVq+SNGzciMTERHTt2JJcuXao714jZDCQkUFfP6NHARx/Rz6o0nTrRXX/PnsD//kefBP7v/6hrKC+PCuVZGPu4efMmEhMTmRdeeOGxCc0RQhAcHGxWq9XLFH1/hceNYvjLRw0AkiRNKNJnr4wmZrPZp4Qf3N6eVvIeOVLGtaJSqeDi4gKWZdXz5s0bbemCeJ7X8zy/i+O42fv27cs312Tna2VFu3txXLnGdvv27fKVK1fg4+MDa2trcd26dfjzzz9lZ2fnuqs8PXSIFoLZ2tJCszVrgNWrKz8nIIB+pvv3AwcPAtevAx98QLWStm+n/1bCtm3bxKCgIMnR0bHOLqMmBAUFcSqVqgPLsusFQai+VKqCQh2hGP5yIIREOjo6SpIkWQOwruxYnuevcxy3NzY2tuQbzz1Hjf7u3WXOsbKywrBhw6ytrKw+ru7azGbzV1lZWeG7du3S1yjbp3t3qi80YQJ1tRQjMTFR0mq18nPPPUdCQ0PZTz/9FK+88goZO3Zs3f2dHDsGvPzyg5/feQcorEYPG2dn6k6LjgYGDABOnKB1AklJ9Jpu3ixxeGRkJMxmM9O7d+/H/rdeVEdg1apVq+Ecx8VWFOhXUHjYKFo95TB37tz/yrI8iWGY/NmzZ9tXcex4WZZ/sbW1hbNzyf/HqsJCaFeuxPExY5Dr5lbivfz8fBQVgLXgef5addYnCIKtWq0+26FDB+++ffuqASA1NRWenp6Wac0YDNRIzp9PA6pFXLlyBdu3b8fkyZNhWyQ/UecsXkwrgJs0efDawoXUpdO7d83HTUoCPv+cFoz9/jug18O4dCmWLVsmDxs2jPj6WuxZeyTs27fPcPbs2WMmk+klnufTHvd6FOoXiuGvAEEQrACYAdhUpLAoCMLHNjY2XxYWFtpotVqUV2TlcOYM3PfsQcynn0IulQ8fEREBAK/yPL+xButzUqvVB8xmcydJku77rgcOHAh7e3v4+Pig0opUUaT+8h9+oNk1RaxevVp0dnbGiBEj6t4ffvfuA+XQ4jeo776jQdx7jedry969QEwM9plMcvf//pc4bt4M0rXrE6UlZDKZsGnTJvPNmze/mzFjxpTHvR6F+oVi+KtAEASZ47gslmULAEQYDIZtAG5YWVnNMBgMLwLARx99BEII7Ozsyt9xf/oprWB9660SLy9evFhfUFDwfzUx/EVrYwFYMwyzRJKkiQB4AAJAbwCBgYGVD7BmDc2fX7r0/ks5OTn47rvvMGbMGHh7e9dkWRVz+DB1fS1eXPL13FwqKte2Le0HUEcsW7xYfNnKivV68UX6hJOaSl1Nt27RzKHHQF5eHqKioqDVapGVlYXVq1dnmc3mF3iej3osC1KolyiSDVVw7NixAZIktezatWuDNm3a+JtMpgEMw7zWtm3bto0aNTLfvXuXO378OI4fP467d+/q/f39yzby6N2bavYHB5eQSXZycuJiY2OfCw8P36PValOquzatVitrtVpTSEjIHp1O9x+e5w/pdDpbAD2HDx9e+Y4foJkzDEODq889B4DGH8xmM/bs2QNXV1fZ1dW17jJQ5s6lRW7NS2U0WllRnZ/kZOCZ8jTsasaV2FhibNFCbtGpE8GIEdSdlJ1Nfw/Nm9PYQmYm7Vn8CIiLi8PatWvlrKwsREZGyh4eHiQ2NtYawPiIiIjdWq327iNZiEK957EHvJ50jEbjIIZhFh87dgyyLItvvPGG/eTJk+1feOEF6yFDhliPGTMGzZo1k0NCQhAQEFC+L8HGhroz3n23REDV19cXWq3WgeO4yIULF66tTXEPz/OFAEAIGQrAMh89IVR1c98+oFiBWJ8+fRAUFIRDhw6hRtlD5WE20w5fHTqU//4771TdOKaa+Pr6kpiYGPqDtTXNDmrbluoFDRxIXUsjRtAsoy+/pJ3IHiJ//fWX+Mwzz+DDDz8kQUFB2L59Oxo3biwzDKMCcHbRokWnihq+Kyg8VBTDXwU8z2fOmDFjGoDWYWFh+bt37zakFxkIQghatmyJ1157jWi1WrRv377i3fG9vPVibg5CCHr27Im33367QefOnUezLBsrCEKt/CuyLH/s6uqaa/EJzs5UWfPnn4GUBw8dvXr1giiK0vLly+U6Mf43bgDPPkvnK4/u3WmmTlTdeTw6d+6MrKwsprB01pBaTW/Gy5ZRV1dmJk29PXaMFt4JgsU1ApZSUFCAzMxMtkuXLoQQgt69ezNDhw5FYmIiee655+QZM2agRYsW/gCm1unECgrloBh+C+F5Ps5sNvv/888/i3/44YfCahdREUIrejMygHPnSrzl5uaG/v37q9u0aUMADKjlUnWpqakNUlNTLT+jQQPq8vn4QXapWq3GBx98wGZnZ9eNq+fEiar1+b28gLVr62Q6gF6DRqMRr1+/XvFBhNB59++naqK2tjRDKDmZuoROnKjVGnJycrB582asWbMGHh4eYvFmLzY2NhBFEeHh4SQnJwfNmzdXq9XqQbWaUEHBAhQffzXQarXZwcHB4eHh4TLHcb1btWpVvcyXBg1oNs3+/dTvX0ozRhRF1fXr15seOnToJ61WWyOBGq1Wazpy5MgbJ06ccAwMDITKUsnjnj1pO8V//gFatwYAyLKMY8eOya1btyYNGjSoyXIesHgxbfZemWRChw70iaBhwzrLwElISGCys7PFtm3bWrbJCQigFcMMA+Tk0KD8rFk0VbR5c9p60kIiIyOxdetWODo6Ss2bNye9evViirvgXFxc0Lt3bxT1ZGYyMzPNt24zfrQKAAAgAElEQVTdOhAREbFN6dil8DBRdvw1QJblsFOnTnHx8fHIz8+HJFVDyub556lR2batzFt+fn4wGAwBADYVNXuvEZIkDQaA9evXF1jcyUutptWxixYBRcVoDMPc/6oVWVk0qNq3b+XH2dnRHf/GGiU5lUtAQADi4+OrfwEaDU09bd+eVgnHxNB/LSQsLAxHjx7FSy+9hFGjRjHPPvss3ErVcgD0M/b09GRv3rwpdurUibOxsRkK4Nlqr1dBoRoohr8G8Dx/nGGY17ds2XJnyZIlWLx4ceGVK1csO5kQquB59GiJgCpAjcDYsWPRsGHD5ziOy5g/f/6aopTN6q7vIgA2IyNj73/+8x/D2rVrc8LDwxEZGSlXmr7r60szb1JSaCN5ACaTidx7ajAajSgoKKjucoDTp2nNgCXNZCZMoGJtdUTbtm1hMBhIuV3EqiI3l+7+9+yhbqrYWKokOm5clacaDAZ4eXmJjRo1qlJUz93dHenp6cTNzQ1F0h91nEeroFASxdVTQ4KDg8+HhYUtAzDPbDYfjI2NHU0IUefk5MDFxaVMMZcsy8jKyoK1tTWIoyMtZvr7b6qTX2xH7ezsjMDAQHVaWhp7586djgCWaLXaajev1Wq1cq9evbaEh4evzs7OPnPr1q2rV69eDXZwcICHh0fFJzZrRusOrlwBtFrEx8dLFy5ckKOjo7F3715y7NgxqNVquLi4gOMsfCi5eJG6kVpa0Hq2SROA5+nxddAHlxCCf/75R7Szs2M8PauRNBUbS7N9CgupxMSYMdTgu7jQfgLt2lG3XQWZSAUFBYiKimJOnjyJY8eOoU2bNhVmWp0/fx4ARH9/f+bUqVOGnJycmJCQkPDqX62CgmUohr8WaLXae7n0iREREWdu374tx8TE2BiNRnsfH58SO/WkpCSsWLECTZs2hZOTE82h//Zb2qqwnGKivLw8+caNGzclScrX6XR3tFqt5Zk6JdeYr9Vqo0NCQsJ0Ot0XMTExqNJ/HBxMNW+aNoV/UBCJj4/HjRs3yIQJE+Dm5iYeOXKE6HQ6olKp0KS49EJ5yDLdJQ8bBpTj6iiX6Gh6syiqLagtycnJTFJSkhgQEGDZE25SEm2l2a4dfQJJSwN0Oipt7e5Ob9aCQIPh779f7pOMm5sbnJyc4O3tjdTUVNHJyYlxd3cvd7pjx44hPz+fadSoEVq2bGl15syZnhEREfu1Wu3tWl24gkIFKK6eOmL27Nl/fv755+ONRmOvEydO5ERFRUm5ubkQBAG//PILfvzxRwCAvX0x6Z8ff6S5/Tk5Zcbr2rUr6+Pj4wngewA3v/zyyym18fsX4adSqQz30hvNZnP5bohGjWgh1bBh4PLyYGNjQ+zs7GRXV1d06dKF/eSTT4hWq5VPnz5ddXDj9m2aMtm+fYWHZGVlYdWqVeKKFSvEnJwc4LPPqGsoP79GF2k0GkvEXbp27YqEhAS2yliMLAMLFtD17tv3QEzOxwf444+Sx371FZW3Pn+eykaXgmEYdOzYEc888wxEUaw0DhQcHAyNRoOff/4Zzs7OGDVqFMtx3CFFxE3hYaHs+OsYrVZbEBYWtiUxMfH5qKgoJ1mWb+Tn59+QJMnDzc0NrVu3xv0MGSsralS+/PJB28YiCCFITU1lExISSMeOHQnLsr30ev1LYWFhP9Q040Or1aYePXrU58aNG21NJpPqp59+wuHDh1Fu9o+nJ0xXr2Lb4cNigtlMRo8eTYr3qXV1dSUnTpzAnTt34OvrW7Hz/uBBICSkUsO/ZMkS5OTkMM2bN5f//PNPwqjVxHX1arAmE0inTtW6xh07dsh//PEHOXz4MKKionDs2DHp+vXrkl6vZ3x8fEreeItjMtFag3nzaDFZixYP3uvTh+74hw9/8Boh9AnmwAGa9VNq53/z5k3s3bsX586dk3Jzc9kBAwZUWEnt6OgIg8GApKQk+Pv7w8vLC8nJyeb09PTckJCQyGp9AAoKFqDs+B8CPM9fNxqNAZIkefI832LGjBmdAfRKSUnBqlWrkJZWTIyxf3+aIlhOs/Fu3boRADh37hwCAgKsjEajP4BaiacZjcZ3b9++PS88PHw7ISQFAP744w+D0ViyrW98fDyWOTrKgUeOMJPs7UlpN4VGo8Frr71GYmJiSKVtIaOjS8hUlEaSJMiyjI8//hgjRoxgR44cSY4fPy5vcnbG3gsXpOoUj4WHh+PKlSvkvffew/Tp0/Hee+9hzJgxjJ+fH2NnZyf//vvvck45T1dISaG/h3PnaN5+6ZTT9eupa6c8xo+n17hpE1UdlSRERkZi/fr1yM7OlhMSEpi33nqrykrqtLQ0mM1m+fvvv0dERITYo0cPDcuyU2sS3FdQqAplx/+Q0Gq1klarLSj28y2dTvcVy7I5p0+f7iVJEvHy8mIYjqN58998AwQF0ZaERajVavj5+eHs2bNS8+bN5czMTIMkSaGHDh3apNVqDTVclxgcHHy0V69em0JCQpbodLr/5Ofnt7p8+XKLrl27qggh2LdvHw4ePIi+ffui3fPPE27VKlp1XMqXrdFocOPGDdFoNDItiu+Q72E2A+HhtIG6RlPues6cOYOkpCRZq9USAGjYsCF69OhBWvbpg4YffUT+uHZNvi1JJCYmBjt37pRiYmJktVpNTp8+DRcXF9jY2AAAzp49i/DwcIwbNw7u7u5gWRbW1tawt7eHt7c36datG0lLS5P//PNPtGrV6sHTy4UL9Lpycqg/v7zU1ZUraSpqRcFsQgArK8hnz2JTRoYUffYseWXsWPTt25d06tQJxYu2KqJVq1bo1asXsbe3x5EjR8iAAQPIqVOniMlkSgkJCTld5QAKCtVAUed8DAiC0ITjuB22trb+kyZNUnEcR6WE//qLyghUkPaYn5+PpUuXSrIsN+R5vpx+hTVeD1Gr1UkDBw50P3bsmFhQUMC8+uqr5H72T1wcMG0asGVLGeO3f/9+KSUlhRlXXorjP/8AkydTN0kpbty4gfT0dISHh0uBgYEkODi4zEXLn32GDJbFtubNJZZl5Y4dO7JxcXHi7du3GVtbWzklJYWxs7MTn332WXbPnj0YMWIE2rRpU+F1yrIMnU4nHTt2jIwaNYo0z8ykmTorV1bcC6CwkGYa3b1bseEHVd1cs2aN6P/330xIVBRhY2JqVIT2ww8/yDY2NhgzZgyJj4/H1q1bcyRJ+laSpDAAF3mer7aYn4JCaRTD/5gQBEGjVqt3qdXq7hqNhgns3NnGb88eWAUEACNHlnuOJEnYsGGD/tatW8tnzJhRZ5ougiAQQohelmW1nZ0dJk2aBKviRkuSaOPzN96g2TnFOH36NI4fPy6+//77ZV0SX3xBlS/ff7/MW0uXLpVEUWQCAgKkPn36MFblGUmTCfjpJ+D118sYUVmWkZubC51OJ547d44dNGiQ3KVLF4vkJY7odDL35Zdy0Dff0O19HTRpOXLkCHQ6HT6aPBl2Z8/SMc+doy6kahAXF4fNmzfD1tZWfu6554gkSbh9+7Z0+fLlQoPBYDKZTH0AXOF5Xl/rRSvUWxQf/2OC5/kCo9HYLy8vr09GRsbav8LDo7ebTIW4dAlITCz3HIZh0KlTJ2uWZetOu5jyhizL9/oMm8sYYYah1bS3b9Pag2I4OzsjNzeXiYqKQlbpPr5qNdUnKofmzZszjRs3FgcMGFC+0QcAlQqIiCibUQMa/La3t8eQIUPYWbNmwVKjD1FE+7Q04hkfz8DZuWqjP28ebfJeBb1790bDhg3Frdu2SVLv3sDZs/RpopqZSa1atcLMmTPRtGlTeefOnXB3d8fAgQOZTz75xHb48OGODMOcYhgme8GCBbsFQVAqfBVqhLLjf0IQBEEFwPghy8LRyQl4771yXT5GoxFff/11QWFhoRZANAA7nudrrOMuCIItgDwAmDx5MgwGAyrKN8emTVRz58SJ+75ws9mMgwcPijdu3CBpaWkMx3Gyvb299M7IkSw3fTqwYkW5RU4xMTHYunUrZs6cWfkCjx+nmkbdutX0Eh+QkAC89BLOT5qEo9nZ4nsffFB14PTAAdrAZcyYKg81Go349ttvJY1Gg1deeYVxtrWlMYSlS2mAmK1enHblypVio0aNWD8/P7Rq1eq+RHZBQQFOnDiByMj7CT/NARgBmABIADJ4nlf+YytUSG3zwhXqCJ7nTfPnz/96pShO/OjQIWvrbt1oLnsp1Go1GjRoYC4sLOwG4AQAGbV4clOpVJ+3bNmy8OWXX7ap8uBXXqFpmb/8Qt0+ADiOw4ABA1iAuqLS0tLI5s2bmdP/+x+e8fQs1+iHh4cjKioKvXr1ElFVltIzz9Bd+fbttXPJXLxIew0PH444jUZsZGtrmRVu3Zqmc1qAWq3Ghx9+yPz888/Q6XRiaGgoCw8PIC+PVvuq1dXy+wcFBbFhYWFidHQ06+TkJKekpBCGYeDo6Ci/8847pEuXLvj111/NeXl5V0wmk5VKpTLIsgxZlrFo0aJrer3+HZ7njwqCQAC4A8i617dBoX6juHqeIGbMmDHFBPBh3bsXYuHCCo9LT0+3AdAaAAgh5yo80AJYlm3ZokWLqo3+Pby9qdunHJE5hmHg5uaGHj16EPXq1bKxAiXO2NhYUavVIiQkpGrjSwiVS66NPPL//ge89BIVoZsxA5xKBYufdNu3p08dFsJxHLp3747o6Gj2xo0bQOPGtN3k6dP0JpJmeV/1Dh06YMqUKezrr78Oe3t7fPbZZ5gyZQoKCwvlu3fvwsnJCZMnT+ZmzJhhNW3aNMyYMcNq5syZVp988olVv379fAEcEQThBbVavQdAEoACQRCcLF6AwlOLYvifMCRJWn7WZBJTV66s8BgvLy8zy7LvAMCcOXM612Y+WZZJfjl+6Bs3biAvr5we8w0aUNeFpyeVNiiHjh06wCMnh6y7dUssr2LVZDLdT8O0iEWLaNzDUqXRexiNtKWjnx+wc+d9SWW1Wk0sVi1NSaGS1dXA398fHh4eKNEHIDgY+M9/qALp0aPVGs/T0xNjxowh1tbWsLOzAyEEbCm3UfHP08bGBp07d8bo0aPRoEGDTUajceDUqVOh0WjyANRdU2OFfy2K4X/C4Hk+X5blA79VIk3cp08fG4ZhZAC1dnybzWbX8PBw7Nu3z3zPh5yamopffvkFd+7cKf8kf3+aejp1aolWkvdgEhPh8n//h3x7e0ZXLJVTkiRs3rxZzs3NZavU+CkOy9LU0N27LT9HlqnE86lTgJPT/R4DAJCdnW3ZGJGRVK20BrLUDg4OSEhIkO4/WTAMdZVduUIrgG/XXIZHluUyhr88WrdujY8++sh2+vTpsLW1vSccaGGDBoWnGcXwP4GIoqgtkyFTDG9vb/Tp08fGysrqq9pWdoqiGAEAJ06c4L766its3bpV+v777wEALStT05w+nbZLvHmz7Htnz4ITRQT16EH+/vtv+fvvvzd/++235mXLlkl3797FxIkT4VrdBufTplneBOXCBSqCN2QIvVkUK6A6e/asfP36dTKogmyjEqSkANXttFbEoEGDkJKSgo0bN0oZGRkP3ujYEbh2jbqw3ngD0Fc/K1OWZWKpMirDMFCr1UhPT4fBYJAB1OyCFJ4qFMP/ZFLBVvsBXbp0IU5OTj05jksXBKFHLeb6CkAHAJ8CwKVLl+7/TSxfvrziQCDHUbmCgQNp6mJxLl6kypagbpVu3bpxwcHB3ODBg5mJEycSJ6cauJk7dqSGvLI2igDtcRAbS3seeHiUyKTR6/XYu3cvefHFF4kl1bQIDQV++636awVgbW2NcePGMXFxccy3335bUgzP3p42f9+wAZgypdpjS5KEM2fOoLTMRmVERUUZACxXgrsKgGL4n1TGEEIqlZJUq9WYMGGCrb+/vw2A6jmhi8HzvMTz/Hme55cAcOE4LhqAkeO4P9LT023++uuvig2MoyOVXL5+/YH/3WCgFb79++Pu3bto3Lix2K1bN3To0AFt27atUKisSjiOBmgvXqz4mBUrgAEDqJxzJd2yyjRfr4i2bWnz9Rri4OBwv3vZ7dKuHWdnqs/0+uvV3vkHBweTEydOIC4uzqLj8/LycP78edlsNv/X4kkUnmoUw/9kclelUlmkxRMQEKBWqVTTBUGoZVNcgOf59JkzZ7bjed7KbDa/DABRUVFYsGABEhMTUa5g2tixdIc9fTr9+dQpanzVamRkZMDFxaXuRMa+/BI4fJg2QClOVhYNOPfuDYSFlXDtFIfjODRq1Eg+d+6cZSk9K1cCL7xQ4+VqNBrMnj0bWq0W69evx+rVq8WNGzeKCQkJtKagSRPqkgJohbIFmUa3b99GZGSk1KRJE6lcfaRy2Lt3byEh5Pva1HsoPF0ohv/J5K6mAlGz0jRr1gzu7u4sgCoa2lYPnucl0L+P3hzHfb127drcr776Cn/99VfZG8Abb1CDn5tLjXCRbLQoirLFzd4twcqK6gb9+WfJ1+fOBaKiaIevSoLGGRkZSEpKIoGBgVVX+ebkAKmpkCrrVlYFN27cwE8//SSfOXNGZFlWNpvNbGxsLLt27Vpgxw76VKJWA6tX00bzQ4bQz7ACDh8+jF9++QXdu3fHa6+9xlhbW1e5hmvXriE+Pj7XZDLNrvGFKDx1KJW7TxiCIHir1eob/fv3R5cuXSw65+TJk/KhQ4dOGAyGYACeABLqunJTEIQJAFYCgEajMfbq1Yvr3r07c7/FZGEhlWfw8QEmTgS6dcP27dtRUFAgjhkzpu52/f/8Q90+7dtTrf8vvqA9ce3tLerpe/z4cTk8PBxarZYEBQWVeX/16tViTk4OPGJjmSG//UaWTZ0KGxsbqVGjRqRr167E19fXoubzWVlZWL58Obp16yZ7eXkRvV6PiIgI2cHBAV5eXuT5558veYIo0hvBCy/QG2eRjPPWrVslKysrJjk5WUpPT2deeeWVe315q0SWZXz99dcFubm5r8yZM6dstxiFeotSufvk8abJZEJ0dLTFomNdunQhsbGx/gkJCbdNJpOLtbX1fgAD6nhdqxiGuStJ0o6CggL1gQMHkJeXJ/fr14+u0cYG6NoV+O476rLw8MCgffsQcecOm96kCRqePEkNWlYWzckfNoy6bZo0ob11b96kNw2zmX65udFU0dJPDK1a0bz8zZuBM2doENeSQG0R3bt3J87OztiyZQs8PDxKGNGTJ08iJSWF9ff3xzNjx4JZtgwzrayQmJjIXL58Wdq3bx927dpFgoKCqmxfqdPpYG9vL/ft25fcS73s3Lnzg9/nyy/T4PjgwfRnlgW+/54Wxo0cCaxfj29/+03KyMhgXFxcZGdnZ3nUqFEo3gynKpKSkmAwGDIUo69QGkWP/wlDp9P9CYDNzMwknTp1giWP84QQ+Pv7q7Kysri0tDTZaDS21ul0P2m12nK6jtSMokrbGJ1OdxfAYAC4desWKWEAtVraV8DfH3j+eXCXLiFDkuT47GypVUoKAy8vaqwjIqg/ftYsmi4pirS4yd6etjT84gvg+eeBzp2ppPOdOzT7pWFDYMYM4NIlYM0aavyfqb5eXcOGDREXFyfq9XqmVVGKaGpqKrZs2QI/Pz9cuXIFz/7xB6xv3wYTFARHR0e0atWKBAUFkcaNG2Pfvn3Iy8uDm5tbhb8fT09P6HQ6kpmZKZXboezkSSrJ0bhxydfbtgXi42G2t8eJs2fJ2IkT0bdvX+Lv789UNzB+8uRJ8datW2uCg4MPVOtEhacexdXzBCEIQm8Ah4u/NmfOHBALXBgAcOfOHfzyyy/JZrN5qyiKi3meT3gY61y4cOFOg8Ew1NbWVpw6dWpJN44kUZdLVBTQsycKCgrw9ddfIzQ0FG3atLHITVJiLEmiTwDp6bQQ684d4PPPaUwhLo6+Z8HNsTSxsbHYunUr1Gq15OzsTPR6PfH09JSHDx9OfvjhB7HniRPEb+hQprQMNUAF5iIiIqSMjAzy+uuvk127dslFaavw8/MDQH3rmzZtwltvvVW2ZuHedVWQix8XF4e7CxbAU6dDs4gIsNUpdivGf//739ysrKzneZ4/VqMBFJ5aFFfPk8VNlmU3iKJ4Xwry+PHjUlBQkEXWMjMzE4SQ1FmzZk16eEsEDAbDWAA5+fn5ZX33DEON/gsvAKmp0Gg06NevH3bs2CG7u7vL48aNYywtPgLD0C+Oe7AzbtEC+PBDajiNRsDFhergVFPArXXr1pg6dSoSExOZ6Oho6dSpU6Rp06YSANbHx4e9IElmv2HDyv3c27Rpg4YNGzLff/89fvrpJ7i7u8PW1lbatWsXk5GRgeDgYKSkpMDJyUlydXUtO8bBg7RGoJRURnZ2NtauXSvq9Xq21eDBotFkYr2uXgUrioCFfv175OXlITc3lwUV8lNQKIGy43/CEATBBUAqIeQ3WZZnqlSqk6GhoS5qtRpVpe9t3LgxLzY29gOe59c+gnWOBfArAEyaNAkNS/fVNZmoYcvNBZo0gdlsxvLly0VnZ2fy6quvMpZIDlTI9u10p//SS9Tt0749sGABzS6qSFK6ChISEiBJEpo3b44DmzfjudGjwej1ZWMMlXDz5k1s2LABnp6ecnJyMmnSpIk4evToshcqSUByMi0wu39J2+Xz58+TTp06iYMGDWLv3xxXraLSE9u2VevaoqOjsXv37qPTpk2roLWYQn1GSed8wuB5Po1hmGWyLL9qZWV1SBRFh82bN2P9+vVli4BKIdO7uOXlnLVjA4AVAPDdd9/h4MGDEAQBt+5JHKhUwNtv329iwnEc3n33XTY5ORmnTp2q3W7jxAn6VAFQoy/LwNatVAfHQuLi4nDt2jXk5ORAkiR4e3vD29sber0eBisr/O+bb8TqGH0AaNq0Kd566y3Y2NhIBoMB2dnZrFi65gCgFbuXLt3/8c8//8T58+fJSy+9hKFDh7IlnojeeYfGP3Q64Px5i9dy8+ZNk8Fg+KtaF6BQb1CCu08gISEhB3Q63RmO49qazeaWAMAwzP+Li4vr4OXlpapIbiA3N9fq1q1bGb179y5XzUwQBLVOp2O0Wm2lVcGWoNVqodVq9xQFo9+6Z/CTkpIKu3btSi3m8OG0gUlSEuDgAJZloVaryZEjR9C9e3dCCEFSUhKsrKwsEh27T9euQEgIzSQCaExhwgTqDunSBcjMBHr1KvfUGzdu4OeffxYvXLjAxMTEyJGRkUSn0yEqKgpHjhzB0aNH0SA8HC0lCe79+1sWXCmGlZUVDh06BE9PTzk7O1u6e/eu7Ovry5SI03z9NdXnDw4GQOUdLl26JCckJOCZZ54hZWI6TZtSd9aUKcBrr5Xb46A0Bw8ezM/Ly1us1Wqr0LhQqI8orp4nmKJeuGNlWV6nUql+NJlM4QA2MAyDWbNmlQn6pqamYvXq1Xkmk6kbz/NXBEHorlKpdjMMs/nzzz9/XxCEdQDG8TxfbYNWxTqtGIbZJEnSMACYNWvWA0Muyw/kCYYPhyRJWLJkidSlSxcmOztbvHz5MqvRaORRo0YRT09PyyacNo0azu++K/teWBj199+6RYPBRVk7er0eGzdulO7cucP07NlT6tmz5/1Yg8lkQkFBAYxGI1xcXKiUc0YGyPLl1f4sfv/9dzk7O1t+8803Gb1ej+XLl0uBgYHo06dPpU/XkiRh/vz5ePfdd8u6ze5x+zatUH7pJaCcGoR7iKKI+fPnmyRJcuZ5vhxtbYX6jmL4/wUIgqDheb6g6PsVACY2atQo7/nnn7dr3rx5iWPPnTsn7dmzx8AwzH6j0diGENLWzs5Or9frfzGZTEdAXTR+PM9fKjtTrdfZWqVS/ebh4eE7fvx4zX3jn5ZGg7CZmYCTE/755x9ERkaKHMfJo0aN4iIjI3H27FkMGDBA6ty5c9Xux7VrqeF/772Kjxk9mt50fv8dALBv3z7ExcXJr7/+OrG3t6+Dqy1LfHw8Nm/ejIkTJ8LZ2RkAlVj4+eefMXPmTHqjNpupb//mzQdPLADOnTuHsLAwecqUKWV3/MVxcKBB7fz8CuWic3Jy8N1332XPmDFD0d5XKBfFx/8v4J7RL/r+XQBccnLyxN9///3umjVr8otLOHfs2JGZNGmSTfv27YcD8JVlmUycONHGx8fndSsrq1cBgGGYxQ9pnbEmkykoOTk58ocffsi/L0fs4kK7WDVpAphM6NChA9577z32nXfe4ezt7TFw4EAMGzYMBw4cYCxqkBIYWHVzlI0bgY0bkTF7Nq537CifOXMGHTt2FC0y+l5eVNq5GhQUFGDbtm1S37595XtGHwAaN24MhmGQk1NUUiGK9ImlVCOazMxMODk5SRUa/UOHaO/fmBjaC6GStNjCwkKwLFtnNRwKTx+K4f8XwvO8yPP8BqPR2PTOnTvzV69eXZhWrKWfg4MDhg4dinHjxmHWrFnQaDQYNmyYtdlsfp5l2VyO4x5aXjfP8yaDwfB8RkbGrJUrVxZeuGdAu3enwUmWpQqepWjfvj00Go24f//+cqKhpdi8GVi3rurFEIJd2dlSTq9e8gfvvYdgV1fL8kg/+4zq/lhITk4Oli9fLjVv3hyldYDuBY/vV9wmJwOvvlpmjCZNmiApKYmtMPD96afAjz/SzB4fH1r1WwGFhYUghGRUeIBCvUcx/P9ieJ43zZo1a75er3/vxx9/LCzdMcvHx+e+r93GxgYTJ07kWrVqZSeKooXO9BqvS541a9bXJpOp5+7du29v375dbzQaqcEaO5Zq+JdDu3bt2PT09KonGDIEGDHCorXcbtSIabloEWP/v//RgHBV3LlDm6tb2BoyOTkZK1askNu0aSOPHDmSKS/uwjAMCgqKHtrmzqWSDKVo2bIlQkNDsWfPHpJbXKjtP/+hef+nTz9QQLW3p8Vr5dxAAdyby4IPUqG+ohj+p4DZs2evNRqNr65du7YwIaHiYl0XFxf07NmTsCw7fu7cuXWt5VMGnufPmkwm3+jo6IO7d++mIvjLlgG//ifOspEAACAASURBVFpWWhmAvb098vPzqw4837hBpaCrQJIkmM1m2o923DjqV09NBfr3p37y8vjpJ6qjYwERERFYs2YNAgMDpSFDhrDluWlatGiBxo0bS+vWrZONRiPdtd9LRS2G0WhEeHi46OTkVLIR/JUrtLlM8bHt7IBjx4CMspt6k8mEixcvQpblZIsuQqFeohj+p4Q5c+bsMJlMQzZs2JAfGRkpVeQr9/LywgsvvKCxtrb+/FGsi+f5XJPJNPbKlStiamoqdVV4etKvHTtKHOvu7o7s7GzGUMFO9j7nzlGtmypgGAYcxyHpXlN4a2uqIurgQOsMypNAnjmz8mYvAMxmM1atWiWePHkSY8aMQZ8+fco1+vcYN24cYzQa5cjISBmvvAJER99/78cffzTPmzcPCxcuBCGETJw4Efb29rT+gefpjWjChLKD5uTQNM+7JSX2MzMzER0dDb1eP7rSi1Co1yiG/ylizpw5h0wmU7cjR478tWzZssKTJ0/K5RUQeXh4wGQyBS1YsOAnQRDaPex18TyfLcvy3G3bthUUFhbS3evmzVSZstjutmnTpmjQoIEYFhZWuZ9/6lRg3rwq542MjITZbMbNmzeLT0I7hOXkAK6utCFKccaPB44cqXDMgoICrFu3DmazmZk0aRK8vb2rXAfDMBBFEZ6engR6/X03UnR0NFJTU7kpU6Zg9uzZeO+99xg1x9GnoT596FdF2NvTHX+pal43N7d731YdK1GotyiG/ymD5/nozz//fIBer+998ODBMwcOHCjj03B1dcUHH3yg7t69+ziO404IglAzFbBqIIri0oyMjJ9XrVpVkJWVRf3tp09Tw1XM7fLyyy+zZ86cYYsHq8uwZAlV6ayEixcvQqfTYeTIkejRo0fZ7biDA3D5MuDtTX3n954KOA6ooAnOpUuX8PXXX4NlWXHUqFHExsI4AEC18TUaDbBzJ1CUgvvXX3+JvXv3lu3s7B7UZISGAq+8Ql1TVUg/w9YWCAigMtfFCAgI0AOYbPHiFOodiuF/SuF5/rTRaAw9e/aslJdXtobH3t4effr04bp06WLFcVz1O35Xfz3S9OnTJ+Xl5c3+4YcfClNSUoBu3YBvvy1Rierm5obGjRvLJ06cqLi6OCCAVuhWQEFBAXbs2IHhw4ejffv2FS/Kx4c+cRw8SLNtRJF2w+rW7f4hZrMZhw8fxoEDB7Bz504MHz4cr732Gls8ZdMSbG1tZXHZsvtG/8KFC8jLy2PT0tLodeblUbfNokU0DmIJDEPjFaXcTLm5uUYAd8o/SUFBMfxPNTzP3wLw/3777bf8io4hhMBsNj+yQODMmTOXGQyG6fv27csDw9BA6ocfAi++eP+YFi1akPuaP+XRpg1txlIBaWlpUKvVaNfOAi8WITRe0KkTLayysaE3gSJOnz6N8PBwxMfHSy+//LJlY5aDJEnICA29H9fYvXu37OjoCLPZTK32G29QeYu2bak7ylKWLKExj2IN5HNzc2Uohl+hEhRZ5qcck8k0KzU1dVJ2djbK0/hJTEwsBBD/KNcky/IPiYmJ86Kjo+Hr60v96tnZ998PCAjA0aNHyYEDB6R+/fqVSZHE7t1ASkqFsgXp6emwtra+1zO4akQROHqU+vwzM4HffgPOnYPUvj3OpKXJQ156CZ27davVJslkMiF382assrZG1v79YBiGDBw4EM3NZgb79wPr11vUbL1cJk4Eli8Hhg4tuhyRALCgEk6hvqLs+J9yeJ6XOI6LuHbtWonXc3JysHXr1sLk5OR0AHsf8Zr0DMNM2bZtW254eLhZ7tyZBjIDAoCDB+Hg4IC3336bnDlzhixatAhRUVEl3T7Dh9N6gHLQ6/XYt2+f3KFDB8usqCjSXsFLl9IK4zVraIHVtGlAy5YYtHMncf/kE7pT37+fSkXUgEGDBrFt/vwTQxs0wIsvvgiDwYC7d+9KWLWKdi2zsqpRQxkAVJeoyOgDgLW1tQzA8n6UCvUORZ2zHnDo0CEbQshzfn5+agDIyMjAihUr9Onp6d+ZTKZRxSUhHhW9e/c+Gx4e/tOdO3cGZWdnO7Rq3ZojhYXUZ21rC41Ggy5dupDDhw8jISGB/PPPP9KpU6dkSZLQKCaGsHFxVLqhFFFRUcjLy5NHjhxZudyn2UwN7urVNFA8bBiNNRw9Snf9gweD+Ppip729VNiundzC25vBgQO0LWRGBu0d7OxcYSC4NC4uLrCbPBl2Wi0cHR3hcPQoTKtXk8zPPpPdP/7/7J13WFTX1sbffc40OggISFFEpQiKqIAFwULssZPYE5NYU9R8iUZjxpOqubkxRm+KehNbjCUqVsSGFBVFQaUoioJIEZUidZiZc/b3xwYEAUvaNcn8nmcemTl1n3HW3nvttd41/7eL5vn6soSuwECkpaVpi4uLI0NCQi4//kAD/0QMrp5/BgevX7/+dUZGBgoKCmhMTIyGUvr2okWLvv1f3pRarS4QBKFXcnJyUosWLVr3fPttHpcusRF4fDwkSQLHcRg/fjzKysq4iooKxMfHi9p9+3hvCwva4vXXGxnMoqIi2NjYPNrNc+kSM9zx8ayAi6srG+lXVjLZ43r+ckopym1tWY3goCBWYGbfPpaElZnJ/vXzY7UHLCwaLbTWcf0661xSUsBxHDq5uSEtMpLeysmROnfu/Buq0tTwySd1rq8bN26YA/ABsOs3n9fA3xKDq+cfgFqtvi1J0tQdO3bkxMbG/qLVagP/10a/FrVaXarVakOOHDnCL1u2jFI3N6BnT4AQHDlyRK9QKKi5uTl8fX3Rq1cvzJ07l9e98Qb29e7dZNRPWVkZLCwseIDJEzdAr2eF3t98k43at26ti7IBxwH9+zPjuWEDq5IFYOTIkdzly5f5uiQwuZwtRH/6KUusevttduzMmUwtdNcuVjRFeuj2VCrmolqzBggOxvrKSml3aCgJCgr67UYfYKUuf/kFuqNHaz/5zTUXDPx9McgyG3gmEAShC8/zkZ6enmYjRoxQcStXIj48HPcXLcLgeto+er0eCSNGSC3Ky4njgQPExMSkQV2C77//XuzUqRNva2uLLVu2wMLCQgoICKCBKhWPBQuY797dnSlw1nLzJptlpKSwEbufH5NW8PMDABw+fJieP3+eTJw4ES7NRdxQyvICiorYsTExwL/+BVhaMpeUKDJXUkEBEBWFtB49cOjQIVGj0fDe3t5i9+7d+bKyMlpaWgp3d3diZmb29A9x4kTES5LumLd3yuLFi/2e/gQG/ikYDL+BZwZBEIwVCkW4t7d30PCqKlVRcjK+USqxcOFC1BZNOX36NHK+/x6OMhk91ro1sba2ll555RVOqVQCAL7++mt93759ZTKZDAcOHJDsLCw46/Bw9BkxAqZGRmxR+GF3zPLlzIXz/vvs/c2bbGRfrzBMbGwsYmNjMWnSJLi4uIBSikuXLiEnJ0dycnLiOnXq1LAwTnExEBUFnDvHEq0++YQlqun1DS5969YtHD9+XMrLy+O09RLZpkyZgodrLTwOSik+XLoUcp0uedGnn3Z6qoMN/KMwuHoMPDOo1epKrVY78cKFC1y0nR3iAwPFkVu3oujkybp95HI5SoyMUGFjQ+fNm4eqqip6tZ5gm06nIyYmJqiuroZUXs51+/JL2Ofl4ZusLCR5e1MK4NKlS6hvZEEp89HXEhMDvPFGzSY2MAoKCkKXLl2wd+9eWlBQgIiICPHQoUO0pKSEO3TokHT06NGGfiUrqwcuofnzmRw10KDWLsDkmKdOncotWLAAAwYMwNixY+Hr64vdu3dT/UOdRFPcuXMH9RVNJ23ejJd/+MHksQca+EdjiOox8EwREhJSeeLEiXY5OTm+PM8jID+fWPfvDzg6AmBCbl1SU9Huzh2iGDUKFRUVXFRUFHJzc8XDhw8TrVbLBXbtirabNsFj0yZsGzUKqT4+sLS3F21tbTlJkrBt2zZcuHCBuri4EPO8POaXrz8TcHCAdOoUNhQVSYcOHSI9evQAx3Fwc3NDUlKSGB8fT+7du4fXXnuN8/f3x82bN1FSUkJ9fX2bHkilp7MkqxdeYJIN4eFMmrpeMXdCCFxcXNCyZUt4eHjgzJkzUlJSEnQ6HYyNjYmRkREyMzNx7NgxMTw8nIuPj5cSExPpyZMnyblz51BdXQ1XV1dcdXaW9rZuvbV3SMifGqJr4K+FIarHwLPIfAAvhIWFqYxfeolJGbzyCvDf/4LjOKZnXyNDERoaWmuQeb1eD9uMDFx6/30qy84m58eMQZWJCVq0aCFWVFQQZ2dnqFQq8DwPZ2dnsm7dOkz18EDr4OA6N01lZSVSsrJQUVFBucuXoTU2xpdffomXXnoJLVu2xMyZM2t/M3V+nby8PDpmzJjmF2nPnGGLwCtWME2gFi2YQmfHjix+vwlmzpzJnz59GhcvXhSjo6N5SilkMhlt1aoVr9frodPpOG9vbzg5OVErKyuyc+dOeubMGeLg4AC/s2dfBCGloPS93+XbMPC3w+DqMfDMoVari+RyeWpdJI1Wy3Tpa+WaExKAiIi6/du2bYsxgwfDtqBAGn7gAGydnUnnX37BvM8/BwC4urryWq2Ws7e3R1xcnGhmZib2798fVpaWVD5/PjR+D9ZBt2/fLp48eVJy02rJRGNjTq1Ww8bGRv/999/j/PnzTd6vTCajzZaMpJQVTWnXjq0h7NgBDBrE1EHbtmUhpU2gUqnQt29fzJ49m1+4cCFeeuklvPPOO6S2qlqHDh2kpKQk2NraEicnJ7z11lvkueeeQ25uLleqUrWoViialekwYMAw4jfwrKKU17pCXFyAkyeBw4dZhayCgoaFWM6fh3bRItiYmHBmKSmws7Gp29SyZUvY2NhALpcjJiYGly9f5mbPnk0sLCzQQacjMlNTGPn6AgDKy8uRk5PDz507F6ajRtUtxE6bNk32xRdfSElJSaRVq1bEwcGh4Y0qlShrStsfYCP80lKmwePoyBQ3p01jiWCrVjF10MhIIDS02Tq6HMfBscbVVfu+W7duXGZm5oOSjgC6d+8OOzs7rF+/HndtbbfOJMQXlF54wudt4B+EYcRv4JmEUmqiqKfaCQA4e5YtvE6fDixbBlRUsFq05eW4M2wYLnXtipKHKmvNmjULfn5+sLCw0F+5ckUcPXo0MTIyQmJiIvirV6WLEyeKIASiKGLnzp1Sy5YtRVNTU8DamoVh1swywsLCOFNTU7J+/XrExsbS2sXh0tJSlJaW1kUVNWL3bqYBRAjT0JfLgd69gdWrgXv3WMTPG2+w3IEnJDs7G+Hh4VJwcDCtb/gJIXX1ATqmpFwD8ASFiQ38EzGM+A08q1y/cuWKs4ODw4P/o7XhlsOGsSgZd3c2KvfxgVNwMAKOHsWGDRswYcKEBgVSFApFnW/+2rVr+OKLL2BibEwHpqQQ52nTOIBp49+7d4+88cYbzFd/7Ro7f41Bd3Z2Rrt27ejVq1fJ+fPnpdOnT/P9+/dHVFSU5OXlBW9v78Ypu5SyovC76iXQHjzI8gU6d2YJZE5OQGIi23f8eOCDDwBPz2YfiiRJ+PHHHwGACwwMbHIfW1tbHO/fH8dDQ19VP8GDNvDPw2D4DTyTaDSaKadPn77s6upq0aZNmwcbKGUhkXfuMJmFem6dAQMGwMjICD/99BPCwsLQrl27BudMTk7GgQMHaL9+/RDYoQNBTg4QEACAjaJ9fHw4uVzOYu47d2bupRq2bNki3rp1ixs/fjzat2/Pnzt3DgcPHoQkSVxqairy8vKkF154gbO0tHwQz3/pEiusUs9Ng8JCttB75gxT1Lx3j8lHODoyyYdz54A2bZot9s5xHJRKJa2uriZ6vR4833hNeeTIkVi7di08U1LOUELOE0q7Pd3TN/B3xxDOaeBPRRCEPjExMZNOnDiRGhISUtXcfiEhIeVRUVFpN2/eHB4QEPDA50MIk0e4fx/Yv5/p39TDxcUFt2/fRmZmpti5c+cGrsydO3dKRkZG3IgRIwj57DNW/atG38bExIQ7evQo4o8dg8f336Ng+HBQW1vwPI/IyEgxPT2dmzdvHrGzswMAWFpa4uTJkxg3bhz8/Pxw+/ZteuTIERITE4Pz589TW1tb0iIhgcXzd6qXS2Vtzf7t2JEliG3ezOrqjhvHFDa9vdlMQyZrUoSutLQUiYmJ0Ol0xMfHByYmjUP2VSoVYmNjUWlkhDJLS6OfMjK+DgkJeXxSgIF/DIYRv4E/FZVKtVySpABCiC+AcY/al1K6v7y8XHPjxg3Ttm3b1j8J8/HHxDBRte+/byBpnJ+fLwYGBjYaCrdq1YrT6/UiAXjs2cP87zV4eHjAOz2ddtBqyalvv8XV9HRRm5zM6XQ6Ym5ujhkzZhBVvWsoFArI5XKYmJigdevWaNOmDQewcNDExESyfetWTEpPp87vvUdAKfbu3SumpaXxpqamdIxSSRwWLwZZsQJYuJDVH758mRl9ngfduRNn4uPFqsWLSd+FCznUk2/Yt28fraysJLXhpU0hl8thZWVVXgxsvejt/Wr3+PgyQRDs1Wr1I+pZGvgtCIKgAqAAUAngUwBBALYASARwXq1Wa+rtawnADEAfmUzWS6/X/6hWqxP+zPs1jPgN/KnExsZKWq12JCFEERUVxUdHR6eGhIQ0qgsMACEhITQ6OvpaamrqoMzMTL2FhYXC0tKSbeR5Fu2TmspCJIcOBQhBUlISLl68yAUHB8Pc3BwAkJCQgHPnzuHy5cu0e/fucCgqInBza1TTtuVXX5ELKhXsBw3CuHHjuKCgIBIUFIQePXpwxg/JL+/evRscx0l9+/Yl9aUa5HI5XFxc0F6SgJUryY92djQ7OxsZGRlk0qRJhOd5khATQ9ts3UouBQVRm5YtSWppqcSNHEmohwd4Nzd8vWMHvVZWRnqvX8+ZpKSAr1edrLS0lOTk5KB169bUzs6uWTlnMzMzRUZGhoVrevr24JgY/6RevdoG9emz4+m+LQOPQxCEjmfOnImUJGkFx3HvUkqXAugFwKlTp059CwoKpgN4Pzo6eml0dPSS6OhoEcBhAPMAjJYkqbtcLp94/PjxwyEhIXl/1n0btHoM/KkIgkAALALwcc1Hw9Rq9YHHHGMKYJGNjc0bc+bMMW2wUZLYyH/FCmDjRuhNTLBjxw4pMzOTCwkJoT169CDfffcd7ty5g+eee07q0aMHh6++YjOEmTPZOVJSAEGAuGkTPl+xAo8UY6th7969KC8vFydMmNB04tZ770Hy8sIpV1dkZmZi0KBBsLW1rbllCZe2bUNSWpqYp1LxlFJ45+RQnV5Pcl1cQM3MxHnz5vGrVq4Ue3buzHfdtYsplr74IgDW6ej1enHcuHHNJo1RSrF///6qxMREIwDgCfnX+x988O4jG2XgkQiCYAbArfZlZGTUX6/XBw0cOFDl4+NDFAoFatddagcDGo0Gx48fR0JC0wP6ESNGiIQQ/sCBA4Ucx32xcOHCZX9GWwyuHgN/Kmq1mgqCsAxAFIB7arX66hMcU/7ZZ5+18vLyalz1hOOAPn2YLv6XX0L2zjsYP348d/36dWzdupW0adMGlpaW1M7OTurRowcPSWJ6+0OHAgBycnKgX7sW1WVldM/XXxMjIyPRxcXlsVLJHTp0QHh4eNP71VyDCw1Fb3t79O7d+6Fb5uCbng7f4mI+8+23sWnTJgz/z39I9ty5GJiUBNNffuEBwN3Tk0+4ckVqbWnJWSQmQj58OIq1Wly+fBmUUr62XkFTEEIwbNgwo8TERFgWFuLNVavegFq9GJQaSjI+BkEQOgLoQghpr1QqfQgh7jqdzpnneZWZmVlVixYt0LJlS2MHBweZq6sr6iup1ooJ1qJSqTBkyBAMGTIEO3fuBMdx4pAhQ/jS0lIYGRnB1NSUp5RCq9VaR0VFTQRgMPwG/p6o1WoRwKmnOUav1+dID2vc18JxwHvvAQcOQDt+PBJefhlphYVUoVAQa2trZGVlQZIk/vTp02hXWAibEydA3nsPVKOBZtAgRI0YIVm/9ho3xN0d3t7ejzT6kiQhOjoaZ86coV26dJEANN4/JYVV5rK3b749kyYhZd06VOTlgeM4JCUloduyZcCcOUza2dYWPXv2xPnz57nvlUq4tG9PRw4aRCoAGI0eLZaWlvK3b9/GyZMnpeeff77JPIIa/R+azZbEgwxGv3kEQbACMEypVC4wMjJydXFxEW1tbU2sra05KysrtGjRAqampiCEyB97skdACIFSqayb/dV+5uLiAkmSLARBIGq1+g93wxgMv4G/BDzPmyuVyuYTDgkBhg7FhQ0bULl9O203fDjtMm4cUSqV8PX1xf3793H27Fk9v2OH7Ky9Pap37RK9y8t5aLV4+YMPOFlzCVgPsW7dOn1FRQU/YsQI4uHh0XQnUSvR8Agi09Nhd/IkCquqpPY9e1JPT08eJibAunW43749dg4ZQgvbtKFarZbr06cPMjIy6Jb+/SXH0lIyuEULPlWnE9euXcsD4G7fvk1fffVVYtRECOj48ePJihUrNBumTNFPJWQXgDEw+HfrEATBUqFQfMbz/MsuLi46f39/0w4dOjQ7k/otPOqxW1paQi6X2+r1ejWApb/7xR/CYPgNPPN8+OGHfWUy2UvOzs51n127dg0nTpyQfHx8HiQyEYKMUaPgdfEifA8c4NCrF2BpicGDBzOHq14vg06HzP79oV+wgE9xdpaSJ03iXisqwsMyDE2RmJiIwsJC2ezZs2Fh0Uwtc0qZHMPB5sUxNRoNLly4gBkeHuimVHJ44YUHG2UyRHfqhC5ZWUQ5Zw5xd3cHz/Po27fvA0v07rvwiIzkB0RH4/qNG9i3bx9JSUlB9+7dG11LpVKhZ8+e8tOUfgDACoANgLuPbew/AEEQestksgNeXl6K0NBQpbGx8ZP1/r8SvV4PubzpCYMoiuA4joqi+KdIbBgMv4FnGkEQXGQy2Z4XXnjBTKVSYfXq1aJOp4NGo+F9fX1JVFQUzp8/L/bv35/38PBAWVmZWNCvH0FmJsHZsyyzt3b0ffYscPUqXF95BaiqQvuPPuJG2Ns/0eiuoKAAhw4dwpgxYxobfUqBsjJWfGXDBhaDL5czVdHz5yENHozN//qXvkSn4xQ2NpRSypuamko2q1dzOHOGrQnU3ENRUREudeuGAd7eMP72W6bn8zCffw6o1bD4739hduoULHv0oD4+Ps1G+AQGBvKnTp0aJCxd6qdeurTpzLB/JrF2dnYY8VAuyB+BRqNBZmYmHTt2bJOzxEuXLqGqqioOwN4//GZgMPwGnmEEQfDmef5wUFCQsaOjI77++mvJy8uLtGnThnNzc4ORkRHx9/fHpUuX+N27d2Pw4MG4c+cOP3HiRGDgQGDTJiaBoFazpKiSEqa988UXQGwsgCcTq5LKyrB71SppgL093BMTOSQlsfMkJTGl0I4dAVNT5puPjGSdTVER8/UvWoSjcjme++YbmcrHB+mLF8O/d29c3bePYNUqtjYxZQrw+ecoVyqxdu1a6h8QIBkHBvL45BPmNmrfvtE9Zd29i5MpKbTT5cuk44svUhXHEQBIS0uDVquFm5tb3aKjUqlE7969FSdjYz8DMAiE9AKlib/bF/UXRBCEAQCr7/BnsHPnTsnR0ZG2b9++keEXRRGJiYnlOp3uP2q1+k+plWww/AaeWTiOe0EURYeoqCgaExMDV1dXDB06lKsfN29tbY2+ffvCysqKHjx4kMjl8geKlZMnM4McH88E3d56C/DxYaGRtVRXs5F6cTFLoiotZSP40lLmrtFoUO3tDe+LF7kuLi5Ahw4sE7dlS1ao/c03mdyCUsnkGGpDRVUqwMsLmuefx/kVK2j7EyeIvasrAigFbt6Eu0JBsHo14ODA6vEOHYr7LVuinZcXDe3alYe5OYtUWryYFXWvt2aQnJyMXbt2oUPfvrBeuhQdvvuOgyCgOiYGO3fuBM/ztE+fPqR+NFHXrl356OjowTmOjtZOOTn/eMlmmUw2Ua/XN1A9fWK6dQNyc5lS7BOQn5+PrKwsbtasWY221YTdVpeWliYA2P/0N/PrMBh+A88sS5YsWSIIwlIAZhzHZQcGBpqRh+vl1uDr60vatm2L7OzshhtGjQJ++YVV2MrJYWqeN28yg7ppE/sRd+rEau7m5QF9+zJjbG7O/m7bFkYmJri8bp2Yb2mJR8XOY+RIJr3w5pt1H92/fx+SJJGcnBzR1dWVByHMBbR0KfB//8c6DCMjXCQEaatWUYv8fI5Mn84M/eTJrIOZPx/Y+8ADULse0bVrV9KqVSskDhtG0zMzSaFaDU+dTrzv60uSk5Nha2tL3N3dAQDGxsawtrbWb5g1a/5iQoYBmANKz/2a7+XvgFwu76LX69FIAfZxZGcDa9YwragnICEhAceOHaOBgYG0RYsWDSaYlFLExMSIaWlpuVqtdgQAK0EQTNRq9c2nu6mnx2D4DTyT1CR69QbgwfO8DwB5/XjppjA3N4e3t3fjDWPHAt9+y0b0lpaAszMQHMzkkFu2bFYHvz5GRkakfm3bRlDKEqxefrnBx3Z2dpg8eTI2btzI9+7ZE+TsWXbdjRsBLy/kHjqErKVL6cnQUNLrlVfQtWtXlmeQmckMvlzOavd+9BGwZAkAYPfu3aKnpyc6dOjAnzp1Sjpx4gTHe3vD5cIFPH/0KK9fsgRH4+Oxfft2vPPOO6iVmpg4caLJ2rVrF6Z7eJxwv3Kl6LGN/huj1+tdTUxM8MsvvyA8PBxz5szB3bt30b4Jt1od4eEs3Pb6deY6DAlhs0Ljxukld+/exbZt28TKykp+2LBhpGPHjg1GLFVVVdi2bVtlfn5+plar/TchpIhSKiOEbAQw9XdubiMMht/AM4cgCLxSqYxVKpU+rVu35lq0aGHk6+tL6uQafg2+vuxHO2oUM7yff97kD7YpkpOTcf36dS6gRsmzSV54Afj44ybP6eLiAiO9HpWffAKTixeZKHvcQwAAIABJREFU6mdN+OiV8+fhf+kSCTx0CDzPM+OgUjFxt8OHmSTF/v1sneLIEeDYMVRVVsLS0pL77rvvpOLiYtK3b18cPnwYt7p0ofjuO3JCEPRuR47Irrz4YoOFa3Nzc0ybNs14nSSFdD90aE4IIV+A0ifzV/zN4DiuYsKECeaUUuzYsYOuXLmSAMBrr72GVq1aNT6gpITVUdi794EulI0NcxHW+871ej327NlDr1y5Qrp06YL+/fvj4RwLSil27dpVmZeXt12n082Ry+U3/Pz8ZGfPntVSSuf8ca1+gMHwG3gWkWm1Wv8pU6bwTf4Inxa9HujXj2XrlpYCcXHs32YMf15eHnbu3ClqNBpCKYVOp+NsbW1x5swZ2NraomvXrsjOzsb+/fvF6upqjH/uOd7+6lWmrd8UGRnwu3RJytRoiPf+/aT+DOO2szPOfP21NICQpqcd7u5s1J+QAERFAatXY/ayZfynM2agbfv28Pb2JtHR0bRLly70+eef5wDgpqUlCWjZEi+NHQtFRQWoXF4nIWBlZYWXX37ZmH7xxdyUjh3NvYHXfsuj/avCcdzd6upqB1dXV8ydO5dUVlbi7Nmz0pYtWzB37lyuQQZuVRVTcf3kEzb7quWXX4Djx9n/r9atcfHiRURGRkoWFhZ49dVXiZ2dXZNuwaSkJJqdnZ2n0+lmAnDU6XR2ycnJlQDGqtXq8j+25QyDSJuBZ46QkBAxOjr6xrVr1wb5+/vLf3MyzenTzJ8+cyYbac+cCSgUTOStXz/AwQEFBQU4ceIEjh07Jp4+fZrz9fVF3759OV9fXxIcHIwePXrg5s2bNDU1ldy8eRPx8fFSmzZtOIVCQap376Ztdu4k9RVC60hKAj77DGZ+fmSDvT0puHNH8vLyIoQQrF+/Xn8zO5sbs2gRKfL1hVlTbgZBAH78Edizh1XyOnEC3H/+g+Bx49Bp0CBySaORbpmYcGFhYXUJXCeTkqh8wgTiXlxMKvv0wbd37iC/slJ0cHDgVCoVjI2NUT5lCtkmip5RUVGXgoODHyub8XcjJibmw549e5rUiu/ViOuRtLQ0euXKFdq5c2fWU1LKaj5bWwNhYSxRsD7jx6OyuBjrrl4VU1JSuIEDB5KhQ4eS+pXR6lNSUoKff/5Zo9Pp+qvV6vzo6Oj7AD4QRfHNDz74YOsf2eb6GAy/gWeS4ODgSzExMa+0adPGqtlkqSdFqWSFVepLO/M8YGGBiw4OiFyxQjyRlsYplUrR09OTHzx4MDp27EjMzc1hZmYGhUIBQggcHR1JSUmJaGZmRs3NzTFs2DDOJjGROH31FTH6v/9Dxo0buH//PszMzMARAvz0E3PTzJwJ47AwVFZW4tKlSyQ3N1fy8vIihw8fJlOmTCHV+fl0X04OOZ6cLFVWVhI3Nzd2j1otcOMGi0aytGSuhXfeYdFEvXsDgYHQuLuTdhs2UNW338Js1iwCAFZWVtzhw4cRk51N7rZsSUfMnUsqfvwR29PTiaOjY538gP+778rNr18fuy4nJzIkJCT3tz3kvw6CIHCSJH06YMAArn4hG0II2rdvT44dO0ZMTEzYIvqiRcDXXwP/+lcjoy9JEva3bIm9xcXo4OREx0+Zwjk7O6O5AAQAiIuL0+fm5n6/ZMmSjQBToA0JCRGCg4PP/0HNbRKDq8fAM4skSccyMzNdnZ2dm/8lPQnffNNIghkA7o4YgfDVq7H42295umUL5MOHP1Knx9bWtmFUD6XgevfG1qlTUbVypajT6XiO40DLytC3tFTqdvcud2PGDLT180NleTmSk5Npv379SExMDPftt99Ktra2cHR0JNycOWR8UREy7ey4iIgIGhoaSqSqKpT7+eHAsGFiiShi/PjxvKWzM6s6lpTEFhiDgtAJwC+JibQyPx+t8vMJQkPhHh6OhQsXkj179sB5yBDSkuNgFRnJpY8e3UBQTLlsGcx5Xi6PiTkgCILnP0ivn+c4TqfRaPiHM2nNzc0xatQo7N69m7q5uhKLrl1ZcMBDXL58Gfv375eMjY3xekEBZ/7zzzzCwh574bt371bpdLo/VXu/KQzF1g08s2i12pVxcXFVj4ymeRIOHqwrml4fuVwOTibD8jffxK7KSune1KmQUlKe/LybNqFVWBjGvPMOBg8ezL/99tt4d8wYTL9zBxUpKdznnp7YGR+P5cuX0//85z+0ffv2Uu/evdG6dWuprKyMmzBhAsdxHHD4MCx27ECtq+bu3buI3bgRN83M4DZ2LK/RaLjExJp8q9GjWXtGjQLApCuuiiLX+cMPOVhbs8iili2B2bMxIjUVfn5+KLe3x1czZ9IeoaHUbtw44G6NYkNwMNxv3sSQ8nJLpVK5WxCEx6qS/k3geJ6/V1BQ0ORGDw8P+NnaSmjfHlJwMNC1a9220tJSrF27VgwPD0dISAiZNWsWZ/7hh8DOnU904atXr5oB+Oj3aMRvweDqMfDMEhIScjc6Orrsxo0bffz8/BS/ytev1bLyjL6+jabqKpUKJiYm0AFUkiRis3kzKXJ1hXWXLo19uU1RVAT06AHTbt1ga2sLPioKOH0aKmdnkHnzENirF0JDQ+Hm5kasra1J3759OY7jkJqaSouKioi/vz+L+HB1BXx90cLDA/fv36fXV6+mDhERxOTnn+HTqROioqJIdnY2Tp8+Tc+dOye5LVzImZw6BbRpgy1xcWKXLl04T09P5r7q04e5tu7dY+4hhQKVU6cizc0Nw196iclYdO7MfNcmJsD69WipUnGX7eysy8vL80JCQv4UrZj/FYIgOCmVyqi2bds6BQUFyZtzy7RWKLiLqan0gr093N3diSRJiIyMxJ49e+Dk5EQnTZrEtWnThhXhUamYZMdzzwHTpjUbHpydnY0LFy4AgGVISIjwx7Xy8RgMv4FnmqioqARRFPtrNBpHNze3px+RRkQAr776oOjKQ7Rq1QqdO3cmqampSOjQgfSeOBFGgYEsoetR4Zvbt7PMzYkTmRH9+Wcm1xAaCjJ6NCytrGBsbAxCCMzMzODo6FgXWhkREUEnTpxI6konajTAK6+AvPwyWrduTYyXLYOiXz+0CwsjhBBYWlpSNzc39OnTh+j1ehyMikLQ2LEEgwYhs1Mn7nJhIVq1agVJklBXKczXlxn4igrg6FHE2NuToP37mdvC2ZklrXXpAsyaBdK3L4x0OsWN3NwWvXv3/vGpn/FfiNOnT1/q2bOn25AhQ5TN+uInTgRvYQHF/PkkMjKSSJKEXbt2ScXFxQgLCyM9e/bkGiV+mZkBZ84AgwaxKKx6SJKE7OxsbNq0SUsp5QGMDAkJSf9jWvhkGFw9Bp5p1Go1ra6ufvHcuXOFe/bs0VQ34bJ5JM7OwNtvP3Y3W1tbolQqqaWlJavnO2ECkJwMVFY2fcCOHSwktLKSLQDeucN0d4KCHnmdyspKaDQaroFUgKUlcOUKoNNBtXIl2v30E2m/fHldSUcfHx/i5+dHbG1tUVFRQSRJIv++eFG66u4O5/h4mJuaYtOmTVi9ejUuXrzY4Hr3TE3xXb9+tE27diKKiljWcE4Oyzvo0oWJwE2YAI/XX4dOp/OvqTL1t0QQBDNRFFsFBQXJmjX6ej2b7fn7w87ODgEBATQ2NhaBgYHk9ddfJ61bt276OJmMRV9t3MhmgvVITU3F+vXrIUnSXQDLCSEv/r4te3oMht/AM49arb6r0+k80tLSDuzYseOxOjMlJSXYsmULMjIymCJnQABKS0vRbCEXAP369UN5eTnS0tJQHBjIImhefpkZ84dJSWGZwGPGsEQwU1Omp1NPNro5VCoVeJ5HZf0ORalkujznzzPDUVOk4/jx49i4caNYu9uVK1eQkpJCOnbsSIcNG8alqtWif0YGZp09iwULFiAkJATh4eFISkqqO3VCQgLu379PevbqxePHH5nBz8kBLl5kxurzz4FOncCdPAlHR8dqAIMe24i/Ll6WlpZVzboMDx8GXnkF2Ly5ThvJ3NyctGjRQurVqxepHwHUgNqQz88/B959lz3betTmolBKHQEsoJQaDL8BA0+CWq0u1Wq1r2ZlZclKS0sfue+mTZvEqqoqumPHDpQsWoRf1qwRV65ciVWrVol6vb7JYziOg6Wlpbh//366adMmVjHjzBlWy/fLL5muD8B+5OPH10kjo2tXNuJvoghKU+j1eshkMpqb+1D05GuvAVu2AMeOQZLLcX7zZpyKikLlqVN87LJlQFUVvGJj4VBcTO8eOULEBQukYcHBvDwwENi+Haq8PAQHB8PU1BQHDx7E8ePHIUkSBg8eDFtbW/HGjRsPCoGMGAGcOMHWBGxsAE9PwM0NY1asMFcqlROfqCF/Tbzt7e2bdxdevgy0adPgI0pp0+GZGg2bESYmMrfaDz8wAb8tW5gcSD2sra0xul7iF8dxS35TK34HDIbfwF8GtVpdQgj5ZMOGDZXXr19HSUlJ3bbS0lIkJiZizZo1UmlpKR8cHEzmzZ2L1K+/lqyee4689dZbMDMzI//973+btvwAZs2aJevevTupM5A8zxbqCgvZi1L2GjQIsLNjawfDhzdcCNZqWRo/AOzaxdYBbtwA5s5FaUkJzg4aREPj4mBnYQG4uQHR0cxoHDvG3C5+frgVFES9pk/HNBMTjMvMhNMPP1BtaSmweTPsCgtpf19f4MYNknDypITu3Zl7afBgQKfD1KlT0bt3b8TGxmLdunUSAHTv3p0/c+YM/emnn6TTp0/j/v37TBH0xg2WjZqWBpSUwCw5GWFr1gz7bNGiFiDE/A/4Cv+nyGSy3g4ODiaNNkgS+y7HjGEJc/VoYPirqths4No1YMAANiNs3559fzNmMJG+YcOaXNy9efOm5sHlpD8tUas5DHH8Bv5S6PX6j0tKSm5v3rx5DQBMmDABhw8fFouLi3mFQgFfX1+8+OKLMDc3BzZsQK+tWzlERAAAgoODufDwcGbVJYm9SkqQdeMGYk6flqpv3CCVRkZkVI8eBIcPs8XRmBigVy/mfvH3B86dYyPkiAim+Pnaa2ykN3QoGzG+/DKT7L1wAZg3j80YXFyACxeQeOYMtFZW6D10KIG9PVMI9fZmCqE//8xcPl26QHvpEinRammrL78k1MYGd8zNybXYWHRcsAB3zp+XNL16ceaDB5M9mzaB79ePBrz1FqH29ij4979x3sdHunjxImdiYiIFBARwANC9e3e4u7qSjV99RQq3bsW9khJqMW8ewTffsAXsiROB558HWbMGeT4++m67dmVJgIojRAmgDYCsv3K5RkEQZAqF4isjI6Owjh07Nt4hI4PlRtjYNNpEKUXHEyeYKme/fsyP37YtcwvVLqTXC/dsjvT09PrP7zfV7f09IH/h79PAPxhBEOwAjOF5/lNRFC18fX3h4eEBZ2fnB5EtO3YwhcvWrYE33sD9f/8bGZaWtCvPE5qVBbJyJej06cgVRRSFhdH2qamkNCAALfPyQAoLH2RtOjmxTNmICJaNa23NRn3ffMPCJ11dmZianx+bJTThGkhLS0N4eDjGjx8PV1fXphtFKRAQgIIOHfBDx45oXVoqdtbp+Pzycol3d+f6JifjSloatXBzIw6mpsgbPBgnd+yA/aBBSC8slF744ANuZ1gY/OfPh5enJ5tNxMUB3t7IevddWuLgQMpcXanvoEHEbMgQJj1dS24uW7f4+GPcDwlBbmGhZsfYsSbqpUsvAwgHsARAZ1D6P08+ehoEQXBQKpXb7ezs/F588UXjRnWJf/mFhbUOGvTge9NomJ/+gw+QNmQINBER1G/QIIK5c3/1feTm5mLv3r3SvXv3PlqyZMnSX9+i3weD4Tfwl0YQBAWAF1Uq1Wi9Xu/bqVMnl8GDBxOZTMYMaUICM3BOTkg4dgznrl0TvTp35mNPn0a7Dh1w48YNuLi4iBMnTuQflWpfhyiyKf+uXUB5OTB79mMPuXXrFjZt2oTnn3++adnokhI2irx3DygsRNTGjbh//77k3rYtZ7x8OX6eOhWUUgQEBCApKUkc6e/Pu5WUAO3aoXzePFSlpiJr2DB03boVpKwMZPJkwMODaRR17QpMm4Zv1q8XB4wbx3fo0KHpmzx5ks1Wrl4FpRQ//vBDRbvNm2Xd4uOPGGs0owH0B/ATWM3egQDOgdJnNtNXEAQVIWQqz/NfBAYGKvv27dtY84lSNtt66y0W4dS6NRAayjrvDRuAU6dw2tERyTduiNOnT//NyW2rV68uLSwsHKJWq0/+1nP9VgyuHgN/adRqtRbARgAbBUHwTEtL25CcnNzJy8uLBgQEqBz8/QEAWq0WpaamKNZq+fjERPQPDcXp06dpQEAA7d+//5P/qHmeRfGUlLBRvygyn+4jOo19+/ZJnTt3Jt7e3k3vxPPM7cNxKJHLkaLTSVPXrePM/+//gLIyLFiwABkZGYiIiKA6nY5XOjqyNQdLS5j26wfTjAzYzp3LJIMrK4H795n09IIFdZfQm5lRrVbbfLt69GDuKTDNmpenTTM5U1amSwT43idOAEAWAJsap/enADaBkE0AxoHSb5/4+f3BCIJgw3HcNgD9KKWYNm1aXeGaBhQXs/oGixez8MsJE5iv/vvvmevO2Bho3x5iXNwjtXceRf31AY1Gg5KSEhWAZ2LGZDD8Bv42qNXqywD8BUFwSk5OnpiWlvZ+aGiocbdu3biTJ08iLi4OEyZMqCu2ERAQQMiv/VXXVtlauJDJJZ8502iXb775Rrp//z6hlHLV1dVSUFAQMTdvYs20qAjSiBHgAGzdulW0a9uWGMXEMOOTmQly5gzad+0Kk9hYcjczE1bDhjGjvnYt8PzzLGR15EgWppmXx1wX9WSF8/PzUV5eLnuk2N2JE6xNNZIVhBBctrCQZ4eEDC5Xqe4MOHJEJ9PrWcYZpX41Ow0BMBPAtyDk/wAcAqVPoXnx+yIIQjsA12rDdt999100cu3o9SxkduVKVonNwYEptzaTcdtsVM8jkCQJx44d02s0Gv3w4cNVAHDz5k0oFIoL77777iN63z8Pg+E38LdDrVbnAFguCMLOo0ePHjlx4kTr6upqMmTIkAYVln6z3DPADP+AAWwEnprKfP41FBUVcRYWFhg5ciQiIyMRHR2N4cOHNzpFxRtvID89nR6YPVsqLy/nx4wZA7mtLfMzf/8980PHxeGsQoEKd3f4eHkB6elsjUEmAz79lC1MEsLq/yYns3u6fh0wNUVkZCRt164ddXZ2btRgjUYDpVIJ4uDA3Bz1GD9+PJYvX44zgYGWCd26wWT+fDp58+bM72bM+EmSybRYuvQGgC5qtvsgAOkghAKYAUrffPhavxVBEFQA2gNwJ4R4yuXyNlqtdimAzgD2AQAhJAuAjUKhkJeXlyvrDP/Nm8C+few7MjZmrpzOnR8rzfG0hv/OnTv49ttvAUBmaWlZCUBFKcXZs2erqqurdz1tm/8oDIbfwN8WtVqdIQhCJwCxLi4u7t27d29CMP/pyMjIwJUrV6DRaNCxY0d4enoyI/vjjyyu/+bNOmNiamqq79+/v8zZ2Rk+Pj7cuXPnRAC8VqvFjh07aEFBgaTRaHjq749+8+bBQ6sl586dQ0VFBWxtbFhM+eefo3ZRMTsgQCouLubEwkJwSiVbvB0yhLkm6uPjw3IPaoxeUFAQ2bp1K/nuu++kkJAQzsPDo27XdevWUZlMRod07865jBzZ4DQqlQrjx49HSUkJIiIiwIki9D4+rkH9+r1Pysrolfz8yuLi4kWCIAxTUzoAAEBIKACHmr/XA1gHSuN+zbMWBIHwPP+NQqHwFUWxEwBjc3PzMltbW2pqampy8eJFHsC0eodMpZTuBaCtrq6u+Oabb/BBz54g27YBgYFMqO+991iU1RPytIY/Jyen9s/T1dXVnQH2fyY3NzdfkqSvnvhEfzAGw2/gb41arS4TBGFcZmbm1YSEBKl79+6/epgvSRK2bdsGV1dXUS6Xk/DwcFJeXk4yMjLo3bIy0eyDD/hWy5aRruHh0GzbBmNjYz4zM5N6eXmRNm3a4Pjx45wkSTh69CgKCwsxdOhQ3sbGBiaTJ0M1fjyBmxuxsrKiP//8MybHxJBcSZJM/v1vzhtAcXExHB0dOWNRlOS+vhw+/hjYtq35m504EZgyBejQAW7vv4/nn38et27d4sLDwzF48GCkpqaKAGBpaUlu377Nnf3qK2p0/jxs09IaWLnaxWD/mrUSAHC4cwdwcSF9MjNNYq5e9YiLi0v+/PPPL+v1+n26pUs/UqvVR2p25QGUgpDBAKaD0lFP+qwFQWinUCg2abXawM6dO6OyslLKyMigLVq0MJMkCRqNpv7u/6p5lfA8H26k13dzSU+nA0SRkKIilrA2YMATJ9nVR5KkJzL8VVVVKC8vR1ZWlk6pVMYAKPf19VUBQGFhISilx9Vq9VPqjfxxGAy/gb89arX6miAInkeOHDlhbm5u5+7u/qvPJYoiwsLCeJlMhpMnT0qnTp2Ck5OT1KdPH1lJSQnVSpJ4S6vl9/74I+RaLcnPz4eNjY3k7+/PWVlZ0RUrVpDq6mpMmDCBtKnNEtXpmF8egL+/P6moqJDSjx4l3MCB3IkDB2h2dja5HB+PwTt34siAAZw+MhKypqKDHmbw4Lravj4+PvDx8cGdO3fEY8eOwdXVlb9y5QoopQgLC0OrMWPIro8+wqiKCpiYNM5xakDLlkB6OoiDA4KXL+d8Z882uctx3Q4cOOB1//79DABbAACUTgYAEGIEILnm73gAi4WlS7UANimVygscxykIIaaVlZVBAGBkZHRFLpe3DgoKUhw7dgyOjo5wdXXlLC0tIUkSLl++TO3t7cmkSZOwefNmAHgHwDtWRUXwTE2Fd58+sDc3B5kwoVEW7dPyJFGP1dXVWLlyZTWAexzHZVVXV78ok8meP3fuXAgAhSiKcq1We+033cjvjCGc08A/BkEQeiuVysOjR482cnV1xcNFOJ6Ejz/+GPPmzXukcayoqIDs4kXIBw7E8tdfh5OXlzR58mSuoKAAx44dE/v168fb29uznWtFwWp1YFJTgTfegBQRAaJQYNWqVdQ8L4+GhIZyjqtXI3PxYnTo1u2R95ibm4tdu3aJvr6+fFC7dsDrr7OchnprGpIk4d///rfUuXNn7rnnngMSE3H2gw+klNGjMXnyZO6Jno1eD/TsyRZL27dH7u3bWL9+fZler++gVqtvP7y7IAgmo3/5JfLQoEG9OqamomNqKm5u2oQWLVpALpdj61aW0Dpt2jRYW1vD2NgYt2/fZpLX9XRytm/frjcyMpINHz4c1zMykPDdd9ILGg2noxSVrVvDYvx4kCfQTXoSjh07hlu3bokvvfRSs5FfcXFxUlxc3L6FCxc28JUJgtAKQK02h69arb7Y+Oj/DYYRv4F/DGq1Ou7jjz+euXv37nk6nc7L2dm52svLy8zT0xPN1UgFmKJmamoqEhMTRblc3qhq08OYmJgwg3jqFBa4uwNffcVBkmBnZ4cJEyY0NCCrV7NXRgZ7X1gIuLszHz6AvjduoM2PP3KFkyZBvns3monCb8C2bdvE6upq/uLFi2JQt2487t2DNj8fpUolbGxskJ+fj40bN1JTU1MSUluZ7PJldLt3j4spKpLi4uIQHBz8+MVvmYxFFAGAqyscFyxAQECA6ty5c5sEQRgCQALgBuA5mUz2Is/z3XaNHasEANfZs2F75w5aBwWxyJrNm7Fo4UJU63QNvou6DrIeoihCrtUC27bBTaOBW0ICh+nToXjhBShkv69Jq/HxNzs6zsvLQ1xcXHV1dfX7D29Tq9V5Qo0ExLNk9AGD4TfwD+P999+vjfm3ysrKGpifnx92+PDhwZ6enrRnz55GTRmaNWvWiIQQzs3NDZMnT0YjLfbm8PEBd/s2i74ZP75p9c5Jkx5EAr31FjB1KsugXb8eiIxEu6++ItE9eiBx717a4+5d9O3b95EO55KSEpSXl/O9evVCUlIS0fI8Iv/v/2jFwoVEJ5cj38ND0ul0XGBgIO3Xrx9X579+8UVwL7yAPomJXEREBGJiYmBtbS05OTnRfv368U2GodZn82agSxeEHDkiLxPFHmkyWbEkSQojI6NqU1NTWWFhoWrevHmQyWSQyWQNRvBYswbo3RvyRYsgP3qURTNpNGiyeP3t2+iycydfXlpKxe7dCT9iBBAdDb1ej5iYGFRXV6NVq1bw8fH5XaK2HrW4SynF5s2bNVqtdpZarW4ujPVdQkhJM9v+ZxhcPQb+8QiCYM3z/EyO4+ZzHGdkY2OjdXR0NPby8pK7uLhg+fLldNy4ccTCwgLW1ta/LqGnrIxlie7Zw7Jqa9m6lUk9uLgwsbXvvmOZxkePsu2zZkGn0yExMRHHjh1DUFAQHB0dcefOHXh7e8PU1BTbt2+XCgoKJEmS0LNnT9nx48dpWFgYiY2NlW7fvg1Jkrg3r12DqroaecuWQaVSNW7H2rVMjuLECdy9exd6vR65ubk4d+4cVSgU0rRp054syW3kSKBtW9xXq2FkZASFQgG9Xo9ly5bhlVdeaTqZCkBWVhasjIxgcfs2KxJjbMyE67y82DrFxYtML2fJEminTcN2U1Mpv7ISo0aN4tq1a4eLFy/iwIEDaN26tXjnzh1Oo9EgKCiIeHp6wsTEBKqmOpEn4PDhwygoKNBPnjxZBgAFBQXQ6XRwcnJCSkoK9u7dW6DT6RzUavVfypAaDL8BAzUIgkAAOAHw4nm+p0wmmwLArrq62ojneS3HcWUtW7ZUjRw50sSmCUGvR0Ip8PHHLDTzzh2mzAkw4bcBA5jhnzGDdQpDh7JwzIc4e/asdP78eZSXl3NKpZKWl5fD1NQUer0e/fr1I+Xl5YiJiQHAYvCdnZ2xc+dOsVOnTrynhwcTpTt+vFG8fs3JWU2Ah/RokpKSEBUVRefPn/90vd28eSyhbMcOAMC6deskV1dXrn///o12TU9Px7Zt28BxHExMTERbW1syKTj2H6JNAAAQNElEQVSYg5MTy0DesgUYOJB1KmPHAjyP6upq/Oc//0FZWRkAQCaTwdXVVax1paWnp+PgwYO0qqqK6PV6zJkzB9bW1k/VBACIjIzE3bt3xUmTJvEpKSnYs2dPKSFEb25ublFcXKyXJCngWXPjPAkGw2/AwCMQBMETwOsAvgSQxfP86zzPL5s+fbrq1xgS6HRM0vnHH1mYIQBMn87UHr/4gilAtmjx2NNQSrFixQpaXV1Npk+fXmfU8vLyYGRkBCsrq8YH3bvHZITPnXvQ8dRy4wYz1PUS0LRaLb766iupd+/epGfPnk9n+JOTgaws1p60NGxIS5Nu375NJk6cSJycnBrsum3bNiiVSjE0NJS/evUqDh48iMWLFz/YwdaWuZIGDgTAZgdbt26l1dXVBGCJeFOnToWdnR2rYfwQy5cvR9u2bXWmpqa1xq5RwvZD7wkAWnMtvqqqCl5eXlJubi6Xl5e3Sq/Xq2Uy2VYAhxcvXrziqZ7LM4LBx2/AwCOokYGYU++jlR9//LG0devWz2bMmGEie9rFRLmcLeRaWrIR/s8/swxbpZIZ3Scw+gAzVJIk0dGjR5P6HVBttacmsbEBbt1if5eUsHuo5cABJttQz/Cnp6dDFEUuMDCwwWkopbh8+TJKS0ulwMDAph3pPj7s9fXXwMqVmJKRwUVGRko//PADcXd3x/Dhw+tUVG/fvq0PCQmRmZiYwN7eHnK5XEL9WiF37gCEICIigiYnJ1NJkjgTExNMnz4dVlZW+PDDDxEZGYnXXnutuZZXp6WlLQdwv/bxPbT9Ue9NAdicPn36Zs37SLVafR/A4OYu9lfAYPgNGHhKRFFcXVZWNuiHH34I9vPzM+rWrdvTrSK2aMFcP1evMt//8uXARx8B77/PInyekMrKSq5ZiefmMDUFJk9mHQATX2OMGsWkp+vRsWNHRERESOnp6ZynpycopUhISKAJCQn03r17nEKhaNQpNOLNN4E5c0CuXMHADz/kHL/5BvEJCdL69evp7NmzeY1Gg4qKClltLVulUglRFLmHz5GiUiHJyoqMHTuWtGvXDhzH1RnnMWPGICIiAsnJyfDx8WnqLkQAa2ukPAzAUIHLgIGnpqYA/PP5+fmzDx8+fPvUqVNUFMXHH1gfQpi4W24uU4jMyWEuGIBpw0+Zwv4WhAcVvZrgV7lqv/uOlZKsr9aZmMjcTfXgOA7dunXjIiMj6alTp7Bx40bp+PHj8PHx4VxcXKi9vb30RNevUTQl3brBx9cX44ODueLiYj4+Ph4rV66krq6uYq2AXG2S1g8//KCXJAmSJCHp1i16PT8fL730Ejp06NAoWsfb2xstWrQQU1NTG9YybojBp10Pg4/fgIHfgCAI7kqlcpNcLvcaMGCAye8SRpiVxcIZO3RgRV4uXGDGet8+tgD7009Ar15YuWeP6OHhQQYOHPj0FywrY/rzp06xBeUvv2TF3n/6qcFukiRhx44dtLi4mDo4OHD9+/eHqakpNBoNVq5cKYWEhJCAgIAn9//n5gJubti8bJmUWVbG+fv70+eee66Bz/3evXvYvHkzdXV1JZmZmZKxXI4JY8dypnZ2zZ72/PnzYnx8PCktLSXTpk0jdvX2Xb58eaVGo2mvVqvznuIJ/a0xGH4DBn4HBEHoq1Qqv7S1tW0/bdo0k1+r9twsN28y11BoKCuuMn8+rioUsJsxAxZFRcyAW1mxspBPyq5dbHZhbMyKy0hSnXTEk3Djxg38/PPP6NKli37IkCFP7jYuKsKFmzfBvfwy2m/fDqMmisPcunULW7duRbt27cTnIyN5/sqVhq6pJpAkCeHh4WJ6ejr33nvv1X0BBsPfGIPhN2Dgd0IQBE6hUJw3Nzd369atm5m3t/fjdW9+AwWpqTi3aBF8Vq2Cy9y5bO1g7VqgXTsgNpZJKlRUPLozWLaMReC0a8cWnR8a8T+O7OxsbNy4ET169ICpqSmMjY0bvIyMjCCXy+uiZkRRxMmTJ6W4qChu+s6dsImIYFE7j0qKy81lM5T6+Q/NUCuLbGlpWUophV6v5yoqKowBtFSr1YVP1bi/MQbDb8DA74ggCDIA/ZVK5Qy9Xj/YxcVF7+fnZ+ru7v6rtIEex5EjR5CQkAAvLy9x+PDhLB920SLgs8+ApUtZwtjFi0y++Y03WHhlXh5zIQGsNGVsLODry8I9w8Ke+h7i4uKQkZEBjUYjarVaqtfriV6vJ6Iocnq9HpIkged51EZAyeVyady4cZxLrTxyq1bAhx8Cr77a9AVyctj6w7RpTW+vR3V1NXbs2KHJysqSiaK4AMAeAKVqtfruUzfsb4zB8Bsw8AchCIIpgFEqlWqWXq/38/T0lLp06WLUunXr36cITA3379/HunXrJG9vbzpw4MCmM2yXLAFefJEZ/VGjWL3ghQtZ4Zbp01mH8N57wLBhv9t91aLX61FZWYmioiJs2LAB06dPb5jBm5wMuLszmWlvb1b/tj6HDrHooKtXn/iaNXWOy/R6/fgPPvjgwO/UlL8NBsNvwMCfgCAIrTiOmyCXy2dSSh1tbW213bp1M/fx8WmoW/MrWbdundS2bVvSr1+/xy8uSBJT6vzyS8DeHhg3jrlaTE1ZIteMGaykY0AAcOkSyyxWqZie/W/osNLS0rBjxw4sWLCgaQmFsWNZVawlS371Nepz7do1bN++vUqv178OYGdN/L0BGAy/AQN/OoIgOAPoKpfLP9LpdN4zZsxoUoXyafjXv/4lhYWFcbXx8E+NRsOiiVxcWNFxV1fWQaxZw1xHs2cD+flAXBxzGU2cyPZNSWEzidJSptNfk5T1MNnZ2di2bZvk6OhIGymUPszLL7Pz7dzJ3ut0LMLp+vWn7nji4+N1kZGRcp7nL4ii+AlYB/CPN3oGw2/AwP8IQRBMOI47CsC/f//+xMnJidja2jYuEP4IsrKyEB8fj+vXr+Odd955cuXQp4VS5h6iFDh4kEk/ZGUB27ez8pChoWxG8PXXrATlnDms40hPB+bPx4FPPgFt3x5DXnrp8W6ujAzmkurYka1P9OvHVEvXrKkrLPM0aDQaXLhwAWfOnKmoqqrasHDhwjmPP+rvjcHwGzDwP0YQBH+lUvkWIaSrVqt1VSgUeltbW32rVq2M7Ozs5G3btkVtgtPDfP/997h9+zZee+21R8s1/BnUdg5nzzItoHPngIgI4PPPUdipE3SenrCfPJnJVC9dynz72dksc/nQIRam6uLyYFS/YgXw3/+yWUVuLpOc+BWGvxaNRoNVq1ZVVVZWjlar1Yd+n0b/NTEYfgMGniEEQeAAuADwJoR4K5XKQL1eH9qqVStJr9dj9OjRprXaPEeOHEFSUhImTZr0vzf6jyAnJwcbN27ErFmzYGVkxBZpnZyY7HJSEqsQNnXqA8mIbduYu2nNGra2MHw4e/38/+3db2gTdxzH8c8ll5x2taE4xdXNOQsLo5SNsmmVIhZWmCiICpMp2yMfzOEjn2wo5OcVcdDB/oiiMPbIzVVFV9YHE3QtaWJBN5U+8E9x1lWZTYmITROTu8vltwftxM0/a9PYJP19XtBHyYVvn7wJl7vv/Tj2e8QUHDp0yB0eHrYALBBCjE79vytPDD9RiRu/Omitx+N51TAMsXXr1tkPHjxAR0cHgsGgbGlpKfDdYpPjui7OnTsng8Gg9qSNpX19fThz5ozcsWPHY1sxHyPl2FK2QGBscdzo6NgVPx9/PHaT2hTvi7h48SI6OzsBAJqmfSalbFPxnD/DT1RG9uzZ84nX6/06m836ampq3FWrVnlr/7tieRqNjIygvb09dffu3b+y2ezr1dXV6ZqaGm39+vWz4vE45s+fDwBoa2uTmzdv1h5eu19kvb29OH36NADME0LcLfY80827e/fuYs9ARBO0cuXK37q7u/1+v39hMpmsjMViqfPnz+v37t3z1NbW5vd0sDwlEgkcPHgQIyMj/lwuNxcAMpmMLx6P6z6fD8ePH8etW7csy7L0wcFBVFdXa68U6CHoU9XX15eLxWJ/CiE+L/YsxcBv/ERlyjTNBQDeANAFAI2NjW5TU5P3ea6JAMZ24kSj0Ww4HNY8Hs8fHo8nbdv2W/+87vP57jiOswCPbP/VdR11dXVy+fLl/1qgVijpdHpS7z98+HAuFotdCoVCbxd8mDLA8BPNAKZpBv1+/07btj/atm3bw1MshZbL5dDe3p4eHBy8bNv2hwD6n3aO3DTNeQBOAmgCxtY853I5bN++Pa/HID5NT09PNhwOS03TnIke47puhaZpn4ZCobaCDVJGGH6iGWTv3r07XNfdq+t6rqKiwpkzZ46sqqrSA4HArLlz53rr6+snvTPItm0MDAzgypUr6f7+fk3TtKuWZTVP9E7Y8WcZtwD4HsC8hoYGd/Xq1d5JP73sCe7fv48DBw6ks9nsG0KIwf8/ggCGn2jGGV8U9yKABY/+GYbR4vF4Gpubm2c3NDRoz1oVIaXE5cuXceHChdHbt28bfr+/L5PJ/CCl/FkIcXMKsy0yDONbwzCa1q1bV7FkyZJ8PwoAcOTIkQc3b978YteuXbun9EGKYfiJFGKa5juGYXyl6/pbS5curVi0aJG2cOFCSCkRj8chpUQikUBXV1cymUzesixrD4BfhBD3CzlHa2vrWl3Xv6urq6tas2bNrHy+/d+4cQNHjx6NOY7zmhAiU8j5ZjqGn0hBpmk2+Xy+971eb4tt27W6ruc0TRvyeDwZKWXSsqzPpZQ/Pc9r3E3TnGMYxtFAILByy5YtL1RVVU34WNd1sW/fvtTo6OgHoVCo83nNOFMx/ESKM01zNoAlAK5M981Mpmlquq7v1HV916ZNm2YvXrx4QsedPXvWjUQi0fHfGhixSWL4iajoWltbW3RdP7lx48bKYDD4zPcmEgns378/7TjOm0KI69M04oxSuKdBEBHlKRQKnXYcp/nEiRPJ69ef3fJTp06lAexn9PPH8BNRSRBC/O44zrvHjh1LdnZ25oaGhh57TyqVwtWrV2c5jvNlEUacMXiqh4hKimmatQD+AIANGzagvr7+X693dHRY165d67Isaw3P7+eH3/iJqKQIIW4AqAaA7u7ux8K+YsUKw7bt9wC8Pt2zzRQMPxGVnPH7Bl5KpVK3w+Fw9tHXLl26lAXwjRCivzjTlT+Gn4hKkhAiZtt2Y29v71BPT8/D+A8MDGSklOeLOVu5Y/iJqGQJIYZs214WjUZj/8TfcZwcxn8DoPww/ERU0oQQQ47jLItGo8ORSCRbWVmpAXi52HOVM4afiEqeEOKO4zjLIpHIcCwWSwP4tdgzlTNezklEZcM0zQCArBAiVexZyhnDT0SkGJ7qISJSDMNPRKQYhp+ISDEMPxGRYhh+IiLFMPxERIph+ImIFMPwExEphuEnIlIMw09EpBiGn4hIMQw/EZFiGH4iIsUw/EREimH4iYgUw/ATESmG4SciUgzDT0SkGIafiEgxDD8RkWIYfiIixTD8RESKYfiJiBTD8BMRKYbhJyJSDMNPRKQYhp+ISDEMPxGRYhh+IiLFMPxERIph+ImIFPM3SEgQfL3nRRkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", + "f,ax = w_rook.plot(gdf, ax=ax, \n", + " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", + " node_kws=dict(marker=''))\n", + "ax.set_axis_off()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
POLY_IDAREACODENAMEPERIMETERACRESHECTARESPCGDP1940PCGDP1950PCGDP1960...GR9000LPCGDP40LPCGDP50LPCGDP60LPCGDP70LPCGDP80LPCGDP90LPCGDP00TESTgeometry
017.252751e+10MX02Baja California Norte2040312.3851.792187e+077252751.37622361.020977.017865.0...0.054.354.324.254.404.474.434.481.0(POLYGON ((-113.1397171020508 29.0177764892578...
127.225988e+10MX03Baja California Sur2912880.7721.785573e+077225987.7699573.016013.016707.0...0.003.984.204.224.394.464.414.422.0(POLYGON ((-111.2061233520508 25.8027763366699...
232.731957e+10MX18Nayarit1034770.3416.750785e+062731956.8594836.07515.07621.0...-0.053.683.883.884.044.134.114.063.0(POLYGON ((-106.6210784912109 21.5653114318847...
347.961008e+10MX14Jalisco2324727.4361.967200e+077961008.2855309.08232.09953.0...0.033.733.924.004.214.324.304.334.0POLYGON ((-101.52490234375 21.85663986206055, ...
455.467030e+09MX01Aguascalientes313895.5301.350927e+06546702.98510384.06234.08714.0...0.134.023.793.944.214.324.324.445.0POLYGON ((-101.8461990356445 22.01176071166992...
\n", + "

5 rows × 35 columns

\n", + "
" + ], + "text/plain": [ + " POLY_ID AREA CODE NAME PERIMETER \\\n", + "0 1 7.252751e+10 MX02 Baja California Norte 2040312.385 \n", + "1 2 7.225988e+10 MX03 Baja California Sur 2912880.772 \n", + "2 3 2.731957e+10 MX18 Nayarit 1034770.341 \n", + "3 4 7.961008e+10 MX14 Jalisco 2324727.436 \n", + "4 5 5.467030e+09 MX01 Aguascalientes 313895.530 \n", + "\n", + " ACRES HECTARES PCGDP1940 PCGDP1950 PCGDP1960 \\\n", + "0 1.792187e+07 7252751.376 22361.0 20977.0 17865.0 \n", + "1 1.785573e+07 7225987.769 9573.0 16013.0 16707.0 \n", + "2 6.750785e+06 2731956.859 4836.0 7515.0 7621.0 \n", + "3 1.967200e+07 7961008.285 5309.0 8232.0 9953.0 \n", + "4 1.350927e+06 546702.985 10384.0 6234.0 8714.0 \n", + "\n", + " ... GR9000 LPCGDP40 \\\n", + "0 ... 0.05 4.35 \n", + "1 ... 0.00 3.98 \n", + "2 ... -0.05 3.68 \n", + "3 ... 0.03 3.73 \n", + "4 ... 0.13 4.02 \n", + "\n", + " LPCGDP50 LPCGDP60 LPCGDP70 LPCGDP80 LPCGDP90 LPCGDP00 TEST \\\n", + "0 4.32 4.25 4.40 4.47 4.43 4.48 1.0 \n", + "1 4.20 4.22 4.39 4.46 4.41 4.42 2.0 \n", + "2 3.88 3.88 4.04 4.13 4.11 4.06 3.0 \n", + "3 3.92 4.00 4.21 4.32 4.30 4.33 4.0 \n", + "4 3.79 3.94 4.21 4.32 4.32 4.44 5.0 \n", + "\n", + " geometry \n", + "0 (POLYGON ((-113.1397171020508 29.0177764892578... \n", + "1 (POLYGON ((-111.2061233520508 25.8027763366699... \n", + "2 (POLYGON ((-106.6210784912109 21.5653114318847... \n", + "3 POLYGON ((-101.52490234375 21.85663986206055, ... \n", + "4 POLYGON ((-101.8461990356445 22.01176071166992... \n", + "\n", + "[5 rows x 35 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[1, 22]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_rook.neighbors[0] # the first location has two neighbors at locations 1 and 22" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 Baja California Norte\n", + "1 Baja California Sur\n", + "22 Sonora\n", + "Name: NAME, dtype: object" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf['NAME'][[0, 1,22]]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, Baja California Norte has 2 rook neighbors: Baja California Sur and Sonora." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Queen** neighbors are based on a more inclusive condition that requires only a shared vertex between two states:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "w_queen = Queen.from_dataframe(gdf)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_queen.n == w_rook.n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(w_queen.pct_nonzero > w_rook.pct_nonzero) == (w_queen.n == w_rook.n)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAADrCAYAAABuBv24AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXdYFNf6x79TdoEFURAQFERRUVQQG4IirDEaNbEQjbGb/FI0iSneGBPr3FFjuRpvmtFoTIzRGI2xXsVKEQE7xgYCdkQp0svuzs7M74+DSGcplsh8nodH2J2Zc2bBd855y/elZFmGgoKCgkLDgX7aE1BQUFBQeLIohl9BQUGhgaEYfgUFBYUGhmL4FRQUFBoYiuFXUFBQaGAohl9BQUGhgaEYfgUFBYUGhmL4FRQUFBoYiuFXUFBQaGAohl9BQUGhgaEYfgUFBYUGhmL4FRQUFBoYiuFXUFBQaGAohl9BQUGhgaEYfgUFBYUGhmL4FRQUFBoYiuFXUFBQaGAohl9BQUGhgcE+7Qk8bXiepwBoANgCaFriyxZAU5VK5cQwjBNN0/aiKFrp9frxHMfFPsUpKygoKNSJ587w8zzPgBhu+zJfDmq12oVhmBYAHGRZbiqKojVFUVYURUGtVhssLCyMFhYWsqWlJW1paclaWlqaaTQaWqPR4Nq1a4iPj48DcOvp3Z2CgoJC3XmuDP/SpUs3UhQ1gWVZvYWFhaDRaCQrKyvayspKZW1tbabRaChLS0toNJriLwsLC6hUKqCKz+L8+fO4ceOGaDAYTgCQntgNKSgoKDwGnivDD8AiMDBQCgwMNAdgXh8XlCQJ+/btQ8uWLemCgoKRaWlpY5YtWxal0+m2ANjPcVxyfYyjoKCg8KSgZFl+2nOoN3ied2NZ9tKkSZMsXFxc6uWae/bske/cuSN/8MEHNAAUFBQgMTERsbGx+deuXWMZhrktCMJWURR3AzjHcZyyI1BQUHimea4MPwAsXLgwiGGYX0aMGNG4Y8eOdb7e8uXLpVdeeYX28PAo954oirhz5w6uXr0qXLlyRVdYWCjSNL1Pr9f/CeAIx3H5dZ6AgoKCQj3z3Bl+AOB5frK7u/v3Y8eOtarrtdavXy+3atUK/fv3p6o7NiMjA/Hx8bh8+XLOvXv3zNRq9dnCwsLfAfyP4zglKKygoPBM8Lz5+B9y9MaNG6o7d+6gri4fURRhZmZWrdEHAFtbW/j6+sLX19dar9fj2rVrvWNjY73j4+NXLF269J7RaPxdFMW/AJznOO75e+IqKCj8I3guV/wAsGDBgvdYlv0qKCjIokOHDqAok2x3ORYuXAhbW1tp+PDhtLOzc62uIUkSkpKSEBsbK1y6dMmg1+t1FEVtNxgMWwFEcBxnrNWFFRQUFGrBc2v4AYDn+ZdYlt340ksvOfTo0aNW10hPT8e2bduErKwsqk2bNoKvr69F06ZNYWVVOy+SLMtIS0tDXFycdPHixbysrCyGYZhgvV7/O4BDz3pcgOd5RwBji36Uq/kXAKhKvj8N4IQSDFdQePI814Z/wYIF62RZfnvixIlwc3Or9XWMRiM2b94sJiUlRapUKntBEFr17dtX1adPH5ZhmOLjCgsLYWFhUaNrZ2dn4+rVq7h48WLOvXv3zFQqVbROp/sNwF6O49JqPenHBM/zb9rY2Kxu27ZtsRGXS/wRFX1byvCX3W1JkoTr168bCgoKUg0GQ5dn/WGnoPC88bz6+AEAsix/TlHU5CZNmqjqch2WZdGxY0fm/v37hpkzZ3bkeb5VVFTUz+fOnfMJCgqydHV1RV5eHr766iv06NHD4Ofnp7a1tTXp2o0bN4aPjw98fHysCwsLkZCQoL106VKPGzdurF62bFmsXq//TZblnRzHXa/LPdQjrIuLizhkyBBNHa9j9ueff7KJiYlfAZhaHxNTUFAwjed6xc/zvBuAa2+99RZq659/yIoVKwry8/MHcxx3rOjaFEVRQSzLrmvVqpUZRVHm8fHxDMuy3wB4q3Xr1tSoUaMs1Wp1rcYzGo24fv06rly5UhgXFwcAKSWCwzFPKzjM8/x7Xbt2/WrYsGE129pUQGFhIb799ttCnU43BmSH8/z+MSooPEM814YfABYuXDiOpukffXx8VAMGDDCrzTWMRiMWL14syrKsKmuceJ5vBOB1AHYA/uQ47hrP85Zqtfr0yJEjPdzd3et8DxUFhwH8KQjCFgCRHMeJdR6kDEXidRXxYffu3Ze98sor9VIZff36dezatSvfYDCkCYIwb968eZvq47oKCgqV89wbfgDged5WpVLFBgUFOVRUiFUd2dnZWLVqVdbs2bNtajBmKgD77t27693d3c2ys7PRuXPnGscAyvIwOHzlyhXxwoULBdnZ2WYURRnxKHBa/G/R75aq5LWHP5c9DwCgUqkgCEKFc9BqtWJgYCBT4Zu1QJZl3Lx5Ezt27CjQ6XQL5syZs6y+rq2goFCeBmH4AYDn+V5qtTr0o48+srC0tKzRuffu3cPGjRtvfv75561rMB4FwIum6SEqlWq8Xq/vBADW1tbiJ598wtQ2vbQsOp0OkiSVSld9+L0p/1b0WnJyMtatW4egoCB4eXnVyzxNITs7Gz///HNBQUHBcqPRuEDJ+FFQeDw0GMMPAMuWLds/cODAwV27dq3ReSkpKVi/fn2WIAguHMfl1WZsnudpAAsAzJk+fTqsra1rc5knQnp6OlatWgWapjFv3rwnOnZubi42b96cn5WVlWowGN6aP39+6BOdgIJCA6BBdeCSZflBXl7N7XazZs1gb2/PAhhT27GLVq8DAaBRo0a1vcwTwc7ODmPGjIFGo3niq4JGjRphypQplsOGDWvNMMzuogC9goJCPdKgDD+AqxEREbpr167V+ER/f3+NmZnZtzzP19r4A1hJ07RcX26ex4mTkxMKCgqeyo6Qoih07NgRAwYM0KhUqouLFi2qy2euoKBQhgZl+L/44otFRqNxyNatWzP27NlTWJNzPTw8aH9/fwuGYXxqOz7DMF169+79j/BbW1tbg6Io6HS6pzYHHx8fZtKkSRoAG7/88ssbixcvnl5FtpGCgoKJNCjDDwDz588PFQSh1fnz581EsWZZkCqVCgzD1No5L4rizdTUVH1tz3/SqFQqOScn56nOwdnZGZ988omqf//+rRo3brxIrVbv43m+dvobCgoKABqg4QcAjuNyaZrWGwyG6g8u4eqwtLQETdPt6zD01hs3buRdvny5Dpd4cqjVaikxMfGpR/+trKzg6+uLKVOmaLy9vQcyDHOc5/mApz0vBYV/Kg3S8AOALMv0yZMnqz4oNxewtgbmzAHS0+GxejWowsIei+bNa1WbMTmOyxIEYfDu3bsL0tKeORmecrzyyitMWFjYM5P5xbIsBg8ezIwaNcpMpVL9+bTno6DwT6XBGn5JkszCw8NRpfG3sgI+/xxwcgJyc8GcPQtbe3v9x19//Qco6iAAgKJWgKJM1oPgOO6cKIof/vHHH/nPikGtjHbt2oGmafnBgwdPeyqlaN++PWRZbsLzfK3jLQoKDZkGa/gBTAGQcfTo0ay7d+9WfARFAZMmAXfvAjodcOIEsgoLmQODBr0H4ANQlBpAHwBNQFGfgqJuFp33ISjKt7KBJUn6JSMjw/KfsOrXaDRicvKz1U+eoih4e3uzLMvu4Hm+8dOej4LCP40Ga/g5jlvLcVxTiqK23bpVRVfEli2BTp2AgwchG40oKCjQXOncORaynAhZNkCW/SDLlwCsATCq6KwXAHiCorqAoh6AopqAol4BRY14eFmWZcO2bdtW8Kyv+u3s7Ng7d+7UuxZQXRkyZAjt6elpZ25uvvlpz0VB4Z9GgzX8DzEYDCeSkpKq1oMfPx6IiQFCQmBra1sIYES5Y2Q5H7J8puj7IMjyOgCXQQTcskF2Bi+DolTcv/+dPmvevNn01aus8fvv6/mO6hc3Nzfcvn37mUuhpCgKgYGBZkajMfBpz0VB4Z9Ggzf8ANQqlapqw0ZRwJIloJYuxfA+fSxVKtX3PM9Xr9sjy0bI8hHIsgxZngVZfgeACOB1WpYvt7h/X6Q2FYlRensDy5YBOTnAN98A+mcj67NTp0548OABLUnPXvlBXl4eWJZNfdrzUFD4p9HgDT9FUerY2Fg2KSmp6gObNwfeeQcu69ahX2BgE5VKdYnn+YE1HlCWpaKHQc6Vbt2yQhctMsqyDHz3HfDqq8D9+8C33wJGI/DGG8Drr5Pz1qwBnkKQ1crKCpIk4Vk0/I0bN4YgCE48z9euD2Y18DzvwvO8t1I0pvC88cyk6j1NeJ6f2a1btwVDhw6tWq9fFIG33gKCghDTsiWCg4NPC4KwGMBBjuNqVAlcNG4PtVq9Z+zYsU6tWrUqf8CFC0BmJuDnB3h4AL//Dly+TB4M588Du3aR+EO7djUd2mQyMzPxww8/YM6cOY9tjLqwa9cuXVxc3Fm9Xt+3Phq5FInpDQFgxbLsDyzLWsiynCoIwu8qlaqDJEn3jEajJMvyZoqiAmRZpgFs4jjuTp1vRkHhCcH8+9//ftpzeOqEh4fT6enp41UqFe3s7Fz5LoimgYAA4L33YPvmm0jLz7cRBGGULMsjQkJCftNqtRUL2FeCVqtNDg0NzUlLS+vv7e2tKqfh06wZ0KoVwDDAxx8Dzs5A06ZA69bE4L/9NnkY2dsDPj7A1atA48YkDdXcnLio6sjt27dx48YN2c/P75lc9bq7u7MnTpywEwThf1qtNqUu1+J5vhWABwDGubq6DnZycmLfeecdC1dX18bm5uZ+7u7uHZs0adLD2traU5KkcYWFhS8D6E/T9LiwsLBvtVrtMxcEV1CoCGXFXwTP824sy550cnIyHzhwoFWVrRoPHwZ++w3YuBGyLGP79u26xMTEkwaD4ZWHss1F7ofOHMedqGZctVqtPuLu7t7z1VdfNa+VgFtuLrBiBfDTT4BWC3h5AefOkQfAkCGAiwvZFdiY3EemmOjoaFy4cEGcMmVKvTVeqW9OnjxpPHr0aKYgCAM5jjtf2+ssXbr0cI8ePfq98MILDE2b5gUVBAFfffWVqNfrGQAuHMdV4zNUUHj6KCv+IrRabWZoaOjPubm5Ny5evBiQkpKCNm3aqFi2gn70rq7A7dvAtWugunRBhw4d2PT0dMesrKz/CwkJCdNqtffDw8P9ABw/ceLEgKNHjx7TarUZlYwrhoSEbMvKyhqq0+ls2rRpU8GA1WBmBvTrBzg6Ai++CIwaRX5u1Yq4hk6fBq5cIRXIx44BdnZAejp5MJhV7d26ePEiAEienp7PbDzI2dmZtrW1tUxISHgzKirK/+jRo/FarbaS4oyK4Xm+t4WFxewxY8aYMYzpzziGYdC5c2f65MmTUKlUrUNCQgrDw8PjtVptTW9DQeGJoRj+Emi12sLAwMCYkJCQVVlZWR0vXrzompWVRRmNRqZp06aPulzRNHGpBAcDHTuCbtIEHh4ebJMmTawTExMnhYeHF8qyLDdr1myIt7e3W0pKir+/v//aKsYVQkJC8lQq1eAuXbrUqi8wALLSX7KEpJ6+8gpZ6fv5AQMGAL17AwMHEkOflgYcPw7s3w/wPAka0zSQkQE0aQIUPewSEhJw7NgxuLi4yO7u7s+s4QcABwcH9OzZk7WwsGh769atkSEhIX9otdpsU88/duzY2507dw7w8PCo8YPX3NwcXl5eaNSokUdKSsowg8FwQ6vVXqrpdRQUnhSKq6cSeJ5nAWhpmvZVqVST27Rp4xwUFGReagewcSMxov/6V7E/PTMzE7///ntBdnb2TwDGdujQwf7SpUuiSqX6RRCEnfPnz99fyXjvAvjRzs4ub+TIkVaOjo61m3hSEjBjBpmbWl31sZJEdgIXLxJjHx0NREUBXbsCnp44npeHW1lZ8oCPPqIcajufp0BERIQxIiLCwDBMqE6nOwDgEsdxYZUdz/N8K5ZlY6dMmWJuZ2dXp7GTkpLw22+/6WRZXicIwuzadmxTUHicKIbfBHiet1Cr1dvt7e21kydP1qhUKvKGwQB8+ilJw+zXr/j4/Px8rFixAgAGqlSqZTRNe3fu3Jm6cuXKyZkzZ1Yo5cDz/Nssyy6QZdm2f//+Zn5+frWfcEoK8e0fOkSCwTVBFEl84No1JN66BXnrVrldcjKFefMAlYrECtzcSEXzM9xQJicnBzdu3EBiYqLu0qVL5gD+BWAHgNsls394nregKOoPWZaHzZs3D6b69qsiPz8fwcHBhQkJCTcNBkOn+sg2UlCoTxRXjwlotVpjSEjIHwaDQZuYmOjo6empYhiGZNs0awZs2wZ07w4UNXFXq9UQBMGQkpISIAhCb4ZhBuTk5DgKgiCFhISs0mq1pZLieZ5vq1ar9wYFBdlcuXKFevDgga5Xr16qWk/Yyor49vPySGFYTaBpoEULoHNnCO3aYbPBQPXdvBmwsADy84GsLODdd0kqKUUBJ0+SeIGDQ7XxgieJmZkZHB0d0bFjR7ZFixYoKCjonZ+f/zHDMK1CQkL2hYeHIzw8nFKr1b+2bNnylZEjR7KNG9eP7I9arYaHh4fqwoULlkajsWVISMg+xeev8CzxTPttnyU4jpP0ev3QtLS0C9HR0Y8Md/fuZFW9fXup4wcMGKCmKMoJgIPBYHhJr9efMhgMrgB6VXD5nq6uroKHhwecnZ0LMzMzNYJQo8zQ8nz9NVBQQFw+tcTe3h5GoxF6lYrc55gxwMSJQFwcsHkziSloNCReMHgwSS/99Vdg1Srg6FGgrvdQT7Rr1w4TJkxoNH36dHNbW9sxAIwsy4ZRFPWNRqMZPmbMGPMqs7hqAUVReOuttzQ0TU8E0LZeL66gUEcUw18DOI7T6fX6caGhofTatWvzMzKKEnXmziXFVVeulDre3NxcAhCvVqtP6fX6QAB2HMcdL3tdtVo9yMLCggUAW1tblUqlur9mzZr82jSGL4amgR49gC+/JMqitboEDbVaLWdmZpZ/09GR7CYmTAAWLiTGf/588hrDkAfPe++R+oMffiBFZxcvPlUpCnNzc0yZMsWyWbNmktFoDOjSpcs7EyZM0Kiri4XUYTwHBwcjwzCTHssACgq1RHH11BCtVpsVHh6+Nj8/3yw5Odnb09NTRTMMyZwZOZJU9halA7q4uKgtLS3F+/fvWzAMM4ZhmOy+ffueK3k9nudphmFmZmdnN6Npmo2MjGQlSepiNBoLjh8/HpiSkmLs1KkTXav8/hYtSPzh66+Bvn3Jw6CGnDlzRmzRogVtb29f9YEURTKdHB3JA2fcOJJZ1L49cYdFRwN//gncvAls3Qrs3g0kJpIHhar2Xq2akpCQgLNnz1LTp0+Hl5cXq9FoHut4rq6uZmfPnvUpKvAzOctIQeFxoqz4awHHcfdkWZ6TkpISunr1akNqaipJnZwxA/jss+LjWrRogRdeeIEZPHiwpk+fPh0pippdwbWkWbNm+eXn5/cPDw8/pFKpLgNInj17NgcAcXFxbJ0C8E5OQEIC8N//1vjU7OxsFBYWMma19d3TNNCmDTHuS5eSuMDMmcC0acRVtHw52QWsWAH88kvtxqgBkiRhz549olarla2sHou8TzlsbW3h5eVFsSz77hMZUEHBBBTDX0s4jtMZDIZX8/Ly9q9du1YoLCwkK36KAg4cKHWsp6cnevfuDaPR2JznedtKrnfi888/HzR79uzOHMc99M00U6vVCQcPHjShOXAl0DSwciXJ44+JqdGpubm5kGWZqlBHqLao1ST24O0NDB9OpCb0euImu3ABGDaM7AQeAyEhIWAYhu7Vq9cTTUfy8fExoyjqX4sWLQp6kuMqKFSGYvjrAMdx+lmzZgUxDLN206ZNedBoiKvn11+B7NK7eoZh0Lx5cx2AATW4fqrBYPA5f/585rVr12o/UScnkt//2Wck08dEnJ2dwbKsVK1yaU25c4dUEffoAYSFke+XLycKqJ07k5qCoUOBN98k6aVi3SVwCgoKcPr0aXnYsGFUTSpz6wMHBwf069fPQhTFHTzPN3+igysoVIBi+CuB5/kWpsrxGgyGwxRFkUwfT0+SQ7+2fKGun5+flVqt3rBkyZIHS5YsqVLD5yFFDdrf2rJlS+G6detyT506BbE2hvD114mLJTa2RqfZ29tTcXFx9avJHBND4gGSROSmH2JnByxeTKQmFiwg8YkTJ4goXVQUaYFpNNZqyD///FNq2bKl5ObmVj/3UEN8fYvLN6rv46Cg8JhRDH8F8DzvAiBJrVavMOFYVq1W/8fHx8e6+MXhw0m+e0REqWM9PDzoGTNmmE+aNMlWlmUPU+czf/78faIo2iYnJ08IDg7GnTu1VAAePJgY/zKppw+RJAl//vkn1q5dK2/ZsgVJSUnw9vamLl++XH+uEaMRuHWLuHrGjgU++YR8VmXp2pWs+vv0Af73P7IT+L//I66hvDwilGdi7OP27dtISkqiX3755acmNEdRFAICAoxqtXqlou+v8LRRDH/FqAFAkqQpRfrsVeFiNBrdSvnBra1JJW9ERDnXikqlgp2dHRiGUS9cuHCsqRPiOE7HcdwelmXnBQcH5xtrs/I1MyPdvVi2QmO7c+dOOS4uDm5ubjA3Nxc3btyIAwcOyLa2tvVXeXr0KCkEs7QkhWbr1wPr1lV9jpcX+UwPHgSOHAFu3AA+/JBoJe3cSf6tgh07doh+fn5SkyZN6u02aoOfnx+rUqm6MAyzief5mkulKijUE4rhrwCKoiKbNGkiSZJkDsC8qmM5jrvBsuz++Pj40m+8+CIx+nv3ljvHzMwMw4cPNzczM/tXTedmNBq/zMrKCt2zZ4+uVtk+vr5EX2jKFOJqKUFSUpKk1WrlF198kQoKCmI+++wzvP7669SECRPq7+8kOhoYPfrRz+++CxTWoIeNrS1xp8XGAoMGAadOkTqB5GRyT7dvlzo8MjISRqOR7tu371P/Wy+qIzBr167dCJZl4ysL9CsoPG4UrZ4KWLBgwTeyLE+jaTp/3rx51tUcO0mW5V8tLS1ha1v6/7GqsBDaNWtwYvx45Do4lHovPz8fRQVgbTiOu16T+fE8b6lWq2O6dOni2r9/fzUApKWloXnz5qZpzej1xEguXkwCqkXExcVh586d+Oijj2BZJD9R7yxfTiqAXVwevbZ0KXHp9O1b++smJwNffEEKxv74A9DpYPjqK6xcuVIePnw45eFhsmftiRAcHKyPiYmJFgThNY7j0p/2fBQaForhrwSe580AGAFYVKawyPP8vywsLBYVFhZaaLVaVFRk1fjcOTju24ern30GuUw+fFhYGACM4zhuSy3mZ6NWqw8ZjcaukiQV+64HDx4Ma2truLm5ocqKVFEk/vIffyTZNUWsW7dOtLW1xciRI+vfH37//iPl0JIPqO+/J0Hch43n68r+/cDVqwgWBNn3m2+oJtu2gerR45nSEhIEAVu3bjXevn37+9mzZ09/2vNRaFgohr8aeJ6XWZbNYhimAECYXq/fAeCmmZnZbL1e/yoAfPLJJ6AoClZWVhWvuD/7jFSwvv12qZeXL1+uKygo+L/aGP6iuTEAzGmaXiFJ0lQAHAAeIA8AHx+fqi+wfj3Jn//qq+KXcnJy8P3332P8+PFwdXWtzbQq59gx4vpavrz067m5RFSuQwfSD6CeWLl8uTjazIxxfvVVssNJSyOupjt3SObQUyAvLw9RUVHQarXIysrCunXrsoxG48scx0U9lQkpNEgUyYZqiI6OHiRJUtsePXo0at++vacgCINomp7coUOHDs2aNTPev3+fPXHiBE6cOIH79+/rPD09yzfy6NuXaPYHBJSSSbaxsWHj4+NfDA0N3afValNrOjetVitrtVohMDBwX3h4+H84jjsaHh5uCaDPiBEjql7xAyRzhqZJcPXFFwGQ+IPRaMS+fftgb28v29vb118GyoIFpMitdZmMRjMzovOTkgL0qkjDrnbExcdThjZt5DZdu1IYOZK4k7Kzye+hdWsSW8jMJD2LnwAJCQnYsGGDnJWVhcjISNnJyYmKj483BzApLCxsr1arvf9EJqLQ4HnqAa9nHYPBMISm6eXR0dGQZVl88803rT/66CPrl19+2Xzo0KHm48ePR6tWreTAwEB4eXlV7EuwsCDujPfeKxVQ9fDwgFarbcyybOTSpUs31KW4h+O4QgCgKGoYANN89BRFVDeDg4ESBWL9+vWDn58fjh49ilplD1WE0Ug6fHXpUvH7775bfeOYGuLh4UFdvXqV/GBuTrKDOnQgekGDBxPX0siRJMto0SLSiewxcvjwYbFXr174+OOPKT8/P+zcuRMtWrSQaZpWAYhZtmzZmaKG7woKjxXF8FcDx3GZs2fPngnAPSQkJH/v3r36B0UGgqIotG3bFpMnT6a0Wi06depU+er4Yd56CTcHRVHo06cP3nnnnUbdunUbyzBMPM/zdfKvyLL8L3t7+1yTT7C1Jcqav/wCpD7adPj7+0MURWnVqlVyvRj/mzeBF14g41WEry/J1ImqP49Ht27dkJWVRReWzRpSq8nDeOVK4urKzCSpt9HRpPCO502uETCVgoICZGZmMt27d6coikLfvn3pYcOGISkpiXrxxRfl2bNno02bNp4AZtTrwAoKFaAYfhPhOC7BaDR6/v3338t//PHHwhoXUVEUqejNyADOny/1loODAwYOHKhu3749BWBQHacanpaW1igtLc30Mxo1Ii6ffz3KLlWr1fjwww+Z7Ozs+nH1nDpVvT6/szOwYUO9DAeQe9BoNOKNGzcqP4iiyLgHDxI1UUtLkiGUkkJcQqdO1WkOOTk52LZtG9avXw8nJyexZLMXCwsLiKKI0NBQKicnB61bt1ar1eohdRpQQcEEFB9/DdBqtdkBAQGhoaGhMsuyfdu1a1ezzJdGjUg2zcGDxO9fRjNGFEXVjRs3Wh49evRnrVZbK4EarVYrREREvHnq1KkmPj4+UJkqedynD2mn+PffgLs7AECWZURHR8vu7u5Uo0aNajOdRyxfTpq9VyWZ0KUL2RE0bVpvGTi3bt2is7OzxQ4dOpi2yPHyIhXDNA3k5JCg/Ny5wOefE8npjh1NHjsyMhLbt29HkyZNpNatW1P+/v50SRecnZ0d+vbti6KezHRmZqafdt0MAAAgAElEQVTxzp07h8LCwnYoHbsUHifKir8WyLIccubMGTYxMRH5+fmQpBpI2bz0EjEqO3aUe6tz587Q6/VeALYWNXuvFZIkvQIAmzZtKjC5k5daTapjly0DiorRaJou/qoTWVkkqNq/f9XHWVmRFf+WWiU5VYiXlxcSExNrfgMaDUk97dSJVAnHxRHJCBMJCQnB8ePH8dprr2HMmDH0Cy+8AIcytRwA+YybN2/O3L59W+zatStrYWExDMALNZ6vgkINUFb8tUCr1SZFRETciI2N9Y2IiGh06tSpQjs7O5WdnV31J1MU0aj/4w+ymizh86YoCi4uLrh7966zIAifHz9+vG1Rv9YaOZy1Wm1qeHj4QkEQvI8fP97m+vXrBZmZmWbJycmyi4sLVWlTF3v7R9kujo4AwyAsLIzy9fWFhYUFDAYD9Hq96buIh0RGEp95QED1xzZrRgLgNVhZV0XTpk0RFhZGeXp6wsLComYn5+YSoTi9nnQQu3GD9A/YsIG8XgVxcXFQqVRi9+7daZZlq3x4Zmdn49q1a9BqtVRycrKQlpYWrdVqa6ahraBQAxTDX0sCAgIuhISErASw0Gg0HomPjx9LUZQ6JycHdnZ25Yq5ZFlGVlYWzM3NQTVpQoqZTp4kOvkljIKtrS18fHzU6enpzL1797wBrNBqtTVuXqvVamV/f/8/Q0ND12VnZ5+7c+fOtWvXrgU0btwYTk5OlZ/YqhWpO4iLA7RaJCYmShcvXpRjY2Oxf/9+Kjo6Gmq1GnZ2dmBZEzclly4RN1JbE1rPurgAHEeOr4c+uBRF4e+//xatrKzo5s1rkDQVH0+yfQoLicTExx+TfsNNm5KdSceOxG1XSSZSQUEBoqKi6NOnTyM6Ohrt27evNNPqwoULACB6enrSZ86c0efk5FwNDAwMrfndKiiYhmL464BWq32YS58UFhZ27u7du/LVq1ctDAaDtZubWykHfnJyMlavXo2WLVvCxsaG5NB/9x1ZWVdQTJSXlyffvHnztiRJ+eHh4fe0Wq3pmTql55iv1WpjAwMDQ8LDw/999epVVOs/DgggmjctW8LTz49KTEzEzZs3qSlTpsDBwUGMiIigwsPDKZVKBZeS0gsVIctEb3/4cKACV0eFxMaSh0VRbUFdSUlJoZOTk0UvLy/TXD7JyaSVZseOpPArPR0IDydS0hcvktRPnifB8A8+ILu4Mjg4OMDGxgaurq5IS0sTbWxsaEdHxwqHi46ORn5+Pt2sWTO0bdvW7Ny5c33CwsIOarXau3W6cQWFSlB8/PXEvHnzDnzxxReTDAaD/6lTp3KioqKk3Nxc8DyPX3/9FT/99BMAwNq6hPTPTz+R3P6cnHLX69GjB+Pm5tYcwA8Abi9atGh6Xfz+RXRWqVT6h+mNRqOxYm3/Zs1IIdXw4WDz8mBhYUFZWVnJ9vb26N69O/Ppp59SWq1WPnv2bPXBjbt3Scpkp06VHpKVlYW1a9eKq1evFnNyckgg1ceHrLhrgcFgKBV36dGjB27dusVUG4uRZWDJEjLf4OBHYnJubsBff5HG8mPGkJqEL78k8tYXLhDZ6DLQNA1vb2/06tULoihWGQcKCAiARqPBL7/8AltbW4wZM4ZhWfaoIuKm8LhQVvz1jFarLQgJCfkzKSnppaioKBtZlm/m5+fflCTJycHBAe7u7ijOkDEzI0Zl0aJHbRuLoCgKaWlpzK1btyhvb2+KYRh/nU73WkhIyI+1zfjQarVpx48fd7t582YHQRBUP//8M44dO4YKs3+aN4dw7Rp2HDsm3jIaqbFjx1Il+9Ta29tTp06dwr179+Dh4VF5yueRI0BgYJWGf8WKFcjJyaFbt24tHzhwgKLVasp+3TowggCqa9ca3eOuXbvkv/76izp27BiioqIQHR0t3bhxQ9LpdLSbm1vpB29JBIHUGixcSIrJ2rR59F6/fmTFP2EC8MYbxN3ToQPZwRw6RLJ+yqz8b9++jf379+P8+fNSbm4uM2jQoEorqZs0aQK9Xo/k5GR4enrC2dkZKSkpxgcPHuQGBgZG1ugDUFAwAWXF/xjgOO6GwWDwkiSpOcdxbWbPnt0NgH9qairWrl2L9PQSYowDBwLt2lXYbLxnz54UAJw/fx5eXl5mBoPBE0CdxNMMBsN7d+/eXRgaGrqToqhUAPjrr7/0BkPptr6JiYlY2aSJ7BMRQU+ztqbKuik0Gg0mT55MXb16laqyLWRsbCmZirJIkgRZlvGvf/0LI0eOZEaNGkWdOHFC3mpri/0XL0o1KR4LDQ1FXFwc9f7772PWrFl4//33MX78eLpz5860lZWV/Mcff8g5FeyukJpKfg/nz5O8/bIpp5s2EdcOQB7Qt249em/SJHKPW7eS3YAkITIyEps2bUJ2drZ869Yt+u233662kjo9PR1Go1H+4YcfEBYWJvbu3VvDMMyMIj0mBYV6RVnxPya0Wq2k1WoLSvx8Jzw8/EuGYXLOnj3rL0kS5ezsTNMsS/Lmv/0W8PMjfuQi1Go1OnfujJiYGKl169ZyZmamXpKkoKNHj27VarX6Ws5LDAgIOO7v7781MDBwRXh4+H/y8/PbXblypU2PHj1UFEUhODgYR44cQf/+/dHxpZcodu1aUnVcxpet0Whw8+ZN0WAw0G1KrpAfYjQCoaGkgbpGU+F8zp07h+TkZFmr1VIAycLp3bs31bZfPzT95BPqr+vX5buSRF29ehW7d++Wrl69KqvVaurs2bOws7MrztSJiYlBaGgoJk6cCEdHRzAMA3Nzc1hbW8PV1ZXq2bMnlZ6eLh84cADt2rV7tHu5eJHcV04O8edXlH2zZg1JRWVZoGdP4MAB8rt6GNymKMDMDHJMDLZmZEixMTHU6xMmoH///lTXrl1RsmirMtq1awd/f3/K2toaERER1KBBg6gzZ85QgiCkBgYGnq32AgoKNUBR53wK8DzvwrLsLktLS89p06apWJYlUsKHDxMZgUrSLfPz8/HVV19Jsiw35Tiugn6FtZ4PpVarkwcPHuwYHR0tFhQU0OPGjaOKs38SEoCZM4E//3xk7Io4ePCglJqaSk+cOLH8hf/+G/joI+ImKcPNmzfx4MEDhIaGSj4+PlRAQEC5m5Y//xwZDIMdrVtLDMPI3t7eTEJCgnj37l3a0tJSTk1Npa2srMQXXniB2bdvH0aOHIn27dtXep+yLCM8PFyKjo6mxowZQ7XOzCSZOmvWVN4LoLCQZBrdv//o3kePJg/CoKDiw/Ly8rB+/XrR8+RJOjAqimKuXq1VEdqPP/4oW1hYYPz48VRiYiK2b9+eI0nSd5IkhQC4xHFcjcX8FBTKohj+pwTP8xq1Wr1HrVb7ajQa2qdbN4vO+/bBzMsLGDWqwnMkScLmzZt1d+7cWTV79ux603TheZ6iKEony7LaysoK06ZNg1lJoyVJJG/9zTdJdk4Jzp49ixMnTogffPBBeZfEv/9NagM++KDcW1999ZUkiiLt5eUl9evXjzaryEgKAvDzz8SvXuZ9WZaRm5uL8PBw8fz588yQIUPk7t27myQvEREeLrOLFsl+335Llvc1bdJy5gypwi7xkImIiEB4eDg++egjWMXEkGueP09cSDUgISEB27Ztg6Wlpfziiy9SkiTh7t270pUrVwr1er0gCEI/AHEcx+lqNmkFhUcoPv6nBMdxBQaDYUBeXl6/jIyMDYdDQ2N3CkIhLl8GkpIqPIemaXTt2tWcYZj60y4mvCnL8sM+w8ZyRpimSTXt3buk9qAEtra2yM3NpaOiopBVto+vWk30iSqgdevWdIsWLcRBgwZVbPQBQKUCwsJIRk0ZKIqCtbU1hg4dysydOxemGn2IIjqlp1PNExNp2NpWb/QXLixfsevuTlw/uY8ybPv27YumTZuK23fskKS+fYGYGLKbqGFmUrt27TBnzhy0bNlS3r17NxwdHTF48GD6008/tRwxYkQTmqbP0DSdvWTJkr08zysVvgq1QlnxPyPwPK8CYPiYYdDExgZ4//0KXT4GgwFff/11QWFhoRZALAArjuNqrePO87wlgDwA+Oijj6DX61FZvjm2biWaO6dOFfvCjUYjjhw5It68eZNKT0+nWZaVra2tpXdHjWLYWbOA1asrLHK6evUqtm/fjjlz5lQ9wRMniKZRz561vcVH3LoFvPYaLkybhuPZ2eL7H35YfeD00CHSwGX8+NKvjx5N0k67dy9+yWAw4LvvvpM0Gg1ef/112tbSksQQvvqKBIiZmsVp16xZIzZr1ozp3Lkz2rVrVyyRXVBQgFOnTiEysjjhpzUAAwABgAQgg+M45T+2QqUohv8ZYvHixf+lRXHqJzEx5uZffEFy2Stg9erVOampqbMArAIgcxxX653b4sWLF7Zt2/bT0aNHm6ZncOkScPo0cfuUQZIkpKenY9u2bXJPjYbqdeMGWTGXITQ0FFFRUfD39xcDAwOrtoayTFblO3fW3CVTdt56PXDwIP5ydxdBUczIkSOrP+/mTaBFC7L7KMnduyR/f8qUUi8bjUb88ssvsLOzE4OCghjcvQtMnQr8/jt5ANbA7//3338jJCRELCwsZGxsbOTU1FSKpmk0adJEfvfdd6mCggL89ttvxry8PFEQBDOVSqWXZRmyLEOlUl3X6XTvchx3nOd5CoAjgKyHfRsUGjaKq+cZYvbs2dMFgAvx9S3E0qWVHvfgwQMLAO4AQFHU+UoPNAGGYdq2adPGdBEbV1fi9qlAZI6maTg4OKB3796Uet062VCJEmd8fLyo1WpRrdEHyK7nlVfqJo/8v/8Br71GROhmzwarUsHkBU+nTmTXURZzcxJ/yC1dUM2yLHx9fREbG8vcfPjQ2LsXOHuWuIjSTe+r3qVLF0yfPp154403YG1tjc8//xzTp09HYWGhfP/+fdjY2OCjjz5iZ8+ebTZz5kzMnj3bbM6cOWaffvqp2YABAzwARPA8/7Jard4HIBlAAc/zNiZPQOG5RTH8zxiSJK2KEQQxbc2aSo9xdnY2MgzzLgDMnz+/W13Gk2WZyq/AD33z5k3k5VXQY75RI+K6aN6cSBtUgHeXLnDKyaE23rkjVlSxKghCzQTTli0jcQ9TlUYfYjCQlo6dOwO7d5N6CQBqtZoyWbU0NZVIVpelaVNy7TL1DwDg6ekJJycnlOoDEBAA/Oc/ROfn+PEa3Ubz5s0xfvx4ytzcHFZWVqAoCkwZt1HJz9PCwgLdunXD2LFj0ahRo60Gg2HwjBkzoNFo8gDUX1NjhX8siuF/xuA4Ll+W5UO/VyFN3K9fPwuapmUAdXZ8G41G+9DQUAQHBxsf+pDT0tLw66+/4t69exWf5OlJUk9nzCjVSvIhdFIS7P7v/5BvbU2Hl0jllCQJ27Ztk3Nzc5lqNX5KwjAkNXTvXtPPkWWionnmDGBjU9xjACBqmCYRGUn6BFemrCkIwFtvVfhW48aNcevWLal4Z0HTwOuvE/G7ESOIq6iWyLJczvBXhLu7Oz755BPLWbNmwdLS8qFwYA2lVRWeRxTD/wwiiqK2XIZMCVxdXdGvXz8LMzOzL+ta2SmKYhgAnDp1iv3yyy+xfft26YcffgAAtK1KTXPWLNIu8fbt8u/FxIAVRfj17k2dPHlS/uGHH4zfffedceXKldL9+/cxdepU2Ne0wfnMmcUr9mq5eJGI4A0dSh4WJQqoYmJi5Bs3blBDKsk2KkVqKlBVpzV/f3L/FVQXDxkyBKmpqdiyZYuUkZHx6A1vb+D6deLCmjwZ0NU8K1OWZcpUZVSapqFWq/HgwQPo9XoZQA1bxyk8jyiG/9mkkqX2I7p3707Z2Nj0YVn2Ac/zvesw1pcAugD4DAAuX75c/DexatWqygOBLEvkCgYPJqmLJbl0qVhPX61WUz179mQDAgLYV155hZ46dSplY1MLN7O3NzHkVbVRBEjT+Ph4shJ3ciqVSaPT6bB//37q1VdfpUyppkVQEAnKVoadHam4Pnas3Fvm5uaYOHEinZCQQH/33XelxfCsrUmG1MaNwCefVD+PMkiShHPnzqGszEZVREVF6QGsUoK7CoBi+J9VxlMUVaWUpFqtxpQpUyw9PT0tAFTghDYNjuMkjuMucBy3AoAdy7KxAAwsy/714MEDi8OHD1duYJo0IZLLN2488r/r9aTCd+BA3L9/Hy1atBB79uyJLl26oEOHDpUKlVULy5IA7aVLlR+zejUwaBCRc/7ww0oPK9d8vTI6dCDN16vizh1g3boK32rcuHFxA5a7D107BQVASAjJBlq4kGRHvflmjVb+AQEB1KlTp5CQkGDS8Xl5ebhw4YJsNBq/MXkQhecaxfA/m9xXqVQmafF4eXmpVSrVLJ7n69gUF+A47sGcOXM6chxnZjQaRwNAVFQUlixZgqSkJFQomDZhAllhz5pFfj5zhhhftRoZGRmws7OrP5GxRYvI6rqslHRWFgk49+1LjGolq3mWZdGsWTP5/PnzpqX0rFkDvPxy1ccMG0Z89xUEizUaDebNmwetVotNmzZh3bp1Ysxbb0mGqVNJbUBAAHFJASRDyIRMo7t37yIyMlJycXGRKtRHqoD9+/cXUhT1Q13qPRSeLxTD/2xyX1OJqFlZWrVqBUdHRwZANQ1tawbHcRLI30dflmW/3rBhQ+6XX36Jw4cPl38AvPkmMfi5ucQIF8lGi6Io17hNY1WYmRHdoAMHSr++YAEQFUU6fFURNM7IyEBycjLl4+NTfZVvTg6Qlgapqm5lAGBpSXSWKsjCunnzJn7++Wf53LlzYtvERNlnyxZmT/v29JKxY4Fdu8iuRK0mO4YuXYgrK7fyfjvHjh3Dr7/+Cl9fX0yePJk2Nzev9jauX7+OxMTEXEEQ5lV7sEKDoa6NPRTqGZ7nXdVqNfz9/U3Od/T09GyUmpr6Bc/z+wE0B3CrPio3i65xHMBxnufjAKyJiorC+fPnDf7+/qyvry9NURRp3BIcTOQZ3NxIwRIAW1tb6s6dOyLqKCVdCp5/JJZ25AjRA9q3j/jNK+slXISDgwMGDhwo7969G9nZ2ZSfn1+5Y9atWyfm5OTAKT6eHvr779TKK1dgYWEhNWvWjOrRowfl4eFRvn/uiy+W8/NnZWVh8+bN6NmzJ3x9fBgzUUROfLzs7OICZ2dnCi+9RNo5AuR+fH1Ju8ljx8iDs0jGefv27ZKZmRmdkpIiPXjwgB43bhxatWpl0oJNlmXs3r27wGg0vsVxXEH1Zyg0FBTD/+zxliAIiI2NNVl0rHv37lR8fLznrVu37gqCYGdubn4QwKB6ntdamqbvS5K0q6CgQH3o0CHk5eXJAwYMIHO0sAB69AC+/564LJycMCQ4GGH37jEPXFzQ9PRpYtCyskhO/vDhxMi5uJDeurdvk4eG0Ui+HBxIqmjZHUO7diQvf9s24Nw5EsQ1JVBbhK+vL2Vra4s///wTTk5OaFWi7eXp06eRmprKeHp6oteECaBXrsQcMzMkJSXRV65ckYKDg7Fnzx7Kz8+vdPvK0aOBvDwgJYU8BAGEh4fD2tpafjEkhKLDwkgR2IwZVNeS50yaRIrTABKE/uEHUhg3ahSwaRO++/13KSMjg7azs5NtbW3lMWPGoGQznOpITk6GXq/PmD9/fvkWYQoNGsXV8+zxuSzLuHbtGmVqvjlN0xg3bpymc+fO1izLGnU63Us8z9cgUb56OI6T582btxvA1IevRUVFlX4wffkl0d1XqQBzc5g5OsLGwUE+FR4u4u5dICODVLD+739AZibJiFm/Hjh6lOjeHDhADHn37sDly+ShMHQo8d/36kWM4ujRJM2yb1/StrIC6YjqcHd3h6Ojo3jlypXi19LS0nD48GF07twZsbGxsJ03D5br14NlWbRq1QpDhgyhP/30U+r1119HVFQUgoODS9cDnDlDgtpF9OveHXR8PHXI1VXCNxXEVFu1Kn5IlCIoCOjVC8bYWEj37tFvv/02PvjgA2rs2LFMTYw+AMTFxYmiKG6t0UkKDQJFq+cZguf5vgBK+Qzmz5//sPCmWu7du4dff/01xWg0bhdFcTnHcbeqP6vmLF26dLderx9maWkpzpgxo7QbR5KIyyUqCujTBwUFBfj6668RFBSE9u3bl3eTVIUkkS+jEXjwgBRi3bsHfPEFMbQJCeQ9E3zdZYmPj8f27duhVqslW1tbSqfTUc2bN5dHjBhB/fjjj2KfU6eozsOG0WVlqAEiMBcWFiZlZGRQb7zxBrVnzx65WUoK1dndHW3HjAEA5L76KjJjYmBx6lT5moWH91VJLn5CQgLuL1mC5uHhaBUWBqYmxW4l+Oabb3KzsrJe4jguulYXUHhuUVw9zxa3GYbZLIpisRTkiRMnJD8/P5OsZWZmJiiKSps7d+60xzdFQK/XTwCQk5+fX953T9PE6L/8MpCWBo1GgwEDBmDXrl2yo6OjPHHiRNrU4iPQNPliWaJ5A5BeuB9/TAynwUBy6c+erbGAm7u7O2bMmIGkpCQ6NjZWOnPmDNWyZUsJAOPm5sZclCRj5+HDK/zc27dvj6ZNm9I//PADfv75Zzg6OsLQvr1k+957dPzJk3D38MCV6dMRc+GCNNXevvw1jhwhK/syUhnZ2dnYsGGDqNPpmHavvCIaBIFxvnYNjCiSHUINyMvLQ25uLgOgDiJHCs8ryor/GYPneTsAaRRF/S7L8hyVSnU6KCjITq1Wo7r0vS1btuTFx8d/yHHchicwzwkAfgOAadOmoWnZvrqCQAxbbi7g4gKj0YhVq1aJtra21Lhx42hTJAcqZedOstJ/7TXiEurUCViyhLh9KpOUroZbt25BkiS0bt0ah7Ztw4tjx4LW6crHGKogd9w43Ll4EaKLixys1VIuLi7i2LFjy9+oJJF4QImMoZ07d8oXLlygunbtKg4ZMoQpfjiuXUukJ3bsqNG9xcbGYu/evcdnzpxZSWsxhYaM4uN/xuA4Lp2m6ZWyLI8zMzM7Kopi423btmHTpk2PioAqQSZPcdPLOevGZgCrAeD777/HkSNHwPM87jyUOFCpgHfeKW5iwrIs3nvvPSYlJQVnzpyp22rj1CmyqwCI0ZdlYPt2ooNjIgkJCbh+/TpycnIgSRJcXV3h6uoKnU4HvZkZ/vftt2JNjD7efBONALhMnIjYN96Q9Ho9srOzGbFszQEAbN5MHlhFHDhwABcuXKBee+01DBs2jCm1I3r3XSLuFh4OXLhg8nRu374t6PX6w6bfgEJDQmm2/gwSGBh4KDw8/BzLsh2MRmNbAKBp+r8JCQldnJ2dVZXJDeTm5prduXMno2/fvhWqmfE8rw4PD6e1Wm2VVcGmoNVqodVq94WHhx8A8PZDg5+cnFzYo0cPYjFHjCANTJKTgcaNwTAM1Go1FRERAV9fX4qiKCQnJ8PMzMwk0bFievQAAgNJJhFAYgpTphB3SPfuJHDs71/hqTdv3sQvv/wiXrx4kb569aocGRlJhYeHIyoqChERETh+/DgahYairSTBceDA6oMr2dmkL6+9PRAQANX33+O0uTls27aVs7Ozpfv378seHh50qTjN11+TCt6AAABE3uHy5cvyrVu30KtXL6pcTKdlS+LOmj6d6PuYUP185MiR/Ly8vOVarbYajQuFhoji6nmGKeqFO0GW5Y0qleonQRBCAWymaRpz584tF/RNS0vDunXr8gRB6MlxXBzP874qlWovTdPbvvjiiw94nt8IYCLHcaZFi02fpxlN01slSRoOAHPnzn1kyGUZsLUFfvkFGDECkiRhxYoVUvfu3ens7GzxypUrjEajkceMGUM1b97ctAFnziSG8/vvy78XEkL8/XfukGBwkbCbTqfDli1bpHv37tF9+vSR+vTpUxxrEAQBBQUFMBgMsLOzI3LLGRmgVq2qfi59+pAHzubNAIDwmTPl202bymM//ZTW6XRYtWqV5OPjg379+lW5u5YkCYsXL8Z7771X3m32kLt3SYbTa68BFdQgPEQURSxevFiQJMmW47gKtLUVGjqK4f8HwPO85mEBDs/zqwFMbdasWd5LL71k1bp161LHnj9/Xtq3b5+epumDBoOhPUVRHaysrHQ6ne5XQRAiQFw0nTmOu1x+pDrP012lUv3u5OTkMWnSJE2x8U9PJ0HYzEzAxgZ///03IiMjRZZl5TFjxrCRkZGIiYnBoEGDpG7dulXvftywgRj+99+v/JixY8lD548/AADBwcFISEiQ33jjDcra2rruN7tlC1mJd+xI6ghoGomJiQj99lu8ERUF1ZkzAIjEwi+//II5c+aQB7XRSHz7t28/2rEAOH/+PEJCQuTp06eXX/GXpHFjEtTOz69ULjonJwfff/999uzZsxXtfYUKUXz8/wBKVl1yHPceADYlJWXqH3/8cX/9+vX5JSWcvb296WnTpll06tRpBAAPWZapqVOnWri5ub1hZmY2DgBoml7+mOYZLwiCX0pKSuSPP/6YXyxHbGdHCphcXABBQJcuXfD+++8z7777LmttbY3Bgwdj+PDhOHToEG1SgxQfn4qbo5RkyxZgyxZkzJuHG97e8rlz5+Dt7S2aZPSdnYm0c1Vs20YaqtjYADSNgoIC7NixQ/J6/XVZVVhItHgAtGjRAjRNIycnh5wnimTHUqYRTWZmJmxsbKRKjf7Ro+SaV6+SXghVpMUWFhaCYZic6m9UoaGiGP5/IBzHiRzHbTYYDC3v3bu3eN26dYXpJVr6NW7cGMOGDcPEiRMxd+5caDQaDB8+3NxoNL7EMEwuy7KPLa+b4zhBr9e/lJGRMXfNmjWFFx8aUF9fEpxkGKLgWYZOnTpBo9GIBw8erCAaWoZt24ikcXVQFPZkZ0s5/v7yh++/jwB7e9PySD//nOj+VMSIEcDKlSSz6PPPAZAV9qpVq6TWrVvDp3dvCn/9RfoSF70nSdKjituUFGDcuHKXdXFxQXJyMlNp4Puzz4CffiKZPW5upOq3EgoLC0FRVEalByg0eBTD/w+G4zhh7ty5i2/Wz40AACAASURBVHU63fs//fRTYdmOWW5ubsW+dgsLC0ydOpVt166dlSiKJjrTaz0vee7cuV8LgtBn7969d3fu3KkzGAzEYE2YQDT8K6Bjx47MgwcPqh9g6FDAlEbpAO42a0a3XbaMtv7f/0hAuDru3QP69Su3IkduLnHTvPQSMGBA8cspKSlYvXq13L59e3nUqFEkiJuaSqqSQeIudNGOAAARlBs1qtywbdu2RVBQEPbt20fllhRq+89/SN7/2bOPFFCtrUnxWgUPUAAPxzLhg1RoqCiG/zlg3rx5GwwGw7gNGzYU3rpVebGunZ0d+vTpQzEMM2nBggX1reVTDo7jYgRB8IiNjT2yd+9eIoK/ciXw22/lpZUBWFtbIz8/v/rA882bRAq6GiRJgtFoJP1oJ04kfvW0NGDgwAp75QIg8sijR5d/3dubyEK/9x5pPQkgLCwM69evh4+PjzR06FCm2E3j708CsIKANm3aoEWLFtLGjRtlg8FAVu0PU1FLYDAYEBoaKtrY2JRuBB8XR5rLlHQBWVkB0dFEAqMMgiDg0qVLkGU5pdoPSKHBohj+54T58+fvEgRh6ObNm/MjIyOlynzlzs7OePnllzXm5uZfPIl5cRyXKwjChLi4ODEtLY24Kpo3J1+7dpU61tHREdnZ2bS+kpVsMefPF7tSqoKmabAsi+SHTeHNzUnqZePGpM6gIgnkOXNKN3v54w/g/n3iV58/HwBgNBqxdu1a8fTp0xg/fjz69evHlPLN0zSRdZ47FwAwceJE2mAwyJGRkTJefx2IjS0+9KeffjIuXLgQS5cuBUVR1NSpU2FtbU3qHziOPIimTCk/z5wcEly+X1piPzMzE7GxsdDpdGOr/YAUGiyK4X+OmD9//lFBEHpGREQcXrlyZeHp06fligqInJycIAiC35IlS37meb7j454Xx3HZsiwv2LFjR0FhYSFZvW7bRpQpS6xuW7ZsiUaNGokhISFV+/lnzCDdq6ohMjISRqMRt2/fLjkIEVPLySG592V3SJMmARERj37+8kvg4EHipipy2WzcuBFGo5GeNm0aXF1dKx68Z0+iJwTyABJFEc2bN6eg0xW7kWJjY5GWlsZOnz4d8+bNw/vvv0+rWZbshvr1I1+VYW1NVvxlqnkdHBweflt9rEShwaIY/ucMjuNiv/jii0E6na7vkSNHzh06dKicT8Pe3h4ffvih2tfXdyLLsqfqW8mzIkRR/CojI+OXtWvXFmRlZRF/+9mzxHCVcLuMHj2aOXfuHFMyWF2OFSuA2bOrHO/SpUsIDw/HqFGj0Lt37/Luo8aNgStXAFdX4jt/uCtgWWKYhwwhmTQXL5KiKQCXL1/G119/DYZhxDFjxlAWZeMAJenTh2TvFLmkZFmGRqMBdu8GilJwDx8+LPbt21e2srJ6VJMRFEQ6ek2cWNzQplIsLQEvLyJzXQIvLy8dgI+qPlmhIaMY/ucUjuPOGgyGoJiYGCkvr3wNj7W1Nfr168d2797djGXZ6U9gPtKsWbOm5eXlzfvxxx8LU1NTyar4u+9KVaI6ODigRYsW8qlTpyqvLvbyIhW6lVBQUIBdu3ZhxIgR6NSpU+WTcnMjO44jR0i2jSiS+fj4AO3bAy1awGg04tixYzh06BB2796NESNGYPLkyYytrW3VN0xRxA9flH1kaWkpiytXFhv9ixcvIi8vj0lPTyf3mZdH3DbLlpE4iCnQNIlXlEkBzc3NNQC4V/FJCgqK4X+u4TjuDoD//v777/mVHUNRFIxG4xMLBM6ZM2elXq+fFRwcnAeaJoHUjz8GXn21+Jg2bdpQxZo/FdG+PWnGUgnp6elQq9Xo2NEELxZFkXhB165k92FlRQKw//0v0KEDzp49i9DQUCQmJkqjR4827ZoPmTiRrPxlGZIkISMoqDiusXfvXrlJkyYwGo3Ear/5JpG36NCBuKNMZcUKEvMo0UA+NzdXhmL4FapAkWV+zhEEYW5aWtq07OxsVKTxk5SUVAgg8UnOSZblH5OSkhbGxsbCw8OD+NVLNDXx8vLC8ePHqUOHDkkDBgygyxU17d1LUiYrkS148OABzM3NH/YMrh5RJMVYTZuSKuOUFGDyZEidOuFcero89LXX0K1nz5ovktq0IVlA5uYQBAG527Zhrbk5sg4eBE3T1ODBg9HaaKRx8CCwaZNJzdYrZOpUYNUq0vgdgCiKFAATKuEUGirKiv85h+M4iWXZsOvXr5d6PScnB9u3by9MSUl5AGD/E56Tjqbp6Tt27MgNDQ01yt26kUCmlxdw5AgaN26Md955hzp37v/ZO/OwqMr2j3+fc2aYYQcBAREQUVkERVTABcEt933J3bIytU1t0TQbT/WW9qvM8k1LK7fMJRVXxFQEUVEURDZRBETZVPZtmJlznt8fDyAIuGT1Ws7nuuYC5uxnmPs8z71871iycuVKnDlzpqHbZ/RoVg/QBGq1GqGhobRz586PZkVFkfnzv/ySdcTasIHJQcyZA7Rrh6H79hG7t99mI/WwMLbscfDzA2JiMHToUN7tyBGMNDXF2LFjUV1djby8PAk//MBy/hWKP9RQBgDTJaox+gCgVCopgEfvR6nnmUOvzvkMcPz4cUNCyAAvLy8DACgsLMTatWvVBQUFa7Ra7aT/RSPuwMDAuPDw8J9yc3OHlpSUmLfv0EFGqqqYz9rYGEZGRujatSuJjIzEjRs3SHx8vHThwgUqSRJsU1MJf+0aM6r3cebMGZSXl9Px48c/WO5Tp2MGd/16FigeNYrFGs6eZXn21dUgb76JfWZmUpWnJ3V1duZw9Chr7l5YyHoHt2jBWk0+iD59gCtXYD1gAEzeegsmwcGwsLCAeVQUtOvXk6JFi6jdwoVPLprn48MKugICkJycrCkqKgoLDg5OefiGep5F9K6eZ4PD169f/yYtLQ35+fk0MjJSTSl9e8mSJWv/lyelUqnyBUHolZCQENeiRQvnnm+/zePyZTYCj46GJEngOA6TJ09GWVkZV1FRgejoaFFz4ADvZW5OW7z+eiODWVhYCGtr6we7eS5fZoY7Opo1cHFxYb1/KytZBk9BAQs8R0eDUopyGxvW4zcwkDWYOXCAPRwyMthPX1/We8DcvFGgFTIZmy0olSxwm5gIjuPQydUVyWFh9OatW1Lnzp2foCtNDf/5T53rKz093QyAN4A9T7xfPf9K9CP+Z4Dg4ODyiIiI1JSUlJ5ZWVlHNRrNjGXLlh36X58XAAQHB1efOHFib3p6+tvR0dG01+DBhFy9CgwejMOhobri4mISEBBAXF1d4eTkhICAAC7N3BwXTE0lnyZaUsbExMDa2pq4uroSURQb9vjV6YDISKax07kzK7CytGTL4uOZ4fT1ZUa0TRtg3jy4LF1KDp84wbVr1w6mpqZMa8jDA+jfnwWEXV1ZRfAPPzBJaI2GxR+cnO49BKys2MvAAEhLAxYuxE+entJ5Gxvu+eef5xQKxZPfyA4dgC1boC0qwikWGD8RHBwc+bDN9Dyb6GWZ9TwVCILQhef5MA8PD9NRo0YpudWrER0SgpIlSzCknraPTqdDzKhRUovycuJw6BAxNjZu0Jfg+++/Fzt16sTb2Nhg27ZtMDc3l/z9/WmAUslj0SKWW+/mxhQ4a7lxg80yEhOZsfb1Zb5+jQawssLR9HR6MTaWTJ06FU7NZdxQyuoCCgvZtpGRwP/9H2BhwQTfBgxgBV2FhUB4OJJ79MCRI0dEtVrNe3l5id27d+fLyspoaWkp3NzciKmp6ePfxKlTES1J2uNeXolLly71ffwd6HlW0Bt+PU8NgiAYGRgYhHh5eQWOqKpSFiYk4DuFAosXL0Zt05SzZ8/i1vffw0Emo8ednYmVlZX00ksv1Y2av/nmG13fvn1lMpkMhw4dkmzNzTmrkBD0GTUKJoaGLCh8vztm5UrmwqmRWMCNG0zSwd6exRGmTcMpX1+cOnUK06ZNg5OTEyiluHz5Mm7duiW1bt2a69SpU8PGOEVFQHg4M/aGhkzugefZrKMeN2/exIkTJ6ScnBxOU6+QbcaMGbi/18LDoJTio+XLIddqE5Z8+mmnx9pYzzOFPqtHz1ODSqWq1Gg0Uy9dusRF2NoiOiBAHL19OwpPn65bRy6Xo9jQEBXW1nTBggWoqqqiV+sJtmm1WmJsbIzq6mpI5eVct6++gl1ODr7LzESclxelAC5fvoz6RhaUMh99LZGRwBtvAISA/vgj0LkzArt2RZcuXbB//36an5+P0NBQ8ciRI7S4uJg7cuSIdOzYsYYSCZaWrDbhtdcaau0kNex/4+joiJkzZ3KLFi3CgAEDMH78ePj4+GDv3r1Ud99Doilu376N+oqm07ZuxYs//WT80A31PNPoffx6niqCg4MrT5482e7WrVs+PM/DPzeXWPXvDzg4AGBCbl2SktDu9m1iMGYMKioquPDwcGRnZ4tHjx4lGo2GC+jaFW23bIH7li3YMWYMkry9YWFnJ9rY2HCSJGHHjh24dOkSdXJyImY5OcCePQ1nAvb2kM6cwabCQulIbCzpaWYGbu5cuH70EeLi48Xo6Ghy9+5dvPLKK5yfnx9u3LiB4uJi6uPj03AgdfIky+oZPJgpbD7/PJNsCAlh0tT1mrkTQuDk5ISWLVvC3d0d586dk+Li4qDVamFkZEQMDQ2RkZGB48ePiyEhIVx0dLQUGxtLT58+TS5cuIDq6mq4uLjgqqOjtN/ZeXvv4OC/NUVXzz8LfVaPnqeRhQCenzhxotLohReYlMFLLwE//siCtePHM4kDAAMHDoSrqyvi4uJ4nU4Hm7Q0XP7gAyrLyiIXx41DlbExWrRoIVZUVBBHR0colUrwPA9HR0eyYcMGzHR3h3NQUJ2bprKyEomZmaioqKBcSgo0Rkb4MikJr3t4wKi4GHPmzKn9ztT5dXJycui4cePuZeb8+iuwYwcTg7tyBTh0CHj7bVYNnJPD0kBTUoCOHVn+fhPMmTOHP3v2LOLj48WIiAieUgqZTEZbtWrF63Q6aLVazsvLC61bt6aWlpZk9+7d9Ny5c8Te3h6+589PAiGloPT9v+TT0fOPR+/q0fPUoVKpCuVyeVKdnLJGwwxorVxzTAwQGlq3ftu2bTFuyBDY5OdLIw4dgo2jI+n8229Y8PnnAAAXFxdeo9FwdnZ2iIqKEk1NTcX+/fvD0sKCyhcuhNr3Xhx0586d4unTpyVXjYZMNTLiVCoVrO3sdF86OqJ41Cgmz3wfMpmMarValrGTnMyUM3v3ZiN6W1vWNKVdOxZD2LWLzQBKS5lWUHR0k/dAqVSib9++mDdvHr948WK88MILePfdd0ltV7UOHTpIcXFxsLGxIa1bt8Zbb71FnnvuOWRnZ3OlSmWLagODZmU69OjRj/j1PK0o5LWuECcn4PRp4OhR1iErP79hI5aLF6FZsgTWxsacaWIibK2t6xa1bNkS1tbWkMvliIyMREpKCjdv3jxibm6ODlotkZmYwNDHBwBQXl6OW7du8fPnz4fJmDF1gdhZs2bJvvjiCynFyYl4HT1KTOt14AIAhYEBykpLmS8/KIiN7IcNYwtzcpiRd3dn7qrgYKa1v3w5E4RzdmYVwQMHNttHl+M4ONS4umr/7tatG5eRkXGvpSOA7t27w9bWFhs3bsQdG5vtcwjxAaWX/uD91/MvRj/i1/NUQik1Nqin2gkAOH+eBV5nzwZWrAAqKlgv2vJy3B4+HJe7dkXxfZ215s6dC19fX5ibm+uuXLkijh07lhgaGiI2Nhb81atS/NSpIgiBKIrYvXu31LJlS9HExITl3XfvXjfLmDhxIndj9Giyq6oKWTNm0NrgcGleHiZ89BFvfeoUcO4cM/r12buX6f4TwmYCcjmbDaxZw3SBjI1ZIHnTpke+N1lZWQgJCZGCgoJofcNPCKnrD9AxMfEagEdoTKznWUQ/4tfztHL9ypUrjvb29vf+R2vTLYcPZ6mRbm5sVO7tjdZBQfA/dgybNm3ClClTGjRIMTAwqPPNX7t2DV988QWMjYzooMRE4jhrFgcwbfy7d++SN954g/nqr11jo/QaH7yjoyPatWtHT8TFEdMdO8iPy5ZhVFERtru6Sv3GjUPnV1/l6gdrAbBsoc2bWfC4lsOHWb1A586su1fr1kBsLFt38mSW9unh0exNkSQJP//8MwBwAQEBTa5jY2ODE/3748TAgS+rHu1e63nG0I/49TyVqNXqGWfPnq3IzMxsuIBSlhJ57Bgrxlq1igVLAQwYMAB9+vTBL7/8grS0xoKjCQkJ2L17N+3Xrx99a8YM4t6zJzH29wfARtHe3t6cXC5nlbs5Ocy9VMO2bdvEY8eOYczLL8PyyhWMvHsXspAQ6AoKuFBHR+77LVukoqKihv1yL19mjVXquWlQUMACvaamTFHT1JTJR5iYMMmHCxcaSCzfD8dxUCgUFGDFbE0xevRogOPgkZh4jhJy4YE3Ws8ziT6dU8/fiiAIfSIjI6edPHkyKTg4uFkLFxwcXB4eHp5848aNEf7+/vd8PoQw5cySEuDgQSauVg8nJyfk5eUhIyND7Ny5c4OBze7duyVDQ0Nu1KhRhHz2GdPfr9G3MTY25o4dO4bo48fh/v33yB8xAtTGBjzPIywsTExNTeUWLFhAbH/5BZgxA4YuLkivqIDHxx/D19cXeXl59PfffyeRkZG4ePEitbGxIS1iYlg+f6d6tVRWVuxnx46s7/DWrayv7oQJTGHTy4vNZGSyJkXoSktLERsbC61WS7y9vWFs3DhlX6lU4tSpU6g0NESZhYXhL2lp3wQHBz+8KEDPM4Pe1aPnb0WpVK6UJMmfEOIDYMKD1qWUHiwvL1enp6ebtG3btv5OmI8/MpKJqn3/fQNJ49zcXDEgIKCR8FmrVq04nU4nEoDHvn3M/16Du7s7vFJTaQeNhpxZuxZXU1NFTUICp9VqiZmZGd4SRaL87jtgyhRgwgQQCwtEffwxxl29CvvRo9GmTRsOYOmgsbGxZOf27ZiWmkod33+fgFLs379fTE5O5k1MTOg4hYLYL10KsmoVsHgx6z+cksKMPs+D7t6Nc9HRYtXSpaTv4sUc6sk3HDhwgFZWVpIXXnihfn/dBsjlclhaWpYXAdvjvbxe7h4dXSYIgp1KpXpAP0s9T4IgCEoABgAqAXwKIBDANgCxAC6qVCp1vXUtAJgC6COTyXrpdLqfVSpVzN95vvoRv56/lVOnTkkajWY0IcQgPDycj4iISAoODm7UFxgAgoODaURExLWkpKTBGRkZOnNzcwMLCwu2kOdZtk9SEkuRHDYMIARxcXGIj4/ngoKCYGZmBoAJt124cAEpKSm0e/fusC8sJHB1bdTTtuXXX5NLSiXsBg/GhAkTuMDAQBLo7IwePXpwBidOAC1bsm3MzbH34EGY3bkjdV+zhpDRo1ngFszoOjk5ob0kAatXk59tbWlWVhbS0tLItGnTCM/zJCYykrbZvp1cDgyk1i1bkqTSUokbPZpQd3fwrq74Ztcueq2sjPTeuJEzTkwEX687WWlpKbl16xacnZ2pra1ts3LOpqamBmlpaeYuqak7gyIj/eJ69Wob2KfPrif57PQ0RhCEjufOnQuTJGkVx3HvUUqXA+gFoHWnTp365ufnzwbwQURExPKIiIhlERERIoCjABYAGCtJUne5XD71xIkTR4ODg3P+rvPWa/Xo+VsRBIEAWALgk5q3hqtUqgcqhQqCYAJgibW19RuvvfaaSYOFksRG/qtWAZs3Q2dsjF27dkkZGRlccHAw7dGjB1m3bh1u376N5557TurRoweHr79mM4Q5c9g+EhMBQYC4ZQs+X7UKdWJsWi3T61m1irVRrMf+/ftRXl4uTmnVikebNuwhVD8d8/33IXl64oyLCzIyMjB48GDY2NjUnLKEyzt2IC45WcxRKnlKKbxu3aJanY5kOzmBmpqKCxYs4L9dvVrs2bkz33XPHqBnT2DSJADA3r17odPpxAkTJjQr50wpxcGDB6tiY2MNAYAn5P8++PDD9x7y8eh5AIIgmAJwrX0ZGhr21+l0gYMGDVJ6e3sTAwMD6HQ68DxfVxCoVqtx4sQJxMQ0PaAfNWqUSAjhDx06VMBx3BeLFy9e8Xdci97Vo+dvRaVSUUEQVgAIB3BXpVJdfYRtyj/77LNWnp6ejbuecByTRThzBvjqK8jefReTJ0/mrl+/ju3bt5M2bdrAwsKC2traSj169OAhSSx4WpNnf+vWLejWr0d1WRnd9803xNDQUHTiOB6dOjHd/WvX7kk316NDhw4ICQnhMWUK0K8f6yC2bBlbWHMMbuBA9LazQ+/eve87ZQ4+qanwKSriM95+G1u2bMGI//6XZM2fj0FxcTD57TceANw8PPiYK1ckZwsLzjw2FvIRI1Ck0SAlJQWUUr62X0FTEEIwfPhww9jYWFgUFODNb799AyrVUlCqb8n4EARB6AigCyGkvUKh8CaEuGm1Wkee55WmpqZVLVq0QMuWLY3s7e1lLi4uqK+kWismWItSqcTQoUMxdOhQ7N69GxzHiUOHDuVLS0thaGgIExMTnlIKjUZjFR4ePhWA3vDr+XeiUqlEAGceZxudTndLkqSmF3Ic8P77wKFD0EyejJgXX0RyQQE1MDAgVlZWyMzMhCRJ/NmzZ9GuoADWJ0+CvP8+qFoN9eDBCB81SrJ65RVuuKMjPK9d42FuzlJGHRxYkLUekiQhIiIC586do126dJEA8Pj+e5aSqdEwzf3ERNaZy86u+euZNg2JGzagIicHHMchLi4O3VasYKJuhYWAjQ169uyJixcvct8rFHBq356OHjyYVAAwHDtWLC0t5fPy8nD69Glp5MiRTWr61+j/0CwWEg/UG/3mEQTBEsBwhUKxyNDQ0MXJyUm0sbExtrKy4iwtLdGiRQuYmJiAECJ/6M4eACEECoWibvZX+56TkxMkSTIXBIGoVKq/3A2jN/x6/hHwPG+mUCiaTz8mBBg2DJc2bULlzp203YgRtMuECUShUMDHxwclJSU4f/68jt+1S3bezg7Ve/aIXuXlPDQavPjhh5yM54F165iW/vPPA59+2uRhNmzYoKuoqOBHjRpF3N3dmaulfXuWktmzJ5t51Eo0PICw1FTYnj6NgqoqqX3PntTDw4OHsTGwYQNK2rfH7qFDaUGbNlSj0XB9+vRBWloa3da/v+RQWkqGtGjBJ2m14vr163kAXF5eHn355ZeJoaFho+NMnjyZrFq1Sr1pxgzdTEL2ABgHvX+3DkEQLAwMDD7jef5FJycnrZ+fn0mHDh2anUk9CQ+67RYWFpDL5TY6nU4FYPmffvD70Bt+PU89H330UV+ZTPaCo6Nj3XvXrl3DyZMnJW9v73uFTIQgbcwYeMbHw+fQIQ69egEWFhgyZAhzuOp0Mmi1yOjfH7pFi/hER0cpYdo07p1p0yArKQGOHGEj7vv1+muIjY1FQUGBbN68eTA3v6+XedeuQLduQHY2k2M43Lw4plqtxqVLl/Cquzu6KRQcnn/+3kKZDBGdOqFLZiZRvPYacXNzA8/z6Nu37z1L9N57cA8L4wdEROB6ejoOHDhAEhMT0b1790bHUiqV6Nmzp/wspR8CsARgDeDOg+73s4IgCL1lMtkhT09Pg4EDByqMjIz+hFZozaPT6SC/v8ivhppucVQUxb9FYkNv+PU81QiC4CSTyfY9//zzpkqlEmvWrBG1Wi3UajXv4+NDwsPDcfHiRbF///68u7s7ysrKxPx+/QgyMgjOn2eVvbWj7/PngatX4fLSS0BVFdrb2XGjBgwAN2gQy9h5wCgvPz8fR44cwbhx4xobfUqZWuj77zMN/vJyJs2QlwdcvAhpyBBs/b//0xVrtZyBtTWllPImJiaS9Zo1HM6dYzGBmmMXFhbicrduGODlBaO1a5mez/18/jmgUsH8xx9heuYMLHr0oN7e3s1m+AQEBPBnzpwZLCxf7qtavrzxtODZ5ZStrS1G3VcL8legVquRkZFBx48f32RA/vLly6iqqooCsP8vPxnoDb+epxhBELx4nj8aGBho5ODggG+++Uby9PQkbdq04VxdXWFoaEj8/Pxw+fJlfu/evRgyZAhu377NT506FRg0CNiyhUkgqFSsKKq4mGnvLF/OumP17w+uZ897gmrNIJWVYe+330oD7OzgFhvLIS6O7ScujimFduzIKm8LC4H0dGbECwuZr3/JEhyTy/Hcd9/JlN7eSF26FH69e+PqgQME337LHhYzZgCff45yhQLr16+nfv7+klFAAI///Ie5jdq3b3ROmXfu4HRiIu2UkkI6TppElRxHACA5ORkajQaurq51QUeFQoHevXsbnD516jMAg0FIL1Aa+6d/YP8gBEEYALD+Dn8Hu3fvlhwcHGj79u0bGX5RFBEbG1uu1Wr/q1Kpmglk/bnoDb+epxaO454XRdE+PDycRkZGwsXFBcOGDePqtzi0srJC3759YWlpSQ8fPkzkcvk9xcrp05lBjo5mgm5vvcWao//2G/Dyy0BEBDPgeXmsVWJKClPSpJT9PHwYUKtR7eUFr/h4rouTE2tq3qkTmyG4uABvvsmCwAoFk2OoTRVVKgFPT6hHjsTFVato+5MniZ2LC/wpBW7cgJuBAcGaNSxdVBSBYcNQ0rIl2nl60oFdu/IwM2PxgqVLmepnvZhBQkIC9uzZgw59+8Jq+XJ0WLeOgyCgOjISu3fvBs/ztE+fPqR+NlHXrl35iIiIIbccHKxa37r1zEs2y2SyqTqdroHq6SNT69LLzX2k1XNzc5GZmcnNnTu30bKatNvq0tLSGAAHH/9k/hh6w6/nqWXZsmXLBEFYDsCU47isgIAAU9KM/93Hx4e0bdsWWVlZDReMGcMM/cSJrAvWwoVMpmH7djbS79aNGXKtlunz9O3LjLGZGfu9bVsYGhsjZcMGMdfCAg/Kncfo0Ux64c03694qKSmBJEnk1q1boouLCw9C2INm+XLgnXfYA8PQRQMn6QAAIABJREFUEPGEIPnbb6l5bi5HZs9mhn76dPaAWbgQ2H/PA2Bvbw8A6Nq1K2nVqhVihw+nqRkZpEClgodWK5b4+JCEhATY2NgQNzc3AICRkRGsrKx0m+bOXbiUkOEAXgOlz6yOj1wu76LT6dBIAfZhZGUBP/wA3L79SKvHxMTg+PHjNCAggLZo0aKBL5FSisjISDE5OTlbo9GMAmApCIKxSqW68Xgn9fjoDb+ep5KaQq/eANx5nvcGIK+fL90UZmZm8PLyarxg/Hgmg3z9OhN08/Fhhv2NNx7q26/F0NCQ1O9t2whKWYHViy82eNvW1hbTp0/H5s2b+d49e4KcP8+Ou3kz4OmJ7CNHkLl8OT09cCDp9dJL6Nq1K6szyMhgBl8uZ3GDjz+uqxPYu3ev6OHhgQ4dOvBnzpyRTp48yfFeXnC6dAkjjx3jdcuW4Vh0NHbu3Il3330Xyho5i6lTpxqvX79+caq7+0m3K1cKH3rR/2J0Op2LsbExfvvtN4SEhOC1117DnTt30L4Jt1odISEs+H/9OnMdBgezWaFR4/KSO3fuYMeOHWJlZSU/fPhw0rFjxwYjlqqqKuzYsaMyNzc3Q6PRfEkIKaSUygghmwHM/JMvtxF6w6/nqUMQBF6hUJxSKBTezs7OXIsWLQx9fHxInVzDH6FrVzYSHzOGGd7PP2/yC9sUCQkJuH79Oudfo+TZJM8/D3zySZP7dHJygqFOh8r//AfG8fFM9bMm7/7KxYvwu3yZBBw5Ap7nmXFQKlnR2NGjTJLi4EEWp/j9d+D4cVRVVsLCwoJbt26dVFRURPr27YujR4/iZpcuFOvWkZOCoHP9/XfZlUmTGqQlmpmZYdasWUYbJCm4+5EjrwUT8gUofTR/xb8MjuMqpkyZYkYpxa5du+jq1asJALzyyito1apV4w2Ki1kfhf377+lCWVszF2G9z1yn02Hfvn30ypUrpEuXLujfvz/ur7GglGLPnj2VOTk5O7Va7WtyuTzd19dXdv78eQ2l9LW/7qrvoTf8ep5GZBqNxm/GjBl8k1/Cx0WnY9W1w4Yx331UFPvZjOHPycnB7t27RbVaTSil0Gq1nI2NDc6dOwcbGxt07doVWVlZOHjwoFhdXY3Jzz3H2129yrT1myItDb6XL0sZajXxOniQ1J9h5Dk64tw330gDCGl62uHmxkb9MTEsIL1mDeatWMF/+uqraNu+Pby8vEhERATt0qULHTlyJAcANywsiH/Llnhh/HgYVFSAyuV1EgKWlpZ48cUXjegXX8xP7NjRzAt45Ulu7T8VjuPuVFdX27u4uGD+/PmksrIS58+fl7Zt24b58+dzDSpwq6qYe/A//2Gzr1p++w04cYL9fzk7Iz4+HmFhYZK5uTlefvllYmtr26RbMC4ujmZlZeVotdo5ABy0Wq1tQkJCJYDxKpWq/K+9coZepE3PU0dwcLAYERGRfu3atcF+fn7yJy6mOXuW+dPnzGEj7TlzWIWtkxN7INjbIz8/HydPnsTx48fFs2fPcj4+Pujbty/n4+NDgoKC0KNHD9y4cYMmJSWRGzduIDo6WmrTpg1nYGBAqvfupW127yb1FULriIsDPvsMpr6+ZJOdHcm/fVvy9PQkhBBs3LhRdyMrixu3ZAkp9PGBaVNuBkEAfv4Z2LePdfI6eRLcf/+LoAkT0GnwYHJZrZZuGhtzEydOrCvgOh0XR+VTphC3oiJS2acP1t6+jdzKStHe3p5TKpUwMjJC+YwZZIcoeoSHh18OCgp6qGzGv43IyMiPevbsaWxU8/CvEdcjycnJ9MqVK7Rz587sSUkpq8i2smJxovtjTJMno7KoCBuuXhUTExO5QYMGkWHDhpH6ndHqU1xcjF9//VWt1Wr7q1Sq3IiIiBIAH4qi+OaHH364/a+85vroDb+ep5KgoKDLkZGRL7Vp08ayUd7846JQsI5X9aWdeR4wN0e8vT3CVq0STyYncwqFQvTw8OCHDBmCjh07EjMzM5iamsLAwACEEDg4OJDi4mLR1NSUmpmZYfjw4Zx1bCxp/fXXxPCdd5CWno6SkhKYmpqCIwT45RfmppkzB0YTJ6KyshKXL18m2dnZkqenJzl69CiZMWMGqc7NpQdu3SInEhKkyspK4urqys5Ro2HpoW+9BVhYMNfCu++ybKLevYGAAKjd3Ei7TZuocu1amM6dSwDA0tKSO3r0KCKzssidli3pqPnzScXPP2NnaipxcHCokx/we+89udn16+M33LoVFhwcnP1kN/mfgyAInCRJnw4YMIDj+XuDckII2rdvT44fP06MjY1ZEH3JEuCbb4D/+79GRl+SJBxs2RL7i4rQoXVrOnnGDM7R0RHNJSAAQFRUlC47O/v7ZcuWbQaYAm1wcLAQFBR08S+63CbRu3r0PLVIknQ8IyPDxdHRsflv0qPw3XeNJJgB4M6oUQhZswZL167l6bZtkI8Y0XzGDlhLwwZZPZSC690b22fORNXq1aJWq+U5jgMtK0Pf0lKp2507XPqrr6Ktry8qy8uRkJBA+/XrRyIjI7m1a9dKNjY2cHBwINxrr5HJhYXIsLXlQkND6cCBA4lUVYVyX18cGj5cLBZFTJ48mbdwdAR+/JHNIq5fBwID0QnAb7GxtDI3F61ycwkGDoRbSAgWL15M9u3bB8ehQ0lLjoNlWBiXOnZsA0ExxYoVMON5uTwy8pAgCB7PkF4/z3GcVq1W8/dX0pqZmWHMmDHYu3cvdXVxIeZdu7LkgPtISUnBwYMHJSMjI7yen8+Z/forj4kTH3rgO3fuVGm12r9Ve78p9K0X9Ty1aDSa1VFRUVUPzKZ5FA4frmuaXh+5XA5OJsPKN9/EnspK6e7MmZASEx99v1u2oNXEiRj37rsYMmQI//bbb+O9ceMw+/ZtVCQmcp97eGB3dDRWrlxJ//vf/9L27dtLvXv3hrOzs1RWVsZNmTKF4zgOOHoU5rt2odZVc+fOHZzavBk3TE3hOn48r1arudjYmnqrsWPZ9YwZA4BJV1wVRa7zRx9xsLJimUUtWwLz5mFUUhJ8fX1RbmeHr+fMoT0GDqS2EyYAd2oUG4KC4HbjBoaWl1soFIq9giA88MH3L4Ljef5ufn5+kwvd3d3ha2MjoX17SEFBLDGghtLSUqxfv14MCQlBcHAwmTt3Lmf20UfA7t2PdOCrV6+aAvj4z7iIJ0Hv6tHz1BIcHHwnIiKiLD09vY+vr6/BH/L1azSsPaOPT6OpulKphLGxMbQAlSSJWG/dSgpdXGDVpUuzej0NKCwEevSASbdusLGxAR8eDpw9C6WjI8iCBQjo1QsDBw6Eq6srsbKyIn379uU4jkNSUhItLCwkfn5+LOPDxQXw8UELd3eUlJTQ62vWUPvQUGL866/w7tQJ4eHhJCsrC2fPnqUXLlyQXBcv5ozPnAHatMG2qCixS5cunIeHB3Nf9enDXFt37zL3kIEBKmfORLKrK0a88AKTsejcmfmujY2BjRvRUqnkUmxtrcrLy3OCg4P/Fq2Y/xWCILRWKBThbdu2bR0YGChvzi3jbGDAxScl0Ut2dnBzcyOSJCEsLAz79u1D69at6bRp07g2bdoQQgjL8ikrA557Dpg1q9n04KysLFy6dAkALIKDg4W/7iofjt7w63mqCQ8PjxFFsb9arXZwdXV9/BFpaCir0q1tunIfrVq1QufOnUlSUhJiOnQgvadOhWFAACvoelD65s6drHJz6lRmRH/9FQgLAwYOBBk7FhaWljAyMgIhBKampnBwcKhLrQwNDaVTp04lda0T1WrgpZdAXnwRzs7OxGjFChj064d2EycSQggsLCyoq6sr+vTpQ3Q6HQ6HhyNw/HiCwYOR0akTl1JQgFatWkGSJNQGK+Hjwwx8RQVw7Bgi7exI4MGDzG3h6MiK1rp0AebOBenbF4ZarUF6dnaL3r17//zY9/gfxNmzZy/37NnTdejQoYpmffFTp4I3N4fBwoUkLCyMSJKEPXv2SEVFRZg4cSLp2bMn16jwy9QUOHcOGDyYZWHVQ5IkZGVlYcuWLRpKKQ9gdHBwcOpfc4WPht7Vo+epRqVS0erq6kkXLlwo2Ldvn7q6CZfNA3F0BN5++6Gr2djYEIVCQS0sLFg/3ylTgIQEoLKy6Q127WIpoZWVLAB4+zbT3QkMfOBxKisroVaruQZSARYWwJUrgFYL5erVaPfLL6T9ypWk1jB5e3sTX19fYmNjg4qKCiJJEvkyPl666uYGx+homJmYYMuWLVizZg3i4+MbHO+uiQnW9etH27RrJ6KwkFUN37rF6g66dGEicFOmwP3116HVav1qukz9KxEEwVQUxVaBgYGyZo2+Tsdme35+sLW1hb+/Pz116hQCAgLI66+/TpydnZveTiZj2VebN7OZYD2SkpKwceNGSJJ0B8BKQsikP/fKHh+94dfz1KNSqe5otVr35OTkQ7t27XqozkxxcTG2bduGtLQ0psjp74/S0lI028gFQL9+/VBeXo7k5GQUBQSwDJoXX2TG/H4SE4G1a4Fx41ghmIkJ09OpJxvdHEqlEjzPo7L+A0WhYLo8Fy8yw1HTpOPEiRPYvHmzWLvalStXkJiYSDp27EiHDx/OJalUol9aGuaeP49FixYhODgYISEhiIuLq9t1TEwMSkpKSM9evXj8/DMz+LduAfHxzFh9/jnQqRO406fh4OBQDWDwQy/in4unhYVFVbMuw6NHgZdeArZurdNGMjMzIy1atJB69epF6mcANaA25fPzz4H33mP3th61tSiUUgcAiyilesOvR8+joFKpSjUazcuZmZmy0tLSB667ZcsWsaqqiu7atQvFS5bgtx9+EFevXo1vv/1W1Ol0TW7DcRwsLCzEgwcP0i1btrCOGefOsX67X33FlD4B9iWfPLlOGhldu7IRfxNNUJpCp9NBJpPR7Oz7sidfeQXYtg04fhySXI6LW7fiTHg4Ks+c4U+tWAFUVcHz1CnYFxXRO7//TsRFi6ThQUG8PCAA2LkTypwcBAUFwcTEBIcPH8aJEycgSRKGDBkCGxsbMT09/V4jkFGjgJMnWUzA2hrw8ABcXTFu1SozhUIx9ZEu5J+Jl52dXfPuwpQUoE2bBm9RSptOz1Sr2YwwNpa51X76iQn4bdsGBAU1WNXKygpj6xV+cRy37Imu4k9Ab/j1/GNQqVTFhJD/bNq0qfL69esoLi6uW1ZaWorY2Fj88MMPUmlpKR8UFEQWzJ+PpG++kSyfe4689dZbMDU1JT/++GPTlh/A3LlzZd27dyd1BpLnWaCuoIC9KGWvwYMBW1sWOxgxomEgWKNhZfwAsGcPiwOkpwPz56O0uBjnBw+mA6OiYGtuzpRCIyKY0Th+nLldfH1xMzCQes6ejVnGxpiQkYHWP/1ENaWlwNatsC0ooP19fID0dBJz+rSE7t2Ze2nIEECrxcyZM9G7d2+cOnUKGzZskACge/fu/Llz5+gvv/winT17FiUlJUwRND2dVaMmJwPFxTBNSMDEH34Y/tmSJS1AiNlf8BH+T5HJZL3t7e2NGy2QJPZZjhvHCubq0cDwV1Wx2cC1a8CAAWxG2L49+/xefZWJ9A0f3mRw98aNG+p7h5P+tkKt5tDn8ev5R6HT6T4pLi7O27p16w8AMGXKFBw9elQsKiriDQwM4OPjg0mTJsHMzAzYtAm9tm/nEBoKAAgKCuJCQkKYVZck9iouRmZ6OiLPnpWq09NJpaEhGdOjB8HRoyw4GhkJ9OrF3C9+fsCFC2yEHBoKTJvGRuodOjA5iJQUZgyys4FLl4AFC9iMwckJuHQJsefOQWNpid7DhhHY2THJZS8vphD666/M5dOlCzSXL5NijYa2+uorQq2tcdvMjFw7dQodFy3C7YsXJXWvXpzZkCFk35Yt4Pv1o/5vvUWonR3yv/wSF729pfj4eM7Y2Fjy9/fnAKB79+5wc3Ehm7/+mhRs3467xcXUfMECgu++YwHsqVOBkSNBfvgBOd7eum579mRKgJIjRAGgDYDMf3K7RkEQZAYGBl8bGhpO7NixY+MV0tJYbYS1daNFlFJ0PHmSqXL268f8+G3bMrdQbSC9Xrpnc6Smpta/f0/Ut/fPgPyDP089zzCCINgCGMfz/KeiKJr7+PjA3d0djo6O9zJbdu1iCpfOzsAbb6Dkyy+RZmFBu/I8oZmZIKtXg86ejWxRROHEibR9UhIp9fdHy5wckIKCe1WbrVuzStnQUFaNa2XFRn3ffcfSJ11cmJiary+bJTThGkhOTkZISAgmT54MFxeXpi+KUsDfH/kdOuCnjh3hXFoqdtZq+dzycol3c+P6JiTgSnIyNXd1JfYmJsgZMgSnd+2C3eDBSC0okJ7/8ENu98SJ8Fu4EJ4eHmw2ERUFeHkh8733aLG9PSlzcaE+gwcT06FDmUJpLdnZLG7xyScoCQ5GdkGBetf48caq5ctTAIQAWAagMyj9nxcfPQ6CINgrFIqdtra2vpMmTTJq1Jf4t99YWuvgwfc+N7Wa+ek//BDJQ4dCHRpKfQcPJpg//w+fR3Z2Nvbv3y/dvXv342XLli3/41f056A3/Hr+0QiCYABgklKpHKvT6Xw6derkNGTIECKTyZghjYlhBq51a8QcP44L166Jnp0786fOnkW7Dh2Qnp4OJycncerUqfyDSu3rEEU25d+zh7VYnDfvoZvcvHkTW7ZswciRI5uWjS4uZqPIu3eBggKEb96MkpISya1tW85o5Ur8OnMmKKXw9/dHXFycONrPj3ctLgbatUP5ggWoSkpC5vDh6Lp9O0hZGcj06YC7O9Mo6toVmDUL323cKA6YMIHv0KFD0yd5+jSbrVy9Ckopfv7pp4p2W7fKukVH/26kVo8F0B/AL2A9ewcBuABKn9pKX0EQlISQmTzPfxEQEKDo27dvY80nStls6623WIaTszMwcCB7eG/aBJw5g7MODkhITxdnz579xMVta9asKS0oKBiqUqlOP+m+nhS9q0fPPxqVSqUBsBnAZkEQPJKTkzclJCR08vT0pP7+/kp7Pz8AgEajQamJCYo0Gj46Nhb9Bw7E2bNnqb+/P+3fv/+jf6l5nmXxFBezUb8oMp/uAx4aBw4ckDp37ky8vLyaXonnmduH41AslyNRq5VmbtjAmb3zDlBWhkWLFiEtLQ2hoaFUq9XyCgcHFnOwsIBJv34wSUuDzfz5TDK4shIoKWHS04sW1R1CZ2pKNRpN89fVowdzT4Fp1rw4a5bxubIybSzA9z55EgAyAVjXOL0/BbAFhGwBMAGUrn3k+/cXIwiCNcdxOwD0o5Ri1qxZdY1rGlBUxPobLF3K0i+nTGG++u+/Z647IyOgfXuIUVEP1N55EPXjA2q1GsXFxUoAT8WMSW/49fxrUKlUKQD8BEFonZCQMDU5OfmDgQMHGnXr1o07ffo0oqKiMGXKlLpmG/7+/oT80W91bZetxYuZXPK5c41W+e6776SSkhJCKeWqq6ulwMBAYmbWRMy0sBDSqFHgAGzfvl20bduWGEZGMuOTkQFy7hzad+0K41OnyJ2MDFgOH86M+vr1wMiRLGV19GiWppmTw1wX9WSFc3NzUV5eLnug2N3Jk+yaaiQrCCFIMTeXZwUHDylXKm8P+P13rUynYxVnlPrWrDQUwBwAa0HIOwCOgNLH0Lz4cxEEoR2Aa7Vpu++99x4auXZ0OpYyu3o1cOMG67b2zjvNVtw2m9XzACRJwvHjx3VqtVo3YsQIJQDcuHEDBgYGl957770HPH3/PvSGX8+/DpVKdQvASkEQdh87duz3kydPOldXV5OhQ4c26LD0xHLPADP8AwawEXhSEvP511BYWMiZm5tj9OjRCAsLQ0REBEaMGNFoFxVvvIHc1FR6aN48qby8nB83bhzkNjbMz/z998wPHRWF8wYGqHBzg7enJ5CaymIMMhnw6acsMEkI6/+bkMDO6fp1wMQEYWFhtF27dtTR0bHRBavVaigUChB7e+bmqMfkyZOxcuVKnAsIsIjp1g3GCxfS6Vu3Zqx79dVfJJlMg+XL0wF0UbHVBwNIBSEUwKug9M37j/WkCIKgBNAegBshxEMul7fRaDTLAXQGcAAACCGZAKwNDAzk5eXlijrDf+MGcOAA+4yMjJgrp3Pnh0pzPK7hv337NtauXQsAMgsLi0oASkopzp8/X1VdXb3nca/5r0Jv+PX8a1GpVGmCIHQCcMrJycmte/fuTQjmPx5paWm4cuUK1Go1OnbsCA8PD2Zkf/6Z5fXfuFFnTExMTHT9+/eXOTo6wtvbm7tw4YIIgNdoNNi1axfNz8+X1Go1T/380G/BArhrNOTChQuoqKiAjbU1yyn//HPUBhWz/P2loqIiTiwoAKdQsODt0KHMNVEfb29We1Bj9AIDA8n27dvJunXrpODgYM7d3b1u1Q0bNlCZTEaHdu/OOY0e3WA3SqUSkydPRnFxMUJDQ8GJInTe3i6B/fp9QMrK6JXc3MqioqIlgiAMV1E6AABAyEAA9jW/bwSwAZRG/ZF7LQgC4Xn+OwMDAx9RFDsBMDIzMyuzsbGhJiYmxvHx8TyAWfU2mUkp3Q9AU11dXfHdd9/hw549QXbsAAICmFDf+++zLKtH5HEN/61bt2p/PVtdXd0ZYP8z2dnZuZIkff3IO/qL0Rt+Pf9qVCpVmSAIEzIyMq7GxMRI3bt3/8PDfEmSsGPHDri4uIhyuZyEhISQ8vJykpaWRu+UlYmmH37It1qxgnQNCYF6xw4YGRnxGRkZ1NPTk7Rp0wYnTpzgJEnCsWPHUFBQgGHDhvHW1tYwnj4dysmTCVxdiaWlJf31118xPTKSZEuSZPzll5wXgKKiIjg4OHBGoijJfXw4fPIJsGNH8yc7dSowYwbQoQNcP/gAI0eOxM2bN7mQkBAMGTIESUlJIgBYWFiQvLw87vzXX1PDixdhk5zcwMrVBoP9amIlAGB/+zbg5ET6ZGQYR1696h4VFZXw+eefp+h0ugPa5cs/VqlUv9esygMoBSFDAMwGpWMe9V4LgtDOwMBgi0ajCejcuTMqKyultLQ02qJFC1NJkqBWq+uv/n81r2Ke50MMdbpuTqmpdIAoElJYyArWBgx45CK7+kiS9EiGv6qqCuXl5cjMzNQqFIpIAOU+Pj5KACgoKACl9IRKpXpMvZG/Dr3h1/OvR6VSXRMEweP3338/aWZmZuvm5vaH9yWKIiZOnMjLZDKcPn1aOnPmDFq3bi316dNHVlxcTDWSJN7UaPj9P/8MuUZDcnNzYW1tLfn5+XGWlpZ01apVpLq6GlOmTCFtaqtEtVrmlwfg5+dHKioqpNRjxwg3aBB38tAhmpWVRVKiozFk9278PmAApwsLg6yp7KD7GTKkrrevt7c3vL29cfv2bfH48eNwcXHhr1y5AkopJk6ciFbjxpE9H3+MMRUVMDZuXOPUgJYtgdRUEHt7BK1cyfnMm2d8h+O6HTp0yLOkpCQNwDYAAKXTAQCEGAJIqPk9GsBSYflyDYAtCoXiEsdxBoQQk8rKykAAMDQ0vCKXy50DAwMNjh8/DgcHB7i4uHAWFhaQJAkpKSnUzs6OTJs2DVu3bgWAdwG8a1lYCI+kJHj16QM7MzOQKVMaVdE+Lo+S9VhdXY3Vq1dXA7jLcVxmdXX1JJlMNvLChQvBAAxEUZRrNJprT3QifzL6dE49zwyCIPRWKBRHx44da+ji4oL7m3A8Cp988gkWLFjwQONYUVEBWXw85IMGYeXrr6O1p6c0ffp0Lj8/H8ePHxf79evH29nZsZVrRcFqdWCSkoA33oAUGgpiYIBvv/2WmuXk0OCBAzmHNWuQsXQpOnTr9sBzzM7Oxp49e0QfHx8+sF074PXXWU1DvZiGJEn48ssvpc6dO3PPPfccEBuL8x9+KCWOHYvp06dzj3RvdDqgZ08WLG3fHtl5edi4cWOZTqfroFKp8u5fXRAE47G//RZ2ZPDgXh2TktAxKQk3tmxBixYtIJfLsX07K2idNWsWrKysYGRkhLy8PCZ5XU8nZ+fOnTpDQ0PZiBEjcD0tDTHr1knPq9WcllJUOjvDfPJkkEfQTXoUjh8/jps3b4ovvPBCs5lfUVFRUlRU1IHFixc38JUJgtAKQK02h49KpYpvvPX/Bv2IX88zg0qlivrkk0/m7N27d4FWq/V0dHSs9vT0NPXw8EBzPVIBpqiZlJSE2NhYUS6XN+radD/GxsbMIJ45g0VubsDXX3OQJNja2mLKlCkNDciaNeyVlsb+LigA3NyYDx9A3/R0tPn5Z65g2jTI9+5FM1n4DdixY4dYXV3Nx8fHi4HduvG4exea3FyUKhSwtrZGbm4uNm/eTE1MTEhwbWeylBR0u3uXiywslKKiohAUFPTw4LdMxjKKAMDFBQ6LFsHf31954cKFLYIgDAUgAXAF8JxMJpvE83y3PePHKwDAZd482Ny+DefAQJZZs3UrlixejGqttsFnUfeArIcoipBrNMCOHXBVq+EaE8Nh9mwYPP88DGR/rkmr8fE3OzrOyclBVFRUdXV19Qf3L1OpVDlCjQTE02T0Ab3h1/OM8cEHH9Tm/FtmZmYOys3NnXj06NEhHh4etGfPnoZNGZoffvhBJIRwrq6umD59OhppsTeHtze4vDyWfTN5ctPqndOm3csEeustYOZMVkG7cSMQFoZ2X39NInr0QOz+/bTHnTvo27fvAx3OxcXFKC8v53v16oW4uDii4XmEvfMOrVi8mGjlcuS6u0tarZYLCAig/fr14+r815MmgXv+efSJjeVCQ0MRGRkJKysrqXXr1rRfv358k2mo9dm6FejSBcG//y4vE8UeyTJZkSRJBoaGhtUmJiaygoIC5YIFCyCTySCTyRqM4PHDD0Dv3pAvWQL5sWMsm0mtRpPN6/Py0GX3br68tJSK3bsTftQoICICOp0OkZGRqK6uRqtWreDt7f2nZG09KLhLKcXWrVvVGo1mrkqlai6N9T1CSHEzy/5n6F09ep55BEFxIyzcAAASb0lEQVSw4nl+DsdxCzmOM7S2ttY4ODgYeXp6yp2cnLBy5Uo6YcIEYm5uDisrqz9W0FNWxqpE9+1jVbW1bN/OpB6cnJjY2rp1rNL42DG2fO5caLVaxMbG4vjx4wgMDISDgwNu374NLy8vmJiYYOfOnVJ+fr4kSRJ69uwpO3HiBJ04cSI5deqUlJeXB0mSuDevXYOyuho5K1ZAqVQ2vo7165kcxcmTuHPnDnQ6HbKzs3HhwgVqYGAgzZo169GK3EaPBtq2RYlKBUNDQxgYGECn02HFihV46aWXmi6mApCZmQlLQ0OY5+WxJjFGRky4ztOTxSni45lezrJl0MyahZ0mJlJuZSXGjBnDtWvXDvHx8Th06BCcnZ3F27dvc2q1GoGBgcTDwwPGxsZQNvUQeQSOHj2K/Px83fTp02UAkJ+fD61Wi9atWyMxMRH79+/P12q19iqV6h9lSPWGX4+eGgRBIABaA/Dkeb6nTCabAcC2urrakOd5DcdxZS1btlSOHj3a2LoJQa8HQinwyScsNfP2babMCTDhtwEDmOF/9VX2UBg2jKVj3sf58+elixcvory8nFMoFLS8vBwmJibQ6XTo168fKS8vR2RkJACWg+/o6Ijdu3eLnTp14j3c3Zko3YkTjfL1a3bOegLcp0cTFxeH8PBwunDhwsd72i1YwArKdu0CAGzYsEFycXHh+vfv32jV1NRU7NixAxzHwdjYWLSxsSHTgoI4tG7NKpC3bQMGDWIPlfHjAZ5HdXU1/vvf/6KsrAwAIJPJ4OLiIta60lJTU3H48GFaVVVFdDodXnvtNVhZWT3WJQBAWFgY7ty5I06bNo1PTEzEvn37SgkhOjMzM/OioiKdJEn+T5sb51HQG349eh6AIAgeAF4H8BWATJ7nX+d5fsXs2bOVf8SQQKtlks4//8zSDAFg9mym9vjFF0wBskWLh+6GUopVq1bR6upqMnv27DqjlpOTA0NDQ1haWjbe6O5dJiN84cK9B08t6enMUNcrQNNoNPj666+l3r17k549ez6e4U9IADIz2fUkJ2NTcrKUl5dHpk6dSlq3bt1g1R07dkChUIgDBw7kr169isOHD2Pp0qX3VrCxYa6kQYMAsNnB9u3baXV1NQFYId7MmTNha2vLehjfx8qVK9G2bVutiYlJrbFrVLB9398EAK05Fl9VVQVPT08pOzuby8nJ+Van06lkMtl2AEeXLl266rHuy1OC3sevR88DqJGBeK3eW6s/+eQTafv27Z+9+uqrxrLHDSbK5SyQa2HBRvi//soqbBUKZnQfwegDzFBJkkTHjh1L6j+Aars9NYm1NXDzJvu9uJidQy2HDjHZhnqGPzU1FaIocgEBAQ12QylFSkoKSktLpYCAgKYd6d7e7PXNN8Dq1ZiRlsaFhYVJP/30E3Fzc8OIESPqVFTz8vJ0wcHBMmNjY9jZ2UEul0uo3yvk9m2AEISGhtKEhAQqSRJnbGyM2bNnw9LSEh999BHCwsLwyiuvNHfl1cnJySsBlNTevvuWP+hvEwDWZ8+evVHzd5hKpSoBMKS5g/0T0Bt+PXoeE1EU15SVlQ3+6aefgnx9fQ27dev2eFHEFi2Y6+fqVeb7X7kS+Phj4IMPWIbPI1JZWck1K/HcHCYmwPTp7AHAxNcYY8Yw6el6dOzYEaGhoVJqairn4eEBSiliYmJoTEwMvXv3LmdgYNDoodCIN98EXnsN5MoVDProI87hu+8QHRMjbdy4kc6bN49Xq9WoqKiQ1fayVSgUEEWRu38fiUol4iwtyfjx40m7du3AcVydcR43bhxCQ0ORkJAAb2/vps5CBLC+RspDD/QduPToeWxqGsCPzM3NnXf06NG8M2fOUFEUH75hfQhh4m7Z2Uwh8tYt5oIBmDb8jBnsd0G419GrCf6Qq3bdOtZKsr5aZ2wsczfVg+M4dOvWjQsLC6NnzpzB5s2bpRMnTsDb25tzcnKidnZ20iMdv0bRlHTrBm8fH0wOCuKKior46OhorF69mrq4uIi1AnK1RVo//fSTTpIkSJKEuJs36fXcXLzwwgvo0KFDo2wdLy8vtGjRQkxKSmrYy7ghep92PfQ+fj16ngBBENwUCsUWuVzuOWDAAOM/JY0wM5OlM3bowJq8XLrEjPWBAywA+8svQK9eWL1vn+ju7k4GDRr0+AcsK2P682fOsIDyV1+xZu+//NJgNUmSsGvXLlpUVETt7e25/v37w8TEBGq1GqtXr5aCg4OJv7//o/v/s7MBV1dsXbFCyigr4/z8/Ohzzz3XwOd+9+5dbN26lbq4uJCMjAzJSC7HlPHjORNb22Z3e/HiRTE6OpqUlpaSWbNmEdt6665cubJSrVa3V6lUOY9xh/7V6A2/Hj1/AoIg9FUoFF/Z2Ni0nzVrlvEfVXtulhs3mGto4EDWXGXhQlw1MIDtq6/CvLCQGXBLS9YW8lHZs4fNLoyMWHMZSaqTjngU0tPT8euvv6JLly66oUOHPrrbuLAQl27cAPfii2i/cycMm2gOc/PmTWzfvh3t2rUTR4aF8fyVKw1dU00gSRJCQkLE1NRU7v3336/7APSGvzF6w69Hz5+EIAicgYHBRTMzM9du3bqZenl5PVz35gnIT0rChSVL4P3tt3CaP5/FDtavB9q1A06dYpIKFRUPfhisWMEycNq1Y0Hn+0b8DyMrKwubN29Gjx49YGJiAiMjowYvQ0NDyOXyuqwZURRx+vRpKSo8nJu9ezesQ0NZ1s6DiuKys9kMpX79QzPUyiJbWFiUUkqh0+m4iooKIwAtVSpVwWNd3L8YveHXo+dPRBAEGYD+CoXiVZ1ON8TJyUnn6+tr4ubm9oe0gR7G77//jpiYGHh6eoojRoxg9bBLlgCffQYsX84KxuLjmXzzG2+w9MqcHOZCAlhrylOnAB8flu45ceJjn0NUVBTS0tKgVqtFjUZDdTod0el0RBRFTqfTQZIk8DyP2gwouVwuTZgwgXOqlUdu1Qr46CPg5ZebPsCtWyz+MGtW08vrUV1djV27dqkzMzNloiguArAPQKlKpbrz2Bf2L0Zv+PXo+YsQBMEEwBilUjlXp9P5enh4SF26dDF0dnb+c5rA1FBSUoINGzZIXl5edNCgQU1X2C5bBkyaxIz+mDGsX/Dixaxxy+zZ7IGweDHQRKOYJ0Wn06GyshKFhYXYtGkTZs+e3bCCNyEBcHNjMtNeXqz/bX2OHGHZQVevPvIxa/ocl+l0uskffvjhoT/pUv416A2/Hj1/A4IgtOI4bopcLp9DKXWwsbHRdOvWzczb27uhbs0fZMOGDVLbtm1Jv379Hh5ckCSm1PnVV4CdHTBhAnO1GBsDGRmsvmDkSMDfH7h8mVUWK5VMz/4JHljJycnYtWsXFi1a1LSEwv+3d/cxUaR3HMC/szu7IxxCiEXtwlHF3BGDXi9c61uI0bMktd7FiBdNfendJRrPl6QJiak5c/s4VL0Ek9r6El8a/6i2HmC8mpKeGqwGWIlaFUnOF6IgoB5rsEZed3dmdqd/DHieeCqILMt8P8n+QXZm+e0/35l95nl+z0cfWbtiffFFv//Hk27evImSkpKAYRjrABztnn9PYPATDTpVVd8E8J7L5fqjruuTVq1a9cwulH2xbdu2yKJFixw98+H7LBi0ZhOlp1ubjo8fb10g9u+3ho7WrAGamwGfzxoyWrrUOvbbb61fEm1tVp/+7kVZT2tqakJxcXEkNTXV7NWh9Gmffmp93tGj1t+6bs1wqqvr84Xn3Llz+smTJ11Op/NKOBzeAusCYPvQY/ATRYmqqm84HI5TAKbMmTNHSktLk1JSUnpvEP4cDQ0NOHfuHOrq6rB+/fqX7xzaV6ZpDQ+ZJvDNN1brh4YGoKTE2h4yN9f6RbBjh7UF5dq11oWjthbIz8e/t2yB+dZb+M0nn7x4mOvWLWtIKivLej7x/vtW19L9+x9vLNMXwWAQV65cwfnz5zsDgcDfNmzYsPbFZw1vDH6iKFNVdYqiKL+XJOk9TdPGu91uIyUlxfB4PHFjxoxxZWRkoGeB09P27dsHv9+PlStXPr9dw2DouThcuGD1Arp4ETh+HCgsxP/eeQf6xIkYu3y51aZ60yZrbL+pyVq5fOKENU01Pf37u/rt24EDB6xfFffuWS0n+hH8PYLBIHbu3Bno6urKE0KcGJgvHZsY/ERDiKqqDgDpACZJkjRJUZRphmHkejyeiGEYyMvLS+jpzVNWVobq6mosW7Ys+qH/HHfv3sXBgwexevVqJMfFWQ9p09KstsvV1dYOYR9//H3LiOJia7hp/37r2cKHH1qvr76ynke8gr1794bv378fAjBWCNH+6t8uNjH4iYa47tlBHzgcjp8piiJWrFgR19XVhWPHjiEzM9PMzc0d4NVifRMOh3H+/HkzMzNTelbH0pqaGpw6dcrMz8/v1RWzF9O0mrIlJVmN49rbrRk/n31mLVJ7xXURly9fRmlpKQBAkqQNpmkW2nHMn8FPFEM2b968xul0/tkwDJfH4wnPmjXLOeHpFsuDqLW1FUVFRZ0PHjy4ZxjG28nJyQGPxyMtWLBgREtLC0aPHg0AKCwsNJcsWSI9nrsfZVVVVSgrKwOAFCHEg2jXM9icmzZtinYNRPSSZs6c+d8zZ8643W53akdHR4Lf7++8cOGC/PDhQ8eECRP6tztYP7W1tWHPnj1obW11RyKRUQAQDAZdLS0tssvlwpEjR9DU1BQKhUJyY2MjkpOTpTcHaBP0V1VTUxPx+/0NQogvo11LNPCOnyhGqao6FsBEAKcBYNq0aeGcnBzn62wTAVg9cXw+n1FeXi45HI5bDocjoGnauz3vu1yu73RdH4snuv/KsoysrCxz+vTpP2igNlACgUCfjj906FDE7/dXe73eXwx4MTGAwU80DKiqmul2uz/XNO13q1evfjzEMtAikQiKiooCjY2NVzVNWw6g9sfGyFVVTQHwNYAcwGrzHIlEsG7dun5tg/hjKioqjPLyclOSJP1lzwmHw/GSJP3B6/UWDlghMYTBTzSMbN26NT8cDm+VZTkSHx+vjxw50kxMTJSTkpJGjBo1yjl58uQ+9wzSNA319fW4du1aoLa2VpIk6XooFJr9sithu/cyzgXwdwAp2dnZ4blz5zr7vHvZMzx69Ai7d+8OGIYxUQjR+OIzCGDwEw073Y3ifgJg7JMvRVFyHQ7HtNmzZ8dlZ2dLz2sVYZomrl69ikuXLrXfuXNHcbvdNcFg8B+maf5LCHH7FWpLVxTlr4qi5MyfPz8+IyOjvx8FADh8+HDX7du3t23cuHHTK32QzTD4iWxEVdVfKoqyXZbld6dMmRKfnp4upaamwjRNtLS0wDRNtLW14fTp0x0dHR1NoVBoM4DjQohHA1lHQUHBB7IsH8jKykqcN2/eiP7c/dfV1aG4uNiv6/p4IURwIOsb7hj8RDakqmqOy+Va5HQ6czVNmyDLckSSpGaHwxE0TbMjFAp9aZrmP1/nHHdVVUcqilKclJQ0c+nSpW8kJia+9LnhcBg7duzobG9v/63X6y19XTUOVwx+IptTVTUOQAaAa4O9mElVVUmW5c9lWd64ePHiuHHjxr3UeWfPng1XVlb6up81MMT6iMFPRFFXUFCQK8vy1wsXLkzIzMx87rFtbW3YtWtXQNf1nwshbg5SicPKwO0GQUTUT16vt0zX9dlHjx7tuHnz+Vl+4sSJAIBdDP3+Y/AT0ZAghLio6/qvSkpKOkpLSyPNzc29juns7MT169dH6Lr+pyiUOGxwqIeIhhRVVScAuAUAeXl5mDx58g/eP3bsWOjGjRunQ6HQPI7v9w/v+IloSBFC1AFIBoAzZ870CvYZM2Yomqb9GsDbg13bcMHgJ6Ihp3vdwE87OzvvlJeXG0++V11dbQD4ixCiNjrVxT4GPxENSUIIv6Zp06qqqporKioeh399fX3QNM0L0awt1jH4iWjIEkI0a5o21efz+XvCX9f1CLqfAVD/MPiJaEgTQjTruj7V5/Pdr6ysNBISEiQAadGuK5Yx+IloyBNCfKfr+tTKysr7fr8/AOA/0a4plnE6JxHFDFVVkwAYQojOaNcSyxj8REQ2w6EeIiKbYfATEdkMg5+IyGYY/ERENsPgJyKyGQY/EZHNMPiJiGyGwU9EZDMMfiIim2HwExHZDIOfiMhmGPxERDbD4CcishkGPxGRzTD4iYhshsFPRGQzDH4iIpth8BMR2QyDn4jIZhj8REQ2w+AnIrIZBj8Rkc0w+ImIbIbBT0RkMwx+IiKbYfATEdkMg5+IyGYY/ERENsPgJyKyGQY/EZHNMPiJiGzm//w66MuGj/99AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", + "f,ax = w_queen.plot(gdf, ax=ax, \n", + " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", + " node_kws=dict(marker=''))\n", + "ax.set_axis_off()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(1, 1), (2, 6), (3, 6), (4, 6), (5, 5), (6, 2), (7, 3), (8, 2), (9, 1)]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_queen.histogram" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(1, 1), (2, 6), (3, 7), (4, 7), (5, 3), (6, 4), (7, 3), (8, 1)]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_rook.histogram" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "c9 = [idx for idx,c in w_queen.cardinalities.items() if c==9]" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "28 San Luis Potosi\n", + "Name: NAME, dtype: object" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf['NAME'][c9]" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[5, 6, 7, 27, 29, 30, 31]" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_rook.neighbors[28]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[3, 5, 6, 7, 24, 27, 29, 30, 31]" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_queen.neighbors[28]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-105., -95., 21., 26.])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI4AAAIJCAYAAADDDnbDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd8VuX9//H3de6QBAiEMJS9BFkyBIKiQFVcuNiogAgurP06altbf7ZNqdWqVVurVUFUtsgSHIgoQ0EBURQBQREIm8gIIwnJndzn/P64gjIOkHGPqK/n48EDyH3uc11hnOS8z3V9PsbzPAEAAAAAAADHc2I9AQAAAAAAAJRNBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBAAAAAAAAF8ERwAAAAAAAPBFcAQAAAAAAABfBEcAAAAAAADwRXAEAAAAAAAAXwRHAAAAAAAA8EVwBABAGWOMaWiM8YwxcbGeCwAAAH7ZCI4AACgFY0y6MeawMSbLGLPLGDPGGJMU63kBgB9jzFBjzCpjTE7hNet5Y0xyrOcFACi7CI4AACi9az3PS5LUTtK5kh6M8XwA4ATGmN9JelzSHyQlSzpfUkNJc40x5WI4NQBAGUZwBABAmHiet0vSe7IBkowxycaYccaY3caYzcaYPxtjnMLXnMLfbzbGfF94nO9Tf2NM38KVTedE77MB8HNijKksaYSkuz3Pm+N5Xr7neemSBkhqJGlg4YrJfxz1nouMMduO+n1tY8z0wmvaJmPMPUe95hhj/mSM2WCM2WuMmWKMqVr42pHttzcbY7YYY/YYYx6K1ucOACgdgiMAAMLEGFNXUg9J3xV+6FnZp/qNJf1K0hBJwwpfG1r44+LC15MkPedzzmGyKwQu9TxvdeRmD+Bn7gJJiZJmHP1Bz/OyJL0r6fJTvbkw9H5L0kpJdSR1l3SfMeaKwkPukdRL9lpXW1KmpP8dd5oukpoVvvevxpgWpfh8AABRQnAEAEDpzTTGHJK0VdL3ktKMMQFJ10t60PO8Q4VP9p+SdFPhewZJetrzvI2FN24PSrrhuILY98luKbnI87zvBAAlV13SHs/zCnxe2ympxmnenyqphud5f/c8L+h53kZJL0m6ofD14ZIe8jxvm+d5eZL+Jqnfcde0EZ7nHfY8b6VsANW2FJ8PACBK6NYCAEDp9fI87wNjzK8kTZK9QUuQFC9p81HHbZZ9Ui/ZJ/LHvxYn6cyjPvYHSX/3PG+bAKB09kiqboyJ8wmPaknafZr3N5BU2xiz/6iPBSQtOur1N4wx7lGvh3TsNW3XUb/OkV1pCQAo41hxBABAmHie96GkMZKelL1Jy5e9mTqivqTthb/e4fNagaSMoz52uaQ/G2P6RmjKAH45lkjKk9Tn6A8aYyrKbrH9UFK2pApHvVzzqF9vlbTJ87wqR/2o5HneVUe93uO41xM9z9suAMBPGsERAADh9R9Jl0lqLWmKpEeMMZWMMQ0k3S9pQuFxr0n6rTGmkTEmSdKjkl4/biXAGklXSvqfMea6qH0GAH52PM87IFsc+1ljzJXGmHLGmIaSpsoG3RMlfSnpKmNMVWNMTdntskd8KumgMeaPxpjyxpiAMeYcY0xq4esvyl7vGkiSMaaGMaZndD47AEAkERwBABBGnuftljRO0l8k3S37BH+jpMWy29heKTz0FUnjJX0kaZOk3MLjjz/fSknXSHrJGNMj0vMH8PPled4Tkv6f7KrIQ7LXngqyxfezZa9JKyWlS5or6fWj3huSdK1s18hNsmHTaNkGAJL0jKQ3Jc0trPm2VNJ5Ef+kAAARZzzPi/UcAAAAAESZMeYW2VVIF3qetyXW8wEAlE0ERwAAAMAvlDHmJkn5nudNjvVcAABlE8ERAAAAAAAAfFHjCAAAAAAAAL4IjgAAAAAAAOArLtYTAIBfuNjvF969W9q5U3rqKemZZ6QqVY55uaCgQI8++qj++te/Rmc+Tz0ltW0rXXppdMY7iaeffjrUqVMnp0uXLuaUB3qeNH269Nhj0vvvSykpUZph0eTm5uqFF14IhUIhc9NNNzlnnnnmCcfs3r1bI0eO1P33368KFSqEdfycnBx9/PHHoc8//3x+Xl7etWlpaXnHHzNixAhHtvvSIUm7Je1LS0vLD+tEECmxvYZ5nrRunTRqlNSzp3TRRSccMnHixFC1atUCV155ZeTn88UX0rRp0iOPlPwcXbpIdetKk0tecmj27NlKT0/3brvtNhMfH3/qg5cvlx5+WLrnHql7d8mc+pIXbTNnzvTWrFljunXrpq5du/oe85///Cd04YUXBlJTU8M6dkFBgbZv364JEybkFBQUnJOWlrbJ77gRI0Y0lVRZttPcnrS0tOywTgQAYowVRwDwS7Zpk9S3r7RsmTR27AmhkSQFAgF5nifXdaMzp7VrpXbtojPWKVx99dWBRYsWac6cOaFTfu7GSP36SVOm2Bu+pUujN8kiSExM1L333hu4//77fUMjSapRo4Ycx1F+fvizmgoVKuiiiy4KJCQk/EpS7ogRI465Kx0xYkQNSf8n6ZPk5OSP4+PjN0kKjhgxomHYJ4OfF8+Thg6V/u//pKef9g2NJCkuLs6LxL9tX199JXXsWLpzLFhQqtBIki655BKFQiF31KhR3oEDB059cGqqNHq0HfO556S8E7LdmOrVq5d58MEHTxoaSVKlSpWc3NzcsI8dFxenBg0aqFu3bnGSNo4YMaLn0a+PGDEifsSIERcbY75wHOfT8uXLr5GU9cQTT9wf9skAQAwRHAHAL9XUqdK2bdIf/yjdfvtJDzPGyHEcBYPByM/p8GHp22+lypUjP9ZpNGvWTMOHDzdfffWVs3LlytO/oXFj6b33pL/+VXr7bXtTW0Y4jiPHOfWXfM/zFBcXmYXI5cqV09ChQ+OTkpJyExISPh8xYkRHSRoxYkRFx3HSzzrrrEf69eun++67r/KDDz5Yvnbt2gckNY7IZPDzsHGj9Pzz0g03SG+9dcpVMuXKlTNRC44+/1wKhUp3jnLlpCFDpDfeKPEpEhMT9Zvf/CZQqVIlb8qUKadP/c84Q3r2Wbt6a/x4KSOjxGNHwumuX6FQyAsEAhEbv2vXrvGtW7fOjYuLm/Dwww/fOWLEiDhJSkxMnJCSkvJm165dEx944AHngQceqHjdddfJ87zOEZsMAMQAwREA/NJ4nr25efxxqXx56eqrT/sWx3EUiae5J8jNle6/Xzrd1oooqVq1qqpXr66DBw8W7Q1160pvvilNnCj95S/28/mJ8DxPkbzxSklJ0W9/+9vEyy+/vF1iYuJHjz322BRJVyYkJHiDBw9OatWq1Q/HFt4ksp0e/kIhqU8faf9+qUcP6TTbK8uVK6eCgoLozO3qq+3Kw9Jq0KDUAbrjOLrgggucgwcPFm3vWfny0v/+Jx08KD35pF099RMRCoW8SAXfR/Tp0yfxlltuSapVq9aT8fHx344YMaKP53ntrrvuuqSLL744kJCQIMn+uRtjuH4B+FkhOAKAX5LsbOnmm6X0dGnevCJvqQgEAsqLxvaF99+3K6HKkPLly5vs7Oyi79NLTJRefVWqVk36/e+lvXsjOLvwcV03YiuOjnAcR+3btzf33Xdf+dTU1F41atR4uUWLFifc1BIc4aRGjpQGDZI+/FB66KEivSVqK47y8+3WueTk0p/r4YelZs2kUm4RrlKlivLy8opXtOj++6XzzpNmz5befbdU40eL67oRDb6PqFWrlm699daKvXv3blS7du1Xq1atWrtq1arHHFN4/SoX8ckAQBTxTRkA/FJs3y5t3mxX81x9tQ04iihqwdGWLfZmqQypWLGisrKyXBXnYUtionTffdKkSfbP+p13bJBURrmuG/EVR0dLSEhQ9+7dy3Xv3t33Drvwxis6k8FPQyhkr18ffCA98ECxwpn4+HgnKiuOtm+3W77Klw/P+Zo3t0F6jx4lPkVKSory8/PleZ5McYpe9+snffaZ9OKL0qFDUv/+Za5o9tE8z4v4iqMjjDFq3ry5mjdv7rskjOAbwM8RK44A4Jfg88/tjUBWli2CWozQyCus1ROV4KhuXWnYsMiPUwyVKlVSZmZm8b9eGmNXRowdK11xhS1AXkYFg0EZY4p3YxlBjuMYceOFI3JzpQED7PbPqVNtMedi8DxPodLWHSqKAwekJ54I3/n27ClVaCTZ4s6BQKDo222P1rGjXfm0Zo306KO2Bl0ZFQqFohZ8nw7BEYCfI4IjAPi5GzdOchxbtPnyy4v99kWLFrme57kNGjSIwOSOM326fbpdhqSmpiozM9MsW7asZNWumzWzxXvvvdduD4xWd7piCAaDpy0+G02FYWXZuAtEbK1da7dL9e5tt4AW0+7du7Vs2TKFu027r48+kopSSL+oQiHpggvsFrhSqF27tvv666+7JQrPatWS/vQnu835xRelHTtKNZdIiWRx/+Iq7MLJ9QvAz0rZ+S4RABB+06ZJr7wiVaxYoifXGzZs0OLFi51BgwY58ZEuWO150llnSU2aRHacYkpKStINN9xg5s2bZzZu3Fiyk9SqJX3yie0C9dhjduVXGZKXl1dmgqOcnBxt3bo1XtKiWM8FMXbokNSzp+3wNXhwsYvm5+XlacKECV6rVq281q1bR2iSR6lbV+ocxmZaFSvacx44UKrTDB061MnOztasWbNCXkm6PZYvLz3yiFSlim2q8NlnpZpPJLiua8rKiqOVK1dm5+bmlrwlHgCUQWXju0QAQHhlZton9PXr25bOZ59d7FPs379fU6dO1SWXXKI6depEYJLHWbNGWr++zHRUO1rDhg11ySWX6PXXX9e6deu0ffv2I0+Vi85xpClTpGBQ+ve/pW3bIjPZEggGg2Vmm8dnn30WCgQCM9PS0spWP3BEj+dJTz9tt30tXizdeWcJTuFp6tSpbmJiotuzZ8/o7MEcPdqGxOE0ZUqpVxw5jqPbb7/d+fbbb5358+d7mzdvVk5OTvFOYozdRnzppdKiRfahRBlSVlYcZWZmatOmTfI875VYzwUAwongCAB+bnbulN57T2rUSGrfXkpJKfYp8vPzNWHCBK9hw4bu+eefH4FJ+lizRqpRIzpjlcD555+vtm3berNnzw6NGTNG6enpxT9JICClpUl16tib4eXLwz7PkijcqlayrXhhFAqFtGTJkmBeXt6jsZ4LYiQvT9qwwW5Pu+kmW2y6BBYtWuTu2LFDw4YNi04iWlAgbdwY/uDo88+lhg1LvcU1KSlJAwcONKtWrXJfe+01b/bs2SUr+nTttdIll0jz50t//KMN+coAz/PKxIqjpUuXBo0xL6WlpZWtZaUAUEoERwDwc/L++7YQc5s29ol9CZ/Avv322yHXdd0BAwZE7+vE2WdLv/lN1IYriauuuspce+21gUAg4C1atMjbVpJVQ8ZIt9xi/2769SsT4VFZWXG0evVqSVqZlpa2KtZzQQzs3Wu7d40fb69lJVgpKUnp6elavHixM3jwYCexGI0ASuXQIenJJ+32snDq0MGuIA3DVtL69evrjjvuCJxxxhlm/fr1gS+//LJkRcObN7f1l555xtadKgN121zXjfmKo9zcXH3xxRdufn7+0zGdCABEAMERAPwcuK40ZoxUoYL03HNSy5alOt2GDRucq666KhDVujcvvSR9+230xiuhmTNnusFg0KSnp5uXX35ZJaoZIknlytmg7MUXY14zpFy5csrKyjIvv/xyaOHChV5GRvR3iXmep48++igrNzf371EfHLH3+ee2EPZVV9nuaaWQnp6umjVrqnbt2mGaXBEsWWK3lUXCJ59IN98cllPNmTNHGRkZCgaDmjVrlr4t7jV38WL7YCI11dbNmz1beucdGyTF2JQpU7y33nrL/frrr0t+XS6FFStWuI7jvJeWlrY16oMDQIQRHAHAz8GTT0qvvSY1bix16xaWUwaDwbCcp8hycqRWraI7ZgmEQiFTuXJlr3nz5rrssstK3sJ+0CDbae0Pf7AFs995J7wTLYbGjRvrrrvuUqNGjQJr1671Jk2aFPW7rs2bNysrK2u/pPeiPTZibMMGaehQ237+zjtLvFLyaAUFBaWfV3FkZdlAJRKSk6WEhLCcKjc31/U8T2eddZbXrl07Fatb5ief2ELl//yn1Lat9NRT0tSp0oQJ9tfR/jM/yn333ed069bNHDp0yHnjjTe0I8rd31zX1ccff5ybl5f3SFQHBoAoITgCgJ+y7dula66xdSdmzAhbfY327du7b731lpsVre5feXl2tVSzZtEZrxQeeOAB06lTJ7Nz587Q4sWLtX379uKfJCtLevRRe4PcvLn05z9LX34pzZoV/gkXUfXq1XXJJZeoV69eTnZ2dnSKCR9l4cKF2fn5+Y+kpaXFft8LosN1pb/+Vfr4Yxuc9uoVltM2b95ce/bs0fJobgPdtcsWjo6E1FRp5EgbrJXSwIEDncGDBysYDHqrV6/WZ5995hZpdc7jj9ug+6KLpD597ArRZcvs1ttx46Tdu21x8Gg/cCgUHx+v9u3ba+DAgUpMTAwdOnQoquOvWbNGoVBofVpaWuz3HgNABBAcAcBPVWam/UY9NdWGD2GsrXHxxRcHmjZt6o0ePTo6+w/Wr7c3RSVdvRNFjuPoggsu0H333Rfo0KGDxo4dqzVr1hTvJIcPS1dfbYtlS1K7drYL3ty59iYsRtatW6exY8d6rVu3juq+k3Xr1mnnzp2Znue9Gs1xEUNZWdKqVTZ8uOIK2wEyTGrWrKnrr79e77//vrZujdKuoU8+iex2rVtvlS67LCynql+/vm655RZn2LBhWrJkiaZNm+aedIXW999Lv/+93ZY2Z45UrZr9ePPm0nnn2V8nJNgg/Jtv7ArKGIVHOTk5+t///hdyHMeJ5jbFvLw8vfvuu4fz8vLujtqgABBlBEcA8FM0aZL9pv3uu22XrjAHLsYYdejQIRAMBqPzdSI52XZQ+onp3r27evbsqVmzZmn+/Pnu4cOHlZeXp/z8fLmnKhj76adSlSrHfqxlS/tEPzvbPs2PsjfffNObMWOGrrjiCvXs2TNqlbKDwaDeeuutnGAwOCQtLS0vWuMihrZssatWVq60YcSZZ4Z9iMaNG6tcuXKKysoTz7MrP5s3j9wYzz0X9lpotWvX1t133+3s2LHDGz16tJuZmanc3FwFg0FbNNt1pb//3Rb+btHix9AoP19auNB2ezuiXDnpiSfsduP/9/9sOB5F3333nf773/961atX11133WUqV64ctbHnz5+f57ruzLS0tEVRGxQAoiy27QcAAMUTCtktaYmJNjyqWjUiw2zbtk1TpkxRkyZNPEmRXwb0yit29c2110Z8qHBr1aqVqlevrvHjx2vJkiXyPE+e58lxHLVr1y7UuXPnQNXj/56WLLFb84539tn2BuyZZ+yfyS23RHz+OTk5evXVV0PBYNC57bbbdMYZZ0R12deCBQvyQ6HQu2lpaQuiOS5iZNEiKSlJ6tnThsURWGWYm5urGTNmuJLUvHnzyIffGzZI//iHNHhw5MaoUMGGODVqSL/+dRhPW0F33313YPz48e7zzz//w/Wr0bffqseCBcqcNUtnnXuuzNGNEr79Vtq//8ROb+XK2ZVR//63/budOjUqq0jfffddrVixQpdffrk6duwYKHHduRLYuXOnVqxYESwoKLgnaoMCQAyYWHQdAAD8oHgX4TvvlLZutd17wt32udD27dv1yiuvqHPnzro0UjU7jjdwoK1vMmBAdMaLgm3btmnChAnKy8tT9+7dvS5duvx4N/PVV/bpfZ06/m/eulWaPt3emN19d8RuvtavX6/p06d7jRo1cnv37h2Ij4+PyDgnk5GRodGjR2cVFBQ0SUtLi34rN4RD0a9hH31ktzI99ZTUpUtkJuN5evbZZz1jjHf77bc7iYmJERnnGLNnS6NGSTNnRnacf/5Tql5duv32yI6zdq3y33hDH33/vRanpKhGjRrenXfeaX7ospmRIW3bJnXo4P9+15Xee8/+mUyeHLbC3sfLzc3VmDFjQtnZ2c7AgQNNrTDV+Csq13U1cuTI7D179tz7l7/85eWoDg4AUcaKIwD4KVizxj7RTkuzndMieINfvXp1ValSxduzZ4+naG1pvuYa6corozJUOGRkZGj9+vXasmWLcnJyvOrVq5s6deqodevWOnKjWrt2bRUUFKhy5cpq06bNscnPbbfZ+lQnC47q1ZNuuMEWzZ440XZgC3N4FMun9JK9wZ81a1a267p/JDT6mcvPt4FRnz4/dn+MEGOMWrVq5X3++ecRG+MEVatKI0ZEfpwHH5Ryc+02sPLlS3yanJwcrV+/Xunp6dq9e7eXlJRkatWqpebNm+vMJ5+U5s1TuaVLtXXSJE+bN5tLL730x9BIkl5+2a44Ollw5Dj2ev7991LfvjZQC0OnvKOlp6fr9ddf9+rWrWuGDh1qohIQHmfFihXegQMH1ruuS202AD971DgCgFjKzDz9MVlZ9klzx46261iEV4UkJCRoyJAhZvPmzc78+fMjOpYk21Ft9OiIPZUOl5ycHL300kuhRx55RC+//LLWrFnjVq5cOdS0aVMTDAYLlixZ4v33v//1MjIytGrVKo0aNSoUCoV08OBBLVy48McTua69sTpdPZSaNW3NkDVrpP/+19ZRCYPc3Fy9+OKLoa+//tq75ZZblJqaaqIdGknSF1984e3bt2+T67ovRn1wRE9Wlq1jtHWrbeEewdDoiEsuucSpX7++N2rUqNApa42Fy4wZ0tdfR34cSWra1K7YKoEPPvhAjz/+uPfUU0/pww8/dPPy8grOPvtsk5SU5G5dvjz01bBh+qJePe2dMkWTZ8zwMjJsnvvaa6/pmB0KoZDUqdOpBzNGGjLEBoZXXBGWjnBHzJs3TxMnTlRTNhEtAAAgAElEQVS3bt28gQMHRmdV2XGysrL0/vvv5+bl5Q2hEySAXwK2qgFALE2c6GnQoJO//t//2uX+K1ZEPDA63rZt2zRu3Dj96le/0oUXXhi287quq4MHD2r37t3au3evsrdsUd1x4/Rxnz7e4cOH3fz8fFWqVMm0a9fOOffcc+UcX0cjBvbv368XXnjBa9SokXvllVcGkpOTdXzY4nmeFixY4H788cdOYmKiOnbs6J577rlOQUGBXNfVGWecYQ/cskWaP18aOrSog9stigMG2O18pfjzKHxK79atW1d9+/aNyQ2XZEO4Z5555nAwGLwwLS3ti5hMAuFy8m8kv/7a1rx58kmpc+dS/dstrvz8fI0ePdpzHMcbNmyYE85tmLm5ufr++++1d+9eZWZmqsaYMdrQooV2paSE8vLyvEAgYJo2bRro3Lmzwl6kef/+EwvrF8Ho0aMLDh48GOjVq5dp0KCBAoGj6t97nnTttTpUrZqeb9ZMBZ6npk2bhjp16hSoV6+e1q9fr2bNmv14zXvuObsKMiWlaINPmmQ7Rj75pN1qV0LBYFBjx44N7d+/P3DjjTeqbt26JT5XaU2bNu3w+vXrRz344IP3xWwSABBFBEcAEEvjx3saPPjEbUj5+dKHH9obr+7dbaeaGNi4caOmTZumpKSk0ODBgwMlvQkqbJPsFhQUOPn5+QoEAkpMTPQqVqzoNduwQbV27ND3w4c7SUlJKl++vLZt2+auWbPG5OTkmOTk5FCLFi0C559/vir4FZSOgokTJ3pxcXHu9ddff9puY/v375dfsPSDKVOk998vXue0/Hzprruk1q3tz6fZ9rF06VItWrTIHTx4sHOk7se8efO0bNkyXXzxxd75558fk1VGR8yZMyfviy++GPvggw8Oj9kkEB5793o/dNs62oIFtljyt99Gpci7n+zsbE2dOtXNyMgwV111lWndunWJzzVmzJhQRkaGk5+fb1zXVWJioipUqOBWqlDBu+rpp51VTz2lilWqmKSkJOXk5Gj16tWh7du3BypUqBCqX79+oHPnzqpzsq2pxdWzp/S//0lFDE62bt2q8ePH6/7779cJYfGMGdKLL9rrUpUqOnz4sIwxJx53hOva+lRz5kjF+Xowb5707LO2cHajRqc89ODBgxo1apTbtm1b57LLLpNkH2RMmjTJPfPMM9W/f38nVl8LJFsQ+9VXX92Xn5/fIC0tLStmEwGAKKLGEQDE0jPPSO3bHxsMeZ6tBRIfb7vSxHDFTePGjXXPPffo3Xff1XPPPVfi1UcbNmxQMBh0fv3rX6tSpUoqV66cZLu1GT3+uHTmmWrerdsPx7do0cK57LLLtG/fPn3zzTfOqlWrQp988kmgYsWKocaNGwc6d+784wqeCAsGg9q8ebMZNmxYkVrUVzndaoBWrYr/1L1cOen556Vhw+zN4rXX2o8dJzc3V5s3b9b8+fPVvHlzM2bMGC8xMdEtKCgwkpwhQ4aobt26sUuMZFdmrVq1qiAYDP43lvNAmLzwgq3FdbTXXrOrUkaPjlloJEkVK1bUzTff7Hz11Vd6++23tXz5cnfIkCFOXDHr7biuq++//97p3r27adWqlRITE48Ew442bJAmT9YlV1xxzHtSU1MDeXl52rBhQ2D16tWhsWPHBuLi4twzzzxTHTp0cFq2bFny1ZTly0v79hU5OJozZ4577rnnKjEx8ccBPU/ascMWsf6///thFVP509VOys+3qyWL+xChe3dp927bLXLIELvl7jgFBQXKzc3V6NGj3dq1a5vPPvtMq1evDklSTk5OoFu3burSpYsTy9Bbkr7++uuQpDGERgB+SQiOACCWhg61xY8ffdT+/tNPbReaf/xDOuecmIZGRyQmJqp3796Bli1bavr06cUOjoLBoN599103EAg469at8y644IJjv+vv0kU680zf91atWlWdO3c2nTt3DuTk5Oi7774LrFq1KvTSSy8F4uPj3UaNGpk+ffqYSG5nW7RokRITE3XmSeZYbM88Y4PB4ipXTpowwW79+eYb6be/lY5bFfD00097BQUF5pprrvHat29vNm3apGAwGJCk+vXrn/6mMAoyMjJUUFCQJSlKRWEQUWPH2qLNgYCUkyPdf780fLj0+utFDjYiyRijtm3bqnHjxho9erRZvny5OnfuXKxzTJ8+3cvPzzeffvqp1759+2NX68XHS3/8o+/7EhIS1LJlS7Vs2TLguq62bNnirF271p0zZ4731ltvmZSUFLdPnz5OsUPwyZOlQ4eKdKjrusrIyHAuv/zyHz/oedKvfy2tXi0tWlS8wvvz50uffSbdcUfx5izZgv/vvCM9/rh07712BeVRJk6c6KWnp5sGDRro+uuvNwcOHFBGRkYgEAiocuXKqlmzZuy/IEpavXp1Tn5+/vRYzwMAoqlMXIAB4Bfr9tvtDcChQ7Zbzr33Si1b2iKygSItcImapk2bKhQKKScnp1jvGzduXOiMM85Q//79tXDhQrNv375jDxgxwhbQPY0KFSqoTZs2GjRoUOCPf/yjevfu7Wzfvl2zZs2K6J7r1NRUua7rjhs3zs3Lyyv9CT/91HZhKqmXXpL27rWB43F/F47j6JZbblH79u2NJDVq1EjNmjVTs2bNykRoJEnr1q0LeZ43LS0tjb3yPwf/+IdtR5+XZ7c85efbIv5lIDQ6WqVKlVSvXj13165dxXrfypUr9d1335nhw4crJyfH++STT44thPzGGzZMOQ3HcdSwYUP16NHD+d3vfmduvfVW1axZ04wbN84tKCgo1px06JCtL7R7d5HGbdq0qTd58mRt27bNdjqbOlW69FLp7beL363xq69K1dFNV19tO64tWCAd1/nOcRx16NDBvfnmm51AIKCqVauqRYsWOvvss1WzZs2SjxlGmZmZyrJfr5bFei4AEE0ERwAQS55nA6OhQ6XrrrNPf2+7Ldaz8uU4jipUqOBt3bq1yO+ZN2+eMjMzAwMGDHDOOussNWrUyJ0xY4b7Q30915UyMk7fYew4cXFxatKkiQYOHGjWrl1rvo5gR6PKlSvrnnvucQ4fPuyNHDnS279/f8lPFgrZArEna2NdFI4j/etf0tq1dqVHYei2evVqBQIBE7Y6KhGyevXq7Pz8/GmxngfCJCtLGjnSbrnt3dtuT4th/ZlTqVGjhrNv374iB5aZmZl65513vJ49e6p69erq16+f8+GHHzp79+798aC9e4tdg84YozPOOEPXXXedSUlJ0YQJE4rXlatSJWnXLqlGjSIdfv3115tOnTpp3NixOnzxxdKyZVK/fiUqsq1LLz3pCqsi69fPdtd75RVpyRJJdmXUjh07dM4558R8K9qpfPPNNwoEAu+kpaWFYj0XAIgmgiMAiKU1a+y2g5kz7dajYtbeiLYqVaq427dvL9Kx6enpWrp0qW644YYfilr379/f2bdvnz7//HN787Ztm111VcLuXjVq1NDVV1/tzZo1y1u9erUi1Xo7Li5OzZo1Cxw4cMC89957JV8p8913doVVaVeTGSM98YQN3B59VDpwQIsXLw517NjRLcs3XQcPHtSBAwfiJH0c67kgTB57zNbJqVHDFj0uw//+UlJSTFZWVpEuEq7rasyYMaG2bdu6LVu2lCQ1bNhQTZo08aZNm/Zj+F2xolRYwLm4HMfR9ddf72RkZDhvvvlm8VZzZmZKAwcW+fAWX32lq95+Wy9cfbVyH3mkBLMt9I9/SOvXl/z9R1xzjS3yvWyZ9OGHWrlypeLi4tSgQYPSnzuCVq9efTAvL29yrOcBANFGcAQAsdShg/Tyy3Zr2pVXSuPHF2nbVqyce+65ZunSpXrvvfdOeVxubq5ef/119+KLL3br1av3w8fj4uJ03XXXOXPnzjUHDhyQvvyy1Dchbdu2NRdeeKE7Z84c77HHHtPzzz8fWrBggYq9/eMUZsyYoZUrV3o9e/ZU3759S35n7Lr2iX04OI50553SGWfIHTJE+3btCrRv375Mf10vfFr/XlpaWn6s54IwWb9eOuMMGyisWiUtXBjrGZ1UgwYNFAwGAy+88EIo6zTX2ddff91NSEhwrrzyymNS3v79+5sDBw7o008/9eS60gcfSAkJJZ5TUlKSBg4cqJ07d7pPP/20/v3vf4emT5+u3afbhlalil2tebqw3PO079tvlfPsswpdc41725//fPKOaUVRq9YJtYlK7PLLpXbtpDFjlD5xYig1NfXk3SjLgMOHD2vXrl0Jkj6I9VwAINoCf/vb32I9BwD4JfubWrWyxWQlqX9/qUmTYm/dipZatWqZxo0ba+HChd5HH32kVatWuXv27HEqV66spKSkH45bs2aN0tPTNWDAgBO2HVSvXl2bNm1y161b57Vr1syoVi37OZdCgwYNnM6dO5uWLVsqLi7OfPjhhyY5OVlHWtEfsWnTJqWkpBT7/IsWLQp17NjR6dChQ8k7IUm2rkedOuH7+zVGOu88eVWq6Mz//EcJvXurQgk+v2iZO3fuoX379j1y0UUXURj75+Nv+t3vpPr1pf/8x7Z1v+mmWM/JV2Jiojp06KBt27Z5s2fPdr744ovQ5s2bHWOMqlevfkxoMXv2bPXv398c3yWxcJuZefvtt02bZs2UGAxKv/pVqeaVnJysjh07mtTUVFWpUsVZu3at9/XXX3upqanHXDx37twpY4zi4+PtSqebb7Z1zuLj/U+cny/dcYdyJ0/WtJtucnv/4Q9OQilCLmVk2BVCvXqV/BzHa9hQql9fwddeM4G4OK92ly5lNjlat26dNm7cuPihhx56KdZzAYBoK9t7IgDgl2D8eNtp67PPpG+/tR+79FK7lP+++2I7Nx916tTRvffea3bt2qX09PTAd999F3r55ZcDjuN4Z555pjdo0CCnRo0ays/PNyd7etyvXz/nySeftEVl+/ULy7yO3Pw5jmMWLlyoNm3a/PDa/v37NW7cuFBmZmagfv363uHDh90DBw44F154oenWrdtpz52bm+tVLm77aT/z50udOpX+PLJbAZctW6bt27eHysXFqU6bNoHuPXtKK1aUyS2PeXl52r59e4KkUy9Xw09PtWq20PE//2l/P2mSvaYtK3v1gxMTE9W/f//AgQMHtHnz5sCGDRtC7733nvPGG2+YpKSkUK9evQINGzZUXFyce6Qj4fGaNm2qihUrhjKnTw8kL18etrmVL19erVu31uLFi70WLVr8kFC7rqs333zTW716tUlISHDr1Kljtm7dqi4rVngXLFzomIyME0+WkWG7L7Ztqy+vvlrJhw6Vvhj9l1/a7cVhkJWVpSVLlmjdunWh/Px81WzbNnDhq68aXXaZrZdVBq1ZsyY7Nzd3YqznAQCxUPa+swSAX5rU1BNbGw8bZrexffedVLmy3QpShjiOo9q1a6t27dq64IILAp7nKSMjw8ydO9f997//7fbp08cJBoMKhUIK+NTzcV3XrtxZu9auVAijQCAgx3E0atSoUCgU8go7wcWdc845uvHGG/X22297rVq1MjVr1jRvvPGGDhw44F177bWnfModDAadsARHt94qHbV1r7hc19X06dO9jRs3yvM8c/bZZ4d69OgRyMrK0upKlUKrL7hAF3bpEtDbb0vVq5d+vmG0ZcsWxcfHr3rggQcOxnouCLN77jm2U+BFF9ktt54nLV8etrA0nJKTk9WmTRu1adMmINkg48svv3QmTpyoc889V/Hx8d7Bgyf/p+p5nld+0yYpAjV5Klas6H322WfumjVr3IKCAhMMBk1iYqK5/fbbtXz5cjc3N9cMGDAgsLBSJe/Ldu3cW3NznWO2nx0+bOsu9e0rpaVpz9SpOn7lVIm0aiX96U+lOsXKlSs1b968UE5OTqBWrVqh8847L1CpUiWtW7cutKByZefmhx825q67Slw3KlI8z9OmTZsCkt6N9VwAIBYIjgAg1qpVszWOjjZokP25Vy9bw+LNN6M/r2IwxqhmzZq66aabAsuWLfOmTp0qyd6MJScnn3B8MBhUnOdJv/99sTsSnU5ycrKGDh2qrVu3BuLj45WQkKAqVaqoVq1aAUkaNmzYD0/yb731Vo0ZM8YcPHjQvfHGG52TbUPLz88vfXDkurYVdQlrOu3Zs0fjxo1zy5cvb2688UZTt25dOY7zQyqXmppqf920qTR4sPTaa7ZldxmxZcuWUDAYnBvreSACLrzw2O1StWvbMHzRIrtycu/eMrkK7mhJSUnq0qWLadKkiV577TXv0KFDcacJjkxe27bSBReEfS7XX3994KuvvlIgEHASEhKUkJCgwlVQuuaaa374g6x3xx3O8t/+NrSsd2+3zaRJTkpKiv1/v2OHNH26vRZIOnDggNesWbNSVuSX9PDD9npdghVBrutqypQp3qZNm8wVV1wRaNmypRITE3+YU4sWLQLq3duuaOrdW6pZM3y1lMKgsJNeVlpaWtG6QwDAz0yZLqIJAL8Ib7994oqjI2bOlGbMkCZOlG65JbrzKgFjjM4//3xzyy23qFatWifdGpGfn6+U/fulsWMjckNZq1YtderUSe3atVOLFi1OqHV0RI0aNTR8+HDt3bvXvPTSSyG/rmzBYFAFBQXH1HAqkb17bWFZnyDtdJYtW6ZRo0apVatW3h133GHq169/8lpLV15pO1317Pnj1scyYOPGjdmhUGhRrOeBCLjxRmnr1hM/3rWr/Xefm2vDpaPb2JdRNWvW1G9+8xvTpk2bUEJCwkmvYZ7nqcrUqdL334d9DgkJCUpNTVX79u3VqlUrNWnSRHE+18m4uDid37p1oF6FChr54ovejpUrpccfl84774fQSJIOHz4cCsuKyexsqbDDXHHs3btX//nPf0L79u3z7rzzTrVv3/7kBbrr1rWB4513Su+8U8oJh8+2bdvkOM6SWM8DAGKlbD/+AYBfggEDpO7dT/56XJxtdd2wod36sWeP/X0ZVrNmTd1+++0n3f4VDAYVHwqViVoWlStX1h133GHGjx9vnn322dDw4cMDR9/UZGRkKDExsXRFsSXbPvvpp4v1lilTpnjr1683gUBAAwYMUJMmTYq2aqBdO+mhh2yx4nvvlZo1K8mMw8Z1XWVkZJSXtDSmE0FkfPKJ1KiR/2txcfa61aiRDU137y7z16/4+Hj16tXrlP/XPM8zjuNILVpEa1q+zB13qNHgwc6wXr28jbNn6+CkSWp+XLgTtq22v/qV3YZYROvWrdMbb7zhhUIh07FjR1122WWO39blEyQmSrNn25VHVarY0DHG0tPTc3Nzc9+P9TwAIFYIjgAg1lavll5//dShwuWX2x8TJ9ogYPdu21HrJyo/P181d+701LVrmfgkEhMTNWzYMGfKlCnuc88959auXdvJzs52c3Nz3aSkpLikpCRXpV2lO3eu3YZxqpCwkOu6GjNmjLt//34zZMgQVatWTRUqVCjeeFdcYetjpaVJ998f0zozGRkZiouLy/jzn/+cGbNJIHL++ldbDPtktdgqVZImTJAKCmwA/sEHUufOUZ1iuFXYt09KSirRCsKw2rlT5qqrdObhw+b7l17yZsycaRp++aXy8vJ0+PDhUGJiYni22u7eLY0bJ912W5EO/+yzzzR37lz16NFD9erVU/Xq1Yu3VS45WXrvPalHD2ngQFv3L4Zf8zZv3hyU9EnMJgAAMcZWNQCItX37bPebohg0yAZNOTn2G+n8/MjOLULy8/NVc8cOW/enjIiLi9MNN9zgdOrUSVWqVHFbtmzpdO7cOW7Hjh0qX7586e9YWra0N0GnUVBQoBdeeCGUm5trhg8fburVq1f80OiIzp3tjd6CBdLHH5fsHGGwzXZiWhyzCSCyvv7aXpNOJy5O2rDB/rv805+klSsjP7cIqZ6RIRPr69euXbZuWt++0po1at21q7nxxhtVsWLFUKNGjdSpU6eAMcYEg0FTvnz50o3ledINNxQpvJk/f77mzp2rAQMG6NxzzzXVS1qov1w5ado0W2B98mQ7hxjIzc3VoUOHEiR9FZMJAEAZQHAEALHWo0fxajnUrCnt3PljkeVQKDLziqCCggKlt2rlqWvXWE/lGI7jqFu3bs5VV13lXHjhhfIKb1R27txp1qxZU7qTjx1bpE5n48aN81zXdW677TZT4sDoaJdeagv4TpggvR+bnRabNm3KzsvL+yAmgyPyVq60K4mKomZN+/OqVXbb7U/w+iVJB5KTTe7AgbGbwPjx0pIl0siR0p//LD3wgPTJJ2rUqJF69uwZuOiii3T22Wdr9+7dSkxM1IwZM1y/Gm5FNm+erVV1GmvXrtXixYs1aNAgnXXWWSUf74gqVaR//cteux5+OCYPG7Zv3674+Pi1aWlpP80nNQAQBgRHABBr48dLzZsX7z1NmkiLF9u2y8nJ0qZNkZnbUVauXKmJEydq1qxZWrBggb744gulp6crKyvrlO8LBoPKzc3V0Tct+Tk5uvS11xxVqhTpaZfYihUr9P777+uGG25Qz549NWvWLG3ZsqVkJ/M8+/dVhC5n3bp1M4cOHTKTJ092H3/8cZ2qs1ORde1qV6t9840txh5lW7Zs8SRRWPbnKjnZrjoqjnfesds2O3e2228jLDMzU5MnT9a0adM0d+5cLVu2TOvXr9fevXt1qkDFdV1lZWWpoKDgmI+f+8knJr6oK0XDyXXt9f7xx6X69aXUVPvx3bvtj0JZWVkaOXKke/bZZ3v33nuvdu3apTlz5pQ8pVu2rEiHnXXWWUpOTg7Nnj3b+9e//qXly5eXfplQUpKt11apkvTII1EPG7ds2eIGg0GCbwC/aNQ4AoBY69ZNKkrBUD+VK0vvvmsLz/7vf9LNN9tvssMoIyNDU6dODWVlZQXatGnj5uTkuOnp6SY7O9scPnzYyS18Ch0XF6e4uDg3Li7OK1eunJeYmOjExcU527Ztk+d5cl1Xxhg5jqPK+/erXnKyVLFiWOcaLitXrtScOXPUv3//H56a7927V5MmTdLtt9+uatWqFe+Ehw9LY8bYrmqn0aRJEw0ePFhLlixxkpOT3Xnz5nm9e/cufSvtLl2khATp5Zclx5GuuqrUpyyKrKws5ebmBiSti8qAiL5HH7XdsEpi4kR7Hfj4YykvT7rkkrBOraCgQDNnzvS++eYb07RpUzcuLs7LyMjQhg0bzOHDh01ubq4pKCg4cv3yjlzDEhISTPny5QO7du1y8/LynCPhkuM4chxH/ffulRPtdvE5OdLtt9v/yytWSPHxP742bpwUDBYelqMXX3zRPeuss7yePXsGjDG69dZbnZEjR3opKSlu586di//geMgQqV690x4WHx+v3/zmN4GZM2eqXr16mjdvnmnTpo0SEhKKPeQxKle23Ucfe0y65x779S5KNm3alBUKhT6K2oAAUAYRHAFArJUv/+P2jZLo2tWuaHnmGalVq2J1vTmVYDCoadOmeZs2bTIdOnTQxRdfrISEBEfHrVb1PE/5+fnKzs5Wdna2k5OTc+TXysrKci+99FKnbt268jxPoVBIBQUFcr/4QuW6dQvLPMNt7dq1euedd9S3b181Paqldbdu3bR3715v7NixGj58uKlYnNBr6VLpySdtp6AiqF+/vurXr6/MzEzn+eefV5cuXVQjHJ2oUlNtx6K33rI3of36lf6cp7F161bFx8eveOCBB8pOQSuEV716tn5RSRz5P/b001J6eliDo6VLl2rhwoVe1apVvVtvvdXUrFnTNzAJhUIqvG6Z7OzswJFrWFZWlte8eXOTWriqx3Vdew3Lz1ecpPgiFLoPm23bpP377equoUOPDY2OSElRwaxZemHlSrdBgwbq1atXwBTWJEpJSdHAgQPNhAkTTEpKipoXd5XrXXfZ7a5FuA7FxcWpX+G1ZdOmTaHFixeb7t27l36XQ8WKtlvkzJk2RHrhhZI/dCkiz/O0c+fORLFiEsAvHMERAMTaBx9I//hH8bd6HM0Y6dtv7a87dbI3FnfdVeLTLViwQEuXLvVq167t3XnnnaZatWon/e7cGKP4+HjFx8cr5cStWM7RxxU+1Zc+/1zKzpauu67Ec4yEYDCoWbNmeT169DDNfFrY9+7d27zyyivu+PHjvVtvvdUpV65c0U7sunaVQDGlpKSoQYMG3sKFC93+/fuH5w6pdWt7k/+3v9n6IZdeGpbTnszWrVsL8vLyaGP9c3bbbbYGTmlW4Dz5pP35uedsQLF0aYlPtWXLFr3xxhuhYDAYuPbaa03Lli2NOUVR50AgoEqVKqnSiVtnzfHHBQIBxe/cabduOVGq+PDNN9JNN9k6Rs8/f/LjVq/Wa4sXuykpKerbt6/jHDe/+vXr6+qrr9aMGTN08803q06dOkUbPz/fbrNt3LjYU+/Zs2dg3Lhx6tatm4p8vTyVxESpTx9p+3Zp+HBp1KiI/j3s3r1bgUBg70MPPbQnYoMAwE8AwREAxFrfvtJll4XvfL/7nXThhbZgba1aJ2+R7WP9+vV66623QsYYp1+/fqZp06aR6X/coEGR6v1E26RJk9zatWt77dq1O2lIM3ToUOe5554LTZ061b3xxhudU92Q/mDXrhL/Hefk5Li1atUK751RixbSU0/ZwDIzU+rfP6ynP9qmTZuyXdeNXUs3RN7KlUVaiVIk/fpJ1arZOjaLFhVrBWVOTo6mTJni7tixwzn//PNN165dwxNWHM9xwnvNPpUxY6RzzpGeeOK0fxZr9/x/9s47PKoq/ePfc+8kmfRKAiQQSkIJJJBC7yAapFcpggpSLai4uur+xLK76uoqKqKgsChIRyD03hJqKCGFGiCBACGk98nce35/vAQS0maSGRL0fJ4nT8gt5557mTkz53ve9/veQ+BXX0mNDhzAo6JRMe3atUNqaiqWL1+OadOmlSf2l+XqVWDw4GoJNJmZmdBqtVyj0Zjus8TSknyxNm0Cnn8e+Plns6U937hxA4yxI2ZpXCAQCJ4ghDm2QCAQ1DanT1Npav+tTGoAACAASURBVFPx3HPkN/Lee8Cbbxp0iqqqWLx4sbJ27Vp06tRJev3111nJNC2Ts2AB4OFhvvarQVRUFG7fvi0NHz5crkwMkiQJ06ZNk5OSkhAREWFY+tXWrVRBykj0ej3u3bsnt2/f3vQCnpcX8OGHJB79/rvJmy8mMzNTA+CS2S4gqH2mTwdu3TJNW/XrA+PGURWt0aMNLsEeERGBefPmwcrKir/yyivo27ev4RGBxrJlywM/IbPBOUVdzZ9PUTZViEY6nQ5he/bwpno9HKt4Zn379kWzZs348uXLDXu4x45VOyL26NGjSmBgIAwS2I1BowGGDaNCEc89Z7Zqa+np6WpBQcEZszQuEAgETxBCOBIIBILaRqejqA9Ts20bGaZ++y0wZUqlh+bk5CApKUl+/fXX0a1bNyab0zdCUWgFu2FD813DSAoKCrB9+3Y+cODA8tJVyqDVahEcHCxdunTJsInXCy8AnToZ3a8jR47A0dFRNdqM21Cioyll8J13DCq1XR10Op0lgFSzNC6oG2RmUjqTKQkNpUi9e/eA4GCgiuqCJ0+e1Pft2xfjxo2THR0dTduXR4mNBdzczNd+djaJZpmZwP79FHFUBatWrVI9GjTgNjExZCRdBSNHjmSZmZksNze36v506ULpz0ZiVuEbIDP1NWuAyEiqTmoGcnNzCyHGL4FAIBDCkUAgENQ63bubL+JDlskwu107WpFNSir3MAcHB8iybPpV4fLIzAS++aZOVVRbsWKF6uXlpfob4dHi4+ODlJSUqhW21FTygKlGal5sbKwSFBRk+s9qzoHPPqOUwb17gSVLzGIyq9froaqqBCDP5I0L6g7FlR1NjSxTtE3HjlSK/caNCg+1trZm3MDopBozaBAJW+YgKQmIiaF0vT596L6rIDY2FklJSdKIESMkFhFBwlEVz0KSJGi1WvXu3btV9+ndd2kcM5KzZ8/Czs6Om0X4PngQWLcOCAuj15+ZvNpyc3OLAKSZpXGBQCB4ghDCkUAgENQ2f/wBBASYr/2nnqLyxYsWASEhZXZfvXoVCxcuVDjnUM0U7l+KY8eA1avNfx0DOXv2LJKTk6WSFYgMwcvLC0VFRcjLq0ITSUgAPD3JwNxIOOewLK96Uk3Zv58mXE5OJB75+VFUgaKY9DJ5eXnQaDQ5c+fOfUwzekGt4O0NnDFTNo+9PVXPKiwEWrQAzp0rtTsnJwfr1q1DWlqaBMD8rzPOgU8/rX4Vuco4eRIYOpSitxYuLL9y2iPodDps2bKFh4aGcgcHB6BrV+DsWYPGGzs7O56cnFx1v+LjqxUhyjmHhYWF6T9UdDqqqqbR0GsiMBB47TWqtmZicnNzOUTEkUAgEAhzbIFAIKh1uncHvvzS/NeZMYO8IFJToc6ciWOvvorjp04pBQUFckhICBs3bpxBaVo1Ji+PIqDqAHl5edixYwcfPHgws7OzM+pcSZJgZWWlpqWlSTY2NhUfaG0N/PJLtfonyzJ0pvRS0ekeVtzbv5+iOQASttzdgeRkk6YQ5ufnQ5blTJM1KKibzJsHmNMTDaDX6q1bFLk3YwZuDx2KrUlJanJysuTt7a2MHz9ebty4sXn7AFDEpKMjRQSZkuXLSQD597+Bnj0NPm3FihVq/fr10b59e1oMliSKDpo7F/j440rPdXZ2lu/evasAqDjcsLCQfNAMSJd7FK1Wi6KiItOGsS5cSFXmoqIejl8AfaZUkc5YHfLz8xlExJFAIBCIiCOBQCCodSSpWtEo1UF1dMTeVatw/exZnDh1ivfs3Fl+++230b9/f8nBAF8Mk5CURCkYtUxOTg4WLFigNm/eXG3Tpo3R5+v1ehQWFkouLi6VH7hyJbBzZ7X6aGFhIZlMOCoooBSYggLyjCk56ZIkinzbv98017pPfn4+GGNmMPAS1CnMEX1THs7OiI2NxdXwcL5tyxZ41qvHZ82aheeff1729vZ+PKm2ly8Dzz5r2jbXrwd++gmwsgKeftrg09auXcvv3r0rDR8+vHR1x7S0MpFZ5ZGWlqa4u7tXnqMaG0sRX9V4tsXCkclSCHNzKVJy8ODS4xdAQlmDBhThaUIKCgpkiIgjgUAgEMKRQCAQ1Drh4cCcOY/lUhcuXMDJ7Gzw7dsxe8IEFtyvHyyq4V1RI44cMXlKlLGkp6djwYIFarNmzfjIkSONSlEr5vLly7C2tuaVRhsBQPPmQI8e1epnq1atWEREBE6ePMlrNPlKTQUGDAASE0kgsrYue4wsAx98QOkyJuJ+Gp/x5eQETxavvQZcuPBYLrVlyxaeOH8+nv/6awz44APZ+YsvHst1H3D6NAkzpiAzExgxgiqDbd5Mvw1AVVUsW7ZMTUxMxNSpU1FG9B84ENiwocpxNjs7m3l5eVV+MWvragtlnp6e0Ov1WLlypZqfn1+tNgBQeuA77wDjx1OFyooWHn7/nQQkE1JYWGgFIRwJBAKBEI4EAoGg1hk6lMLuHwN37tyBh4eH0rx5czB3dyAigspff/aZWcL8y8A53W/r1ua/VgUkJydj4cKFvG3btnz48OGyJFXvo/DChQto1KhR1f4du3cbPCF8lK5du2L06NHYt28ffv/99+pNvpKSqGpf79707CvCwoIMZ40wCK+K/Px8cM4NMFERPNHEx5frn2YOioqKWKdOnZiVlRVFn/z971RBcvfux3J9BAVRxEtNSUujSMQGDchjzEDzfFVVsWTJEiUtLY1NmzaNOVd03tSpQOfOFbaTk5ODwsJCqX79+pVfMDy82umrNjY2mD17NsvOzubz589HYmKi8Y2oKnDlCqUH/ve/lR/79deUNmmiKM2ioiJwzhmEub9AIBAI4UggEAhqnZMngYkTH8ulUlNTUSq1KjAQ0OuBX3+lFAxzc/Uq+W7UUkW1GzduYMmSJbxjx458wIAB1Yo0KiYpKUlp0qRJ5WkeeXlkGlyDNEBfX1/Mnj2bpaamYu/evcYZzSYm0iT3zBlaia/qfj09qTpWdHS1+1uSvLw8FBUV3TZJY4K6y8iRNLk3M5mZZJelLU5TataMDN537nx8hvt/+xule9aEAwfI2659e+CHH0i0NQC9Xo+ffvpJ0el00tSpU1mlnnQfflhpimxMTAxcXFxUTVVphocP10iI0Wq1mD59uhwUFIQVK1ZAMSbalHNgwgRg9myKhqxKgHdxof8fE0Xw5ufnC3N/gUAguI8QjgQCgaC20WjK+jWYiYyMDNXV1bW02KHRUJpJcDDQpg2weLH5OnD5MtCqlfnar4QrV65g2bJl6NWrF+/bt69UUz8Ue3t7REVFqXq9vuKD9HoyxjZwYlgRWq0WI0aMkM6dO2e459Hx4xRF9q9/AaNHG3aORgO8/77JPLfy8vL0iqIYUO9b8ESj1ZJPlplJSkqCra0tL/Pe/fZbep99+ilVFTMXnJMxc02MwP/4g57XvHlUEcxAdDodFixYoFhaWrIpU6awKlNkGzUC1q4FNm0qd7ezszMyMzOl27er0HVffRUIDTW4nxXRr18/WFhYKOfPnzfshOxsiiibPBlYt87wC02ZYrLiC8LcXyAQCB4ihCOBQCCobdq3B77//rFcKj8/X3V0dKz4gH/9Cxg+nFLY7twxfQccHaus9GMOIiIisGbNGoSGhvKuXbua5LNv4sSJcm5uLtavX69U6D+0aRNNamuIqqrYtm2bXq/X49KlS1WfkJREK/XXr5O3kTG8+ioZehtSprsKcnNzCyH8Qf78LFkCNGli9sskJyfD0dGx4qi76dNJ+CwsBLZvN30H0tPp/ezmVr3zv/+eBKPGjY0ywU5OTsZ3332nOjk5sRdeeEGysrIy7MRz5yqMJG3ZsiVCQkKwbNmyB5FcZdDp6PPABAsb+/btQ2FhoXzq1CnDoiZHjybT8KeeAqoSyUrSuTM9X2PEpgrIy8sT5v4CgUBwHyEcCQQCQW2zbRvQseNjuVRRUVHlZeeHDaNwfwNKOVeLTZuAuDjTt1sBOp0Ov/zyixIREYGxY8ciKCjIZGWXJEnCtGnTpISEBKnCFDKdDujSpcbXWrVqlco5lyZMmACfqtI1/vc/IDKSKqQNGmT8xRijaKWNG6vX2RLk5OQoEMLRn5+AAHrNmJnMzEw4ODhUnDbk7k6v+W3byOPHVNW8ijl7Ftixw/jz7t4Fxo0D+vcnE2wjPIMOHTqExYsXo127dpgwYYJkYUz04g8/UNqWWv7w9PTTT8PLy0v99ddfeUF56XepqeR5Vp6ZvhFcuXIFx44dw5AhQ/Dss89WPveIjSXfqkWLKIW6OtGPiYlV+yEZwH1POWHuLxAIBBDCkUAgENQ+3brRF/zHgEaj4Tk5OVUfuGcPsGABCUjTppmuA/XqUYTVYyA+Ph7ffPONamlpiVdffRXNmjUz+TVsbGzw4osvspMnT7LTp0+XnaVaWZEYVwNOnjyJhIQEady4cVLz5s0f+ruUR0oK8Pnn5FXUqFH1L7p1K03Ai4qq3YSqqsjNzQUAE5WgEtRZfvoJaNvW7JdxcHBAVlZW1UrC8OHAjRtUmr1tW6AmFb1KYm1N47Ux5OUBP/9MRQh8fSnq0gAKCgqwaNEi5dixYxg/fjz69+8vyXLllmrl0qwZ8NVXFe4eO3asZGFhoa5YsUIt4z+UnEwV82pAXl4e1q1bx/v378/btm2LevXqVXww57RgYWFBUUPVTZmdMoXM0m/dqt75ADjnyMnJAedcpNoKBAIBgCoc8QQCgUBgdvR6Wtl9DNjZ2clpaWkcQNXfyBkDevWiCZhOR1/Ca5KOoqoUxfL669Vvw6DLqNiyZQuPiYlh/fr1Yx07dqyxn1FluLu7Y9SoUWzt2rVwdHRE8+bNH+5cuZKiMQxAp9MhPT0dWVlZyMzMRHZ2NnJychAdHY1Ro0ah0hRDzmmV3tWVVuyrMrytCisrKhM+ZozRRrM6nQ6fffZZ8Z8OAK7XrDOCOk9aWpWl302Bp6cnzpw5Y9iiJ2OUUvbssyT4XL5cM28igKKNKqlUVoYtW4A33wSOHaP3poFcvnwZf/zxB/fy8mITJ06EdU0ifjZuJO+6CpAkCVOnTpW/++47ddOmTcrw4cMfFg3YvRvIzQUGDqzyMqqqIisrCxkZGQ/Gr+zsbFy8eFFt0qQJDwkJqVz12r2bUqV37Kh5ahxj5NW3Zg2lXRvJkiVLcOPGDQCALMtnatYZgUAg+HMghCOBQCCobSIjadI/YYLZL+Xm5sYSEhIUAIYtXfftS7+/+or8ORISqn/xa9dIkKihUXRlZGRk4Ndff1UASC+//DLc3d3NpxiVwNfXFx06dEBYWBh/8803H15z8GCgZcsqz1+7di0/f/48s7CwgJWVFddqtdza2prb2NjgmWeekVq0aFHxfagqRQacP0/+KzUVjYr54QfA0tLo0ywtLfHKK69gx44dSnx8vAzAH0A16nALnhjeeQdo3hzo0cOsl/H29kZeXh7Lzc2FrSGVGe3sgP/8B8jJIQE3OrrqylyVER1N6WZVwTlVTisoAH780WDRSFVVbNq0iZ8/f549/fTTCA4Orrno3a4d8MorwBdf0PMoB41Gg2nTpknffvstOnXqBE9PT9rRpYtBaWqJiYn47bffwBiDpaUl12q1XKvVchsbG+7r68ueeuqpyitYZmcDhw4BL71kukIR06dThCvnRkcujR8/HmfPnsXOnTuhKMo0AF+aplMCgUDw5CKEI4FAIKhtBg6smSBjBH369MGCBQukyMhIHhISYvi36bffBmbMoH7Onk2VgYytomRpSSWVzURiYiKWL1/O/f39ERoayozyAjEBycnJvGnTpiqKRbm4OPJ0mjGj0vPS0tJw6dIlNmvWLLiR6S6DIRFhAEWCTZxIqWlhYTXqfxlCQkjQjI0lfxYjcHNzg729ffE9JJm2Y4I6x507JqvEVxlarRYNGzZUV65ciZdeesnw1C07O0rjtLMDxo8H3n3X+MpbnAOTJhmWavv++1TGfvt2wN7eoOZVVcUPP/ygAJCmTp2KevXqme6Bnj4NXLoEBAVVeEhaWhoYY/Dw8Hi48V//Ar75psrmN23apHTp0oX169dPgjHjFwAsXUrXiYmhhQVTodVShOyUKWTebtSp2pKRo49l8UEgEAjqOsLjSCAQCGqbY8cMW8WuIXq9HseOHQMAREVFGe8aa2dHK8MWFjRJzMsz7vyNGykdwUysX79e6dq1Kx88eLD8uEUjVVVx8+ZNBAcHP5zJRkcbVA1o/fr1Sps2bRQ3Yys15eYC8fE0Gfy//zO2y4ZhY0Plx6tBUlJS8XcMEW30Z6dXL6rgZWYuXLiAvLw8fufOHSk93chiV3Z2JP4UFAC2tsaPX7dvk/9OZcUFrl+nVNznnzdKNAKAPXv2QFVVaebMmaxSH6DqcPQoEBhY6SEHDhxQ27Rpo2iKIxZVFThxgryZKiE6Ohq5ubly9+7djZ9TREUBDg7AsmWmFY2KadCAXpd6vdGnlqiU+ZtJ+yQQCARPKCLiSCAQCGobBwezl7JWVRVff/01t7e358OGDZNatmxZvVXUtm2BtWvJ96hFC/I9cnY27Nz0dKrQY2L0ej02bdoEzrnUvXv3WlkdjoqKgqWlJby8vB5uDAgAOnSo9LzExESkpKTI44yM6EFRETBgAE0Gv/22Gj02kA8/pIija9eApk2NOnXIkCFYvHgxAIhy1n92mjY1rmR6NVi9erV67do1qUuXLqxjx47V8/1hjKIlAUpZmzSJXuOGkJwMtG5d8X69HvjkE6pK2bq1URGZcXFxiIyMxPjx45nGVKmmJUlPJwHo7t0Kzblv3brF+vbt+7DT2dkUxejkVGGzqqpi586dar9+/ZiVlZVxY++XXwLLlwNHjpCQZw6aNgX27aNr9Oxp1KmuD9MLL5i8XwKBQPAEIoQjgUAgqG18fKh6mRmJiIiAhYUFZsyYYRqj6EaNqDS1szOlZfz97ySAVYalJdCvX82vfZ+cnBxs27aNx8fHw8XFhY8dO1Yyy6TLAAoLC2Ftbc1ZyYc7bx5VYKqkmtumTZuUzp07Mzs7O8NnmdevUzTTJ59QpIe5WbiQyltv3GjUaba2trC0tEx97733TFwTXVDn+PTTKiNTakJOTg6uXr3KJk2aBE9PT9NEy+/dC7i7A6tW0Tj2zDOVH3/3LvDCC+XvW70a+Oc/gePHDRbQVFXFsWPHcOzYMaWoqEju27ev2qRJE/NkAjg7AwcPVlrRTVVVVso3Kjyc0sgqqSIXHh4OWZZZUFCQ4R8qej2ljoWGUpqtuUSjYpKSKD3xwoXKo8UeQZZleHh4ZCYnJ98xY+8EAoHgiUGkqgkEAkFtc+AA0Lu32Zrfv38/Dh8+jEGDBjGTVhdr2ZI8dsLCaDWeV6IPqCqt/JooHSE6OhrfffcddDqd+vzzz7Pp06dLDRs2NEnb1aF169ZITU2VVFV9uLF+ffIJqoC4uDjk5eUZl+KhqsCgQSTa9e79WHxl8PHH5HNS8t4MICcnB7Isp5ipV4K6RK9e1apeZQjJycn44YcfeKtWrVSTvse9vcn4OTwc2LOn8vELoONu3y69jXN6LyYkUOSfgaJRXl4e5s2bpxw/fpz37t1bnjNnDjp37mze7+QNGlSa0mpjY6O/VbJ8vbX1w+IIFXD06FEeGhrKDPaaAoDPP6dqZ02amFVsfEDr1sDmzQaZfD9KTk6ODOB2lQcKBALBXwARcSQQCAS1TefORpt3GsrGjRv5hQsX2KRJk0qnUZkKS0syNQUoLeDf/y7fSFmnA4YMqXTF21BOnDiBPXv2YNiwYfDz8zNixmI+HB0dodFo+L1795i7uzuVJr9xA2jVqsJzOOdgjMHgKKndu8lwd98+ipR4XDg7Az/9RF5HS5cafFpOTg4A3KrqOMGfgP/9DwgONnmzV65cwdq1a3mnTp14nz59Kq/MVV3mz6ffc+YAJ09Sda/y6NCh7Pt5+nQywT94EDBQPMnMzMSiRYtUb29vjBw50jjRpSYUFpLI/+mn5e52cXGRb968qbZp04YErLi4KlNtAcDK0MWAzEzgjTcoNXDOnGoJOdXGzQ3w9aUxzED/O845CgoKtBDCkUAgEAAQEUcCgUBQ++TmUuqRiVm2bJkSHx+PqVOnmkc0epQffgCGDgV27iTvo5Ls2UMr9jXkwIED2LNnD5577jn4+fnVuD1TYmNjozxYsY+Pp5SySnxO2rRpA8aYeuGCARYaqkoTvubNH69oVMzTTwNGRntkZ2dDVdUbZuqRoC4RHU3jmEmbjMaaNWvwzDPPoG/fvqZJsa2Md9+l9M/sbGDDhtL7VJVK2hebVl+7BvznP5S6tmuXwaJRSkoKfvrpJ96qVSuMHj1afmyiEUCedFFRFUZWNWnShCUkJDzcuXs3GYlXgq+vLwsPD1eqvDbn5GekKJTm/DhFI4Cu2b8/kJpq8Ck6nQ6cc3Xu3Lk5ZuyZQCAQPDEI4UggEAhqm4sXgf/+1+TNJiQkyC+//DIrYfJpXp59llI1PvsM+P770vsuXDDaXPlRtm/fjqNHj2LSpEklSyXXGdzd3TU3btygSZSra4Ur+wUFBQgLC0NcXBzatm0rHT58uPIcsJ9+AoYNo5TGijxWzE1wMDBmjFE+Rzk5OVyn010zY68EdYWvv6b3uAkJDw9XunfvDqP8c2qCuzulf4aFAe+8U3rf3buUZuvsTCLIlClkON21q8HpaTdu3MAvv/zCg4OD+aBBg8wvhJXHd9+Rp145tG7dGikpKTLnnO7xjTcqjCKLiIjAoUOH0KtXL9y4cUOutMJdQgJFLg0cCPz6K1BLPnT4+msSrwxMuc3OzoaFhYUw9hcIBIL7iFQ1gUAgqG369KHoFBOi0+mgqiocqjKsNgcHDtDv114jI9QffySvn8aNDW4iKysL8+fP5xYWFtzCwkKVZVnKz8+XJk+eDA8PD/P0u4bcL99Ms8FFi4B798oYy6qqioULFyoWFhbSpUuXUFhYyPR6vZScnFz+faWmAufPA2++aVSVJrOQkAC8/TZFlRkw6c3MzMznnIs0j78CJh6/AKCoqIg7G1qx0ZRMmEA/MTHAyJH0u7CQ3tNLl5KZdlhYlUbLP/74oz4rK0u2sLBQrayskJmZKffq1Yt369at9t7IY8dW6FvES0Yi3bxJxtU3b5Y5bt++fThx4gScnJzUQ4cOSaqq4vjx42poaGjZ+0pNpec3ZIjZK4dWiVZLUbG9e1fqPVdMTk4OJEm6a/6OCQQCwZOBEI4EAoGgtjlxApg1C4iMNFmTGRkZsLCwQK2sahczYgT5WuTk0Grv++9XWmGsJBkZGZAkiY0bN45lZWVJ2dnZaNmyJZwqKQ1d26SkpOhbt25Nn6tZWUCbNmWOiY6ORlZWljxnzhxYW1sjLS0N169fh215lYXee48qPx0//nhMsKti6FAqaZ2eTiXHqyAzM1MP4Q/y16BjRzKH7tLFZE3q9Xpm/bhTmkrSpAnw/PPkibNkCUUdqSpVkDSgOldubq701FNPMQcHBzkrKwsODg7w9fWtXfXX3Z3MvKOiSBwrQVxcHNzd3RXGmIw7d4DAwHKbOH78OO/fvz8LCQmRCgoKcO3aNWi12rL3dfIkPb+wMIo2qm1kGThzhtLlDEB4tAkEAkFphHAkEAgEtY2LC6U8mJD09HRYWVlxFEfA1AZ9+tDvQYOArVvJ12LBArrfKoSQTZs2KS1atICXl1edML82hLy8PPlB1ad27YABA8oc4+/vj927d6uXLl2S2rdvD1dXV5RJJVRVEosCAoCZM+uGaFTMvn1UZe3cuSoPzcnJ4QCSzd8pQa3TtSulZ5oQRVFqVziys6MqZHFx5H2k0dDrv3v3Kk89fPgwFEWRWrduDRsDU9keG0eOUIn6R4SjhIQE7u3t/XCw+fjjck9v27YtO3v2rBoSEiJptVq0bt267EEnTgC2tsAXX1D1zbqCnR3g5QVs2VJl1FFOTg4URUl8TD0TCASCOo8QjgQCgaC28fQEZswwaZNZWVnQarW1KxzdvEmr9QMHUuSMRkNV2Ly8gJdfBmbPJlHkkXSUsLAwriiKNGjQoDqkmFSOqqooKipidnZ2AOdQv/8elxs1guriAo1GA41GA1mWodFowDlnlabgvPwypYXt3l376WmPMmQIkJhIKYhVeJXcj3arYzcgMAszZtD72oTUunCkqmT63bYtpTm5uVG0ymuvAceOUfW1O3fKRFHevn0bhw8fxvjx4+ueaAQAH31U7ubc3FzVwcGBhPp165BmZ4c7Wm2psUuj0SAzMxMuLi7lO2wDwP79NLavWEHebHUJjYb89wxIgZQkCYyxJ2bhQiAQCMyNEI4EAoGgtjlxgkyPTegTkp2dDRsbm4q/3D8Ohg2j1JXvvqNKRY0aAfb2VIWoqAjYto3SPnbsAGJjgYAAXNNqER0dzaZOnQpLS8ta7b4xSJIEe3t7JTw8XPb39UWCszMPP3qUazQalXPOVFUF55wpisJ0Oh2rX79+2UZSU4Hffyc/I1/fuicaAQ+FwDfeeFjGvALuT/rrbm6hwHQMGkQT8nKi7KqLXq9ntSq8rFpF78U7dyi9a/ZsisLZsAE4fJh8j3r0ACZPBoYPp+NCQ7FixQq1c+fOaNKkSR18A9/nqacAb29g8eIHm3x9feXIyEjepEkTdhtQI+/dk/J279arqso45yj+rSiK9NRTT5UvqPzyC9CrFz27Olb18gGjRpE4/8EHlaZOa7VaSJJU7zH2TCAQCOo0QjgSCASC2iYkhL5om4jU1FScOXNGbVkbKQKcUyWeH34Ajh6lyZW1Na1C//ADMG7cQ++f9u3JN8famr7Eb9oEh4kT0X/rVmT16AH32ig7XwMGDBgg79ixQ7mzZo3ckXO89dZbkiSVVn+OHDmCs2fPqlZWVmUnlXPmUETDK68YXN67VnBzo9TDzz+v1OvF2tpaghCO/hqsXGmylCRVVbFu3TouyzKzsrIySZtGBDerBwAAIABJREFU8cknwNWrZIQ9ejR5/fTvDzg4kOH93bvA4MF07I0b5OG2dSuJSh06YMCaNSz53j3O+/SpXY+5yvjsszJVLu9XSOP/+9//2PgNG6RRu3bBuUmTUvMEVVXx+eefo1l5gsvBg5SK3K8fCd91Fcbo/zEiokrhiDFWtZmbQCAQ/EWou6shAoFA8FchIwPYvt0kTSUmJmLhwoXw8/PjoaGhj1d92L6dvpQPH06r2RYW5HNx4ACJRAUFFHlUEnt7Sh/YtAlYsQKuzZujmYcH9mzciMI+fUhE0elIgKrjtGzZErNnz5YntWmDVr6+TConYuj8+fOqh4cHS04uYf0TFwc89xzwn/8Av/1Wt0UjgDyqLl0CLl6s9DAbGxsNhHD012D3bpqMm4D58+crKSkpfPr06Y9XeDl+HEhOpijJ4sgpCwsam15/nQTxmTNJ5N+3j/ZLEglK48YBFy4Ajo5o0aMHK7hyhV16+22Op5+mlF0yWq47dOgALFtG7+P7WFpaYvLkydJ7U6fCG4Czt3eZ0y5fvgzGGLKzs6EUm0yrKo3TFha0QPCIIFUn2biRPOTy8ys8RKvVgnMuxi+BQCC4jxCOBAKBoLZJSiI/CBOwc+dONSgoSB0wYICsqcKDxqTcvk3iR2oqGcoWm0R/9BHg4UFRRc8+S/daGS1awG3DBjh36sR3duyoon9/Sgtp1Yomp6dOmaX0t0l5+mlKcSkHVVV5fHw8X7x4MWJjYynC6NdfKVrD3b1uGWFXxr175HdUiVhgY2NjCaAW6qkLHjsrV1KUTg2Ji4tDfn6+PGPGDMnFgMp9JmXqVEq16t+fxjKA0tKOHKE02549SeS2ta04TdPSEpqvvkL7775jYVZWLK9/f/LT8fGhlLakJEpN5rWbRQyAqp2dOVP+vt9/L3csyszMBGOMr1ixgq9evVpVi4ooje/CBYokdXQ0c6dNBGMkBn7zTYWHaLVaqKr6hNyQQCAQmB+RqiYQCAS1TceOwOXLNW5Gr9fj7t270ogRI0zQKQPZuBF4/32KmsnIKOvLs3kzpXsAVKJ+3z4Sgarg3r17ql9oKHtQmS08nKKTXnuNIgMOHKDUt+nTTW7KW2Pee4/6Wc6K/dSpU2UAiI2Nxel58+Czfz+szpyhe3uSaNCAxM7KU9VkWZZNW2pLUDeJjjZJM+Hh4UpwcDCTZfnxLGwqCqUrrVtHAsij49fp0zSujRsH1K9PKV4bN9Lfv/xCXjnlkJCQANnNjVu/+SYDY0B8PImsUVEkKi9bRqlSvr7kD1Ub7N9f/vYNG4CTJykq6RE6duyIjh07soKCAiz87395cqdOvP4//sHYnj1PjuhdzMKFtKBRAfeFoydsYBYIBALzISKOBAKBoLaJjDSJP0hKSgokSSpb3t0cXLwI7NwJ9O0LvPUWbXt00sU5TbzatqW/O3WiMshVcPv2bWRkZMidOnV62KCnJ6WE/PoriVSFhSS2RUcD//gHMGUKTQJV1VR3WH1sbCgNohLaODuju5cXtgcFISEt7TF1zMQEBVH6TlZWubu1VJHJ4zH3SlAbtG9PEYE1JCcn5/GYSuv1wKJFlBb6978D/v7lj1+ffkqm3wClYCUmUuqZVgt8+SWJTeVw5MgRpVevXuxBqp2tLQnJzz5L0TkdOlDk5O7dFFE5ciRtf5zjF+cUDRUZWXq7hQXQrVulp2rz8vDywIHSLa0W22VZqQPxU8bTqhXwz3/SAkQ5aLVaKIpSB8viCQQCQe0ghCOBQCCoRfLz8yl6Y+TIGreVmpoKa2tr83+H55wmU4sWkZhTwao7WrYk355iOncGmjShdLZKiI6Ohqurq1phRSVJoknYqlXkRdK/P0UNXLtGk7tVq8i0NjOzevdXE1JTSSjzqEQvWb0a6NEDTV97DerYsdi5c2cdULuqgb09CQa3bpW7+35VIhFx9FdgxAiTeNsUFRVJdpVEsZkEzmmsmDuXPG5mziQh6FE++eSh6F3MBx9QxKOLC0U9qiqQnl7qEFVVkZubKzet6HkwRj/ffks/LVuSCGtlBXTtSlUL8/Koj+aEMYoafFTkzsqiymgVcfs28OyzsI2ORrOtW1lkVJScVYF4XOcJCqIFh3KwsLAA51z++OOPa8GhXSAQCOoeQjgSCASCWuTrr7/GtiNHlMy+fWvcVlpaGmxtbc0rQnToQNWD5s8H1q+v/NiNG4GJEx/+zRhQrx6la1RCz549kZ6ezhISEgzrU69eNKHz8SHfji5dqH/NmgG5ueRjUdKM2pycO0c/FbFr18PUGBcXJCUlKW3atHnCcjxK8Ouv5AFTzuRLJpNvUc76T87PP/+sJgQEgNer+X+1Xq9ntra2JuhVBSxcSEKNry8JIJWkKuHtt4ElS0pvc3QEYmPp3w0aUBWxqVNLHSJJEho0aKAcOnSofEXiUdzdafxq2pSMuP/xD4qk7NcPWLuWig7s3m0eX6SePak6Ykk2bgSKiso//vx5EpZeew2YOBFxcXFwcnLiDg4Opu/b42DmTBKPYmLK3c0Y4wCEz5FAIBBACEcCgUBQq0yePBn6M2cYGzUKvIYTg8zMTJjlC7yqAh9+SFXRvvgCeOONqs9ZvRpISKDJVUk6dap4UnIfrVaLtm3bsu3bt6tGP5N27Sga6YsvKK2koIBS6pYto0ikOXPMW+HI1xeYNav8fb/8Qn5QjRtDbdcO//vf/9SCggI5MDDwyRWOZBn4+mua8D7CmjVrkJ+fH1ILvRI8Rho2bCjZTp2KOytX1qgdvV4PvV4PswhHO3eSqDxuHIk9VZGeDvz73+Q/V5J27cjXq1go/e474N13KX2tBCNHjpRjY2Ple8ZWmvPwIOG7UyeqeDZkCAmzH31EQtfEiZUL08bCGI1LxdUuVZWEsPLK1N++TZFlUVHAhAk4ceIEDh48iL59+z7e6nemJiwMeOedMpsPHToEVVVliMqQAoFAAEAIRwKBQFCrNGjQAEM+/FBaM2kSN3qS8QhZWVlwcHAw7Td4vZ5WujdsoFXwvn0BJwO+Rx88SD+PUr8+eYNUwYABA5CZmckulSgXbTS2toCrK7BjB0UPeHsDKSk06fP1BX78kSZMen31r/Eo//kPcOVK6W16PXml9OkDbNmCLGtrfPvtt2pRURFmzZqFClPyngQYoyiq0NBSmwsLC2upQ4LHzcCBA3F49mx+vmHDGkU7pqamwtLSEtKjXkM1ofi9HRYG7N1LqbVPPVX1ebGx9Lp+FA8PigKKj6e/bWxojOnZk9Jj7+Ps7Axvb291165dhkUdlYdGQ+lrn35KRtqWliTEp6WRON2/P4nwGRnVvgRsbEhgLzbnP34c+PlnEoRLsnkzjf/r1wNjxuCPP/7ge/fuxZgxY9C2bdsnWDUCpSwuX06LDCU4fvx48eu5ilKgAoFA8NdACEcCgUBQ29y7hw5nz8Lg1KwKyMvLUx0cHEw3rl+8SKkZOh1NGsqpslMhCxaUTYEAyBPn+nXg7t1KT9doNOjQoQPbsWMHV01lGNulC/DbbzR5/PFHSlFYvJhW1xMSgG3bqvRfqpJr1yj1pCS//QYcOgS4uQH162P58uWqjY0NmzJlimTWtJzHRYMG5JOyffuDTfHFE2tgSq30SfBYCbl0iSWfPFmjNu7du2d6jzZfX0pV/eEH8hMylO7dqbJYeQwYUNrkv1kzMllW1VLm1iNGjJCuX78uJyWZSHdwcyNhundvinJ64QVKwW3ViiKfYmKAM2eMb3f/fhL0ARKRHvVnS0sDZs8mIcvPD5GRkYiOjmaTJ0+Gj49PjW+r1rG1Bf77X2DSpAebFEVBfn6+BCBy7ty5ubXXOYFAIKg7COFIIBAIapv0dDS5do1duXKl+qvTAAoKCnh5QoTe2IiayEjy3GjZkgxgK/MBKY/XXwd69Ch/nySRoHTxYpXN9O7dG4qi8FWrVqlG30NlMEZRB506Udrd4cNUte2f/6QJ0okT9O9HTG8NYsqUh9E32dnA0KFkeLt5M4lwAAYPHiylpqbi559/Vs+ePQudTme6e6sNGKNV+xLV/KKjo/MAzJo7d+6Sik8U/FlocOEC9AkJUk3epxV5tCmKYlwar04HvPQSRZCsW0d+PMZw7x6JCRWltI4bR5XHSjJ+PHm/ffjhg002NjZo164dX7FiBZJN7bHm7Q08/zzg5UURjuPHU0TVwIFUFOD11w0Xkbp1I+8ngESwzz57uO+LL8jHLCaGok0BBAUFwdXVVVm6dCl2796tpj2pVSFL8uKLNE7f5+rVq9BqtbFz5841YrVEIBAI/tzIH330UW33QSAQCP7KfHQ6KQkrnZ3RrVs35uHhUe2w/4iICO7v7y+5uLg82FZYWIjPP/8cJ06c4NevX1ezsrIkRVFgbW0NjUZTugFVpcnSlSvkWTN+PAkqxtKxIxASQpOa8oiJIeGoS5dKm2GMITAwkB06dEiNiYlBmzZtWJk+mwInJxK0pkwBhg8H7twhP6Q+fchT5No1mlwVV0OqiPR0YPp0YNo0SiHZv59SWl56idJM7uPo6IhOnTqxnJwcdvz4ceXgwYNSWlqaYm9vL9nb25frF6IoChhjdddLpF07YOlSZFtbY82+fXnXr19PV1X1jd69e4vV+j85WVlZHy0oLFRt/P3V9u3bS9V9jZ4j7x7u7+9falFzxYoV6pYtW9iFCxeUe/fuobCwkFlYWECr1ZZ9P2RlUXrXl1+SONymDb23jUGrpTGsdevy90sSsHQpiTQlU7oaNaIUt379Hmxq0aIFy8zMxI4dO9C4cWM4GZLmayyWlpRy1rkz8NZblJ63eTP189QpEn/69qXjynsWskzpyFu2UCqanR3de3o6pcm9/nqpzwHGGDp27Ci5ubkhKipKPXjwoHTx4kXV0tKSubq6lptqyDkH57zujl+uroCigG/fjsN5ecqOHTsKFUV5q2fPnrG13TWBQCCoKwjhSCAQCGqRvXv3fnR+5Uq8smQJGnz1VY2+VR8+fBghISHMvtivAlTZ6tChQxg2bBgrLCyU4uPj1bNnz/LDhw8zf39/WJeMJhoyhASTuXNJNKoOCQnkFzFmTMXHWFjQhKZ37yqb02g06Nixo3Tq1Cn15MmTrE2bNsyyhAhjchgDGjYExo6lCCFZptLbFy4Ao0bRhDIzk6KwHu1HZiZNXH18yH9k/HjyIilnIiXLMpo1a4YuXbpIvr6+uHjxIjt8+DBOnz4NAHBxcWEWJaIa1qxZo5w7dw6tWrVi8qP+I3WFBQuQdeUKdut0XFEUr7lz59bAfEXwpDBv3ry507//XgoZOlSSKhJbDODUqVNwcnKCr69vqXHw0qVLir29vdS8eXMpKSkJsbGxypEjRyTGmOrt7f3w2KNHKWXy/ffJ4LmEgG4Un31GUYN2duXvt7YGwsOBwMDSxzRoQFGaw4YBzz1HqV0AfH19IUkSNm/eDHd3d7i5uVWvX4bAGI1LQ4YAwcH0DJKSyIOpUSMan/z8SBRyLFEsLCyMUmo7dybh65136HmuXl029fY+bm5uCA4Oljp27IiMjAx27Ngx5eDBg1JmZqbq4ODA7Eo8m8uXL2Pp0qVo2rQpSn4+1SnOnwf/v//Daje3Ip1ON+3DDz9cUdtdEggEgrqEEI4EAoGgFlm1atVHY8aPh6OLC9CjB4qKinDkyBF1165d3M7Ojrm6uhq8Snvw4EHWvXt3WFlZPdjGGMPJkyd527ZtWadOnRAcHMy6du3K4uLiVL1ez5s2bcrw0ks0OXjxRfqpSVTPoUNUpWdKJdY2rq7AK69QGpcBVeAYYwgKCpIuXryoHj58mLVu3ZpZG5s+Vx0YA9q2pR8/P5pUtWxJz2jBAmDQIJpstWxJUQr795N3U6NGNLkcNcqgy9jb2yMgIIB169aNMcbYyZMn1QMHDkhJSUmKjY2N5OzsjOjoaPXatWtybGwsb9q0KVuzZo2q1WpZPROUQDcZQ4ciy9MT0efOSYpGs6V37943qz5J8KRTVFT0YUtfXyZ17w7u7IyrV69iw4YNanp6Ovf09DQ4SvDYsWOql5eX1Lhx41Lbk5OTpdTUVAwbNgzt2rVjnTt3luzt7REeHo4uXbowtnkzeZZNnUrpW87O1b8ZzmnsGju28nYiI6m6WPfupbfb2wN//EHeSiUiLhs3bgx7e3uEhYXB3t6e169f//GE3jg7U+SkpSWl2Pn5keg1bhzw7LOUyidJFD01diwwbx7w9NPA+fNUgdIAkUej0cDHxwddunSRvL29ERsbi8OHD7OoqCiVMcZcXV2RmZmJqKgoREVFwc3NDRcuXFCPHz+u+vn5VTtCzeT4+ACTJ+PC3r26bFlO7t279/aqTxIIBIK/DmaI+RcIBAKBobi4uCgNmjeXlZAQnImM5Hv37mVWVla8efPm8saNG7mTkxMfN26c5FCFwKKqarmlrPPz81FYWFhq9Vev18PS0lJKOHSIo08fEj3y88uaolaHIUPopypGjyZvoXHjDGpWkiS88MIL8rp16/jPP/+Ml156CVWJJpxz3L17F/fu3YOHhweMEeHKwBil3wHAnj3knxIfTykhvr7AsWM0YbxzhyZq5ZR3rgpJktC5c2d07txZTk9Px549e+R169apsiwzjUaj8fPzQ35+Pl+wYAGzt7dnYWFhaNKkCR6LiGYIFhZgU6YoPa2t5T1PP/0HgIa13SWB+QkKCpKYlRVu5edj2+LFakpKCmvTpo0UFxennDx5EoMHD1bbtGlTZb5YYWGhamtrW+a45ORkxcbGRgLw4M2r0WhQlJrK7l28iHpWVpQaCpD3T01gDLh8uerj+vYFvv++/PPDwkg8z8wEnnnmwa727dvD1tYWa9euZfn5+WqXLl2qfCY5OTm4efMmrK2t0bBhQ1g86q1kDI0a0e+WLWn8tbCg6NKYGPJjmzgRuHWLFhEWLarWJRo3bowXX3yR6fV6HD16VDpy5Iiya9cu2d3dnWu1Wt6/f39pw4YNYPc5f/48/Pz8qn9PJib5t98w5OefbX6cNes1AK/Xdn8EAoGgLiGEI4FAIKhd2JVt21B/8mQc+PBD/swzz7D27dvLADBgwAD2008/8cjISN63b99KFY/U1FRoNBo8msZ08uRJ1d7ennt4eMgAEBsbi61bt6rO1tZ48d//lq6FhID/7W9wdXWFY7ktG8HlyySupKWVLef8KIMGlS1bbwCjRo1iq1evRlhYmDplypQKJ16nTp3iO3bsYLIsc61Wq+bn58ucc7Rr104ZMGCAXOOS31ot+afs3El/Z2QA5NFCqW41xNnZGaNHjwYAKTo6GkeOHFEaN24sh4SESNeuXYO3tzdbuHChsnPnTgwbNqzO5K7t7N+/UJeebgOgnFm14M/IvXv3wEePxrHu3eHy3HNs0qRJxemkckREBLZv3878/PyqFG11Ol0pgRsAMjIycOXKFfn112kOn5OTg2XLlikZGRnyq1u3gp0/j/ivvoL1Bx+ggSk8dHx9gb/9jXzKKiMggKoy5ueXXzxAkoCPPiolHFHzvpg4cSJ+++03qXXr1hV6HqWlpWHZsmU8Ozub2djYKIqisIKCAsnDw0MdPXq05FyTqCqAfKAASkUDgCNHSPRWFKreVkM0Gg169OiBHj16yCkpKdizZw+sra15u3bt4OXlBUmS2JUrV7B582Y0a9YMWq22xtc0BZf8/NS7PXtKzBgzdoFAIPiLIFLVBAKBoBbZunXrx/EZGdx+0iQ24uWXWYMGDR7skyQJjDF26tQpdO7cudIZUWJiIhISEniXLl1KHZeZmYmYmBgpKSmJt2rVikX8+KM6dPlyqcfSpSw8KIhvj47G5cuX1WPHjkktW7YsE7FkFA4OQPv2tKJdFYWFZDA7ZEjlhtPl0KJFC+zZswfe3t7M0bGs3BUZGcl37drFxowZg6FDh7LOnTtLPXr0QLNmzbB//35cv36dt2nThtVYPCpJ27YU7ZCdTWWy9+wBWrQwSdMeHh4ICQmRGt4XpJydncEYQ4sWLaRt27ZJ3t7eKO851AYNAgIsChcvRs9Dh665vP765truj8D8/Pjjjx/l9e6tPvPeeywgOLiUB5eXlxcOHToEX1/fMqLQo5Tn0VZYWIi4uDh+5swZtWnTplJycjJavvKK1P+VV1A4cya+v3sXV69dUyIjI8t6HlWHwEAywq+ir7CwAH7/nUyjyxOKAwPJ62jdOjKOL4GjoyMuX76s3r17V23VqlWZQSgtLQ2LFy+Gt7c3pk2bxrp27Sp169aNBQcHIyEhAfv372e+vr41G6uL0eko9XbNGqqgGRdHY3JiIlCvHgnkNcTW1hb+/v4sICBAAqjanLW1NTw9PXHu3Dnl7t27vLznUBt4enmxi5cu4dlly1KcZs/+srb7IxAIBHWJOjFQCwQCwV+Vvn37Ys6kSSxk8+Zyq9EEBwcjNzeXVVXyuKJS1gEBAWzGjBnITU/nv//tb2q7YcOk23Z2UPR6nL5yBf3792dz5syRfXx8+KZNm8qcr6oqIiMjUVhYWPXNfPVVWc+PimjSBEhOrlbJe0tLS7Rq1Yrt2rVLLSpOUblPsWg0duxY+Pr6ltrn6emJV199VUpKSsKVakQ7Vcovv1AEUpMmFIkweTKZy5oRR0dHhISE4I8//uA1KYNuSjw8PCC7uua7pKXVUQdcgamZNWsWhl27Jtlcv15mnyRJcHNz4+fPn68yhEOv10uPikuOjo549dVXWZs2bdjWjz+Goii416iRejsnB3E3b3IXNzflrbfekl966SXcN2Yu0258fDzu3LlT9Y2sW0eRkoam7Pr4UMXFirCyojFx9+4yu4YOHSrFxsbKKSkppbYXi0bNmzfnI0eOLCVu29nZYezYsczLywu7d+9WDOtkBagq8PPP5Gk0eDCl3W3ZQmLX778DEyZQNTUzM378eDk2NlZOTEw0+7UMQaPRwKtLFzikpzMwVoV6KBAIBH8thHAkEAgEtUiPHj0g6XRkRloOkiTByclJOXjwIC8oKCizv6CgAJxzZGZmws7OrtzJmYuLC56/fl169vffpdOXL/PNw4bhUnw88vLyWFBQUPF1mIuLS5nzY2JisH37dsyfP5/fvFmJ13FRERlGKwbOZxgjL6CNGx9sys7OxsWLF5GXl1fl6QMHDkRmZiY+//xzzJs3j69du1bZvn07ikWjZs2alXueVquFk5MT7t27Z1g/DWXTJuDkSYoyGjECOH6cRKTBgyl1z0w89dRTUFVVPXz4cBnRz1RkZmbi559/Vn744Qfl+++/1x8/frzS49NGj+Y7Q0PjwFhbc/VJUHdwdnYGLl0CUlPL3d++fXvp9OnTSE5OLrNPURTodLoKPdoAmsz3DwmRJv3yC87v2YO9oaHsqrU1j4qK4gEBATKAB+c9KjwVFBRgzZo1WLx4McLDw1VeWQrShg3Atm0G3zdCQx+meoFE9suXLz+8T3t78kBr3pxE8hK4ubnBx8dHWbRoEb744gssXbpU2bdvHxYvXgwfHx8+YsSICiOn/P39kZKSUv3v73FxwIkTwPr1ZJA9Zgx9/mzYQFUj3dyAhQtJTHrlFWCF+YqLOTk5ITg4GH/88QdXDP3sqAYbNmxQFyxYoMyfP1+/fPlyRVUrHi7dmjXD0tmzkwF0M1uHBAKB4AlEeBwJBAJBbdOsGXC/DHt5DB8+XF6/fr3yzTffyN26dVO9vb2l+Ph4HhcXx1NTU6Xhw4cjKysLjo6OZScbkycD9eohcfJkhLm4KHkXL8rTpk3DpUuXuIuLiypJkgwAt27d0nfr1q3MZ8K+fft47969WUFBAfv111/RtWtXtVevXlKZ6CgLC+DGDePu298f2LsXwMOV9qKiIh4UFMRDQ0MrnRhZWlpizpw5kk6nw8WLF9nly5flGzduqOPGjZOaNm1a4Xn37t1Deno602g0HCXMdmvM5vtZWVFRwGuvUUW1//s/il64eJFS2cxQhlqSJIwZM0ZeunQprly5ovj7+8stWrSAiwGlyAsKCnD9+nXo9XrEx8cjOTlZzcnJ4Xq9ntnZ2XFvb2+5Xbt2OHXqFDjnUpcuXZher8eePXug0+nQo0ePcttt0aKFTf7NmxMB9AdQ/kGCPxfbKy5AFRwcjKtXr2Lx4sVo2rSp0q1bN/nu3buIi4tTEhMTZU9PT3Xw4MFSeR5t2L8feOst8FOn8J9//ANaVVVDQkKkDh064Pjx46xjx44AgHPnzqFevXqqLMulxo3IyEhuZ2enDh06VF69ejUuXLigjhkzpvxiA7//btw9N21KQnl2NlQyvVauXr0qMcbY3//+dzrG2xt4+20gNpZEqRJpuc8995ysqipu3ryJCxcuyNeuXeP+/v4IDQ2tcFy6HwGq3q+cadz4xTkZ+M+fD3zwAbBjx8N9EybQDwDMmAG89Rb50PXqRd5tgwdT+p4ZKqD1798fcXFx6rfffiv5+fnxVq1aSY0bNy43Arf07XAkJCQgPz8fd+7cQWJiIs/MzFQKCgokS0tLXr9+fbl169a4X+lNCg0NhUajwdGjR9WffvpJmTFjRrled97e3lAKCnw5sJQxFgTOb5v8pgUCgeAJRHgcCQQCQe3yEWJiKFKleLLxCPb29ujYsaPk7u6O8PBwNSoqCoWFhWjfvr1kYWGBtLQ0JTExEUFBQbJHcZrFtm1URUevB0JCEJOdzXPz85GXl8d69uyJHTt28MDAQLnR/Uo7+/fvZ71792aPrvjHxsaqVlZW0jPPPAMfHx/s2rWLx8TEcB8fH1bK0NTbm1bWDfE3KsbBAUhIwL2mTbF4yRL4+PjwJk2asOTkZLVVq1aSLMtVmt3KsgwPDw+0bt0awcHBrCrT2O+//14NDAxEz549TVcGevhwEo5GjiRfkLAwStm7ehX43/8AW1ugdWsSj3x8THPNEjg4OCAoKAi5ublSdHS0EhERIUVGRvLs7GxuYWHB7O3tSz3HpKQk7NmzRwkLC5OuX7+uXLl76n+iAAAgAElEQVRyRb1586ZkaWnJQkNDpaCgIGZrayslJSUp4eHh0q1bt9CvXz8WGBgIT09PeHt7Y+vWrUhLS0PDhg1hVWy0ex87OzusvnXLpt2pU4OtPvggDR99JJxm/9x8hJYtqfR7QECZnYwxtG3blgUGBuL8+fM4cuQIkpOTVS8vL7lPnz44cuQIy83NhYWFhRIYGEgz+bt3gVOnKO0zKwuZ7dvj5KlTcHJy4l5eXiw1NRVpaWlKcWWy/fv388aNG6N58+al3tQZGRksPj6eh4aGSp06dWJxcXF87969zNXVtXRVxunTKcpm/HjD71qjAQoLodjYYPXeveqtW7fYq6++KoWHh6NDhw5gjJH40bs30KAB4OQE2NiUeTaOjo5o3rw5goKCmI+PT6WD0po1a9T09HT24osvSvcNyA3j4EFg7FiqnDZxInnRFXP8OPkwvftucadIALeyAmbOpIik4cNpXCPDfpPCGEOnTp0kW1tbduXKFZw4cYIfOnSI3bp1SwEgOTg4QKN5uKaRm5uLEydO8LVr1yImJoZfv35duXbtmpSRkcF69Ogh9ejRg9WvX1/Kzs5Wzpw5ww4fPswaNmyoDho0iNWvXx8BAQEsOjoaR48eVT08PKRHDcolScLFGzdyb3D+acuLFw/go4/MFs0pEAgETxKs0rBdgUAgEJgbjqwsYNkySgswkosXL2LVqlVwcHDgs2fPZowx3LhxA+6dOiF6wgTlXOvWyMjIkHJzc1m/fv1w+PBhPmbMGLZy5Uq8++670Gg0SE5Oxi+//IL333+/jFBz5swZHDx4UHnjjTdkgFa8lyxZwnU6HWbNmvXw4C1bgJ49SQwygvzQUPzm748GPXrwIUOGsNjYWKxfvx4A0Lx5c3XkyJGSKSvu/Otf/8Ibb7xhGmPZYq5epdLbgYH0d1gYVVUaNAj45BN6LrJMEQrh4RSNpDFfwK+qqoiKisLZs2d5SkoKFEVhzZs3V7y8vOTTp0+r2dnZrFGjRnj66aeZu7s7AOD69etYu3at6uLiglGjRknFZtucc6Snp8PJyalUBEBSUhJ27Nih3L59W7axsVEaNWokd+rUCY0bNwYAfP/991kD5s1b4HP1agA4H2i2mxXUBThWrCBTaW9vo0/+/PPPuaqqbOLEiWjUqBGysrKQN306LOLi+Pa//U1NS0tj2dnZkpOTk97W1lbTuHFjXL58WW3RooXUp08fAMDXX3+tDBw4UG75iHBdWFiIL7/8ErNmzXoQhXfmzBls2bIFM2fOhFtxBbFr14CbN4EKougqoujbb3H6zBkeERDAZ82aJWm1Wnz++ee8qKiIabVajBs3Dl5eXpTGFxhIUT41KD+/aNEipW3btnLXrl0NOyE1lcaj1FSKbB0xouwxhYXAvn3AgAH099WrwNq1JCSdPQusXAnMmQNER1MFOXd3swjgJUlKSsKxY8eQmJio5Obmyh4eHoqfn59048YN9cqVK7KTk5PSvXt3OSAgAJIkQafTYfny5erdu3el4cOHo+TroDj12aaEaKfT6bB9+3bl/PnzMmOMu7m58YCAACkwMLA4KgnHt25d8ca//tUbQFtwbrwZn0AgEPzJEKlqAoFAUNtoNICXV7VO9fX1haWlJXr16sXOHjiAlkOHIuy117jlxx9zZ2dnuXm9evD09ESjRo2g1WoRERHBz5w5w5ycnBSNRiMDQHR0NBo2bKgwxsqUdXd3d0dubu6D7ZIkQZIkbm1tLV27dg2urq6w37oVzN/fINGIc447d+4gNjaWx8TEoGt2Nusky7z9kCEMAFq3bo0hQ4bAx8cHv/32G1+2bJk6depUk/nxWVhYqNnZ2ZLJhKNTp8gf5PnnH24rjjoaNAi4fp3+bydPBvLygC+/BG7dolQQMyFJEgIDAxEYGMgA4MaNGzh+/Lh85swZJSAgQO7evXuZNJAmTZrgzTfflFauXKkuWLAAgwcPRtu2bcEYKzftzdPTE1OmTJELCwsRHx8vx8XFKcuWLZODgoIwYMAAtGrVyuZA//62PgsXXgFjDGKV6s9NgwbVrsCl0Wjg6uoKvV6P2/7+PN7FhZ0ZNUpxHjhQdnNzk/39/dGoUSM4OTlp1qxZg5SUFDUlJUV64YUXAAB6vR55eXkPoidLYmFhATs7Ox4TE8N69uwJ4KGAkJKSAs45nNPSoDlyBHjpJYP6m5OTg4sXLyIqKkphsbFyrzNn8OqiRQ8igEaNGsUcHBwQHR2NX3/9FTNnzoSLqyvw739TA4pCQnI1sLOzkzMzM1VU5VHKOYnZffrQzzffkJhdHl99BbzxxsO/mzQhz6qrV4GMDEpVc3cH+vUD3n+foivPnTNL2loxnp6eGDlyJADIeXl5OHbsmHzu3DnFxcVFeuWVV+Ds7FzqAVpaWmLy5MnSiRMn8Mcff/DWrVurzz77rGxpaVlKMCp5/NChQ+UhQ4YgKSmJXbx4EREREfzw4cP8rbfeknx8fHDA1vZpDixmgAsAIRwJBIK/PEI4EggEgtomIQF4+WVg6FCjT7169SrU7Gzc/uQTXO7dW7GfOVOe9cknTNJoyv1WL8syP3/+PHr27Pngi/f169dVX1/fMrMKvV6PDRs28FatWgEl/DRatGghRUVFKevXr2eFhYXS+GXL0HTKFErFqoTbt2/j999/53q9Hm5ubrxnz55S+6eegrR8+YO2JUlC+/tpFCNHjpQXLVqElStXKi1atJCbNm1qkHdPZVhYWPDs7GzUr1+/Ru08ICKCoghKCkcdOwL/+Q+QmwssWUIlr7/9Fpg9Gzh2jP4eNAh47z2K0jAzjRo1wv1JdaWzVY1Gg4kTJ0pRUVHYvHkzj4uLU4cMGSJXFvFlZWUFPz8/+Pn5yQsWLFBtbW0lALC2ttYkN2o0GkAfABMB/Ga6OxLUOV57DXjnHWDSJKNPVVUV9TdswLqbN3nXgQMRMGECuvv7l/ta1Wq1iImJkRwcHBStVisDwKVLl2BjY8NtbGzKjHkRERFqUVERunbt+mCfk5MTPDw81B07dvDCwkKp5YkTbEBCArRVCEecc/z222/KjRs3ZAcHB6Vly5Zyl6++gsMbbzBkZZGpNACf+9E4/fr1w7lz55RVq1YxPz8/1rRHD9bol18gZWXReFANnJyckJGRUblwlJJC/xeSBBw4AFQ2ZmZnAz/9VFrIliRKnb58+f/Zu/OwKur9D+DvmQOHVUFkUQQEEVQURQT3BXdNLberuWBaalbWLbNu9auQ7r0t2qZtppVrZpFbaW6JioIoguaKooAbqCC7LAdm5vfHV03ksB+vdu/79Tw+xTmzsgzMZz4LMHiwKLVbvlw0A3/3XdEfadEiUU7473/X6Txqw9raGv369UO/fv2qjbZ17twZrVq1klauXInPP/9cGz9+vNSsWbNKl5ckCW5ubnBzc5MaNmyIAwcOqIBotm4wGBwXvPrq+lfnz58ASZoPTTOY8LSIiP5yGDgiInrQfH3FE9w6iNqzR22dny8NOnpUGrZhg666p8A6nU4DgK5du955LScnBx4eHhVW/P3335XS0lJp1KhR5W5SevbsiZ49e+oAYOnSpeqxDz7QvB57rNo/6qOjoxVnZ2d58uTJkizLYn9ZWcDFi6IX0z3lWy4uLpg6dSqOHDmii4mJKdu8ebPZSy+9BKONbWtIr9dr+fn5dV6/ghdeqDi2WqcDgoJEz5Q5c0QJzIIFIjhoYyMaiXfqJJ7qt20rep88RDp06ABvb29p1apV+OyzzxAaGlqjQFu7du20mJgY7ejRo2peXp5OkiR7ANYAPoAkrYGmld33g6cHY/fuOjV/T01OhqG4WApJSMDgF16Q5AEDqlze2toaiqKgdevWd643p0+fhoeHh4p7AqNpaWnYt2+fHBoaWq5HjouLC2bOnCkDwMmTJ/ErgGFr11Z7rCkpKbh69ao0d+5c3A5aAQA8PIAjR4CBAyusM2PGDF18fDySkpLU6OhoaaivLwJ37xYZQXXI2GnUqBEuXrxoPGikKMBXX4lec/7+ovT5nv5jFTRoYHyowciRIgNr8GDx8ZdfAqoqMidtbMT166uvRODJwgKoTb+l+8zOzg7PP/+8btu2bVi+fDlCQkLUHj16VJu12rx5c/z++++6xYsXa1lZWZIsyyiytm4KYCyA4wA23feDJyJ6iJks/Z+IiOooIwN46qlar6a+8goGv/OO3O311yXz1NQa3YjodDrJzs5OuV1WUVxcjKKiIvnep7Lnz59HQkKCLjQ0tOIEtVvS09PR7bPP5KFr11YbNLo1/Uw3ePBgqdz2HBxEkOXqVaPrubu749FHH8UjjzxiZmlpiQb1nExmZWVlZrLA0ebN4qbRmBEjRHYRIHqLXL4sgmRJSeK18HBg6lSRnRQWZprjMSFbW1tMmzZNV1paips3b9Zond69e+tCQkLUwMBAecaMGZBl+SY0LQGAL4Cqu5bTX9v//Z8Y8V4bly7BtW1bBLVqpVhdvozqgkYAYGVlBUmS0LNnzzuvpaenl3l5eZW7BhkMBqxdu1YLDAyEsRK22xK++06ZM38+9Obm1e47Pj5e8fDwkCpk4HXvLoIqRtja2qJPnz6YPn26rNfr1UY9e4qysWHDxPWglhwdHXHz5s2KF/ozZ4CffxZNsL29RcC6uqARALi6iqDfvXx8RL+q06fFx4cOietVVJT4uGdPMYVu4UJxDSspqfW53G9DhgyBs7OzmpaWVqMyWWdnZzzxxBNwd3dXp0+fDicnp1wAWRCTIWOqndRARPRfjoEjIqIHTVFEL4ma+vZbIDoa8V26YM+ECVrTpk1rvGrbtm11d5epnTp1Cvb29urdE3oKCwuxbt069OnT58/msUZs2rRJyX7mGUX//PPV7jcxMRFWVlbKnalvd7t+Hdi5s8r14+Pj4e3trdT3b/eGDRsiJydHqddGbuvdW4y2NsbPD+jaVQSMbnv2WdEj5DZJAnbsEBOLNm0SvY8eIuvWrVPd3NwUb2/vGq/TtWtXXc+ePSVzcSN++4atDYCDMNJDi/5L5OUBxcU1WzYlBXj/fZQ1bYp148ahY0hIjb8vfH194efnV65vTUFBQYX+Rps3b1b0er06ZMiQSreVkJCATHt7nfz559UG3Q0GA86ePavr169fxQWdnETpVhVu3LiBkpIS2d3dHbCzE/2g9u+vch1jXFxcUFRUVH6wzSefiElpHToAP/4oMlhr6rPPgG7dKr4uy8CkScC5c3++duCAKKcuuytx8LXXRLnapUuiwfZDJCUlBRkZGfLgwYNr/P3l6uqKYcOG6ZydnaH+GQwsABADoPa15ERE/0UYOCIietBcXasNnAAQvXEAYPt24NAhHEhLU3zGjJFqE0zp168fOnTocOdjCwsLFBYWynl5eSgpKcGpU6ewevVq1cHBQelRTf8d+0uXNKvLl8UT92rExcWpbdq0Mf4H/JAhwK1JapVRVVVNTEzULViwAKtWrVIuGSuvqIFbPULq36hZVUX5xu1JRPcyMxM3WAcP/vnahg3ATz8B6el/vubpKUZjr14teiA9JNLT05GamioPHz68TsEee3t7mJmZWYeHhwdB0w4BWACgBikQ9Je0fDnQr1/1yxkMIuvul1+wf/9+ZHXurBoNJlfCxcUFY8eOLfeaJElIS0uDpmm4fPkytm7dqp05c0aeMmVKld+7iqLA//BhqMOqH/p3+vRpWFtbGw98BwQAp06JzNFKZGdnQ5ZlfPDBB/j666/V/S+9pGqyLLIWa6Fhw4bQNA0Gg0H8HhgyRPRJ27QJaN268gbYxqxaJUplK+th5uLyZ4YRIPaTkSGa/N/OQjQzE9lTZ86I4FVeXq3O537auHGj0qNHD7Wupc0+Pj7Wer1+4q3G/rMBJJn0AImI/mIYOCIietCSk0XwqCqaJibbbNsG/PQTCmbMQG5urs6vHqOdAaBt27bw8PBQP//8cyxYsADbtm1THBwcqr3pAoD+mmbWeM0anaJUncCTnp6O9PR0uU+fPsYX6N5dZOhUkbHw+OOPy2+88QZGjx4NGxsb3erVq5FRxY1aZfR6PQoKCur/u+/KFeCLL6qejtSlC5CQ8OfHZmZAQYEoXTt/vvyyERHAypXAM8+ILIAH7Oeff1aCg4PVujYjz8/PR2FhobVerw+/9dImAF+b7ADp4RIUBKxYUfUykycDAwYAgwYBMTE4duyY0rFjx3r/LD7yyCPS1q1btffffx+rV6/W0tLStAkTJkjVBQyCW7dGt127kHjyZJXLlZWVYf/+/ZUHviVJNMM/caLSbbRs2RJvvPEGZs2ahXbt2sn7o6OlxKNHVcydW2mZW2XHYlNYiOLt28Xn+9lnRalYLbJO7/j2W9E8uzKdOolStdzcP18zMxNfw3v7ug0bJrKTDh0Cxo8HSktrfzwmFBUVBVVV5Zr0NqpMTEyMucFgmBUeHm4HTdsOYAYkqYsJD5OI6C+FzbGJiB60pk0rL3XIzhZ/pK9YIfpX3MoWsra2hq2trfrzzz9j0qRJsnkNenRUZsKECfLFixdhZ2cHOzu7GmWYqKqK752dVd8vvtC8dJVHT7Kzs7Fy5Up07tzZ6FhkAKKxqqoCx48DwcGV7lOWZXh7e8Pb2xu//vqrtmLFCmnGjBmwtrZGTc7/2rVriI6O1oYMGVL/XhXu7sabyt6tTx/glVeAmTNFvxBANKO9cEEEAUtLRaPs26ysxDonTgA3bgCNGtUug8BE4uLiUFRUpAsJCanzNm7ftBsMhkfCw8ObhQFXAQRBklyhaQ9XTR7V3/vv37k2VfDaa6LE6b33xPf4LT4+PnJUVBS8vLxQm3Lbe/n7+8PLy0vKzMyEp6enhLsmQFZl16FDOBoers3u1KnS5TVNQ0REhFJaWioNqKoHkyyLIHHfvlXus3HjxujRowc8PT2lFStWSOrSpWi1di3MJkyotlxOVRSsnj9fmbp6ta6hmRmwZk3VJ1idqoJGgDinAQNEE+zXXvvz9a1bRUN/Y9evjh3FQ47cXHE+jRvX7xjrwGAwIDo6Whs9erRkZlb325wmTZpoV69elWRZfhFAOABbAN0AHKx6TSKi/07MOCIietAkyXiAIDtbPOE9f15Mr7nrxkyWZTz33HNyfn6+tmzZMrW4pv1FKuHh4QE7O7tK31dVFX/88QdOnDiB1NRUHJg3D1P/9S950KBBlQaNbt68iWXLlmne3t7aoEGDKt+5ponylbNna3y8I0aMkMrKyrSFCxdi/vz5iIyMVEureMpdUFCA5cuXa127dtU6duxYv8CRqorAz/Hj1S/7xBMiS+xuzs4ioNTFyMPrxx8H/vUvkXlURX8WUysrK0NeXh5ycnKwa9cubejQodDXY1KSJEm4nWEmy/L30DQFQDsAniY5YHq4GIsdZ2eL/6aliSCru/udkfUAMHToUKlTp05Yvnw5Lly4UK/d29rawtPTs8plLl68iCNHjiApKQlJSUnoNHYsJru5SRaVNJHWNA1btmxRLl++LM2aNUuuMghRUABER9f4eJs1a4ZevXrhl99/x7VXXkHU00+rmZmZla+QmorU3r21FkeOyDY7dkD65z9rvC+jRo0S15jqDBxYPmsSEMGgq1dF8OjGjYrv/fSTCH536gSkptbvOGshLy8PBQUFWLt2rdq0aVPNtza9noyYPHmyBACqqs4LDw83AzADwHZI0n8+GkZE9BAo32CPiIj+s+LjNTRuLIJCd5cELF8uggvVlGOpqoqvv/5aUVVVnjZtmlRpVk8dqaqKnTt34ujRo5q5uTl0Op1mMBhky5s3MdnFBY0qufkwGAz45ptvNEtLS+3JJ5+s+iHF0aPi5mTMGNE4tgbi4uK033//HU888YRUVlaGDRs2KCUlJbpHHnkEbdu2LTcAp6ysDAsXLlS9vLy0UaNG6eo9HEdVRVnZlCnVZwSdPg3s2gXMnl3+9cxM0RS8slLDggLxedE08SQ/KKh+x1yNxYsXa9euXZMAoHXr1sq4cePq/XkyGAx47733bn/YJmzevEsATgMYAk07Va+N08OjsFBD167ie3zmTPFaWRnQsKHIkqwiixAA9u/fj6ioKIwbNw4tW7Y0+eGdOXMG27dvVwoKCnQNGzZUS0pKJIPBII3MylLavPOO7u4sqLtFRUWpMTEx0qxZsyR7e/vKd3D2rPh5NhiAGmbpZWVlYenSpWjfvj36t2iBLTt3ahcvXZJ8+vRR+vXrp7szua2sDFi0CNEGg1a6b5/UadUqNKhj+Wg5CQli2507V72cqops2FGj/syavC06WvQ9qkxkpMhA2rgRmDat/sdchT/++AMbN2688/GLL75Y5YOQmlqzZk1JUlKShSRJG95+++3RkKSfAVyFps2udmUiov8yDBwRET1IHTpomDdPlAQ0aCD65mRmAm+9JZ7qVtf7CCK4s3z5cjUvL0968sknq+3tURufffaZIsuyNHDgQNnHx+fPgMyXX4qbxEqewm/ZskVJTk7Gc889p5OrCq58840ohYiKAmxsanRMJ0+exKZNmzBhwgR4eXndef3QoUPYvXu3Zm9vr40YMUJ2dXWFqqr46quvFBsbGyk0NFSuoqqu5lavFiVlVYz5vqO0VDSN/fRToEmT8u9pmhid/d13ld9wfvih6EVy6lS1pSz1kZCQgF9//RUA8NZbb6HKr1kt/Pbbb4a4uLjbqUtmYfPmBQE4Dk0rNMkO6MGbPFnD4sWiyfKlS8Bzz4mmzzW8fgHA4cOHsWPHDowcORL17dt2tz179iAmJgY9e/ZUu3TpIt/JLlq3TmTEVJKllJaWhuXLl2PatGlVl9FdugRMnCimJVbWKP8e+fn5WLJkiebl5YXRo0eLH+p334VhyxZ8O2GCkltQoBswYIAW6OYmyYsW4dqRI4jo0AHjX34ZTk5OtTl9444cEQ36H3mkZst/+KG41o0fX/G9v/9dTI6sbLjB+fPA4MHAzz+LJuL3SVlZGf79738DAJ5++mk0ufdaW0dpaWlYunTp7Q+7hs2blw5AD+A8eANFRP9jWKpGRPQgffMN4OAgGkQXFYmbLysrkclSw5suWZbx5JNPyk5OTtqSJUu0rKwskxxaVFQUSkpK5JkzZ8q+vr5/Bo0uXgTCw6tcNzMzE23atKk6aHT0qLhx+/77GgWNcnNzsXv3bm3Tpk0YOXJkuaARAHTu3Bkvv/yy5OLiIi1fvhzr1q1TvvvuOxWAPHHiRFmn00FVVRQUFFS7ryp99BEQE1OzZc3NxTkaa5wrSeKGs6psorlzxedp0SJg1iwRbLoPAgICYG5ujuHDh2umChoBgLu7u16v18cBgE6n+wJAPIA4SFILk+2EHqzRo8Xo9hUrRKmSXi8CpjW8fgFAUFAQHn30UWzcuBEJCQkm+SYvKCjAgQMHtPHjx6N3795yuZK0jz4CbgVKjcnOzoaNjY1SZdAoK0tkDc6eXaOgUWlpKY4dO4ZvvvlGc3Z21u4EjQDgH/+A/sUX8UxoqG7YsGFQXnkF2R06YHdgIL7t2RMjnnnmTtDo5s2bd4+Kr73ffqu8p54xXbsCBw4Yf2/ixIqNsu/m7Q2cPCnK2nr3Bq5dq92x1pCZmRnc3NxUV1dXzVRBIwBo0qQJZFkuu/VhbPi8edcBPAXR84iI6H8KM46IiB4sDd9+C8yYAbz4IvDxx/Xa2Lp167Tz589LU6dOhbOzc523c+DAAezevRt/+9vf4OPjU+v1Fy9erAYEBMhdu3Y1vkBCguixsXQp0L59tds7fvw4fvnlFzRu3Fjp37+/rrpjysvLwxdffIHS0lLY2tpqLVq0UPPy8nDp0iWdqqro0aOH2rdvX7neZWs1ceIE8Oqr4obNmK1bRaZZVaO5T5wQWUsffST6ydjamvwwly5dquTl5ekaNGigPvXUUybJzrp27RqWLVt2WVXVq6WlpUEAuoTNmzcZwCpoWly9d0APXl6eBicnkX14e0x7HSUlJSEiIgIhISFq9+7d6xzBvHbtGtasWaO6urpq48ePr/U3cnx8PGJjY5XnnnvO+LolJcC4cWKc/bvvVru9oqIiLFq0CObm5oq/v7+uf//+FbP6iotFZs/gwVAfewxbCwpwNE30kW/evLlibW2NlJQUubCwUHJ2dlYnTpwoN2jQoLanVjf9+wOLFwPGrrsGA9Czp8gq8vAwvr6iiADTs8+KPlcuLiY/xPj4eGzfvh02NjbamDFjJDc3N5Nsd9GiRXnZ2dkLAPxTr9d/+fobb/wOoB00rZ6NpoiI/lqYcURE9KA99ZQIGs2aJW5I6mHMmDFSu3bt8N133yEtrfbDq7KysvDZZ58p+/btw+jRoysGjVQVcHOrcvQ0ANjZ2WkHDx5UjDbtTkkR//3nP2sUNNI0Dbt27dL69u2LWbNmVRs0AkTGk6qqmDJlCvr27SsZDAadk5OTbvr06Zg5cybi4+OxcuXK2jcVHzIEePPN2q3TqpWYkHbxovH3fX3Fv6q0ayey01asECU29bxBN+app57StW7dGrm5uYiPjzfJU6XGjRujtLS0SWlp6WcAYG5uvmH+q6++AaADJMl4cxn6a2nYEPjhBzE1rZ7XLx8fH4SGhmLv3r3S7t2765RWs379eu2bb76Bn58fRo0aVTHwM26cKLGqQoMGDZCbm6s7c+ZMxTdVVZR7jRkjGtnXwKFDh1QbGxtlzpw5uoEDB1YMGl27Jnol2dmJvkCjRyMxK0sNDAxUJk2aBAcHB52iKLqhQ4dKr7/+OiwtLfHVV1/hYmXXlMqsWwe0aVO7dQDxOdu1y/h7er3Imqyqmb5OJ4Ljjo6iZG379tofQzU6deqEQYMGwdbWVvr1119VUz0Yd3FxkQFcA4CysrJZ4fPmFQDYCknqZpIdEBH9RejmzZv3oI+BiOh/2TwAog9EdjYQGChKP6pqxloNHx8fnDlzBjk5OUrr1q1r9YBg//79SElJkf/+978b7+2haaL8atiwKnvutG7dWq+9R2gAACAASURBVE5JSUFkZKTWrl07KT8/H3v37lUyEhPh+o9/SLKLCzB2bLXHo2kaoqKi1AsXLkjjx4+XapohtGrVKiU4OFgKCAiQmjZtirZt28LHxwe2trawtbVFcHCwdPjwYXXv3r3yuXPnlOTkZC09PV3OzMxEXl4eVFWFrbGsHjc3cWNXm/HhOp34vN28CbQwUqHl4CC+/nPmAE5OVW87OFjceEkSsHOnCCiZiCRJ8PDwQEJCgmYwGODv71/vdCxZlhEfH3/TYDAsNDc3H15aWtpUtrHp3iMyMkgC9Jg375Apjp0eqHlo00Y0Wu7USVzHevWq88bs7Ozg7Owsbdu2TerVqxdqkxVYXFyMTZs2ScOHD0fPnj0lo1lzTZqITKHKsmMgAp4NGjTQfvnlF8na2hqNGzfGkSNHEBcXp3gsXCib//IL8MEH1TfHB3DlyhVs3rxZGjp0qFyhR5GmAYcPi35xjRsDy5YBJ08i/e23cdrHBxMnTpQdHBzg4+ODtm3bwsnJCbIsIyAgQCotLcXmzZtx5swZ5dy5c+qVK1eQkZEh5eTkoLCwEA0aNKgYoGrcWJTO1va6YWMDnDtnfBIkIH4fHD4s+rH161f5dmxtxaS2Nm2Ar78W17KqptXVkqurK65evYrk5GQpKCioXpMhb8vKyjK/fPnyOXNz8z/KysqCZVn+W8vExKKGBQVPY968b0xw2EREfwmmu1oTEVH9tGwpyh4cHcUI61r0CLlXTk6O0q1bt1qXaPTv3x/Hjh1Tjx07JncxdpOwYYMYGV/NDZO5uTkmTJgg//rrr8qXX34JVVXham8v5ScladdcXdG4ZUu1q8EgV/WHfUFBASIiItSMjAxMmDBBqk3vHScnJzkjI0MFYPRzoNfr8fTTT+tOnTqF9PR0XU5ODi5evKgVFhaqBoNBKywsNAsODlYHDBjwZznboUPiJqdjxxofx10HJJ6yDxhQ+TJXr4qspMDAypeRZdErZP9+MXVvwABxM1hPqqrik08+UUtLSyVPT09tzJgxJugiLri4uCA/P9+jtLS0i5mZ2WGDwRDyxT/+caZZYuKvoyVJhqbVo2ELPTQkSWTFqSpw5QrQrFmdN3X27Fl4eHgokiTV6vvQ0tISnTp1QnR0tBoQEFDxgnH8uDi+Pn2q3VZAQIBkY2ODiIgIbN26Fba2torv9evyrzdvwmzMGKV3ZqauqmbVmqZh37596r59++Tg4OCKTb/PnhU/wy++CCxcKCZrAkD//nCIiEBRXp6kKAoqKxkNCQlBmzZtcPbsWV1OTg4yMjJw4cIFpbi4WCsuLtbZ2toiNDRUulPOpqrA+vXA009Xe+4V+PoCYWHioUZlX9fcXCApqfptdeggpkb+9JMISM2YUfvjMeKHH35Qrly5IgGQZsyYIdnUcNhCdZydnSVzc/PgoqKiEL1eb2cwGCYsmznzBbcLF6ZMlSQbaJrp0z+JiB5CDBwRET1MpkwRjUhHjxZ9gGqT2XJLdnY2ioqKdHUZbS3LMuzt7SWDwWB8gbfeEv8mTKjRtoKCgnSJiYna3DlzJP3UqTIaNMCZsDBs27ZNi46Ohru7u+Lo6Cg5ODjI9vb2uP0vNTUV69evR5MmTTBnzhzZrJZPpQcMGCAtWbJEV1xcjDujrY3w8/O7+4ZOwq1AU0ZGBpYvX4709HRl/PjxOgsLC2DtWiA5WfTzqK1u3YDXXwcKCwFra+PLrFkjbqg+/VTcTFalZ08xsSg6Gnj/fVGCUscbpf3792Pv3r3QNE3+29/+Bl9fX50pez81bdrUJjk52f+tt976MTw8PMjc3PxQoaWlb/eDB89edXGZ1wSovkkM/TUEB4t+Nt7eohzspZfqtJnz588rISEhdQpetmjRAqdPnzb+DRwRIYKukZE12paPjw8sLS217t27S13Pn9fhxx+Rv2YNNkVHS0uWLIGzs7Pi5OQER0dH3d3XL1VVERERoWZlZWHKlClwv3sCY3GxKO0DRPZN794iK/HPE4Dl5s0Y1aWLdiY4WPKvovG2i4sLXMr3C9IBIhC8Zs0a9auvvpImTpwINzc3kTEUHl63wJFOJ76mCQmVB44ee0z8++wzMUmyqqxZW1tg3z7RH6lLF2D+/BoF84wxGAz46KOPtLKyMl3nzp3Rs2dPmCpoBABOTk5QFKVNWFiYGh4ePlmv10uKooxvcv366hw7uyR7oA61f0REfz1sjk1E9GAZvwjHxYmnvOfOifKPWvj111+RnZ2tTJkypU43XkuWLFH8/f113brVv4VDVFSUlnj6tDrTx0eH3Fxg+HBR6gbg/PnzSEpKwo0bN5CXl6cUFxfDYDDIBoNB0ul0GDBgADp37lyn/aqqivnz52tjx46V6hJAA8QNybfffquUlJTIoaGhUuNqMntiY2PV2NhYSZZlTZIkWFlZoX///vKd6W+ffir6gDz7bOUbOXpUBA3Pnq1ZCUdhIUqffRbHJ0xAaWGh2mXUqFr3Lly0aJESGBioa9euHezrUSJZmdTUVPzwww/pBoPBMywszBAeHu5pbm5+MODyZafskpLCcx4eA8PCwioZ20R/ARWvYRcuiOmQp06JgEAtApGFhYX4+OOP8fLLL8PKqvZtsI4fP47du3erL7zwQr37eObm5uLzzz/H6wMGiKagNjZ3yrzy8vIQHx+PzMxM5OTkqIWFhZrBYJAMBoOsKAqaN2+uTpo0qXzQu7BQjLVv2BD46ivx30okd+uGG+3aqcFLl9b5PHbv3o0DBw5g6NChWseOHav8ImRkZCAiIkItLS2FLMuQZRnt2rVDjx49xDkkJYlgYGVN/gFRetexowhQPfZYjY5R+/hjpFlZ4bSVldp93DjZurLAeiX27t2LkydPquPHj5cbNWpUsTyvnlRVxccff1x48+bNR8LCwvaGh4fr9Hr997YGw5gOMTHY37v3gtKysv8LCwvjDRUR/VdjxhER0cMoOFhM23riCZFZUsPpOaqqIikpSenXr1+dS43Kyso0oxk+w4eLPiZvv13jbV29elVrs369XJiXB+s9e+4EjQDA29sb3t7etz+8c7yqqkJVVdQ2y+hua9euVRs1aoQWLVrUOXVGr9fjmWee0a1fv16LnTED/ZKTYXX0qNFlT548icjISHnw4MHQ6/WSqqpIS0vD2rVr4eXlpTzyyCO6hj16iFKeqgQEiKym06dFZlLz5lUurlhY4OugIK3xtm3aI999Jxd7ecEyIKDG56iqKnJzc3Wurq73JWgEAJ6ennB1dW146dKl2QA+DgsLSw0PD+9y1M3t4MDERCft0qXId955Z8Lbb7+98b4cAP3nNW8ugiRPPimCCKGhNV517969cHFxUaysrOp0DSsuLjZ+7diwQRxLJT/DxmRkZMDp2jXkTpsGu6VLId/VG6hhw4bo27fv7Q/LRSvKyspgZmb252vFxcAbbwDx8SLrycmpymBacnIyfhw2DDM7dZKxaVONgzD36tu3L1xdXbH+55/RZsAA6GNjIRsZLlBQUIAVK1Zonp6eUuvWrSVFUVBSUoLo6GglISFBGzFihOTt5QXJxUX8Pvrzul2eJInPb1kZsGcPEBJS7THuDw5WY/btk2a8+aacHR0N66VLa3WOJ0+eVJs2bSo5ODjUqh9WTcmyjMGDB1tv2bJlcXh4eNuwsDAlPDx8UoFeL10JCBjZJzZ2blT37l7h4eFTwsLCSk1+AEREDwk2xyYierDmVfqOjw8wbZroFxIdXe00HFVVsXTpUgWAPGTIEKkugZeYmBgkJibKffr0QYVRz3Z2IrBRi94lrdLSpNxGjbT1jRtLR1JSFE9PT7m6MgJJkur11Pj48eOIi4uTpk6dKtUlY+Febdq0kYosLRGXno7zVlaqo6Njue1evHgRERERGDlyJDp06AAXFxc0adIEPj4+6NSpE44ePYpdu3ZJaQaD4nrzpmzp7w/JWOPtuxQPHw71zBnoHn3U6Pu5ubmIjY3V9u/fr+Xl5WF6WJi8PiND0Xt7y84REUDXrjXK8pAkCfn5+di1axdUVVU9PDxq3IC8NlxdXfUJCQk9du/evTgkJKQ4JCQkJzIy8udWsbEzfRXF6oy396N79uw527t371Mm3zndb/OMvmpuLkpv/f1F+VKXLtV+T8bExCA2NhaPPvqo3KhRo1ofSHZ2NtatW6f5+flp3t7e5S8iNjaAs3OtepQ5FBTA2dwcMbKsbc7N1fR6vdSsBte/ctevDRuAkyeB0lIxec7ZucrPw61MRzWkXz/4AhJmzRITN+sYSHd0dIR/27bSoSNH1B2SpNnZ25cLshgMBixbtkyzt7dXJ06cKDs7O6NJkyZo1qwZunXrJhcXF0s7d+7Ujhw9isaNGkkNzMygq2ayZdFPP0GeNg3yK68YPVdN03D48GH88ccf6sGDB+VJoaHS6YAAnJEkpe2pUzLs7MTQgBpo1KiRFB0drZ09e1bz9vaWLCwsav9JqoazszOOHz9uVVhYmBoSEnI8JCREi4yM3GB3/Xq3kG3bfC8+9phPSWlpt549e35v8p0TET0kGDgiInqw5lX5rrW1CBrNmQM891z5Xhj3yMrKwt69e+U2bdpovr6+1TaTLisrw759++Dh4QFJkhAVFYWoqChMnDixfE8OQEzMsbevXdnczp2Qw8LQ5LXXpPbDhiExMVFKSkqSOtaluXQtrFy5Uh00aJB0p0SsvgwGNElIgMPs2Thy5Ii2Z88eKTU1VbG2tpavXr2KdevWoUePHggKCqqwqrm5OTp27CgFBAQg+cIFqWjTJhxNSEBekyZwdHSsENzTNA0bNmxQfrG3l094emoBTk6SmZEb6IiICCUlJUVq3LixPGrUKMnGxgYpJSVy5tmzSptvv5URGCgmwNUgCOTr6wsvLy/s3LlTS0xM1AIDA00eObKxsUF2drZ648YNu169em0FgJCQkJwfT5/+MbFp05mt3N0t0/PyTvXp02evqfdN9928St+xshKZR889B/j5AdX8TG7cuFG1sLBAcHCwVJOSpfj4eOj1elhbWyMzMxPffPON5u/vrw4ePLh8ny5VBTZvFplPNQ2M5ucD48fDrmlTtA4Pl2RZliIjI7VevXrVbANpacCJEyLLadQoYNKkGvUh27RpE2RZ1kaMGCFLXl5ivehoMTyhjkFdy61b4T57tnQtP1+KiorS4uLioNPpUFJSIm3ZskUtKSnRpk+fbrS3mZeXF7p37y4piiKdjYlRbkZEyH84OyuNGjUy+hAgMTFRW37ggLQ/OBjNbWxg5+hY4ffW6dOnsW3bNs3CwkLu3r07WrduDafmzbElOlrufugQ5IMHgUcfrdH5Ojg4oEuXLtLJkye1Xbt2Sa1btzZpjyNABNhdXFz0J0+e7B0ZGfl5SEhIWUhIiLYxIWHtkS5duvvo9b7pBkPDnj17fmjSHRMRPUQYOCIierDmVbtEmzbA7NnAzz8Du3aJbBIjrK2t0apVK0RFRamHDh2SmjVrJtnZ2VW62Rs3biAiIgLx8fFqenq6dPToUYSGhqK5sfKof/4T2LgRmDixZmd19Ki4aRw6FGjbFubm5oiJidH8/f2lCkEpEzt8+LDi6ekpN2nSxDQbPHgQePpp2L79NgIDA6WgoCBcvHhRjo2NVVNSUtT27dujf//+Vd7hWFhYoG3btpK7o6PU6OBBaZssq3v27JGzs7OVRo0ayba3MpCSk5Oxb98+afbzz0vn9u9XA8eMkfH00+UylDIyMhAZGSnPnj1b6tChA27fYDs6OmJbdLTcbdky6PR60Vtm0CCgBpkbDRs2ROfOnaUtW7ZIvXv3vi8lH25ubmYHDx5sf+DAgR5RUVGDIyMjD5ZYWhYN3bLlVY+TJ9U/WrRYFRISUvM6InpYzKvyXUtL0ZDZygp44QVR8lpJULtTp07SxYsXsXPnTkmWZdXNza3KDLgffvhBOXjwoJydnY0dO3ZogYGBWoWgESAyfiZMEFPMavK9XVwsgjXduwOhoZAkCWlpabhx44bauXPn6tMhN24EXn4Z6NEDmDev2oDZ3dLT05GVlaV26tRJ7MfCQmSe5uWJJvt18dhjkFu1QquRI9G9e3fJzMxMOnDggHrq1CnNzMwMTz31lK6qDFVJkuDh4YG2gwfLLosW4XDLltgdEyOdOXNGtbS0lBwcHCDLMhRFwfLly6WQkBB4eHqi6YgRwNWrML+rwbemaYiIiFDbt28vP/bYY2h6awCEXq9HfEKC0nDqVNnlySeBMWPElMkePao9PVmW0aFDB+no0aNlDg4Oprv238XOzg6XLl1CQUHBYzExMQP37t1bqqpqYou0tNkDlyxpdqRLl6TuvXp9bfIdExE9JNjjiIjor8DMTNyAbdsmGpRWcvPj4uKCF198Ubd9+3asWrUKAQEBysCBA3Xmd/UWus3JyQkWFhZay5YtpfPnz+OJJ56Aq6ur8f1/9VXNj/XSJeCZZ0RPjxEjAIgeGtnZ2XKnWjb6rgt3d3ezM2fOKAEBAaYZKd+9uygXvMXa2hqjR48G7ulrUhPysGFo8vnn+PvYsbp0WcaOHTukb7/9Fo0bN1Z79OghHzhwQG3btq3csGFDTJ47V/dVaanqFRentfb21l26dk1LTk5W09PTdS1atFCtra3L7d/R0REWFhZq8oULcitfX3GDXlQEpKYCnp7VHpuZmRnMzMxQXFyM2jaorQlbW1s89dRTltevXx+6ZcuWMkmSeut0Oufsl18uPXPggAbgpMl3Sg8HMzPRCDopSfTw8vWtZDEzjB8/XkpJScG6detw7NgxdezYsXJlY++dnJxkVVVx4cIFrWvXrlqfPn1ko4Gmdu2AjIyaH+/06SK4tXLlnZdOnjyp+Pr6Vn1NOXZMXPfefBP48ss7jbRrIygoCDExMbrS0lKYm5uLz92aNeJ4rlypVanwHUlJd/5XlmV07twZnTt3rv31UaeD/rnnEGowyIa5c7Fr1y75t99+U3/99Ve5c+fOql6vl3U6ndq1a1cZADZ/9JGWlJmJsefPS1ezspCSkqJcvHhRVhRF6tevX4XNe3l56Y4fP674+/vr8OSTosn6pUuAq2uV2ba36fV6qaioqNanVVOjR4+2Tk5O7picnNwxPj5+jF6vT7vRvr1dorOzqpWWHrlvOyYiegiYdvQAERHdP6NGicDRK68Ab71V5aKDBw/GzJkzce7cOSxatEhLTU01ulyDBg1UV1dX6eWXX648aLR0aY2anAIQN2dJScC7794JGgHAuXPnYGtrq+j1+pptpx6CgoKQkpKiM8nU0OJicdNy40b9t3Xb0KHA7t1o2rQpnnjiCXnu3Llo0aKFvG3bNvX69evy4MGDAYgn8JNeeEH2mDdP1g8bpp0/f15r3ry5bvr06ZgwYYLR39/u7u7yyZMnFUiSyBJr2lQ8sY+IqPawNE2DTqdDYWGh6c71Hi4uLvD390dJSYmZpmnNX3jhBSvX4GBLhwsXct6eN2/UfdsxPXi2tsD+/SJzpm9foKSk0kW9vLwwZ84c2dnZWVqyZAn27t2rKopSYTlfX1/p5s2b6gsvvCCFhIQYDxqpKuDhIYIQ1dE00ZNo+nRx3bvFYDAgLS1N16VLF+PrFRUBu3cDS5aIEqvOnesUNAJE9p+lpaV64e7j9fQEdu4Exo4VvZJqY+hQ4IMP6nQsRgUFAceOQa/XY+jQoZg7d648YsQIJCYmapGRkQgKCrpzbRo+ZYrkWViouvj54fC+fYq5ublu+PDh0iuvvGK0lLpHjx5ISUnRlZWVid8fs2eLf0OG1OjQ9Hq97ubNm6Y713tYWlrCz88PHh4eAIDRo0e7zpo1yya2tNTw/L//3e6+pGoSET0kmHFERPRXM2AAcOCAmFxTRXmBo6MjXnjhBV1kZCTWrFmDMWPGoFWrVuWWsbKyknNyclRU9SChV69y09AqVVYm+nF07gz8618ARKbR4cOH1djYWLlDhw6myQCqxq0/6rVr165JJilZePFFoHHj+m/ntl69xHSlW/R6PQYOHIjg4GD5s88+w93BtUaNGqHRxo0SNA1PubtXe1PSrVs3fP/99zpVVUWDXgcHcbPesKEIJD33nNGmswUFBfj5559VTdPkbdu2qZMmTTJ+E24iLVq0KExOTrbW6XSIiooq8MvOXiEB97eGkR4ObduKqWs3b4oskkquYbIsY8yYMdKlS5fw448/4sqVK8rEiRPLXUMaN26MgoKCqh+CKooolatJieynnwJbtojgkYUFFEVBYmIi9u3bp1pbW2t2dnYVr2FFRSKw7uMDrFpV5z5Ed3NycpLOnTuntmzZ8s9zmzZN/LewUAwqqKkZM6qdzlgr7duLfktXrwK3rq9+fn7w8/PTffzxx4qLi0u5z9GoN9/UYeBAPNOlS7XX/1tZsGpycrLsezsr7eefgbNnRfmfra34/XcPTdOwf/9+9cqVK/K1a9cQGBiIujRXr6nbwxHy8vJw7NgxFNjbH7IoLdUANAWQdt92TET0ADHjiIjor2bIENFwdehQYO7cahfv168frKysFFVVy72uqiquX78OPz+/yn8XGAxAYiIwdWqli6iqirLiYmDDBmTOnIl1AQHKjh07tLVr1yoLFy7EqVOntBEjRmDoXX0u7jcbG5tKs6xqZds2EWwxJT8/YP16ICur3MsNGzYEIMaJl+PmJm7QmjUD/vijyk17eHhAp9OpFy9e/PNFLy/RlHf/fuD770VWxV2Ki4vxxRdfQNM0PP/880hNTZXz8/Prfn410KlTJ2sA2LlzJzIyMkp+HzTobQBvQ5IqSemg/xpWVsDy5UBkpMheqSbDzd3dHW3btpWNZRzFxMSofn5+Fd+4244dordSFcMCSktLge3bUdK1KyJDQ5XNe/cq27dv1z788ENs3bpV9fT0lGfPnl0+8JGTI66/r78OrFgBrF5tkqARALRs2VJKuqu8DIA4/mnTRGD+t99qtqH4eFEWaMoSYTMzEfSLianwlpWVFfLy8iqu06ULMHky8OST1W6+WbNm0okTJ/78mpqbi2BjSoooA7zn9xgArF+/XomNjcWUKVPQsGFD9cSJE7U7p1q63Qdwx44dalRU1M1ig+EdAIMBdL6vOyYieoAYOCIi+qv64AOgf/9qe3fk5eWhsLBQd2/2TUJCAvR6PaocLx0dLUZBV+H3339X40NCkPree9rS06dRXFKiu3btmiTLsu7ZZ5/Fs88+q2vbtm2NT6u+du/ejYKCAtmzBn19qjVrFnDExK0rLCxE9sOBA+VelmUZFhYW6tmzZyuuY24ugoWtW1e7+SZNmkj79+/XLly4gOjoaG3lypXKxevXRRDs6aeBwECRUXFLZmYmZFlWp02bJltbW0NV1TtP1O+XNm3aAACOHj0KRVE+CAsLKwXQA8C3LPf4H/HooyIQommifK0KKSkpqru7e7m/WVVVRVpamhQYGFh1JsusWaKMrBLXr1/HqmeeQfqsWVi7caN2Kj9funnzpi49PV0aMWIE5s6dKw8ZMuTPTEBNA9auFf2MNK3GP5c1lZmZiX379mn+/v4Va21lWezPYKjZxr76SvRbMrVevYBffqnwsoODg+7UqVOq0TLhGTNEf75qdOvWTUpMTNSdP38ef/zxB9atW6f8/vvvCl56CYiNFc3GQ0PLBZBSU1PlkSNHyh4eHtA0TbsfPdruptfr0a9fP7WsrEwuLi6+CiDy1lufQpIC7uvOiYgeEAaOiIj+qgIDRfZRSAjw2mtGF8nKysLixYu1tm3bKvb29uXeO3jwoBIUFISbN2/ixIkTuDcjCYDoRXL1aqWHUFpaipvLl8uNnnsOZ//v/6Sxjz+OSZMmITQ0FOPGjbuv5QL3UlUVv/32G2JjYxEaGgqTlKldvQr07Fn/7dzrxReBn36q8PIjjzwib968GdeuXau4zvTpoleRaMxdqeHDh0vZ2dnaDz/8gOPHj6vFxcW6rVu3qpAkQK8H5swRgahz5wBVRU5ODvR6vQYAubm5kGUZd09YKisrQ05OTj1PuDxJkjB27FgAgKqqt5vJrAEwBsB/pKSRHjC9XgQSFi8WWTRlZRUWUVUVK1asUIuLi6XAwMByAcW4uDhYWlqiSZMmSExMrPx79NIlEaSqxInvv1ecXVy0jHnz4D54sDR79mx5/PjxmDp1Kvz8/MovnJUlsqVWrxblnx99VLuysWqcO3cO3377rRYYGKj16dPH+M/B44+LrJ/Q0Oo3+M03osTL1Pr3F5li9/SNGjVqFDIyMrB79+6Kv0z69BG9mjp2BDIzK920p6cn/Pz8tIiICERGRqqKougOHjyoy8rKEoGzyZPFdm7cALKyoGkaCgsLpdsPQAwGQ4Xm/jdu3IBJet7dpUuXLjIAlJSULAkLC9OgaSUABgI4ZdIdERE9JNjjiIjor0ySgO3bRRPnQ4dQFhCAlAsXcP78eaSlpWnXr19HQECAamxEdU5Oju7s2bPavn37IMuylpycrLVv315WVRUeHh4wMxjEk/QTJ8RNkhGXP/wQQQcPau6ffCL5urj8J864AlVVsWfPHsTFxWk2NjYIDQ2V3Nzc6r/hfv2AiRNFwMbE1ObNkZGZiRPff4/mXbqgRYsWKCsrw+HDh1UAcqWTgfz9gfPnq9y2g4MDRowYIUdERGDWrFm6srIyLFiwQFq/fr3SoUMHncuoUci6cQOOAwbgeps22p5Bg2BtbS0BgI2NDczMzLTo6GitZ8+eMgDs2bNHjYmJkR999FEtICDAZNlAfn5+aNy4cUFWVlZfABugaSokyQfAcgB1nDtOfzkvvSQCR2lpgLk5rskykpKScPHiRVy7dk3R6XTyzJkzJVtb23KrnThxQtPpdNKHH34IAJqZmRnGjRsnFRYWolmzZrC1tQWGDRPB9eefN7rrokuX0Pqjj3TWb74J+yeeqPo4v/4aWLgQ2LRJ9HIzYaP/lJQUbNmyRcnPz9f17t1b6969e9U9xjp3BhYsEJlahbMsEQAAENdJREFUlVybsXgxsG6daKptapKErPbtkfLJJ0BoKNq0aQNra2vExcWhrKxMKioqUmDs4XSDBkC3btV+7kaOHCl9+OGH6ujRo+XmzZtj2bJl6g8//CB169ZNatmyJYpmz4a6YAHsV6/GpvfeU2RZ1t0OFjk6OmLPnj1ay5YtJXNzc2RmZuKLL75A8+bN1alTp5rsgfmt3nRqVFRUfwDzb72cAiAVkjQQmnbaVPsiInoYSKaOwBMRUa2Y5iKsKMhp1gyH27fH0UGDNGdnZ9Xd3V3n5uaGli1bGq3+SUpKwvHjx9G3b1/IsowlS5aokiRB0zQYDAbZy9lZCYmP1zVYsAANGjSouM9du7AlOlqxdHHR9X/6aZOcRm1FRUUhNjZWtbS0lAYNGiS1atXKdJVOy5YBwcF1no5Ulc8//1xpeeCArHl5qSfs7OSSkhJJlmW4ubkpI0eO1DWs7GbwtqeeAl59FQYvr3IZQgUFBdiyZYuWnJwMg8EghYWFAQDS0tKwZ88e7cqVK1pJSYlsYWGhNpAk1cXMzMwvKQlNxoyB3a3x2FeuXMGKFSswYMAANG3aFKtXrwYArV+/fpKnpydcTBggPHPmDNavX59sMBh8wsLCVEhSQwDvA3gemlZ17xp6WJjkGpb+1FMw++UXLH3xRTR2dFTd3Ny0pk2b6vz8/GBpaVlh+eLiYmzZsgVt2rSBn58fVqxYoVy9elU2NzdXCwsLdY0aNVL7XrokOfbpIzkNGVLxupCVhcsrV2JvSooyaeHCyrPc4uKAlSuBQYNEU+hbZZamcOnSJfzyyy9Kbm6urmvXrmr37t1lY+dqlKaJiWNz5gDe3hXfP3FCHPvtptomtG/fPiT++CPaFxUphwICpJycHNnc3FyTZVkaNWoUfHx8qt7Ahg3AyZPAm2+iuLj4ztdXVVUcOHAABw8eVPLz83VjxoxBu3btYDAYEBkZiTNnzpTl5+ebmZubaxYWFopbfr7O2cZG8s3PR5Nb1zpVVfHFF18o9vb2Ut++feX9+/er58+fl11cXNShQ4fKLi4u5TIq66O0tBQff/xxUXFxcY+wsDBR0yxJrwH4DZp2zCQ7ISJ6SDBwRET0YJnsIvz1Bx+Ude7e3azjyZMisFCTSWiVyMjIwPkvvsDhhg2VnMJCnZ2dndq2bVupVatWkqurK6SzZ4HJk3F48mTtWIMGePLJJ//jfWnOnDmDdevW4bHHHoOfn59pW+PExQHOzqadRnSLqqp49913McfPD9ZxccB776GwsBB5eXlwcXGp2XmMHQs8/zw+PXJEKSoqkn18fKTc3Fz16tWrspeXlxIUFKQ7e/asNmzYMKna7c2eDeTnixKcW8ueOnUKv/32m6ppGhwcHNS0tDQzQPRhGjp0qHZv2VBdaZqGL7/8suDGjRvT3n777Z8BAJLkAeBRaNrnptgH3XcmuYZFRUXhYmysOikwUJacnIAOHeq8LYPBgNM//IBTaWnqBfEDIPn6+ipt2rTRtWjRAhZ6PfDIIyj09sbCZs3w+uuvV9xIYSGQmioaOk+fLq6pJm6/NX/+fNXf3x8hISFynfqKzZwJuLiIiYl3Ky4WfZ3u00CCr7/+WvFv3VrX/V//AtasQVmjRsjMzESjRo1gYWFR/QZWrAAOHcLvo0bhwIEDcHZ2VlxcXHRnzpzRLCws0KdPH+nGjRta+/btJWdn56q3FR0tvkZxcSKjSZJgMBiwZMkSpaioSJIkCWZmZsjNzZXNzMzQrFkzdfLkybKpgkexsbHanj17Il977TUx7k18v70B4EtoWrZJdkJE9BBg4IiI6MEy2UV4yZIlqn/LlnK3l14CXn1VlFPU+ag0MYJ+2zYYAgKQkJCA48ePq1lZWZJdZqbUztxcbRoUJBf5+mL79u3Kyy+//B/vS7N69WrNzMxMffzxx02/71GjAGtrMYXMxA4fPozdu3fjlb//XWQzHT0q9lULGzdu1FIPH4b/sWOS16efIiYmRrG3t5d69Ogh16mvlKYBY8aICUzvv1/h7X379sHf3x+ZmZn46aefMHToUK1jx44muYs+e/Ys1q1bl2owGLxvZR01BfAHgBbQtAJT7IPuK5Ncw06cOIHff/9de/HKFQmHDgF799ZvgxMniuDPxo1ITk5GXFwcLl++rBTfvKnrc+6catevn9xs+HAsXrIE06ZNQ9OmTf9c9/Jl0UMoOFgMIbgP/dpTUlLw/fff4x//+AfM6xrkLy0FkpOB06eBkSP/fH3HDmDKlCr709VVYWEhFi1apE2YMEFqPn++6IN3q19ZTaWlpWHlihVacGSk5PDOO7iWm6teu3ZN69Gjh87b27v2DwE0Dfj1V1G+t2VLhfK9U6dOQafTwdvb+0420qRJk0wSPCotLcUnn3xSWFRU1DssLCweACBJuwH8CE1bXO8dEBE9JNjjiIjov4SNjY2cazCoiIuTUVgopgl9/HGtgxIAxI3SrXHxegBdu3ZF165dZZSUoCQ4GCeCguRNqanKzZMndQB0qqpCrmLctanFxcXh0qVL0qxZs+5PwOquqWOmFBsbi8jISDz66KMa9HoJr7wi+pDUpNHtXdzc3KSCLVvQNykJspcXWrRoUb/PgySJkpdTp8SNaNOmYmz6Lb169QIA2Nvbo2vXroiKikLHjh3rtcvbfHx8YG9v73j9+vW/QdxspUOSvAA0BMDA0f+Ixo0bo6ioSMKCBWJq2Pz5QECAKBGrizVr7vxvixYt0KJFCwDQlcydi5zkZHl9YKCSvWSJrrS0FKdPnxaBo8xMICxMjI9/5x0xPew+KCwsxE8//aQNGDAA5ubmdY9KmZuL4Njf/w707g04OIjXBw26L0GjgoICfPHFF5qXl5fq7u6uw5w5ItuploEjR0dHQNPQIzkZlqWlwJAh9fvlIUninGNjxbS1pCTgrnK5u5ucP/PMM7r58+cjMzPTJAMUzM3NERISYhUZGfkhgL63Xh4GwAaSZAZNq9j1nYjoL4hT1YiIHiIXL17E559/rixYsEBdtmyZUmZk0lBlGjRogNzcXA16vbjpP3lSjIyui/79K2bbFBQAy5fDYtUqdPruO8yZM0f30ksvYeTIkf/RoFF6ejp27tyJv/3tb/dnatv8+cC4cabfLoC4uLiyQYMGoV27duJm0c8P+OOPWm+nefPmSG3eHMqxY6JE4/r1+h9cz56i9GXePDGpz4ht27Zh3759CAgIMFmmnCRJGDhwoK1er58fHh5+OwDWCEACJMm2qnXp4VJcXIy1a9dq8+fPVxcuXKikpqbWeF0nJyeUlpaK6Y56PZCbW/eJYJ9/Djz2WMXXV62CxcSJcNm8Gc+8+KLutddew5gxY9A5KAj48Ufg4EFR7jR69H0LGqmqim+//Vbx8vJSu3TpUv9Upo4dgZgYkXVUViYCSZ6e4nptYgkJCbCzs9PGjRunk2UZcHcXX6tLl2q1Hb1eDwsrK/Xshg0iqysysvqVqmNpCbz7rvi9FxIipkbe48aNG3jvvfeg1+tN2qstMDBQkmW5c3h4eGcAgKYVAvgNwDMm2wkR0QPGUjUiIiIiIiIiIjKKGUdERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERERERGQUA0dERERERPT/7diBAAAAAIAgf+sFRiiMAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAJY4AgAAAGCJIwAAAACWOAIAAABgiSMAAAAAljgCAAAAYIkjAAAAAFZoP6T0Uubl/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "f,ax = plt.subplots(1,2,figsize=(10, 6), subplot_kw=dict(aspect='equal'))\n", + "gdf.plot(edgecolor='grey', facecolor='w', ax=ax[0])\n", + "w_rook.plot(gdf, ax=ax[0], \n", + " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", + " node_kws=dict(marker=''))\n", + "ax[0].set_title('Rook')\n", + "ax[0].axis(np.asarray([-105.0, -95.0, 21, 26]))\n", + "\n", + "ax[0].axis('off')\n", + "gdf.plot(edgecolor='grey', facecolor='w', ax=ax[1])\n", + "w_queen.plot(gdf, ax=ax[1], \n", + " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", + " node_kws=dict(marker=''))\n", + "ax[1].set_title('Queen')\n", + "ax[1].axis('off')\n", + "ax[1].axis(np.asarray([-105.0, -95.0, 21, 26]))" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "w_knn = KNN.from_dataframe(gdf, k=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(4, 32)]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w_knn.histogram" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAADrCAYAAABuBv24AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl8Ddf7xz9nZu5N7s1GZCFEEELsa2oXa1GlsfRnr361paqLUq0I06FFq7poURStpRSlpYoiBLFvtSWSWBMhCdmTu86c3x8nIftqq8z79cqr3Jk558yNPuec5zzP5yGUUqioqKioVBy4pz0AFRUVFZUni2r4VVRUVCoYquFXUVFRqWCohl9FRUWlgqEafhUVFZUKhmr4VVRUVCoYquFXUVFRqWCohl9FRUWlgqEafhUVFZUKhmr4VVRUVCoYquFXUVFRqWCohl9FRUWlgqEafhUVFZUKhmr4VVRUVCoYquFXUVFRqWCohl9FRUWlgqEafhUVFZUKhmr4VVRUVCoYwtMewNNGkiQCQA/AGUCVHD/OAKpoNJpqPM9X4zjOVZZle5PJNEIUxbCnOGQVFRWVcvHcGX5Jkngww+2a58dNq9V68jxfHYAbpbSKLMuOhBB7Qgi0Wq1Zp9NZdTodtbOz4+zs7AQ7OzsbvV7P6fV6XL16FREREeEAbj69t1NRUVEpP8+V4Z83b95qQshIQRBMOp3OotfrFXt7e87e3l7j6Ohoo9friZ2dHfR6/YMfnU4HjUYDFPFdnDt3DtevX5fNZvMxAMoTeyEVFRWVx8BzZfgB6Lp06aJ06dLFFoDto2hQURTs2LEDNWvW5DIzMwclJCQM/eKLL44Yjcb1AP4WRTH2UfSjoqKi8qQglNKnPYZHhiRJdQRBuDh69Gidp6fnI2lz27ZtNDo6mr7zzjscAGRmZiIqKgphYWEZV69eFXiev2WxWH6TZflPAGdEUVR3BCoqKs80z5XhB4DZs2cH8Dy/6pVXXnFq2LBhudubP3++0q9fP87X1zffNVmWER0djStXrlguX75sNBgMMsdxO0wm0yYAe0VRzCj3AFRUVFQeMc+d4QcASZJe8/Hx+WHYsGH25W1rxYoVtFatWujevTsp7t7ExERERETg0qVLqXfu3LHRarWnDQbDrwD+EkVRPRRWUVF5JnjefPzZ7Lt+/bomOjoa5XX5yLIMGxubYo0+ADg7O6Nt27Zo27ato8lkwtWrV9uHhYU1j4iI+GrevHl3rFbrr7Is/w7gnCiKz9+Mq6Ki8p/guVzxA8CsWbPeFgRhQUBAgK5BgwYgpES2Ox+zZ8+Gs7OzMmDAAK5GjRplakNRFMTExCAsLMxy8eJFs8lkMhJCNpvN5t8AHBJF0VqmhlVUVFTKwHNr+AFAkqQXBUFY/eKLL7q1bt26TG3cu3cPGzdutCQnJxNvb29L27ZtdVWqVIG9fdm8SJRSJCQkIDw8XLlw4UJ6cnIyz/P8TpPJ9CuAf571cwFJkqoCGJb1V1rMfwGAFPLnkwCOqYfhKipPnufa8M+aNWs5pfSNUaNGoU6dOmVux2q1Yt26dXJMTEyoRqNxtVgstTp16qTp0KGDwPP8g/sMBgN0Ol2p2k5JScGVK1dw4cKF1Dt37thoNJqjRqNxDYDtoigmlHnQjwlJkl6vXLnykrp16z4w4jTHP6KsP+Yy/Hl3W4qi4Nq1a+bMzMx4s9nc7Fmf7FRUnjeeVx8/AIBS+jEh5LVKlSppytOOIAho2LAhf/fuXfPUqVMbSpJU68iRIyvPnDnjFxAQYOfl5YX09HQsWLAArVu3Nrdr107r7OxcoradnJzg5+cHPz8/R4PBgMjISP+LFy+2vn79+pIvvvgizGQyraGUbhVF8Vp53uERInh6esp9+/bVl7Mdm02bNglRUVELAIx/FANTUVEpGc/1il+SpDoAro4dOxZl9c9n89VXX2VmZGT0EUXxYFbbhBASIAjC8lq1atkQQmwjIiJ4QRC+AzC2du3aZPDgwXZarbZM/VmtVly7dg2XL182hIeHA0BcjsPhs0/rcFiSpLdbtGixoH///qXb2hSAwWDAwoULDUajcSjYDuf5/ceoovIM8VwbfgCYPXv2cI7jlvr5+Wl69uxpU5Y2rFYr5syZI1NKNXmNkyRJDgD+D4ALgE2iKF6VJMlOq9WeHDRokK+Pj0+536Ggw2EAmywWy3oAoaIoyuXuJA9Z4nUF8W6rVq2+6Nev3yPJjL527Rr++OOPDLPZnGCxWGbMmDFj7aNoV0VFpXCee8MPAJIkOWs0mrCAgAC3ghKxiiMlJQWLFi1KDgwMrFyKPuMBuLZq1crk4+Njk5KSgsaNG5f6DCAv2YfDly9fls+fP5+ZkpJiQwix4uHB6YP/Zv1uSSGfZf8973MAAI1GA4vFUuAY/P395S5duvAFXiwDlFLcuHEDW7ZsyTQajbOmT5/+xaNqW0VFJT8VwvADgCRJL2i12v3vvfeezs7OrlTP3rlzB6tXr77x8ccf1y5FfwRAU47j+mo0mhEmk6kRADg6OsoffPABX9bw0rwYjUYoipIrXDX7zyX5b0GfxcbGYvny5QgICEDTpk0fyThLQkpKClauXJmZmZk532q1zlIjflRUHg8VxvADwBdffPF3r169+rRo0aJUz8XFxWHFihXJFovFUxTF9LL0LUkSB2AWgOmTJk2Co6NjWZp5Ity7dw+LFi0Cx3GYMWPGE+07LS0N69aty0hOTo43m81jZ86cuf+JDkBFpQJQoSpwUUrvp6eX3m67u7vD1dVVADC0rH1nrV57AYCDg0NZm3kiuLi4YOjQodDr9U98VeDg4IBx48bZ9e/fvzbP839mHdCrqKg8QiqU4Qdw5dChQ8arV6+W+sGOHTvqbWxsFkqSVGbjD+BrjuPoo3LzPE6qVauGzMzMp7IjJISgYcOG6Nmzp16j0Vz47LPPyvOdq6io5KFCGf5PPvnkM6vV2ve3335L3LZtm6E0z/r6+nIdO3bU8TzvV9b+eZ5v1r59+/+E39rR0RGEEBiNxqc2Bj8/P3706NF6AKs///zz63PmzJlURLSRiopKCalQhh8AZs6cud9isdQ6d+6cjSyXLgpSo9GA5/kyO+dlWb4RHx9vKuvzTxqNRkNTU1Of6hhq1KiBDz74QNO9e/daTk5On2m12h2SJJVNf0NFRQVABTT8ACCKYhrHcSaz2Vz8zcrDBbqdnR04jqtfjq5/u379evqlS5fK0cSTQ6vVKlFRUU/99N/e3h5t27bFuHHj9M2bN+/F8/xhSZI6P+1xqaj8V6mQhh8AKKXc8ePHi74pORngeWD4cODKFTScPBnEYGj92YwZtcrSpyiKyRaLpc+ff/6ZmZDwzMnw5KNfv378gQMHnpnIL0EQ0KdPH37w4ME2Go1m09Mej4rKf5UKa/gVRbEJCQlBkcbfyQl47TXAzw84dQpcWBicXV1NU+fNOwpCzgEACPkLhHiVtF9RFM/Isvzuhg0bMp4Vg1oY9erVA8dx9P79+097KLmoX78+KKWVJEkq83mLikpFpsIafgDjACTu27cv+fbt2wXfQQgwaxYQFwesXw9s2YJkg4E/3KnTEABjQIg9gDYAHEDIOhCSlPXcQhDSo7COFUVZlZiYaPdfWPXr9Xo5NvbZqidPCEHz5s0FQRC2SJLk9LTHo6LyX6PCGn5RFJeJoliFELLx5s0iqiLWrAk0agT06AHavDl8Q0Ls/E6c0IHSc6A0HZS6g9KLACbjoU79SwBag5BBIMQIQiqBkLdByJjsZgVBOLBx48bMZ33V7+LiIkRHRz9yLaDy0rdvX65JkyYutra26572WFRU/mtUWMOfjdlsPhYTE1O0HvyIEcDZs0BwMIx16xq3DRjQAITYgZCHQmWU3gWlu7L+7A1K5wHYA+AdACkAhgD4PxCiEz/91DRtxowg+9OnBevs2Y/r1R4JderUwa1bt565EEpCCLp06WJjtVq7PO2xqKj816jwhh+AVqPRFG3YCAHmzgWZNw9+o0frbjRqJN6rUuVDAJ8U+RylqaB0BSiloLQbKO0DQAbwMUfphcZhYZRfvpzd6+oKfPwxcPcuIIqA6dmI+mzUqBHu37/PKcqzl36Qnp4OQRDin/Y4VFT+a1R4w08I0YaFhQkxMTFF3+jhAbz5JjyXL0fXLl0qLZs06ZMvPv74OAjxzunCKRZKzaD0G1CaumfAgMR9K1daKaXAJ5+wncWxY8CCBYDVCrRtC3Trxp6bOxe4d6/sL1pG7O3toSgKnkXD7+TkBIvFUk2SpLLVwSwGSZI8JUlqriaNqTxvPDOhek8TSZKmtmzZctbLL79ctF6/LANjxwIBAThbsyZ27tx50vfUqZ/7/P13uq3RuBqEaEFpCZIDHvTbWqvVbhs2bFi1WrVq5b9h9WpAqwVefBFwcwMOHgR+/x3YvBm4cQNYtw5o0wZ4BJr/hZGUlITFixdj+vTpj62P8vDHH38Yw8PDT5tMpk6PopBLlpheXwD2giAsFgRBRymNt1gsv2o0mgaKotyxWq0KpXQdIaQzpZQDsFYUxehyv4yKyhOC//TTT5/2GJ46ISEh3L1790ZoNBquRo0ahe+COA7o3Bl4+204v/46EjIyKsc4O794qEOHevWGDDlqn5GxEZK0CiX8Tv39/WP379+fmpCQ0L158+aafBo+zZoBjRsDOh0wcybg6QlQyiaBLl2ADh3YfYIAtGwJREUBdnZApUqArS1zUZWTW7du4fr167Rdu3bP5KrXx8dHOHbsmIvFYvnL398/rjxtSZJUC8B9AMO9vLz6VKtWTXjzzTd1Xl5eTra2tu18fHwaVqpUqbWjo2MTRVGGGwyGlwB05zhu+IEDBxb6+/s/c4fgKioFoa74s5AkqY4gCMerVatm26tXL/siSzXu2QOsWQOsXg1KKTZv3myMioo63nvjxlEtzp2LATB02Vtv7bjj4dFQFMVjxfSr1Wq1e318fNoMHDjQtlQCbtm/u7AwYOBAICkJqFyZTQJWK3D1KjBtGlCjBlC/PrtWSo4ePYrz58/L48aNe2SFVx41x48ft+7bty/JYrH0EkXxXFnbmTdv3p7WrVt37datG89xJfOCWiwWLFiwQDaZTDwAT1EUi/EZqqg8fdQVfxb+/v5J+/fvX5mWlnb9woULnePi4uDt7a0RhALq0Xt5AbduAVevgjRrhgYNGgj37t2rerxq1WGRXl4nWpw923tf9+6pVkE4eOzYsZ779u076O/vn1hIv3JwcPDG5OTkl41GY2Vvb+8COiwEQtiPXs8yjDdvBl5/HRgwAGjXjrmDBAFYsgTYuBFYuZL9uLsDaWmAgwNgU7R368KFCwCgNGnS5Jk9D6pRowbn7OxsFxkZ+fqRI0c67tu3L8Lf37+Q5IyCkSSpvU6nCxw6dKgNz5d8juN5Ho0bN+aOHz8OjUZTOzg42BASEhLh7+9f2tdQUXliqIY/B/7+/oYuXbqcDQ4OXpScnNzwwoULXsnJycRqtfJVqlR5WOWK41hW786dQMOG4CpVgq+vr1CpUiXHMwkJw0K6dt2iUKqMXb9+oNOrr9aMTUvr2LFjx2VF9GsJDg5O12g0fZo1a1b6usB//AEEBwODBgGTJgFmM9CxI9CvH5sARo8GhgwB+vYFjhxhrqBNm4CgIODXX4Hjx1kUkdXKrmVNdpGRkTh48CA8PT2pj4/PM2v4AcDNzQ1t2rQRdDpd3Zs3bw4KDg7e4O/vn1LS5w8ePPhG48aNO/v6+pZ84s3C1tYWTZs2hYODg29cXFx/s9l83d/f/2Jp21FReVKorp5CkCRJAODPcVxbjUbzmre3d42AgADbXDuA1auBhATgww8f+NOTkpLw66+/ZqakpPxUJT5+pGvnzs73d++WU6tVW53BcZtnzpz5dyH9vQVgqYuLS/qgQYPsq1atWvLBXrgApKczI28ysVW8orAJqjAUBbh/n2Ulf/MNULcuEBMDrFrFJgpXV5xNT8dlnY72fO894laa8TxlDh06ZD106JCZ5/n9RqNxF4CLoigeKOx+SZJqCYIQNm7cOFsXF5dy9R0TE4M1a9YYKaXLLRZLYFkrtqmoPE5Uw18CJEnSabXaza6urv6vvfaaXqPRsAtmMzB5MvOvd+364P6MjAx89dVXANBLo9F80WfbthapI0bguMFwfOrUqW0L6eMNQRBmUUqdu3fvbtOuXbuSDS49HfD1BcLD2cEuwIx5//5AaOiD1XuJUBTmHrp/H9i4EXejo5EWEUHrXbpEEBQE2NuzKKN+/VhG8zNcUCY1NRXXr19HVFSU8eLFi7YAPgSwBcCtnNE/kiTpCCEbKKX9Z8yYgZL69osiIyMDO3fuNERGRt4wm82NHkW0kYrKo0Q1/CVEkiTOxsZmt6ura/vRo0c/NP6nT7OD3unTWRJWFnv27DGfOnUqxmw2t9RqtXttbW1btv7rr1S/w4dH2phMO/K0XVer1V545ZVXbDdv3iw7OTmZ3nvvPX2JBnb0KPDZZ8COHbk/j45mUUDlIC4uDitXrsS0Hj3YpBAczPqLiAAMBqZaWqsWm3zeeIO5v55BIiMjcfz48bTo6GgNgHVms3kcAAUAtFrtuurVqwd069bNtsgD/VJCKcXixYszU1NT15rN5vGq8Vd5lnim/bbPEqIoKiaT6eWEhITzR48efZjN1KoVUKUKO1jNQc+ePbWEkGoA3Mxm84smk+nE+QYNKv0+eDAHQpxBSKUct7fx8vKy+Pr6okaNGoakpCS9xWIp2cBu3ABWrMj/uacnO9TdsKHU75qNq6srrFYrTE2bAi+8wCKEtm1ju4t161h+AaXA0qXs/KBrVzYBLFrExpRRtBLGk6JevXoYOXKkw6RJk2ydnZ2HArAKgnCAEPKdXq8fMHTo0Edq9AEmKTF27Fg9x3GjANR9pI2rqJQT1fCXAlEUjSaTafj+/fu5ZcuWZSQmZgXqZB+SXr6c635bW1sFQIRWqz1hMpm63HNzcxm+bt12AAEAJmbfp9Vqe+t0OgEAnJ2dNRqN5u6PP/6YUWxheIMB+OGHwq937QqUI7qE4zhotVqalJSU/2LHjqzt8ePZDuDwYWD2bODll1mE0SefAG++yXYF/foBCxcCe/eyGgdPCVtbW4wbN87O3d1dsVqtnZs1a/bmyJEj9Vqt9rH15+bmZuV5fvRj6UBFpYyohr+UiKJ4HYDH3bt3l/7xxx8Gq9XKfN2//goMG8b8/lkMGTLErlOnTjLP89VsbGzOarXagQAASlcA+ByENFU4bhIAn6tXr9Jjx47Rc+fO2Vgslg5paWkLFixYgN9++81aqDvObGaGt7CD1wYNmF9+5kyWdVwGbGxs5AINf14IYZPBgAFsTAkJwNq1wHvvsWij2Fg2Ebz3HjBuHMs12PTka6lERkYiMTGRmzx5MgYMGGBbpUqVx9rfgAEDHDiOmyJJUs3H2pGKSilQDX8ZEEXxDqV0elxc3P4lS5aY4+PjmWtlyhTgo48e3Fe9enV069aN79Onj75Dhw4NCSGBDy4ya57IURo2bdq0dpXDw/uHhIT8o9FoLgGIDQwMFAEgPDxcKNTwT5zIDHtR6PVsYiiD4U9JSYHBYOBtion1LxSOY3pDr78OzJsHXL8OvPMOO38IC2PuIgBYvJhde8woioJt27bJ/v7+1L647+0R4ezsjKZNmxJBEN56Ih2qqJQA1fCXEVEUjWazeWB6evrfy5YtsxgMBrayJQTYtSvXvU2aNEH79u1htVo9JElyfnCB0hhQuguE1B+7YoX08Sef9AkMDGwsiqIx6w53rVYbuXv37vz6P4rC4u9btSp6oBwHTJjA3DFnz5bqHdPS0kApJQXqCJWW1atZlFHz5kzvyN+f5R8ATJLCzg44f54dkj8mgoODwfM898ILLzzRcCQ/Pz8bQsiHn332WcCT7FdFpTBUw18ORFE0TZs2LYDn+WVr165Nh17PjNovvwApuXOHeJ6Hh4eHEUDPfA1RegVADwA8CHkfhGiz2o83m81+586dS7p69WruZ86fZ/3ULKEHITISuHatVO9Xo0YNCIKgFKtcWhhWKztcppTtiKpUYTkGPA+8+y47AD5wgO0I3NyYAmrfvuzZYcNYxJQsl9lNlZPMzEycPHmS9u/fn5QmM/dR4Obmhq5du+pkWd4iSZLHE+1cRaUAVMNfCJIkVS+pHK/ZbN5DCGGRPk2aMOO1LH+ibrt27ey1Wu3Pc+fOvT937tzcGj6UGgHYAnAAYAUhAvCgQPvY9evXG5YvX5524sQJyLIM/PQTM4wlJSCA7UhKuep3dXUl4eHhpdNktlhYtBEhwKFDTB6ia1d25gCwMTg5sb9Xr/7wOReXh8Jz8+YBDRsymep+/dhnsbFsp1MGNm3apNSsWVOpU6dOmZ4vL23bPkjfqP1UBqCikgPV8BeAJEmeAGK0Wu1XJbhX0Gq1X/r5+Tk++HDAABa9cuhQrnt9fX25KVOm2I4ePdqZUuqbrzFWyvEzAATAMRDiAQAzZ87cIcuyc2xs7MidO3ci+tYtlqU7eHDpXsxkYsVeComsURQFmzZtwrJly+j69esRExOD5s2bk0uXLpXMNWK1stX53r3AV1+xlf2iRYCjY+57bt5kLp8OHZhwXEHj8fJiLqAOHR6Gyn74IXMXpacDJ06U+LVv3bqFmJgY7qWXXnpqQnOEEHTu3Nmq1Wq/VvX9VZ42quEvGC0AKIoyLkufvSg8rVZrnVx+cEdHtsI9dIgZqRxoNBq4uLiA53nt7Nmzh6EgKJUB9AWlsSCkOwhxEkXRKIriNkEQZoTPmWNUdu8uPJqnMGxsgH/+YeJsBRjbrVu30vDwcNSpUwe2trby6tWrsWvXLurs7Fyy5KP//Q/YvRvo3bvwMNN9+1h8f3aW8ezZ+SbIfGTfu2EDixy6fp2dGQDAX3+xw+Ii2LJli9yuXTulUqVKRd73uGnXrp2g0Wia8Ty/VpKk0kulqqg8IlTDXwCEkNBKlSopiqLYgrlfCkUUxeuCIPwdERGR+0KPHszob9+e7xkbGxsMGDDA1sbG5sNCG6Y0u6RgTwDVsj+2Wq2fVz916vYlSi1lzrpetQr48st8H8fExCj+/v60R48eJCAggP/oo4/wf//3f2TkyJGF/ztJSQFeeomFln7/PdCnT9FSDkePAq+++vDv333HYv9LCiHMnZY9sUREAJmZzA1UwDuFhobCarVynTp1eur/1rPyCGzq1av3iiAIEbkO+lVUniCqZEMBzJo16ztK6USO4zJmzJjhWMy9oymlv9jZ2cHZOff/xxqDAf4//ohjI0Ygzc0t17WMjAxkJYB5i6JY/KkrIXMAHAewM9PWdsT3gYHTmrRq5dW9e3ctACQkJMDDw6NkWjNWK4v2oZS5Y7IIDw/H1q1b8d5778Eue5VdGMePM2nqIUOYMW/btmTaPfPnA0OH5paTmDePuXQ6dSr++cKIjWUVyoYOBWbMAPr3h7lZM3z99dd0wIABxNc3v2ftabJz507T2bNnj1osliGiKD75mpoqFRrV8BeCJEk2AKwAdIUpLEqS9KFOp/vMYDDo/P39UVARFaczZ1B1xw5c+egj0Dzx8AcOHACA4aIori92QIR4AkgD8BKAEdKnn47QarX/WK3WFoqiPLDeffr0gaOjI+rUqYMiM1JlmRnrbduAag82FFi+fLns7OyMQYMGFewP37cP8PNjh7cxMWyFX1Lu3mW5DqtX51YOPXmSRSe5u5e8raI4fhzw9sbOlStpo/XrieeZMyBmc7G1B54kFosFv/32m/XWrVs/BAYGTnra41GpWKiGvxgkSaKCICTzPJ8J4IDJZNoC4IaNjU2gyWQaCAAffPABCCGwt7cveMX90UesAtYbb+T6eP78+cbMzMz/lcjwZ0NIEAAvUPqmJEk8AFuO475SFGU8ABGABLAJwM/Pr+i27t7Nd06QmpqKH374ASNGjICXl9fDCzExrJJXYCArCt+oUYmH/ICDB5nra/78/NciIlhI5yP0w389f748oEUL3rtHD+Ze+t//gJ49gTt32Ls8BdLT03HkyBH4+/sjOTkZy5cvT7ZarS+JonjkqQxIpUKiGv5imDt37lFZltv6+fnB0dERYWFhqWlpafD29tbKsoyzZ88+OAPw8fExDhs2LP+ZgMHAfP4//wzUq/fg48uXL2Pr1q0pVqu1kyiKF4odDIvvPwGgE4BGAHqD0k8BJi8siqJBkqQvAXw0ZcqU4t01AIvACQlhh6xZ7N+/H0eOHMHAgQOpr48PQVwc8MorLLSyPLLFY8cCI0fmkrB+wKRJTN66PO6ePKxatYrWqFGD9uzZk4PVylxbV6+yHII9e1hYqacnCyN9AkRGRmLz5s1Up9PBbDbTPn36cNu3b4csyxZFUfzKUzZSRaU0lLraUEXDbDb31Wg0044ePfpRr1695Ndff/2Bz59SioYNGyI0NJR6eXkRV1fXgn0JOh07jHz7bRZVk2U8fX19kZSU5HTgwIHQefPmbTGZTIGiKMYWMZxWANJAaRoIiQBAsvxLHiKltwGAENKfUloyow+wzN+csfQAunbtCkop4kQR9Rs0ADdrFnOflEd/32oFEhNZAfmC+OabsrddCL6+vuTUqVO0Z8+eD+sSNGjAjD7Adh9duzLdoN9+YzuCx8iePXvkF154gevatSs5fPgw3bp1K7y8vGhMTIxGUZSzX3zxxWmj0ThYFMUbj3UgKhWepx7p8KwjimJSYGDgVAA+wcHBGdu3bzfdv38fAIvNrlu3Ll577TXi7++PRo0aFW4Zmzdn2ag53ByEEHTo0AFvvvmmQ8uWLYfxPB8hSZJXoW0AdgBYSAyliaD0KIB6AFZnHzBQSj90dXVNK/ELVq7MjGFQEBNWoxQYMwYdvbwQ1rKlstjJiT4QoisPN24A3boBzkUEsrz/PttVPCJatmyJ5ORkzmAwFHzDzJlsh5GUxIrXAKwmcWkS40pIZmYmkpKS+FatWhFCCDp16sT1798fMTExpEePHjQwMBDe3t5NAEx55J2rqORBNfwlRBTFSKvV2uTff/+dv3TpUkN0MbHj+SCEZfQmJgLncu/o3dzc0KtXL239+vUJgN6FPC8AmIG84aWURoCFfGpByOctT59YEJ/JAAAgAElEQVQ+mpCQ4JCQkFC6sXl4MNE0QoCxY6H18MC4qVP5xIyMR5NsdOIEy+gtijfeABo3fiTdAYBWq4Ver5evFycAV6MGqzUAsDOPSpXY+cfIkeUeQ2pqKjZu3IgVK1agWrVqslOOYjU6nQ6yLGP//v0kNTUVtWvX1mq12r7l7lRFpRhUw18KRFG8FRQUNMNqtX524cKF/MJpxVGtGnMt/P57gUawfv36ehsbmwmSJBUUjmMHYAcozW/FKFXAfpc3X96+PdnWYrm1ePFiZGZmFj+mq1dZQtTw4Wzlu2MHWwXrdAAAjUZDSzWJFMauXUDTpkXf06QJ0yBKTS1/f1l4eHjwERERJRf76dsX8PZmSXhvv80+e+cdVl9g+fJS9R0aGopFixZBURSlUaNG6NevX65Iqfr16yMoKAhOTk5yREQE7t27Z7VarcfUzF6Vx41q+MsApTT41KlTQlRUFDIyMqCURj/mxReZj3/LlnyXGjduDJPJ1BTAb1nF3nMyA0BYEYMygNJlALgPv/jCYJ+WhrVr12YWWskr25jv2gWcOcNWuUOHMrnkLDiOe/BTLpKTWaJX9+7F37t16yOVaG7atCmioqJK/wJ6PcstkGXmgvr2W2Dq1BI/HhwcjMOHD2PIkCEYOnQo161bN7jlyeUA2Hfs4eHB37p1S27RooWg0+n6A+hW6vGqqJQC1fCXAVEUj3EcN2bTpk13vvrqK8yfP98QHh5esoezXCk4fJittnPAcRxGjhyJKlWq9BAEIXHOnDkrJEnis/z3AQCuFNs+pbLGam2V7uDA1/7rr/OLg4JMP//8c+r+/fsRGhpKqaIwobMePZhf+513mHgbwIq2T5nCJoKsgjIWi4Vk1xc2m80l20Xk5fRpFvtf0gSvwg6Ay0CDBg1gMplIiYrJ5CUtjWUV//47yw5OSGDRRyWIPDKZTKhRo4bs7u7ORPWKoGrVqrh//z5xc3NDlvRHUec8KirlRjX8ZSQoKGiN2WyuDkAwGo3dtmzZknH48GFcvHixwB0ApRRJSUms/krNmkCLFiySJI9R8Pb2xsSJE+19fX11FovlNTCfvjeAV7P8+cVDaYYoikrP7du3dty7t0PM1av/O3z48JywVatIcvaO48yZwhOmFi0CrrA5xsPDQ9m0aZOyZs0a+uWXX+Lrr7/GsWPHYDQaC362IDIygNatS37/q6+WWkW0MDiOg6Ojo3ytlJLUiIhgfv4uXdjZw7p1LDKoa9eHwnJF1BT28PBAVFQUv3DhQsyfPx9Fucvu37+PSpUqKQCQmZmpcBynKniqPFZUw18ORFGkoijKoigek2V58OHDh9ds3749Ijg4OJ9/JTY2FgsXLsSDg8b//Y8d8h4+XGDbnp6eRKPR3AIwOkOvnwygBH6SPFD6ZavTp08HffbZxBkzZ1rueHhgZfZquihN+hUr2CFrXBxGjx7NOTg4kJs3b5Jx48ahT58+cmhoKJ0/fz6OHClBzhGlrG5AaRKm5sxh/v5HhJeXFx8eHl5yP39sLNMfOnuWqZnK8sPdWf/+LNv5ww/ZBF5IHkyTJk0wYMAA9OjRA3Z2dvLt27cL7e7evXtIS0sToqOj0aNHDwdK6TRJkl4o1UuqqJQC1fA/ImbMmLHrk08+GW02mzueOHEi9ciRI0paWhokScIvv/yCn376CQDgmFOi+Kef2AFiAYeZrVu35uvUqeMBYHFIly7j1rz+ukMBfv/CIcQGhEzMchPNAbC2w+HDfexl2Zwd3mi1Wgt3Q5w5A4wdC0EQoNPpiL29PXV1dUWrVq34yZMnE39/f3r69OniDzdu32ZF6IvI9E1OTsayZcvkJUuWyKmpqUDdukx1s4gVdVGYzeZcu67WrVvj5s2bfLFnMZQCc+ey8e7c+VBMrmpV4NNPc9/77bdMYO78+YeVxHLAcRyaN2+OF154AbIsF3kO1LlzZ+j1eqxatQrOzs4YOnQoLwjCPlXETeVxoSZwPWJEUUyQJKlNSEjIjn379tUDcOv27dspAFq4ubkh12GroyOwYAHw1lvA+vW5fOCEELi7u2szd+9GA0LI/g4dJmnj4/tLktRcFMXC060JcQBQE+wg2BWAHpTuAYBuhDSzofTUhg0bWjRq1Ei3c+dOAMBHH30EvV6fu51WrZD566/45fvvZYPFwg0fPpzkvtyKnDx5Elu2bKEDBw4s3Hl/4gQgSUV+Zz/88ANkWeYbN24sL1q0iHbu3Jk0CwmBvnFjcHXrFvlsXv744w96/vx5AjAJbJ7nFQcHBwqAj42NRY3Cdh4WCxOd27IF+L//A3IWbJk7l0X65FQVdXRk4Z7TprHkvJSUXFnNt27dylYGVaxWK1+/fv1Cx1yrVi3Ex8cjLi4OBoMBPj4+8PHxIeHh4W8AyC85qqJSTtQV/2NAFMXrZrO5qaIoHqIoegcGBrYE0DE+Ph7Lli3DvXs5xBh79WIyDqtW5WunTZs2pGFYGK4bDGjatKmN2WxuAqBgHw0hdlmx/m0BDAOlCigVQenDZTOlv+/19+9WdcuWtXbjxkURQuIB4PfffzeZzbmjU6OiovD9kiW07/r13MSGDUnVPJo+er0er732Grly5QrJVxYyJ2FhrORiISiKAkopPvzwQwwaNIgfPHgwOXbsGP22ShX8tG+fYrVaC287D/v370d4eDiZMGECpk2bhgkTJmDEiBFc48aNOXt7e7phwwaaWlCoaHw8+z2cO8cmqrxVukaNAjp3LrjTOXOYG2jdOlYpTFEQGhqKtWvXIiUlhd68eZN74403is2kvnfvHqxWK128eDEOHDggt2/fXs/z/JQsPSYVlUeKqtXzBJEkSeB5/n1CyKwOHTpoO3bsKAiCwATQ3n+fyRbkrKGrKEj5/XcsPX9e6dKvn3Ly5Elzenp6uMlk6iaKYu6ivoRsBLAMlO4tdiCE6MFKAIbdq1Kl2fLJk6c4OTm98vbbb+sJIdi5cyfOnDmDnj170ja1axPi4lJoRM6aNWtkd3d3vlevXvkvWq1MA+jddwvVwzl9+jRCQkLohx9+mKuD9PR0pDVvjm0DBtDqXbsSSinCwsIUFxcXvPDCC9ytW7fQtm1bVK7M6pmcPXsWO3fuxOjRowtc1SuKgu3btyvh4eFkzJgxxD37YPvCBcDeHlizhmUvFxS6euECc1UVFda6bh3o7Nn4bdo05fbNm9yg0aPh5eWFtLS03O69Yjh37hz27NlDP/roI/LNN99kpqenT5oxY0b+Op4qKuVANfxPAUmSPAVB+MPOzq7JxIkTNYIgAH//zTRkvv76oZENCQFmzWJSyGAa/gsWLFAopVVEUUwGIZUB7ADQBQABpaVLKiPEB8CXB7p0CTj64ouxffr0qXr06FE5MzOTGz58OKmWLdccFcVcGhs35psAdu/ercTHx3OjRo3K3/6//wLvvcfeIw83btzA/fv3sX//fsXPz4907tw538xC79zB9cxM7AsOVniep82bN+cjIyPl27dvc3Z2djQ+Pp6zt7eXu3Xrxu/YsQODBg1CUS4VSilCQkKUo0ePkqFDh5LaSUlsNf/jj4WHaJrNQPv2bCdQhOFPT0/Hip9+klsfOMC1O3KEcNHRZZKBXrp0KdXpdBgxYgSJiorC5s2bUxVF+V5RlGAAF0VRjC+2ERWVYlAN/1NCkiS9VqvdptVq2+r1es6vZUtd4x07YNO06cNauqGhTONmxAgAbNW6bt06o/PWrdte2rp1FyhdBUJ8ShzmWQiZer39FV/flB19+nC6ypUxceJE2OQ0WorC3CAtW+Z79vTp0zh27Jj8zjvv5HdJfPop4OrKcgXysGDBAkWWZa5p06ZK165dOZuCjCSlrGj9mDH5jCilFGlpaQgJCZHPnTvH9+3bl7Zq1apEGa+HQkKo8NlntN3ChdlqeSV5rOg2Dx1CSEgIPuzeHfoNG4Dp09l3VtBOqAgiIyOxceNG2NnZ0R49ehBFUXD79m3l8uXLBpPJZLFYLF0BhIuiWIp4WhWV3Kg+/qeEKIqZZrO5Z3p6etfExMSf9+zfH7bVYjHg0iXm+pFl4LPPmN84C27jRrSqW9c23tPTGwDLGCun0QeAbydNGnqlXj1O1mhgm5JizWeEOY4Z/cWL8xU5d3Z2RlpaGnfkyBEk563jq9UyCYQCqF27Nle9enW5d+/eBRt9gO0uEhKYlES+SwSOjo54+eWX+aCgIJTU6EOW0ejePeIRFcXB2bl4o3/gAMsmLoZOnTqhSpUq8sYrVxTlm2+AX39lMtOljEyqV68epk+fjpo1a9I///wTVatWRZ8+fbjJkyfbvfLKK5U4jjvFcVzK3Llzt0uSpGb4qpQJdcX/jCBJkgaA+X2eR6XKlZmh/egjVrzk8mUWV//llzD364dv//or02Aw+INF7tiLoni3HP3aAUgHgPfeeQf23btDs2tXrqpcDwgOZtEtOQq0WK1W7N27V75x4wa5d+8eJwgCdXR0VN4aPJgXpk0DlixhE0Aerly5gs2bN2P69OnFD9JiAbKyh8vFzZvAkCE4P3EiDqekyBPefbf4g9OzZ1kGb2GHuzkwm834/vvvFb1ej6EvvshVjo5mheLnz2cTQVG5EwXw448/yu7u7nzjxo1Rr149ZB90Z2Zm4sSJEwgNDc2+tTYAMwALAAVAYpGRXyoVHtXwP0PMmTPnG06Wx39w9qyt7SuvAG3aAA4OwJtvsjOALP/6kiVLUuPj46cBWASAiqJY5p3bnDlzZtetW3fyq6++ylTZrFaWofrjj0xXqHaeJNK0NGDzZuD11/O1pSgK7t27h40bN9I2ej154fr1XAVessku9NKxY0e5S5cuRVtDStnB6r59BU9GJeXiRcBkAnbvxu8+PjII4QdlS1UU138pJKmtVitWrVoFFxcXOSAggMfq1ezQ+NIlNgGWwu//77//Ijg4WDYYDHzlypVpfHw84TgOlSpVom+99RbJzMzEmjVrrOnp6bLFYrHRaDQmSikopdBoNNeMRuNboigezhJ9qwogWRTFQjSqVSoSqqvnGSIwMHCSBRCD27Y14O23WZYoxwELFzKtmCzu37+vA+ADAISQclVt4nm+rre3t+7BB9kFSzQatlo1GvNnp0ZF5ZOaAFjSkpubG9q3b0+0y5dTc96wyCwiIiJkf39/FGv0AWZ0jx8vn9H/6y9WFN7REQgMhKDRoMQLnoYNgVJIcAuCgLZt2yIsLIy/ceMGi/U/c4YVpPf2Bu6VvK56s2bNMGnSJH7MmDFwdHTExx9/jEmTJsFgMNC7d++icuXKeO+994TAwECbqVOnIjAw0Gb69Ok2kydPtunZs6cvgEOSJL2k1Wp3AIgFkClJUuUSD0DluUU1/M8YiqIsOmuxyIk7djC1TL2eHe727Mn0c4YORVNZlh0NhrcEkwkzZ87Mf+JaCiilJKMAP/SN7t2RrtczRcoNGx5ecHAAPv+cKWjGFlwsrHmzZqiWmkpWR0fLBWWsWiwW6HS6Ap4sBDs71mdxev55MZtZsZXGjYE//3xQ9lKr1ZJCVUvzcupUvgplxdGkSRNUq1aNyXNwHAtltVjYzsXevlCZjsLw8PDAiBEjiK2tLezt7UEIAZ/HbZTz+9TpdGjZsiWGDRsGBweH38xmc58pU6ZAr9enA3h0RY1V/rOohv8ZQxTFDErpP2v+/Ze5SSpVYgeqhw4BTk5AvXpo3batbZfgYM20efMyQIgGhGwCIb1AiAMIyV/ztwisVqvr/v37sXPnTmu2DzkhIQG//PIL7ty5A8ybx9Q7z5/PfbC7dStw8mSBbXIxMXD53/+Q4ejIheQI5VQUBRs3bqRpaWm8p6dnyQfJcWwCLI0yKKWsxvGpU0xUzcfnwaWUlJTCn8tJbCxbrZdBltrJyQk3b95UHuwsXnqJSWDv388OvIvQ7ikOSmk+w18QPj4++OCDD+ymTZsGOzu77CJtj+CwROW/jirZ8Awiy7J/vggZnmeaMbNnwwPATUdH/us9e44MWblS63XzZjgALYDhAGaBkI4AxgC4BWAlAA6Umgrp6wCAbidOnBBOnDiBRo0aKZcuXeIAoG7dug/927GxTJbAz48Z1Y8+Yp/fvp1/RXz2LARZRrtOnUhwcDANCwuTZVmGyWTitFotGT9+/IPEqxIzaRI7XygJFy6w+PydO5kEdg4jefbsWXr9+nUyYcKE4tu5fZu5aMpQAL5v375YuHAh1q9fr/Tu3ZtzdnZm36WLC8vNIISFqf74I2BbqrkalFIiCCX7X5fjOGi1Wty/fx8mk4kCKGXpOJXnEXXF/2xyp7gbWrVqRRzc3duvffPN29Knn+4EpX+B0qVgER7XwCJ1HAD4AbgKQgJAyFAQIoEQDoRkh9p8DqAZgI8AINvoA8CiRYseHgT27s00bP75Bxg/nn2WnMz06k155pSLF5lvHMyt0qZNG6Fz585Cv379uPHjx5NSG32AHTq3aMEmn6K4epVJKo8dy84Fchh9o9GIv//+mwwcOJDkLIFYKG3alKr4Sk5sbW0xatQoLjIykvv+++8fiuG1aQN88AHTBFq9GggMLHXbiqLgzJkzyCuzURRHjhwxAVikHu6qAOqK/1llBCHkDIqYmLVaLcaNG2e3bds289mzZzsAYBrJlGb7Q+Y+uJll6AJAfwC1ANgDiAYhX4pAMIAeAL5fMHnyz8bKlQ9arVZvQRC2379/f9CePXvQpUsXaLNDMrt1Y8XZrVZm4E+dYp9nh1yaTMCmTcDUqbi7axeqV68ut2nTpvx6M4LAdH+KCutcsoRlPp86xdxihVBo8fW8TJ0KDBvGJpwy4OTkBI7jkJWEhZo1a7Lv6dIldthsMAD+/sBrrwFLl5Z45d+5c2cSHByMGjVqoFERqqfZpKen4/z589RqtX5XphdRee5QV/zPJnc1Gk2Brpm8NG3aVKvRaKZJkuRQ6E2UZmb9bAClr4HSVAA1ACwFE31rAUA7ecGCY9ODgq6In37qPS0o6JxjSgqOhIZi7ty5iImJYXHkgsD0hG7eBFauZC6LL79kkUcAM7q9ewNaLRITE+Hi4vLoRMYUhbmY8kYUJSczldNOnViuQSFGXxAEuLu703PnzpUspGfIkFw5C6VFr9djxowZ8Pf3x9q1a7F8+XJ554IFcvrnn7Mzi1Gj2O7k5En2XZYg0uj27dsIDQ1VPD09FW9v7xKN4++//zYQQhaXJ99D5flCXfE/m9zV6/UlWpbWqlULVatW5aOjo7sDyC8MXxiUpgFIA3A46wcgpBWAygD0HNDs/W+/7Zzq4DBDUJTWCykV2h486GAzfDheGDMGgrc3M1YpKSxKJTvyJzmZrWIByLJMNRrNoyscbmPDDmnN5gfF4AEwn/nNm0waoohVc2JiImJjY8ngbEmMorBYgJo1oVSqVObV0Y0bNxAcHExTUlIUl6QkrsG///LBDRviROPGEI8fZ9pHixezMpgXL7LIra1bWeRUARw8eBCHDx9Gx44d0alTJ46UIL/g2rVriIqKSrNYLDPK+BoqzyGq4X/GkCTJS6vVomPHjiWOd2zSpIlDfHz8J5Ik/Q2ws98yZW5SmgIg24k+hANQiZAAAA30yckdq8XGfhu1bRsObtsmv3DpEq8PDgY5eJCt8HkeaNcOaN6cVRcD4OzsTKKjo2UUJiVdFt58k5VE1OmAvXuZHtCOHSxGvxhD6Obmhl69etE///wTKSkppF27dvnuWb58uZyamgrHO3e4nlu2kF9eew06nU5xd3cnrVu3Jr6+viUqPp+cnIx169ahTZs2aOvnx1vv3EH0L7/QGjVqoEaNGgQ9ejCDD7ASmAcOAPfvs0xtf38Wwgpg8+bNio2NDRcXF6fcv3+fGz58OGrVqlWiuYhSij///DPTarWOFUWxDMWSVZ5XVMP/7DHWYrEgLCysxKJjrVq1IhEREU1u3rx522KxuNja2u4G0PuRjIbp+Z9OkaQzm0eMuKEoyh+8xcJHV6qE6pcu0R67dxPY27Mkq3PnWESN2QxUq4a+O3fiwJ07/H1PT1Q5eZIZtORkpkU0YAAzcp6erCzjrVtMB99qZT9ubsy1k9enn5nJ6t7+9deDKmFF+fPz0rZtW+Ls7IxNmzahWrVq2cXNAQAnT55EfHw836RJE7wwciTsJQnTbWwQExPDXb58Wdm5cye2bdtG2rVrB/+sXU1hhISEwNHRkXYHCL9gAbBqFZr27Pnw97liBZOByMotwP/9Hyv0sngxO0f5+298/+uvSmJiIufi4kKdnZ3p0KFDYW9vX+J3jY2NhclkSpw5c+ZfJX5IpULAf5q3pJzKUyUkJGQXAD4pKYm0aNECtiU48COEoEmTJprk5GTh3r171Gw2+4SEhKz09/cvoOpI2cjKtL0SEhJyl/J8v2RnZ0THxhL/hQuZkFy1akCHDuzgsmVLoH17CJcuIVFRaFRKilIvPp5DjRrMWB84wPzxQUEsK1aW2TmBoyNL1Pr0UyYX0bIlk3S+c4eFc1apwqJgbtxgZQ83bABeKH1p2ipVqiAyMlI2Go1cvSzDm5CQgE2bNqFx48YIDw+Hf2oqdIoCrnp1VKpUCfXq1SPt2rUj1atXx86dO5Geng43N7dCfz8eVarg3F9/kThXV6XBa68R5NXkDwtjE13OSYsQNrFdvAirjw9OnD1LRo4fj+7du5MmTZpw2gI0j4ri5MmTcnR09IrOnTv/U6oHVZ57VK2eZwhJkjoBOJjzs5kzZ6IkvlwAuHPnDn755Zc4q9W6WZbl+aIo3nwc45w3b96fJpOpv52dnTxlypT8bhxKWZZxgwbIzMzEt99+i4CAANSvX79EbpIHKAr7sVqZG6RyZTYJLF3KYvTPnmXXShkHDwARERHYvHkztFqt4uzsTIxGI/Hw8KCvvPIKWbp0qdzy5k3SZtAgDq1a5Xv2ypUrOHDggJKYmEjGjBlDtm3bRrPCVtG4cWMAwN2ffkL0qlWo9ccfcHV1LdXYIiMjYZowAe7nzsH5zBnwpUl2y8F3332Xlpyc/KIoikfL1IDKc4sa1fNscYvn+XU5Pzh27FjxBc2zSEpKAiEkISgoaOLjMvoAYDKZRgJARkZGwb77yEgWCkkp9Ho9evbsiT/++IP+8ssvpSqlCI5jUUS2tixJTK9nejdffvnQpeTszFbPpcTHxwdTpkzBwIEDOXd3d5qQkABBEBQAqFOnDh/WoIFSkNEHgPr162PQoEGcxWIhK1euhCAIsLOzU7Zt24ZTq1YB27fjRuPGOD1ypFKg0b9yBejYMd/HKSkp+O677+QtW7YgesgQ+VqbNrBevcpyE0pJeno60tLSeAAnir1ZpcKhrvifMSRJcgGQQAj5lVI6XaPRnAwICHDRarUoLnxv/fr16REREe+KovjzExjnSABrAGDixImokreuLqUs01aWgcqVYbVasWjRItnZ2ZkMHz6cK4nkQKFs3cpW+kOGMNdSo0asIPrrr7Ps5jJw8+ZNKIqC2rVrY/fWrWg3YQIcY2NLpcx569Yt7J0/H96yTI/XqkU8PT3lYcOG5X9RRQESE3OVo9y6dSs9f/48adGihdy3b1/+QWbu6NEsRPXUqVK9W1hYGLZv33546tSppU87VnnuUVf8zxiiKN7jOO5rSulwGxubfbIsO23cuBFr167F7WL0XSibxUtXfrHsrAOwBAB++OEH7N27F5IkITpbyZIQJkewjm1gBEHA22+/zcfFxeHUqVPlW23UrftQe6dRIzbJbN4MhIeXuInIyEhcu3YNqampUBQFXl5e8PLygtFohJnjcGDGDLk0Rh/r16PmmjV4eeZMxPn7KyaTCSkpKbxcgIopLl7MVaBl165dOH/+PBkyZAj69+/P55JjWL6cVSHbtavAEpaFcevWLYvJZNpT8hdQqUioK/5nFEmSXraxsfnAZDJ1AwCO476xt7cfN3jwYH1hAmdHjhzBgQMHlgcGBr5VSJtaMP3+UspcFjnOFwAcy/67u7u7Yfz48SwUVVGYuyYhgZVgBHDq1CmEhITQSZMmEY7jEBsbCxcXF5T24LJQWrViO4FPPinw8o0bN7B161bZZDLxgiBQo9FIFEWBRqOBoiiQZRlO9++jWZMmsv8bbxS/LTEa2Y8sA0YjrO7u+OGHH5QqVaogISGBenl5YeDAgXyuc5rFi1kSXFZ1tZiYGKxZs4ba2tri/fffJwWeg7zxBlMYvX6dKXwWw48//pgaFxcXIIpicLE3q1Q4VMP/DCNJEiGEjKSUrtZoND9ZLJb9ANZxHIegoKB8h74JCQlYvnx5usViaSOKYrgkSW01Gs12juM2fvLJJ+9IkrQawChRFB9dUhUbpw3Hcb8pijIAAIKCgh6qR1LK/Nlr1gB16kBRFHz11VdKq1atuJSUFPny5cu8Xq+nQ4cOJR4eHiXr8PPPWfTL55/nvxYczMopRkezw+CsqB2j0Yj169crd+7c4Tp06KB06NCBy15ZWywWZGZmwmw2w8XFBVi/HkhPB3mrwPkzN999x6QXsiaaDRs20JSUFDp27FjOaDRi0aJFip+fH7p27Vrk7lpRFMyZMwdvv/12frdZNjExgCgC3bsDw4cX2pYsy5gzZ45FURRnURTTi38JlYqGavj/A0iSpM9OwJEkaQmA8e7u7ukvvviife08FbLOnTun7Nixw8Rx3G6z2VyfENLA3t7eaDQaf7FYLIfAXDSNRVG89BjG6aPRaH6tVq2a7+jRo/UPjH+2jk9aGuDggH///RehoaGyIAh06NChQmhoKM6ePYvevXsrLVu2LN79mP1vtihXzLBh7L6sjOKdO3ciMjKSjhkzhjjmDa0sC2fOsKS1xo3ZroYQREVFYePGjRg/fjycnZ0BMImFVatWYfr06WyiVhQWs79+/cOiNwDOnTuH4OBgOmnSJFJkFFeWNPcDjaQCSE1NxQ8//JASGBioau+rFIjq4/8PkDPrUhTFtwEIcXFx4zds2HB3xYoVGTklnJs3b4V5LVsAACAASURBVM5NnDhR16hRo1cA+FJKyfjx43V16tQZY2NjMxwAOI6b/5jGGWGxWNrFxcWFLl26NCMxMZFd0GhYpE/v3gClaNasGSZMmMC/9dZbgqOjI/r06YMBAwbgn3/+4UpUICUsjNUHKIr164H165E4YwauN29Oz5w5g+bNm8slMvoTJrDw0aK4do3tKngeIASZmZnYsmWL0r17d5pt9AGgevXq4DgOqalZKRWKwjR68sgqJyUloXLlykqhRv/aNRbFdPgw8/kXgcFgAM/zjyyHQ+X5QzX8/0FEUZRFUVxnNptr3rlzZ87y5csN93KU9HNyckL//v0xatQoBAUFQa/XY8CAAbZWq/VFnufTBEF4bHHdoihaTCbTi4mJiUE//vij4cKFC+xCvXrAnj1sFV6AnHCjRo2g1+vl3bt3F3AamofISFaAvjgIwbaUFCW1Y0f67oQJ6OzqWrJM9W7dkC/hKpsffgB++w0YPPiBjz41NRWLFi1SateuDT8/v1yWO/vw+EHGrcnEJsA8eHp6IjY2li/04PuLL1i/t28DObKNC8JgMIAQkljMW6pUYFTD/x9GFEVLUFDQHKPROOGnn34y3LmTW8a/Tp06D3ztOp0O48ePF+rVq2cvy3IJnellHhcNCgr61mKxdNi+ffvtrVu3Gs1mM4vD/+or5hcvgIYNG/L3i1tpA0zuYdiwEo3ltrs7V/eLLzjHv/4CunQp/gGTibVfkFSE1cr0dXK0ExcXhyVLltD69evTwYMH5xNOS0hIAMdxyMyuHvbrrwVq8NetWxcBAQHYsWMHSctZcCY4mPn2f/yRyVgsWwb8/XeRr5DVVwm+SJWKimr4nwNmzJjxs9lsHv7zzz8bbt4sPG/LxcUFHTp0IDzPj541a9aj0fIpAlEUz1osFt+wsLC927dvZ2qj77wDvP9+gcXaHR0dkZGRUfzB8++/s7KKxaAoCqxWK6tHO2oU0wNKSAB69Spw1wGAGdUxY/J/Pn06cx81aPAgnv7AgQNYsWIF/Pz8lJdffpkvyE3j7e2N6tWrK6tXr6Zms5mJzM3P72kzm83Yv3+/XLly5dyF4C9fZoafECZjsWULK+BeCBaLBRcvXgSlNK7IL0elQqMa/ueEmTNn/mGxWF5et25dRmhoqFKYr7xGjRp46aWX9La2tgXHOz5iRFFMs1gsI8PDw+WEhASmOqnRMKG1qKhc91atWhUpKSmcKW9Fr7w0a8ZKQBYDx3EQBAGx2UXhbW1ZBI6T08PD5rwEBLAIpGxOnADi44E5cx4YXKvVimXLlsknT57EiBEj0LVr1wKNfjajRo3izGYzDQ0NpVi1iiVvZfHTTz9ZZ8+ejXnz5oEQQsaPHw9HR0cm4rZ/PzBxItC2LZuQJkxgK/5r1wrtKykpCWFhYTAajSXbEqlUSFTD/xwxc+bMfRaLpc2hQ4f2fP3114aTJ0/SghKIqlWrBovF0m7u3LkrJUlq+LjHJYpiCqV01pYtWzINBgNbvf72G0vEyrG6rVmzJhwcHOTg4OCi/fw1azLphmIIDQ2F1WrFrVu3cnbCKoSlprLcgrw7pM2bmexzNvv3s8Qwne7BIe7q1athtVq5iRMnwqsEhVo4joMsy/Dw8CC4fftBNFJYWBgSEhKESZMmYcaMGZgwYQKn1WjYd1K/fu4iMD17AtOmMXdZEfV23dzcsv9Y/FmJSoVFNfzPGaIohn3yySe9jUZjp7179575559/8vk0XF1d8e6772rbtm07ShCEE5IklU0FrBTIsrwgMTFx1bJlyzKTk5OZmmdkJHNf5DD+r776Kn/mzBk+52F1PhYvZsVXiuDixYsICQnB4MGD0b59+/zLcScn5kbx8mIGNXtXcP06cwPNncsqY338MZNPBnDp0iV8++234HleHjp0KNHpSlwyATRLtwhBQUxfCMCePXvkTp06UXt7+4c5GV9+CaxaxXIf6tRhn6WlscxdT0+266hZs8i+mjZtagTwXokHp1Lh+H/2zjssimv9498zs43eRYoUFRQExYZYUKyxG3svsSZek6sp1zTdjDHFmMQY/ZnYkqjRaAz2BlERFLEBKgJioQkCIkhZypaZ8/vjCIIUTW6Sa+J+nmefkJ2yM7Pre855y/c1Gv5/KGq1Olan042Mj4+XNJq6NTyWlpbo3bu3rGPHjkqZTLboL7ge6Z133lmg0WiWrF+/vuLevXtsxv/NN7Xy8Zs0aQIXFxd64cKFhsXpFi6sv3jrIeXl5di3bx9efPHFxnvSNm/OBp3jx4G8PPb3a6+xrJlu3QAPDxgMBkRFRSE8PBz79+/Hiy++iOnTp/M1UzafBjMzM1p6+DAwbx4AICEhARqNhr9//z67T52OVQBPnQqMHl374Nxc5nICgLZtgQcPGv2s0tJSHYCcRncy8lxjNPz/YNRq9R0Aq3bs2FHW0D6EEBgMhr8sEPjee+99qdVq3zl69KgGhDCXzYYNwJo11fu0aNGCVGv+1MfVq0BMwxmp9+/fh0KhgK/vU3ixCGEz+/bt2YzaxgbYt49l7jg4IDY2FhEREbh165Y0bty4pztnPUiShEo/P7a6AHDw4EFqbW0Ng8HARr3Vq1nfYmfnuo1lvLyADz9kfx8+/MTGM6WlpRRGw2+kEYwduP7h6PX69/Pz8xcUFxfDqh6DkZWVVQHgVt0j/zwopeuzsrI+TE5Oho+PD8uHr5E+2bZtW5w5c4aEh4dL/fv3r9tbNjeX9fptgIKCAqhUKglPO7ERRVYY5ecHnD7NgqfTp0Nq0wZx9+/TYWPHokPnzv/VJEmv1+NOdDQiKyuhNzEBx3Fk0KBB8LS05JCRwTKd6tPoycsDhg1jHc70epbH/wR9flEUCYA/TI/JyD8P44z/H45arZZkMtmp1McyQUpKSvDLL79U5OXlFQBoPDH8j7+mSo7jFu3Zs6c0IiLCQJ2cmETxlClAaiqsrKwwZ84cEhcXR1asWIGzZ8/WdvsMGMCE2OqhsrISR48epe3atXs6LRJRBAYPBr74Ajh4kA0AkyezfgItW2Lw/v2k6RtvsFVAWBjL5/8dDB48mG9+/DhGt2yJUaNGQavVIjc3V8LRoyw9VaGoP2jbpAkLRhPC2lZ+9tkTP0ulUlEAT9+P0shzh7H14nPAiRMnTAgh/fz8/BQAUFhYiG+++aayoKBgrV6vn/C/aMQdHBwcHxER8V1OTs7g4uJiKy9vbxlxdgZ8fQGOg6mpKTp27EiioqKQkZFBrly5Il26dIlKkgTH06cJHxlZb0rn2bNnodFo6JgxYxpX1jQYmGtl40ZWULVwITO8777L0i2HDgXx8cF+S0upwteXtnB35xAeztpCFhYyI2xry7JsngJ7e3s4TpsGq7ZtYW1tDWVqKtL37SPS8OG06ciRDeeC7t4NdO7MpCHMzJjOzxNISkrSPXjwICwkJOS3d6gx8lxgnPE/Hxy5ffs2bt26hejoaLp+/foKSunr77777n/+l+qNarU6T6fTdU9ISMiOiYkR0bUrc2W88gpAKSRJAsdxmDhxIoKDg7mAgADu3Llz0rfx8bjZvHm9wd/CwkLY29s33rXs6lXg7Fng3Dlg6VLW27fKzTJ16qNsGrBsHI2DA+sR/OmnbEXg5cWO/+knVkG8ciUbCBoTPCwsBN56CwBL7wz09oadXk+zsrIavtbKSiZzUSV2l5hYKxbSEKmpqZYA/J+4o5HnFuOM/zkgJCREExkZmZKcnNwtMzMzXKfTTVuyZMnh//V1AUBISIj25MmTe1NTU984d+4c7T5gACEqFdCyJY4cOWIoKioiQUFBpEWLFnBzc0NQUBCnqajAtVu3pICgoDoTl4sXL8Le3p60aNGCiKJYu8evwQBERbEUzXbtWGqljU3tEzRtymb1o0cDhMDDw4McOXKEa9myJSwsLJgR9vFh0sjt27PgdGYmC1CfPMmyc+7dYymXNWMTWi0rHisqAnbtwndlZVKyXM6NHz+eUyqV9T8cngeGD380KFVWsnt4KDVdH3q9HqdPnwaAkyEhIVEN7mjkucYoy2zkmUAQhPY8z4f5+PhYjBgxQsUdPIi9u3bBdPp0DBo0qHo/g8GAqClTJNuyMtLyp5+ImZlZrb4E69evF9u2bcs7ODhgx44dsLKykrp06UKDVCoeixcz332rVoCra8MX06EDsGkT+y+A8PBwGhsbSyZPngy3hnLoKWV1AYWF7NioKLYSsLZmLikzMzYQ5OcDqalIsrLCsWPHxMrKSt7Pz0/s3LkzX1paSktKStCqVStiYW7Ojtu/n2X6PCXfffedNicnJ+m9997r8NQHGXnuMBp+I88MgiCYKhSKfX5+fsHD3N1VOXfvYvOlS3j77bdR1TQlJiYGkZGRcHFxkdLT0zk7Oztp1qxZ1bPmr7/+2tC7d2+ZTCbD4cOHJUcrK85u3z70HDEC5iYmLID8pJaKGRksy6iGwT19+jROnz6NKVOmwM3NDZRSXL16FVlZWZKrqyvXtm3b2o1xHjxgVb+XLrHBYOdOVrfwmI7+nTt3cPLkSenu3bucroZ+0LRp0+DJ8yyDp+q8X3zBKo4Fod7LppRiGStsS1Cr1W2f7qkbeR4x+viNPDOo1epynU43+fLly1zkgweIF0Wxe0QECpIfxSjlcjnsMjLQNDERixYtQkVFBb1x40b1dr1eT8zMzKDVaiFpNFynL79E07t3sS49HfF+fpQCuHr1KnQNibQBbLb+6qsAUC2YFhwcjPbt2+PAgQM0Ly8PR48eFY8dO0aLioq4Y8eOScePH68tkVBaCoSHMwlmrZa5gPzrut2bNWuG6dOnc4sXL0a/fv0wZswYBAQE4PLHH1ODXF57kPr3v+u0lLx37x7qUTQNa/jmjBgx+viNPGOEhISUnzp1qmVWVlYAz/MIcnQkTXv3Zlo5YEJuARYW8LKzI4p27VBWVsZFREQgOztbDA8PJzqdjgvq2BHNt21D623bsGvkSCT6+8O6aVPRwcGBkyQJu3btwuXLl6mbm1v93bicnCCdPYsthYXSsWPHSNeuXcFxHFq0aIH4+Hjx3Llz5P79+5gzZw4XGBiIjIwMlOTn03Z+fhwWLGDa+cOGAbGxLPW0c2cWUN6zp8HVBiEEbm5uaNKkCVq3bo2StWtx6v59qpHJYGpqSkxMTJB96BBOR0eLv4SHc+fOnZPi4uJodHQ0uXTpErRaLTw9PcFxnJSdnX05ODj4L03RNfL3wujqMfLMIQiCrUwmy160aJHK1NSUdcPauZNJOtdDamoq4uPjcfv2bdimpMBDkqgsM5PEtm8PjYUFbG1txYqKCjJp0iROpVJh/fr18Pb2RlJSEiZMmABvb+9qN015eTmuXbuGslWr6B03N5pmasqZmJhgxowZNQXQGLm5QHY2dq1fL40KC+Pk33zD3re3r51qunkzy8e/f58FhoOCGn8AlKJSq0VMTAySk5PFoqIinlKKrjEx1NC2LTmnUoFSisDAQLi6ulIbGxsSGhpKS0tLiZOTk3Tv3r3sd955p3FBHyPPNcYZv5FnjpCQkIpz586NdHV1dba1tWUVq+fPA127PlL2PHIE6N4dAGBjYwNfDw/cOHhQGhoaSmifPqTVqlUIGTYMUVFR8PX15bKzs8nAgQNx/PhxsbKykr744ovczZs3aWxsLAkMDIT8YeXw9u3bxRs3bqB7WhrX3dWV9FarkZKSYoiIiODMzc3hrFAwkTh3d6aYmZKCSF9fyf7VVznb/v1Zxo2Ly6OboRT4+WfW1YvnAUdHoKFm6lXMnAmZhQU8+/VD586due7du6Nly5bwnzuXtOzXD8HBwcjNzZWSk5NJjx49iLOzM4KCgohKpUJ8fDyRJMnq1KlTX4SEhDTizzLyPGOUbDDyrKKsMsawsgLefJO5TvR6puVfUfFoz9hY6N59F/ZmZpzFtWtwtLev3tSkSRPY29tDLpcjKioKycnJ3Pz584mVlRUcHR2JnZ2dZGpqygGARqNBVlYWv3DhQpiPHMlSJwHMfOkl2YXevSkuXEDhuHHE9swZ5sq5ehXgeZB161BU1Vrxce7eZQHZ1q3ZbL+oiFUL843Ul335JavkfQjHcXBxcWF1AP/6FzgPD3Tq1IlLS0t71NIRQOfOneHo6IgfWJMaOwD/sxoNI882xuCukWcSSqmZoobxA8Dy4+/dY0ZRpQLKypgx1Ghwb+hQXO3YEUWPBW1feeUVdOjQAVZWVobr16+Lo0aNIiYmJoiLi0NRUZGkEEWKoiKIoohTn38uuZqZieaSxMTQ/P2Zfs/ly2jVpg0p9/Ii67OycPqNN6jO0xPgeZSUlKCkpKThXPy9e5nuf5Vvf+RIVojVEDExQE4OS/98nL59ARsbZGZmYt++fVKvXr1oTcNPCKnZHyC90Qds5LnGaPiNPKvcvn79uqHWO4MGsYImQXj00moBNze4vvoqejs54Zc1a5CRns7cMZQCsbFQbNmCl19+WTY/O5s3jY3F6o8/hlffvgCAoRUVPD76CL/++qvodPIkmRwczINSVpkritV+ecu1a2EyaRLV6/WIjY2VvvrqK8TGxmLDhg2Sr68v9fPzq3sHlAJbt7J2i1WcOMGklRsiLY1VL9dH376QLCzw/fffo7y8nAsKCqo3Uuzg4AAAEAThyW3KjDyXGA2/kWeSysrKaTExMWXp6em1N1DKcuS/+QZ46SU2g37zTQBAt7w89LWzw/YdO1BUpWZpZVWtZnmjY0fsSU6mwS+8QC1u3cK8efM4k3nzgJUrkZmZiYL33yeyjh2ZLMLEicyddOoUcPEiov/1L+n48eOYOHEiFi5cyPfp0wdHjhxBWVkZl5iYyK1fv1568OBB7X65V6+y66vp85ckVkRWT2c0UApMmsRiB48jSYClJThKoVQqKcCK2erjxRdfrPrzvCAIRneukToYs3qM/KUIgtCTEBJMKf1GrVYXNrbvsmXLhltbW29/7bXXajvQU1KAceOAgABgy5Y6x+3evRsVFRXitGnTajnS161bJ3Ecx82bNw+PSz1fv34doaGhkOt0eGXNGoi9e0PauBHm5ua4/MknYos1a3izmzehsraubsG4cuVKjB07Fqampjhz5oyUnp7OUUphZmZGhw8fTlpGRzPht8mTa1/ghg2skOxxgbfVq5n650PN/jpQipLSUqxfv56Wl5eTV155pW6mEZhsw8cffwwA4DguS5Ikb7VaXVFnRyPPLcbZgJG/FJVKtUKSpC6EkAAA9WsrP4RSekij0VSmpqaaN68hnFbdj7ZrV2D6dGD9eubzf0hOTo4YFBRUJ3rq7OzMGQwGkRBSZ1vr1q3hl5JCvXU6ErVxI+7GxYn316/n9Ho9sbSyQovkZKj27QMOHAB27YJCoYBcLoeZmRnc3d3h4eHBASwdNC4ujvy8cyempKTQZu+8Q0ApDhw4ICYlJfHm5uZ04MCBpKVejzp+mldeAUpKQCnF8ePHxcLCQowfP55da1EREBGBg+XltLy8nNSbXvoQuVwOGxsbzYMHD3ZKkjQbQLEgCM5qtbqRfpZG/hsEQVABUAAoB/AxgGAAOwDEAYhVq9WVNfa1BmABoKdMJutuMBi+V6vVF//K6zUafiN/KZIkbdDpdEEymSxAEISFADar1erS+vZVq9XS8uXL5+zcufN7V1dXWc+ePc09PDzYxpdfBrZvZ4PAwoXVLRzj4+Px4MED3rmG3MLFixdx9+5dJCcn0xdeeKFBvYbgjAxyW6uFW0UFhnz0Ef/wesFxHDO+Q4YAcXFAeTmO7t0LBwcHyc3NrZa71NTUFD169EBLgwHixo3k606dqNO1a0hLS+OmTp2KGzdukPDNm6nNli3k9t69tF1AAElKSpJif/mFm9ilC0yGDsWa1atpRUUFp9PpSGlpKROHKy0FYmPhPnAgycjIQHFxMQXqjh1V9OvXz3z//v29dTrdBwA+kMvl3+AJA62R344gCG1UKtU2juP8CCEQRbG6o1Dbtm0Drl69qnq4HwCIANQAllftYzAYIJfLpwuC0EutVl96/Px/FkZXj5G/FEEQCIB38ejHP1StVjeqFCoIgjmAd+3t7V/917/+xdw+5eXA/PlMvyYhAVi1Cti6FQYzM+zevVtKS0vjQkJCaNeuXcm3336Le/fuYcCAAVLXrl3rxrWuXQMEAeK2bdg/axa6zpgBp/r87FX8+CPK3nwTR5ctE8fMnVt/XuY770Dy9cVZT0+kpaVh4MCB1UFXSZJw4exZnI+NFTUaDU8phVdhIbXOyCBXunSBXC4XFy1axK9Zs0YMCgriO3fuXOvUe/fuhcFgEMeOHdtgTiilFIcOHaqIi4szAQCe51e+//77/2nsORtpHEEQLAC0qHqZmJj0NRgMwS+88ILK39+fKBQKGAwG8Dxf7UqsrKzEyZMncfFi/RP6ESNGiIQQ/vDhwwUcx33+9ttvf/pX3Itxxm/kL0WtVlNBED4FEAHgvlqtvvEUx2g++eQTZ19f30dOcVNTVh174QLwwgssC+fLLyF76y1MnDiRu337Nnbu3Ek8PDxgbW1NHR0dpa5du9YxlFlZWTBs3AhtaSk9vWQJ0XTqJI7q37/xJi5TpiBfJsO9+Hgeu3bVbY4iSUBFBbj+/dGjaVP06NGj1maO4xBkZ4cgKys+bfhwbNu6FWM++4ycv3ABox0d4enpyQNAq1at+NjYWMne3p5zTk6G8soVPHj5ZSQnJ4NSylf1K6gPQgiGDh1qEhcXBwAQRfGbJz1nIwxBENoAaE8I8VIqlf6EkFZ6vb4Zz/MqCwuLCltbWzRp0sTUyclJ5unpyVZkD5E91kVNpVJh8ODBGDx4MEJDQ8FxnDh48GC+pKQEJiYmMDc35yml0Ol0dhEREZMBGA2/kX8marVaBHD2txxjMBiyJOmxniVt2jDXy6BBLCB6+DB0Eyfi4ksvIamggCoUCmJnZ4f09HRIksTHxMTA3d0dTk5OIISAVlaicuBARIwYIdnNmsVN/OwzmB040KjRlyQJkZGROJ+eTns5OUl46y0eISGsIreKa9fYwNS0acP3I5fj2vXrKPPyglt2Nkr690e3iIha+3Tr1g2xsbHcjh074G1pSTv4+JBrUVEwMTERS0pK+NzcXERHR0vDhw+vt47gof4PzczMJGq1Ou3JT/n5RRAEGwBDlUrlYhMTE083NzfRwcHBzM7OjrOxsYGtrS3Mzc1BCJE/8WSNQAiBUqmsXv1Vvefm5gZJkqwEQSBqtfpPd8MYDb+RvwU8z1sqlcra09tu3Vhq5EsvMd37IUNwecsWlP/8M205bBhtP3YsUSqVCAgIQHFxMS5cuGCIjIzkARBvb2/RT6PhodPhpaVLOZlCAYwZ80TJ5k2bNhnKysr4ESNGkNatW/OYP5+tOubNY1ISSiVw8yaTYG6EsJQUJNvZwSo2VrLs04cq3n67esA5fPgwrl69SmUyGdXpdFzPnj2RkZBAj6SkSCpbW9KrVy8+ISFB3LhxIw+Ay83NpbNnzyYmD4XsajJx4kSyatWqSkEQvJ9mdfW8IQiCtUKh+ITn+Zfc3Nz0gYGB5t7e3g2upP4bGnOrW1tbQy6XOxgMBjWAD/7wD38Mo+E38syzbNmy3jKZbEazh/n4AHDz5k2cOnVKeqFTJ87t22+ZXDEhuDVyJHyvXEHA4cMcuncHrK0xaNCgKmsuA5iom/jyy/y1Zs2khClTuJfj4tBkyRLW5rAR4uLiUFBQIJs/fz6srB72MlcoWDcvExNWX6BQsA5eRxoWx6ysrMTly5cxq6wMTSnlYGEBeHpWb4+NjYWzszPp1q0badWqFXieB86e5WBuXl0M1qFDB764uBi3b9/GwYMHybVr1/B4LABgroZu3brJY2JiPgUw6ike93ODIAg9ZDLZYV9fX0X//v2VpqamDZRf/zE8DOTWu+1htzgqiuLlP/MaqjAafiPPNIIguMlksv3jx4+3UKlUWLt2rajX61FZWckHBASQA7duoX9oKKUjRpDWPj4oLS0V8/r0IUhLI7hwgentPDb7bm5jA1RUwOvDD7kRTZuCI4Q1XW9ktp+Xl4djx45h9OjRj4x+FRYWrP/u6dOsZaODA2vkkpsLxMZCGjQIP65caSjS6zmFvT2llPLm5uZS07fe4lBQUJ2RBLCewRzHYfz48bV8x3jvvTrXZGVlhdzcXFhbW1N/f/8GLz4oKIg/e/bsQEEQWqvV6utP89yfE047OjpixIgRf/oHVVZWIi0tjY4ZM6ZeV+LVq1dRUVFxBsCBP/1iYDT8Rp5hBEHw43k+PDg42NTFxQVff/215OvrSzw8PLgWLVrAxMSEFHTujJK8PHJi3TpUzpqFe/fu8ZMnT2YB323bWDN1tZqlfQKsKjc3lxlpANy5c0BeHtDIP35JkrBt2zYpMDAQrVq1atgHEBzMqoQzM1nXrWvXgHffxXG5HAPWrZOp/P2R8t57COzRAzcOHiTYuJHJTgwcCBQUQKNUYuPGjTQwMFCysLCobSD27mUri4f1DOnp6di5cyc1GAwkMDCQqlQqAgBJSUnQ6XRo0aJF9cChVCrRo0cPRXR09CcARv7uL+QfhCAI/QDW3+E3I0mP+iA/JaGhoZKLiwv18vKqY/hFUURcXJxGr9f/n1qtluo7/o/GaPiNPLNwHDdeFEWniIgIGhUVBU9PTwwZMoSrWXVrZ28PuwED0C8zk+44coTI5fJHipVTpwLm5sC5c6xRedu2QHQ0e78KmYz55RuhqKgIZWVlXNCTdPQLCpgWj0rFXr6+qBw+HLGrVlGvU6dIU09PdKEUyMhAKycngpwcYMcOJi0xZAiKmzRBS19f2r9jx7qzwvx8dg8AEhISsGfPHnh7e6NXr16wsrLiAECr1SI0NBQ8z9OePXuSmtlEHTt25CMjIwcJgsA/DK4/18hksskGg4Gpnv4WKGW/F3Nz5tp7CnJycpCens698sor9ZyO4tChQ9qSkpKLAA79tov54nSkcQAAIABJREFU/Ri1eow8syxZsmQJ2OTEluO40qCgIO5xqQUAQI8e8IiMJAteeQVDhw6tvW3kSKZ0OX8+64S1YwcrxAJYELZtWzbjbgRbW1s4OzuLR48ebdxgvvgiE2WrUUVcXFwMSZJIVlYWO5YQ1uid59l/o6OBn37ClbVrEWVvT01ycjgydy6weDFbMVRp+sydC/j6AgCcnJwAAB07diTOzs5ISUmhy5cvx8qVK2FlZSU6OjrShIQEmpKSUn0dpqamsLOzM8hksncbvYfnBLlc3h4A6ijANsbFi2w1t2YNW00+1SEXsWXLFhoUFCTZ2trW2kYpRVRUlJiUlJSt1WpHALARBMG9/jP9sRgNv5FnEkEQiCAIwQBm8jy/DIC8ls+7Jm5ugJUVLM+fR70qmWPGMGMcH8+kD6pYvbra5fMkTExMSEFBQcNBAEqBCROA2bNrve3o6IipU6ciMjKSry+rI/vYMaT4+1PDv/8Nt1mz0Gf9emDTJlYb8PrrzAUVFQX07MlcVAD27t0r+vj4iN7e3jh79qx07NgxIpfLIYoigoKC+IkTJ3IuLi7k559/RmVltVIAJk+ebKZSqd5evnz5v5/qpv/BGAwGTzMzM/zyyy/46KOPUFRUhJs3bzZ2APtO/P2BGTNYT4iQEFZIWA/5+flYu3atGBERgaFDh5I+ffrUsrUVFRXYsmVL+dmzZ6/rdLrlhJBCAPmEkGV/3F02jNHwG3nmEASBVyqV0ZaWlkf8/f2/6tGjx4L58+erGtKmAcAakR8/3vD2gABg927AxgZYsIBp+a9dyzTun0BCQgJu377NVenx1Mv48UxV83HhNQBubm7geR4P6nENxGZlIWfQIBoQFobu3bsTlUrFrrFDB9asfcUK4MoVVqB25Aig16OivByEEO7bb7+VIiMjSe/evVFZWQkTExMaEBCAHTt26K9cuQK5XF4rLdHS0hIzZ840VSqVHy9fvnzWE2/8HwzHcWWTJk3C7NmzYWZmRlevXo0dO3bg7t27tXfUaNjv5f594NgxJgqoUrFVpL19HXePwWBAaGgo3bBhA5o3b45///vf8PPzqyUKSCnFnj17yu/evfuzTqcLlMvlnwQGBsoIITpKaf39Rf9gjD5+I88iMp1OFzht2rRamjuN0qYNC4AWFNRtbWgwsNaHQ4awblhRUazv7ZkzTLb5Me7evYvQ0FCxsrKSUEqh1+s5BwcHnD9/Hg4ODujYsSMyMzNx6NAhUavVYuKAAXzTGzeY66YBTE1NxYMHD5Lp06fXGjxKVCqounUDf+cOqweYPr32ga1aMTVSKyt2f3o9pl2+zK8uKkKL5s3h5+dHIiMjafv27enw4cM5ACgpKeEGDBgADw8PKBQKUEqrDY+NjQ1eeukl082bN69ZtmxZ2dKlS3c+3QP+Z8FxXL5Wq3Xy9PTEwoULSXl5OS5cuCDt2LEDCxcu5GQyGZvNm5kB3t7stXkzMLaG3NEvvwAnT7Lfl7s7rly5grCwMMnKygqzZ88mjo6O9WbwxMfH08zMzLt6vf5lAC56vd4xISGhHMAYtVr9l3RNM/bcNfLMERISIkZGRqbevHlzYGBgoPypimmUSqZ/T0itnHgArKvVm28yYTelkqlgDhjAfP59+gBOTsjLy8OpU6dw4sQJMSYmhgsICEDv3r25gIAA0qtXL3Tt2hUZGRk0MTGRZGRk4Ny5c5KHhwenUCiIdu9e6hEaSmr69h+nadOmXGRkJMnLy5N8fX0JIQQ//PCDISMjgxuxZAkpCQqCuV7PMndqIgjAwYNsxm9jAxQVQfX22wjp1Qttp04lR5s0EYsrKrhx48ZVF3CdP3+eOjo6klatWpHt27eL+/fv5woLC0UnJydOpVLB1NQUXl5e8qtXrw6JiIi42qtXr+eusCsqKmpZt27dzEwfrtDkcjnc3NxIUlISvX79Om3XpAlB796sbqJNG9bwZ8GCuim/Eyei/MEDbLpxQ7x27Rr3wgsvkCFDhhDzBlpxFhUV4aeffqrU6/V91Wp1TmRkZDGApaIovvZXDsJGw2/kmaRXr15Xo6KiZnl4eNjUyZtviNJS5h4ZMKD2+0rlo1TI3Fzg22+BoUMBKytccXJC2KpV4qmkJE6pVIo+Pj78oEGD0KZNG2JpaQkLCwsoFAoQQuDi4kKKiopECwsLamlpiaFDh3L2cXHE9auviMmbb+JWaiqKi4thYWFRp/LT2toa5eXluHr1KsnOzpZ8fX1JeHg4mTZtGkkdNEjac+kSOVdeLolZWcS9Kk6h0wGpqUBSEksPHTOGBRUtLNhKYNQocPb2nPuWLTQ/Pp66DRlCAMDGxoYLDw9HVFQU0Wg0ZM6cOeTq1av49ddfiYuLS7X8QPPmzeUJCQkjTp48eTwkJKSBtl//PARB4CRJ+rhfv34cX6P3MSEEXs7OJH3jRqJt0wZOb73FYiu7dzMl2MeMviRJONSkCQ48eABvV1c6cdo0rlmzZnV6PdTkzJkzhuzs7PVLlizZCgAhISE0JCRE6NWrV+yfdLv1YvTxG3lmkSTpRFpa2tPrlgwYwHrlPt66cN26R83NRRF4mBWTP2IE9u3fj8nffMP/p21bTJ06le/WrRsez76owsHBAWPHjuWHDBnCjxo1ipfLZOB69MDO6dPxxerV4i+//ILdu3fj008/RWhoqGgwGHD9+nVIkgSNRoOEhATap08fZGRkcN98843k4OBAXVxc0E2h4BZ06oRh3t6c+7ss6UaqqEBJu3b46eZN8bxSKZV06QJYWgLTpgF37jCXlpMTOnTogIyhQ2le27YUOTnA6NFo5e2Nt99+m/j7++OFF14gjo6OCA4O5nier1UU5uLigpEjR5rK5fLDgiDY13vT/0x4juP0NQPfVVjq9egHIOzYMVpsMLB6kE/r6qYlJyfjiy++kDKzsqQFeXkYumwZX59kxuPk5+dX6PX6v1R7vz6MPn4jzyw6nW71mTNnJrdp08bU7nG/fX0Qwoq1du9mGv1VHDnCmrZkZ7PA3MOOWHK5HJxMhhWvvYaW5eVS3+nTOdu33gJXX2ZQfWzbBucvv8TosDAUFBTwXl5ekMvlSE1Nxfbt2/mUlBTwPA9JkijHcfDy8pJ69OjBZ2RkSJmZmdzs2bPZyuD+fViJInJ9fbFj1iw6Oz+fJO3ZA1sLC3gNGcIXZGXRSwYD+gBAjx5MWmLDBuCdd3Dz5k2klZRwCxYsYPe2eDF7DsuWYcSQIUCHDtBoNAgNDaUDBw6Eo6Njremoj48PMjMzLePj4/cKghDynOT4czzP38/Ly3OtHggvXGCrqTVrYPvDDxg0fz6Vu7kRKTUVXA1BtZKSEuzatUu8f/8+369fP9KxY0fClZQA/3q6mOyNGzcsAHwI4Mc//raeHqOrx8gzS0hISH5kZGRpampqzw4dOiieytevUrGAW79+zADqdCwlsiqr5+JFFtgF07ExMzODHqCSJBH7H38khZ6esGvf/olibQCY+6VrV5h36gQHBwdUuQ2sra3h7u6Orl27on///mjRogWxs7MjvXv35jiOQ2JiIi0sLCSBgYFQKpWAlxfg7Q1bW1uUZ2dTm0mTIF2/Tsx++gl+OTlQrVtHDjo6IiYmhl66dElqMXkyZxYaCrRpgx3Hjont27fnfHx82KqmqiCJ45hURUYG7n/xBZJtbDB69Oh6b6p58+Z8cnKynUajuRsSEvKXaMX8rxAEwVWpVEY0b97cNTg4WE5EkRXHubmxquuHq0E7vZ6k3L5NL7q7o1WrVkSSJISFhWH//v1wdXWlU6ZM4Tw8PAghhP3mSkvZinPmzAarejMzM3H58mUAsA4JCRH+uruui9HVY+SZRhTFtSUlJedPnDihe6oDWrRgOjk3HsYrw8NZNg+lwKxZtVcCADp16oSpU6cSnuexb9482I8axQaJr79u/HN+/hm4dYsVbT0GIQQeHh6wt7cHIQTOzs4IDAysHhju3LmDadOmPXK73LsHDBwIjuMQMnIkx8tkMO/dm7Zo0QIIDkb511/TwYMH0xkzZpDWrVuTTdu3U7z/PjBjBizKy/lLly4hNTUVBQUFjy4iOJilG1pYwKRTJ1RUVBB8+SX7rMfgOA7dunUzU6lULz3VM/4bo1AoznTt2rXNuHHjTAkhwL59wMcfM5G99u3Z8/H3h7y8HE337CHXrl0jkZGRWLVqlZSSkkInT56MMWPG8GZmZrVP3KwZ4OfHJhqPIUkSMjIysHXr1qqNdX80fzFGw2/kmUatVlOtVjvh0qVLBfv376/UarWNH1BVGRsdzf6/WTPgjTdYBe+lhjvbOTg4EKVSSa2trZlPd9Ik1tmrgQId7N7NUkN/I+Xl5aisrORqSQXY2bF8fQCqr7+Gy/79xKt/fzabfOUVeJuakg4dOhAHBweUlZURSZLIF/v2SVF2dmgWHQ1LCwts27YNa9euxZUrV2p93n2VClvu3aPNPT1FcBwLDMfFsVVRDVq2bAm9Xh/4sMvUPxJBECxEUXQODg6WkXPnmLzG6NGse1sVPM9iKYGBcHR0RJcuXejp06cRFBREFixYQNzdGyislcmA779nlduFhbU2JSYm4ocffoAkSfkAVhBCJvx5d/l0GA2/kWcetVqdr9frWyclJR3evXt32ZP2Lx48GKXvvotbKSnMd9ulC0pXroT0eKpkDfr06QONRoOkpCQ8CApis+WXXmINXh7n2jWmqPn667/5XlQqFXieR3nNAaXK2Jw7xwyHgwOweTMiDxzA3StXKB76mK9fv45r166RNm3a0KFDh3IFM2aIgSYmeKVJEyxevBghISHYt28f4uPjq0998eJFFBcXk27du/NYuJDNbDUaNmhRyiQsdDqoVCq4uLhoATSuX/H3xtfayqqCI4TpI+l0bKLAcexZzJ3LUn2jo6sVXS0tLYmtra3UvXt3UjMDqBaUsnMtXcqkQaomHQ+pqkWhlLoAWEwpNRp+I0aeBrVaXaLT6Wanp6fLSp4w09566JCY0r07vbx8OYreeQfXp0yha378EWvWrRMNBkO9x3AcB2tra/HQoUN027ZtLJPo/Hk2G/zyy0faLJQCEycChw49XRzgMQwGA2QyGc1+PPNIEIBTp4DISEgqFc5Nn46zZ88i0t+fHLlxA6iogO+dO1AoFDT/119J7ubN4tAePXgLrRZ46SWovvkGvQCYm5sj54MPEHngAKS7dzHIYICDg4N4LywM9NYt9lmEMPdXTg5w9CibrUZEoLOpqaVSqZz8m2/q74Nf7zNnVNi8maVpDhpUe2tBQbX6aRU1i99qUVnJKqrj4tgKc8wYVm09dSqr4K6BnZ0dRo161AqB47glf9gd/U6Mht/I3wa1Wl1ECPloy5Yt5bdv30ZRDd2dkpISxMXFYcOGDVJJSQnfdMwYMsLLC8mffy6hSxcseOMNWFhYkM2bN9dv+QG88sorss6dO5NqTR2eZ7PBggL2opS9NmyoW2FbhSiy2STAAsmUAmlpwIkTKCkpwfEJE6hXRQV1tLICBg9m+23fDly+zFYXBw7g9qBB1Obtt/HGli0Yc+gQFDt2SPrISGDhQrSPi8PkqCgEbNjAJ+zeLeHOHVY5um0bIJNh+vTp8HFwQMzZs/h582YJiYno3LkzX3D0KI1Yv16KiYmB/qOPmGTFr78yyYEVK4CRI9FmyhQEHzkyWBAEWxDyG9TL/gYQ4m2h1YaUTZmiqMrqqubXX1msZvXqOqmbtQx/RQV7zomJTKunSxfmSvzsMyArCxg+/JGkw2NkZGRU545KkvQ/r5Y2pnMa+VthMBiWFxUV5f74448bAGDSpEkIDw8XHzx4wCsUCgQEBGDChAmwJAQYNQpdNRoOMTEAgF69enH79u1jVl2S2KuoCOmpqYiKiZG0qamk3MSEjOzalSA8nBV9RUUB3bsz90vnzszNs2kTSw+dNQv4/HMmqbB2LfDjj6w6uHt3JuS1aBHTDyooAK5fRyzHQWtlhVFTpnBo2pRVEwMs/hATw4yJtTVKO3YkZZRKrfbs4aiJCbpERXFpQ4bAe/58aK9cETO+/15ml5WF1pMncxcPHqSde/cm0siRuHvzJq4UFUlXmjfnFAqF5NO/P4d27dAZQMnGjWTrV18Rj48+QqZGQ1ucOEGwdSszXsOHA8OGgRw6BIObm9QsOvpWpVJZqSLEBYAlgJJG+wY+4wiCIBvfps1O94ICH+/gYObuqklqKnD9OnPvPQalFG1OnWLf8ZAhbGXWpw+LDyQmAnv2sLab48c3qtGfkpJS8/n9V317/wjI3/j7NPIcIwiCI4DRPM9/LIqiVUBAAFq3bo1mzZqhqgwfPXoAsbFAx47Aq6+i+IsvcMvamnbkeULT00FWrwadOxfZoojCceOoV2IiKenSBU3u3gUpKADefZdl97i6snMdPcpmyPPmsayZw4eZsaaUve/qyv6uxzWQlJSEffv2YeLEifB8XFKiCkqBLl2Q5+2NnW5uGPfTTzRn1iySVVEhon17fri7OxIXLpSU/fpxLTkOBVot1puZoZezM1IKC6Vpixdz6199Fb3nzIGvjw8QGcn0iPz8kP6f/9AiJydS6ulJAwYOJBaDB7O4QhXZ2SxusXw5st55Bzfj4jRR3bpZqT/44GsAMQB2AHABpVl/8Ff5p6IxN1+xa9asPlxAgO+ECRNMaxVZFRWxuo+BA9mr6nurcuO89x5SevVC+enTtH18PEFaGlsFKpXMp19czGpEXnpyMlR2djYOHDgg3b9//8MlS5Z88Ofc7dNjNPxG/tYIgqAAMEGlUo0yGAwBbdu2dRs0aBCRyWTMkF68yAycqysunjiBSzdvir7t2vGnY2LQ0tsbqampcHNzEydPnsw3Vmr/33Dnzh1s27YNw4cPr182urKSFV6tXg3k5yNi61YUFxVJbRUKjt+xAz9Nnw5KKbp06QK6Zo3U/eZNTrVpE+DmhtS7d2E2dixOf/IJRm7cCC4xEWTQIKB1a7aK6NgRmDkT6374Qew3dizv7e1d/0VGRzMDduMGKKX4/rvvymRnz5KBBw9+0SQ/fxkAFzDj3wNACwA5oPSJgfb/FdE9elifGDBgfOsbN1Y1HTlS1mPkyLqaT6mpbAD/5BOWyunuzuo/KiuB0FBg2TJkmJggrFMnce6sWXx19fe2bcy3XzMb6ClYu3ZtSUFBwWC1Wh395L3/XIyuHiN/a9RqtQ7AVgBbBUHwSUpK2pKQkNDW19eXdunSReUUGAgA0Ol0KDE3xwOdjj8XF4e+/fsjJiaGdunShfbt27eBdI0/hoMHD0rt2rUjfn5+9Y8sosgMNIAiuRy3ioqkyWvXcqZLlgClpVi8eDEKFy6EZv58/DR9Otfq88/hmpAAuLuj+cmTAM9jTL9+zD/NcSwN9f/+jw0mDzFYWFBdPTnm1XTtyuIMYHUIL82caRalUOhjSku9RuzeLQLQAOjx0Ok9G8AZEBIOoAsofbqmBn8BgiDYc4TsmpGR0cf6/n0Er1xZ3bimFt99xyYFa9Y80kH64AO26vnPf5jbZ9s23DlzBiQ5mc30Y2JY563x49n+T6BmfKCyshJFRUUqAP9zuQbAaPiN/INQq9XJAAIFQXBNSEiYnJSU9H7//v1NO3XqxEVHR+PMmTOYNGkSvLy8AABdunQh5M+a5gNYt26dVFxcTCilnFarlYKDg4llTfdKFSYmkKZMAQdg586doruNDVHOm8cau1y5ArJrF+yGDwe9dAmDQkNhM2wYM+obNzL/vKsrC07Gx7OuYkplrb4AOTk50Gg0skbF7k6dAl57jcUwwIx/qsEgz2zTZsJ9K6u+E3bsuGlWVtYdAEDp2w93agFgBoDTICQYwC1QmvNHPLvfw/IlS1q2unnzZkqrVvhxyhQsXLoUdfRzDAaWb//qq8yY37/PArJ2dkzAr2NH5r9/CKUU1T+QjAy2n79/o9chSRJOnDhhqKysNAwbNkzFDs2AQqG4/J///OfpChH/ZIyG38g/DrVanQVghSAIocePH//11KlT7lqtlgwePLja6AOoo6D5R1NYWMhZWVnhxRdfRFhYGCIjIzFs2LA6+xUtXoyrly/T+KFDpYoHD/jR8+aBd3Ji2UDbtwO7dgGJiTjj4YEyAP6+vizYGBPDXDSzZjGdeEKYbrxGw9IST50C3NwQFhZGW7ZsSZs1a1bnhisrK6FUKkGcnOqkIU6cOBErVqxAlqurw5dvvOHAvf8+HXLkyKmDQ4eekXhehw8+SAUwR8127wagHIRUABgCSrf/0c9TEAQVAC8ArQghPnK53EOn030AoB2Agxwh8Ll+vfSOuzsRbWzkGo1GWW34MzKYvHVEBJCezgx8WBiwZAkr0htZfw96Sil6btnCoXlzNhA/gXv37uGbb74BAJm1tXU5ABWlFBcuXKjQarV7/oDH8IdgNPxG/rGo1epbgiC0BXDazc2tVefOnRsWzH9Kbt26hevXr6OyshJt2rSBj49Pg/uam5sb+vbtK2vWrBn8/f25S5cuiQB4nU6H3bt307y8PKmyspKnVlbo8+67aK3TEe2GDVC+9x5r+uHpydIE7eyAl19Gnp+flKvTcWJhITilEnB0ZGmZAJOpePTBTDOmaVMAQHBwMNm5cyf59ttvpZCQEK5169bVu27atInKZDI6uHNnzu0x+QmVSoWJEyeiqKgIR48ehVyng2mXLiHBvXuHUL2e3khLK3/w4MG7giAMVVPKSo8J8QTg/PDvKQDOgdJbv+dZC4JAeJ5fp1AoAkRRbAvA1NLSstTBwYGam5ubXblyhQcwU6HV4sW9e3F46NDZ+0aODAWgg1Zbtm7dOizt1g1k1y6WvXTwIFsJtWjBMnPMzRv30586BSqKiB8xQvIOCXkqd2BWVnXsO0ar1bYD2G8mOzs7R5Kkr37Pc/gzMBp+I/9o1Gp1qSAIY9PS0m5cvHhR6ty58++e5kuShF27dsHT01OUy+Vk3759RKPRkFu3btH8/HzR3NycNzMzIw4ODvD29oapqSmflpZGfX19iYeHB06ePMlJkoTjx4+joKAAQ4YM4e3t7cEfOADrwEACMzNywcaGfnvsGIYuXEgKMjIkm+XLOT9HR2j69oW9QsGZJyVJ8hUrOAQEMJXRxwqOqnn/febSuH0bLZYvx/Dhw3Hnzh1u3759GDRoEBITE0UAsLa2Jrm5udyFr76iJrGxcEhKquX6qgoGBz6MlQCAt1YLdOpEQqKizKKuXm195syZhM8++yzZYDAc1H/wwYdqtXrlw12VAAwgxB3AWFD6+dM+a0EQWioUim06nS6oXbt2KC8vl27dukVtbW0tJEmq7iVsVlqKMguLlZalpVFl5uZhPM/vMzEYOrmlpNB+okhIUhJLxa2S7Lh2jfVjeIK7BpQC27ZB0bcvyu3tH8l6N0BFRQU0Gg3S09P1SqUyCoAmICBABQAFBQWglJ5Uq9VP0Bv56zAafiP/eNRq9U1BEHx+/fXXU5aWlo6tWrX63ecSRRHjxo3jZTIZoqOjpbNnz8LV1VXq2bOnrKioiBYXF4unT5/mT7Mm7iQnJwf29vZSYGAgZ2NjQ1etWkW0Wi0mTZpEPDw82EnPn69ushLo4EDKgoOl/eHhJGDYMO7s4cM0MzOTXE5PR+/Dh2F37x5n2LoVsq5dn3yxcnm1wfL394e/vz/u3bsnnjhxAp6envz169dBKcW4cePgPHo02fPhhxhZVoY6AmSPo1QCp06B2NigV0kJFzBjhll+RUWnw4cP+xYXF98Cy/4BKN0MAGD1AGkP/1YD2C188IEdgG1KpfIyx3EKQoh5eXl5MACYmJhcl8vl7sHBwYoTJ07AxcUFnp6enLW1NSRJQnJyMm3atCmZ3r8/5GPHYvPs2W9tmjPnLZvCQvgkJsKvZ080vXwZ5KOPmOBeejrrYHbhAhPXq+Huq0NFBXOb/fQTsHkzKk6eZG6iRtBqtVi9erUWwH2O49K1Wu0EmUw2/NKlSyEAFKIoynU6XSOd3P96jOmcRp4bBEHooVQqw0eNGmXi6ekJufy319EsX74cixYtatQ4lpWVged5FBQUYNOmTWjevLk0depULi8vDydOnBD79OnDN33ohqnFpUssP3zVKkg//giiUGDNmjXUMjeXdn/pJa5ZcjIynZzg3bkzay7j7s6Kih4jOzsbe/bsEQMCAvjg7t1ZrvrSpbXcQZIk4YsvvpDatWvHDRgwAIiLw4WlS6Vro0Zh6tSp3FM9G0pZEdrrrwPOzsi+exc//PBDqcFg8Far1bmP7y4Iglng+fM/XG3bdozNgwdok5gI8eOPYWtrC7lcjp07WUHrzJkzYWdnB1NTU+Tm5taSvAaA/Rs2GNwTE2UBq1fjdkoKLm7cKI2vrOQM2dkQHzyActs2kJs3WcGdhQUz+m+/zYrrJk1q+F5SUlga7LlzzDVECE6cOIE7d+6IM2bMaHDKf+bMGenMmTMH33777Vq+MkEQnAFUaXMEqNXqK3WP/t9gNPxGniuWL18+TS6XL9Lr9b7NmjXT+vr6Wvj4+KChHqkAU9RMTExEXFycWFRUxC9atAgKxdMpGkiSBEopGhT4On2aSUePH898+iYmrOiqZ08AQPi+fVKbhQs5/aFD8KhZA3DtGmsEbmfH/Pw1Uha//PJLUavV8hYWFuKCuXN5tGsH3Y4dKGnWDPb29sjJycHWrVupubk55syZQxQKBbB9O6Q1a/DlmDFSx44duV69ev224PfLLwPjx+O4KOovXboUqdVqBwOQwHL+B8hksgmU0k6iKCoBYHSfPvAwGGDeuzczxu+9B72XF7Q6XaPfBSjFnvXrDb7R0bLWgwezgfL111mW0/TprJCuRgwDpaVMLnnTpjrB61rcucPiImFhtSpwjx8/juzsbMP06dPr9Y7cvXsXW7durdBqtYFqtfra49sFQaAAoFar/7Tssd+D0fAbeS4RBMEGwAtKpXKcKIqDfHx8aLdu3Uzqm4l/9dXARJsLAAAUjklEQVRXIiGEa9GihdSnTx/etEaq5H/N/fvA3bvMH6/TAbNns2KimzeBlStRsXo1Thw/jqsJCbRr167o3bt3bQOyfz+TlfjiCwCsmffXX3+N7t27Iz4+Xnrttde4sLAwev38eWKfl4d8Ly9Jr9dzQUFBUp8+fbjqbFZRBCjFhbg4HD16FABgZ2cnubq60j59+vD1pqHWJC0NcHKCITMTvxw7Vna7tBSSJClMTEy05ubmsoKCAtXChQshk8kgk8lqD4SJiUwN8+RJYO9epoUkinX96lFRwKpVuM5xlGRkwKusjHAPUzENrq6Iio6GVquFs7Mz/P39waWmsnoGlQpYvrx+P/21a0x2YenSequuf/31V+Tk5BimTZtWx/BTSrFy5crKysrKl5cuXbqlvsciCMJbhJCipUuXbmz8Af61GA2/keceQRDseJ5/meO41zmOM7G3t9e5uLiY+vr6yt3c3LBixQo6duxYYmVlBTs7u0abaf9mcnIAW1vmNz92jKVjiiLg4cHSNXv2hF6vR1xcHE6cOIHg4GC4uLjg3r178PPzg7m5OX7etUuqSEqS2h8/zmlXreJORkTQcePGkdOnT0u5ubmQJIlbcOcOzC5cQPbevVCpVHXvY+NGljp66hTy8/NhMBiQnZ2NS5cuUYVCIc2cOfPpitzWrgXMzVE8ciRMTEygUChgMBjw6aefYtasWfUXUwFIT0+HjYUFrCoqWF1C167ADz+wVZBGAxw4ACgUwKxZ0M+Zg93Nm0v5paUYMnEi17JlS1y5cgWHDx+Gu7u7eO/ePa6yshKv/PwzUfTpA+6dd6B6XIfHYGCrAUKYa2dg/WrU4eHhyMvLM0ydOlUGAHl5edDr9XB1dcW1a9dw4MCBPL1e76RWq/9WhtRo+I0YeYggCASAKwBfnue7yWSyaQActVqtCc/zOo7jSps0aaJ68cUXzezrEfT6XUyZwvSEZsxg7orQUCYY9t57dXa9cOGCFBsbC41GwymVSqrRaGBubg6DwYC+3boR7sIFHNRoYJufjxdeew3NmjVDaGio2LZtW96ndWs2o83PZ2mgdU/OfOGPdSiLj49HREQEff3113/baHfkCPOZL1oEANi0aZPk6enJ9e3bt86uKSkp2LVrFziOg5mZmejg4ECm9OzJoVkz4MMPWUUyzzN3zeDBgIUFtFot/u///g+lpaUAAJlMBk9PT3HSpEk8tFrcXb0apTt2IGzgQBSZmuJf//oXavVt/v57dn31NFKvSVhYGPLz88UpU6bw165dw/79+0sIIQZLS0urBw8eGCRJ6vIs+e6fFqPhN2KkEQRB8AGwAMCXANJ5nl/A8/ync+fOVT1VA/in4dQpFqwdP551hHoKKKVYtWoV1Wq1ZO7cudVGLefmTThMmQJZRESt6l0AbCVhacnE5h7GEKpJTWU1AzXe1+l0+Oqrr6QePXqQbt26/TbDn5fHXFjt2gG5udjy669Sbm4umTx5MnF1da21665du6BUKsUXHBz4jPR0hKal4b3Nm9mAWFnJfPTbt1fr56enp2Pnzp1Uq9USgBXiTZ8+HY6OjqyH8erVwM6dTFOnZUusWLECzZs315ubm9Mm585xOktLFLduTaubsACPr+IIAPrws/iKigr4+vpK2dnZ3N27d9cYDAa1TCbbCSD8vffe+22CPc8IRsNvxMhvZPny5a/a2Nh8Mm/ePDOZ7L/IiH7wgDV+P32aKUU6OgKNySo8xueffy4NGzaMq5OeWvVvev58lnXTosWjbffuAU2aMEnqmsHbNWvYABQaWv1WQkICDh06hMWLF9cK9FJKkZycjJKSEikoKKjxCPD588DKlaC7dyMsLEy6cOEC16pVKwzr3x+mSiVgMOB2jx5Us20baZeZicKCAmzKz5f+8+abXPX1PfS9Hz16lCYkJFBJkjgzMzM6efJkYmNjg2XLlsHZ2Rlz5sxhOkWvvsqUVQcMAACsWLFCKxUXf66Xywu7nj3bSmNuXnE1IOBOjat8fFCr+f/mAOwBVOV0hv0dZ/iPY8zjN2LkNyKK4trS0tKB3333Xa8OHTqYdOrU6fcVhRUWslnxnTvVIm2/hfLycq5eieeq2euYMaxRyMPAK1QqZvQ/+4y5OpKTHx0zciSTnq5BmzZtcPToUSklJYXz8fEBpRQXL16kFy9epPfv3+cUCgUXFBTU+EV26QL8/DNIaSleCA/nfJycEF5SIqUPG0Z8Fy4klUOH4lyXLmSImxvLuS8shLh+PVdrUHrtNVxTqRBvY0PGjBlDWrZsCY7jqo3z6NGjcfToUSSHh8Nn8mTWQL1795pXIb7+xRdtlTrdV6D0SwCoX6Dh+cHYgcuIkd/Iwwbww3NycuaHh4fnnj17loqi+NtP1KIFCzD+DqNfRaMr9r59WUB0/XoWOK5i7lwmTFaTuDiWVloDjuPQqVMnLiwsjJ49exZbt26VTp48CX9/f87NzY02bdpUavDzRZHFEwBgwQIgIQGkWTO4V1Rg4ogR3N5Bg8i5Zs2w+uuvKde3r2hlYwMAqCrS+u677wySJEGSJMTfuUNv5+RgxowZ8Pb2rpNm6ufnByeFQjT94APoXnvtkdF/2FOYNxgQNnDgYgART3qezwv8Bx988L++BiNG/naEhITQkJCQKydPnjycnZ0ddPHiRWszMzNFkyZN/tisn0a4fPmyqNFo0LJly8Y/sG9fltv+yy/MrdSjB+DszPzvbdqwQrDDh5ks82MxBnd3d2RmZiIjI4M6ODhwEyZMIF5eXvDx8SEnT56kcrkcrq6ujz5/3Tp23sOH2YAzbBjg4gL4+AC9egGBgVB064b04GApLjGRdOzYESNGjKhOKyWEwNfXFxcvXiT37t0jYWFhUr6XF0YsWkTsGsgIAqVoOXkyuenpSXe6usKrVStiXlVgt2sXLut0htvNmq0MiYgo/f1P+5+F0cdvxMgfgCAIvZVK5ZcODg5eM2fONPsrjH9CQgJOnDhBFy5c+HQflp3N4gqtWjH3z/79rPmKvT2TKpAkVhT2NFCKjLNn8eOpUxhSVCQGuLjwWLgQWLaMxRbs7BpuRq/R4PKt/2/vXmOrKPMwgD9zrm0tJQUL7Cm00oIN0KoUxGoIoboNC+hqMdYISiJR2O6SGCEICp7ZYQEjZHddhIDCfgBWbWlQlOBCyoK90FAQSqOUW8ul5XKaIvbec87MnNkPb0HQUtpSepvnl/QD58yc/DkfnjnzvvP+31JcWLkSU9auRXALgV5RUYGMjAyMGDFC/+PevVbrqVNiDuLXNE1M5p46hcDf/46d+/bpZT/8YFm0e7eE/fuB0FB8+OGHjV6vd6Qsy1fa9p/r+xj8RJ1EURSLw+E4GhYWFjt+/Ph+8fHxd+97cw8qKyuxadMmzJ49G1FRUW0/8fvvRVhu2ybaFH/xhZgDKC0VT8+0Zu9e0fVz5Ehg3DiU796NrzZswLhx42AfPhwhISG3/QUHB8Nut9+8C9J1HQcPHgzk5eZa0n78ESPXrwfCw1vdrxaXL4shsVtX5N7w9ttASYnYWGXwYPz87bdYW1SEaFWtq37wQUPTNEtDQ0MIgEGyLP/U9i+pb2PwE3UiRVFsAJ5xOp3zNE2bGhUVpSUmJobGxcV1qDfQ3WRnZ+PIkSMYPXq0/txzz1nv2BqiJT//DKSliaeJ5swRq4jT0n55v7JStC6urAQWLhSranfsEMNEtzSJy8/PR2lpKbxer+73+w1N0yRN0yRd1y2apiEQCMBqteLGE1B2uz3w0ksvWW5erF57TewpMHlyy3VeuiTmH+bMuf31wkJg5Urg3XdFPZcvQ1+4EF9Mm+a9UF5u03V9MYCvAdTKslzV9i+m72PwE90niqKEAkgNCgpK1zQtcdSoUYGxY8cGR0dHd+omMDU1Ndi8eXMgPj7emDJlStuTX9dFG4TkZLGQLC1NjMUfOybWFMyaJYZtJkwQi51a2i+4DTRNQ2NjI65fv44tW7Zg7ty5t6/gvXJFtE4+c0asYv710M+ePWJ3sDNnfnnt6FHRoO7rr8WQ0mefibuYZs37HNdpmvaK2+3e3aHC+zAGP1EXUBTFZbFYZtrt9j8ZhhEZERHhHz9+fFhCQsKdG7i1w+bNmwMxMTHS008/3f7JhUBANIdLSgI++kgMn3z3nXjc0+cTj1k2Nopj7mHuoqSkBFlZWVi8eDGCglrYE2fDBnEBuNt+tnV14sKUkiJaKA8YIFY7JybedtjZs2exffv2Jk3T5gPYIctyTYeL72MY/ERdTFGUYQDG2e32v6mqGj9v3jy02Ka5HdasWRNIS0uzREdHd+wDDEOEfCAgxvFTU8WOVdXVYijm8cfFOHpwMLBmjXhiJzdXtD0eO1asRXC57rhhSXl5OTIzMwORkZHGzJkzW7/Sbd8uPm/hQvFvVRU9jMrKxF3K6NGitURoqDhu2bI7ftShQ4fUvXv32q1W63Fd11dCXABMH3oMfqJuoijKAxaLZR+ACc8884w0dOhQKSIi4rcbhLfiwoULOHToEMrKyrBo0aI2t4tutxs5UVcnJlOTksR4/4ABYqjokUfEhaC4GMjKEs3aMjNFSCck4Bu3G9qjj+KF1NS7D3P99JOYb4iJEcEeEyNaLm/cKPbIPXZMXBSmTWvTHYjX68Xx48dRWFjY0NTUtGXJkiV/6YRvpFdj8BN1M0VRJjidzrckSRrn9/uHOxwOLSIiQnO5XMGDBw+2x8TEoP8dWjl88skn8Hg8ePPNN+Fyubq48hbU1Ym2ELGxYt3A6NFATAw88fE4+emnSK6oEG2YV68Wdw4vvCC6cRYUiPUGt7aSKCgQYb91q3iy5623xB3F3Lli7cGIEe0qzev14uOPP25qbGycIcvynruf0Xcx+Il6EEVRLACiAMRLkhTvdDqTNE1LcblcAU3TMGPGjNAbDdmys7NRVFSEV199tWeE/h1cunQJW7duRXp6OsKDg8V8wYABorVCUpII+/ffFxvMK4oI92XLgPR08Xp1tZhnCA0V+w68/nqHa9m4caNeWVnpAzBElmXTLuhi8BP1cM1PBz1rsViinU6n/MYbbwQ3NjZi586diIuLM1JSUrp1dydd11FYWGjExcVJLXUsLS4uxr59+4wFCxZId13YZhhiUZbdLrqITp4snih65x2xheTtPXja7dixY9i1axcAQJKkJYZhrDbjmD+Dn6gXWbFixZ+tVutHmqbZXS6XPnnyZGvsrd03u1hNTQ0yMjIarl27dlnTtIfDw8ObXC6XlJqaGlRVVYVBgwYBAFavXm3MnDlTatdCs/uooKAA2dnZABAhy/K17q6nq7FXD1EvMmnSpCMHDhxwOByOyPr6+lCPx9Nw+PBh2/Xr1y2xsbFd1icIAGpra7FhwwbU1NQ4AoHAQADwer32qqoqm91uR1ZWFsrLy30+n8928eJFhIeHS8OGDeuy+lpTXFwc8Hg8F2RZ/qC7a+kO/MVP1EspijIEwCgA+wEgKSlJnzhxovV+tokAxAby+fn5Wk5OjmSxWEotFkuT3+9/7Mb7drv9iqqqQ3BL91+bzYYxY8YYTz75pDS4pR3A7lFTU1O7jt+2bVvA4/EUud3u8Z1eTC/A4CfqAxRFiXM4HO/5/f7Z6enpN4dYOlsgEEBGRkbTxYsXT/j9/tcAnL7TGLmiKBEAvgQwERBtngOBAObPn49O270MQG5urpaTk2NIkqS29Rxd10MkSVrsdrtXd1ohvQiDn6gPWbVq1QJd11fZbLZASEiI2q9fPyMsLMzWv3//oIEDB1oTEhLa3TPI7/fj3LlzKCkpaTp9+rQkSdJJn8+X3NaVsM17GacA+A+AiMTERH3q1KnWe9q9rFl1dTXWr1/fpGnaKFmWL979DAIY/ER9TnOjuAcBDLn1z+l0plgslqTk5OTgxMREqbVWEYZh4MSJEzh69GhdRUWF0+FwFHu93s8Mw/hGluXz91BblNPp3OR0Oic+//zzITExMR39KADA559/3nj+/Pk1S5cu/es9fZDJMPiJTERRlMedTuc/bTbbYxMmTAiJioqSIiMjYRgGqqqqYBgGamtrsX///vr6+vpyn8+3AsB/ZVmu7sw6li9f/qzNZvv3mDFjwqZPnx7UkV//ZWVlyMzM9KiqOlyWZW9n1tfXMfiJTEhRlIl2uz3NarWm+P3+WJvNFpAk6arFYvEahlHv8/k+MAzjq/v5jLuiKP2cTmdm//79J82aNeuBsLCwNp+r6zrWrl3bUFdX94rb7d51v2rsqxj8RCanKEowgBgAJV29mElRFMlms71ns9mWvvzyy8EPPfRQm847ePCgnpeXl98818AQaycGPxF1u+XLl6fYbLYvX3zxxdC4uLhWj62trcW6deuaVFV9VJbls11UYp/SebtBEBF1kNvtzlZVNXnHjh31Z8+2nuV79uxpArCOod9xDH4i6hFkWf5eVdXfb9++vX7Xrl2Bq1ev/uaYhoYGnDx5MkhV1X90Q4l9Bod6iKhHURQlFkApAMyYMQMJCQm3vb9z507fqVOn9vt8vukc3+8Y/uInoh5FluUyAOEAcODAgd8E+1NPPeX0+/1/APBwV9fWVzD4iajHaV438LuGhoaKnJwc7db3ioqKNAD/kmX5dPdU1/sx+ImoR5Jl2eP3+5MKCgqu5ubm3gz/c+fOeQ3DONydtfV2DH4i6rFkWb7q9/ufyM/P99wIf1VVA2ieA6COYfATUY8my/JVVVWfyM/Pr8zLy9NCQ0MlAEO7u67ejMFPRD2eLMtXVFV9Ii8vr9Lj8TQB+F9319Sb8XFOIuo1FEXpD0CTZbmhu2vpzRj8REQmw6EeIiKTYfATEZkMg5+IyGQY/EREJsPgJyIyGQY/EZHJMPiJiEyGwU9EZDIMfiIik2HwExGZDIOfiMhkGPxERCbD4CciMhkGPxGRyTD4iYhMhsFPRGQyDH4iIpNh8BMRmQyDn4jIZBj8REQmw+AnIjIZBj8Rkckw+ImITIbBT0RkMgx+IiKTYfATEZkMg5+IyGQY/EREJsPgJyIyGQY/EZHJMPiJiEzm/1jHTvu9qAb9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", + "f,ax = w_knn.plot(gdf, ax=ax, \n", + " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", + " node_kws=dict(marker=''))\n", + "ax.set_axis_off()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Weights from shapefiles (without geopandas)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "pth = libpysal.examples.get_path(\"mexicojoin.shp\")\n", + "from libpysal.weights import Queen, Rook, KNN" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "w_queen = Queen.from_shapefile(pth)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "w_rook = Rook.from_shapefile(pth)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/serge/Dropbox/p/pysal/src/subpackages/libpysal/libpysal/weights/weights.py:170: UserWarning: The weights matrix is not fully connected. There are 2 components\n", + " warnings.warn(\"The weights matrix is not fully connected. There are %d components\" % self.n_components)\n" + ] + } + ], + "source": [ + "w_knn1 = KNN.from_shapefile(pth)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The warning alerts us to the fact that using a first nearest neighbor criterion to define the neighbors results in a connectivity graph that has more than a single component. In this particular case there are 2 components which can be seen in the following plot:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAADrCAYAAABuBv24AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl8Dff+/1+fmTknOUkkRBIRkRAigsQSQhA5KEVV6UpRt1dbvZcuenv7q3U61VpK++2milbLrWpxa7tELYmDJHZqC0kQEomssp595vP7Y0KJk+ScJEhlno/HeSQ5Z+bz+UzEez7zXl5vQimFgoKCgkLjgXnYC1BQUFBQeLAohl9BQUGhkaEYfgUFBYVGhmL4FRQUFBoZiuFXUFBQaGQohl9BQUGhkaEYfgUFBYVGhmL4FRQUFBoZiuFXUFBQaGQohl9BQUGhkaEYfgUFBYVGhmL4FRQUFBoZiuFXUFBQaGQohl9BQUGhkaEYfgUFBYVGhmL4FRQUFBoZiuFXUFBQaGQohl9BQUGhkcE97AU8bARBIABcAHgCaH7HyxNAc5VK1ZJl2ZYMw3iLouhmMpnG8zyf/BCXrKCgoFAnHjnDLwgCC9lwe1d6+ajV6tYsy7YC4EMpbS6KojshxI0QArVabdZoNFaNRkNdXV0ZV1dXztXV1cnFxYVxcXHBpUuXkJKScgHA1Yd3dQoKCgp155Ey/AsXLlxDCJnAcZxJo9FYXFxcJDc3N8bNzU3l7u7u5OLiQlxdXeHi4nL7pdFooFKpgGp+F6dOncKVK1dEs9l8CID0wC5IQUFB4T7wSBl+AJqYmBgpJibGGYBzfQwoSRK2b9+OgIAARq/XP5OXlzd20aJFiUajcR2AHTzPZ9XHPAoKCgoPCkIpfdhrqDcEQQjiOO7sSy+9pGndunW9jLl161aakZFBp06dygCAXq9HWloakpOTyy9dusSxLHvNYrH8KoriFgAneJ5XnggUFBQaNI+U4QeAefPmjWFZ9ofRo0d7dOrUqc7jLV68WBo5ciQTGhp6z2eiKCIjIwMXL160nD9/3mgwGESGYbabTKYNAPbwPF9e5wUoKCgo1DOPnOEHAEEQJnXo0OHrcePGudV1rO+//562adMGgwcPJjUdW1hYiJSUFJw7d64kOzvbSa1WHzcYDD8D+B/P80pQWEFBoUHwqPn4b7H3ypUrqoyMDNTV5SOKIpycnGo0+gDg6emJPn36oE+fPu4mkwmXLl3qm5yc3C0lJWXJwoULs61W68+iKP4XwCme5x+9O66CgsJfgkdyxw8AH3744T84jvt0zJgxmo4dO4IQu2z3PcybNw+enp7SU089xfj7+9dqDEmSkJmZieTkZMvZs2fNJpPJSAjZaDabfwVwgOd5a60GVlBQUKgFj6zhBwBBEB7nOG7N448/7tOzZ89ajZGfn4/169dbioqKSLt27Sx9+vTRNG/eHG5utfMiUUqRl5eHCxcuSGfOnCkrKipiWZaNNZlMPwPY1dDjAoIg+AIYV/EjreErAJAqvj8K4JASDFdQePA80ob/ww8/XEkpfWXixIkICgqq9ThWqxVr164VMzMzE1QqlbfFYmkTHR2t6tevH8ey7O3jDAYDNBqNQ2MXFxfj4sWLOHPmTEl2draTSqVKMhqN/wGwjef5vFov+j4hCMLLzZo1W9a+ffvbRpze8UdU8e1dhr/y05YkSbh8+bJZr9fnms3mrg39Zqeg8KjxqPr4AQCU0v9HCJnUtGlTVV3G4TgOnTp1Ym/cuGF+7733OgmC0CYxMXHViRMnIseMGeMaGBiIsrIyfPrpp+jZs6c5KipK7enpadfYHh4eiIyMRGRkpLvBYEBqaqr27NmzPa9cubJs0aJFySaT6T+U0k08z1+uyzXUI1zr1q3FESNGuNRxHKcNGzZwaWlpnwJ4vT4WpqCgYB+P9I5fEIQgAJcmT56M2vrnb7FkyRJ9eXn5cJ7n91eMTQghYziOW9mmTRsnQohzSkoKy3HcFwAmt23bljz77LOuarW6VvNZrVZcvnwZ58+fN1y4cAEAcu4IDp98WMFhQRD+0b17909HjRrl2KONDQwGA7788kuD0WgcC/kJ59H9Y1RQaEA80oYfAObNm/ciwzDLIyMjVUOGDHGqzRhWqxXz588XKaWqysZJEIQmAF4A4AVgA8/zlwRBcFWr1UefeeaZ0A4dOtT5GmwFhwFssFgs6wAk8Dwv1nmSSlSI19nijYiIiEUjR46sl8roy5cvY/PmzeVmsznPYrHMmTNnzk/1Ma6CgkLVPPKGHwAEQfBUqVTJY8aM8bFViFUTxcXFWLp0adHMmTObOTBnLgDviIgIU4cOHZyKi4vRpUsXh2MAlbkVHD5//rx4+vRpfXFxsRMhxIo/A6e3v1b825Iq3rv1c+XzAAAqlQoWi8XmGrRarRgTE8Pa/LAWUEqRnp6O3377TW80Gj+cNWvWovoaW0FB4V4aheEHAEEQeqvV6vg333xT4+rq6tC52dnZWLNmTfr/+3//r60D8xEA4QzDjFCpVONNJlNnAHB3dxfffvtttrbppZUxGo2QJOmudNVb39vz1dZ7WVlZWLlyJcaMGYPw8PB6Wac9FBcXY9WqVXq9Xr/YarV+qGT8KCjcHxqN4QeARYsW7Rg6dOjw7t27O3ReTk4Ovv/++yKLxdKa5/my2swtCAID4EMAs6ZPnw53d/faDPNAyM/Px9KlS8EwDObMmfNA5y4tLcXatWvLi4qKcs1m8+S5c+fGP9AFKCg0AhpVBy5KaUFZmeN2u0WLFvD29uYAjK3t3BW716EA0KRJk9oO80Dw8vLC2LFj4eLi8sB3BU2aNMGUKVNcR40a1ZZl2S0VAXoFBYV6pFEZfgAXDxw4YLx06ZLDJ/bv39/FycnpS0EQam38AXzGMAytLzfP/aRly5bQ6/UP5YmQEIJOnTphyJAhLiqV6sxHH31Ul9+5goJCJRqV4X///fc/slqtI3799dfCrVu3Ghw5NzQ0lOnfv7+GZdnI2s7PsmzXvn37/iX81u7u7iCEwGg0PrQ1REZGsi+99JILgDUff/zxlfnz50+vJttIQUHBThqV4QeAuXPnxlssljanTp1yEkXHsiBVKhVYlq21c14UxfTc3FxTbc9/0KhUKlpSUvJQ1+Dv74+3335bNXjw4DYeHh4fqdXq7YIg1E5/Q0FBAUAjNPwAwPN8KcMwJrPZXPPBd7g6XF1dwTBMSB2m/vXKlStl586dq8MQDw61Wi2lpaU99Oi/m5sb+vTpgylTprh069ZtKMuyBwVBGPCw16Wg8FelURp+AKCUMocPH67+oNJSwN0dmDULyM9H6LJlIAZDz4/mzGlTmzl5ni+yWCzDt2zZos/La3AyPPcwcuRIdt++fQ0m84vjOAwfPpx99tlnnVQq1YaHvR4Fhb8qjdbwS5LkpNPpUK3xd3MDliwBpk0DSkvBHj8OT29v01uff/4LCPkdAEDIEhBitx4Ez/MnRFF845dffilvKAa1KoKDg8EwDC0oKHjYS7mLkJAQUEqbCoJQ63iLgkJjptEafgBTABTu3bu36Pr167aPIASYMgVITweMRuDQIRQZDOzOYcP+AWAqCFED6AegKQj5FwhJrzjvDRDSp6qJJUn6obCw0PWvsOt3cXERs7IaVj95Qgi6devGcRz3myAIHg97PQoKfzUareHneX4Fz/PNCSHrr16toSvipUtAVhYopdDr9S7nu3RJBqVpoNQMSqNA6VkA3wJ4tuKMQQDCQEhXEFIAQpqCkJEgZPStITmO27d+/Xp9Q9/1e3l5cRkZGfWuBVRXRowYwYSFhXk5OzuvfdhrUVD4q9FoDf8tzGbzoczMzOr14CdMAAYNAi5cgKenpwHA6HuOobQclB6r+H4MKF0J4BxkAbdiyE8GT4AQFf/BB/kz5syZyVy8yFm//rqer6h+CQoKwrVr1xpcCiUhBDExMU5WqzXmYa9FQeGvRqM3/ADUKpWqZsOWnQ0ybRqefOIJV5VK9bUgCDXr9lBqBaV7QCkFpTNA6asARAAvMJSea3Xjhkh+qhCj7NYNWLQIKCkBvvgCMDWMrM/OnTujoKCAkaSGV35QVlYGjuNyH/Y6FBT+ajR6w08IUScnJ3OZmZnVH+jnB+zZg8BWrTAwJqapSqU6KwjCUIcnpFSquBmUnO/Royj+o4+slFLgq6+Ap58GbtwAvvwSsFqBv/0NeOEF+bxvvwUeQpDVzc0NkiShIRp+Dw8PWCyWloIg1K4PZg0IgtBaEIRuStGYwqNGg0nVe5gIgvBejx49PnzyySdr1uv/+9+B0aNxsnVrxMbGHrVYLPMB/M7zvEOVwBXz9lSr1VvHjRvXsk2bNvcecPo0cPMmEBUFhIYCP/8MnDsn3xhOnQI2bwY6dwaCgx2d2m5u3ryJb775BrNmzbpvc9SFzZs3Gy9cuHDcZDJF10cjlwoxvREA3DiO+4bjOA2lNNdisfysUqk6SpKUbbVaJUrpWkLIAEopA+Annucz6nwxCgoPCPaDDz542Gt46Oh0OiY/P3+8SqVi/P39q38KGjgQCAuDp6cn8vLymlkslmcppaPj4uL+o9VqbQvYV4FWq82Kj48vycvLG9ytWzfVPRo+LVoAbdoALAu89Rbg7w80bw60bSsb/FdeAUQR8PYGevQAnnkG8KjfJJdr167hypUrNCoqqkHuejt06MAdOnTIy2Kx/E+r1ebUZSxBENoAKADwYmBg4PCWLVtyr776qiYwMNDD2dk5qkOHDp2aNm3a093dPUySpBcNBsMTAAYzDPPivn37vtRqtQ0uCK6gYAtlx1+BIAhBHMcdbtmypfPQoUPdqm3VmJwMLFgArFkDSik2btxoTEtLO2w2m0fekm2ucD904Xn+UA3zqtVq9Z4OHTr0evrpp51rJeBWWgo895zsKnrtNcfPr4akpCScPn1anDJlSr01XqlvDh8+bN27d+9Ni8UylOf5U7UdZ+HChbt79uw5cNCgQSzD2OcFtVgs+PTTT0WTycQCaM3zfA0+QwWFh4+y469Aq9XejI+PX1VaWnrlzJkzA3JyctCuXTsVx9noR9+smbzrbtkShBB07NiRy8/P9y0qKvp7XFzcPq1We0On00UBOHjo0KEhe/fu3a/VagurmFeMi4tbX1RU9KTRaGzWrl07GxPWgNUqG/+pUx0+tSbOnDkDAFJYWFiDjQf5+/sznp6erqmpqS8nJib237t3b4pWq62iOMM2giD01Wg0M8eOHevEsvbf41iWRZcuXZjDhw9DpVK1jYuLM+h0uhStVuvoZSgoPDAUw38HWq3WEBMTczIuLm5pUVFRpzNnzgQWFRURq9XKNm/e/M8uVwwDtGwJfPYZ0Lo1mKZNERoayjVt2tQ9LS3tJZ1OZ6CU0hYtWozo1q1bUE5OTv/+/fuvqGZeS1xcXJlKpRretWtXx/sCb94MxMXJrp56JDU1Ffv370fr1q1phw4dGqzhBwAfHx/06tWL02g07a9evfpMXFzcL1qtttje8/fv3/9Kly5dBoSGhjp843V2dkZ4eDiaNGkSmpOTM8psNl/RarVnHR1HQeFBoRh+G2i1WnNcXNwmo9F4KCsr61JqamrAjRs3XEJCQri7XADp6UBgoKznA7lhS5cuXVRpaWnRFoslz2AwhLi6urpmZ2f7JCYmto6PjxdjYmJSbc2p0+mibt68+cy5c+fKAgIC1G5uDiSqSJKcDtq6dV0u+x6SkpJQVlZGhw4dyjjarvJhwHEcKlx0qszMzH8kJib23bt3r6dOp3PRarXpVZ0nCEIbjuPWjR492tnFxaVWc2s0GrRu3RoBAQHqc+fOPXHgwIEWcXFxB7RarR1KgAoKDxbFx28HgiBo1Gr1Rm9vb+2kSZNcVCrVnx/evCn7/Pv2vf1WeXk5lixZAgBDVSrVIoZhunXp0oWcP3/+8HvvvWdTykEQhFc4jvuQUuo5ePBgp6ioKPsWV1YmZ/xcuADUs3E+duwYDh8+LE2dOrVB7/ZtUVJSgitXriAtLc149uxZZwDvAPgNwLU7s38EQdAQQn6hlI6aM2cO7PXtV0d5eTliY2MNqamp6WazuXN9ZBspKNQnyo7fDrRarTUuLu4Xs9msTUtL8w0LC1Pd9gOfPw9s2yZX9lagVqthsVjMOTk5AywWS1+WZYeUlJT4WiwWKS4ubqlWq70rKV4QhPZqtXrbmDFjmp0/f54UFBQYe/furYI9HD8OXLwo5/zXMyzL4tChQyQ6Orrex77fODk5wdfXF506deJatWoFvV7ft7y8/C2WZdvExcVt1+l00Ol0RK1Wrw4ICBj5zDPPcB71lBGlVqsRGhqqOn36tKvVag2Ii4vbrvj8FRoSf7md3MOC53nJZDI9mZeXdzopKelPwx0RAXz0EVBJyGzIkCFqQkhLAD5ms/lxk8l0xGw2BwLobWP4XoGBgZbQ0FD4+/sbbt686WKx2JkZmp4OfP99bS+rWry9vWG1WmFqIFXEtSU4OBgTJkxoMn36dGdPT8+xAKwcx+0jhHzh4uLy1NixY52rzeKqBYQQTJ482YVhmIkA2tfr4AoKdUQx/A7A87zRZDK9GB8fz6xYsaK8sLAiUYdSucL28uW7jnd2dpYApKjV6iMmkykGgBfP8wcrj6tWq4dpNBoOADw9PVUqlerGt99+W15jY3iDAbiPWj8Mw0CtVtObN2/etzkeJM7OzpgyZYprixYtJKvVOqBr166vTpgwwUWtVt+3+Xx8fKwsy750XyZQUKgliqvHQbRabZFOp1tRXl7ulJWV1S0sLEzFsCwwaZJcXCWKctYPgNatW6tdXV3FGzduaFiWHcuybHF0dPSJO8cTBIFhWfa94uLiFgzDcAkJCZwkSV2tVqv+4MGDMTk5OdbOnTszNvP79XqgSROgX7/7dr3Hjh0TW7VqxXh7e9fvwFlZ8g3TyfEkprqQmpqK48ePk+nTpyM8PJyrbTDXXgIDA52OHz8eWVHgZ3eWkYLC/UTZ8dcCnuezKaWzcnJy4pctW2bOzc2Vq2s3bADeeef2ca1atcKgQYPY4cOHu/Tr168TIWSmjbGkGTNmRJWXlw/W6XS7VCrVOQBZM2fO5AHgwoULXJUB+GnT5GYx94ni4mIYDAbWqb6NsyQBYWHAqlX1O26N00rYunWrqNVqqUNZU3XA09MT4eHhhOO4+q2sU1CoA0pWTx0QBMFJrVb/IoriE//6179UGkoBi8WmbIIoiliwYIFZFMWWPM/bLOayMb6PWq0+2K1bt8Dhw4ff7Y+QJKBjR2DPHiAgoH4uqBKZmZlYs2YN3n///XrJdrnN8ePA7NlAbGz9jWkHe/bswdmzZ+kbb7xBHCnSqiu5ubn47rvvDJIkjZ89e/amBzaxgkIVKDv+OsDzvGnGjBljWJZd8dNPP5XBxQVwcQEmTgSK736qZ1kWfn5+RgBDHBg/12w2R546dermpUuX7v7w9Glg9er7ZvQBwN/fHxzHSTUqlzpKRgbwxhtyUHrfvvoduwr0ej2OHj1KR40a9UCNPiAXlw0cOFAjiuJvgiD4PdDJFRRsoBj+KhAEoZW9crxms3k3IUTO9FGp5MYtNnLqo6Ki3NRq9Y8LFiwoWLBgQbUaPreoaNA+ed26dYaVK1eWHjlyBKIoAt99J++c7zPe3t7kwoUL9avJfPKk/FTUsSPQqlW9Dl0VGzZskAICAqSgoKAHMl9l+vS5Xb5Rcx8HBYX7jGL4bSAIQmsAmWq1eokdx3JqtfqTyMhI99tvPv44cOwYcODAXceGhoYy7777rvNLL73kSSkNtXc9c+fO3S6KomdWVtaE2NhYZFy7Jks1P/tszSc7gCRJ2LBhA1asWEHXrVuHzMxMdOvWjZw7d67+lDmtVuDqVbnSuF8/WfeoqKjehrfFtWvXkJmZyTzxxBMPTWiOEIIBAwZY1Wr1Z4q+v8LDRjH8tlEDgCRJUyr02aujtdVqDbpHT7+sTH5VQqVSwcvLCyzLqufNmzfO3gXxPG/keX4rx3FzLsyfb5R+/x3w9bX3dLvYtGkTvXDhAoKCguDs7CyuWbMGO3fupJ6envUXCNq7Fygv//OJaN68e26Q9c1vv/0mRkVFSU2bNr2v89REVFQUp1KpurIs+5MgCM0e6mIUGjWK4bcBISShadOmkiRJzgCcqzuW5/krHMftSElJufuDxx4Dhg0Djhy55xwnJyc89dRTzk5OTu/c82ENWK3Wj1sdO3b9HKWW+g7MZ2ZmSlqtlj722GNkzJgx7L///W+88MILZMKECfX3d5KUBDz//J8/f/EF8OST9TZ8ZRISEmC1Wpno6OiH/rdeUUfgFBwcPJrjuBRBEDwf9poUGidKVo8NPvzwwy8opdMYhimfM2eOew3HvkQpXe3q6gpPz7v/H6sMBmiXL0fc1KkQVXcrMJSXl6OiAKwdz/N3V35VByFqvbPz+K9mzpwRFhEROHjwYDUA5OXlwc/Pr07ZNxcuXMCmTZvw5ptv4r6Jsi1eDIwde7eg3MKFstunnqUhzGYzPvvsM/rUU0+R0FC7PWsPhNjYWNPJkyeTLBbLczzP5z/s9Sg0LhTDXwWCIDgBsALQ3GquYuOYdzQazUcGg0Gj1Wphq8iKUgpiNgOUglbKh98nZ7S8yPP8OrsXRshwAK8KH3wwWa1W77Jard0lSbrtux4+fDjc3d0RFBSE2lSkrly5UvT09MQzzzxT//7wGzeAd98F1qy5XeQGADh6VM5OatGiXqf75ZdfqF6vpy+//LLtAriHiMViwa+//mq9du3a1zNnzpz+sNej0LhQDH8NCIJAOY4rYllWD2CfyWT6DUC6k5PTTJPJ9DQAvP322yCEwM3NzfaO+7335AyWv//9rrcXL15s1Ov1f3fQ8EcA8AGlsYIgsACcGYZZIknS6wB4AAIg3wAiIyMdvt6SkhJ8/fXXGD9+PAIDAx0+v1r275cF7RYvvvezlBTAxweoRz/8p59+Kj7xxBNsx44d623MulJWVobExERotVoUFRVh5cqVRVar9Qme5xMf9toUGg+K4a+BBQsWJImi2CcyMhLu7u5ITk4uKS0tRbt27dSiKOLkyZO3YwAdOnQwjhs37t6YgNH4pzTBHTvP8+fPY9OmTcVWqzWa5/kzNS6GEDWAIwCiQWnpnR8JgqDhed4gCMInAP797rvv1tpdEx8fj8TERDz99NM0NDS0/rbKkyfLqa4DB9772fTpcuvIenT3/PDDD9Tf358OGTLkofv3AVkuYuPGjVSj0cBsNtPhw4cz27ZtgyiKFkmSIuvSNlJBwREcb/PXyDCbzSNUKtWMpKSkfw8dOlR8+eWXb/v8KaXo1KkTEhISaGBgIPH29ratbeDsDGRmytLJu3bddnOEhobi5s2bHvv27UtYuHDhbyaTaSbP81k2x5CJAFBa2egDAM/zBgAghIyilNbJRz9w4EBQSrF3714EBwfDZvtJR7FagcJCoGtX25//3//VfY5KhIaGkmPHjtEhQ+yumbuv7N69W+zduzczcOBAcvDgQbpp0yYEBgbSzMxMlSRJJxctWnTcaDQ+y/N8+sNeq8KjTYPYCTVkeJ6/OXPmzPcAdIiLiyvftm2bqaCgAICcm92+fXtMmjSJaLVadO7cuerdcatWspLmHa4gQgj69euHV199tUmPHj3GsSybIghCdf4VVwDPV/M5KKXveHt733NjcJT+/ftDFEVp6dKl1Gq11nU4WT560CDAs5pElrfeAg7ZVddmFz169EBRURFjMBjqbczaotfrcfPmTTYiIoIQQhAdHc2MGjUKmZmZ5LHHHqMzZ85Eu3btwgC8+7DXqvDooxh+O+F5PtVqtYb98ccfi5cvX27IyMhwbABCZD//F18Ap+5+ovfx8cHQoUPVISEhBMCwKs7nAMxBDemlAHR5eXlN8vLyHFtfJdRqNd544w22uLi4flw9R47IOkbV8corQJcu9TIdIF+Di4uLeOXKlXob01FKSkqwfv16fP/992jZsqV4Z7MXjUYDURQRHx9PSkpK0LZtW7VarR7x0Bar0GhQDL8D8Dx/bfbs2XOsVutHZ86cqV0v1U6dqtz1hoSEuDg5Of1TEARb6TiuALaD0mqtGM/z5QzDXP3mm2+g1+trtcQ7UalUtK43EQDAzp1AeHj1x4SFyRpEJSV1n68CPz8/NiUlRazzQMePOywql5CQgKVLl0KSJKlz584YOXLkXZlSISEhmD17Njw8PMSUlBTk5+dbrVbrIaWyV+F+oxj+WkApjTt27BiXlpaG8vJySJIDUjZDhsga+v/73z0fdenSBSaTKRzAr4IgVHaszwGQbM8UkiSNBICffvpJb3cnLxswDHP7VSeKimTRusGDaz520yagHnfo4eHhSEtLq9sFlJbKwnsOxCHi4uJw8OBBPPfccxg7diwzaNAg+Pj43HMcwzDw8/Njr127Jnbv3p3TaDSjAAy6d0QFhfpDMfy1gOf5QwzD/G3Dhg3ZS5YsweLFiw0XLlywf4DSUiAh4Z63GYbBhAkT0Lx588c4jiucP3/+94IgsBUFAmMAXLRzfWcBsIWFhTs++eQT048//lgSHx+PhIQE6mgWl8ViIbeay5vN5to9RRw/DkRG3pXRVCWLF1cdAK4FHTt2hMlkIrXqIlZaCixYIMtLnDsH/P47MGuWfBOoAZPJBH9/f7FFixayqF41+Pr6oqCggPj4+KBC+qOe82gVFO5G6cBVSwYMGHA6Li7uMwDzrFbrnpSUlHGEEHVJSQm8vLzuKeailKKoqAjOzs4gTZvKkg6XLwPu7ncFfD09PREZGanOz89ns7OzuwFYot23LwDANlB61t71abVa2r9//w3x8fEri4uLT2RkZFy6dOnSAA8PD7Rs2dLu60xLS5POnDlDk5OTsWPHDpKUlAS1Wg0vLy/7s33OnpULtNrb2Xr2+eflYx1YZ1UQQvDHH3+Ibm5ujJ+fA4rIlMo3qpMn5ZsWy8o/e3nJnc86dZK7rVVRJKfX65GYmMgcPXoUSUlJCAkJqTLT6vTp0wAghoWFMceOHTOVlJRcjImJiXf8ahUU7EMx/HVAq9VCq9VSrVabuW/fvhPXr1+nFy9e1JjNZvegoKC7/LlZWVlYtmwZAgIC0KwCAgRMAAAgAElEQVRZhT7XlClAcLBNA1dWVkbT09OvSZJU3uvIkTFqi6UZPvjg3seEmtdYrtVqk2NiYuJ0Ot0HFy9ehFartfv8sLAwkpaWhvT0dDJlyhT4+PiIBw4cIDqdjqhUKrS+U3rBFpTKu+SnnpILtOyhe3cgJOTu6t46kJOTw2RlZYnh4eH2DZiVJesHvfwy0Lfv3evw9ZXfEwS529rUqTafZHx8fNCsWTMEBgYiLy9PbNasGeNbhaheUlISysvLmRYtWqB9+/ZOJ06c6Ldv377ftVrt9VpdsIJCDSiunnpizpw5O99///2XzGZz/yNHjpQkJiZKpaWlEAQBq1evxnfffQcAcHe/Q/rn11+BHj0A871x4p49e7JBQUF+AL7RxcRM+c/LLzex4fd3lC4qlcp0K73RarXW6IbgOA4ajYa4ublRb29vREREsP/617+IVqulx48frzm4cf06cP480LlzlYcUFRVhxYoV4rJly8SSkhJ5t/+//8kqnrXAbDbfFXfp2bMnrl69ytYYi6FUfgrz85ObxFTXsOXjj4GNG+VgtI14DcMw6NatG3r37g1RFKuNAw0YMAAuLi744Ycf4OnpibFjx7Icx+1VRNwU7hfKjr+e0Wq1+ri4uA2ZmZmPJyYmNqOUppeXl6dLktTSx8cHHTp0QJMmTeSDCZFbJ86Zc4+2PiEEeXl5rKTTkZ56Pbn0+OMRRqPxubi4uOWO7NgrrS3v4MGDQenp6R0tFotq1apV2L9/PyIjI6GqJCIHyO6KlStXivn5+WTcuHHkzj613t7e5MiRI8jOzka11b179gAxMdUa/iVLlqCkpIRp27Yt3blzJ2EYhnjGxoILDQWpLu/fBps3b6b//e9/yf79+5GYmIikpCTpypUrktFoZIKCgu6+8VbmyhXgtddkH37z5tVPRIj8BLNrl9xGstLO/9q1a9ixYwdOnTollZaWssOGDatSO6lp06YwmUzIyspCWFgY/P39kZOTYy0oKCiNiYlx+ClPQaEmFMmG+0TF7rwZz/N5FT/3A3AQAKZOnQovLy/5QFGUdftt9OktKyvD2cceQ7mLC9wXLbLu2LGDBaDmeb7WFVWCIDixLPuOSqXqZTKZ+lFKfYKCgkwvvPCC052GKS0tDf/9739pQECA9PTTT9tsuF5QUIAVK1bg+eefR7t27WxP+PHHQJ8+VWb0SJKEjz/+GG+//TaaNGmC1NRUbN26lRoMBuLj7S39ffJkxt5YQnx8PA4fPoxXXnkFHh4e0Ov1KCsrw+XLl+nJkydhNpvx2muvkXuMf26uvGv/+9//9O07giTJT29btgA//4yEpCTodDp4enrS/Px8Mm3aNNTUC2DHjh04ffo0FUWR9OvXTwwODmZXr16dZ7FYWvI8X/d0VAWFO1B2/PcJrVYrabVa/R0/Z+h0uo9Zli05fvx4f0mSiL+/P8NwnKzjM3Ys0Lv3XTcANcehSdOm2ObkJAUGB9ObN2+aJEkas3fv3l+1Wq2plusSBwwYcLB///6/xsTELNHpdJ+Ul5cHnz9/vl3Pnj1VhBDExsZiz549GDx4MB5//PEqDa+LiwvS09NFs9nM2DT8VisQHw+MGiX3IrbBiRMnkJWVRbVaLQGA5s2bo2/fvqRHjx5o89JL5JeMDHrDYiEXL17Eli1bpIsXL1K1Wk2OHz8OLy8vaDQaAMDJkycRHx+PiRMnwtfXFyzLwtnZGe7u7ggMDCS9evUi+fn5dOfOnQgODr7r6QXl5XLFcN++jht9QD7HyQn05En8WlgoJZ88SV6YMAGDBw8m3bt3h4eNm3plgoOD0b9/f+Lu7o4DBw6QYcOGkWPHjhGLxZIbExNz/3tsKjQqlB3/Q0AQhNYcx212dXUNmzZtmorjOODwYSAiArjTyOp0wIcfyl2rIGv4f/rppxKltDnP8/XWr1AQBKJWq7OGDx/um5SUJOr1eubFF18k9mT//P7771Jubi4z0VaK4x9/AG++KV9HJdLT01FQUID4+HgpMjKSDBgw4B6LS7OzcUWvx964OIllWdqtWzc2NTVVvH79OuPq6kpzc3MZNzc3cdCgQez27dvxzDPPICQkpMq1Ukqh0+mkpKQkMnbsWNL25k25knr16hqvsybKysrw/fffi2GHDzMxiYmEvXjxT2E+B1i+fDnVaDQYP348SUtLw8aNG0skSfpKkqQ4AGd5ns+t82IVGj2K4X9ICILgolart6rV6j4uLi5MZGSkJrSsDC75+cAzz8gHJSTIGjfjxwOQ3SJr1641ZmRkLJ05c2a9aboIgkAIIUZKqdrNzQ3Tpk2DLdeOLY4fP45Dhw6JU6dOvTcS+sEHgLe37P+uxKeffiqJosiEh4dLAwcOZGzORymwYoUsblfpc0opSktLodPpxFOnTrEjRoygERERdm3XD+h09Fx8vPT6rFks0tKAemjScuDAAeh0Orz95ptwO3lSHvPUKWDoUIfGSU1Nxfr16+Hq6kofe+wxIkkSrl+/Lp0/f95gMpksFotlIIALPM8b67xohUaLktXzkOB5Xm82m4eUlZUNLCws/HH37t3JW3fuNNzOCxdF4KOPgJEjb5/DMAy6d+/uzLJs73pezsuU0lt9hq32Gn1ArjsoLS1lEhMTUVS5abpaDYywLT3Ttm1bplWrVuKwYcNsG31AdqHk5QE2iq8IIXB3d8eTTz7Jzp49G/YafQDonJ9P+m/ezEKlqhejDwDR0dFo3ry5uPG33yQpOlrO/5840eHMpODgYMyaNQsBAQF0y5Yt8PX1xfDhw5l//etfrqNHj27KMMwxhmGKFyxYsE0QBKXCV6FWKDv+BoIgCCoA5ldfeQV+588Dbm7Av/8NHDx413Fmsxmff/653mAwaCFLOLjxPH+jDvO6AigDgDfffBMmkwlV5Zvbwmq1Ys+ePWJ6ejrJz89nOI6j7u7u0mvPPstyM2YAy5bZLHK6ePEiNm7ciFmzZtU8icUC2Mg6cpirV4HkZBxq2hQnjh4V//nGG/XaZcxsNuOrr76SXFxc8MILLzCerq7AmTPAp58CP/1UfXqoDb799luxRYsWbJcuXRAcHIxbKql6vR5HjhxBwp/V320BmAFYAEgACnmeV/5jK1SJosffQOB53jJ//vzP16xa9frbp045O7/xBvCf/9xznFqtRpMmTawGg6EX5KYsFHV4clOpVO+3b9/e8Pzzz2tqcz7HcRg2bBgLyK6o/Px8sn79eub4//6H3n5+No3+rUYv/fv3FwFUbw0plSUc9u6teyVvYSFw+TKut2ghtvDzq/fWkmq1Gm+99Rbzww8/QKfTiWPGjGHRsqWctaXXy78LB56moqKi2Li4ODE5OZlt1qwZzc3NJQzDoGnTpvS1114jERER+M9//mMtKyu7YLFYnFQqlYlSCkopFi1adNloNL7G8/zBCtE3XwBFt/o2KDRuFMPfgJg5c+b0efPmZW969ll+HM+7YPBgYO5cOb/c3//2rregoEADoAMAEELq1LWJZdn27dq1q5XRrwzDMPDx8UHfvn0JmTqVml97jdjKXE9JSRG1Wi3br1+/mo0vIXLg+1btQ23Yvl3WC5o7F+jeHdyWLaiLeF11cByHPn36YNu2bWz37t1l7Z1t24B9+4BJk+R13ErlrYGuXbuia9eubFZWFuLj4/Hyyy/DarXim2++oTdu3CCBgYF48803OQCcwWCARqNxAgCDwYDk5OTQbdu2HRAEYaRarZ5qNpuHA4AgCJ48z9dCuEjhUULx8TcwJElaevnyZanwk0/kNEhAlnbIyAAuXgTmzYO/v7/V3WB4jbFaMXfu3B51mY9SSspt+KHT09NRVmazx3yNdOvaFS1LSsiajAzRVsWqxWK5nYZpF66ucj2Ao8baapVVQfv0kdNlK1Cr1eR+GX4ACAsLQ8uWLXFXH4ABA4BPPpFdeJXcdzXh5+eH8ePHE2dnZ7i5uYEQAraS2+jO36dGo0GPHj0wbtw4NGnS5Fez2Tz83XffhYuLSxmA+mtqrPCXRTH8DQye58sppbv+c+gQ0K2b/OauXUBQkJzjHxmJgQMHaqJ1OtULv/76/0AIB0KWghAGhDQBIQ7lEFqtVu/4+HjExsZab/mQ8/LysHr1amRnZ9fqGpjMTHj9/e8od3dndHekckqShPXr19PS0lK2Ro2fuwZk5DoAR5VBV60CliyRq3A7dLj9dnFxsWPj1AIPDw9cvXpVuh1DYxjghReACxeA0aNlKYtaQim9x/DbokOHDnj77bddZ8yYAVdX11vCgfUQLFH4q6O4ehogoihq78mQAWSBMF9fBALI+uwz9jedbvC4b79dGnj16mFQKoGQFyEH+t4HIe8D+BFAAQAGlNos+BJFcR+AQUeOHOGOHDmCzp07S+fOnWMAoL29apqVOXkSnCgiKjqaxMXF0eTkZFEURZhMJkatVpPXX3/9T6E6e5k+XZZJtofkZFn/aPJkG0s7Sa9cuUL++c9/Oja/g4wYMQJffvkl1q1bJw0bNozxvCU90a2brAdUViZXCn/zjdyT2QEopcTeamaGYaBWq1FQUACTyUQBONg6TuFRRNnxN0xq3GpHRESQZs2a9fvp1VevCx98kAYAoHQ5gBkVh+QDKAcQCWArAICQsSCka8X3t9zvHwPoCuDfAHDL6APA0qVLaxcIPHtWli2G7Fbp1asXN2DAAG7kyJHM66+/Thw2+oDstuneXXbd1MT587JbjGXvyqQxGo3YsWMHefrpp4k91bR1wdnZGRMnTmRSU1OZr7766m4xPHd32dinpMh6/w4iSRJOnDgBsw1xv6pITEw0AViqBHcVAMXwN1TGE0KqlZJUq9WYMmWKa1hYmAZAv9sf3PItUPodKC0FpQkAhld8agJgASHuAK6BEMJ/8EFv/oMPWvA8v8SttNSb47hkAGaO4/5bUFCg2b17t0MGBiYTsGEDMHQobty4gVatWom9evVC165d0bFjxyqFymqE4+SdfHUG+7vvgHXr5AK456vuSf+gmq97eHjc7l52vbJrx9NTFrAbM0aWfzbaX481YMAAcuTIEaSmptp1fFlZGU6fPk2tVusXdk+i8EijGP6GyQ2VSmWXFk94eLhapVLNEASh6rQXSqWKr5tA6XlQWgKgdcVNgq144V+ffho/a/bskfwHH7SbMWfOfwEgMSEBCxYsQGZm5u088mo5dgwYNgxQq1FYWAgvL6/6S5uUJLm2obKUtNEoB3779QOio6s8neM4tGjRgp46deqB5Li7uLhgzpw50Gq1+Omnn7By5Upx3bp14tWrV+UDnJ1vPxlh1So5dbUGrl+/joSEBKl169ZSlcJ4ldixY4eBEPJNXeo9FB4tFMPfMLnhUoWoWWXatGkDX19fFoAdDW3vgFJLxdeDoHRnxbuRANIBuDCUNgXAvPX557/3PXx46+pVq0p3jhmD3bt2VX8DKCoCKmSjRVGktuSea42TkxykrfwEMmcOsHatXIXr71/l6YWFhcjKyiKRkZF2V/k61E+5Eunp6Vi1ahU9ceKEyLIstVqtbEpKCvvjjz/+eZBaDaxcKdcqPPlktXGM/fv3Y/Xq1ejTpw8mTZrEONsRG7h8+TLS0tJKLRbLnFpfiMIjhxLcbWAIghCoVqvRv39/u/Mdw8LCmuTm5r4vCMIOAH4ArtaqcpPSWz6QFAApPAB88MHoIbGx5FyHDq81Kyz8fE9SEtivvxbb+/kxrZctI2TzZmDgQOCW7PCuXcCECQAAT09PkpGRUXORliO8+ipw4wag0chPFwEBspCdHUbQx8cHQ4cOpVu2bEFxcTGJioq655iVK1eKJSUlsFqtjNVqJVarFRqNRmrRogXp2bMnCQ0Ntav5fFFREdauXYtevXqhT58+rNFoxL59+6i/vz/8/f3vvvFwnJxyGhAA7N8v3zgr2jRu3LhRcnJyYnJycqSCggLmxRdfRJs2bezasFFKsWXLFr3Vap3M83wtmiUrPKoohr/hMdlisSA5Odlu0bGIiAiSkpISdvXq1esWi8XL2dn5dwDD6mU1lBoBoFgQvowbNiwdkrQ5MTycPWqxoMeePXTIgQMEAwYABw7IGSrx8bI+TcuWGBEbi33Z2WxB69ZofvSobNCKioDMTLkV4/79QOvW8i792jU5ZdVqlV8+PrJrp/ITg14v32hOngTi4uR+uA40punTpw/x9PTEhg0b0LJly1vNzQEAR48eRW5uLhsWFobevXvDzc0NTk5OyMzMZM6fPy/FxsZi69atJCoqqsb2lTqdDu7u7nTw4MHkVupljx49qv73ZFn59/fbb3JTnp9+wlc//ywVFhYyXl5e1NPTk44dOxZ3yUnXQFZWFkwmU+HcuXPvbRGm0KhR9PgbGDqdbicA9ubNm6R79+6w53GeEIKwsDBVUVERl5+fT81mcwedTrdKq9WW1Ne6tFotYmJiLup0uhuUZUdaVSpkZGQQ7YIFco69r6/sYx84UM5Z794d3LlzKJQkmlZcLAXn5jLw9wdOnJCrWKOj5c5VGRmyz/6TT+Rsl48/llU9H39cbkup0wHZ2XI6Z/PmwMyZcuOUjAyA5+WbhYM0b94cqampotFoZIKDgwHItQsbNmxAly5dcOHCBURHR8PV1RUVEgkIDg4mUVFRpFWrVoiNjUVZWRl8fHyq/Pfx8/ODTqcjN2/elKrtUFaZjh2BtDRY3d1x5ORJMuH11zF48GASFhbGOBoYP3r0qJiRkfH9gAEDdjl0osIjjyLS1oAQBCEawP4735s7d+6twpsayc7OxurVq3OsVutGURQX8zx/9X6sc+HChVtMJtMoV1dX8d13363WjaPX6/H5559jzJgxCAkJsctNchtJkl9WK1BQADRrJt8Erl6Vd/zvvCN/Vos4QkpKCjZu3Ai1Wi15enoSo9FI/Pz86OjRo8ny5ctFPz8/PPnkkzav7eLFi9i3b59UWFhI/va3v5GtW7fSirRVdOnSBYDsW//111/xyiuvwNvb26G1paam4saCBfDT6dBm3z6wjhS73cEXX3xRWlRU9DjP80m1GkDhkUVx9TQsrrEsu1YUxfG33jh06JAUFRVll7W8efMmCCF5s2fPnnb/lgiYTKYJAErKy8tr9N27uLhgyJAh2Lx5M/X19aUTJ060u5UiGEZ+cRzQqpX8Xrt28mvQIDl1tGdP2WXkYG1Ahw4d8O677yIzM5NJTk6Wjh07RgICAiQAbFBQEJudnV1lBDskJATNmzdnvvnmG6xatQq+vr5wdXWVtm7dyhQWFmLAgAHIzc1Fs2bNJG9vb7vvdMXFxfjxxx9Fo9HIBo8cKZotFtb/0iWwogjc4ZKyh7KyMpSWlrKQhfwUFO5C2fE3MARB8AKQRwj5mVI6S6VSHR0zZoyXWq2uuq9tBevWrStLSUl5g+f5Hx/AOicA+A8ATJs2Dc1raE5utVqxdOlS0dPTk7z44ouMPZIDdlFQILuAtm+Xm7o74AO/k6tXr0KSJLRt2xaxsbEoLCy0jh8/3qGN0bVr17B27Vr4+fnRnJwc0rp1a3HcuHF2XeimTZvo6dOnSffu3cURI0awt2+OK1YAP/4o+/4dkMtOTk7Gtm3bDr733ntV57cqNFqUdM4GBs/z+QzDfEYpfdHJyWmvKIoe69evx08//XRvEVAlqHwXd6Daqk6sBbAMAL7++mvs2bMHgiAgI8O2IgDHcfjHP/7B5uTk4NixY/W322jeXM5/37tXDhzbSWpqKi5fvoySkhJIkoTAwEAEBgbCaDTCarWC4ziHm+8GBATglVdegUajkUwmE4qLi1mxcs2BDXbu3InTp0+T5557DqNGjWLveiJ67TU5/qHTAadP272Wa9euWUwm025Hr0GhcaAEdxsgMTExu3Q63QmO4zpardb2AMAwzP+lpqZ29ff3V1UlN1BaWuqUkZFRGB0dvc3W54IgqHU6HaPVamufnF6BVquFVqvdXhGMfuWWwc/KyjL07NnTptOdZVmo1Wpy4MAB9OnThxBCkJWVBScnJ7tEx6qEEDkY7O4O/POfcrC5bVubh6anp+OHH34Qz5w5w1y8eJEmJCQQnU6HxMREHDhwAAcPHkR2djbatm1Lg4ODHd4YOTk5Ye/evfDz86PFxcXSjRs3aGhoKFNdnMbZ2Rnnzp2jV69eRe/evck9xwYEyHLO06fL0s52BHn37NlTXlZWtlir1V6p8WCFRofi6mnAVPTCnUApXaNSqb6zWCzxANYyDIPZs2ffE/TNy8vDypUryywWSy+e5y8IgtBHpVJtYxhm/fvvvz9VEIQ1ACbyPO/wbraGdToxDPOrJElPAcDs2bOrNOSSJGHJkiVSREQEU1xcLJ4/f551cXGhY8eOJX5+fnVfzOXLcsOWGzfkG0GFC8poNGLdunVSdnY2069fP6lfv363Yw0WiwV6vR5msxled2jl2xtUv5NffvmFFhcX08mTJzNGoxFLly6VImVF1WpvIpIkYf78+fjHP/5Rtdvs+nW5OfwzzwC9q+6+KYoi5s+fb5EkyZPn+dppays80ig7/gZMRQrlaZ1Ot3jOnDm/abXaMzqdzpdS2vPChQtlzZs3V98peObq6oomTZpwly5deiUhIaGnKIqTKaUBGo0mLD4+3l+SpDgAz+h0uo1arTavHtcpxsTE/KLT6dapVKq+ly9fbhoeHq6ylcFDCIGbmxs5efKkaDQa6eTJkxmDwUB27twJV1dXqWXLlnW7KTVrJmf5/PST3MCme3cAwO7du5GdnY3XXnuNhISEkDvXxrIsnJ2db0sX33o5SlpaGg4ePEgmTZpEXF1doVar0bZtW7J161YSHR1d7Zh//PEHMjMz6aBBg+7d8d/C3f12MxmEhFQ5VllZGY4dO1Y2Z86cDx2+CIVGgWL4/wJotVrLHd9v1+l0H5WXl6cnJyf3TUlJIUFBQepb+eS+vr6ka9euKr1e3/HGjRveAMhbb72lys3N7VJWVuYmimIHhmHaxsTErL0P6yyIi4v7wWg0Rp89e9a3Xbt2alsNV3x9fdGrVy8mIiKCcXJyQnBwMDw9PREbG0t69+5dN7fPLXr3Brp3R+7q1Ti1YIGUJEmkd+/eYocOHe5LXEuv12P16tXSwIEDERwcfNtyu7u74+DBg+jatWu1NRnJyckwmUxS9+7dba/v8mW5mnfcOCA8vNq1FBUV4fTp03n9+/f/v1pejsIjjhLc/QvC87zI8/xas9kckJ2dPX/lypWG/Pz82597eHhg1KhRmDhxImbPng0XFxc89dRTzlar9XGWZUs5jrtved08z1tMJtPjhYWFs7/99lvDmTNn7Dqvc+fOcHFxEX///feao6EOsDElRRKjovDG1KkYEBJyX9KXS0pKsHTpUqlt27aorAN0K3hcU8Vt69atkZWVxVYZ+F60CEhIkHf9NWAwGEAIKXTgEhQaGYrh/wvD87xl9uzZ841G4z+/++47Q+WOWUFBQbd3zxqNBq+//joXHBzsJopiPTjTq10XnT179ucWi6Xftm3brm/atMloj7Rzp06d2IKCgnpdy00XFybi1VcZ9+RkOfBbz+Tk5GDZsmU0JCSEPvvss/cEcfPy8sAwDPQ1dA9r3749xowZg+3bt5PSO4Xa4uJkiYtvv5Wrou2gYq76/UUqPFIohv8RYM6cOT+azeYXf/zxR8NtyV8beHl5oV+/foRl2Zc+/PDD+tHyqQae509aLJbQ5OTkPdu2batRBN/d3R3l5eX1FniWJAkVImtAVBSwfj1QUiKLutVBdfMW+/btw/fff4/IyEjpySefZG355tu1a4dWrVpJa9asodXd/MxmM+Lj48VmzZrhroSL8+dlw29nzMFiseDs2bOglOY4fEEKjQbF8D8izJ07d7PFYnly7dq15QkJCVJVzcT9/f3xxBNPuDg7O7//INbF83ypxWKZcOHCBTEvr/p4sq+vL4qLixmTya5WBDXCMAw4jkNWVpb8BsvKBr9lS7ki2IHmJ3ditVqxYsUK8ejRoxg/fjwGDhxo0+jfYuLEiYzZbKYJCQn3uHG+++4767x587Bw4UIQQsjrr78Od3d34PvvZcG7adNk5U47uXnzJpKTk2E0GsfV6uIUGgWK4X+EmDt37l6LxdLrwIEDuz/77DPD0aNHqa0CopYtW8JisUQtWLBglSAIne73unieL6aUfvjbb7/pq+t+FRAQgCZNmohxcXH14udPSEiA1WrFtWvX/jS4TZvK0s56PRARIfe+dQC9Xo81a9bAarUy06ZNQ2BgYI3nMAwDURTh5+d3190hOTkZeXl53PTp0zFnzhz885//ZNQqlVyQFhIC2DF2ZXx8fG59W6+xEoVHC8XwP2LwPJ/8/vvvDzMajdF79uw5sWvXrnv8C97e3njjjTfUffr0mchx3BFBEGqnAuYAoih+WlhY+MOKFSv0NhvJV/D888+zJ06cYO8MVteGs2fPQqfT4dlnn0Xfvn3v3Y67uACJibLEw/r1djVyP3fuHD7//HOwLCuOHTuW2MpYqgpKKSo319m9e7cYHR1N3dzc/kz1/OQT4IcfgP79a6U8CgDh4eFGAG/W6mSFRoFi+B9ReJ4/bjabx5w8eVIqs7GrdXd3x8CBA7mIiAgnjuOmP4D1SDNmzJhWVlY2Z/ny5Ybc3Fybx/n4+KBVq1b0yJEjtXbC6/V6bN68GaNHj0bnzp2rPtDDQ95dHzsmC77ZKGa0Wq3Yv38/du3ahS1btmD06NGYNGkS6+np6dCaXF1d6W2XE4AzZ86grKyMzc/Pl6/TbJZdTxMnygVadaC0tNQMILvGAxUaLYrhf4TheT4DwP/9/PPP5VUdQwiB1Wp9YIHAWbNmfWYymWbExsZW6WNp164dqUrzxx7y8/OhVqvRqZMdXixC5F22lxfw0ktyP4A7YhHHjx9HfHw80tLSpOeff96+MW0gSdJd9Qnbtm2jTZs2hdVqlbf6X3wBfPkl4OdXfUN5OygtLaVQDL9CNSiyzAOL4MIAACAASURBVI84Fotldl5e3rTi4mLY0vjJzMw0AEh7kGuilC7PzMycl5ycjNDQ0Hs+Dw8Px8GDB8muXbukIUOGVKtzY4uCggI4OztLcHRj87e/Ac89JxdJlZZC2rgR8ZJEn3zySfTo0aNOm6SKrmrYu3cvCCFgGIYMHz4cbd3dGVy9Crz1lhxwrgdEUSQAbEf3FRSg7PgfeXielziO23f58uW73i8pKcHGjRsNOTk5BQB2POA1GRmGmf7bb7+VxsfHWyvrRXl4eODVV18lJ06cIIsWLUJiYqLdbh+j0YjY2FjatWtXx0WoBg2SVT6bNJEbu7dvDycnJ+o1a5ZcPCVJclC4FowYMYI1mUx09OjRePrpp2EymXDjxg0JsbHAf/8rC6/Z26egBpydnSmAuj02KDzSKIa/EWA0GjenpKTcdvcUFhZi6dKlxpSUlK8tFksYz/M15tjXNzNmzPjearUGHzp06ML27dtNlY2/l5cX3nrrLWIymRAXF8d89dVX0tKlS6VDhw5Vmw9/5MgReHp60piYGMd1HwiR3S2//AK0agXm6afh6emJC6NHSwgLAy5e/LOI6uxZwIEAdEhICF555RUSEhKCoKAgDPH3x5WVK5k/wsIo3nnH4aVWh0ajIQCa1uugCo8UiuFvHOy4dOkS0tLSkJCQQJcvX26glL4zc+bM9x6meiPP8zlms7nfmTNnriclJd2TfihJEhiGwbhx4xAdHc1069aNOXTokLRkyRKcO3fO5lNAYWEhvLy8al+dNXHiXdk0lFKUeXvLUgmhocDBg/IHW7bIUskmE7B4sc3AcFUwDIPIDh3Q3GKhmZmZda8kq8Tly5fdAYTV97gKjw6K4W8E8Dx/Q5KkSRs2bMg8cODARrPZ3GfmzJnLHva6AIDn+RKz2azdvXs3u3DhQnrnzn/37t1WtVpN3d3d0a1bN/Tr1w9vv/0226tXL9gqhgKA0tJSeHh4sIAsT+wwUVHA6tW3K3tHjx7NJCcns7czcm719501S+4BUFYm++YJAb7+GthW0QqhqsrggweBxYvx48WL0qH27Ul0dHQ9tSKTuaNwr95vKAqPDooev0KDQBCE7izL/h4aGtrkqaeecmYYBvPnz0dERASGDx9++zir1Yply5aJbm5u5LnnnmNuSSnfYvny5WJ4eDjr7e2Nn3/+GR4eHlLv3r1pnz597DewPXoA330nfwWwa9cuevz4cTJ+/HgEBARUfV5yMqDRyD0AwsOB1FTZHeTiIj8xSJKcMXT5Ms57eGDnzp2i0Whku3TpIvbq1YstLS2lJSUlCAkJIU2aNHH8lwhg1apVpuzs7POzZs3qUasBFBoFiiyzQoNAq9XeiI+PX1pUVNS3pKSkVceOHbk2bdpg586d6Nu3L27p5x8+fBipqalM06ZN6c6dO8m5c+ek8PBwcqupSmJiohQSEsIAQHp6utS8eXPm+PHjTHh4OOwuuBo2TE6prDC+7dq1IwDwv//9D4GBgfDw8AClFKdPn8bx48clg8FAWrRoAeLtLVcGOznJnbJcXeWnh6NHgdxcWSNo0iSgdWt4e3sjKiqKadOmDZKTk3HgwAHyxx9/kNTUVJKUlITAwEA0c7CBPKUU27Zt4yRJytdqtQ3iiU6hYaK4ehQaDDzP681m8/hTp04xOp0OZ8+eFSVJwp0aPyqV6rY7Y/r06TAYDDQl5f+3d99hUVzrH8C/Z2YbRYqAIFWwIAiK2JCArBpb7BpN7IlGExPvTczvptwk173jNb2ZbhKT2GKNPUZFLIBiQcAKFhREaSJSpO3uzJzfHwMEFBDRqJHzeR6ehK1nVn1n9pz3vO+56vvNZjOxsrKC0WiEyWTi0tPTAQDffPMNkpKSaFXAbrBaaEwM8I9/AEB1wbTw8HB07doVW7Zsobm5udi+fbu0Y8cOWlhYyO3YsUOOioqqPa9UFbRfegl49VXgzTeVbwM38fDwwLRp07g33ngDjz/+OJ588kkEBQVh48aNVBTF235mV69eRR0VTXfe9olMs8amepiHjiAIS1Qq1TQ3Nze5d+/enG+NblOyLEOWZVRd4e/atQvx8fHw8fGRsrKyOKPRSGbMmAEnJycsX75cTktL4wDA0dFRCg4O5l1dXbF06VJYW1vTp556iri5ud06gKtXIb/1FpaFhcnZ2dnca6+9BpVKBVmW8cMPP4iFhYU8z/P0ueee4+zt7fHrr79Ss9ksP/PMM/VPJ8mysg7QyD0JCxculNRqNQkKCiK+vr7EwcEBaWlpSExMlM6dO8er1WpZp9OhsLCQI4SgV69e6N+/P2JjY+UDBw5899Zbb825k8+caV7YBi7mYfQqgKfGjx+vu7m+DcdxqNk2ccCAAWjbti2SkpJ4URRhMpmwYcMG+dq1a5wsyxwAtGzZUiotLSUeHh7Q6XTgeR4eHh5k8eLFePrpp9GhQ4fqdYKysjKcSk9HaWkp5VJSYLK0xGeffYZnnnkGrVq1wgsvvFD1b6Y6gmdlZdGxY8fWH/R//hno2FFJB/Xza1S1zRdeeIE/ePAgjh8/LkVHR/OUUqhUKurq6sqLogiz2cwFBATA3d2d2tvbk/Xr19PDhw+T1q1bgxAyAgAL/Ey92Bw/89DR6/Xlhw4dGu3u7u7amJo49vb28Pf3R1xcnCyKIuncuTMZNWoUBg4ciJiYGPj7+3OZmZlk8ODBiIqKkioqKuioUaO48+fP04SEBNKzZ0+oK7N1fv31V+ncuXN4LC2Ne8zdnfQ1GHD27Flx7969nLW1NepqCH/kyBG5bdu2XM1G7bUUFCiloAkBnJ2rG8A3RKVSwdvbGz169OAee+wxtGvXDoMGDSJBQUEIDw9HTk6OnJKSQsLCwoirqytCQkKITqdDUlISkWXZdt++fZ/q9frbd79hmiV2xc88rLRVwbgxCgsLYTQauX/961+1qmC2atUKjo6OUKvViImJQUpKCvfiiy8SW1tbODs7EwcHB9nS0pIDlCblV65c4V955RVYjx4NVM6xT58+XfXJJ5/ISUlJxNXVlbRu3br2QLVa3KivumdRkVJpU6MB2rcHCgsBSVJ6AzQSx3GoOSXFcRy6d+/OpaWl1Wrp2KNHDzg7O2PJkiUA4ADgge3RYB5ubHGXeShRSq00Gk2jH5+bmwtCCG4u+Tx79mwEBwfD1tZWPHPmjDRmzBhiYWGBxMREFBYWyhpJoigshCRJ2PfJJ7K7lZVkLcvA9u3KlExlO8vx48dz1tbWZMmSJYiNja3ePVxcXIzi4mJOq9XWPbAVK5TCb1VGjwZOn76zD+MmGRkZ2LRpkxwREUFrBn5CSM3+AOl39SbMI40FfuZhdeHMmTO3T2sxm4HCQvj6+qJv69b47auvcCk9Hfj2W2U3bUICNEuX4oUXXlC9mJnJWyYk4Iv33kP7/v0BAMPKy3m8+y527doltd6zh0wKD+dBKZCVBbzwAhAeDpjN8PDwQLt27ajZbEZCQoK8cOFCJCQk4IcffpD9/f1pQEBA3eN76SWg5nTq7t1Kjn8TybKMX375BWVlZVxISEidK8VOTk4AAEEQejb5jZhHGgv8zEOpoqJi6sGDB0ur0jFrKSsDWrUCMjOVnbAzZgAAQnNz0d/BAb+uXInCw4eVk4KtLeCh9Jk5160bNqSk0PBBg2iL1FQ8//zznMXzzwMff4yMjAzkv/MOUXXrpjznf/8DFiwAfv8dOHQIB156SY6KisKECRPwyiuv8P369cMff/yB0tJS7vTp09z3338vFxQU1O6Xe/w48P33tTN5ZBl4/XVluqcJOI6DVqulgLKZrS6jRo2q+t/DgiCw6VzmFmxxl7mvBEHoExMTM3nfvn2n9Xp9vcXh9Hp9yd69e5MvXbo0vFevXrXnfCQJuHwZ2LULeOUV4KmnlNvDw9EqNBQ5OTk47eEhdQkO5tCyJdCuHQBgzd69strWlhs5ahQhN2ULWVlZcVFRUYiNjUVKSorcokULwnEceGdnJCxfLnX45Re+z9KlxNnVFSAEdnZ2OHDgAMaNG4fg4GDk5OTQXbt2kZiYGCQkJFAnJyfSUqtV1gnat//zjTgOSEsDOnX6s/zDHSguLkZiYiLMZjMJDAyElZXVLY/R6XSIjY2tfDtu+r59+xbp9frbf3timg12NcDcVzqd7kNZlnsRQoIAjGvosZTS30tKSiouXrxo7VOzDaFOByxcqGy0mjZNuarW6arvzs7Oluoq0eDq6sqJoigRQm65r2PHjtDpdLRt27aE53nu999/l0wmE2c2m4mNrS3apqRAt2kTsGULsGYNNBoN1Go1rKys4OXlhTZt2nCAkg6amJhI1q5ejb7duskhgwdzoBRbtmyRkpOTeWtrazp48GDSzmxGfRn9lFJERUVJ169fx1NPPVVrrFu3bqVlZWWkKr20Lmq1Gvb29iUFBQWrZVl+DkCRIAiuBoPh7vpZMvUSBEEHQAOgDMB7AMIBrASQCCDBYDBU1HisHYAWAPqoVKrHRFH8xWAwxN/P8bIrfua+io2NlU0m0yhCiGbv3r18dHT06frSDvV6PY2Ojj5/+vTpwWlpaaKtra3Gzq6y2jDPA56eykLpunXA0KEAIUhKSsLx48e5iIgI2NjYAADi4+Nx9OhRpKSk0B49eqB169Z1xlyO43D48GHSuXNnjBs3jgsPDyfh4eHo3bs3Z2llBbi5AceOAeHh2LZmDaiFhdy3b19Ss1aQWq2Gp6cn2ssybJ57jvzCcTQjIwOpqalk8uTJhOd5cvi336jPzJnkZFgYdXR0JCdOnJBXrlxJOnXqBLVajS+//JJmZGSQ3Nxcrlu3bqi5cFxcXEyuXLkCLy8v6uzsXO9usBYtWmhSU1NtJUn6EkB/tVrtEx4evu7O/8SYhgiC0Onw4cM7ZVn+nOO41yml/wXwGAD3zp07983NzZ0F4J3o6Oj/RkdH/yc6OloCEAlgLoAxsiz3UKvVk/bs2ROp1+uzGnire4rt3GXuK0EQCIC3ACyovGmYwWDYdpvnWAN4y9HR8R8vvfSSda07ZVm58v/8c2DZMohWVli3bp2clpbG6fV62rt3b7Jo0SJcvXoVAwcOlHv37l3vupYkSfjoo49w22JsK1ag9F//wvb586UnZ82qNy9TFkXEHTqEtLQ0DB48uHrRVZZlHImLw+GEBKmkpISnlMLGxoYajUZCKYVarZbmzp3Lf/XVV1JISAjfo0ePWq+7ceNGiKIojRs3rt73ppTi999/L09MTLQAAJ7nP37nnXder/+gmNsRBKEFgLZVPxYWFv1FUQwfNGiQLjAwkGg0GoiiCJ7nqzcEVlRUYM+ePYiPr/uCfuTIkRIhhN+2bVs+x3GfvPnmmx/cj2NhUz3MfWUwGKggCB8A2AvgmsFgONeI55S8//77rv7+/pa33MlxQJ8+QFwc8NlnUL32GiZMmMBduHABq1evJm3atIGdnR11dnaWe/fufUugvHLlCq5cuYK0tDTp8uXLvIWFheTp6dlwkv3kychTqXA1KYnHmjV/rjFUkWXgrbfAzZ+PsLAwhIWF3TRkDiEODgixteXTRozA8uXL8dJLL5HDhw/D2dkZ3t7ePAD4+vryCQkJsqOjI+fi4gILCwsUFBQgJSUFlFK+ql9BXQghGDZsmEViYiIAQJIkVrStkQRB6ASgKyGkvVarDSSE+JrNZg+e53UtWrQob9myJVq1amXZunVrlbe3N2pWUlXd1EVNp9PhiSeewBNPPIH169eD4zjpiSee4IuLi2FhYQFra2ueUgqTyeSwd+/eSQBY4GceTQaDQQIQdyfPEUXxilxfjXuOA/79b2DbNpgmTED8s88iOT+fajQa4uDggPT0dMiyzFdVvawsawBKKdatW0dlWabe3t78E088gYCAgAaDvizLiI6OxuH0dBrRurWM117jodcrO3KrGI2Al5eyaau+41GrcerMGZS2bw+O45CUlITQ0NBajwkNDUVCQgK3cuVKeHp60m7dupHz58/DwsJCKi4u5nNycnDgwAF5xIgRde4jIITA09OTZmRkEIPBkNbQcTV3giDYAxim1WrfsLCw8Pb09JScnJysHBwcOHt7e7Rs2RLW1tYghNz5inwNhBBotdrqb39Vt3l6ekKWZVtBEIjBYPjLp2FY4Gf+Fniet9FqtfWnHxMCDB2KY0uXomztWtpu+HDaddw4otVqERQUhKKiIhw5ckSMjo7mAZAOHTpIPj4+/I0bN8hbb71Fbr5Sq8/ixYvF0tJSfuTIkaRjx448XnwROHIEeP55YM0apSSz2QzMnt3g6+w8exYpDg6wTUiQ27dvT/38/KpPONu2bcOJEyeoSqWiJpOJ69OnD1JTU+nOnTtla2trEhERwZ88eVL68ccfeQBcTk4Ofe6550hdZacnTJhAPv/88wpBEDo05ttVcyMIgp1Go3mf5/lnPT09zT179rTu0KFDvd+k7kZD0+p2dnZQq9VOoigaAPz3nr/5TVjgZx568+fP76tSqZ7xqMzHB4Dz589j3759cmBgIBdSVfSMEKSOHg3/48cRtG0bh8ceA+zsMGTIkKpFUBUAXLx4EfHx8fzu3bslAHxeXh5uLsNQl8TEROTn56tefPFF2NpW9jLXaIAuXZSSywUFyu8REcAff1TvH7hZRUUFjh07hhmlpXDheQ7//Get+xMSEuDq6kpCQ0OJr68veJ5H3759a0Wi4OBgvqioCBcuXMDWrVvJqVOncPNaAKBMNYSGhqoPHjz4AYAxtz3IZkQQhDCVSrXN399fM2DAAK2lpWU926/vDVEUUV8ZEkmSwHEclSTp2F85hios8DMPNUEQPFUq1eannnqqhU6nw9dffy2ZzWZUVFTwQUFBZO/evUhISJD69+/Pd+zYETdu3JBy+/UjSEsjOHJEyaOvzOOv4uPjg8r00AbnyWvKzc3Fjh07MHbs2D+DfpUWLYBVq4DYWKVn74gRSo5+Tg6QkAB5yBCs+PhjsdBs5jSOjpRSyltbW8sur73G3ZzLf/36dXAch6eeegq368Jla2uLnJwc2NnZ0cDAwHozfEJCQvi4uLjBgiB0NBgMZ257sM1HrLOzM0aOHPmXv1FFRQXS0tLok08+WedU4okTJ1BeXr4fwJa/fDBgO3eZh5ggCAE8zx8KDw+3dHNzw9KlS+U2bdqQAQMG8K+88gqGDBlCZs2aBX9/f37jxo04duwYrl69yj/22GMcXnhBmWufN08ph1yPxgR9WZaxfPlyuWfPnnLN3gC3CA8HXn5Z2e17/bqSbfTyy4iKisLAb79VTT10iOvapQv/wpw5GNy+PcGPPwLe3soY8/NRUlKCH3/8kfbs2VO6XdBPT0/HBx98QBMTE+Hn50d1lfsYkpOTcezYsVpF47RaLcLCwjRarfb92x5sMyEIwuMA4OLicl/eb/369bKbm5vcvuZmvkqSJCExMbHEbDZ/YzAY7kuvZHbFzzy0OI57SpKk1nv37qUxMTHw9vbG0KFDuZp58w4ODujbty/s7e3pH3/8QdRq9Z8VK6dMAaytgUOHgIoKZUqmCQoLC1FaWvrnlFJ98vOVwD93rvK7vz8qRoxAwuef0/b79hEXb2/0ohS4dAm+rVsTZGcri8IWFsDQoShq1Qrt/P3pgG7dGlxgPnnyJDZs2IAOHTogIiICtra2HAAYjUasX78ePM/TPn36kJrZRN26deOjo6OHCILAVy6uN2sqlWqSKIqosxHP7QwapFxM1FVOpA7Z2dlIT0/nZtex7lOZdmssLi6OB/D7nQ+madgVP/PQ+s9//vMfKBcnLTmOuxESElIr6NcUFBRE5syZg2HDhtW+Y/RopfftW28pzc+boGXLlnB1dZW2b9/ecMB8/31g+fJaNxUVFUGWZXLlyhXluYQA7u7KBjR3d+DJJ4GhQ3H8u+8Q4+hILbKzOTJrFvDGG8CpU3XW9Klaj+jWrRtxdXXF2bNn6YIFC/Dxxx/D1tZWcnZ2pidPnqRna3zTsbS0hIODg6hSqd5q0ofwiFGr1V0B4E4qwFZ7/31g0aJGPTQ+Ph5Lly6lISEh8s29JSiliImJkZKTkzONRuNIAPaCIHjV/Ur3Fgv8zENJEAQiCEI4gOk8z88HoL7d9IeNjQ3qrJL55JNKoN3W4D6xBllYWJD8/PyG+yZ+/DEweXKtm5ydnTFlyhRUddG6WXp6Oj755BN5565d8JwxA/2+/x5YvFjZG/Dqq8DIkcqUUY2+whs3bpT8/PykDh06IC4uTt6xYwdRq9WQJAkhISH8hAkTODc3N7J27VpUVFRXCsCkSZOsdDrdmwsWLHi5yR/EI0IURW8rKyv89ttvePfdd1FYWIjzt7sw2LULeO89IDhYmdbT65WCgXXIy8vD119/Le3duxfDhg0j/fr1qxVry8vLsXTp0rK4uLgzJpNpASHkOoA8Qsj8e3SIDWJTPcxDRxAEXqvVxmq12kAvLy+uZcuWFkFBQaS6XENTtG+vtD1sgpMnT+LChQtcr1696n/Q888D//d/QIcOt9zl6ekJnudRUFCAm6/64uPj4ebmhvHjx4PneeXEotMpzdojI5WSFGfPKs3a9+8HOA7l5eWws7PjFi1aJBcUFJC+ffsiMjISFhYWNCgoiCxbtsycnZ2tVqvVtdYwbGxsMH36dMvFixe/t2DBgpJ33nnnpyZ9II8AjuNKJ06caFO1l+OLL74gADBz5sw6u6wBUAJ+VZc1Kyvl/wsKgBoF/0RRxObNm+mZM2dI165d0b9/f9y8x4JSig0bNpRlZWWtNZvNL6nV6ovBwcGqI0eOmCilL/01R1wbC/zMw0hlMpl6Tp06la/3H+GdEEWgXz9lbrYRsrKysH79eqmiooJQSmE2mzknJyccPnwYTk5O6NatGzIyMvD7779LRqMRTz/9NN968mSgTZt6X9PS0lLaunUrmTZtWq0rP6PRCEdHR/D1deTq1Anw8QFKSpSNagCGDh3Kr1ixAm3btkVAQACJjo6mXbt2pSNGjOAAoLi4mBs4cCDatGkDjUYDSml1CQF7e3s8++yzlj/99NNX8+fPL503b97qRn0ojxiO4/KMRmNrb29vvPLKK6SsrAxHjhyRV65ciVdeeYWrta+jvFwppf3hh0DXrn/e/ttvwJ49yt8vLy8cP34cO3fulG1tbfHcc88RZ2fnOv9Qk5KSaEZGRpbZbH4BgJvZbHY+efJkGYAnDQbDfemaxoq0MQ8dvV4vRUdHXzx//vzgnj17qu96M83Bg8C//qU0VqlHbm4u9u3bh927d0sHDx7kgoKC0LdvXy4oKIhERESgd+/euHTpEj19+jS5dOkSDh06JLdp04bTaDTEtGoVbTNjBmlop66LiwsXHR1NcnNzZX9/f0IIwZIlS8RLly5x165dI56enremiVaRZaBbt+pfW7ZsCb1ej86dO5MtW7ZIN27c4MaPH1+9gevw4cPU2dmZ+Pr6kl9//VXavHkzd/36dal169acTqeDpaUl2rdvrz5x4sTQvXv3noiIiGh2G7tiYmLmh4aGWlW16awsrkeSk5PpmTNnaJcuXf6c1iMEuHFDCfo3rzFNmICyggIsPndOOnXqFDdo0CAydOhQUrMzWk2FhYVYtWpVhdls7m8wGLKjo6OLAMyTJOmf9/MkzAI/81CKiIg4ERMTM6NNmzb29QbExtJqlYyemqWdKx0/fhyrVq2SDh8+zGm1WsnPz48fMmQIOnXqRGxsbNCiRQtoNBoQQuDm5kYKCwulFi1aUBsbGwwbNoyzJoSoFy2C84wZJPXiRRQVFaFFixa3pIna2dmhrKwMJ06cIJmZmbK/vz+JjIwkU6dOJXZ2dvLmzZvJoUOH5LKyMtK2bdvag/y//wOuXKkV/KuoVCouJyeHZmVlyZ07d+YAwN7enouMjERMTAwpKSkhM2fOJCdOnMCuXbuIm5tbdfkBHx8f9cmTJ0fu2bMnSq/XZ97dh/z3IQgCJ8vye48//jhX85sWIQTt27cnu3fvJlZWVsoi+q+/KsH+8cdvCfqyLOP3Vq2wpaAAHdzd6YSpUzkPDw/Ul4AAAPv37xczMzO//89//rMMUCrQ6vV6ISIiIuEvOtw6sake5qEly/LutLQ0bw8Pj4YXVW/n22+Vhbib5OXlYdOmTRg8eDAXHBwMtVrdYBqlk5MTalXEpBSW1tZYO3IkifziC8lsNvMcx8FkMsHPz08aOXIkn5qaig4dOqCsrAwnT56k/fr1IzExMdx3330nOzk5wc3NjXh4eHAdO3ZERkYGt337djpgwAAiyzIOHDiApKQkSe3riwmjRvF1rXAEBwfjxIkTtOaJxtfXF2+++SbZvHkzPDw8iLOzM8LDw7m1a9fW2hTm5uaG0aNHW27cuHGbIAh+zaheP89xnLmiooK/eSetjY0NRo8ejY0bN9K2bdsSW52u1hx+lZSUFPz++++ypaUl5uTmcjarVvEYP/62b5yXl1duNpvva+39urDAzzy0TCbTF/v375/UqVMnSwcHh6a/0B9/AL1733Jz1eLnjh07SHp6uhwQEMD5+fk1vk7LiRNwffllzFizBvn5+Xz79u2hVqtx8eJF/Prrr/zZs2fB8zxkWaYcx6F9+/ZyWFgYf+nSJTkjI4N77rnnqt+rZcuWyMvLA6CckOLj45GcnEz1PXrw+YsW0cSOHdGvX79bhnD+/HlkZWVxc+bMueW+qh2pJSUlWL9+PR08eDBuruHv5+eHjIwMm6SkpI2CIOibSY4/x/P8tdzcXPe6MsU6duyIrq1bywf/+U8y8JdfuJp/H4qLi7FmzRrp2rVr/OOPP066detGuOJipbdyI5w7d64FgP8BWHGPjqVJ2FQP89DS6/V50dHRNy5evNgnODhY06S5fpNJSYkMCrrlq7pOp4OVlRUkSaKyLJO4uDhiZ2fX+N2cLi7AuHGwtreHk5NT9QKtnZ0dvLy80Lt3bwwYMABt27YlDg4OpG/fvhzHcTh9+jS9fv066dmzZRzobgAAIABJREFUZ62Mj5YtW6KoqIju3r2bZmVlYezYsSTA1RVZy5eT/SoVDh48SI8ePSq3bduWq2q5uHLlSqlr166cXwMZSykpKcjIyMDYsWPr/Obk4+PDp6SkOJSUlGTp9fr7UivmQREEwV2r1e718fFxDw8PV9c3LeOlUnHZkZE4aWkJX19fIssydu7cic2bN8Pd3Z1OnjyZa9OmjdKER6dT1gAGDgSmT69ehL9ZRkYGjh07BgB2er1e+OuO8vZYHj/zUJMk6evi4uLDu3fvrrNL121FRlZ356pL9+7dMWXKFMLzPCwtLeHl1cj9M1FRwE8/KWl9NyGEoE2bNnB0dAQhBK6urujZs2f1ieHy5cuYOnXqLbV4OI7DgAEDOFtbW4SHh6Nt27aAiwvsFy6kTzzxBH3mmWdIx44dyeLFi6s3BKhUKv7o0aO4ePEi8vPz6xyqi4sLysvL650u4zgOoaGhVjqd7tnGHfzfl0aj2d+7d+9O48ePt6x3Ln7LFqh9feH37bfk1KlTJDo6Gp9//rl89uxZOmnSJDz55JP8Lb2OPTyAgADlQuMmsizj0qVLWLZsWdWdo+7tUd05FviZh5rBYKBGo/Hpo0eP5m/evLnCaDTe2Qt4eCiLo7fh5OREtFotbfReAW9vJdXyDpWVlaGiooKrr1SATqfDzJkzubCwMOVq8qWXEHjtGgkODiZOTk4oLS0lsiyTTz/9VF64cCFu3LgBGxsbLF++HF9//TWOHz9e6/WuXbuGVatWUR8fnwancNq1awez2dyzssvUI0kQhBaSJLmGh4er6g36oqhs9LtxA87OzujVqxeNjY1FSEgImTNnDqn3wkClAn75BVi2TKnTVMPp06exZMkSyLKcB+BDQsjT9/bI7hwL/MxDz2Aw5JnN5o7Jycnb1q1bV3q7xxcWFmLlypVITU1VauX36oXi4mLU28gFQL9+/VBSUoLk5GQUFBQ0/AanTgF2dsDtavfUQafTged5lNWz47OmPXv24Ld27SQEBwMAzpw5g1OnTpFOnTrRYcOGcV5eXtK4ceMwe/ZsvPHGG9Dr9di0aROSkpKqXyM+Ph5FRUUkNDS0wYVrnU4HNzc3I4DBd3xQfx/+dnZ25fVOGZ4/r9Rb+v57oHKjnY2NDWnZsqX82GOPkXr3WlCqXOl/9JGS73/TybdqLwql1A3AG5RSFvgZpjEMBkOxyWR6Lj09XVVcXNzgY5cvXy6Vl5fTdevWofCtt/DbDz9IX3zxBb766itJFMU6n8NxHOzs7KTff/+dLl++vOEOSH/8obR6bAJRFKFSqWhmZv3Zk1UZPYejopB37hy/JToaAODv7w+NRkNPnTpFTsfESMMGD+a91Wrghx+g27ABEQCsra2R/d//InrLFshZWRgiinBycpKu7twJmpqqvEFsrNIspqgIuHhRuS0vD0Ft2thotdpJTTqwv4cAFxeX+k+Au3YpU3g11Nz8VktFBXDyJJCYqKwf/fyzsmt75UqlH0MNDg4OGDPmz1YIHMf95+4O4+6xwM/8bRgMhkJCyLtLly4tu3DhAgoLC6vvKy4uRmJiIn744Qe5uLiYj4iIIHNfeQWnv/xSth84kLz88sto0aIF+emnn+qO/ABmz56t6tGjB2moUxJkWbmqGz78jsdfXFyMTz/9lDo6OlLnmq0aAWDJEqWu/88/4/Czz9IrK1ZgqosLnszKgnHzZtlkMgEbNqBrYiJGjhyJngsW8Mc2bJBBCBAdDWzZAqhUmDZtGvycnHAwLg5rf/pJxunT6NGjB5+/fTvd+/338sGDB2F+910lcMXGoroJjF6PgI8/hiiKAwVBaHnL4B8BKpUqrHXr1rcuylCqlMV48UVg0qSb7qoR+MvLgRUrlG8Gjz8OPPusUgrk55+Vkh2jRgHDhtW5uHvp0qXqokmyLD/w3dIsnZP5WxFFcUFhYWHOihUrfgCAiRMnIjIyUiooKOA1Gg2CgoLw9NNPw8bGBli6FI+tXs1h+3YAQEREBLdp0yYlqsuy8lNYiPSLFxFz8KBsvHiRlFlYkNG9exNERiqbvmJilAVcJyfg6FHgxx+Vq7qOHe947AkJCVCr1ZgxY8atkeHkSWDmTMDODlp7e+JKqez2zTccnTsXnb//njt16hSCO3fG1SNHJE+eV+HAAUQtX07kK1dorxUriDx6NDIzM3GisFA+7uPDaTQa2W/AAA5duqAHgOIffyTLFi4k+ZGRaGk2U9/Llwk6dwY6d64aHNQ6HXrt2sXFx8efff/991/597///WsT/5geKoIgqDQazUILC4vxnepalzl/XtnZvWXLLUkAlFJ02rcPyMhQyn788ouyETAy8s/8/jo21t3s7NmzNa8m7qpv773A0jmZvxW9Xo+IiIjE6OjoRQDSkpOTw0pLSy26dOmCsLAwBAYG/rld/vx5pUzyhg2AlRX4//s/2GRmEteVKwl97z2Qjh1Bhw9H6erVsHV3R9+UFNLeywuuCQkgsbFK4F++HCgsVApypaQoVTPDwurNEqpPcnIyoqKiMH78eGJvb3/rAwYNUtIBn3kGnIUFNvv4kMs+PpIoy9yRfv0kURS5jqGhOHDunOzo6Mj5+fnBw8ODbNmyhVQYjdhnYyMH/PvfZI+DAxn21FMYOXIkcXF2VqpJhoYi8sUX5cATJ0hpeLjcc8QITtexI9CqFdC/v/L+ubnARx+h7cyZKhsbG8tz58712bNnz6d6vf4vb/z9VxIEobVWq93m4uLyxLPPPmt5S95+Tg7g5QVMmPDnn2lFBZCQAMyYgWJLS3CnTqF1ly4EEycC06YpCQP1tFCsj5eXl/rKlStyeXn5/Hnz5v12jw6vyRr+WsswDzlBEDQAntbpdGNEUQzq3Lmz55AhQ5Tm6ZQC8fGAjQ3g7o743btx9Px5yb9LFz724EG069ABFy9ehKenpzRp0iS+oa32d+Py5ctYvnw5RowYUXfZ6IoKpf7+F18AeXnYu2wZioqKZF8fH87yww+xato0UErRq1cvJCUlScOHD+c7VFYBTU1NRWRkpNSqVSt+1JUr4DduBBkzRuk+9vrrwKefAjNn4vOffpKGDh1a/bxbFBQA+/YBo0eDUopffvmlNCsrS5YkqYfBYKi/hdlDShAEHSFkGs/zn4SEhGj79u17a80nSpUT37ffKmseXl7AgAFKCe+lS4G4OBx0c8PJixelWbNmNbg43hhff/11cX5+/hMGg+HA3b7W3WJTPczfmsFgMAFYBmCZIAh+ycnJS0+ePNnZ39+f9urVS9e6Z08AgMlkQrG1NQpMJv5QYiL6DxiAgwcP0l69etH+/fvf9T/qhmzdulXu0qULCQgIqPvMIknV0wWFajVOmc3ytMWLOZt//Qu4cQNvvPEGUlNTsX37dmo2m3lLS0vg2DHA2RntHBzQ7pdfeBw5oiw6e3srm4lefVV57cpUVp7nqamOHPNq9vZK0xoo+xCeffZZq8jISHNCQsIsALfPh31ICILgyHHcGgD9KKWYPn16deOaWsrLgd27lTWO/fuVk+7PPysZPR06KNM47dtD2r+/wdo7Dam5PlBRUYHCwkIdgAdergFggZ95hBgMhhQAPQVBcD958uSk5OTkdwYMGGDZvXt37sCBA9i/fz8mTpyIqr6nvXr1IuSvuswH8O2338pFRUWEUsoZjUY5PDyc2NjY3PpACwvIkyeDA7B69WrJ2ceHWMTEKMEnPR3k9Gm09/VFqa0tMf72G+zmzFGuSMPDlZ+VK5XXGTpUOYHcVF8mOzsbJSUlqgaL3R09qgTBymwlQgiysrLUZrP51fnz5z9NKR1tMBiO3MOP554TBKEdgPNVabuvv/46qiqWVhNF5bP79lsldXPmTGV+v54dt/Vm9TRAlmXs3r1brKioEIcPH64DgEuXLkGj0Rx7/fXXm7YR8R5jgZ955BgMhisAPhQEYX1UVNSuffv2eRmNRvLEE0+gZrPruy73fBvXr1/nbG1tMWrUKOzcuRPR0dEYXkc2UOEbb+DEsWM0adgwuaSkhB87dizUTk5AWppSHfLUKeDHHxGdng5LX1/0sLQE3n77zxeo2cDbxUWZOpo+HfjqK8DKCjt37qTt2rWjHh4etxxwRUUFtFotSHCwMtVTw4QJE/Dhhx+CUuoK4LAgCOA47kNZlk0AzAAuAlh1vxqEC4KgA9AegC8hxE+tVrcxmUz/BdAFwFYAIISkA3DUaDTqkpISbXXgv3QJ2LpVaWyTmgqEhgJffnnbtZo7DfxXr17Fd999BwAqOzu7MgA6SimOHDlSbjQaN9zpMf9VWOBnHlkGgyFVEITOAGI9PT19e/Toobvb10xNTcWZM2dQUVGBTp06oaEaOdbW1mL//v1VHh4eCAwM5I4ePSoB4E0mE9atW0dzc3PliooKntraot9bb6GjyUSOHj2K0tJSODk6KtM2Z84oGUUAiL29nAVwkiQ1fNLS6ZTUQp1yuOHh4WT16tVk0aJFsl6v5zrWyEhavHgxValU9IkePTjPkpJaOeg6nQ4TJkxAYWEhtldmRoWGhr5RVXju/PnzZQUFBW8JgjDMYDCk3cXHWidBEAjP899qNJogSZI6A7C0sbG54eTkRK2tra2OHz/OA5he4ynTKKVbAJiMRmPpt99+i3mhoSBr1iib7YxGpZOZgwNQWtqoBfo7DfxXrlyp+t+DRqOxC6D8ncnMzMyWZXlho1/oL8YCP/NIMxgMNwRBGJeWlnYuPj5e7tGjR5Mv82VZxpo1a+Dt7S2p1WqyadMmUlJSQlJTU2leXp5kbW3NW1lZEScnJ3To0AGWlpZ8Wloa9ff3J23atMGePXs4WZYRFRWF/Px8DB06lHd0dAS/ZQvsevYksLIi9vb2dNWqVRiZk0PyL12S7Rcs4AKcnFBQUAA3NzdOrVbLarX69scwYgRw+DBQWIi2gwZhxIgRuHz5Mrdp0yYMGTIEp0+flgDAzs6O5OTkcDuXL6dhly/DLyKiVpSrWgzuWblWUgPp27evVUxMTMf9+/ef/Oijj1JEUdxqNpv/ZzAY7jpjRBCEdhqNZrnJZArp0qULysrK5NTUVNqyZcsWsizX6iUM4OPKn0Ke5zdZiGJ3z7Nn6eOSRMj160qRvscfBy5fBmbPVkoy1NMo5WayLDcq8JeXl6OkpATp6elmrVYbA6AkKChIBwD5+fmglO4xGAx3WG/kr8MCP/PIMxgM5wVB8Nu1a9c+GxsbZ19f3ya/liRJGD9+PK9SqXDgwAE5Li4O7u7ucp8+fVSFhYW0qKhIio2N5WNjYwGAZGdnw9HRUe7Zsydnb29PP//8c2I0GjFx4kTSpqpV4+HDSkN4AD179iSlpaXy5shIEjR8OBe3bRvNyMggx44dgyRJkGWZq9z925jBKj8AAgMDERgYiKtXr0q7d++Gt7c3f+bMGVBKMX78eLi6upLPPvsMc0tLcUsBsnoQQhAREcEFBQVZ5eXldd+2bZt/UVFRKoCVt3uuIAjhAJZrtdpjHMdpCCHWZWVl4QBgYWFxRq1We4WHh2t2794NNzc3eHt7c3Z2dpBlGSkpKdTFxYVMnjwZK1asAIDXALxmf/06/E6fRkCfPnCxsQGZOPHPbzCUKlNijZjeqakxWY9GoxFffPGFEcA1juPSjUbj0yqVasTRo0f1ADSSJKlNJtNtOrnfXyydk2k2BEEI02q1kWPGjLHw9vbGzU04GmPBggWYO3dug8GxtLQUPM8jPz8fixcvho+PjzxlyhQuNzcXu3fvlvr168fXW/r52jVg9mzIK1aAaDT46quvqCzLdOjQoZyrqysuX76MjrfZPJaZmYkNGzZIQUFBfHhYGLB9OzBkSK2AJ8syPv30U7lLly7cwIEDgaQkHJk3Tz41ejSmTJnCNeWzyczMxJIlS26IotjBYDDk3Hy/IAhWAAxQAjUAoG/fvmjZsiXUajVWr1Y2tE6fPh0ODg6wtLRETk5OrZLXALB27VrRwsJCNXz4cFxITUX8okXyUxUVnJlSlHl5wXbCBBAPjz/fWBSVNM1Vq5Q1kDuwe/duXL58WXrmmWfqzfzav3+/vH///q1vvvlmraqbgiC4AqiqzRFkMBiO3/rsB4MFfqZZWbBgwVS1Wj3XbDb7e3h4GP39/Vv4+fmhvh6pgFJR8/Tp00hMTJQKCwv5uXPnQtNAf92aZFkGpbT+Zuqxscou0P/9r+oJSnphnz4AgB07dsinTp0iY8eOJd7e3o16z88++0wyGo18ixYtpDkvvMBj5kyY3n0XxRoNHB0dkZ2djWXLllFra2vMnDmTaDQaICcH4pkzWHj0qNytWzcuIiKiSYvfUVFR5qNHj0YbjcYnAMgA2gIYqFKpnqaUdpckSQsAo0aNgre3N2pmOZnNZhiNxgb/LABg1apVor1GoxosispC9s8/A7NmKZvrbv4mRKlywjtzpkm7raOiopCZmSlOmzatzq9YWVlZWLZsWbnRaOxpMBhO3Xy/IAgUAAwGw1+WPdYUbKqHaVbeeeedqpx/+/T09EHZ2dnjIyMjh/j5+dHQ0FCLuq7Ef/jhB4kQwrVt2xZTpkxpdNAHGpE55OcHVKVZfvKJsqGoMugDSpkJURSxatUq2rt3b/Tt27fBAFJYWIiSkhL+scceQ1JSEjHJMnaOGUNP//ADsSgthdHJSTabzVxISAjt168fVz1/7eQElaMj+lhactu3b0dMTAwcHBxkd3d32q9fP77ONNQ66PV69ZUrV3pnZmYWyLKssbCwMFpbW6vy8/N1c+fOhUqlgkqlqvNEqFarb/8tLCcHXdev50uKi6nUowfhR44EoqMhiiJiYmJgNBrh6uqKwMBA5bN//XVlumfYsEaN/2YNLe5SSrFixYoKk8k0u66gX+l1QkhhPfc9MOyKn2n2BEFw4Hn+BY7jXuU4zsLR0dHk5uZm6e/vr/b09MSHH35Ix40bR2xtbeHg4NDkDT11ys5Wskw0GmDHDiUPvzKLp4rZbEZiYiJ2796N8PBwuLm54erVqwgICIC1tTXWrl0r5+bmyrIsIzQ0VLVnzx46fvx4EhsbK+fk5ECWZe4Fe3vYXLyIrH/8Azqd7tbj2LRJSR1dtw55eXkQRRGZmZk4evQo1Wg08vTp0+9ok1tRUREsLCyg0WggiiI++OADzJgxo+7NVADS09Nhb2+POvcaUKqsg2RkAP/5D0zTp2OttbWcXVaG0aNHc+3atcPx48exbds2eHl5SVevXuUqKioQHh5OOllbw8LdHTpHxzsZfrXIyEjk5uaKU6ZMUQFAbm4uzGYz3N3dcerUKWzZsiXXbDa3vhcL2vcTC/wMU0kQBALAHYA/z/OhKpVqKgBno9FowfO8ieO4G61atdKNGjXKyrGJgeQWU6YoG69KS4EZMxp86JEjR+SEhASUlJRwWq2WlpSUwNraGqIool+/fqSkpAQxMTEAlBx8Dw8PrF+/XurcuTPvVzXNUV5eZ/Pw+iQlJWHv3r301Vdfvauz3eLFi2Vvb2+uf1VtoBrOnj2LNWvWgOM4WFlZSU5OTmTy5Ml/flWaM0fZbDVqlLIIzvMwGo345ptvcOPGDQCASqWCt7e3NHHiRB4ALi9ejKsrVmDnwIEQRREvvfQSmtK3eefOncjLy5MmT57Mnzp1Cps3by4mhIg2Nja2BQUFoizLvR6mufvGYoGfYRogCIIfgDkAPgOQzvP8HJ7nP5g1a5burhrA13ThgnJFO3Fio59CKcXnn39OjUYjmTVrVnVQy8rKgoWFBeosBCfLQI8ewMaNgKdn7fsuXgSuXKk1zWQymbBw4UI5LCyMhIaG3lXgX7p0qZyTk0MmTZpE3N3da923Zs0aaLVaacCAAfy5c+fwxx9/4O2aG9ScnZXOVoMGAVC+HaxevZoajUYCKNNp06ZNg7Oz8589jMvLgcxMoF07fPjhh/Dx8TFbW1tXBbtbNmzf9DsBQCvfiy8vL4e/v7+cmZnJZWVlfSWKokGlUq0GEPn2229/fjefy4PC5vgZpgGVZSBeqnHTFwsWLJBXr179/vPPP2/VqLTK+hQWAi+9BCxefEdBH1AClSzLdMyYMaTmCaiq21OdOE6p3W9t/eeiZ5XcXGVXa43Af/bsWUiSxIXc1GmMUoqUlBQUFxfLISEhjVoBnjp1Krdz5075559/Jr6+vhg+fDgsK7955OTkiHq9XmVlZQUXFxeo1WoZNXuF5OQAhGD79u305MmTVJZlzsrKCrNmzYK9vT3mz5+PnTt3YubMmUpW1OTJyi7ddu2qXsGYnJz8IYCiqo/v5o+zgd+tATgePHjwUuXvOw0GQxGAIY057ocVC/wMc4ckSfr6xo0bg3/++eeI4OBgi+7duzdtU1h5uRLUzGbg5poyjVBWVsY1NtOnmrW1kkW0aZNSr6ZK797KTw2dOnXC9u3b5bNnz3J+fn6glCI+Pp7Gx8fTa9eucRqN5paTQn0IIRg0aBDn5uaGQ4cOyUuWLKEvvvgiX1FRgdLSUlVVL1utVgtJkmp/nv/8J07pdEiytydPPvkkadeuHTiOqw7OY8eOxfbt23Hy5EkEBgQAH3xwc9lkCcCPlaU8GLAOXAxzxyobwI/Izs5+MTIyMicuLo5KUoO9zOvWurVSIbKRGTN1adJUbXg48O9/175t+3bg89qzFhzHoXv37tzOnTtpXFwcli1bJu/ZsweBgYGcp6cndXFxke/k/QkhCAwMxIQJE7iCggL+0KFD+OKLL6i3t7dUtahbtUnr559/FmVZhizLSLp8mV7IzsYzzzyDDh063JIpFRAQgJYtW0otZs9GeVKS0grxVmxOuwbWiIVhmkCv11O9Xn98z5492zIzM0Pi4+PtrKysNK1atbq3WT8NOHbsmFRSUoJ27drd2Ruq1crJ5h//ADp1UhrHW1gAbm5Kc5YavLy8kJGRgUuXLlEnJyfu6aefJu3bt4efnx/Zs2cPVavVcHd3v6P312g0OH/+vHz8+HHSrVs3jBw5sjqtlBACf39/xMfHk6tXr5KdO3fKee3bY+TcucShnowgAKCU0pMlJdiRkYH2vr6k5l6AAwcOmEVR/FKv19+4k3E+yljgZ5i7oNfr88PCwn7ctWvXwbS0tC7nzp1r0bVrV839CP5WVlbckSNHEBIScudvRohyAujYUfmvWq2cAG7ao0AIQUBAAOnevTvp2LFj9R4GlUoFV1dXsmXLFlJSUiK2b9/+jmYPOI4j58+fx4QJE8jNufuWlpZwc3Mj0dHR8PHxkSfExfG6RYuAZ56p+8W+/hquhYWc/6uvkrz8fDkqKoqEh4dXfyaVgf8rFvj/xLJ6GOYeEQSB02g0CTY2Nm27d+/eIiAgoNF1b5oiNzcXP/74I6ZOnQrPm7N0GuvCBaUGf0WFUq74ww/v6OkZGRlYtmwZevfuDWtra1haWtb6sbCwgFqtrv4WJEkSDhw4IMfGxnJBQUF06NChtz9pZWYqzWXq23mbWVkVoXJ/w3fffQc7O7tiSilEUeRKS0stAbQyGAz5d3RwjzAW+BnmHhIEQQWgv1arfV4UxSGenp5icHCwta+vb5NqA93Orl27EB8fD39/f2n48OF8vaUh6nP5srJxbObMJo9h//79SE1NRUVFhWQymagoikQURSJJEieKImRZBs/z1YXl1Gq1PG7cOK7RJ6srV5QF6enTa99+/DjwzTfADz9U32Q0GrFu3bqK9PR0lSRJbwDYDKDYYDDkNfkAH0Es8DPMX0QQBGsAo3U63WxRFIP9/Pzkrl27Wnh5ed3TJjBFRUVYvHixHBAQQAcNGtS0NpKLFinpj48/fs/GVUUURZSVleH69etYunQpZs2aVe8O3jrt2KF0Bzt3rvbtRqPSpKaybWVNlX2Ob4iiOGHevHnb7vIQHjks8DPMfSAIgivHcRPVavULlFI3JycnU/fu3W0CAwPrL+B2BxYvXiz7+PiQfv36NW1xYfx4ICxMCbB/keTkZKxbtw5vvPEGdLq76IlTUaHse/jllz/rHNXh/PnzWLt2bbkoinMArK/Mv2fAAj/D3HeCIHgA6KZWq/9nNpsDnn/+edRbprmRPv74Y3n8+PFcVT78wyYjIwNr1qyR3dzcaFVZhUYzm5UG6Bcu/NkXNzZWSUu9jUOHDpl37typ5nn+mCRJ70I5ATT7oMeyehjmPtPr9cV6vf7Mnj17lnEc1y8xMdFVrVaDUko0Gs0drQWkp6djx44duHbtGhk0aNA9+fbwV9iwYQNat25NnnzySe6OM554HkhKUmoavf22sgntscca9VR3d3c+JCQElpaWLvn5+UMppW5hYWF/NOEQHinsip9hHjBBEHpqtdqXCSHdTCaTt0ajEZ2cnERXV1cLZ2dntY+PT91VKwF8//33yMnJwcyZMxsu1/CAff/997RDhw6kb9++TXuBzEzA0VGZ0+/QAWjR4o5foqKiAl999VV5WVnZGIPBsKNpA3k0sMDPMA8RQRA4AJ4AAgghAVqtNkQUxQGurq6yKIoYM2aMdVVtnl27diEpKQmTJ09+qIP+lStXsGzZMsyePbvu4nGN4eAADB8OLFlyV2NZtGiRlJubawTgYjAYmm1ePwv8DPOQq8wOGsZxnJdWqzU899xzFmVlZdi0aRN8fX3pgAEDHmh3J0mScPjwYerr60vqqlh6/PhxREVF0VdfffWWqpiNFhenTPn06nVXY01MTMTWrVsBAISQNymlHzXHOX8W+Bnmb2TBggUv8jy/UBRFtaurq6TX6/m2bds+sPEUFRVh9erVpdeuXcsURbGDvb19uaurKxk9erQuLy8PrSpLQHz00Ud04sSJpMkbze6xuLg47Nq1CwCcDAbDtQc9nvuNLe4yzN9Inz594vfu3avRaDRuJSUl1jk5OaVHjhxRXb9+nWvbtu19qxMEAMXFxfjuu+9QVFSkkWXZAQAqKirUeXl5KrVajXXr1iEjI8NoNBpVly5dgr29PfGo2QT9ATp+/Lick5Oc6x9MAAAE+UlEQVSTbjAY3n/QY3kQ2BU/w/xNCYLgAsAPwB4ACAkJkcLCwvi/skwEoDSQ379/vxgdHU04jkvlOK7cZDJVl8RUq9VZZrPZBTWq/6pUKnTq1In27t2bODs73/MxlZeX39Hjly9fLufk5CTNmzev+z0fzN8AC/wM8wgQBMFXo9G8ZTKZps6ePbt6iuVek2UZq1evLr906dJpk8k0BcDZ+ubIBUFwArABQBiglHmWZRlz5sxpUhvE+sTExIjR0dGUEGJu7HMkSbIkhLwxb968j+7ZQP5GWOBnmEfIe++996okSe+pVCrZ0tLS3KJFC2pjY6OytbXVOTg48IGBgXdcM8hkMuHixYtITk4uP3v2LCGEpBiNxr6N3Qlb2ct4AIAVAJyCg4OlIUOG8HfVvaxSYWEhvvnmm3JRFP0MBsOl2z+DAVjgZ5hHTmWhOEcALjV/tFrtAI7jQvr27WsRHBxMGtrsRSnF6dOnkZCQcOPy5ctajUZzvKKi4ldK6RaDwZB2F2Pz1Gq1P2q12rCRI0da+vj4NPWlAAArV64sS0tL+/jtt9/+7129UDPDAj/DNCOCIPTQarWfq1SqoJ49e1p6enoSNzc3UEqRl5cHSimKi4uxZ8+ekpKSkgyj0bgAwHaDwVB4L8cxf/78YSqV6qdOnTrZDB06VNeUq/8LFy5gzZo1OWaz2dtgMFTcy/E96ljgZ5hmSBCEMLVaPZ7n+QEmk6mtSqWSCSHZHMdVUEpLjEbj+5TSjX9ljrsgCC20Wu0aW1vbPpMmTbKyuYMWlJIk4csvvyy9cePGhHnz5m39q8b4qGKBn2GaOUEQLAD4AEi+35uZBEEgKpXqLZVK9fZTTz1l0aZNm0Y978CBA1JsbOz+yrUGFsTuEAv8DMM8cPPnzx+gUqk2jB071trX17fBxxYXF+Prr78uN5vNXQwGw/n7NMRHyr3rBsEwDNNE8+bN22U2m/uuX7++5Pz5hmP5jh07ygF8zYJ+07HAzzDMQ8FgMBw1m82Pr127tmTr1q1ydnb2LY8pLS1FSkqKzmw2f/YAhvjIYFM9DMM8VARBaAsgFQDGjBmDwMDAWvdv2rTJeObMmT1Go3Eom99vGnbFzzDMQ8VgMFwAYA8Ae/fuvSWwh4aGak0m02AAHe732B4VLPAzDPPQqdw30Lq0tPRydHS0WPO+pKQkEcAXBoPh7IMZ3d8fC/wMwzyUDAZDjslkComLi8uOiYmpDv4XL16soJQeeZBj+7tjgZ9hmIeWwWDINplMvfbv359TFfzNZrOMyjUApmlY4GcY5qFmMBiyzWZzr/379+fGxsaK1tbWBID7gx7X3xkL/AzDPPQMBkOW2WzuFRsbm5uTk1MOYPeDHtPfGUvnZBjmb0MQBFsAosFgKH3QY/k7Y4GfYRimmWFTPQzDMM0MC/wMwzDNDAv8DMMwzQwL/AzDMM0MC/wMwzDNDAv8DMMwzQwL/AzDMM0MC/wMwzDNDAv8DMMwzQwL/AzDMM0MC/wMwzDNDAv8DMMwzQwL/AzDMM0MC/wMwzDNDAv8DMMwzQwL/AzDMM0MC/wMwzDNDAv8DMMwzQwL/AzDMM0MC/wMwzDNDAv8DMMwzQwL/AzDMM0MC/wMwzDNDAv8DMMwzQwL/AzDMM0MC/wMwzDNDAv8DMMwzQwL/AzDMM0MC/wMwzDNDAv8DMMwzQwL/AzDMM3M/wMwwXBq1UcrRQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", + "f,ax = w_knn1.plot(gdf, ax=ax, \n", + " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", + " node_kws=dict(marker=''))\n", + "ax.set_axis_off()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The two components are separated in the southern part of the country, with the smaller component to the east and the larger component running through the rest of the country to the west. For certain types of spatial analytical methods, it is necessary to have a adjacency structure that consists of a single component. To ensure this for the case of Mexican states, we can increase the number of nearest neighbors to three:" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "w_knn3 = KNN.from_shapefile(pth,k=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAADrCAYAAABuBv24AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXdYFFfbxu8zM7vAgggIqIiiWFGxodhl1VhjLDFFY0nypWhMNcXEOpmYRPNG86YZo0ZNjMZEjRp9LbFQVLCX2FBARUEUKdK3zpzvjwNKWWAplsj8rotL3Jk55wzoM2eecj+EUgoVFRUVlZoD96AXoKKioqJyf1ENv4qKikoNQzX8KioqKjUM1fCrqKio1DBUw6+ioqJSw1ANv4qKikoNQzX8KioqKjUM1fCrqKio1DBUw6+ioqJSw1ANv4qKikoNQzX8KioqKjUM1fCrqKio1DBUw6+ioqJSw1ANv4qKikoNQzX8KioqKjUM1fCrqKio1DBUw6+ioqJSw1ANv4qKikoNQ3jQC3jQSJJEAOgAeACoU+jLA0AdjUZTn+f5+hzHecmy7GIymcaJohj9AJesoqKiUiUeOcMvSRIPZri9in15a7XahjzPNwDgTSmtI8uyKyHEhRACrVZrdnJysjo5OVFnZ2fO2dlZcHZ2dtDpdJxOp8OlS5cQExNzAcDVB3d3KioqKlXnkTL88+fPX0UIGS8IgsnJycmi0+kUFxcXzsXFRePq6uqg0+mIs7MzdDrdnS8nJydoNBqgjJ/FqVOncOXKFdlsNh8CoNy3G1JRUVG5BzxShh+AU0hIiBISEuIIwLE6BlQUBdu2bUOjRo24vLy80SkpKWO++OKLKKPRuBbAdlEUk6pjHhUVFZX7BaGUPug1VBuSJPkLgnB24sSJTg0bNqyWMbds2UITEhLo66+/zgFAXl4e4uLiEB0dnXvp0iWB5/lrFovlD1mW/wJwQhRF9Y1ARUXloeaRMvwAMHfu3FE8z68cOXJk7datW1d5vC+//FIZNmwYFxAQUOKYLMtISEjAxYsXLefPnzcaDAaZ47htJpNpPYA9oijmVnkBKioqKtXMI2f4AUCSpOdbtGjx/dixY12qOtby5ctp48aN0b9/f1Leuenp6YiJicG5c+eybty44aDVao8bDIbfAPxPFEU1KKyiovJQ8Kj5+AvYe+XKFU1CQgKq6vKRZRkODg7lGn0A8PDwQLdu3dCtWzdXk8mES5cu9YiOju4QExOzYP78+TesVutvsiz/CeCUKIqP3hNXRUXlX8EjueMHgE8++eQ1QRAWjho1yqlVq1YgxC7bXYK5c+fCw8NDGTFiBOfr61upMRRFQWJiIqKjoy1nz541m0wmIyFkg9ls/gPAflEUrZUaWEVFRaUSPLKGHwAkSRokCMKqQYMGeXfu3LlSY6SmpmLdunWWjIwM0rRpU0u3bt2c6tSpAxeXynmRKKVISUnBhQsXlDNnzuRkZGTwPM/vMJlMvwHY9bDHBSRJqgdgbP5faTl/AgAp5fujAA6pwXAVlfvPI234P/nkk2WU0pcnTJgAf3//So9jtVqxZs0aOTExMVKj0XhZLJbGvXv31vTs2VPgef7OeQaDAU5OThUaOzMzExcvXsSZM2eybty44aDRaA4ajcZfAWwVRTGl0ou+R0iS9KK7u/viZs2a3THitNA/ovxvixj+4m9biqLg8uXL5ry8vFtms7n9w/6wU1F51HhUffwAAErph4SQ593c3DRVGUcQBLRu3Zq/efOmedq0aa0lSWocFRW14sSJE8GjRo1y9vPzQ05ODhYuXIjOnTubu3fvrvXw8LBr7Nq1ayM4OBjBwcGuBoMBsbGx+rNnz3a+cuXK4i+++CLaZDL9SindJIri5arcQzUiNGzYUB46dKiuiuM4rF+/XoiLi1sIYHJ1LExFRcU+HukdvyRJ/gAuvfTSS6isf76ABQsW5OXm5g4RRXFf/tiEEDJKEIRljRs3diCEOMbExPCCIHwD4KUmTZqQp556ylmr1VZqPqvVisuXL+P8+fOGCxcuAEByoeDwyQcVHJYk6bWOHTsuHD58eMVebWxgMBjw7bffGoxG4xiwN5xH9x+jispDxCNt+AFg7ty5z3EctyQ4OFgzYMAAh8qMYbVa8fnnn8uUUk1x4yRJUi0AzwLwBLBeFMVLkiQ5a7Xao6NHjw5o0aJFle/BVnAYwHqLxbIWQKQoinKVJylGvnidLd4MCgr6YtiwYdVSGX358mVs3rw512w2p1gsltmzZ89eXR3jqqiolM4jb/gBQJIkD41GEz1q1ChvW4VY5ZGZmYlFixZlzJgxw70Cc94C4BUUFGRq0aKFQ2ZmJtq2bVvhGEBxCoLD58+fl0+fPp2XmZnpQAix4m7g9M6f+b9bUspnBX8vfh0AQKPRwGKx2FyDXq+XQ0JCeJsHKwGlFPHx8di4cWOe0Wj8ZObMmV9U19gqKiolqRGGHwAkSeqq1WrD3nrrLSdnZ+cKXXvjxg2sWrUq/sMPP2xSgfkIgHYcxw3VaDTjTCZTGwBwdXWV33nnHb6y6aXFMRqNUBSlSLpqwff2/Gnrs6SkJCxbtgyjRo1Cu3btqmWd9pCZmYkVK1bk5eXlfWm1Wj9RM35UVO4NNcbwA8AXX3yxfeDAgUM6duxYoeuSk5OxfPnyDIvF0lAUxZzKzC1JEgfgEwAzp06dCldX18oMc19ITU3FokWLwHEcZs+efV/nzs7Oxpo1a3IzMjJumc3ml+bMmRN2XxegolIDqFEduCilaTk5FbfbdevWhZeXlwBgTGXnzt+9DgSAWrVqVXaY+4KnpyfGjBkDnU5333cFtWrVwqRJk5yHDx/ehOf5v/ID9CoqKtVIjTL8AC7u37/feOnSpQpf2KtXL52Dg8O3kiRV2vgD+IrjOFpdbp57Sf369ZGXl/dA3ggJIWjdujUGDBig02g0Zz799NOq/MxVVFSKUaMM/0cfffSp1Wod+scff6Rv2bLFUJFrAwICuF69ejnxPB9c2fl5nm/fo0ePf4Xf2tXVFYQQGI3GB7aG4OBgfuLEiToAqz777LMrn3/++dQyso1UVFTspEYZfgCYM2dOmMViaXzq1CkHWa5YFqRGowHP85V2zsuyHH/r1i1TZa+/32g0GpqVlfVA1+Dr64t33nlH079//8a1a9f+VKvVbpMkqXL6GyoqKgBqoOEHAFEUszmOM5nN5vJPVu5u0J2dncFxXMsqTP3HlStXcs6dO1eFIe4fWq1WiYuLe+DRfxcXF3Tr1g2TJk3SdejQYSDP8wckSerzoNelovJvpUYafgCglHKHDx8u+6TsbECjAV55Bbh4Ea3few/EYOj86ezZjSszpyiKGRaLZchff/2Vl5Ly0MnwlGDYsGF8eHj4Q5P5JQgChgwZwj/11FMOGo1m/YNej4rKv5Uaa/gVRXGIiIhAmcbfxQWYMQNo2xZITgYXHQ0PLy/TtPnzD4KQUwAAQv4HQvzsnVcUxROyLL/5+++/5z4sBrU0mjdvDo7jaFpa2oNeShFatmwJSqmbJEmVjreoqNRkaqzhBzAJQPrevXszrl+/bvsMQthu/+ZNwMsLuHYNGQYDf6B376cBvABCXAB0AVALhKwBIbfzr/sWhDxW2sSKoqxMT093/jfs+nU6nZyU9HD1kyeEoEOHDoIgCBslSar9oNejovJvo8YaflEUl4qiWIcQsu7q1TK6IjZqBLRpA/z9N6jViry8PN3+kJBjoPQUKM0BpXVB6VkA7+GuTv3jADqDkNEgxAhC3EDIayDkhYJhBUEIX7duXd7Dvuv39PQUEhISql0LqKoMHTqUCwwM9HR0dFzzoNeiovJvo8Ya/gLMZvOhxMTEsvXgx40DTp4EQkPh4eFhADCyxDmU3gSlO/O/bwpK5wPYDeB1AJkAngbwLAhxEj/+2DR99uxZLsePC9a5c6v5jqoXf39/XLt27aFLoSSEICQkxMFqtYY86LWoqPzbqPGGH4BWo9GUbdgIAebNA5k/HyN69nTWaDTfS5JUvm4PpVmgdDkopaC0HygdAkAG8CFH6Zm20dGUX7aMnevlBXz4IXMriSJgejiyPtu0aYO0tDROUR6+8oOcnBwIgnDrQa9DReXfRo03/IQQbXR0tJCYmFj2iT4+wCuvoOGyZegbEuKm0WjOSpI0sMITUmoGpf8FpVm7R4xI37tihZVSCnz0EXuzOHQIWLgQsFqBbt2Afv3YdfPmAamplbjDquHi4gJFUfAwGv7atWvDYrHUlySpcn0wy0GSpIaSJHVQi8ZUHjUemlS9B4kkSdM6der0yRNPPFG2Xr8sAy+9BIwahZONGmHHjh1HLRbL5wD+FkWxQpXA+fN21mq1W8aOHVu/cePGJU9YtQrQaoFBgwBvb2DfPuDPP4ENG4D4eGDNGqBLF6AaNP9L4/bt2/jhhx8wc+bMezZHVdi8ebPxwoULx00mU+/qaOSSL6Y3FICLIAg/CILgRCm9ZbFYftNoNK0URblhtVoVSukaQkgfSikHYLUoiglVvhkVlfsE//HHHz/oNTxwIiIiuNTU1HEajYbz9fUt/S2I44A+fYDXXoPHiy8iJTfX3WKxPEUpHRkaGvqrXq+3LWBfCnq9PiksLCwrJSWlf4cOHTQlNHzat2eppE5OwJw5QMOGAKXsIRASAvTsyc4TBCAoCMjIYG4pNzfA0ZF9X0WuXbuGK1eu0O7duz+Uu94WLVoIhw4d8rRYLP/T6/XJVRlLkqTGANIAPOfn5zekfv36wiuvvOLk5+dX29HRsXuLFi1au7m5dXZ1dQ1UFOU5g8HwOID+HMc9Fx4e/q1er3/oguAqKrZQd/z5SJLkLwjC4fr16zsOHDjQpcxWjbt3A7/+CqxaBUopNmzYYIyLiztsNpuHFcg257sf2oqieKicebVarXZPixYtujz55JOOFRJwK/jdRUcDY8YATZoAFy8CnToxV9GlS8D06YCvL9CyJeBudx+ZOxw8eBCnT5+WJ02aVG2NV6qbw4cPW/fu3XvbYrEMFEXxVGXHmT9//u7OnTv37devH89x9nlBLRYLFi5cKJtMJh5AQ1EUy/EZqqg8eNQdfz56vf52WFjYiuzs7Ctnzpzpk5ycjKZNm2oEwUY/ej8/4No14NIlkPbt0apVKyE1NbVeRkbG/4WGhobr9fqbERER3QEcOHTo0IC9e/fu0+v16aXMK4eGhq7LyMh4wmg0ujdt2tTGhKVACPvS5fc9//pr4PXXgREjgK5dmTtIEIDFi4F164AVK9hX3bqsKrlWLcChbO/WmTNnAEAJDAx8aONBvr6+nIeHh3NsbOyLUVFRvfbu3Ruj1+tLKc6wjSRJPZycnGaMGTPGgeftf8bxPI+2bdtyhw8fhkajaRIaGmqIiIiI0ev1Fb0NFZX7hmr4C6HX6w0hISEnQ0NDF2VkZLQ+c+aMX0ZGBrFarXydOnXudrniOKB2bWDHDqB1a3BubggICBDc3Nxc4+LiJkZERBgopbRu3bpDO3To4J+cnNyrV69eS8uY1xIaGpqj0WiGtG/fvuJ9gTdvBkJDgdGj2YOA59nuftgwoHt3YOJE4OmngaFDgago5gpavx6YNQv47Tfg8GGWRWS1smP5D7vY2Fjs27cPDRs2pC1atHhoDT8AeHt7o0uXLoKTk1Ozq1evjg4NDf1dr9dn2nv9vn37Xm7btm2fgIAA+x+8+Tg6OqJdu3aoVatWQHJy8nCz2XxFr9efreg4Kir3C9XVUwqSJAkA9BzHddNoNM83bdrUd9SoUY5F3gBWrQJSUoB3373jT799+zZ+++23vMzMzJ8AjG3VqpXX2bNnZY1Gs9JisWyaM2fO9lLmexXAEk9Pz5zRo0e71KtXz/7FnjkD5OQwI28vigKkpQHJycB//ws0awYkJgIrV7IHhZcXTubk4LyTEx3w1lvEuyLrecDs37/fun//fjPP82FGo3EngLOiKIaXdr4kSY0FQYieNGmSo6enZ5XmTkxMxK+//mqklC6zWCwzKtuxTUXlXqIafjuQJMlJq9Vu8PLy0j///PM6jUbDDpjNwHvvAU8+CfTte+f83NxcLFiwAAAGajSaLziO69C2bVty/vz5w9OmTetWyhwvC4LwCaXUo3///g7d7TXiOTlAQABw4QJQwV7CJVAU5h5KSwPWrcPNhARkx8TQ5ufOEcyaxbSLtFr2JtGoUbUEj+8VWVlZuHLlCuLi4oxnz551BPAugI0ArhXO/pEkyYkQ8juldPjs2bNhr2+/LHJzc7Fjxw5DbGxsvNlsblMd2UYqKtWJavjtRJIkzsHB4W8vL68eEydOvGv8jx9ngd6ZM1kRVj67d+82Hzt2LNFsNnfSarV7HB0dOxmNxgSz2dxcFEVLsbGbabXaMyNHjnTcsGGDXLt2bdNbb72ls2thBw8Cn34KbNtWfTebT3JyMlasWIHpjz3GHgqhoWy+mBjAYACeew5o3Jg9fF5+mbm/HkJiY2Nx+PDh7ISEBA2ANWazeRIABQC0Wu2aBg0ajOrXr59jmQH9CkIpxQ8//JCXlZW12mw2T1aNv8rDxEPtt32YEEVRMZlMT6SkpJw+ePDg3WqmoCCgTh2WW1+IAQMGaAkh9QF4m83mQSaT6YjZbPYD0NXG8F38/PwsAQEB8PX1Ndy+fVtnsdiZGRofDyxfXtnbKhMvLy9YrVaY2rVjweLp04EtW9jbxZo1rL6AUmDJEhY/6NuXPQAWLWJryi1bCeN+0bx5c4wfP77W1KlTHT08PMYAsAqCEE4I+Uan040YM2ZMtRp9gElKvPTSSzqO4yYAaFatg6uoVBHV8FcAURSNJpPpubCwMG7p0qW56en5iToFQdLz54uc7+joqACI0Wq1R0wmUwgAT1EUDxQfV6vVDnZychIAwMPDQ6PRaG7++OOPueU2hjcYgO+/r5Z7swXHcdBqtfT27dslD/bqBej1wOTJ7A3gwAFg7lzgiSdYcPmjj5iy6XPPMdfQt98Ce/awWoMHhKOjIyZNmuRct25dxWq19mnfvv0r48eP12m12ns2n7e3t5Xn+Yn3ZAIVlUqiZvVUEL1enxEREbE0NzfXISkpqUNgYKCG43lgwACWVfPSS8zwAWjYsKHW2dlZvnnzphPP82N4ns/s3bv3icLjSZLE8Tw/LTMzsy7HcUJkZKSgKEp7q9Wad+DAgZDk5GRrmzZtOJv5/Xl5LCWzoJDrHnDs2DG5QYMGnFchN5ZNCGF+/1atgM6dgWnTgFGjWA2Blxd7M5k3jz0cd+4EPvsMeOaZctNJq5vY2FgcP36cTJ06Fe3atRN0Ovs8apXFz8/P4fjx48H5BX52ZxmpqNxL1B1/JRBF8QaldGZycnLY4sWLzbdu3WJVte+/D3zwwZ3zGjRogH79+vFDhgzR9ezZszUhZIaNsZTp06d3z83N7R8REbFLo9GcA5A0Y8YMEQAuXLgglBqHeeMNFnC9R2RmZsJgMPAOlTXOHMf0hl58EZg/H7hyBfjpJ/YmcOYMqym4jyiKgi1btsh6vZ663MOfW2E8PDzQrl07IgjCq/dlQhUVO1ANfyURRdFoNpufzMnJ2b506VKLwWC4m0e/c2eRcwMDA9GjRw9YrVYfSZI8Shnv0Icffjh4xowZbUVRNOZ/XFer1cb+/fffJZsDKwrLvw8KqvZ7KyA7OxuUUmJTR6iyaLXsZ9SnD/DOO9U3rh2EhoaC53mua9eu9zUdKTg42IEQ8u6nn3466n7Oq6JSGqrhrwKiKJqmT58+iuf5patXr86BTsdcPb/8AmQWfavneR4+Pj5GAAMqMP4ts9kcfOrUqduXLl0qevD0aTZPo0bVcSs28fX1hSAISrnKpRUlIQF4800WAA4Pr96xSyEvLw9Hjx6lw4cPJxWpzK0OvL290bdvXydZljdKkuRzXydXUbGBavhLQZKkBvbK8ZrN5t2EEJbpExjIMlyWlizU7d69u4tWq/153rx5afPmzStTw6eA/AbtL61du9awbNmy7CNHjkCWZeYyOX68IrdUKby8vMiFCxeqV5P55EmW+tmqFdCgQbUOXRrr169XGjVqpPj7+9+X+YrTrdud8o3y+zioqNxjVMNvA0mSGgJI1Gq1C+w4V9Bqtf8JDg52vfPhiBEse2X//iLnBgQEcO+//77jxIkTPSilAfauZ86cOdtkWfZISkoav2PHDiRcu8aqdJ96qgJ3VT6KomD9+vVYunQpXbt2LRITE9GhQwdy7ty56nONWK3A1atAhw4sKO3ufs8zfa5du4bExETu8ccff2BCc4QQ9OnTx6rVar9S9f1VHjSq4beNFgAURZmUr89eFg2tVqt/ET+4qyvLad+/nxU3FUKj0cDT0xM8z2vnzp07FnYiiqJRFMUtgiDMvvD550bl77+BapZR2LRpE71w4QL8/f3h6Ogor1q1Cjt37qQeHh7VV3y0dy/L7y+oMp47t8QDsrrZuHGj3L17d8XNze2ezlMe3bt3FzQaTXue51dLklRxqVQVlWpCNfw2IIREurm5KYqiOAJwLOtcURSvCIKwPSYmpuiBxx5jRn/r1hLXODg4YMSIEY4ODg7vVnRtVqv1swbHjl0/R6mluquuExMTFb1eTx977DEyatQo/oMPPsCzzz5Lxo8fX33/Tg4eZGmcBXzzDcv9v0dERkbCarVyvXv3fuD/1vPrCByaN28+UhCEmNIC/Soq9xpVssEGn3zyyTeU0jc4jsudPXu2aznnTqSU/uLs7AwPj6L/jzUGA/Q//ohD48Yh29u7yLHc3FzkF4A1FUXxst2LI0Sb5+g47rsZM6YHBgX59e/fXwsAKSkp8PHxqZLWzIULF7Bp0ya89dZbcK6q7k9pfPkl6x3QsOHdz+bPZ26f3r2rdSqz2YyvvvqKjhgxggQE2O1Zuy/s2LHDdPLkyYMWi+VpURTvf09NlRpNhSVoawJz5sx5W5KkaYqiWCVJcilNYVGSpHednJw+NRgM6NKlC2wVWaW/9BL6bNuGix98AFosHz6cZbR0BWC/4Qf664zGJ4yK0vWff/7Zdfz48Y6KotzxXQ8ZMgSurq7w9/dHRStSW7VqBU9PT3nnzp0YPXp09fvDb94E/vmHCdsVpn//e5KdtHHjRurt7U1btWr10PnUH3vsMYe0tLRe165dmwlg6oNej0rNQt3xl4MkSVQQhAye5/MAhJtMpo0A4h0cHGaYTKYnAeCdd94BIQQuLi62d9wffMA6YL38cpGPv/zyS2NeXt7/iaK41u4FERIEwBuU7pAkiQfgyHHcAkVRJgMQAUgAewAEBwdX+H6zsrLw/fffY9y4cfDz86vw9WWybx9zfX35ZcljMTGspWQ1+uEXLlwoP/7443yrVq2qbcyqkpOTg6ioKOj1emRkZGDZsmUZVqv1cVEUox702lRqDqrhL4d58+YdlGW5W3BwMFxdXREdHZ2VnZ2Npk2bamVZxsmTJ+/EAFq0aGEcO3ZsyZiAwcB8/j//DDRvfufj8+fPY9OmTZlWq7W3KIpnyl0MIVoARwD0BqXZhQ9JkuQkiqJBkqT/APjg/fffr7S7JiwsDFFRUXjyySdpQEBA9e2WX3oJGD++iIT1HaZOZfLW1ejuWblyJfX19aUDBgx44P59gMlFbNiwgTo5OcFsNtMhQ4ZwW7duhSzLFkVRgqvSNlJFpSKorp5yMJvNQzUazfSDBw9+MHDgQPnFF1+84/OnlKJ169aIjIykfn5+xMvLy7a2gZMTE1N77TVg1y4mZQAgICAAt2/frh0eHh45f/78jSaTaYYoikllLCcIQHZxow8AoigaAIAQMpxSWiUffd++fUEpxd69e9G8eXPYbD9ZUaxWID2dNZC3xX//W/U5ihEQEECOHTtGBwywu2bunrJ79265a9euXN++fcmBAwfopk2b4OfnRxMTEzWKopz84osvjhuNxqdEUYx/0GtVebR5KHZCDzOiKN6eMWPGNAAtQkNDc7du3WpKS0sDwHKzmzVrhueff57o9Xq0adOm9N1xhw7A2LFF3ByEEPTs2ROvvPJKrU6dOo3leT5GkqSy/CvOAJ4p4zgope96eXmVeDBUlF69ekGWZWXRokXUarVWdTgm0tavH+BRRiLL228Dh+yqa7OLTp06ISMjgzMYDNU2ZmXJy8vD7du3+aCgIEIIQe/evbnhw4cjMTGRPPbYY3TGjBlo2rRpIID3H/RaVR59VMNvJ6Ioxlqt1sB//vnnyyVLlhgSEhIqNgAhrKI3PR04VfSN3tvbGwMHDtS2bNmSABhcyvUCgNkoJ70UQERKSkqtlJSUiq2vGFqtFm+++SafmZlZPa6eI0eA8noMvPwy0LZttUwHsHvQ6XTylStXqm3MipKVlYV169Zh+fLlqF+/vly7ULMaJycnyLKMsLAwkpWVhSZNmmi1Wu3QB7ZYlRqDavgrgCiK12bNmjXbarV+eubMmZLCaeVRvz7zb//5p00j2LJlS52Dg8MUSZJspeM4A9gGSsu0YqIo5nIcd/WHH35AXl5ehZdYHI1GQ6v6EAHAhOvatSv7nMBApkGUlVX1+fLx8fHhY2Ji5CoPFBUF7NhRoUsiIyOxaNEiKIqitGnTBsOGDSuSKdWyZUvMmjULtWvXlmNiYpCammq1Wq2H1MpelXuNavgrAaU09NixY0JcXBxyc3OhKBWQshk0iPn4N24scaht27YwmUztAPyR3+y9MLMBRNszhaIowwBg9erVeXZ38rIBx3F3vqpERgYTrevfv/xzN21i8s3VRLt27RAXF1e1G8jOZr+3mTPtviQ0NBQHDhzA008/jTFjxnD9+vWDd7FaDoD9jH18fPhr167JHTt2FJycnIYD6Fel9aqolINq+CuBKIqHOI57Yf369TcWLFiAL7/80nDhwgX7LiaEZbccOAAUU9zkOA7jx49HnTp1HhMEIf3zzz9fLkkSn18gMArARTvXdxYAn56evv0///mP6eeff84KCwtDZGQkrWgWl8ViIQX9hc1mc+XeIo4fB4KD7WvO/uWXpQeAK0GrVq1gMpmIzS5i5ZGdzZrHODuzB9fRo8z4T5hQ7qUmkwm+vr5y3bp1maheGdSrVw9paWnE29sb+dIf1ZxHq6JSFLUDVyXp06fP6dDQ0K8AzLVarXtiYmIyB8kuAAAgAElEQVTGEkK0WVlZ8PT0LFHMRSlFRkYGHB0dQdzcWDHT4cNAjx53snwA1rgjODhYm5qayt+4caMDgAX68PBGALaC0rP2rk+v19NevXqtDwsLW5aZmXkiISHh0qVLl/rUrl0b9evXt/s+4+LilDNnztDo6Ghs376dHDx4EFqtFp6envZn+5w9ywq0mtnZevaZZ9i5FVhnaRBC8M8//8guLi6cj08FFJEpZQ+qkyeB1q1ZT+UOHQBPT9b5rHVrQJZZfwEb5OXlISoqijt69CgOHjyIli1blpppdfr0aQCQAwMDuWPHjpmysrIuhoSEhFX8blVU7EM1/FVAr9dDr9dTvV6fGB4efuL69ev04sWLTmaz2dXf37+IPzcpKQmLFy9Go0aN4O7uDnTsCHz3HRNas9HoJCcnh8bHx19TFCW3y5Ejo7QWizs+/jiyEmvM1ev10SEhIaEREREfX7x4EXq93u7rAwMDSVxcHOLj48mkSZPg7e0t79+/n0RERBCNRoOGhaUXbEEp2yWPGMEKtOyhY0dW8FZVF1M+ycnJXFJSktyuXTv7BkxKYvpBL77IHswZGcDu3azHcL167DNJAt59F3j9dZtvMt7e3nB3d4efnx9SUlJkd3d3rl4ponoHDx5Ebm4uV7duXTRr1szhxIkTPcPDw//W6/XXq3LfKiqlobp6qonZs2fv/OijjyaazeZeR44cyYqKilKys7MhSRJ++eUX/PTTTwAAV9dC0j8//cRy+20EMzt37sz7+/v7APghIiRk0q8vvljLht+/orTVaDSmgvRGq9VarhtCEAQ4OTkRFxcX6uXlhaCgIP69994jer2eHj9+vPzgxvXrrM9umzalnpKRkYGlS5fKixcvlrOysthu/3//YyqelcBsNheJu3Tu3BlXr17ly43FUApcvgz4+LAmMQUNW+rVA4pvkD77jL0FnD7N1loMjuPQoUMHdO3aFbIslxkH6tOnD3Q6HVauXAkPDw+MGTOGFwRhryripnKvUHf81Yxer88LDQ1dn5iYOCgqKsqdUhqfm5sbryhKfW9vb7Ro0QK1atViJzs4AP7+wKef3m3bmA8hBCkpKbwSEUE65+WRS4MGBRmNxqdDQ0OXVGTHXmxtKQcOHPCPj49vZbFYNCtWrMC+ffsQHByMAj9+YfLy8rBs2TI5NTWVjB07lhTuU+vl5UWOHDmCGzduoMzq3j17gJCQMg3/ggULkJWVxTVp0oTu3LmTcBxHPHbsgBAQAFJW3r8NNm/eTP/880+yb98+REVF4eDBg8qVK1cUo9HI+fv7F33wFufKFeDVV5kPv06du5/PmwfcuFH0HghhbzC7dgGzZpXY+V+7dg3bt2/HqVOnlOzsbH7w4MGlaie5ubnBZDIhKSkJgYGB8PX1RXJysjUtLS07JCSkwm95Kirloe747wGiKF4xm83tFEXxEUWx6YwZMzoB6HXr1i0sXboUqamFxBgHDmQyDitXlhinS5cupHV0NK4YDGjXrp2D2WwOBFAl8TSz2fza9evX54aFhW0ihNwCgD///NNkNhfNTo2Li8N3331H3d3d8frrr5PibgqdTofnn3+eXLx4kZRoC1mY6OiiRrQYiqKAUop3330Xo0eP5p966ily6NAh+nWdOvhp716lIsVjYWFhuHDhApkyZQqmT5+OKVOmYNy4cVzbtm05FxcX+vvvv9MsW6mit26xxu/+/sylU9x1M2EC6xFsi4kT2T3+8QdTHVUUREZGYvXq1cjMzKRXr17lXn755XIrqVNTU2G1WukPP/yA8PBwuUePHjqe59/P12NSUalW1B3/PUKv1yt6vT6v0N8TIiIiPuN5Puv48eO9FEUhvr6+HCcIQIsWwLffsq5ahQp8tIKAWm5u2OrgoPg1b05v375tUhRl1N69e//Q6/WmSq5L7tOnz4FevXr9ERISsiAiIuI/ubm5zc+fP9+0c+fOGkIIduzYgT179qB///4YNGgQV1oQV6fTIT4+XjabzVzTpk1LnmC1AmFhwPDhgE5nc4wTJ04gKSmJ6vV6AgB16tRBjx49SKdOndB44kTye0ICvWmxkIsXL+Kvv/5SLl68SLVaLTl+/Dg8PT3h5OQEADh58iTCwsIwYcIE1KtXDzzPw9HREa6urvDz8yNdunQhqampdOfOnWjevHmRtxfk5rKK4R49bGceXb0KNGlSelYSIYCDA+jJk/gjPV2JPnmSPDt+PPr37086duyIwkVbpdG8eXP06tWLuLq6Yv/+/WTw4MHk2LFjxGKx3AoJCbn3PTZVahSqSNsDQJKkhoIgbHZ2dg584403NIIgANu3s93mV1/dNTAREcAnn7CuVWAa/gsXLlQopXVEUay2foWSJBGtVps0ZMiQegcPHpTz8vK45557jtiT/fP3338rt27d4ibYSnH85x/grbfYfRQjPj4eaWlpCAsLU4KDg0mfPn1KWFV64wau5OVhb2iowvM87dChAx8bGytfv36dc3Z2prdu3eJcXFzkfv368du2bcPo0aPRsmXLUtdKKUVERIRy8OBBMmbMGNLk9m3WCOaXX0q/QbOZPRCOHCkz2JyTk4Ply5fLgYcPcyFRUYS/eJG58irIkiVLqJOTE8aNG0fi4uKwYcOGLEVRvlMUJRTAWVEUb1V4UBWVYqiG/wEhSZJOq9Vu0Wq13XQ6HRfcqZNT223b4NCu3d1eupGRTONm3DgAzC2yZs0aY0JCwqIZM2ZUm6aLJEmEEGKklGpdXFzwxhtvwMFOo3X8+HEcOnRIfv3110u6JD7+GPDyYv7vYixcuFCRZZlr166d0rdvX87mfJSypvUvvFDCiFJKkZ2djYiICPnUqVP80KFDaVBQkF0Vr/sjIui5sDBl8syZPOLigGpo0rJ//35ERETgnbfegsvJk2zMU6eYK68CxMbGYt26dXB2dqaPPfYYURQF169fV86fP28wmUwWi8XSF8AFURSNVV60So1F9fE/IERRzDObzQNycnL6pqen/7w7LCx6k8ViwLlzQGIiyxH/9FNg2LA713Ach44dOzryPN+1mpfzIqW0oM+w1V6jD7C6g+zsbC4qKgoZxZuma7VMn8gGTZo04Ro0aCAPHjzYttEH2JtPSgpgo/iKEAJXV1c88cQT/KxZs2Cv0QeANqmppNfmzTw0mvKNfng4qyYuh969e6NOnTryho0bFaV3b5b/P2FChTOTmjdvjpkzZ6JRo0b0r7/+Qr169TBkyBDuvffecx45cqQbx3HHOI7LnDdv3lZJktQKX5VKoe74HxIkSdIAML/N83Bzdwc6dWINXA4cKHKe2WzG119/nWcwGPRgEg4uoijerMK8zgByAOCtt96CyWRCafnmtrBardizZ48cHx9PUlNTOUEQqKurq/LqU0/xwvTpwOLFNoucLl68iA0bNmCmPTIIFgtgI+uowly9CkRH45CbG04cPSpPefPN8gOnJ0+yCt7SgruFMJvN+O677xSdTodnn32W83B2Bs6cARYuBFavvpseaic//vijXLduXb5t27Zo3rw5CgLdeXl5OHLkCCIj7yT8NAFgBmABoABIF0VR/Y+tUiqqHv9DgiiKls8///zrH2V58jt79zo6uroCv/5a4jytVotatWpZDQZDF7CmLBRVeHPTaDQfNWvWzPDMM884VeZ6QRAwePBgHmCuqNTUVLJu3Tru+P/+h64+PjaNfkGjl169eskoL0uJUibhsHdv1St509OBy5dxvW5dua6Pj31WuEMH+6QmwH43b7/9Nrdy5UpERETIo0aN4lG/PpCTw6p9tdoK+f27d+/Oh4aGytHR0by7uzu9desW4TgObm5u9NVXXyVBQUH49ddfrTk5ORcsFouDRqMxUUpBKcUXX3xx2Wg0viqK4oF80bd6ADIK+jao1GxUV89DxIwZM6ZaADG0WzcDpk69a/ivXCmi5pmWluYEoAUAEEKq1LWJ5/lmTZs2rZTRLw7HcfD29kaPHj2Idtkyavb3t3leTEyMrNfrERISUr7xJYRJW1TF6G/bxoLkHTsCU6ZAEATY/abbujVQAQluQRDQrVs3REdH8/Hx8UCDBqzd5PHjLHsr1f6+6u3bt8fUqVP5F154Aa6urvjwww8xdepUGAwGevPmTbi7u+Ott94SZsyY4TBt2jTMmDHDYebMmQ7vvfeew4ABAwIA7Jck6XGtVrsNQBKAPEmS3O1egMoji2r4HzIURVl00mKR0//3P5YGCQCTJjHjc/EiMHcufH19ra4Gw6uc1Yo5c+Z0qsp8lFKSa8MPHR8fj5wcmz3my6VD+/aon5VFViUkyLYqVi0Wy500TLtwdmaVshVVGrVambhat24sxz4frVZL7FYtPXaMGe8KEBgYiPr166NIH4A+fYD//AdwcSnhvisPHx8fjBs3jjg6OsLFxQWEEPDF3EaFf55OTk7o1KkTxo4di1q1av1hNpuHvP/++9DpdDkAqq+pscq/FtXwP2SIophLKd316+HDzM0AsOpQf3+W4x8cjL59+zr1jojQPPvHHx+CEAGELAIhHAipBUIqlENotVq9wsLCsGPHDmuBDzklJQW//PILbty4Ual74BIT4fl//4dcV1cuolAqp6IoWLduHc3OzubL1fgpMiDH6gAqqgy6YgWwYAErIGvR4s7HmZmZ9l2flAScOFEpzaDatWvj6tWryp03C44Dnn0WuHABGDmSSVlUEkppCcNvixYtWuCdd95xnj59OpydnQuEA6shWKLyb0f18T+EyLKsL5EhAzDNmHr14Acg6auv+I0REf3H/vjjIr+rVw+DUgWEPAcW6PsIhHwE4GcAaQA4UGqz4EuW5XAA/Y4cOSIcOXIEbdq0Uc6dO8cBQDN71TSLc/IkBFlG9969SWhoKI2OjpZlWYbJZOK0Wi2ZPHkyE6qrCFOnsiCrPURHs/z7l16ysbST9MqVK2TKlCnlj3P9OnDwYKUawA8dOhTffvst1q5dqwwePJjzKJCe6NCB6QHl5AD/93/ADz8AjuU1VSsKpZTYq4zKcRy0Wi3S0tJgMpkogAq2jlN5FFF3/A8n5W61g4KCiLu7e8/Vr7xyXfr44zgAAKVLAEzPPyUVQC6AYABbAACEjAEh7fO/L4i6fgagPYAPAKDA6APAokWLKhcIPHuW+cbB3CpdunQR+vTpIwwbNoybPHkyqbDRB5jbpmNH5ropj/PnmVuM54tk0hiNRmzfvp08+eSTxJ5qWnTpAkybVvG1AnB0dMSECRO42NhY7rvvvisqhufqyoz9X39VqLlLAYqi4MSJEygus1EWUVFRJgCL1OCuCqAa/oeVcYSQMqUktVotJk2a5BwYGOgEoOedAwW+BUp/AqXZoDQSwJD8oyYAFhDiCuAaCCHixx93FT/+uK4oigtcsrO9BEGIBmAWBOHPtLQ0p927d1fIwMBkAtavBwYOxM2bN9GgQQO5S5cuaN++PVq1alWqUFm5CALbyZdlsH/6CVi7lgnePVN6T3q7m69Pm8bSOStJ7dq173Qvu17ctePhwVpwjh3L5J+N9tdj9enThxw5cgSxsbF2nZ+Tk4PTp09Tq9X6jd2TqDzSqIb/4eSmRqOxS4unXbt2Wo1GM12SpFqlnkSpkv/nJlB6HpRmAWiY/5Dg87/w3sKFYTNnzRomfvxx0+mzZ/8JAFGRkZg3bx4SExNhl2DasWPA4MGAVov09HR4enpWn8iYorDahuJS0kYjC/z27FmmW0YQBNStW5eeOnXKvpSep58G/CrfDEun02H27NnQ6/VYvXo1li1bJq9du1a+evUqc1u1anW3D/GKFSx1tRyuX7+OyMhIpWHDhopNfSQbbN++3UAI+aEq9R4qjxaqj//h5KZOp7NrW9q4cWPUq1ePT0hI6A9gs90zUGrJ/7Nwikkw2FtBM45SNwDc219/veNojx6mXwjp2/7o0VoOb76Jvv36ld59KyODNSwBIMsy1Wg01dc43MGBBWnNZqBwVtDs2Uwy+YUXyrw8PT0dSUlJ5KkCSYyysFiARo2guLlVencUHx+P0NBQmpmZqfA8z1mtVj4mJgYxMTEQe/YE1q1jkhTLlrGU1SeeYG8stWw/w/ft24cDBw6gV69e6N27N1e8y5stLl++jLi4uGyLxTK7kreh8giiVu4+ZEiS5KfVauMHDhyIoKAgu645evQo3bt37xGTydQHgA+Aq9VWuUmIIwDy9dtvv9rl6NGv9wwciN7Hj8vNfHy4hosXE7J5M9C3L+CWnyX49tvA+PFAly7YtGkT8vLy5HHjxlWvtPDNmyzQfewYa+lYqxbzmdthCA8dOkTDwsKg1+tJ9+7dSxxftmyZnJWVBdcbN7gBGzeSX55/Hk5OTkrdunVJ586dSUBAgF3N5zMyMrBo0SJ06dKF+vr6EqPRiPDwcFq7dm34+vqSQYMGFb1AloE33wQef5w9OPNlnDds2KA4ODhwycnJSlpaGvfss88W9OUtF0opvv7667zs7Oxn58yZU7JbjEqNRd3xP3y8ZLFYEB0dbbfoWFBQEImJiQm8evXqdYvF4uno6Pg3gMHVshpKjQCQKUnfhg4eHA9F2RzVrh1/1GJBpz176ID9+wn69AH272cZKrt2sYyV+vUxdMcOhN+4wac1bIg6R48yg5aRwbSIRowA9u0DGjYEfH2Ba9dYyqrVyr68vZlrp7hUQ14ee9CcPAmEhrIm7hVoTNOtWzfi4eGB9evXo379+kWM6NGjR3Hr1i0+MDAQXcePh4skYaaDAxITE7nz588rO3bswJYtW0j37t3LbV8ZEREBV1dX2r9/f1KQetmpU6e7v8/ly1luf/Pm7O88z35+Gzcykb7Vq/Hdb78p6enpnKenJ/Xw8KBjxoxBETnpckhKSoLJZEpXjb5KcVQ9/oeMiIiInQD427dvk44dO8LRjlQ/QggCAwM1GRkZQmpqKjWbzS0iIiJW6PV6G11HKkd+pe3FiIiIm5Tnh1k1GiQkJBD9vHksx76gF+2BA0xioUcPCOfOIV1RaFxmptL81i0Ovr4sLz48nPniZ81ihWmyzIqbXF1ZodbHHwODBjG9oogI1v1q6lSWjz9jBntwnD0LzJ/PHhYVpE6dOoiNjZWNRiPXPN/wpqSkYP369Wjbti0uXLgAfVYWnBQFXIMGcHNzQ/PmzUn37t1JgwYNsGPHDuTk5MDb27vU34+Pjw8iIiLI7du3FZsdyqKj79ZmFKZVKyAuDlZXVxw5eZKMnzwZ/fv3J4GBgVxFA+NHjx6VExISlvfp02dXhS5UeeRRXT0PEZIk9Qawr/Bnc+bMgT2+XAC4ceMGfvnll2Sr1bpBluUvRVG8ei/WOX/+/L9MJtNwZ2dn+f333y/pxqGUpVO2aoW8vDx8/fXXGDVqFFq2bGmXm+QOisK+rFYgLQ1wd2cPgZUrWS78mjXsWCUE3GJiYrBhwwZotVrFw8ODGI1G4uPjQ0eOHEmWLFkid7p6lXQZPZqDDXfbxYsXER4erqSnp5MXXniBbNmyheanraJt27YAmG/9jz/+wMsvvwwvL68KrS02NhY3582DT0QEGoeHg69IsVshvvnmm+yMjIxBoigerNQAKo8salbPw8U1nufXFP7g0KFD5Tc0z+f27dsghKTMmjXrjXtl9AHAZDKNB4Dc3FzbvvvYWJYKSSl0Oh0GDBiAzZs3019++aVCrRTBcSyN09GRySbodEDTpkyu+rffWJC3Uyebss3l0aJFC7z//vt48sknubp169KUlBQIgqAAgL+/Px/dqpViy+gDQMuWLTF69GjOYrGQFStWQBAEODs7K1u2bMG+fey5fevWLbi7uys2jf7Fi0CvXiU+zszMxDfffCNv3LgRKcOGyfE9esB66RLryVBBcnJykJ2dzYMJ+amoFEHd8T9kSJLkCSCFEPIbpXSmRqM5OmrUKE+tVovy0vfWrl2bExMT86Yoij/fh3WOB/ArALzxxhuoU7yvLqUsZVGWAXd3WK1WLFq0SPbw8CDPPfccZ4/kQKls2sR2+k8/zd4E6tRhQmwhIUwLpxJcvXoViqKgSZMm+HvTJnSfMgWuSUl2K3MCrMH6mjVr4OPjQ5OTk0nDhg3lsWPHlrxRRWFKoZ6ehW5pEz19+jTp2LGjPHToUP5O1tTSpcDPPzPffwXksqOjo7F169YD06ZNq3jZscojj7rjf8gQRTGV47ivKKXPOTg47JVlufa6deuwevXqkkVAxaDsKV6BaqsqsQbAYgD4/vvvsWfPHkiShIQCJUtCgB9/ZO4YsBz61157jU9OTsaxY8eqttto1uyu9k6dOuwhs3cvCxzbSWxsLC5fvoysrCwoigI/Pz/4+fnBaDTCzHEInz1brojRB4BGjRrh5ZdfhpOTk2IymZCZmcnLxWsOABafKCSMt3PnTpw+fZo8/fTTGD58OF8kVfbVV1n8IyICOH3a7rVcu3bNYjKZdlfoBlRqDGpw9yEkJCRkV0RExAlBEFpZrdZmAMBx3H9jY2Pb+/r6akqTG8jOznZISEhI792791ZbxyVJ0kZERHB6vd5u91Fp6PV66PX6bfnB6JcLDH5SUpKhc+fOzOnevTvQtSvrouXsDJ7nodVqyf79+9GtWzdCCEFSUhIcHBzsEh27Q926RXe/hLBgsKsrMGUKcwk1aWLz0vj4eKxcuVI+c+YMd/HiRRoZGUkiIiIQFRWF/fv348CBAzCcPw8/Hx/auFOnCm+MHBwcsHfvXvj4+NDMzEzl5s2bNCAgoGjO/Z9/sgrn/IeXo6Mjzp07R69evYquXbuSEjGdRo2YrPPUqcDzz9vscVCcPXv25Obk5Hyp1+uvlHuySo1DdfU8xOT3wh1PKV2l0Wh+slgsYQDWcByHWbNmlQj6pqSkYNmyZTkWi6WLKIoXJEnqptFotnIct+6jjz56XZKkVQAmiKJYfUVVbJ0OHMf9oSjKCACYNWvWXUNOKfNn//or4O8PRVGwYMECJSgoiMvMzJTPnz/P63Q6OmbMGOLj42PfhJ99xtI6P/us5LHLl5l2/82b7EGQ74IyGo1Yu3atcuPGDa5nz55Kz549uYKdtcViQV5eHsxmMzw9PVkRVU4OyKuvVvhn8fvvv9PMzEz60ksvcUajEYsWLVKCmaJqmQ8RRVHw+eef47XXXivpNivg+nXWHH70aPZALQVZlvH5559bFEXxEEWxctraKo80quH/FyBJkk4Uxbz87xcDmFy3bt2cQYMGuTQptrM9deqUsm3bNhPHcX+bzeaWhJBWLi4uRqPR+IvFYtkP5qJpK4riuXuwzhYajea3+vXrB0ycOFF3x/gXtE7MzgZq1cI///yDyMhIWRAEOmbMGCEyMhInT57E4MGDlU727LIL/s2W5Yr57jvm73/xRQDAjh07EBsbS1944QXi6upa1Vu1SVxcHNatW4fJkyejQI3z+vXrWLlyJWbOnMke1IrC5JnXrmWB63xOnTqF0NBQOnXq1JI7/sI0asRqIL77rtRTsrKy8P3332fOmDFD1d5XsYnq4/8XUGD0879/DYCQnJw8+ffff7+5fPny3MISzh06dODeeOMNpzZt2owEEEApJZMnT3by9/d/wcHB4TkA4Djuy3u0zhiLxdI9OTk5csmSJbnp6ensgEbDMn0GDwYoRfv27TFlyhT+1VdfFVxdXTFkyBCMGDECu3bt4uxqkBIdXb6/+803gRdfxK1ffkHks88qJ06cQIcOHWS7jP6UKSxoXAHy8vKwceNGpX///vSOBDOABg0agOM4ZGXll1QoCmvCXkzy4vbt23B3d1dKNfqXL7MspshIJlFRBgaDATzPV1sNh8qjh2r4/4WIoiiLorjGbDY3unHjxufLli0zpBZq6Ve7dm0MHz4cEyZMwKxZs6DT6TBixAhHq9U6iOf5bEEQ7lletyiKFpPJNCg9PX3Wjz/+aDhz5gw70Lw5sHs3263bUPts06YNdDqd/Pfff9uIhhYjNpZJL9vBhpgYRe7eHW++/jr6tGxpX6V6v37MTWQnWVlZWLRokdKkSRMEBweT4scURblbcWsysQdgMRo2bIikpCS+1MD3F18Af/zB4iXe3mWux2AwgBCSbvcNqNQ4VMP/L0YURcusWbM+NxqNU3766SdD8Y5Z/v7+d3ztTk5OmDx5stC8eXMXWZbtdKZXel101qxZX1sslp5bt269vmnTJqPZbGZB1wULmJ/aBq1bt+bT7NlpjxjB5Izt4LZOxwW98grnGh3NdvLlYTKx8e0sCktOTsbixYtpy5Yt6VNPPVVCOC0lJQUcxyGvoHvYb7+x6uNiNGvWDKNGjcK2bdtIduGGM6GhrFL5xx+ZwbdDJjp/roq9sqjUKFTD/wgwe/bsn81m83M///yz4erV0uu2PD090bNnT8Lz/MRPPvmkerR8ykAUxZMWiyUgOjp6z9atW5na6OuvMyE3G2mOrq6uyM3NLT/w/OefLLe9HBRFgdVqZf1ou3dnaphZWazxuo1ewACA7dvLVfksIDw8HMuXL0dwcLDyxBNP8LbcNE2bNkWDBg2UVatWUbPZDLzyCvBlSU+b2WxGWFiY7O7uXrQR/PnzzPAXZC7Z6CpWGIvFgrNnz4JSmmzXTajUSFTD/4gwZ86czRaL5Yk1a9bkRkZGKqX5yn19ffH444/rHB0dP7of6xJFMdtisYy/cOGCnJKf1gmNhgmtxcUVObdevXrIzMzkTKZyWhG0b8/E2cqB4zgIgoCkpCT2Ac8zg1+/PqsKttX8ZNQoloFUBlarFUuXLpWPHj2KcePGoW/fvjaNfgETJkzgzGYzjYyMpFi5khVv5fPTTz9Z586di/nz54MQQiZPngxXV1cm4hYWBrzxBmsWv327XW8st2/fRnR0NIxGo32vRCo1EtXwP0LMmTNnr8Vi6bJ///7dX331leHo0aPUVgFR/fr1YbFYus+bN2+FJEmt7/W6RFHMpJR+snHjxjyDwcB2r3/8wQqxCu1uGzVqhFq1anOqKdkAACAASURBVMmhoaFl+/kbNWLSDeUQGRkJq9WKa9eu3Z3EzY3tuvPygKAgpiRamA0bWCpoKeTl5WHVqlWwWq3cG2+8AT87GrVwHAdZluHj40Nw/fqdbKTo6GikpKQIU6dOxezZszFlyhROq9Gwn0nLlkWbwAwYAEyfXsoMd/G+6/8vP1aiUmNRDf8jhiiK0R999NFgo9HYe8+ePSd27dpVIpLq5eWFN998U9utW7cJgiAckSSpcipgFUCW5YXp6ekrly5dmpeRkcF23bGxzH1RyPg/88wz/IkTJ/jCweoS/PADc9eUwdmzZxEREYGnnnoKPXr0KLkd1+mAqCiW8rlu3d1G7leu2Aw+A8C5c+fw9ddfg+d5ecyYMcSpcDOYcqD5ukWYNYu1XQSwe/duuXfv3tTFxeVuTcZ//sNE6Hr1uqs8mp0N7NzJJKztoF27dkYAb9m9OJUah2r4H1FEUTxuNptHnTx5UskpvqsF86f37dtXCAoKchAEYep9WI8yffr0N3JycmYvWbLEcOvWLbbjX7y4SD6+t7c3GjRoQI8cOVJ6dfE779gu3sonLy8PmzdvxsiRI9GmTZvSF1W7NnvoHDvGgrqUstaOhTT6rVYr9u3bh127duGvv/7CyJEj8fzzz/OFUzbtwdnZmWZv2wZMmgQAOHPmDHJycvjU1FR2n2Yzcz1NmMAKtApz8yZwxH6ttezsbDOAG+WeqFJjUQ3/I4woigkA/vvbb7/llnYOIQRWq/W+BQJnzpz5lclkmr5jx44cEMJcNkuXFilIatq0Kbmj+WOL06eBg6VnpKampkKr1aJ1azu8WISwXbanJ9C/P9C6NUuZzOf48eMICwtDXFyc8swzz9g3pg0URYGxbds77pqtW7dSNzc3WK1W9tT75hvg228BH5+SGv3NmwNz59o9V3Z2NoVq+FXKQO3A9YhjsVhmpaSkvJGZmQlbGj+JiYkGAHElr7x3UEqXJCYmzo2OjkZAQAAwbFiR9Ml27drhwIEDZNeuXcqAAQNK9pa9eRPIzCx1/LS0NDg6Oiqwd2Mjy6yBjLs7cPQoc61kZ0PZsAFhikKfeOIJ2FVRXAYWiwUJkZGIMBphcXICx3FkyJAhaOLqyuHqVZbpZKtXQXIy68V7+LDdSqGyLBMAdlTCqdRU1B3/I44oioogCOGXL18u8nlWVhY2bNhgSE5OTgOw/T6vychx3NSNGzdmh4WFWWn9+mzHPX48cPkyateujVdeeYWcOHGCfPHFF4iKiirq9hk4kEky28BoNGLHjh20ffv29mmRyDIwdCiwcCHw+++sHWStWqyxe7NmcHBwoJ4zZ7KKWUVhQeFKMHToUN5/zx6MbtYMTz75JEwmE27evKlgxw6WnqrVlqjmBcBy99evr5A8tKOjIwVgW8lPRQWq4a8RGI3GzTExMXfcPenp6Vi0aJExJibme4vFEiiKouF+r2n69OnLrVZr80OHDl3Ytm2biQIsx79RIwCs5uDtt98mJpMJoaGh3HfffacsWrRIOXToELWsXQt8/73NcY8cOQIPDw8aEhJSttyn1Qp8/TXw8svAvHnA5s3srePbb9kDoEEDcE8+CQ8PD1wYOVJBYCBroNK3L7v+7FmgrAB0MVq2bInA3bvRaNw4+Pv7Y4CvL64sW8b9ExhI8e67pV+4fj0LhFcAJycnAkDV6VEpFdXw1wy2X7p0CXFxcYiMjKRLliwxUErfnTFjxrQHqd4oimKy2WzueebMmesHDx6U0b07U6B87TWAUiiKAo7jMHbsWPTu3Zvr0KEDd+jQIeXHkycR6+9vM/ibnp4OT0/PsmWnT59mGT2HDgFz5rAuXgVulgkTivTxpZQix8uLSTgEBDCXEAD89ReTSjaZWEFWeWKH6ekscAyW3hncogX+n73zDoviWv/498xso3dBmmIBQVAURFQQ7L3FxMSeWGI0yb2aexNT3TuJN81fYoy5iUaT2GI0xthjV4odAbGA2ChSBaTDtpnz++MAAQFFkxgT5/M8PMruzO7M7PKeM+d93+/XwWikWVlZzR+rTsdkLu7TtObGjRvWAALuayeZxwo58D8GaLXaPEmSpm/ZsiUrNjb2J4PBEPrmm29+9WcfFwBotdoyg8EQefDgQf7DDz+ktHVrYOxYgBAcPHjQpFKpqLW1NQIDA9GnTx/Mnz+f9wsLw/ErV5qMtOXl5bCxseEBJk/cAJOJGb3/4x8sEG/a1Fi3v1cvYO3aus7esWPHcikpKXxdE1htLuKtt1gpakUFGzQIYXchu2qsEO7sDOY4IDiYDRxLlmBNaqp0qkMHEh4e3nxUV6uBVavuK/DXa9z7zZ4LMn9fZFlmmUcCQRC68Ty/39fX12rMmDEabtcubNu8GebTp2PYsGF125lMJsRMmSLZV1aSDj/8QCwsLBr4EqxcuVLs0qUL7+TkhI0bN8LGxkbq2bMnDdVoeCxcyLyAfXwAd/fmD6Z7d2D1avYvgAMHDtD4+HgyefJkeNYsRTVJSgpgZsY8ALp0YX0KhYWsZ8DCgg0OBQXAjRtItrHBvn37RJ1Ox/v7+4s9evTgy8vLaVlZGXx8fIiVpSXrTt6xg1X6tJBvv/1Wn5ubm/zWW291b/FOMo8dcuCXeWQQBMFcpVJt9/f3Dx/Vpo0mNycH35w9i9dffx21piknT55EdHQ03NzcpPT0dM7BwUGaOXMmp1arAQCff/65qV+/fgqFQoE9e/ZIzjY2nMP27eg7ZgwszcxYAvleidKMDDazrxdwY2NjERsbiylTpsDT0xOUUpw/fx5ZWVmSu7s716VLl4bGOMXFrErof/9jlpC7drE7jrNnG7zVzZs3ceTIESknJ4cz1GscmzZtGrx4njVttTCxSynFu6yx7YJWq+3Sop1kHkvkpR6ZRwatVltlMBgmnzt3josuLkaiKIp9jh5FUUpK3TZKpRIOGRlwuXQJCxYsQHV1Nb1y5Urd80ajkVhYWECv10OqqOCCP/0ULjk5+DI9HYn+/pQCOH/+PAzNdOcCYJU9L78MAHWCaeHh4ejWrRt27txJ8/PzsXfvXnHfvn20pKSE27dvn3To0KGG60p2dsDKlUBAALNMvHKF/f8OPDw8MH36dG7hwoUYOHAgnnzySQQGBuLc++9Tk1J5z6B/69YtNKFouv+uO8k89sieuzKPFJGRkVVRUVEdsrKyAnmeR6izM3Hp148toYAJuQVaWaGjgwNRde2KyspK7ujRo8jOzhYPHDhADAYDFxoUhHbr16PT+vXYPG4cLgUEwNbFRXRycuIkScLmzZtx7tw56unp2bQbV+vWkE6cwNrbt6V9+/aRXr16geM4tG/fHomJieKpU6dIYWEhZs+ezYWEhCAjIwNlBQW0q78/h5s3gQkTgGnTWOLXzQ24dQtISAB+/rnZQE4IgaenJ1q1aoVOnTqh7IsvEFVYSCsUCpibmxMzMzOkpaXh8OHD4vbt27lTp05JCQkJ9Pjx4+Ts2bPQ6/Xw8vICx3FSdnb2ufDw8Idaoivz10Je6pF55BAEwV6hUGQvWLBAY25uztywNm1i5Z5NcOPGDSQmJuL69euwT01FW0miisxMEt+tGyqsrGBvby9WV1eTSZMmcRqNBitXroS3tzeSk5PxzDPPwNvbu26ZpqqqChcvXkTl0qX0pqcnTTM358zMzPDss8/WF0BjVFYCqalYcviwNDcmhrOcO5eZrNy4weQoavnmG1aPX1jIKoNCQ+9+ASiFTq/HyZMnkZKSIpaUlPCUUigUCurq6krS0tJAKUVISAjc3d2pnZ0d2bp1Ky0vLyetW7eWbt26lf3GG2/cJRkh87gjz/hlHjkiIyOrT506Nc7d3d3V3t6eefaePs0qbmqVPX/5BejTBwBgZ2cHv7ZtcWXXLmnk1q2E9u9PfJYuReSoUYiJiYGfnx+XnZ1Nhg4dikOHDok6nY6OHTuWu3r1Ko2PjychISFQ1lTrfP/99+KVK1fQJy2N6+PuTvpptUhNTTUdPXqUs7S0hKurK/PLtbdngfyzz3DGxUVymTOHc+zThx1ffR0fSpkIXP/+rDrH2bnOAL5ZZsyAwsoKXgMHokePHlyfPn3QoUMHDBkyhAQGBiI8PBx5eXlSSkoKCQsLI66urggNDSUajQaJiYlEkiSbqKioTyIjI++yniXzOCNLNsg8qqhrgzFsbIB//5vVzRuNrImqul7PWXw8DG++CUcLC87q4kU4OzrWPdWqVSs4OjpCqVQiJiYGKSkp3Lx584iNjQ2cnZ2Jg4ODZG5uzgFARUUFsrKy+Pnz58Ny3DiWjAUwY8YMxZp//UvCu++S3BUrSOuyMlbG6eMDfPMN1F9+ifLqZnrgcnKY+UunTmy2X1LCuoXvVqL56aesk7cGjuPg5ubW4Pfg4GAuLS3tV0tHAD169ICzszPWMJMaBwB/Wo+GzKONnNyVeSShlFqo6gU/AGyt/NYtFhQ1GrbU8uqrQEUFbo0cifNBQSi5I2k7d+5cdO/eHTY2NqbLly+LTzzxBDEzM0NCQgJKSkoklShSlJRAFEVE/d//Se4WFqKlJAF79rByzqFDgcREDJw6lSvz9ydr1qxBrJ8fNdTU/5eVlaGsrKyuqqgR27YBTk6/ru2PGwdcutT8iZ88CeTmsvLPZsjMzMT27duliIgIWj/wE0Lq+wOkN/8mMo87cuCXeVS5fvnyZVODR4YNA0aPBgTh1x+9HvD0hPvLL6Nf69b4aflyZKSnM81+SoH4eKjWrsULL7ygmJedzZvHx2PZ+++j44ABAICR1dU8/vtfHDx4UGx95AiZHB7Og1LmbWtry2rzfX3h1rUrrMaNo0ajEfHx8dJnn32G+Ph4fP3115Kfnx/19/dvfAaUAuvWMeOXWg4fZjX+zZGWxrqXm0GSJHz33XeoqqriQkNDm8wUOzk5AQAEQbi3TZnMY4kc+GUeSXQ63bSTJ09WpqenN3yCUrbcs3Il8NxzbAb9738DAHrn52OAgwO+37gRJadPs+1sbOoMTK4EBeHnlBQaPmQItbp2DXPmzOHM5swBlixBZmYmit5+myiCglgH7tixQHo6sH8/EBeH4y++KB06dAgTJ07E/Pnz+f79++OXX35BZWUld+nSJW7lypVScXFxQ7/c8+fZ8dVbpoEksSayJpzRQCkwaRJz22oGjuOgVqspwJrZmmLs2LG1/z0tCIK8nCvTCDm5K/NQEQShb0xMzJSoqKhLkZGRzYrDRUZGVhw9ejQ5IyNjVM+ePX9d8yGEJUpv3GB6OwsWAE8/zZ4LD0er3r2Rl5eHSx4eYtfu3TnY29dV2Gw+elRS2thwY8aOJcTcvMH7WVhYcIcOHcKpw4fRaeVK5I8aBerkBN7ZGfHr14ve333H9127lji7ugKEwNbWFsePH8dTTz2F7t27Iy8vjx48eJDExMQgPj6eOjk5Efu4OFbPX3+Gz3FsVt+5cwMpagBMIO7oUSA8vNnrV1ZWhoSEBBiNRhIQEACLJpaENBoNYmNja96OmxEVFbUiMjKy6VFC5rFEng3IPFQ0Gs1HkiT1JIQEAmhaW7kGSunuiooK3Y0bNyzb1RNOg0bDNPNHjACmT2ezf42m7unc3FwxNDS0UfbU1dWVM5lMIiGk0XOdOnWCf2oq9TYYyImvvsKV1FTRcOECZzQaibWNDdqnpECzfTuwcyeweTNUKhWUSiUsLCzQpk0btG3blgNYOWhCQgL5cdMmTElNpR5vvEFAKXbu3CkmJyfzlpaWdOjQoaSD0YhG6zRz5wJlZaCU4tChQ+Lt27fx9NNPNzjWXbt20aqqKtJkeWkNSqUSdnZ2FcXFxZskSZoFoFQQBFetVttyOVGZ+0IQBA0AFYAqAO8DCAewEUACgHitVqurt60tACsAfRUKRR+TyfSdVquNe5jHKwd+mYeKJElfGwyGUIVCESgIwnwA32i12vKmttVqtdLixYtnb9q06Tt3d3dF3759LdvW2iLu3MmqbvLzmRVjjYVjYmIiiouLedd6cgtxcXHIyclBSkoKHTJkSLOtsOEZGeSYoyNcXFwwavRovuZ4wXEcC74jRrBGrKoq7N22DU5OTpKnp2eD5VJzc3OEhYWhg8kEcdUq8nlwMG198SLS0tK4qVOn4sqVK+TAN99Qu7VryfVt22jXwECSnJwsxf/0EzexZ0+YjRyJ5cuW0erqas5gMJDy8nJYWVnVvX6bNm1IRkYGSktLKdB47Khl4MCBljt27OhnMBj+A+A/SqXyK9xjoJW5fwRB6KzRaNZzHOdPCIEoinW3cV26dAk8f/68pmY7ABABaAEsrt3GZDJBqVROFwQhQqvVnr3z9f8o5AYumYeKIAgEwJv49cs/UqvV7rnHPpYA3nR0dHz5xRdfZGUslLKk6UcfARcuAEuXAuvWwWRhgS1btkhpaWlcZGQk7dWrF1mxYgVu3bqFwYMHS7169Wqc17p4ERAEiOvX4+OlS3FPMbYNG1D5739j77vvik8+/3zTdZlvvAHJzw8nvLyQlpaGoUOH1iVdJUnCmRMncDo+XqyoqOAppeh4+za1zcggST17QqlUigsWLOCXL18uhoaG8j169Gjw0tu2bYPJZBKfeuqpZmtCKaXYvXt3dUJCghkA8Dy/5O23337tbtdZ5u4IgmAFoH3tj5mZ2QCTyRQ+ZMgQTUBAAFGpVDCZTOB5vq4hUKfT4ciRI4iLa3pCP2bMGJEQwu/Zs6eI47j/e/311z98GOciz/hlHiparZYKgvAhgKMACrVa7ZUW7FPxwQcfuPr5+f26ME8IMyVXq4G+fdl6/6efQvHqq5g4cSJ3/fp1bNq0ibRt2xa2trbU2dlZ6tWrV6NAmZWVBdOqVdCXl9Mdn39OzMzMRE9Pz7vrIE+ZggKFArcSE3ls3vxrjqEWSQKqq8ENGoQwFxeEhYU1eJrjOIQ6OCDUxoZPGz0a69etw5Mff0xOnzmD8c7O8PLy4gHAx8eHj4+PlxwdHTkXFxeYmZmhuLgYKSkpoJTytX4FTUEIwciRI80SEhIAAKIoPhIy3H8FBEHoDKAbIaSjWq0OIIT4GI1GD57nNVZWVtX29vZo1aqVeevWrRVeXl4N7sgUd7ioaTQaDB8+HMOHD8fWrVvBcZw4fPhwvqysDGZmZrC0tOQppTAYDA5Hjx6dDEAO/DJ/T7RarQjgxP3sYzKZsqQ7Ne6HDmWuWJ06MRPzPXtgmDgRcc89h+SiIqpSqYiDgwPS09MhSRJ/8uRJtGnTBq1btwYhBFSng27oUBwdM0ZymD2bG+7jA39//7sGfUmSEB0djdPp6TSidWsJr77KIzKSdeTWcvEik2J2cWn+fJRKXLx8GZUdO8IzOxtlgwah99GjDbbp3bs34uPjuY0bN8LT05MGBQWRq1evwszMTCwrK+Pz8vJw/PhxafTo0U32EdTo/9DMzEyi1WrT7n2VH18EQbADMFKtVi80MzPz8vT0FJ2cnCwcHBw4Ozs72Nvbw9LSEoQQ5T1f7C4QQqBWq+vu/mof8/T0hCRJNoIgEK1W+4cvw8iBX+YvAc/z1mq1uuH01mRiyd1Dh5hP7ogROLd2Lap+/JF2GDWKdnvqKaJWqxEYGIjS0lKcOXPGFB0dzQMg3t7eon9FBQ+DAc8tWsQpmmvAuoPVq1ebKisr+TFjxpBOnTrxmDcPOHMGmDOHSUmo1UyHv75WTxPsT01FioMDbOLjJev+/anq9dfrBpw9e/bg/PnzVKFQUIPBwPXt2xfXrl2j+/fvlywtLUlERAR/4cIFcdWqVTwALi8vj86aNYuY1QjZ1WfixIlk6dKlOkEQvFtyd/W4IQiCrUql+oDn+ec8PT2NISEhlt7e3s3eSf0W7rasbmtrC6VS6WQymbQA/vO7v/kdyIFf5pHn3Xff7adQKJ71qKnHB4CrV68iKipKCli2jAutvdUmBNfGjYNfUhIC9+zh0KcPYGuLYcOG1SZBFQATdRNfeIG/6OEhXZgyhZt9+zZat8DXNiEhAUVFRYp58+bBxqbGy1ylArp2ZeqhxcXs9//8h2kJNYNOp8O5c+cws7ISLpRysLJq4AQWHx8PV1dX0rt3b+Lj4wOe59GvX78Gkah79+58aWkprl+/jl27dpGLFy/izlwAwJYaevfurTx58uSHAJ6450k+RgiCEKZQKPb4+fmpBg0apDY3N2/Z6P+A1CRym3xOFEVwHEdFUTz3Rx5DLXLgl3mkEQTBU6FQ7Hj66aetNBoNvvjiC9FoNEKn0/GBgYHkxC+/wO4f/6B07VrSydcX5eXlYn7//gRpaQRnzrC7gjtm3+3s7IDqanR87z1ujItLi2Z3+fn52LdvH8aPH/9r0K/FyooJt8XGAk8+CTg6shr9vDwgPh7SsGHYsGSJqcRo5FSOjpRSyltaWkour77KoaioriIJYJ7BHMfh6aefbrB23BQ2NjbIy8uDra0tDQgIaLbCJzQ0lD9x4sRQQRA6abXay/c82ceHWGdnZ4wZM+YPfyOdToe0tDT65JNPNrmUeP78eVRXVx8DsPMPPxjIgV/mEUYQBH+e5w+Eh4ebu7m54fPPP5f8/PxI27Ztufbt28PMzIyE9OiBbLWa/PLzzxg6YgRu3brFT548mfnhrl/PzNS1WiaoBgDLl7OAXNvg1ILjkCQJ69evl0JCQuDj49P8LuHhrIt4+XLm6XvxIvDmmzikVGLwl18qNAEBSH3rLYSEheHKrl0Eq1YB//0v0+8vKkKFWo1Vq1bRkJAQycrK6q65hvT0dGzatImaTCYSEhJCNRoNAYDk5GQYDAa0b9++buBQq9UICwtTHT9+/AMA41pwyn97BEEYCDB/h/tGklgj3n2wdetWyc3NjXbs2LHR5yqKIhISEiqMRuP/tFrtQ/FKlgO/zCMLx3FPi6LY+ujRozQmJgZeXl4YMWIEV9/i0MHREQ4LF0K5cyfd9ssvRKlU/qpYOXUqYGkJnDoF6HSsg/b4cfb4fVBSUoLKykou9F46+kVFwL/+xYTjAMDPD7rRoxG/dCntGBVFXLy80JNSICMDPq1bE+TmMlE2Z2dgxAiUtmqFDn5+dFBQ0F2D/oULF/Dzzz/D29sbERERsLGx4QBAr9dj69at4Hme9u3bl9SvJgoKCuKjo6OHCYLA1yTXH2sUCsVkk8nUQPW0RVDKZEDMzJhgYAvIzc1Feno6N3fu3CZejmL37t36srKyOAC77+9gHhxZq0fmkeWdd955B2xyYs9xXHloaGiDoF9HTg58V68mL730EkaOHNnwuXHjmNLlvHlA797Axo2sEes+sLe3h6urq7h37967B8wPPmB3GfUoLS2FJEkkKyuL7UsIM3rnefbvhg3AG28g6auvEOPoSM1yczny/PPAwoXsjqEJTZ/afERQUBBxdXVFamoqXbx4MZYsWQIbGxvR2dmZXrhwgaamptbtY25uDgcHB5NCoXjzvk7+b4pSqewGAI0UYO9GXByQmcmS+GvXtnCXOKxdu5aGhoZK9vV9GsCCfkxMjJicnJyt1+vHALATBKFN06/0+yI3cMk8ktQ0eoUB6MTzfADHcbNnzZqlaU6m4J4MG8Zm1zdvsjX5+2TDhg1SRUUFXnjhheYnS5SyZYA7tPYzMzOxbt06vPXWW7hz4Mretw/pn35Kjw8cSPr06UODgoKIprqa6fm8/jpLFr/2GisN9fYGAKxatUq0sbHBhAkT+BMnTkhRUVEcz/PQ6XQYNmwY/P39cejQISQlJeHVV1+FpkbOoqysDKtWraqqrq5+8+2331523xfhb8T7779fqlKprCsrK6FQKPDiiy+ioKAAHTt2bHoHk4k5p2Vns89GFNkE4pdfWOnuHRQUFGDz5s1iVVUVP3z4cHTu3LnBZ19dXY3NmzdX5ebmphkMhk8IIV9TShWEkHWLFi2a/keddy3yjF/mkUMQBF6tVh+3trb+JSAg4LOwsLCX5s2bd/egf+FCnUpnk/j5sVmalRWwfTtT7mwhFy5cwPXr17laPZ4mmTOHlXE2YbDi6ekJnudRXFzc6Ln4rCzoQkLov/71L/Tp04doNBom7Na9O3DgAOtMLixk+YOoKAAsaBBCuBUrVkjR0dGkX79+0Ol0MDMzo4GBgdi4caMxKSkJSqWyQeLa2toaM2bMMFer1e8vXrx4ZosvwN8QjuMqJ02ahFmzZsHCwoIuW7YMGzduRE5OTsMNKyqAl15in8G+fcDu3UwXysKCJfHv+ExNJhO2bt1Kv/76a7Rr1w7//Oc/4e/v3yDoU0rx888/V+Xk5PxoMBhClErlByEhIQpCiIFS2rS/6O+MrM4p88gRHR2tkiTpy2nTpmlCQkKUbdu2JZp6ImxNYmbGAmZTUgsmE5uJjxrF/v/556zbt4m6dwDIycnBmjVrxJiYGBw/fpympKQQBwcHXLlyBVZWVnB1dUVmZia+//578dixY7Rt27aclbs74O/frLNWQkKCmJmZicDAwAZT/rjkZJi3bUs7dupEmjRit7dns36Vih2/uTkcHR25w4cPExcXF3Tt2pXExsbSLl260BkzZnA8zyMqKgr9+vXj+vXrBxsbG1BK6wKPmZkZfHx8lElJSYOOHDlyPSIi4uLdL+zfkxMnTkzz8fFx9vT0RGhoaK39prR//34aEhJCOI4DqqrYbL6oCJg5k1WH1fg4AGBJ+bNnWaLX1hZJSUnYsGGDJEkSJk2aRLp168bd2ckLAImJiTQhISHTaDQOB+AqSdKbxcXFVSaT6QmtVpv8MM5fDvwyjxyRkZFidHT0jatXrw4NCQlRtqiZRq1mgT89nc3E6nPyJLsbeOEF9kc6ciSbtT37LJtZ29oiPz8fUVFROHz4sHjy5EkuMDAQ/fr14wIDA0lERAR69eqFjIwMeunSJZKRkYFTp05Jbdu25VQqFTH88ANtO3MmwV3Wi11cXLjo6GiSn58v+fn5EUII1qxZY8rIyODGvPMOKQ4Lg3W9PoU6Tp8GFi9mxjKVlcC6sfyhfwAAIABJREFUdbAfPBiRkZHo0qUL2blzp1heXs5NmDChroHr9OnT1NnZmfj4+JDvv/9e3LFjB3f79m2xdevWnEajgbm5OTp27Kg8f/78iKNHj56PiIh47Bq7YmJi3u3du7eFec0yjVKphKenJ0lOTqaXL1+mXVu1IujXj+lBeXuz79SECWg0OE+ciKriYqy+ckW8ePEiN2TIEDJixAhS3xmtPiUlJfjhhx90RqNxgFarzY2Oji4FsEgUxX8sWrRo0x982nXIgV/mkSQiIuJ8TEzMzLZt29o1qptvjqgoZnU4cGDDx9Vq1mRVX9qZEMDBAUmiiJ+//VY8kZDAqdVq0dfXlx82bBg6d+5MrK2tYWVlBZVKBUII3NzcSElJiWhlZUWtra0xcuRIzpIQolyxAs4zZ5JrN26gtLQUVlZWjXoDbG1tUVVVhfPnz5Ps7GzJz8+PHDhwgEybNo3cGDZM2h4VRU6dOiVVVVWR9u3bs50MBqBtW+DYMSAri53DiRMsSV0TgBQKBZeXl0dzcnKkLl26cABgZ2fHHThwADExMaSiooLMnj2bnD9/HgcPHiRubm518gPt2rVTXrhwYcyRI0cORUZGNm/79TdDEAROkqT3Bw4cyPH17tAIIejo6krSV60i+s6d0fq115jL2+efA0uWNAr6kiRhd6tW2FlcDG93dzpx2jTOw8OjUR6nPseOHTNlZ2evfOedd9YBQGRkJI2MjBQiIiLi/6DTbRK5nFPmkUWSpMNpaWleHh4ezf8l1WfIEPZzJ19+CURGNnq4wNcX27/8EvP37OHNv/wSyuDgu5ZROjk5oYEiJqUwt7TEj2PGkAPLlolGo5HnOA4GgwG+vr7imDFj+GvXrsHb2xtVVVW4cOEC7d+/P4mJieG++uorycnJCW5ubsQjL4/rHByMNGdnbu/evXTQoEFEkiSUhIdjf9++YkmnTpg4dixva23NEr3x8WxAcHBA9+7dcf78eVp/oPHx8cHrr79OduzYAQ8PD+Ls7Izw8HDuxx9/bNAU5ubmhnHjxplv27ZtjyAIvo+RXj/PcZxRp9Pxd3bSWhuNGAhg5b59tL2XF7EJCmJNeXeQkpKC3bt3S+bm5ngpP5+z/uEHHhMm3PONCwoKqo1G40PV3m8KOfDLPLIYDIZlx44dm9y5c2dzBweHlu20Ywerupg//9fHfvkF6NWr0aa1yc/lQ4ag4/XrUujZs5zH2LHgWtrUc/48XP/5T8zcvBlFRUV8x44doVQqcePGDXz//fd8amoqeJ6HJEmU4zh07NhRCgsL4zMyMqTMzExu1qxZ7M6gsBA2oojapZqCggLExcXh+ogRtFffvnzRypU0oVMn9O/fn73v7t3MhSw8HFevXkVOTg730ksvNTq82o7UiooKbN26lQ4dOhTOzs4NBlFfX19kZmZaJyYmbhMEIfIxqfHneJ4vzM/Pd68bCM+cYaW4y5fDfs0adF+9WkLHjryUkgKunqBaWVkZNm/eLBYWFvIDBw4kQUFBhCsrA15sWU72ypUrVgDeA7Dh9z+tliMHfplHFq1We2nx4sWvb968+YM5c+ZY8M0kThvQrRvg6/vr7wYDGwya0OKxZTo+SElJoUajkVz76SdUOTnBd/z4lh1g167Anj1wtrCAcz11Ti8vL0ydOhWWlpZwcHBAbm4uycrKQlBQEE8IqR0MfvXMHTYMANBRkuDv70/3LV5M/U+e5Lw3biQdLC0Rc+sWiTlxAnFxcVStVkuT583jnZycgOxs7Nu3T+zZsydvbW3d7GFev34dKpUKQUFBTd45DRo0SJWRkdEtNzd3GoDvWnbyf00EQXBXq9W7vby87Nu3b8+S/UVFQEAAMGNG3Xb9Q0P5sz160IKTJzF69GgiSRIOHDiAhIQEeHt7Y9KkSbCwsGDX09aWVff06MHySU0kdAFW1ltD2z/2LO+NXM4p80gjiuIXZWVlpw8fPmxo0Q6enqxbt/aP7MABVm/dzLprcHAwpk6dSnieR+LQoXDp3x946y2m+Hk3Dh0CvvmGlfXdASEEbdu2haOjIwghcHV1RUhICGoHrps3b2LatGm/LrvcugUMHQqO4zBo0CDO4OMDOm8ebd++PeDiArvPPqPDhw+nzz77LOnUqRNZvXo1xfXrwKRJUPA8f/bsWdy4cQNFRUVNHqqLiwuqq6ubXS7jOA69e/e20Gg0z939pP/6qFSqY7169eo8YcIEc0IIK+19/31W4dWtG9to8mQoz59HuzVryMWLF0l0dDSWLl0qpaam0smTJ+PJJ5/kG3kde3iwqi5D46+pJEnIyMjAunXrap8c+8ee5b2RA7/MI41Wq6V6vf6Zs2fPFu3YsUOn1+vvvdO2bXU17/DwYDIK98DJyYmo1Wpqa2sLTJnCZm+3bzdf7+/lxQzT75OqqirodDqugVSAgwOr1weg+eILzBw8mOv+7LOEEAK8+CICCgtJ9+7diZOTEyorK4kkSeST7dulz8aMQWVpKaytrLB+/Xp88cUXSEpKavB+hYWF+OGHH2i7du3uuoTToUMHGI3GkBqXqb8lgiBYiaLoGh4eriCnTgGHDzMzn6VLf93IZGKThJAQODs7o2fPnjQ2NhahoaHkpZdeIm3aNNNYq1AA330HrFvHvjf1uHTpEtasWQNJkgoAfEQIeeaPO8uWIQd+mUcerVZbYDQaOyUnJ+/ZsmVL5b22L5k8GRsVCly7do2t3fbsibKyMjQycqlH//79UVFRgeTkZBS7uDA9lk8+YX/Id3LxIru9v5d2TxNoNBrwPI+qqqpfH+R5wNoaKCsD3NzYQADgyJEj+KlDBxHduwMALl++jIsXL5LOnTvTkSNHcm28vMQ5585hrrs7Fi5ciMjISGzfvh2JiYl1Lx0XF4fS0lLSu3fvu66TaTQauLm56QEMve+T+uvgZ2tjU80RwgZ0g4EF+drE+IEDrF5/w4Y6RVdra2tib28v9enThzS71Egpe6333mPNXjWuZ7XU+j9TSt0ALKSU/umBXy7nlPlLEBkZqT9y5MiBsrKy1wIDAxVNOU7VsmrVKrHLvn0k9fhx4rpyJXaLorj73DkuKSlJDA4O5prqCyCE4OLFi+KFCxdIcnIyevbsyeq4u3VjGi25uUCtgfuaNUz0rVbx8z4wGo04c+YMdXV1JY71+w0WLGA9CC+8AEmtxokTJ3Bi/35I2dlcrlIJHx8fODk54eTJkzQ/P5+gsFAcNXgwb1ZSAuzbB8Xt22jbqhXiCwuhWbsWORYW8LSygnd2NpJNJtE2LY1ztbEBsbdnyqSurqwrNSeH9T8UFAAGgzo9L08VFhb20OrJHybR0dFDR8THj2lVWspj3DjgTnmG3btZ6W+/fnUPZWdnIzc3l/bo0aPhUplOB1y6xK5fjx6skWvgQNYX8swzDdQ7a3SSkJKSAgDgOO6diIiImD/uTO+NHPhl/jJERkbqYmNjyeXLl3s6OjoqOY5roENz6dIl7Nq1SyouLuZ7jxhBuj/zDJL8/SVlQAB5Yvx4cv36dZw9e1YMDg5u8k63R48enMFgIPn5+QgNDWWdtIQAiYksSHp7sw7gsLAHCvplZWVYtmwZdXJyoj169GjomJWczOSj3dxwatkyejMlhYxq0waBx4/j6q1bkreTE+GXLEHl1at48vx54rZlC3fVyUlqHR1NsHs3y2mMHAnvAQNgffIk9hUVIfviRcm/qIggLIwr+u47ejMtjeZZWRGX994D/8QTQEwMm6VOmgR0745WO3YgpkuXNkePHv0qMjKy+sE+pUcUQrwTevWa3nrEiG5uY8cyv4RaJIk1as2bB9yhzZ+VlYW8vDwaHBxMUF0NbNrElnXGj2fX7j//AUJCWFVP166sx6KJiUVcXJwuNzdXAQCU0jmRkZG3G230EJGremT+UphMpsUlJSV5GzZs+BoAJk2ahAMHDojFxcW8SqVCYGAgnnnmGVhbWwOLF6NPVBRXm6iNiIjgtm/fzlQJJYn9lJQg/cYNxJw8Kelv3CBVZmZkXK9eBAcOsD/kmBiWwHVyAp57ji0HHD7MfH7vk/j4eCiVSsycObNxZCgqYssEtrZQ29kRV0olty+/5Gh1NYYmJnJpISHw7tgR+qoqMXvhQoVDVhY6TZ7Mxe3aRXv89BORxo1DztWrSCopkZLateNUKpXkO2gQh65d0QNA2apVZN1nn5GiAwdgbzRSn5s3Cbp0YVLVABATAz4qCj3t7bm4uLjUDz74YP4bb7zx/QN+TI8UgiAonu7ceVOboiJf7/DwxlId166xwf3Ojm8wXZ3OUVHM23nECNbQ1b8/+w5UVrLvRVO9I3eQmppaXw3zN/n2/h7I6pwyf0kEQXAGMJ7n+fdFUbQJDAxEp06d4OHhgdo2fIwezbT4vb2Bl19G6Sef4JqtLQ3ieULT00GWLQN9/nlkiyJuT5hAO166RMp69kSrnByQoiLgzTdZ16a7O5vlHzkCtG/PpB/u0p3ZFMnJydi+fTsmTpwIr3o2iw2gFOjZE/ne3tjk6YkJP/xAc2fOJFnV1SK6deNHt2mDS/PnS+qBA7kOHIcivR4rLSwQ4eqK1Nu3pWkLF3IrX34Z/WbPhp+fH3u9998HFi7ErhkzJI+MDC5+2jTpSS8vziY4mOUVasnOZk5gixcjKSkJe/bsKTQajc4Pyxjkj6LC0vKjzTNn9ucCA/2eeeYZ80a+xD/9xAb2oUN//Ux1OiApCXjrLaRGRKAqNpZ2S0wkSEtj+RiN5r4//+zsbOzcuVMqLCx875133vnP73N2D44c+GX+0giCoALwjEajecJkMgV26dLFc9iwYUShULDAFxfHApy7O+IOH8bZq1dFv65d+diTJ9HB2xs3btyAp6enOHnyZP5urfa/hZs3b2L9+vUYPXo0/P39G2+g0zH9/WXLgIICHF23DqUlJVIXlYrjN27ED9Ong1KKnj17gi5fLvW5epXTrF4NeHriRk4OLJ56CrEff4xxv/wC7swZkNmzWbLxtddYgnr2bCz95htxxIgRvHeNtHMjjh9ndzRXroBSiu+++64yJydHEkWxh1arTW16p0eX42FhtocHD36605UrS13GjVOEjRvXWPOJUiA4GPjnP1kup00btk6v0wFbtwLvvosMMzPsDw4Wn585k29OgK+lfPHFF2VFRUXDtVrt8d/0Qr8DclWPzF8arVZr0Gq16xYuXDjWZDINS05OPvvxxx/rt2/frsvNy2Prr506waBSoczSEsUGA38qIQEDBg1CTk4O7dmzpzRlypQ/LOgDwK5du6SuXbvSJoM+wLTdg4IAACVKJa6VlEiDv/iCa2dhgTbl5Vi4cCGez8tD+3nzEBcSwhXu3Vs362zXvj2cHR3x5JNPgu/eHUSpZOWstZ28//oXYG0NnuepoYka8zp69QLOMZ9vQgiee+45ix49emiUSuXzv+e1+KMRBMHxvXffPeyZkVFsW1i4InzJErO+48c3DvrFxcDLL7OeDYOByTLs2cPuepyc2LLP+vW4OW0a0955gKBff1Kt0+lQUlKiAfCnyzUA8oxf5m+IIAjuHMdN5nn+7UGDBpkHBwdzUVFRiImJwaRJk+rMNiRJAiHkrqJav4Uvv/xSKi0tJZRSYmZmJs2cOZNrssNWkiCBNVKtWLFCbFNVRQbfusXx//gHW24aPx4wN8f1X35BYVwcOv/yCyyXLWMa/eHhbI26Qwe2/HDlCqtMqVdvnpubi++++w5Tp06FR1MKoABbxvrHP1ipag3fffcdMjMzQQjJoZSO02q1Z37nS/S7sviddzp0uHr1aqqPD1QGA+YvWoRGSzsmE/NlWLYMyMgABg9mv+/fz7yY77BHjI2NRWpqqjhr1qwWR35JknD48GGTTqczjRo1SgMAqamp2LFjx5nXXnut5+9wqr8ZObkr87dDq9VmAfhIEISthw4dOhgVFdVGr9eT4cOHN3BYapHc82/g9u3bnI2NDcaOHYv9+/cjOjoao0aNarRdycKFOH/uHE0cOVKqLi7mx8+ZA751a6Y5tGkTC0rHjmG3tTXMfXzQw9yczVRrqV+W6O3NKpDatWNNbJ6e2L9/P+3QoQP18PBodMI6nQ5qtRqkdWtg0KAGz02cOBEfffQRKKWuAE4LggCO4z6SJMkAwAjgBoAfHlYeQBAEDYCOAHwIIb5KpbKtwWD4D4CuAHZxhMD38uXym23aENHOTllRUaGuC/wZGcCuXawE89w51oCXlAS88grT3R/XtAd9fS+DlnDr1i189dVXAKCwtbWtAqChlOLMmTPVer3+599y/r8ncuCX+dui1WqvCYLQBUCsp6enT48ePe7h5nJvrl27hsuXL0On06Fz587wra8LdAeWlpamAQMGKDw8PBAQEMCdPXtWBMAbDAZs2bKF5ufnSzqdjqc2Nuj/5pvoZDAQ/ddfQ/3WW0wOwsuLWUXWiIQROzspB+BEUbz7oGVpyXRnasTmwsPDyaZNm8iKFSukyMhIrlO9iqTVq1dThUJBh/fowXmObagkoNFoMHHiRJSUlGDv3r0AgN69ey+sFZ67evVqVXFx8ZuCIIzUarVpD3hJm0UQBMLz/JcqlSpQFMUuAMytra3LnZycqKWlpUVSUhIPYIZKr8fYbduwZ+TIWdvHjdsKwAC9vvLLL7/Eot69QTZvBnr2ZIF/2TI2s798md0h1e/abYL7DfxZWVm1/z2p1+u7Auw7k52dnStJ0mcPdCH+AOTAL/O3RqvVlguC8FRaWtqVuLg4qUePHg88zZckCZs3b4aXl5eoVCrJ9u3bSUVFBbl27RotKCgQLS0teQsLC+Lk5ARvb2+Ym5vzaWlp1M/Pj7Rt2xZHjhzhJEnCoUOHUFRUhBEjRvCOjo7gd+6EbUgIgYUFOWNnR1fs24eR8+eToowMyW7xYs7fyQnFxcVwc3PjlEqlpFQq730Ob7/NJASuX0f7xYsxevRo3Lx5k9u+fTuGDRuGS5cuiQBga2tL8vLyuDOffUbN4uPhlJzcIMrVJoNDQkLufAfSr18/i5iYmE7Hjh278PHHH6eYTKZdRqPxPa1W+5vXjwVB6KBSqdYbDIbQrl27oqqqSrp27Rq1t7e3kiQJOp0OAGBRXo5KK6sl1uXlMZWWlvt5nt9uZjIFe6am0oGiSEhyMhs4p0xhAf/ll1lJbhMy3U1Ruxx4L6qrq1FRUYH09HSjWq2OAVARGBioAYCioiJQSo9otdoW6I08HOTAL/O3R6vVXhUEwffgwYNR1tbWzj4P0HxViyiKmDBhAq9QKHD8+HHpxIkTcHd3l/r27asoKSmhpaWlYmxsLB8bGwsAJDc3F46OjlJISAhnZ2dHly5dSvR6PSZNmkTatm3LXvT0aZZcXL8eIU5OpDI8XNpx4AAJHDWKO7FnD83MzCTnzp2DKIqQJIkzmUxoytKvEUplXVIyICAAAQEBuHXrlnj48GF4eXnxly9fBqUUEyZMgOv48eTn997DuMpKNBIgawZCCCIiIrjAwECLgoKC4D179viVlpZeA7DxXvsKghAOYL1arT7HcZyKEGJZVVUVDgBmZmaXlUplm/DwcNXhw4fh5uYGLy8vztbWFpIkISUlhbq4uJDpgwZB+dRT+GbWrFdXz579qt3t2/C9dAn+ffvC5dw5kP/+FwgMZB3RGg0bDK9fv69SzJbkQPV6PZYtW6YHUMhxXLper39GoVCMPnv2bCQAlSiKSoPBcLXFb/oQkJO7Mo8NgiCEqdXqA0888YSZl5cX7jThaAmLFy/GggUL7hocKysrwfM8ioqKsHr1arRr106aOnUql5+fj8OHD4v9+/fnXZrS/D97llWYLF0KacMGEJUKy5cvp5Ik0REjRnCurq64efMmOt2jeSw7Oxs///yzGBgYyIf36cM6ghctatCtKkkSPvnkE6lr167c4MGDgYQEnFm0SLr4xBOYOnUq9yDXJjs7G2vWrCk3mUzeWq02787nBUGwAKAF8GrtY/369YO9vT2USiU2bWJKETNmzICDgwPMzc2Rl5cHJycn1NfJ2fH116Y2ly4pApctw/XUVMStWiU9rdNxpuxsiMXFUK9fD3L1KpNSsLJiCd1Bg4Affqhb/mophw8fxs2bN8Vnn3222eTusWPHpGPHju16/fXXG6yVCYLgCqDW2SxQq9UmNd77z0EO/DKPFYsXL56mVCoXGI1GPw8PD72fn5+Vr68vmvNIBZii5qVLl5CQkCCWlJTwCxYsgOou/rr1kSQJlFI0K/AVG8uWHp5+mq3pm5kxq8W+fQEA+/btky5evEjGjx9Pmm38uoNPP/1U1Ov1vJWVlfjS88/z6NoVho0bUebhAUdHR+Tm5mLdunXU0tISs2fPJiqVCvj+e0jLl+PTJ5+UgoKCuIiIiAdKfh86dMh49uzZaL1ePxyABKA9gMEKheIZSmmwKIpqABg7diy8vLxQv8rJaDRCr9ff9bMApfh55UqT3/Hjik7Dh7OB8pVXWB/E9OmsTLP+wEgpm+FfvvxA3daHDh1Cdna2afr06U3eYuXk5GDdunXVer0+RKvVNjKuFwSBAoBWq/3j6oUfAHmpR+ax4u23314HYJ0gCHbp6elDcnNzJxw4cGCYr68v7d27t1lTM/Gvv/5aJIRw7du3x9SpU1sc9IEWVA75+jIl0G++YUFs1qy6oA8wmQmTyYQffviB9urVC/369btrACkpKUFFRQXfp08fJCYmEgOA/R9/TC9v3Uoc8/NR0LGjZDQaudDQUNq/f3+ubv36mWfAPf00+iYkcHv37kVMTAwcHBwkd3d32r9//7savdQnMjJSmZWV1Ss7O7tYkiSVmZmZ3tLSUlFUVKRZsGABFAoFFApFkwOhUqm8+11YTAywdCn8OI4nGRlUOnuWcGvXAmfOwOTujpjjx6HX6+Gq1yMgIIBd+9deAyIigJEjW3T8d3K35C6lFBs2bNAZDIa5TQX9Gl4jhJQ80Jv/gcgzfpnHHkEQHHief4HjuFc4jjNzdHQ0uLm5mfv5+Sk9PT3x0Ucf0aeeeorY2NjAwcHh9637z80F7O1Z7f2+fayRq57VH8BmwgkJCTh8+DDCw8Ph5uaGW7duwd/fH5aWlvjxxx+l/Px8SZIk9O7dW3HkyBE6YcIEEhsbK+Xl5UGSJO6lmzdhceYMsrdtg0ajaXweq1YB338PREWhoKAAJpMJ2dnZOHv2LFWpVNKMGTPuq4OptLQUZmZmUKlUMJlM+PDDDzFz5ky0bsIJDQDS09NhZ2cHGxubxk+WlQE//wyoVMDMmTDOno0t7dpJBeXlGDFxItehQ4damQm0adNGvHXrFqfT6RAeHk46W1rCzN0dmiZ0eFrCgQMHkJ+fb5o6daoCAPLz82E0GuHu7o6LFy9i586d+UajsfXvkdB+mMiBX0amBkEQCAB3AH48z/dWKBTTADjr9XoznucNHMeVt2rVSjN27FgLxwcMJI2YMoWZpz/7LFuuuAtnzpyR4uPjUVFRwanValpRUQFLS0uYTCb079+fVFRUICaGqf1OnDgRHh4e2Lp1q9ilSxfet1MntuxRUADUs4ms9+LAiRMNvYoBJCYm4ujRo/SVV175TaPd6tWrJS8vL27AgAGNnktNTcXmzZvBcRwsLCxEJycnMmX0aA7W1qyxbPp0oKQEWL0aGD4csLKCXq/H//73P5SXlwMAFAoFvLy8xEmTJvEAcHP1atzasAH7Bw+GyWTCiy++iBb7Ntdj//79KCgoEKdMmcJfvHgRO3bsKCOEmKytrW2Ki4tNkiT1fJTW7luKHPhlZO6CIAi+AF4C8CmAdJ7nX+J5/sPnn39e8yCBpEmiophI2uTJLd6FUoqlS5dSvV5Pnn/++bqglpOTAzMzM9jZ2TXeSRSZbtHevQ2WkwAAN24AWVkNHjcYDPjss8+ksLAw0rt3798U+NeuXSvl5eWRyZMnE3d39wbPbd68GWq1Whzi5MRnpKdja1oa3vrmGzYg6nTMD3fDhjpv4vT0dGzatInq9XoCsOW06dOnw9nZGXU+DdXV7Jp26ICPPvoI7dq1M1paWtYGO3LnXdsdvxMAtOa9+Orqavj5+UnZ2dlcTk7OcpPJpFUoFJsAHHjrrbfu3gjwiCIHfhmZ+2Tx4sUv29nZfTBnzhyLFpVVNkdxMas2OXiQmaHcJ//3f/8njRo1iruv8tRbt4BWrZgkdf38w/LlbADaurXuoQsXLmD37t1YuHBhg1wFpRQpKSkoKyuTQkNDW5QBppRi//790pkzZzgfHx+MGjQI5mo1YDLhelgYrVi/nnTNzMTtoiKsLiiQXvv3v7m646tJ0O7du5deuHCBSpLEWVhY0MmTJxM7Ozu8++67cHV1xezZs4HCQnYXtWtXXRXTRx99pNfpdB8BKK05nDsHsbv9bgnAEUBGze/7/4oz/DuRk7syMveJKIpflJeXD/32228junfvbtacscs9uX2b6fA/YM6gqqqKa2mlTx2tWgEff8yau2ocoQAwyYKwsAabdu7cGXv37pVSU1M5X19fUEoRFxdH4+LiaGFhIadSqbjQFtpPEkIwpFs3zvfSJRwoK5PSR40ifvPnE93IkTjVsycZ4enJau5v34a4ciXXYFD6xz9wUaNBop0defLJJ0mHDh3AcVzdRRs/fjz27t2LCxcuIMDfH/jww4ZGK4AIYFWNlIcMZHVOGZn7psYAfnRubu68AwcO5J04cYKK4l29zJumfXumx2Nr+8DH8kB37M8/z4TJ6pOQwMpK68FxHIKDg7n9+/fTEydOYN26ddKRI0cQEBDAeXp6UhcXF6nZ9xdFlk8AmLNVUhKIJKFNZSUmTpzIbRs2jJzy8MCyzz+n3IABok3NHU9tk9a3335rkiQJkiQh8eZNej03F88++yy8vb0bVUr5+/vD3t5etJo7F9WJiWwAaeJS3f+F+vsiWy/KyDwAkZGRNDIyMunIkSN7srOzQ+Pi4mwtLCxUrVq1+sPUPu/k3LlzYkXWzehcAAAL9klEQVRFBTp06HB/b6jRMM/drl2Bzp2ZkueePUy8bPz4Bpu2adMGmZmZyMjIoE5OTtwzzzxDOnbsCF9fX3LkyBGqVCrh7u7+6/t/+SV73T17gJUrgVGjmIF8+/bMRD4iAiqVClevXpWSkpJIUFAQxowZU1dWSgiBn58f4uLiyK1bt8j+/fulgo4dMWbBAuLQTEUQAFBK6YWKCuzLzERHHx9Svxfg+PHjRpPJ9HlkZGT5fV2nvzFy4JeR+Q1ERkYWhYWFrTp48ODJtLS0rleuXLHq1q2b6mEEfwsLC+7MmTPMH/h+IYSpeA4eDJibs1nyyJGsZLLBZgT+/v4kODiYdOrUqa6HQcHz8CCEbD9yhFjv2iW6JCdzCA1lieMuXZixyejR7EVcXFi5aj04jiNXr17FxIkTyZ21++bm5nBzcyPR0dFo166dNPHECV6zYgWrfGqKL76Aa0kJ5/fKK6SgqEg6dOgQCQ8Pr7smNYF/uRz4f0VO7srI/E4IgsCpVKp4a2vr9sHBwVb+/v4t1r15EPLz87Fq1SpMmzYNnp6eD/YiR48yKYPWrZmu//f3sNndv58F8o4dgaAgZO7Zg21ffYWgoCAovbxgbm7e4MfMzAxKpbLuLkgURRw/flyKjY3lAgMD6YgRI+49aGVnA+XlzXfeZteoItT0N3z11VewtbUto5TCZDJxlZWV5gBaabXaovu4Mn9r5MAvI/M7IgiCAsAAtVo9x2QyDfP09DR1797d0sfH54G0ge7FwYMHERcXBz8/P3HUqFF8s9IQzXHmDPDFF2w2XVgITJjw63P5+UziOT+fOXlt28aqflxdmWNXDceOHcO1a9eg0+lEg8FATSYTMZlMRBRFzmQyQZIk8DxfJyynVCqlp556imvxYJWVxfIPM2Y0fDwpCfjf/4Cvv657SK/XY8uWLbr09HSFKIoLAewAUKbVagvu78L8vZEDv4zMH4QgCJYAxmk0mrkmk6m7r6+v1K1bN7M2bdr8riYwpaWlWL16teTv70+HDBnyYMaw8+cDAwawWXVCAtMOmjyZJWZDQoDUVKA568h7YDKZUFVVhdu3b2Pt2rV4/vnnm+3gbZJ9+5g72JUrDR/X65ljWI1tZX1qfI7LTSbTxEWLFu15oAP/GyMHfhmZh4AgCK4cx01SKpUvUErdnJycDMHBwdYBAQHNC7jdB6tXr5batWtH+vfv/2DJhbZtAR8fVgq5YAGr6U9JYcE1MJC5VJmZPXDpKQAkJydjy5YtWLhwITSa3+CJo9MBkyaxktSmJB5quHr1Kn788cdqk8n0EoCtWq22tNmNHzPkwC8j85ARBMEDQJBSqXzPaDT6z5kzB03KNN8HS5YskSZMmMC1qee1e19QyoK8JLF1/HHjWBNUSQkwdSqTOP72Wxb8lyxhFTsxMUz2uFs35hTm6tqsKXlmZiY2b94subm50VpZhRZjNDJLyevXf206i41lfsP34NSpU8b9+/creZ4/J4rif8EGgMc+6MmBX0bmT0IQBAuO4w4BCBkwYABxd3cnTk5OjQ3C70J6ejpOnTqF69ev49VXX70v5dD7ojZOlJcDyclAaChb77e3B/r1Y5U8MTFs3X3LFpY32LwZ8PMDAgKwc9EimLp2xdhx4x5smWv6dLaWv2gRMHZsgxzDvdDpdDh37hxOnz5dWV1dvfb1119/8f4P4O+FHPhlZP5kBEEIUavV/ySEBBkMBi+VSmVycnIyubq6mjk7OyvbtWvXtGolgJUrVyIvLw+zZ8+Gq6vrQz7yJigvZ7IQ7dsDP/3EAn+7dsjz90fK11+j382bzPD844/ZncPYsYC7OxOIGzCgsZRELdnZgKMjW9P39mZ3GveJTqfD8uXLq6uqqp7QarX7foez/csiB34ZmUcIQRA4AJ4A/Akh/mq1OtRkMg1ydXWVTCYTnnjiCctaQbaDBw8iMTERU6ZMeTSCfjNkZWVh3bp1mDt3LuzMzFi+wN4e2L6d3TlIEvDOO8yTQBDYctHbbwNz57IZPs+zgWT8eGDNmt90LCtWrBDz8/P1AFy0Wu1jW9cvB34ZmUecmuqgkRzHtVGr1dpZs2aZVVVVYfv27fDx8aGDBg36U92dRFHE6dOnqY+PD2lKsTQpKQmHDh2ir7zySiNVzEZQyqwSlUrWDBYZyfIHn3zCyjl79vxNx5qQkIBdu3YBAAghr1NKP34c1/zlwC8j8xdi8eLF83ie/8xkMildXV3FyMhIvn379n/a8ZSWlmLTpk2VhYWF2SaTydvOzq7a1dWVjBs3TlNQUIBWrVoBAD7++GM6adIk8sCNZr8zJ06cwMGDBwHASavVFv7Zx/OwkSUbZGT+QvTt2zfu6NGjKpVK5VZRUWGZl5dXeebMGcXt27e59u3bPzSdIAAoKyvDV199hdLSUpUkSQ4AoNPplAUFBQqlUoktW7YgMzNTr9frFRkZGbCzsyMeHh4P7fjuRlJSkpSXl5eu1Wo/+LOP5c9AnvHLyPxFEQTBBYAvgCMAEBoaKoaFhfF/pEwEwAzkjx07ZoqOjiYcx13jOK7aYDDUSWIqlcoco9HognrqvwqFAp07d6a9evUizk05gP1Gqqur72v79evXS3l5eYmLFi0K/t0P5i+AHPhlZP4GCILgo1Kp3jQYDNPmzp1bt8TyeyNJEjZt2lSdkZFxyWAwTAWQ2twauSAITgB+BhAGMJlnSZLw0ksvPZANYnPExMSYoqOjKSHE2NJ9RFE0J4QsXLRo0ce/24H8hZADv4zM34j333//FVEU31coFJK5ubnRysqKWltbK2xsbDQODg58QEDAfWsGGQwG3LhxA8nJydWpqamEEJKi1+v7tbQTtsbLeBCADQCcunfvLg4bNoz/Te5lNZSUlOB///tftclk8tVqtRn33kMGkAO/jMzfjhqhOEcALvV/1Gr1II7jQvv162fWvXt3cjepCEopLl26hPj4+PKbN2+qVSpVkk6n+55SulOr1ab9hmPzVKvVq9RqddiYMWPM27Vr96AvBQDYuHFjVVpa2pK33nrrP7/phR4z5MAvI/MYIQhCD7VavVShUASGhISYe3p6Ejc3N1D6/+3dz0sUcRjH8Wd1RCVTOgYdLCEPIh0NiSBICOykkIT/ScE+fJegW5B47Q9QsAQPCdGKzuohAm9pmB4K2hUvse6iM191ulgUgthi7o/n/brODHxOb5b5wSays7MjSZJIsViUbDZbKpVKX6MoeiYib1X1x3nuyGQyD4MgeNXX19c5PDzcVsmv/83NTZmamip476+r6v557mt0hB8wyDl3p6Wl5VFzc/NQHMc9QRAcpVKpfFNT036SJKUoip4nSfLmf77j7py73NraOtXV1XV3fHz8Umdn55mvPTw8lImJifLu7u7jdDo99782NirCDxjnnGsXkRsi8umiP2ZyzqWCIHgSBMHTsbGx9u7u7jNdt7y8fBiGYe74WQMR+0eEH0DVZTKZoSAIXo+Ojnb09vaeem6xWJTJyck97/0tVd24oIkN5fz+DQIAKpROp9957+/NzMyUNjZOb/n8/PyeiEwS/coRfgA1QVU/eu/vT09Pl+bm5o7y+fyJc8rlsqytrbV5719UYWLD4FYPgJrinOsRkS8iIiMjI9Lf3//X8dnZ2Wh9fT0bRdEw9/crwy9+ADVFVTdF5IqIyMLCwomwDw4OtsZx/EBEbl70tkZB+AHUnOPvBq6Wy+Vvi4uLB38eW11dPRCRl6r6uTrr6h/hB1CTVLUQx/HtlZWV/NLS0u/4b21t7SdJ8qGa2+od4QdQs1Q1H8fxQC6XK/yKv/f+SI6fAaAyhB9ATVPVvPd+IJfLbYdheNDR0ZESkWvV3lXPCD+Amqeq3733A2EYbhcKhT0ReV/tTfWM1zkB1A3nXJeIHKhqudpb6hnhBwBjuNUDAMYQfgAwhvADgDGEHwCMIfwAYAzhBwBjCD8AGEP4AcAYwg8AxhB+ADCG8AOAMYQfAIwh/ABgDOEHAGMIPwAYQ/gBwBjCDwDGEH4AMIbwA4AxhB8AjCH8AGAM4QcAYwg/ABhD+AHAGMIPAMYQfgAwhvADgDGEHwCMIfwAYAzhBwBjCD8AGPMTcaSQ/XzNev8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax = gdf.plot(edgecolor='grey', facecolor='w')\n", + "f,ax = w_knn3.plot(gdf, ax=ax, \n", + " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", + " node_kws=dict(marker=''))\n", + "ax.set_axis_off()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lattice Weights" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "from libpysal.weights import lat2W" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "w = lat2W(4,3)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "12" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "23.61111111111111" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.pct_nonzero" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{0: [3, 1],\n", + " 3: [0, 6, 4],\n", + " 1: [0, 4, 2],\n", + " 4: [1, 3, 7, 5],\n", + " 2: [1, 5],\n", + " 5: [2, 4, 8],\n", + " 6: [3, 9, 7],\n", + " 7: [4, 6, 10, 8],\n", + " 8: [5, 7, 11],\n", + " 9: [6, 10],\n", + " 10: [7, 9, 11],\n", + " 11: [8, 10]}" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "w.neighbors" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Handling nonplanar geometries" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "rs = libpysal.examples.get_path('map_RS_BR.shp')" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "import geopandas as gpd" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/serge/Dropbox/p/pysal/src/subpackages/libpysal/libpysal/weights/weights.py:168: UserWarning: There are 29 disconnected observations \n", + " Island ids: 0, 4, 23, 27, 80, 94, 101, 107, 109, 119, 122, 139, 169, 175, 223, 239, 247, 253, 254, 255, 256, 261, 276, 291, 294, 303, 321, 357, 374\n", + " \" Island ids: %s\" % ', '.join(str(island) for island in self.islands))\n" + ] + } + ], + "source": [ + "rs_df = gpd.read_file(rs)\n", + "wq = libpysal.weights.Queen.from_dataframe(rs_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "29" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(wq.islands)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{}" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wq[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "wf = libpysal.weights.fuzzy_contiguity(rs_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wf.islands" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{239: 1.0, 59: 1.0, 152: 1.0, 23: 1.0, 107: 1.0}" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wf[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAANSCAYAAAA6a94cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8TXf+P/DX55x7z11ysycikT0hi0QEERL7EkvsamkpRbXogk6NabW9PXZVqqaLqhlbKaUoStUaFVtCLBFbg5DILiLrzb33nN8fR4KKbab9tpPf+/l4eEwkZ/mcc9PHeH2W94fJsgxCCCGEEEIIIYTUHdyf3QBCCCGEEEIIIYT8vijsE0IIIYQQQgghdQyFfUIIIYQQQgghpI6hsE8IIYQQQgghhNQxFPYJIYQQQgghhJA6hsI+IYQQQgghhBBSx1DYJ4QQQgghhBBC6hgK+4QQQgghhBBCSB1DYZ8QQgghhBBCCKljKOwTQgghhBBCCCF1DIV9QgghhBBCCCGkjqGwTwghhBBCCCGE1DEU9gkhhBBCCCGEkDqGwj4hhBBCCCGEEFLHUNgnhBBCCCGEEELqGAr7hBBCCCGEEEJIHUNhnxBCCCGEEEIIqWMo7BNCCCGEEEIIIXUMhX1CCCGEEEIIIaSOobBPCCGEEEIIIYTUMRT2CSGEEEIIIYSQOobCPiGEEEIIIYQQUsdQ2CeEEEIIIYQQQuoYCvuEEEIIIYQQQkgdQ2GfEEIIIYQQQgipYyjsE0IIIYQQQgghdQyFfUIIIYQQQgghpI6hsE8IIYQQQgghhNQxFPYJIYQQQgghhJA6hsI+IYQQQgghhBBSx1DYJ4QQQgghhBBC6hgK+4QQQgghhBBCSB1DYZ8QQgghhBBCCKljKOwTQgghhBBCCCF1DIV9QgghhBBCCCGkjqGwTwghhBBCCCGE1DEU9gkhhBBCCCGEkDqGwj4hhBBCCCGEEFLHUNgnhBBCCCGEEELqGAr7hBBCCCGEEEJIHUNhnxBCCCGEEEIIqWMo7BNCCCGEEEIIIXUMhX1CCCGEEEIIIaSOobBPCCGEEEIIIYTUMRT2CSGEEEIIIYSQOobCPiGEEELIMxJFURBFkf3Z7SCEEEIehcmy/Ge3gRBCCCGkVqIoCgBgNBqr/gJt6aDVaj8ym81hkiRpVCpVscVieeGDDz746c9uGyGEEPJbFPYJIYQQ8pc0c+bMV2RZXswYs1it1q5Go/HIn9WWGTNmvCQIwuc9e/bUBwYGQqvVIj09HRs2bMh755133P6sdhFCCCGPQtP4CSGEEPKXM3369C5qtXrRhAkTNAMHDrQRBGG9KIqqP6MtoijGqNXqz8eMGaMPDw+HTqcDYwyCIECWZZrKTwgh5C+Jwj4hhBBC/lJEUdSoVKrvBg0apHN2dkZwcDBcXFwcAQy77xj+/2rNvFar/Sw+Pl7v4uJS87309HSsWbOmwmKxvPx/0QZCCCHkWf0pPeSEEEII+X2IomgDIBLAFaPRePPPbs/vpIuLiwvv7+8PAGCMoXv37obVq1d/OX/+/DGSJLkyxhpxHFc5e/bsT81m8wdGo9HyRzVGkiQvd3f3mr9funQJGzduLDGbzb2NRmPCH3VfQggh5L9Ba/YJIYSQ/1GiKPqqVKoTDg4Oqtu3b6ssFks7o9F44s9uV21EUWwLoCWAqwC2P6rgniiKTKPR7OrQoUOXVq1aPTByX1xcjOzsbOh0Onh4eKCsrAybNm0qz8vLO2AymXoZjcY/5B81c+bMWdKkSZNR8fHxgizLWLBgQVlZWVl8ddAXRVENwN1oNF7/I+5PCCGE/CdoGj8hhBDyP0qlUo1r0aKF3WuvvWbXtWtXvVarnflnt6k2oigO1uv1O6OiomZ7eHisEAThtCiKdr85hhNF0UOtVn9iY2MT26JFi4em6Nvb2yM4OBg+Pj5Qq9VwcHDAyJEj9Vqtth2A2P+gXS3nzJnz9cyZM98SRfGR/yaqqqr6ICUlhZNlGWVlZTCZTABw8O41DIIgnFapVJfnzJnz2bO2gRBCCPmjUNgnhBBC/sJEUWwuimK8KIr63/5MrVbH+Pj4qAAgIiICVqu1gyiK/o+4Dj9nzpz58+bNOzF9+vQuf3S77ycIQvd27drZ9OzZU3j55ZdtQ0ND/TQazdK77XKbM2fOv3meLxcEId3f33/s6NGj9SrV06005HkePM/LAJ5p/b4oiuFqtXp/u3btxjg4OMwAMPxRxxqNxjyO48ru3LkDnU4HWZYFAA6iKDJBEJY2bNjQ76233hI4jhstimKzZ2kHIYQQ8kehsE8IIYT8Rc2aNWuSTqc76O7uvlalUuXMnDnzueqfiaJob7FYmjg7OwMANBoNoqOjVYIgzP/tdURRtBcE4ad69epN6NWrVzOVSvWDKIo+j7u3KIqBoij2EkXxv95Wzmq13iwuLjYDNevvNRqNps+8efMuqlSqa02bNh02adIkzTvvvKMdOnSo3sbG5qmvnZGRgdLS0goAh5+xWe3CwsK42NhY1qVLF71Wq534qANFUXSWJEmjVqvB8zyCg4PNKpVqrSAI2+3t7fv27t1bq9Pp0L59e61WqzXed56jKIr8M7aLEEII+V1QgT5CCCHkL4rn+SlDhw7Ve3t74+bNm1i5cuUqURSvGI3Gk2q1+sOQkBCNq6trzfFt27ZVpaSk9Jg5c+YMq9U6w2g0Vomi2EQQhB1hYWEuPXv21PA8j6tXr/IpKSnDAcy6/353p7I/p9Vq39doNAH16tUzZ2dnq2bMmDHi/fff//5J7b1bHZ8zGo3W+79vtVo3pKSkTI6Ojlbb29tDo9Hg9ddf12VlZTWqV68e9PqHJi0AsgxYrcATRvj37NlTWlVVNfW397zbHncAzgDO1bKe36DRaFQA4O/vj6qqqnBRFIW770wLoLNare6pUqla8zwfHBMTw1W3s1evXnp3d/duHMehefPmTBAEAICHhwcDEAIAc+bM+Zjn+Ykcx90RRbG/0Wg8+Jj35g2gKYDjRqMx57EPTAghhDwlKtBHCCGE/EXNmTNnaYsWLUZ27dpVAICzZ89i27ZtRTzPJ3Mc12bcuHE6W1vbB84pKCjA5s2bK/Ly8iyMMZPZbHbx8/PDiBEjao5JS0vDtm3bjk6dOrV19fdEUXTQaDTb7ezsIjp27GgICgoCx3HIzs7GypUrK6qqqvp+8MEHu2trpyiKepVK9S6AN6xWq40gCD+aTKaXjEZjUfUxs2bN+psgCDNqa/NDrFagbVvg9Glg+3YgJASoX/+hw27fvo3PP/+8zGKxOBuNRtP97REEYbEsy8PUarVktVpT77bnfPUxc+fO/bZz585Do6KiAACLFy8uLSoqmshxnB3HcdNdXV3lkJAQWw8PD+bm5gaDwfDYJt+6dQvffPNNWWlp6XSz2bxCpVJlTJ48WZuZmYmNGzfmvvvuuw89gCiKUVqt9lOr1Rrp7u5edfPmTWaxWBobjcYbj39BhBBCyJPRyD4hhBDyF1VVVbUnJydnKAABAMLDw2Fvb+9YVFTUtWHDhrWOiLu4uGDs2LG6goIC7Nu3z3D+/HlkZmY+cEzDhg1htVqb3h1RzgEwiOf5f8myrBk3bhw47t4qP3d3d/Tu3Vv3448/zgSwGwBEUezFGIuUZTkRgIcgCPP9/Pzsu3TporOzs8PPP//c/ezZswdEUWxlNBorAGDatGkLZs2a1TA5OXlsx44dH72M0GwGqqqAqChg5EigsBB44w2gWzdgxAjg7ig6ABw+fNjMcdy66qAviqIGwGBBED7y9/e379u3r1YQBCQlJbXYu3fviVmzZs2xWCxzAXBqtbq7n59fzbX69+9v2L59+yJ7e3uuc+fONm5uT796oaKiAsuWLauoqqp6z2q1fgpguJ+fn0Wv18PPzw8Wi8Xlt+fMmjVrokajmdO1a1ddkyZNoFKptMuXL79z/fr1FgAo7BNCCPmvUdgnhBBC/gLuFnZrCoCHsj3dOUEQxgUHBz8wDO7t7Q1vb+8nXs/FxQWDBw9mn3zyiezm5sYKCgrg4qJkTrVajaioKJaUlHRCkiRD/fr1LTY2Nppff/0VW7ZssQ4YMOCBdeZubm6QJMnnbjsbCYLwXfPmzYUjR47wAODp6YmhQ4fWHB8fHy+UlZU1vHLlyhZRFPtVB36LxXLz4MGD3JUrV6SgoCDOz88PDRo0uHcjSQI6dgQ6dAA+/RT4+GOga1egZUvg2jWgaVNgwgRgwgScO38ep06dumU2m98RRbGpRqP5kOf5OHd3d2vHjh0N/v736hRGR0dzjRo10m3ZsuUfOTk54wB4mM3mmvcBAF5eXhg/fvwTphzULj09HQCOvPfee4sAYPr06UEeHh4GACgrKwPP82XVx4qiyBhjozQazZxXX31V5+DgcPfRJWRmZupxt8o/IYQQ8t+isE8IIYT8yWbPnj1Vp9N94O/vL/M8z/Ly8sy3bt3SeHh4WJo0afJfXdtkMrHLly8jPz/f+tprr/EqlQpISkKXkhJNkzFjNAaDARUVFfj8888BAKWlpQ9d4/bt2+A4LgsAeJ5/oUmTJnxcXBwfGBiIixcvyidPnmTff/89+vbtC5VKBcYYBg4cqNu8eXPby5cv35g9e/ZGs9mcqVKp4u3s7GQXFxcuLS1N2r9/PwcAPXr0QIvGjYHiYmDiRGUUHwC+/Rbw8gKGDAG8vYFt24C1a4G338aN4uJyrl69kdBqg9Rq9a4OHTrowsLC2KOm2zs6OuKll17Snzp1Sr9161Y8bbX/p8EYA5ROGtx9R7ZqtRoAYLFYYLVa9TNmzJgrCEKgIAhtDQaDzZAhQ2qCPgCYzWYAkIxGY6EoigEajUbkOM7TYrFozWbzGgDnAJw3Go3Zv1vDCSGE1Gm0Zp8QQgj5E4miyPE8XzJhwgS9k5PT7379rKwsnD59GklJSQCATp06oW1cHGAwADk5gIcHjsbEyMXdu8uNZ8/mVr34Ijyys+FVr56185w5PGQZR48dw/79+5dXVVVNVavVl0ePHm1f/+4aelmW8dlnn8m3bt1ifn5+0ogRIx6Yop+dnY2rV6+ioqJC1ul0LCoqCtVBWJIkHDp0CPv378fUrVuhjYgA/v3veyfLMsAe3lGvbO9eXJs4ES75+a8e7tz5w6Bp09xDGzd+qvdhsVjw0UcfwWw24/33339gycJjybKyxOC+ZQTVysvLsWjRogqz2dzSaDSmzp49e0l4ePirnTt3hl6vx5UrV5CZmQkbGxt4enqiXr161R0ENSRJwsKFCyslSUqxWCxNY2NjNfXq1eO+++47ODg4WLVabWlhYaGW47gbJpNplNFoPPR0Df/j3C3o6AMgz2g0lj3peEIIIf+3+A8//PDPbgMhhBDy/62EhARnnuff7tat2x8y287Ozg5+fn44deoUqqqqYG9vj+C4OCA4GPD2RvmYMVh3/Trr06cPM6WkSPYjRqDe2rXM59o15jBmDINOByksDLfOn2/44ooV/wgzmwX30aM5nDsHODmBqVSIjIxkHh4eSE5ORmhoKNPpdDX3t7W1hZeXF/z9/ZmXlxd4/t4KAcYYfPR6SGfOINHdHZVDh8olZWXM2dlZCcNLlwL/+IeyVv+u0tJSfH/sGI55eyPH3T2u+dWrhuDbtznm5AS4uz/xfXAcBxcXF5w7dw5BQUGotVhgRQXAccAXXwBHjgC2tkBEBDBjhvL3ggLg4EFArwdsbaG2sYG9vb0qPT19eGJiYlhVVdWo7OxsMMZkf39/5ujoCB8fH3h4eMBgMDwU9KvfRUREhMrd3d2rc+fO6qCgIObq6orTp09Dq9Vyr776qjY2NlZlMBicMjIy2rVp0+afz/ir8LsSRTFCEIQjgiBMATBp//79Kzp06PDwtBBCCCF/GprGTwghhPy5blssFo0sy7WGwN+DSqWCi4uLVFJSwun1ekhvvw3u7FlUDB2KGxcvQv/qq3AKCYHTjh2clyxj89//bt2blsaH/fCD1O/qVc7bwQE9Dx40OK5aBfbLL8A//wmsWgX06gW4ukLYtQuNvvwSzU+cYPvfe08euHgxA8cpgflJXnwRHe3tsX34cBw+flwqKSnh+/Xrh4YNG0LbsiVYRQVyc3Lg6OgIjUaDmzdv4tq1a+A4DjcaNNCsc3fHK927w33yZKBePWDFCiWEP0Z18b3M69fhIcuAiwsweTLQpQtQUgK8/TZw6BCQmQk4OgINGwJbtwK7dgFbtgCursDZs8CCBYCfH5CbiyYaDfMKCLDLsrcfdq6iAhfy8hAUFPRMH6iNjQ2Cg4Mf+F5UVJR1z549/PLly62jRo3iNRoNANyq/vnd7Q51RqOx/Fnu9Z8SRbEdz/NxarV6cnx8vD4oKAiffPJJhcVisYVS7JEQQshfBIV9Qggh5M8VoNVqyxljj0+o/6Xq6eqHDx9GFAAHnsfydu2skeHh3OthYQxlZYCNDRhjGDBgAK/RaHD69GnWz9YWeP55uOTkAOXlygi3vb0y2j5pEpCdDbi5gXd1RYzZjNQTJ9i6UaPwXGIiVNOnA0VFQFoasHChEqAjI5VwfeEC8MsvwLp1YPb26H133XtKSgq2bdsGq9UKQRAQeOkSLhYXQ2IM/v7+cnp6OgOUwJ6TkwNBpwMfEAD8/DNw+DAwbBjQpAnw8svKev9qhYVKTQDG4PTuu2gVEiIL48YxOTsbLDsbqKxUgn23bkqNAK0WmDv33vlnzyrPkpQEGI1K+xcuVGoJZGcDN27Acd8+OOblwam0FM127ICwaxfw/vvKzAB/f8DDo9ZlCY8TExPDOzk5Yf369Xx5eTlOnjxZWllZ+QUAiKLor1arD1mt1nrz5s1bPXXq1FHV502fPr2HRqNZIMvySZPJ9LLRaKx80r1EUWyj0Wimmkym6UajMamWn/fX6/WrIyIihMjISLWrqyt++umnKlmWtxiNxsvP9GCEEEL+cBT2CSGEkD+RIAhTIyMj1X/0fV544QXu9OnT2Lp1KyxxcQDP43ZlJe8yYgT4Dz9URql37qw5voujIzQpKVigUqHJ8OFSe4uFEwQB+OQT4OhR4MYNYMoUJfC+8AIqKiqwvEsXubCwkAHAmhYtrCP79uVx5Ahw/TpgMilT8lu1AsLDlcAcFQWMHftAOyMjIxESEoLz58/DYrEg8tNPgW3bcN3ZGatXr2YAMGXKFKxatcoiy7IqIiLC6urqyoMxpYp/VBSwZAmwfTuwZg1gtSpft26t3HfxYsDHB/XDw7HVbEbwtGnQctyDtQJqk56udFIwBkyfDmzYoAT/ffuAUaOABg2UZwNQeOYM9tnby87XrrG48+dRz2wG9uxR7jFgABAXB2g0gK8vEBj42Nvevn0b69evR2BgIPR6PfLz82UAKQCg0WiWxcbGukVHR3MLFiwYKoriLKPR+Ksoit5qtfr7/v37644dO+Z748aNLABT77+uKIqM5/lxgiC8AiC7srIyRa1Wv9m8eXPDiRMnwgD4PdwahDVp0kQXFxfHAUqdgVOnTlmrqqo+/M21/QBYjUbj9ce/VEIIIX8kCvuEEELIf0AURVuNRvON2WzuoVarV5hMpleNRuNTVb0VRTGMMdZXo9F0VqvVrdq2bfuHh32O4xASEoKtW7eicudOWbJYGGMMWVlZcsNVqxjS04FFi4CBAwF3d2iOH0d0cTFLrKjABT8/7sjcufDw8JBHdO3KhB9/BGbNUqa5d+qEm7NmYU1iIqqL/rq5ueFabi6fmpEBs6srIufPVxpx4oTyv598ooyIDxkCHDighPT7aLVaREZGKn85dAjw9sbJrVsBAD179pT1ej175ZVXVCdOnMDOnTv5yMhIVBcMhI0N8Le/AcuWKevr3dyAhATl3tXr8+fOhc/t20w6cwZpaWlo1qzZk19gjx4PzhQYNAg4f165V716QPv2Ndf38fVFlZ2dnB4YyE6Ehso9evRQhvMnTgRSUpSOj9OngWnTlHfeuvUjb1u9u4CnpycAoGHDhuozZ87MFEXxR0EQWrdq1YpTq9UIDw9nKSkpgwHMBhDo4uJS1ahRI52Li4vuyy+/HC+K4jSj0WgBAFEUeUEQPjUYDKN69OihLysra3rr1q0eAQEB8PLyQlJSUn1RFJsbjcYTv2nOlpSUlHe7du2q5TgOZWVlsFqtFqPReKn6AFEUW6nV6r0A2IwZM0a9//776x/1bKIo+mk0GqMkSSVms3klAG+NRvM8ANlkMn0LYLvRaDQ/+cMhhBBSGwr7hBBCyDMSRVElCEJKcHCwZ+fOndVff/31CyaTaSWAxCedO2vWrEVqtXpis2bNzA4ODurg4GDodDr88MMP8qlTp1hoaKh10KBB/JOu85/Yvn27BIC7EBDArhw5AsYYwsLCGHheWZd++jTw7rvKCPW+fdC/8QbiU1JgNpvln3/+mWVlZbEbFgsC/PyA1FSgY0cUxcfj5sSJCHvlFTTu1o0tX74c3bt3x5YtW+Tvv/+eqZQCfvcaUV6uVLRfvRrIywO+/hooKwPi42tv9IEDSE9Jwbl69RAaGoqoqCgGABs2bJAuXbrEhYaGWl1cXO69r5UrlRH0hATgxReB/HzlPjExytT+iRMBAA4ODtDpdNixYweCg4Ohv2+dv8ViQWZmJjw9PXHnzh2kpqaixSefQP+3vwE+PvfaFhICbNoE7N6thP/Zs4FmzZCSkoLKykpu2LBh8PX1vTdv38kJ6NxZ+bpnT2VJg43NYz+z9evXS4wxLioqCgAQFxenZYzFlZSUdIqNjdVW72zg7OysUalU1Y3TVRdCdHJygq+vL5eRkZHz0UcfHQFgEQQhul69enYvvPCC/v5iitUkSdICSJ4+fbpVpVKVqVSqq2az+SCAPIvFwpvNZmg0Guj1eqhUKvX06dPjP/jggx/vnt44MDBQDgoK0u/atWsUgEeGfUEQDkRFRXlKkmRNS0sbYWtri/DwcDtZlpGSktL91q1b10VRbGI0GqXfniuKohaA6Wk72Agh5P9HFPYJIYSQZ9fF3t6+Xr9+/TQAEBwcLCQlJbXCE8K+KIrtGGNvyrKMjIwM/piypR0cHBykvLw8DgDS0tL4L774wjphwoTfNfBLkoRz585xPM+j+YkTWLx/P9q1b38vKDMGvP66MuU9PByQJPCpqWjRogXKysrYiRMn5KKiInb16lXZu2VLxn/5JQ7KsnywvJx59OtnHbFoES8IAhwcHKwrV67k3377bVZUVIR//etfmDdvnjxgwADWsGFDYM4cZT18cLDyx8kJOH5cmV7/xhsPrWnPSEtD/unT8B07Vm7Tpk3ND69fvw5JkpCbm8suXbqEYH9/cDk5Sk2BYcOUgzQaZUT+o4+AjRuVdfaDBgFduwIvvYRBgwZh1apVSE5ORqtWrZCamoq8vDycPXtWKi8v56oLJjo7O0uGzEzu2O7dUrDZzHXs2PFeA7VaoHdvZc1/djawdClsmzeHJElYs2YNjEbjoz+U4mLgq6+A9Y/Mw5BlmeN5vqYzQhAExMfHawBo7j+upKTEWlVVlQMAarV6cGBgoKH6Zy+88IJNQUGBzc2bN3vdfR40aNDgkQUhq2dojBkzhre1tbXLz8+PyM7OjqisrJT8/Py4u0UCwfM8hg0bpv3mm282zJgxY8L777+/AsCBK1eucPXr10dVVdW5Rz88YLFY6sfExHA6nY7r2rWrGgCKioqQl5eHRo0a2SQmJnoD4ADUhH1RFJkgCJ8yxiao1epLoii2NBqNtAsAIYTUgsI+IYQQ8ox4nu8YGhpaE6YyMzNNAG4+7hxRFDmNRvN1r1692O3bt6Wqqirm7u4unTt3jmvYsCGGDx+O/Px8rF69Gvn5+XxpaWnNFO7fQ2ZmJgCgTWwsVPPmAcpWb/x9BwBqtTISDgA//QQMHYqf16+3Hj16lJcB1q1bNxw+fFg6VlHBD0lKQpadndz3lVdYREQEjwEDgF9+wURbW376rVs4ffq03Lp1a+bl5SXduHGD++677xAZEiL32L6dsd277zUsLEwpjPfuu8po/7BhwN1RaUmSsNbFRY56802MHDz4gWTq6ekpM8YkFxcXbtOmTRixd6/sXVHBcPQo0LTpvQNfe03pVPDzA4KCkMlxsM6fD1NZGa6fOSNpGzbkDh8+jISEBNjb20t2dnayq6srGzBgAPLy8hAQEABWWcmZEhKQHxPDHTx4EImJiXjvvfcefMGDBim1CdasQaMLFwBbW/j41bbs/T4REcA77zz2kDt37sBisTz+OgDCw8P55OTkKbNnz+7OcVxEVFRUzWfLGIOrqytcXV2feB0A8Pf3l3/99Ve2c+dOvPzyy7Czs0NAQACgBO8HeHp6YsyYMbqlS5f+a8aMGd0BjJZl+c61a9c0Vqs1r/o4URQbAKgwGo01OwkIgnDs8uXLbZs0aQJZlrFt27aKs2fPWtVq9SmLxXLWarUurl56UE2lUr3n4OAw5qWXXuJXrVrllZOT0xnAD0/1YIQQ8v8ZCvuEEELIMxIEobunpycDALPZjOzsbBsABx93Dsdx4wwGQ4PGjRuDMVYdmlifPn2AuyHK1tYWr776Knbt2iV9+eWXiI+P5xo1aoSMjAwUFBSgefPmUKn+s//rLigoAADUc3WFbtUq2GdkyEuXLmUvvPACvL29lbXnZrMyLR0AuncH8vNRumUL3p47F+uefx7BwcFo1aoVf/78eVy3tcXziYkcFxGhHB8SAjRoAPn119H77Flohw5ljDGMHj2aq6qqQnJyMlSTJ7Ov2rSB9N13UkhICGcwGNC8eXNwDRoo2/mtXg289ZYyHd7GBsuXL4et1co6jx6t1BLg7/VNPP/888pfVq6ElJYmfRsbyw0aPhz+v33wceOUqf06HZZt327Nzs7mdX36oMGNG3LspUssPDgYfIMGsHvuOQha7QNh1s7OTvni+nVoKirQrVs3lJaWIjU1Fbm5uTVb+NXw9gaWL4f20iWM694d27t3x8XWrREUFFT7h+Lnp4T94mJlh4PfKCoqQn5158sTuLu7Y/z48bply5a1tFqt8u3btx9YmvC0JEnCr7/+ygCgZ8+eT3WOq6sreJ7nbGxsBpSXl3eTJMlBp9NBrVb7AMDs2bMnqdXqObIsy6Io9jIajfsAwGQyzdtmh68TAAAgAElEQVS7d2+zkJAQm4SEhKpz586lWSyWjtOmTSup7T6iKPqq1ep3hg0bplOpVCgsLFThbrFCQgghD6OwTwghhDy7ErNZqRumVqvRunVrU1JS0pU5c+YU8zx/AUBpZWVljCzLa1UqlVmlUnUzGAxeQ4YM0T9q6nS1+vXrY/DgwdzJkyexadMm8DwPxhhMJhM0Gg2a3j9q/QSSJMFiseDkyZM4cOAAXFxc5NDgYIYhQ/D66dNs1qxZWL58OQb16AGfL76AjVYLs9kMlUqlTPFWqxHQqBG3bdgw3GjQAOoZMwAPD4T87W8IadhQGclOSVHWngOAnR3KFi1C8tSp6DNqlDI93ccHgiAgBsCV4mIU2NsjwsuLS0pKgiRJSEhIkMaOHcvZ29srlfnfeQf47jscdnREZmYmunfvLjNPTwaL5YGwD1lW/qSkoKGNDXdErUZpVZUM4IEXXFFRAX7ePAgch/z8fE6SJIwfPx42NjYMsqzMaBg/HvjxR6XDwcXl4Rfp4FCz1r9Pnz5gjMmrVq3C6NGjmbOz84PHajTgGjeGzaJFaP711/Kx2bPZjWHD5M5du7KHPnvGlO0H/f2Btm0f+FFGRgZWrFgBAOjXr98TP+uDBw9aDxw4wMuyDI1Gw/71r38hPj7+6YoP3ofjOAwfPhzffPPNE2eWSJKEzMxM7Ny5U5Jlmb355pvq/Px8hyVLlsDNzQ3p6enxoii+pFar54wfP15bXFyMtWvXbp0+ffoHsiwvNxqNP86dO/f4qVOnOpw9e9ZcVVW1FcDYOXPmBJvN5iuyLH9pNBqLq++nUqkmNG3alLezs0NycjJ4nj/87rvvXr87a6CXSqUKsVqt12RZXmE0Gm8/04MTQkgdxH/44Yd/dhsIIYSQ/xl3tyybEhYW5lId9AICAlRt2rThQ0NDbby8vHz8/Pwanj9/XgsgysbGJrpv374uPXv2VD/ttHy1Wg1vb294eHigoKBALioqYgAwePDgR66z/q3c3FwsWbJEOnDgAMvNzZVbtGjB2rdvzwx6PbBxI7gxYxATEwMbrRb+8fHYkZ6O4+Xl0o4dO9jhw4ehUqlkJycntm3bNrlB27asd58+cMzKUoJvQACwdi3QuDFw7doD0+YFnQ7bT56EubQUwT/8oKxnFwRg/37s8fFBHschPDwcQ4cORVRUFPLz8+V9+/bJarWaNfD2BuLiYElOxu0FC+DUpo3crn9/huxspYJ9dcV9AGjXDjh3DvjkE5yxt8e1a9eQl5cHFxcX5uTkVHNYcnIyVmq1OGk2yxaLhbm5uaFly5bgOE4J2/b2wNChQHQ0MGKEsnyhfXvg/lHxb79VivD17g2e5+Hp6ckuXLiA5ORkOTo6uibEnzx5Et988420d+9edqywEJfc3Vncrl2w2bOHVfXpA0mWcebMGVitVthXj+Tn5Sk7BtxX6b+iogKff/45dDqdPG3aNFb//ueuhclkwpYtW1jLli3ZwIED0alTJ+Tl5cmJiYlMlmX4PWk5wW98/fXXssViYTY2NrK3t/cjf+GOHTuGjRs3wtPTUx49ejSnUqkgCAIOHTqEa9euoWnTpoIgCN369+9v4+bmBgcHBwQGBgoVFRVti4qKJh84cOC4xWK5IElSt7i4OIPJZIry9fXtFhoa2lIQhLbFxcX99u3bt7RDhw6yKIoqnufX9+7d28bGxgZ79uwpKSgo2Hn06NFxHMctDg4OjgsLC2ur0WjaFxcXv7Jv376VHTp0KH+mByeEkDqGRvYJIYSQZ8AYG2Fra+t1dw1zDY7j4OLiApe7I8PBwcE4fvw49u7di/Xr18PW1tY6adKkZyq65+bmhszMzJqwdfDgQRgMBjRr1gwcxyE3Nxe2trbIyMjArVu3IEkS0tLSoFarUVBQIIeGhiI+Ph4PDClbLECLFgCUYm+tWrcGvvoKUZGROHXmDDd48GCsWbMG+/fvZz///DMAcBUVFdbIyEgeb7yhXGP7dmD+fODwYWWafK9ewH0j3A0bNUKBp6eEwYM5REcrQbqiAj2WLUPawoUoLlYGazUaDfr168ft37/fum/fPuzYsQN2dnZWk8nENQkMZJ21WobDh5WK/T4+yjZ1v/yiLBkwGms6Gdq3b4/Y2FjMnz+fJScnWwMCAvjCwkKcP38eGRkZqOfmJg82GtnRqCgkt2yJw4cPo02bNvc6TjhOmYK/fTvw/fdKMb/Tp4FJk4CgICWQ+/rWPJ+trS1Gjx7NVq1aJX/00Ueys7MzKywslDmOY3FxcVx4eDgkScLFixexRaNBaEmJ7Nu7N9vXrBnyGzeWTCYT5+XlJcXGxnJ+Pj5gGzcquwXcdejQIQDA4N/UKbhfTk4ONm3aJJnNZtjY2DDGmNyxY0fGccpKhEGDBrE5c+bg1KlTcseOHZ+uh+guJycnWZIkVr3zwaP4+vpCrVYjLi6OEwQBAFBVVQVnZ2e5sLCQeXl56Xr16vXAOe7u7hg0aJD+2rVrWLt27Q+MsTJfX1+dn58f/Pz8anrDoqOjNUuWLPHNy8vrBWVNfjdHR0euuu5AdHS0wWKxjAkKCjI0b96c02q11afqVq5cabl27Vp7ABuf5bkJIaSuYdUVVwkhhBDyeKIo6tVqddbIkSMdGjRo8FTnZGVlYdmyZQCU6uVjx459eK33I8iyjBMnTsDW1hYXLlyQUlNTOYvFAoPBIDHGuJISZWmzWq2GnZ2dVFlZye6OoMpOTk5cVFQUqkNYDZMJiItTtqa7dEnZni4xEbivFkBaWhrOnj0Li8UCDw8PVFRUSElJSZy3t7c0atQoJU1arcpod48eyrlZWcDf/w5cu4YfJk+Wew4axNRffKF0Lrz2GuDkhKJLl1DRuDGSW7dGzy+/hOrll4EffgBOnUJRfj4OVlTIDRs2ZGVlZWjcuDH0hw4p6+2HD1dqCADKOvf33wfGjHngsa5evYpVq1bBz89P6ty5M7dq1SpUVVWhfv361qioKP7cP/+JHBcXVNjaQpZl9O3bV27atGntYba8XOlg8PMDfv5Z6VTo2vXBbfeg1GtISkrClStXpDZt2nA+Pj4PzLw4c+YMtm/fjnfffRe3v/8etrNng1+7FsWurti1Zw/S09Nln5ISDD1xgnG7dgGoGdWX27Zty6Kjox/5u3H69Gls27YNHTt2RG5uLlq3bg13d/cHjlmwYAFKS0sxdepU3BeGn+jixYtYt24dnn/+eTRq1Oixx27evNlaXFzMvfTSSw+8y++//14uLCyUX3nllYeK+lUrKipCRUUF3N3da52xcuzYMezevfuc1Wr9myAIn/bo0SPoSctYrFYrFi5cWF5eXt7WaDSefNRxoigKAPoBuGk0Gg899qKEEPI/ikb2CSGEkKfEGHvZx8dH/bRBHwAaNGiAadOm4ddff8X69etRWFj41GGfMYYWd0fhd+7cyXQ6HV588UV88803XGlpKYKDg5GXl2dt1aoVHxUVdX+oevSIrEoFPP+88nVZGRAV9UDQB4DQ0FCEhoYCUDoc5s2bx9ndvg3njAygY0egTx+gXz+gSRMl7O/dC5SWKiHcZEJXX1/26eTJ6N6iBRpHRIClpQFWKxwdHWG3cCFunTsnb1y1ig2qqADPGPDVV3DMyUHfLVsYDAZgzRqgqkpZv79sGTB1qrIcYMsW4OJFZUu93/Dy8kKTJk1QUVHBrV69GlVVVXj99dfh7OzMA0DTf/0L3Lx5QLdumLljB3744QdmZ2cHf/+HSvopU/iHDAH27AFu31bW9Pv4AL/+Cnz4IdCmDdClC9QlJYiJiUFMTEytgfbq1auSn58fBwAOAwcCAwYAY8bA3mzG4EWLUN6rF1swdy5So6JQun8/7phM0tmzZzlHR0cpOjr6sbNAwsPDcfXqVeuBAwf4KVOmPNypA2DEiBHYvn279PHHH3NarVaaMGEC9zRF+4KCguDg4IBvv/0WEydOhIODwyOPtbW15c6ePcskSUL1rAJZlnHlyhXWo0ePx84McHR0hKOj42N/brVaG9evX/+7xo0b20RUF4MElE6kWopVZmRkwGq15hqNxpOiKGoYY+NVKlVDs9l8BMAGo9FoEkUxXBCE71xcXDzz8/NVoihGGY3G1Ce8FkII+Z/zyN5WQgghhDxIo9G82qpVK5tnPU+lUiEwMBD169fHhg0bairjPy2LxYLi4mIWEREBV1dXjB07FjzP4/LlywgJCeF3795dMzX+icxmpdr97t1Abi7w2We1H2cyAZcvg40Zg752duiyZw/C9+/nTE5OwNKlSuh97jlgxw5lj3kHB6UjwGSCXq9Hs27dsGX7duzevVuCKAIffAAA4IcORbcJE9hNjsNX/fsr+6cvWaIEeUAJ1HFxgIeHEo5zc5VCgFarMgOhb1+gQQOgsFAZ8d+0CcjMhOrcOfTv1QseHh5Wk8kEQFkmUI3jOODYMeDMGXTr1g0AsGvXLly7dk054M4d4OxZYOFCYPp0JeyfOqUsT2jeXJlhAABXryodANevA66ugCQBM2eiZonDxo1AQQFKSkqQmprKxcbG3nunjCkzBtq3B3buhD4hAc2ioyX7rVuRs2ePdOPGDcTFxWH06NFPXO7BcRwiIiJ4tVot1Rb0AaVK/siRI7lmzZpJZWVl3Pz58/HZZ59Za7byq6wE0tKUIovVBQ/vGjZsGADg2LFjj50C6u3tzWRZxqVLl2q+J8syKisr4Xvf0of/xIULFyQA6Nevn12bNm14ducOsHUrsGGD8vs2dOhD59ja2sJkMvnNnDnzO0EQzvj5+c3u0KHDBG9v7y8BVM6dO/eEIAjH4uLiguLj4w0AZABl/1VDCSHkL4rCPiGEEPIURFHkTCZTkLe39390vkqlqgmZa9eulSVJeqrzrl+/jkWLFoHjOLS9W7HdYDCgW7dusFqtOHnyJMxmM7Kysp6uIZKkhLwvv1Sm8le7fVvZ+q6gAGjVSvnDGAo0Gvx86RJ+GDIEu6ZOxfotWyRTZKSyzr3apEnKCP877wChoUBaGjp16oSXXnoJx48f57JKS5Wp8BcvAlDWbXfp0gXFxcXc119/bX2gffXrA1qtUjhvxw6lI2DjRqXif9u2SkX+bduUon+NGyvn7NkDjBoFHD2KFv/4B//KTz/JTpWVyH/nHeD8eWVaviwrHQpDhsBWowFvNkOdnIw9M2fiir8/Cvz8sOPLL3FHkpQOhYQEZfbC228rMxeqQ/vKlUonh7e30iHCcUBY2L0dCf72N+D0aVSuX4/XP/5Y2dbwn/+815lhMgEvv6zMFJg+HfGurpxP164YEBPDjR07louIiKgZIX+SjGvX4MRxDJIEHD8OnDyp1Bf4+GMlxG/eDG7YMPTs0oX7+08/If6XX2CXlMRzvr7K5zVypPIOmzdXOiIGD66pg+DStCmapKbiyubN7LaDA7Kzs4Fp04CePZV3CmXK/MGDB2UA8PT0rGkXx3FwdnaWUlP/u8Fyg8HAqauqkPfttxJefVXZEeHsWeV3ZNo0oF69e1tF3rV8+XIZAKKiop6Lj49vNHz4cF1MTAxGjRpluPvfT7NJkybpBEFgy5cvL7FarS8bjcar/1VDCSHkL4qm8RNCCCFPR89xnKxWq//jC/j6+mL48OFYt24dW7RokTR69GjucVOkJUnCunXrJB8fH8TGxnL3j+BWdzpYLBY5JiaGVU+7fyK1WhmVHzpUma4+ciQQGKgUoFu9Wgl+q1YB3t6QNRp8ExSE4uJiqBhDQUEBrFYrd+PGDXh5eYExpkwf/8c/lEAdEKB0JrRtCyxbBs/+/VG/fn0p+eRJNBg3jkNlZc1zHT9+HPb29sjPz+f//e9/W0aPHq38m+TqVWUWgEYDfPON0q6yMuCjj5SZAwcPKvfKzlY6F6q99BIAgFuwABd27pTUlZW8W24ucOaMErZ/+AE4ehQICkKwhwcmxMeDN5kgtWmD7LZtkcxxOH/lCs5YLBjh6gqPkhKlnsHSpcp6/dpUTyO/f2u8jAxUVFTguizjav/+0nMAh4sXlZkJVitgMCgdKunpSk2A06eB/fuV5+E4ZZeBFSuUzhaTSfksjEblT3m58tn17g289hqaX7qEqH//m62TZWnAhg2cEBwMvPeeUjgxKkr5fD08gMRE6EaMQORnn6HUYsGZtm3R1N4emDcPsLO713Gzfr1yTwDYtAkdXVxw9swZ/JKZCeHMGdndYGD46ScgIwNITcXtoiJkZWUxBwcHyWAwPNBD4e3tjb1796JVq1ZP93t5P4sF2LEDnY4ehV9pKYp//JHLGT0a9SdMuPfOPTyUDqrly5UOpuBgAICXlxfTaDTWbt26PTQ7olGjRjhx4oSk0+m4/Px8K2PsgCRJG569gYQQ8r+Bwj4hhBDydMolSWIWiwWqWtYKP62AgABMnToVq1evZsuWLZMmTZrE1Xa98vJyrFy5EiqVij333HOM5x/MLnZ2dnB0dERRURE7efKk3LVr16eruP7mm8po+dSpyki7vz/QpQvQurUSbu9TVlpaszzAYrHAaDRi4cKF1rKyMv7jjz+GxWLB+PHjUc/dXQnmCQnA6NFKGDQYUDVxIrw9PbmUwkL0HTtW2cs+IgIHDhyQs7Ky2Lhx41BUVIT169erjq1YgeiEBGVUPS4OeOEFZRQfUKbMz5mjtHPuXCXMvvii0gHQvv0Dbd509aqUrlbzUKvxaWSk/EqXLsx5yBBl6UL1VHMnJzgtWFATHB0BVHeV7Ny5EyuXL8db3btD8/PPQMOGOH78uGxnZ8eC7wZKAFi7dq31zp07nKurK2JjYx/YHm/Lli3WS5cu8erAQCUA379UorRUCeGOjkpgraxUptGnpCjT01NTlRHsfv2U2QNr1iizFo4du/c+GANsbWEJCUGlry+uFRZy5wRBjgwKUmoeuLsr2wWOHKk885QpwKFD4N3dkZWfj8S8PDSdNk2ZYdCzp/LOASX063TK1y1bwmCxYN/q1UBUFKa0bcuwY4eyzMLdHVixAk5ffYXgceOkvJISCb+ZLdquXTvu5MmTSE1NRVhY2JN/L0tLlQ6QTZuUbR3fegto1w5+rVpB/PRTBDo7y8NUKgYA27dvl3r07cutfe89i73VyrzHjWPHevWSqjQalJeX84GBgbXeIi8vDxzHyQAQGxvLZ2Vldc7MzDwniuIUAJmCIIzjeT5WluVLlZWVc4xG47EnN5wQQv66KOwTQgghTydWlmX+aadYP45KpcLQoUPZRx99xHbs2IE+ffoAUAJ1UVERLBYL1qxZI1ksFq5t27Yyz/MPBPnKykosXrwYOp3OOnnyZN5gMDw+6F+9qoSnDRuU6e92dkq437FDGRH/TZX5agaDAVOmTMH8+fNrOjj0ej07fvw4NBqNxHEc27NnD27fvo1X8/IYX1ZWfSIqKypwY/duubRNG3QbP16uNJk49axZyGjTBocPH2ajRo2Cm5sb3KqqMDY7GydPnYLUqRO47t2Vafz302iUgFktJgZYvBgQBEgLFoBNnoxLly8jPz8f6enpHAC4urpKDRo0wObNm6XGjRvzty9elLu1acO4LVuUkfpaqr8DyjZ+urlzwW3eDCQlISMjAzt37qw52MfHR75z5w6Kiop4xhhyc3ORmpqKgIAAydnZmeXm5spZWVn8a6+9hoeK4d24geLVq3HFywshU6dCExcH1rSpsjWhh4eyXCE6WtnWcOJEpUjhm28Cnp7KqLvFohw3YwYQFYW0XbukO56enN7JCXYtWjBULzGxWpWwP3asssa9+ln79UPh4sWwWCy4eOECgvLzgfx8wMsLuHnzoXdRVFR0r+l79iDoxg1ldsTMmcDRo7DeuoXM69e5RklJ3J0RI2Bnb19zvJ2dHdq1ayclJCTIYWFhtdcgyMpSfjd/+EH5ulMnZavDkycBW1sAQGlpKQRBgF6vlwGwqqoqnDhxgjv17rvo2aePinEcnNetQ5+LF7ncCRMAxuDp6fnQ/W7cuIGffvoJ1SP+Go0Gw4cP16elpTVMTExcVVZWxpo0aaILDAxU5ebmhhw4cKDrrFmzpkybNu2LWttOCCH/AyjsE0IIIb8hiiID0AxAKwAOKpXKmTH2uizLMJlMyM/PR0FBAZycnHDx4kW5devWzGQyoXoP8Keh0+kQGhoq3b59G9evX+e2bdsmFxQU1ITK1q1bo3PnzuB5/qHeBY7jYLFYcOfOHX7x4sV4++23a99abf58Jdh366aM2ppMwKefKuFx40alyN3UqUCzZsroby0BWK/XgzEGe3t7KwA+MDCQS0xMhIuLC1dWVoYbN26gsrISC21sZCc3N6li/nzOKgisvLxcrhoyhEVGRlr9nnuOPxIYiIs9eiB/7Vq4eXlJ3nZ2HE6dAkaPRlFAgPRrdDS4N96ovSdFEJQ23i86GpcPHACWLMGFI0dwMiwMYAx6vV5u2bIla9SoEZeSkmLNzs7mi27exPMrV7LDkZFSzPr1HOfmpiwHuG+kvtp3X36JyogItH/rLdwpKcG6devQsWNHHDx4EFarFRkZGQwA7Ozs5P79+7PDhw9bs7Oz+Zs3b7KcnBw5KCiIGzBgAOzs7JQlDTk5MH/2GXgbG+SeOSNnpaez8717Sz+NHMn9fcUK8ElJyrO9/bYyqn3tmlIfYMcO4NAhZUYDYw+2deBAAIB/r17c0ps3wVdVIbFZM2vAiy8qIXfJEmW5xoULyrKM+4wfPx6zZ89G6qefykFffcWg1dZa1R5QCvy9/vrr+Oyzz1CYlqYUIQwPV4oZ2tlBfvNNdP3xR3h+8gl+WrjQOvj99/n7rxUZGcklJiZCOnMG3I0bQHy8EuinTFE+065dlVC/ebNS8+A3lflPnz6NLVu2gDEGJycnVlxcjGXLlkkhjo4YmJLC8dXPFhoKfPwx3M+eBUaMqPVZNmzYILdq1Yo1v+99MMbg7OwMvV7PFRYWqhITE9n58+dLIiIiDC1bttQfP358NAAK+4SQ/1n8hx9++Ge3gRBCCPldiaLo2KFDh8pH/IxLSEgYmJCQoO3QoUN2bcccOXJkkUaj+axx48bdAgICuvj6+rZSq9WqW7duIT09XUpMTGQXL14Ex3FITk5mR48eRVJSEurVqwcXF5da9wyvjV6vZ4mJiezMmTNo1KiR3K9fP9azZ0+0a9cOgYGB7FGzCHieh7u7Oy5fvoyqqipcuXLF2rx5c+XgW7eUqfTduimF62xtlVA1ZIgSsAClWJyDgxL2585VplAPH35v7f5v2n/u3DkUFBRwBoMBbdq0gY2NDXr16gUvLy9UVFRg2LBhYIyx6H/8g3NJT2cXg4LQokUL1rZtW6SmpkrZ9vZw6NuX9c7JQdv0dEQNG8YwfLgyhf2bb7C9vFyqtFh4s9kMn9pmGVy6BHz/vVIY766DBw9i24EDKOnSBVUAeq9bB2vHjtaX33qL8/X1ha2tLa5evSoXFhRwwQaDnFVezo6Eh7PGYWHQ6PX4pbwchVVVsFgs2L9/P44ePYqEH3+UBn78MXMZMkR26tCBrVixQnZ2dpb79OnD9Ho9mjRpAkdHRzDG5FdffZU5OjoiPDyci4mJQWxsLIuJiWFBHh7Q3LmDyhkzUDZyJParVMjfswf79XocatgQ0dOns/YGA7uUn2+1b9yYc+rTR1mXP2sW0KiRElw7dQIuXwZ++UWZYr9hg/L933wuqampSE9PhyzLEARBemD7RW9vIDOzpuBeNavVisMJCRi2dCnje/QAFxSkTJ8PDKw19Ov1epz85Re0XL4cDpMmKTMLqqqA7Gx8e/CglPTrr+xa797W8JgY3j0mBjhxQjnR3R1aDw+cbt9e9tuzhxl+/ln5HcvKUuoJ3LmjzChwcFDW3rdurSxvuM+RI0eQm5uL3r17IyQkhC1ZskQOCgpC/6gojl+1Svk9B5R2+/oqHSSC8MBMFZPJhAMHDuDKlStsxIgRD/23+fXXX5fl5OR8YLVaXwXwQUVFxZHMzMyS7Oxs3mw2L2rXrt2Zh38hCSHkfwOFfUIIIXWGKIqGo0ePbrdarV8dPXq09969e/d36NDh1v3HJCQk9NTpdOt4nh+dkJCg2b9/f0KHDh3k+65hI8vypsmTJ2vCwsJU/v7+zNfXl0mShPT0dHh4eLCioiLIsowWLVo8sOVYWloa6tevDxcXl6dqr6OjI5KTkyV7e3sMHDiQs7e3B2PsqToLnJyccP36dbmwsJAxxtidr76Sri9dyoRWrZjd5s1Anz7Kn6io2k5WpsI3agTs2qWs3e7USQmceXlK6HJzqzk8MzNTys3NZS4uLggICECDBg2qK64jLCwMWq0W+/btk087OLCQKVPQrX9/NGrUCM7OzmjevDkX2rMn8w4LAz9lCrjERGXrvKlTgUGDAI6Dra0tl5+fjytXrlhbt279cA8HzwM2NpBCQnD06FHs2LFDSk1NZXq9HoNeeAG/3rljdTOZuHYRERzs7JQACSAgIICL3b4dnlu3sp1xcVCp1XJJSQnbd/myXJaays7cvo1Tp06hoqJCzs3NZbHh4QiKjGRur73Gtm7dai0sLMTYsWM5xhg8PDxQr149BAQEIDIykj3wGV25okyzLyuDNHQoTh87ht1WK860aiVn2NrCbsAA1jguDj179mQuzs5Ap06ol5/PmZKTYdO+PdQNGij1CHheGcEfORI4cuT/sXfe4VGV69q/33dNS+89gRQS0iskARIy9N5BqtIUFRV73xIHRYSDha2gKIKIINUoTQwQCCWkF0JCAgmpJJBGepmZtdb3x5tAgKDuc/a+zt7nW7/rygVMWbPaRO/3uZ/7Ye6Lykpg/nyWY6BQ3OupBxszd+XKFTEoKIgsWLDg/vNGCLBlC6um9xLxHMfB0swMh2QyWMXEsHtVrWaLQ71bJQA0NDTg6NGj4LOz4UEILHrGC8bGoiM+HkeVShISEoL5CxZQh3792L7t2cOcCd0THW6bmAiFTk4kYP16dsKio9lkhPXrWd5CS3ZUjm0AACAASURBVAtrJXnsMcDHBz2tCM3NzTh+/DgEQUBZWRkyMjJEnU5HqquriXr2bJAeod+DmRk75qQklkNhagoAqKurQ1xcHCwsLPjCwkKxvLyceHp63r1+JSUlura2NheO4zw5jhvPcVyAXq8v1ul0mvfee+/cw18eCQkJif8cJLEvISEhIfEfi0ajcUpMTAxITExsTExMtFEoFGe8vb1Dli9fLlcqlQ7l5eWLEhISDqjV6sae9yQmJvo5OTlNXbx4sXFRUdFgnU4XkpCQEKdWq4Xu5webmJjMj46Ovm94ub29PaKjo+Hv7w8/Pz+Ul5fz5eXlooeHB6ZMmUKysrIAADU1NUJHR4eYkpIi+Pr60j8T7hEREeT48ePk5s2bYnBw8F+zBHTTz9aWWL7/PsosLYl3XR0x5Xnyq14vDP36awIjo0e/MT2d2fkXLGC9/FOnMoE0bx6r8m7ezGz/5uaAqSmsrKxIeno67ty5IwwdOrTPfQwMDCQX8vIEi82bSVpGBrKbmgRbW1tibGx870WtrWx0mlrNguG6z42lpSU6OjrE6upqMSQkhBYUFODEiRM4ceKEcPHiRZQdOSIa/vADtrW2orKyEt7e3hg/fjwZO3YsjIyMcOz4cWo8aRI8AgNZJdzOjgnHW7cArRaK11/H0HHjcPv2bRQVFWEGz5PA3bsR+eOPGDVqFCIjI4n1rl2C+c6dxOL770lmZqaYkpJCnn76adpne4Qosl7zv/8duH2bWe0bGyHMm4f9JiZClrU1Ih57jExZsoRERUURLy8v2NraQvbaa8xpsXIlbpaU4LiPD3y6umAUE8OS+Xvw9mZC2NaWXYOXXmLj5vz8WGW8ezqAQqFAVVUVSktLxcjIyPuvi5ERG8fn78+EcA88D1VAAK74+mL8okVsYenpp/t0dFy4cAGZGRmYePw4HHfsgKKnTWXiRBQEBKC0rExYvHjxvYUPY2M2kWHZMrYtd3eUlJXRa9euISoq6t7GU1LYeZgzh4UPbtjAjr+wkDlTPDxQWlqKy5cvw93dXZgzZw4JCgoiWVlZMDU1xZCLF1krwPLl918Xd3e2cLV6NQtwNDAATwiSk5Oh1WqpQqEgZWVl5Ny5c3B0dISlpSV8fX0V1tbW9k5OTmGurq5h7u7uoSYmJjH19fXPnT9/3jIhIeGsWq2+fzykhISExH8IUs++hISEhMR/JGvXrn1RLpevNzU17bpz544BIQRDhw4lw4cPlxFC0C1+zM+cOfObRqPxj42N1Xe/9XZra6toYmKC5cuXG+7evXtidXX1ZgArup83NjQ0FP7os62srPD000/fDQETBAH+/v6Qy+XIysqiZ86cAcDE0uDBg/vup++mtbUVMpkMkydP/utC/9w5IDERZm++iQGdnWKGIBC7Tz4h8fHxvJ+TU99haL1xdWW94c7OwMmTzP68dCmrAC9cyMT/8eMQ/vY3XDUxEX61saGEEEyaNOmR6YQymQxz5syh4okTqK+pQWFxMXV2dhYNDQ2JSqViI/pmz2Yi398fmDEDUCjQsm0bsrKyxDNnzhCO47gNGzZApVKJDg4Owvjx4zk7OzuIp04Rk9xcTJgwAf7+/qCUEoClq6empvIqlYq7dOkSYmJioPjhB6CjA3j5ZdYDn54O2NiAAigvLxe7urrobkLgsnq1sNjU9O5ijK+3Nz1ubCyc3b4dNTU1ZM6cOazvHoAoiiCtrYBOxxwJiYls5BvPM3v98eMAgN+OHeMrm5vJiy++SHqPSYTYbRwpLWWBeO+9B5fVqyG7fJm//ssvHBkzBvd5QXx82J/u7ky4do8VRHY2O7YNGyD89htKvv0W+fn5ZN68effdO6Io4ujRo3x/QeBMn3tOTF20iKeUkoCAAE7R2YlKPz9ELV+Ou20ia9YAQUEP9bt3dnbCqbIS/d3cYNg7M0Aux4DZszFg7FiB9u41qalhP70wMDC4P6jw3Dk2HvDCBeZkWLKETVsYM4a1EqxaBeTlQd49IcDS0lKwtbWlABAWFsZnZWVxmDOHnfe+eOMNFiLo4gIMHgyz4GC889VX6Gprg7G1Nens7MSOHTvw+++/w8rKChYWFuhjbKVy5MiRiIuLe6aysnK8RqOJjo2Nbejr4yQkJCT+nZHEvoSEhITEfyQymWzm6NGjlWFhYUq9Xg9CCB4cTxcREUFzc3Odq6urFwP4rvvhvMbGRgO9Xg+5XI558+YZbN68eaFGozkYGxsbD6Corq7u0eq8DyilmDVrFgRBgIuLCw4fPgxKKRISEgAA0dHRAFi/9IP7eOrUKfTv35+3srL6Y5HO88A77zBRXlzMqqAKBSxyc8kz3S8xNzdHcXExtm/fLpqZmZGYmBh0dXWhtbUVVlZWUKlUMDY2ZiFrL754L9399Gmgrg5NK1fCxMQE1MQEupkzsSsvTzS7cYO8cvYszowYISZfuiT6+Pg8UvC7ubkBCQnY//bbUHAcEhMTyYULF8DzPAKtrfkZe/dySEyEIAgoff555F+4wJesXs05ESJMffxxztHREUZGRuieLnDvfIweDbi7IzAw8L7Pu3XrFnJycrioqCh4enqyBYXgYODdd4EvvmAhdaLIeswVCtjZ2VFXV1d+2rRpHJ07lxJPT7btiRPBf/EFgoyMaOaOHRg0aBA8PT1RevIkLv/0E/SNjRh17RpKx42DXUgILF54AcrAQGZX7yY5OVnMzc2lzzzzzMNCPzycJeMfOsTE7uTJMB4xAqtCQriy7dvFr+PjyeP29jA3N0dZWRkCAgJYxX3zZmD4cLYNQpg13dQUmDsXZzMyxPQdO8j0o0cR19EBQ0dHMSoqigQHByM3NxeZmZlch50dRsbFEZVCIevUanH08GF+6JEjXIpajZd6n8tHLEb5+fmhZc8elMyfD78H8iMaJ03CbZ1OptVqcfd4W1tZKGEvzp49C2tra7YYodez1oR16+6NEXR0ZJMAXF1Zdf+bb4CcHNQtXQo6fDgMerUt+Pj4cFeuXBEgCBQPjvP78ENm4T9+nFX3Z85kP0uWQJ6SAvnUqUBpKVSEwNfXF+fPn8eXX34JT09PYd68eQ/d08bGxli0aJHh3r173a9du7YQwBd9niQJCQmJf2MkG7+EhISExH8kp0+fLi4tLZ3n4eEhNzMzQ19hdoQQ2NnZKXJzc4cnJCRsU6vVHWq1uuvSpUszrK2tHWxsbCCTyWBmZiYvLCycdObMmTCZTPaBh4eHUVpaGi0qKoKJiQnMetug/wBCCBwcHKDVanHz5k24uLjgypUrqKio4LOzs3H48GFia2sLhUKBjo4OKJVKxMXFYcKECdTS0vKPN75hAxu5ZmTERtHNns2EUi/rtYmJCU1KSkJzczOpqalBWloaMjMzkZ+fj9TUVFy6dAnZ2dlibV2daP/FF6R+wACYurmhzdcXxU1NOLBvH06np6O9vV3Izc1FrU4nLtuwgcqio+H6+++kIyWFXCwtFQYOGUIeXLQAmEuhubkZo595BpGjR0MbEAAnJyfcvHkT7s3N1OHmTSQ6OwsHDx4kBbduCeY+PtzcujoEJCRQh9WrYWxsjPuEcg/nzgE7dzI3QC/MzMxw/vx5DBs2jAX77doFlJWxLIKICFY1Dg1ltviyMvyu1YoR4eHU3tERJCUF8PRk1fqEBHzY0ICs7GzY1tTAMS4OV2/cEP01GqJtbkZaeDhSvb2RZ2SEjPZ2XCgowKBBg+7u67Vr13Ds2DEyf/58Ym9vf28HGxqYW4JSZlk/dAjYvx/45BP2/O7dMDc2Ju3Dh4snT57EpUuXSHFxsZiZmQkAsIqMJPLWVlalXrwYMDGBIAj4PSVFSNJqqZeDA9zPn0e5j4/oXFVF0oqKcDopCdeuXUNQUJA4a9kyYmhujoFhYfCLjsZQc3Nq/PHHqJg7F6G9U/qjo5nQ7iWsBUHAtnXrMCohAR5r14Lr3Y4BgISGovjIEVgOGgTz7owEXLjAjjUi4u7rysvLhfr6embjf/99Fp732GP3NlRczO5hT8+emxhwcED5jh0Y1taGkDffpLjXX48rV64Qp7fegvmVK6Bz5tzbjrU1c6r0VOkpZd+PiAi2kDBvHvu3vz8MqqpQ7uoqLJg2jSQkJZGhQ4f2+fujqakJp0+f1vE8v06tVlc+fGNKSEhI/HsjiX0JCQkJif911qxZo05JSTl44cKFZadPn76mVqvL/uw9arW6/OzZs1dzcnImd3Z2ws3NjeurP97U1BStra20trY2MiEhYY9arRYSExPD7O3tw/p1h4HZ2NjAysrK4OrVq34mJibGN2/epE1NTaitrUV2djYcHBz+cugeAHh4eCAmJgYhISHQarXo6uqihBA0NDSQ4uJiXLx4ESkpKTh37hwEQcD06dP/OJRPEFivNiHMZl9Xx0Lhnn2WVfhtbICmJpi5uyM3N1fs6uoiEyZMgImJCZYsWYLhw4cjMjISWq0WTk5OpKioSOArKkjSnTtIvnYNidnZxOzsWSHm6lWS6eGB5pYW0tnZKcydO5czNjYGbG3BzZwJu44O2G7ZQtIrKwX34GCCXgIwIyMDP/zwA1JTU+H07LOwnTMHnt7ecHd3R11dHWqys5EQEICKqirCcZwYHh4uTJgwgcpGjmRV7yNHgGeeYaL2wXNRV8d+Roy472GZTAaO44Rze/cShYEBHD7+GAgMBKZPZ/36V66wyvjcuRAGDULVzp0kZvVq0FWrWFX+/Hl2/mJjYbVmDUJSUtBiYgJHpRKXDQ3JySFDUOTnhzdiYzFErUZYWBgMDQ1RWlqKnJwcsbi4mGRlZSElJQXjx4+HT4/9HmDVeC8vtjDz3HNMSK9ezcR/z1SBn38GJk/GgFGjyJAhQ0hwcDBGjRpFAJDU1FQhIyODhI8YQYiPD3RBQfjxhx9EG1tbcuTIEWJtbY1+3t44bGYGrYEBWZqQgChbWwxYuhSTpkyBj58fO4mnTwPV1WzRo60NX5iYiPVNTcTLywsmJiaora0F99lnkL3/PquId9PR0YHCw4fhYG4uOixd+tDN2XbzJkJXrsS1iRPh4u7OHszKYs6DgIC7rxs4cCA5f/48iXB2hmzNGuDTT+93Ely9Chw7xlpHelAosK++XrDw9SUuL7/MrruFBezs7GBra4t9MhnS+vUTOjo6iHt1NbvGGg3uq/b7+bGsgilTkOvnh92//84nJyeLaSEhYr65OfoVFZHQl14iV8eNE9Pj4tCpVJL+rq7dl05EQUEB9uzZ08Hz/FuCIPycmJgYkpiYGJyYmFj3qEkfEhISEv9uSGJfQkJCQuJ/FY1GQ+RyefqECRM8PD09nUtKSuYmJCTkxcTEFP7Ze2NiYq6eOXPmu5qamnGGhob2jo6Ofb7O3d2dKy0ttWtvb1cnJCS0UUpXT5gwQdFjESaEwMbGBmVlZYIoiuLw4cNJUVERzMzMYGJiguDgYJiYmPy3js/d3R3+/v4ICAggaWlpgq2trfjkk0+SqqoqNDU19RzHH4v99HTgs8/YyLyLF9koutWrWYWUUqCri9nWt2+Hr7MzqblyBfk1NVjy7LPgOA6UUsjlcnh5ecHd3R3h4eHUraODhNjYkDZPTxIdHY2wFSuIaXU1aGAgbre0iC+88AK9L1yPEMgGDULn1Kko37OHuCcng3Z2Ilerxc5du4T8/Py7B+AfHQ3rF14Ahg8HMTEBWloQ+c47yI+IEDoAotfrCaVUDAoKoj3bhkIBNDWxYLrS0vtnrt++zSzigwY9dGr6a7Uk7PnnkdDaCttvvoFJj7U+NRX49VfWh25sjJ+OHUOhTAarxYthFxLCQvzi4tiCQHQ0DExMkBQaKlYPGEDq/f0xdckStLS2iosXLyYqlQocx0GlUqF///4oLy8XBUEggiCIN2/eJEqlUpw+ffq9UYlHjrCwuiVLWMp9D2o1aiIiUF5XBxsrK+DMGWDyZMDICJRSGBgYgBACFxcXDBo0iJ4+fZoMGTIEMn9/ZL/yihC5YQP9WqGATC7HrFmz4O7uDrlcLpaWlpKL3t6oCQoShp45Q8hTT7E2DUKYXT4jgy0yTJyIoO+/J1k5OWJKSgq5ceOGmJiYSHJbW9Hu6yv0Hz78btjewf37xTGbNxP+o49g7eb20M1JjIywqaMDLZSKYWFh7PmyMhYk2Gv0nUwmw62KCl72yivUcO9eKJyd79+QuTkbLTh//t2H2tvbcfbcOWITGMgP8PKiOHEC8PAAsbSEra0thu/ZA97QUDhfXk6DRo+GgY0NLvE8GhoaYGtre++7ZGgIHDuGHHNzaFUqjBkzhvMYOJC6+vgQ1/Hjidmbb8I/MpIELFhAqq5dg+vUqUB9PbYfPNiWmZlZ2tXVtUAQhMtKpfKUSqV61dbWdlZnZ+czCQkJm9VqtR4SEhIS/+ZIYl9CQkJC4n+VxMRES0rpO3PmzOHs7Ozg7u4uv3z58tSEhIQjarW65i+835jjuPkeHh6OjxL7lFL4+/vLeZ53EUVxolqtNnZ1db1PwBBCEBwcTAYPHkzs7e2RlJQEpVIpABCTkpKIt7c3jB+wMv+jDBs2jISEhBCFQoHg4GAkJyeLPM8TJycnZGRkiK6urqQvOzGOHGHhZRERrMKflsZS5w0NmUXd05P1J0+eDGVVFRQpKSJ/5w7x2rkT5OpVVmGWy9lPD9nZoLm5cF+5EhYWFkwYhoai36xZyLSzIx7h4ff1S/dgZGGB32pqxAoDA1KalMQ7bdpEvYcOJbbDhqGkpATdQX6Q/fQTqyY7OsLWwgKq4GBEPvMM0Wq1qKysRGNjI62srOT9/f1ZSJ6FBUvpP3+e2cpfffXeyLikJLbgMWHCvR25eJHZ+p99FrWjR+NUQwMyMjLg7u7O2i78/ICYGAhmZti2bRtfVlZGg4ODET5pEuT19UB7O3D5MoSBA/GdUinG63TkDkC0Wq04btw44urqioCAAPJgW0FcXBxfWFhIx4wZg8mTJxNvb28kJycTuVzOWglEEZg8GR02Nqj29IRSqUR9fT3S09Nx5PBh3nztWhrH8yg7d45HfDzZ3tZGsrOz+aCgICrrPl5BELB7925RoVCIQUFB5NKlS+Kpykpaa2OD4NmzxccXLSLmFhZQqVTQarXkypUrEEURdfX1ZNCrr0IxZQoL8hs6lFXrN21i527SJCh8fDBs2DDi7u6OpKQkotfrMWLUKPCHDyO+qUkIDQ2lhBDojh8nfEEB+KVLia2t7UP3gUwmg+rECXgdPgyrJ58kACBs3w5YW4P0CvPbunUr7PftowKA6/7+8Oyx6/dgYADk5bF97b4/a2trkZmZif79+xP3mTMJBgxgkyO6rys5dAiu48fTQa+8gp9aWpDXr5+Yl5dHiouLcfr0aRQWFiI4OBhUJgPmzkXt3r1wKSwU/ZYuJdbW1rCxsWHhiwYGkMnlOOjkpK9xd6ehN24A06cjITSU90hLO9Do5BROOe6LMWPGOM6cOVMRFhamTEtLE7Va7SG1Wl2r0WhUiYmJE7sr/rVqtbrtUd/9v4JGo5ElJiaKarX6f7IZCQkJibsQURT//FUSEhISEhL/IjQajY+RkVHaa6+9dndW3OXLl8WjR49W63Q679jY2BYA+OCDD2Yrlcp3BUGwoZTWCYLgKDAsQkNDxfHjxyv7FMr/A1pbW7Fjxw6xoaGBPP7443DvsSv/k4iPjxdSU1MppRQ6nQ5BQUHC9OnT7z+IlhZW9fz113uhZqLIUstfeeX+kW3dHDt2jC8qKMBTQ4dyYmYmjMrLWW/0hAnAnTvsT3Nz1grQHR54l/XrEZ+XJ1iuWkUH9VFJB1gw3tGjRwUfHx8ymBCiiItDWWGh+LOHB2k2N8f06dMRFBTEktltbVm7wZIlQEQEBEHArVu38O233wIAli9fDucHq7319czq/fTTwLffMht6ZSWza+fnAwUFrIKcnMxS9wlBfX09vvzyS1hYWAhz586ldubmEFxdsenllwWViQmZOXMmsbS0hPzOHdbbTykwciT0LS1I/vhjsdrAgFQOHcq/8MILnEz26Pzi+Ph4MTU1lTg5OfHu7u50yJAhJCkpSTx//jyZ8MsvKB08WGwMDcWtmhrSc10JITA3NxcDfHzEmKefpqnffSfaJicTs6IiiOvX48iRI8KdO3fEV155hQOAQ4cOCaWlpXTJkiXQ6XTYunUrAMDU1JR/+cIFDjIZsG8fAKC8vBw7duwAAHAchxEjRmDYsGEs0HH9euCFF1jLQlsbuwce4OLFi7j0++94Zf16bPv734WOzk7x6aef5k4tWiTecHAggocHVq1aBQDo6uqCSqW6WznfsXQpfAoL4fHrr9i7d684essWkhEejrqQEHHGjBmkf//+KDh8GFe3b4dy4kRMXLHioc8HALz2GrByJZs+0M3GjRsFb29vOnnyZPZATg77EQTm1qAU+PZbXImIwJnERHHevHnE2toaxcXF2L17NwwNDQVCCERRhHdKCgmtrIRTcnKf9pnvv/+et7W15SZOnAh0duJWfT2s3dzQ6ukpyk6dIsYODgCYvX/9+vUdXV1dXgA4uVyebGNjY2RgYICysjKq1+vVsbGx6Y+6dzQaDQVgAaAhNjZW7PW4rVKp/K2rqytEJpO1EUI26nS6Nb1fIyEhIfHfQUrjl5CQkJD4X0Umkz0+YMCA+wRuYGAgKSoqsiwoKPgAwEsajWawUqncOX36dENzc3PU1dU5HThwANHR0YiJiXko4f6fBc/zaGpqIgD+6UIfAMaOHUvHjh0LAMjPz8eBAwfo4MGD4eTkdO9Fhw+zKnXvYySEWd0zMvoU+6Iokg6djm48eRKiKOLdtWsha29nInrXLia8g4NZYFxeHtAtZgAAb74J5+XLafPmzQJ27Ohz9cTe3h5PPvnkveciIlD5/PNYeuAAat99F57OziwBv39/IDOT2dVffhkAc1k4OjrC1NQUzc3N+Omnn+Dl5cVPmzbt3gFaWbEe/bIyoLOTBfRdugSEhQFvv80WKnbuZNXgbpqbmwGwiQTfffcdRo8eDbm3t2hjbExcfH3J119/DYO2NkzKzxccQ0KoxQcfAA4O6MjMhP2yZcTrtddwyNqaW/fhh1j4xBOPvN5jx44lvr6+uHr1KnfhwgUMGDAA6uHDiffAgTBKS0Nr//5okcuFlStXcpaWltDr9eA4Dt3+eIIbNxApigQ7drAFG2trPPHEE3TLli3i2rVr4ebmJnIcR+zt7XkrKyvu4sWLAqWUenp6ws/Pj8Po0SwHQBAAStGvXz+8+uqr2Lx5Mzo7O5GWliYMGzaMhdotXQo8/zxQUcHO48mTbMRdL4YNG4aUlBQ+NyWFW+bvT/ft2ydsfestjL1yhXi88w72HzmCjz76CIQQ8DwPU1NTMSwsjNy6dYvnhw3jsmxtkf3NN7jD88Rk8mQERUXhml5Pdu/eDc8BA/jwXbuoSi5H9IIFj+5T0evZwlP3OV+/fr3Y2dlJ6+vrRQDsfUFBbIHn5ZfZcT37LLBlC/wB+AcG3t32gAEDsGLFCnR2dlJKKerq6nCsowP6efP4GR9/zGHVKuaI6YWRkRHS0tJgbGyM4cOHw97JCXj/fZjn5BB88gnwX/8FEIKOjg7o9XoAuKlQKL4NDw+3GTVqFAcAR48e1WZkZMQAuCv2161b9yLHcTN5ni/mOC6I4zg/QgjhOC5fo9GMjo2NrQcApVK5LzQ0NGD06NGksbHRePfu3a83NDTkATio0WicVSrVPlEUXXQ63UeCIGyVFgEkJCT+KpLYl5CQkJD4l6LRaAwAdPb1P6gajWaIUql8acSIEQ/5xaOiolSFhYXzNRrNq0ql8qvRo0cbeHl5AWAiHABMTEz+6UJfEAR89dVX/J07d7h+/frxrq6utLy8HOgRHf8ifH19oVQqxeLiYnKf2FepHpp/DgA4cgRidTU6169H4bhxYnFxscDzvGhiYsJdvXqVGhoaCr6+vrSgoADt7e3MtmxqygL+mpvvjaTbtAmYOJFVzbuxmzMHtk88QTtaWmDwV7IKOA45AQEoGzwYC27dYoJ8xgwm9A0MmFh/wAq+cOFCfPfdd2J7ezvJzs7mamtrxSmTJhE7MzO2mJGVBezZA+TmsgA/UWTnIi6OVXUf4MaNGwCAJ554ghYUFGDfvn3ws7IiLfn5uNTcLHqYm2N8VRXJMzamvyiVeBeA8Prr2LRlC3iZDKplyzAqKUnk0tNJU3T0fVXmB3F2doa1tTWSkpLAUQqEhcH+ySeBw4ehBoi619jAh1wC8+Yxu7pKxVowwCryzz//PLl27Rri4uKITqeDiYkJ/fvf/y7cuXOHmpubg1LKLPAqFTsX/fqxVP/HHoOxsTGmTp2K/fv3g2toIGfffVeMqqkhsq4u9nlbtrA2iJAQ4PffmeDvdQ4dHByo5cyZwNdfY/78+TRfr4erhweauttijIyMhFmzZlFnZ2ckJiaS/Px83tDQkHR0dPBTDx3i6uzsRLt9+4jzp5/COSAAAe7uaG1txcF33qGFXV0kKzwc2V98Ib788stE1deYv8GDmUtj9Gjs27dP7OzsJM7OzigrKyN37txhbSYAy1l4/nlg717mdNmyhbVz9BqB2H08d/++d+9e0dPTk4RHRHBYu5a1tMyced/r58yZw+3cuZM/d+4c19jYiIkcB9mqVWzyxdWr7Luxbx9bZGK/B+QAqFKppACr+BcXF2sBpPRsU6PREErpxilTpsja2tqGW1pawsXFBUqlEr/99pvf5cuXD2g0mlEAHOVyeeSIESPklFJYWFiAUioC0AOAUqlcFxQUFOHn58ft379/Y2trawGAs4+8OSUkJCR6IfXsS0hISEj8y1i7du1zoihekMvlKxMSEi6p1eqKnuc0Gg1RKpXxkyZNcuhJxe+NoaEh8vPzxdbW1jXOzs4W48ePV/TYh01MTHDu3Dlcv34dkZGRDwuq/wFZWVnIzs6mxsbGaGhooHV1dUQQBFJdXc0HBAT8c/sEt3ZjZwAAIABJREFUHqCzs5MkJSWhurqa9/Lyolx5OZsZ/9JL91f2u0n9+WdYvPMOfrG1Fc1tbDiO42htbS0CAwNJY2OjcP36dUopRUpKCnLOnxedd++G0Y8/ErpgAauO/vQTqy4nJLCgupAQgONgOGAAfmpr4x3j4qjppEkPp+P3QV5enmBubU0HPvkkcxsUFLCZ6W+8wSr0o0YBR4+y6rK3N4xWrsSwoUOJe1MTIr/8Ejk2NiTs5Zeh2r2bLT489RQTtF1dbKRbUxOzepeWsudXrQJOnWLC19ISOTk5uH37NtRqNaytreHm5gaL7dvFYDc3MuGNN0jgzp3EMDgYib6+ooOjIyoqKkjHsWOC9bhxxCsgADqe5zONjKhXS4sQEhFB0N7+0AJFbyilqLl8WTx19iwZMmkSuLlzWcX9z3ByYhVqgJ2TbgghsLa2hq+vL4qLi0WVSgU7OzvRzc2NymQyvq2tDQkJCWhqaiKGhoYwHTKEhf91i3YbnQ7Djx2Dy++/kysKBan28IDzunWQ+fqy8MPupHmMH8+cE0FBdz/b09OTXI2LQ7m1Ne8aFkZtFyxAwdKl+PnECVGn0xFHR0cM7w7vc3Nzw6BBg2hQUBCJiIig5rNmwXHJEmJqa8tEeHfgoOLOHfhu3Upq5syBXWAgSktLSVZWlpifny9mZ2cjJyeHXL58Gbm5uagqLUVnTg5O6XS4du0aAYCgoCDh1q1baGxsJH5+fmxHRZG1c3z0EQsgvHmTJfWPGMGcCwoFoFDg119/1SckJODs2bPo6Ogg1tbWGDpsGLBiBVswuHTpocUcBwcH6uDggMTERIS88QZuiiIs1Wo20q++HrhyBfKAAFyrqOhoaWm5xvP86ZqamgVDhgxRFBYWIjc39ybP868nJiY6JiYm2sXGxjYkJSU96+joaBIUFAQbGxvI5XIQQuDu7s7l5uba6XQ6S0EQrFxdXUeFhIQoAaCzsxOnTp3iAHyoVqtrk5KSVoWHh7u7u7sjOTlZq9Vqt6nV6qo/v9EkJCQkpMq+hISEhMS/EJlM9uKiRYtIU1OT7fHjx7cB6DWbDIEymczFv/e4rF4QQrBixQrjjo4OGBgYGD6YVh8UFCTk5eXRigq2fvBQ8Nc/QHZ2NlJTU9HR0cG3trZy1tbW4jPPPEM4jsPJkyfFpKQkYm5u/q/pFejF6NGjERAQgG+++YY7f/48RnV2Qh8Tg/KKCmi1Wly7dk0YNmwYtbKyQl1dHU6UlqJg0ybhpYEDKczNATb6jQDA9evXCQCY8TyWenlBt2YNyfTwEPZERZFl4eGwMjRkY+6GDmXCb+tWIDaWBbp5eMApJIQj774rIi6OPFgJfZD09HTx9u3bXFlZGYKCgtDP35+1HiQlMZEeHw8UFbEqfVUVE8U+PqADBqB/VBR2XLuGJlNT3P79d5j13A/Z2fc+YOhQYNs21rs/evRdWzXWr2ftCK+/jjGvvorrs2ejIjkZLt7eLCxv924CQtjCwKhRwMKFqPr4Y6LVamFkZCRGnDpF89zdxaBFi0hYWBjX3NwsnoyORnBzM7BhA/Dhh0B4+EPHKwgCSktKMHH1apIzdqyI2FhyX/jhHxESwkRxj/h+AEtLSzz33HPsZud5DpWVgKMj15Sbi7T9+4WkjAzCbd4MZ42GuR+iotiUAktL0FdfxW4rK3QoFIAoomDrVuGll166t0ClVLJKtUzGrv0bb7DrBCB7xAixv5ERW0AJCUGNKMLU1JTMnTsXzs7Oj17tcXRkGRB79jAR3eMESU2FYsQIRHX36et0OuTm5hJfX18iCAJ4nu/5ETlKRXlBAYyNjUVLS0tu0qRJcHd3p3q9HsnJyfc+a+9eYONGFlC5cCHLs6itBShF44gRYntVFeKef17UlpTI/CdOxKVLlwCwXAMAbGEkJYUtdN28eS8AEoCdnR3s7OwQHBSEKzNm4NfDh/GOIIBSCrz+OnD5MjB+PIa9+qrJLwrFK1qt9qOOjg6VTqfDyZMnW7Ra7fOEkMkcx+3lOA7r1q3bqtVqJ589e3ZzfHx8pJGRkfDaa69RgDk5lixZYnjo0KGnb9++jcjIyLt5JQYGBpg6dSo9fvx48gcffLBRJpP1o5SipKQEXV1dd9DdJtDd/+8CoCo2Nlb3Z7edhITE/59IYl9CQkJC4g/ptuGHAbgSGxvb+I+8VxRFEyMjIzg7O+Pw4cMeGo3GvGcbhJBRnp6e3B+NnCOEwPCB/toeKioqqE6nw549ewAAb775Jvq0CP8JCQkJOH/+PABArVaTIUOGQKFQ3N0pLy8vkpaWhhEPzHj/ZyMIAr7++muhtraWAsDFc+fguXcvDs2bB+2BAyKlVOR5nmZlZcHb2xslJSXw8vLi58+fz2HRIlbZPHjw7vaWzp1Lf1myBDa3bkGm1aLj0CFEeXjQou+/F+Lj4zFr1iyquHABWLaMVTvffpvNO1+/Hhg5EmGjRmHfuHFkqVIJo9pawMbmkfuekZGBzs5OEEJY2N748Wws4MaNrDpeWQmUlwO93YS9/j5l40Zs3rwZXB/p/wBY+4G9PRN3X3zBKrsAE6YAirOyUOXoCL2xMdpefFGEXk+QkcES3AsK2NjChQshAtDr9SCEwMjIiMiSktBx9qx49OhR8DxP7O3tSUREBDlUXg7fZcvgU1LCPuOtt+5W0MvLy5HzzjvCDRsb6rFxoxAzbx6V/5nQ76lIFxcza/jf/87CB2tqgEmTgO++Y7kGmzezsYpubqxa/dJLzEKemAizX3/F6IQEql+zRhi4axcVrlwB9fJi+1VVxd47eTJe3LoVJTdv4saRI+CfffZhJ0pPG4BeD5SUAN7e2LJlizAxPp54urlx8PcHPv0UYn4+mpubcfHiRQwZMgSuj1icuOv6KCkBfH3ZgsL586w9pPv6ACzUUSaTicOGDXvwC08gigTffAPvMWPu66f39PREamoqamtrYWNtzRY1tmwBKIX+889RlZ2NtLg4cdbs2SRh1Sqh4vp1bqSlJfF76y3gjTfQWV4uZFZWUnNz83u9/xMnsnyAa9dYdb/37wxRBHF0RMfbb/M8z3NCj9gHgMBA4OWX4clxGGZkFFxsb/+Dv78/ZDIZRFE04DhuOyHEztXVVZw5cybZunXrClEUjbVa7XsATra1tdH169eLxsbGvEwmIwEBAdwTTzxhhD4IDg4mdnZ2Jjk5OX8zNjamnp6e2L59e6tWq30vNjZW1Gg0XgqFIh6AHSHkGoCgvrYjISEhIdn4JSQkJCQeiUajMVEoFNnGxsbP8jz/0pkzZ07+IxbSpKSkSfb29m729va4ceNGe1NTU5Farb6s0WiMFArFrpiYGCsrK6v/1r5ZWVmhqKgIOh0raqWnp4uWlpbE5g9EaQ/Nzc3YvHmzcOnSJeH69evUwcFBdHd3F8ePH08fzAAoLS1FRUUFHx0dTcvLy9lYt38BX375Ja/T6eiKFSuISqXC4OZmmDU2wuW11zBt2jQybNgwMnToUBBCcP36dbGjo4PMnz+fGhoaAtOnsz7k5GTAxQXYsQP8+vUo0utxzccHJ42NkXLlCpqbm/np06dz586dE86cOUPF6mqxwtGR1DY3IzsnRxwwcSIhHh5AaiqMTpxAUUgI3/HZZ9QhMxPc9OmP3Pdjx44RZXs7Jh47BjJtGkwAIDKSVa8vXQI8PFivuI3NfTPYezA0NEReXp6YmppKysrKeCsrK2pqanrvBY2NwJQprLL78ces0m9tfffp6+XlOCmK8AsIwBlzcxK9axeIKLLXNjQwx0J3gn9rZyeqqqrQ1taGga++iqhly0j0woWkqqqKLy4uptevX0dzczOu3rkjRs+YQfDdd0zAOjkBSiV2//gjxn73HQmaMgXBzz1HlD3W/cZG9hktLSxXIDGRid2vvmJhg089xQRmeDhrS6irA555BmhtZRMRPD3Zcbm5sUWKGTMAZ2e20GBvz8T/U0/B3t6e/CyTiVaffELMFy4E2bSJBfCNGgUsXw6Zry8Ms7OhOH4cZ2xsEDZ1Ki5lZYkX8vOhj4sjBiEhOPr77zimUgnJdXWC77RptE0uJyFffEEUzs7A6dPAE0+gS6dDZWWlcOvWLXL58mVERUXhkQtzPVX21lbmNHj8cea+6DUK8+TJk0JoaCh16yNQEoSwa+vped/9oVQqkZqaKl6/fh3hmZkEO3dC/9xz2LlzJ38iMZFWpqZiwoYNRPb88ygrL6d6QBy/eDEhq1aBWFlh4IIFxPr2bTHD0pLwXV16N09PptwVCtZucPXq/eMcATSbmmJXTQ1VjxjxcEhjQABoezv6b9okC5k6VeUUFUW/+eYbvq6uTiaKonF3ICCJjIzEoEGD5O3t7b5tbW1zgoODoVAoCKWU1tbWUp7naWFhIQYOHAiTR2RimJiYYMCAAVy/fv2oXq/HiRMnqCiK8xMTE4lCoUgdNWpU/2nTpskvXLhgHhMT82HfF0ZCQuL/dySxLyEhISHxSC5evPi2u7v7hOXLlxuKoqi4efOmEB0dfeyvvv/UqVMGhJCRfn5+cjMzM2V+fv7os2fPBnEc97Gvr6/t0KFDZX9U2f8jLC0tMXToUPj5+cHW1hYODg44duwYuXnzJh8YGHhfRTMtLQ0KhQJGRqyQ1tjYiKSkJDJx4kQaGRmJkSNHEh8fnz53xNLSEhcuXKCpqalCSkoKyczM5ENCQug/Myfgm2++EWtra+kLL7xAzMzM4ObmBtvaWhhNnQrrgIC7ryOEwNXVFZGRkaSkpES4desW8fHxYWIpLQ0YOZJVPq2tQVevRsvgwagTRaGrqws8z5MRI0ZQBwcHREZG0tDQUFh++SXJMDbmU65fp9XV1cTFxQWVXV24TCmUbW0YevAg/W3oUNHaxoZYDhjAKuwP0tiI0n370GhmhuikJDiuWsXEq50dez4vj1W0332XCdeAgHs9670IDw8n1tbWSEtLo+np6YiJibknLo2MmPNALgcWLWJCOCrqruBXKBRIT09HeHg4bty4gbCwMChUKmD5cmDuXMDfH5g9Gzd+/lk8p9cTKpOBJwSuZWWwnTEDnLMz/P39aVZWltjV1UX0ej1MTEwQOWoUa2HIz2f7v20b7jQ0CNednEjjlSu4k5bG2x44QGleHkuJz8kBBg5kot/RERg7lonwmBjg1VeZKHZ1BR5/HI2hoVC4uIDExEA0NMT1mhoklJQITk5ORGVlhUe1BdRWVuJaVhZxKCiA5csvgzMyYk6K8eOBAQOA4GCQ0FB819UFrV6PG66usFCriXlDA1x/+IF839aG0Zs3I6ijg/RbuJCK7e1wf/ppmJaXs8kPs2cDPj6wsbFBeHg4iYqKQnJyMtLS0viMjAzh6tWrCA4Ovv+7kpjIRLNczuzuCxawY+7FpUuXxOjoaPLIxTKOY46DgQMBAMnJydi3bx94nicqlQrhjY0EkZE4XlHBV1RUkCeffJLoLSzQkp+PHCMjISsvj9ja2iIwMJDczU5YsQKqceOI8fnzGPzaa/RTAMPCw5l9f/Zslnlw5w5gbAwA0K9ahU1tbTB3cBAfe+yxvn8xOTqyfSQEyMgA5+9PKyoqBJ1ORwRBgI+Pj+Dr60sMDAzg5eUlGzJkiHLAgAEyLy8vGh8fzz6H3V9CeHh434GFfXDp0iWdKIpGCoXifWdnZ/cJEyYoKisrUVhYWDhs2LAtf2kjEhIS/98h2fglJCQkJPpEo9GYymSy18eMGWNACIGTkxORyWR9D15/NPE9Kelubm544oknTL777ru5pqam8PLyenSl8C9CCIGNjQ1sbGyQlpZGZDIZioqKuISEBIwcORIAUFxcjOPHjwMALCws+ClTpnBpaWmCoaEh9fb2hvJPQtUUCgUef/xxVFRU0ICAABw8eJD89NNPmDZtGm7dugVfX19otVrs379fnDdvHtFqtejq6oKFhQXy8/ORkpIi1NTUEJ7nCcdx4syZM0nvfIHjx4/j9u3bZMaMGXcXI9DYyGzZ3S0KDx13fj7c8vPpVY5jfeXLlwO3bjHB1N7OetuvX0dAUhLOtrdTbbeYiY+Px8BuMWVsbAxjc3MsmjaN+zYtja+qquIOHjwoUkpFSimS9Hpq4+uLWT/+SMxXrWLugVOnehLJWduAXA6sW4fxiYnYungxCnftgmNPcnoPY8eyGe+urmwh4rHHWLtBHxV+Pz8/nDhxgvfx8Xm4vWPUKECjYSJ/9Wrguefu2sSPHTsmAiDt7e2QyWRiVVUV8erXj52bdevQ0tqKpI8+EtLOn6eLamvhevQoW4CYNo05IQCgshLPTZ9ONu7Zgyl796Lp888JvvqKhRieO8dS7Xkeo6dOpbUlJWKxsTFJArg0hQLLn3oK8nffvbevD4y3601XVxd+iY/nK9LSuGcmT8aPr78uNsrlRBRFUavVUltbW8Q8IJR7aCouhuGgQVBOn46fZ8+GS1wcv2zZMg6EsIyBn38Gpk2DTCaDoaEhb2ZmRhe9/jrpvq+IoNFgZUcHVFOmgBNFtniTlsauyaJF7DrNncuuk709MHw4SEsLli9YgOrGRi4hIQGlpaXQ6/X3h2IOH87aMr76CujoAF55pc/9F8U/mBhnbs7u224qKirQ1dUFQ0NDPOvkRODjA4wahZrt2xESEkKtra0xaswYZFtbw+ett2jlgAEImjXr/ptGoYBpv36I2LgRR93dYSSKIpycCD76iH1nbtxgDpT8fMDICCQ+HvysWRg5cuQf/2IaMoQFWq5ZA7/nnsORjg7q7e0thIeHUzc3tz5DPLtH9t1lxIgR1Lznu/QncByH5cuXK/Py8l43MzNDUFAQCCHIz8/X6nS6X3tep9FoZACE2NhYQaPRKAGoAdgBqABwMTY2VvuXPlBCQuL/DJLYl5CQkJB4FFP79esn9tjsra2todPpvDQaDekZo6fRaKxUKtVOAN48z9fqdLrDALbHxsbe7t5GiVarlXV2dkKlUsHZ2Rljx44VMjIyyIEDB8gTTzyBPm29/yB79uwRysvL6WOPPYaqqiokJSXB3t4evr6+yMvLg6Ojo+Ds7ExSU1O53bt3Q6FQ0BUrVvyp0O/ByckJTk5OEAQBlpaWNDMzE5s3b4ZcLsevv/4q+vr6kuLiYrJ27dq771EoFKJMJiNubm7iuHHjqF6vR1paGtmzZw9iY2MBAAcPHkRpaam4fPly4tjL8oySEtYjbGnJAsja2pjt++23gbVrgU8/hX9ZmXhh9GiCDz5gQj8pib2vJ0E+PR2qigpERUTA8ZNPUOjqCpfPPrv/wN5+G3BywmJfX66oqAje3t6EUkoAYOPGjULY4sXUZs0a0DfeYNXPvLx7Y868vKB75hlsdnBA0+LFAMBC8R5EpWIJ+gCzqB88yCz58fEPVfgLCgrQ2trKlZSUPLydsDCgpyo8bhwb6ffUUxC3bgWllFhbW/PR0dFcenq6UFNTw3l1dgLHjqHs2Wfx/fffw87OTlz05JOs97ykhAm9QYOYyKyrA+bMQaOdnYjwcHgApMPRke1fUxOzyaenAytXgo4eDTulkticOgXPK1eQbGaG3evXY35sLJR9OR8AFBYWIicnh3dxceGysrJEvV5PVq5ZgzYjI8So1USwtISPjw/ZtGkTb2tr23cQZEEBTFxcUP7aa+gfEYFACwucPn36nrCMiWHnZ8wY4PhxKBQK7tatW7h27ZoQHBxMr169Cg8PD7ag1GvMIi5fZufDyYlVuW/fZs6EM2fY87t2wcrSEhYNDeAKCnB56FBR9uyzBPb2rDpeUsIq3be7v/Lr17P79gF0Oh05duyYuHLlyr6FtL09c0Z0010Z52fNnMlxoaHAhx9CFEWoVCqxs7Pz7uuCQ0IAMzN4hYczB0cfUEpRwvN8dHQ0h8uXWS6ARsPG6Z04AVhYAK2t4AoLEXT0qHDx4kXR19f3DwM5j5WVCTcHD4bdb7+JQ27c4PJMTMgf/S5TqVRwc3MTqqqqiK+vLwno5dj5K9ja2sK213QInU6H7Oxs6PX6LwFAo9EM5TgunlLauWHDhssymWywtbW1YGFhwdXV1fGNjY3CmjVr5qxevfrUIz9EQkLi/xyS2JeQkJCQ6BOVSrUwICDAuOffZmZmkMvlMr1e7wMgHwCUSuVOX1/fsd7e3vL9+/d7cBwXSQiJXb9+/eXOzs6fAXRxHCf27oPneR719fWk+zOwc+dOODo6YswfVEP/CEEQUFpaSmfPng1PT084OTkhOTkZBw4cgKGhoUAIoW5ubmTChAnEwcFB1Gq1xM/P714V/R9g9+7d4o0bNwgAzJ07Fx4eHti2bRuyu5Pj+/Xrh6ioKFhaWkKr1RI7OztQSrme4z58+LDo5+dHAKC+vh55eXl46qmn7gl9nmcV59mzmSW7tZUJmKlTmY185kzW17x3L2ry84nB8eM8ams5lJcD27czoe/jA5w4gYOlpUJe//4UVVUYGBICU55Hv6NH2Zzy9evZWLutW4GVK6GIiYGvr++9A62uhj1AbxcU8LSigsP77wPr1rHqulzOguXOn4fe2hqyHTvuhp8lJiY+3Ofs4ADodOzYOI5V9A8eZBX/s2fvE4Y989RbWlpw/fr1+ycsrFnDQuV6iIhgwXZ796K0tBR+fn4cAPj4+HBXrlwRhj39NCW5uTBvagLHcQgODubuhszdusWquX5+LCAPQPvp0/jqv/6LQKfD3xcuhP7QIYiiiLfj4iBrbmahgOfPs7nuwcGgK1bA5soVTEpOxrFff0XX5MngbW1h+MYbwIABaFUocObMGeTm5kKn08HV1ZVevnyZt7Ky4qZMmUIMDQ1hqNHA5m9/Y+c0NhYuLi7k+PHjooODA7mv6ltfD0RFgR46BNd334VDVxc+++wzREdHPziiAnBwQO6WLbjd0gIASE1NJefOnRMbGxuJk5OTuGzZMnI3dA5g10KlAnbuZCGCeXksXK/HWdE9iYHeuQN65gzu5OQI8Pbm0NjIggEvXmQLUhs2sDGJDQ19fHOAcePGkcTExEeX9t3d2ee+9RZACIyNjZGZmclte+stdE6ciNbcXIiXL4MQIgsJCbn/vfv3s/GOaWnA4MEPbbq5uRktLS2cj48PWyQCgPfeY2F9PY+JIsQvvkBGbS21YYF+j+TGjRvIycmhU+bPB3f7Npz+9jf0VygIRPGRYyrlcjkef/xxmpubiwsXLohr164lc+bMuf979w9CCBEBeAColsvl86Kjo408PT2NGhoaRjg6OqL3PVRSUoI9e/b8rNFonGJjY1v+2x8qISHxH4Uk9iUkJCQkHkKj0VCZTBbdW7gRQhAYGCjLyMj4UqPRrKKUTjM0NBwxcuRI+eeffw5bW1tx8eLFhBCivH79+uCKioqQ1tZWbXh4uLInrVwUxfuqkUeOHEF1dTVKS0sREREB00dURh+FIAhIT08HpVRsaGggAAt7U6vVwokTJ2h7ezsNCQnhR4wYwQF4uNf4H2TatGnkyy+/xFNPPYWeIMCpU6eSM2fOCOPHj6eWfVQ0AeDkyZN8ZmYmx/M86bhzRzz40ktisakpnVRUJDhs2EDxxhtAaCjw2mvA99+zaml9PavoV1UxkQwAzz57d5uVlZXCmHPnODg5MSHcE0w4YQJACMzMzNixUoriwEDo9XrIg4IwJiSEWdejolg1NiODCfm8PJYSX1wMPiwMIZaWsFy3jsP69Wz7ERHAjz8y+75MBvTrBwNC8Pzzz5Nvv/0WVVVVaG9vFwDcb2PmODZG7+rVe5VXLy+2rQkT2ASA7t57Ozs7vPrqq9i0aRP27NmD+fPnw8vLi71n1iwWlPfzz+zfSiWwcSN0X3yB/rdu4ba1tQiAqNVqfP7550RnY4PaLVuw7epVcBwHR0dHQKtl4vTDD5nVfOJEwNsbAKskx8TEIDExETqdDjN+/hmFISGC9tw5KutugwDHAZ9/zhYsPvuMHY+vL/Lq6sTcpibifPMmIj74ALS+HsWmppADMB0wAKNWroSPry8B8HC1ODiYVdcBzJ49m+7atUv85Zdf+CVLlrDXfvstMGkSmhMT0WJujswjR/jbt29TnufJsG6XRVdXF5qbm6HT6VD72mvg33sPATIZLgcH49atWwQAoqKicOHCBfLBBx/A09MTLi4u8CQE9rGx7J7rEcnnzwNHjzL3RW8sLMAFBqL1xg2C+fPvPT5qFHM+/Pora3eIimItFi0twA8/3H2ZUqkEpfReKv6DmJuzbd28CTg7Y/jw4fD39ITF6NHo2rQJMrUaMpkM27ZtE6ysrB62ysfFAV9/zVwJD3D27Fm4uLjwBioVhzVr2HWvrmbtCzU1rJ2hqQnaggJYUoqln3xCqru6UFRTIxilpJD6t98mY4KDAUdH7Ny1S19VVSULDQ0VAwICCAICgCFDYLZ3L/Dii8Cnn9430q83WVlZ4pEjRwjHccTQ0LDv4/iLyOVyuLu7KwsLC89rNJplSqVynJ2dHezt7WHfRyaGm5sbTE1NxYaGhoHoHt8nISHxfx9J7EtISEhI9IWfSqUSHxTfI0eOVIiiGHn16tVLDg4OZNy4cYZyuRwcx4lVVVWktbUVRkZGcHBwgK+vrwwP/HeGEIJXXnkFe/bsQW1tLaq7e3Tt7e3FXbt2ieHh4XRwH5W5B2lubsbhw4fFyspKKJVKDB8+HKGhoXefDw0NpSdOnGAH4ufHPSrxGgALBTtwANi1iwnQU6dYavrbbzMRPGECq4L/+CPapk+HfU2NeP3HH2Hz8ssEGRlw8PTEgjlzKBobcbeyp9Oxv6eno/O335BEKbdyxw6YLlyIXED0/vln2vTNN3BydqZVRUVIOHUK2kmT4Nj1/9j77rCq7m3b8Vu70HtvIkWK0hSRIioSsLeo2IK9xZKYYzzRFI+iUdNMNEYTTYwau1Fj70qRrnQpCgKKSO8d9l7r/TEBQUi5991737kve3yfH4HsvfYqv7W/NeYcY8wWQXfhQlbZ3CwEaGoycW4usHIl+L1mgjnWAAAgAElEQVR7kVRYCHd3dzQ2NiIyIgJaW7ZwVU5OiHvzTTSkpcHe3h4ZGRnQGD0aTw4flucJgsjQ0JCfMmUK9+jRIz46OprTMzSkogIAXL9OBNrTkwhaYCClw2tr41lkJM4ePYqPxozpTvp8fen47t6lGe3R0Siur8fLly9hZ2eH0aNH905eAgOJxHWVWbu4UDd44UJSJbQXK9TV1fHmm2/i119/xcmTJzFlyhTB1dWV4fDhV0WPdjxvakLEixcIvHcP/Nq1nWoROzs7XPLzQ2ZaGiQqKjA3N4dxVRWwcSMK+/TBpZEjwb14wTvK5TCvquKs29emp6cnYsLDwUmlgpmbG3NasIDrCG/rxJ49dH1bWgAisFi3bh0rLS1FVVUVTp09C04mg25tLfo8fYrply5BWSaD3NkZoiFDKKCwayjb9OkUrLhyJfDdd5g8eTLbs2ePqLi4GCrNzdDYuhU5mpo4mZUFiUQCQRBEHMeBMYYdO3Z0esHFYjFEIhGvrKzMmzg6ikYcOsQeOTnBxNISrq6u8PDwgLe3N3bu3ImnT57AZu9epOnpIWXLFmGIrS3T6PDhBwXR2p8woUeXWl9fH42Njd2v8ZIlZIkIDwc++ogmHyxcSCS6tpamCERFtd9qwh8X24YNI5WAuTk4joO+piawbh1UR43qfIlEIuFaW3uxnq9ZA8yfT0UyPT26PidOABMmwOCnn4ShUVGiSzo6vO+lS0zHxYWxwEBSMojFlFMwZgyUjI0xx84O8aNH8w8TEjjjujputJ4eQjMzBZ85cxgbNQq8gYFoSlQUwisrIbO0hFhLi0L7Zs4kS0B8PN1jvQTvmZqaMsYYhnh4YJSnJ4faWrKzaGoCt29TYe+NN4DZsyng8sWLPzxdVVVVgrq6OtPT09utr68vtrW1/cPXt7W1MQANf/giBRRQ4P8rKMi+AgoooIACPcAYG2NnZ9cjDlwqlWLs2LEqY18bV7V06VL23XffYc+ePZ1/+/jjj9FbYr2GhgaCg4Px6NEj1NTUICYmBpWVlWhtbeViY2MhEom6EffXIZPJsH//fqGxsZEtXLgQFhYWPYL+OI6Ds7OzkJaWxiIjI3kbG5vuBIXngcePidiHhlLH98EDmlleXv7qIfvuXfIjSySQ79qFn0tKMDoykmlevQp+zRpwo0eT9FhPj8hRWxuNmXv+nAoHVVWQpKYCbm7ImTULAxcswGB7ew47dqCDQp7/7ju+IjeXW3vnDp65ugoRY8YIsuJibsipU9CdORMwNMSZn36Si5OSRAl+fqisrxfevHIFL9XVWZShIfSePuVlMhmLiYlhRkZG/KDz5zE+PV3UGhsLExMTThAEHDhwgAOApqYm+tBdu4ALF8gjvWoVESMTk87To6WlBTU1Nf6bb77h5s+fD6OOZP0nT6gr7+dHxEpJCXoJCVBWVkZBQQF6UzaUlZVBcHCAYW/dzhEjyBP//vvAzp2dhL9///7w9/fHvXv3UFVVRRe3ogK4dq0z/K2srAyHDh3C4GnTYLZsGXD8OIXEiUSYqqrKEBIC3tER6WlpKA4JEa5evcq0VFSE+yIRUxKL0d/EhFNOT0fmzZvQX7gQ0dHRiIuNxdqdO3EvIIDJf/yx23i/TpiZEaHNzaUCEYhom5qawtTUFP369YNUKkV9fT1++OEHJHp4QLe8HKb37mGSWAzJggUUCrdqFW3LyIjyEKKigKwsaPbvjwGOjkJFQAB74O2NgsWLofz8OT9u3DjOw8MDBQUFOH78OBhjaGlpwYABAzBp0iRIpVKAVBVcfX09Tujq8m+HhXEGa9eSJx2ketn4/vtAbi6ExETcX7wYURkZLPbRIwDA6tWroevjA/bPf1IxaNy4boeupaX1KmSvsZE6+Tt30v6LRNTNz8ujLASAlCPu7oCyMgz37IHFXwnkfPYMGDiQCgXDh1MRoQskEglaW1t7KgQYo3va15esB/v2kfXC1RX9t2xh8TduoKqqivtu0iSMNTODh5oaFeR8fOgY2nMb9BISMGL8eG7o6NFoamqChoYG/sHzLHTQID72/n1OraaG1RkZoZXjGNu8mVQrMTGvrDaXL1MewJdfklohKYnOTXo6jPPzscLNDdxbb0EmEkH85Zf0/oEDKcDSzY2sJUpKZOMRBFpr69fTRIrXYG9vz1JTU4UFCxb8QTXzFeRyOQdAPyQkhNu0aRP/V96jgAIK/O8G+8NkVAUUUEABBf6W+Oyzz84FBARMHTz4r4fv19fXQywW49ChQ7xUKsXixYv/VKIqCAK2bdsGDQ0N+Pj4CHFxcaioqGCrVq2CpqYmKioqEBoaCm1tbWRlZcmbmppEgiDAyMiIDw4O5lQ6/Le9oLq6Grt374aNjQ0/Z84cjuM48sDv2QPExdGoMpGICI2JCcnZ3dx6jDyrrq7GhQsXUFBQABsbG3ltbS1XUlLC3n77bRgZGaGsrKxT0o+SEgqjmzSJZt63B3adPHlS/uTJExEALFy4EH369Onc/st165CSmyskOziwSW+9hQEDBuDYsWO8+bFjXP6wYfJSiYQJ1dXc0vPnUWBtLfStr2eaGzbgx/x8gZNKsWTJku6kp66OyHsXopqbm4sTJ05ALpdDt7FReCM9nTns3g3OxoYIckMDkZMuaGxsxFdffYVRo0bBy8uL/ujhQWPV/vEP+j0zE/D1xcP9+3E1PR3e3t58cnIyp6mpyZuZmQnV1dV4/vy5yCYtDbrV1ahcsICfNWtWz3Vx8CDJrz/8sNPDv2XLFgiCgCVLlsDMzIyI/pYtkEdFISkpCTdv3oRcLsf69euhJBJREcDEhLYxcSJ5sTdvpuT+xkY8mzkTh8PCAADz58+noL6oKNw9dYqP1Nfn+qelwWTFCnipq+Pi8+dCemYm8/f35319fXvu79OntM/btwOgPIbc3FzY2tp2Kzw9ePAAsbGxcnNzc1Fqu1R/mLs7htXVQVJURMUTPT0iy0FBtH5UVIB+/VA7ZQpku3dDu39/dHjsm5ub8e2336KtrQ0cxwmtra1sxowZcHR07LGLACifQUcH2LqVfi8tpa57QEDnNeR5HjKZDDt27Oh8mzdjcLxzR1A9dYppGhggNTUVzc3NqKqq4pOSkrjhw4fD++ZNSG/doiJZxzFnZ1OXuqM41AVVkycjUldXmLh5M8PVq6RkeB0nTgBpaaSoiYsDvvqKVDddcObMGaioqMgnTpwoQlMTna+RI6lwNG8e3dfz5xPx7gUHDhzgnZycOB8fH+qmHzpE4YBZWbRWBg0CqHDSA4Ig4NChQ3xhYSE3f/58uo8FgSYQHDlC4ZVxccCyZRQCePIkFXH69QMsLNDY1oZMkQgP0tKgbGiIBQsWdP+Af/6Tiih791Lx6vp12l5UFBUoX5PnX79+HfHx8bCxseGDg4P/9Ps2OTlZfvPmzVaZTNYml8uD/vWvf936s/cooIAC/7sh2rx58//rfVBAAQUUUODfCCEhIeaMsW8nTJggkf7OQ29vkEqlHdJ6rrq6munp6SE+Pl4WGxsLZ2fn7qFg7WCMITY2VggKCmJKSkosPT2dyWQymJiY4NChQ0hISEBrayvq6up4Dw8PNmnSJDZ06FB4eXkxye/MIe+AsrIy+vfvj+irVxkfHw/Lq1cpmM7Hh6THo0ZR11FTk8jK9OnUxe8IcQMR3h9//FFQUVHBjBkzmI+PD2doaMhkMplw9+5dxMTECDExMSwxMVFuFxfHSefMAffllxQypqFBSgEAzs7OnLm5OdLS0pCSkoLKyko4OjgAMhk0DhxA37feYmGVlbCzs4OxsTFMTU1ZaUsL73fhgsjwvfeY54gRMHr7bRhHRjLl9HSgogJh+vrw9/dnnYWGDigpkbd/8ODO9HodHR0MGjQILnl58PnxR3Z01ChUS6U0hs/JifZVXx8d88lTUlJw4sQJwd7eng8ICOA6CeyyZTR2rAMGBsCqVahtbsbATZsQIZEwia6uYGpqyrW2tnJqamrc7Nmz4WxqCsOHD3FdSYkpKSkJ5ubmDABevnwJsVgMiYcHqQyiotDg4ICvvv0WcrkcEokEiYmJKCws5GuNjFjppEm4desWn5GRITg6OrLi4mK0tLRAWVUVWn5+VOgoLSU5eX09zbXfuhWYNw8ZxcV8Xl4e++STT14pEBISYJ2YyHw+/xzOH3wAy2nTUG5nh5LSUlZZWSn06dOH9enTp2c7WleXCO2336K4f38cOXJEePjwIdPS0hKMjY07X5+WlsYLgiCaOXMmcnNzUVtbi+dFRYipqUGfmTOhPXMmEcGMDFqbv/1G+9vcDKXFi6Fy4waYuzupMCoqINfWRvGNG0KdILB+trawtbFhroMG9aqgAUAkWCKhDryyMnWvJRLg3Xc7CTpjDCKRCF5eXoiNjcWIESMQ/fw5RKWlLDo5GbdSU1FUVCSvrq5GVVWVoMUYdA8fZvkzZ8J627bu/vRPPwVycqi7/hryXF3xsKEBXlVVDAcP0ui7GzcomK9jfWloELkfM4ZyA776qoeVoOT2bciam3m75885eHsTQdbWpvvZxoZ+fvcdEf5e8PDhQ97ExIQzr6sjCf3u3fSeGTMo4NLBgewtHZMfuoAxBgsLC5aQkICRI0eSmoIxOqceHnQufH2pALF4MfDmm2RhGTQIsLXFzSdP+PCHD1mDTIYlS5agx/drdjYVDFatAvr3J6IfHU3nxc2NLA7tI0UBwMbGBmlpaXj58iVzd3f/0+kixsbGnK+vr8TS0lIpIyNjelhY2OMRI0Zk/OGbFFBAgf/VUMj4FVBAAQX+xggJCRkgEomCxWKxcWtra54gCOlSqXSbt7e3WP11r/JfgL6+Pmtra4NYLMZ5ClITA73P1+Z5HtnZ2Whra2PGxsbYvXs3mpqaoK2tLVy8eJG1e6GhqqoKvB769mdoawOysyHdvBnjUlOhvXw5kd+tW3t07jvx9tudXeXm5macOnWKLyoqYqampsKMGTM6VQR9+vSBhYUFCw8PR3h4OLO2tuZbwsNFP+rrQ23mTIzOz0e/0lKwadOAkhK0trbi8ePH6Nu3LzZt2oTMzExcunBBwNixLE9LC+d9feXNjx+LDA0NyZtO5xF+y5dz2LcP2pqa1O1bupR88tu2oSYyEhbnzzPV7Gyabf56IaWwkALIOmbIA1AvKYG6SAQcP46xqqq4efMmP378eI7T16cuYlYWqubMwfnz5/nS0lJu/PjxzNnZufu8+4AA8tl3tVmoq0PN0BAtBgaQtLXBSlubTWxPcO/E4MHQFokQGBiIu3fvMolEAi0tLRw/fhyqqqqYMmUKbN9/H9WrV+Ph8uUQnJ0BiQRtbW3w9PREXV0dl5aaKp+7fr0o+5tvsGbNGi4nJwfp6elISkpCcXExv2jRIg7GxkRki4upoLNuHdDYCAFA6RdfcIaDBkFUUEAd0xUrSGJ9+TKkL16QdYMxnNi1i6+pqeEsLS2Zp6fn7y4xua4u2g4cwHGOg627O0aOHInLly+zjlDLzMxMxMXFcV5eXoiPj0dJSQlWrFgBbW1t7N+/nz9y5Aj30UcfQWJpSQRTJnuVhi8W06SC/HyaYnD8OGBpCSWpFEF377Jbzs6C/s2bzDU1FeLSUgoMnDABCA6mNb5xI3XIIyNJBj51KsnAN2+mbn8vhTfldo+5p6cnRowYAT4jA/Lly1G9fj0MrKxehSX8+ivKc3KQJAjgxWKA5zuVB3jjDaC6utfzxRij74HZs+mfXE4/b92idaqrS51rbW0qfGRk0LUEqOv+66/Axo3w3rYN6WPGMPzwA50fqZTIeQdsbUnVkZlJP1+DIAikvvjwQyr8MQZ88gmR+w8+IIVFVVW3e6cr9PX14ejoKN+zZw8nk8mYi4uLMHnyZAaep8LFiRMku//+exrX2EUdNXr0aK60tBQFBQU4efKkfP78+SKpVEqWkLlzyTakrEwqFhcXum4d2SHJyfTd9fnndF0vXwbHcRg5ciTOnz+P0tJS/GE2SRdYWlpi4cKFKocOHfolJCTk+aZNm+IBICQkREsikXzMcdxbAO61tLQs3rRpUy8BCQoooMD/Fig6+woooIACf1Ns3bp1klgsvunp6TncwcFhkIGBwXAA4zw9PU2GDh0qft0H/1dgaWmJIUOGYOTIkZDJZCgoKMDYsWNhbm7eTd7M8zz27dsnPHjwgAUEBPB9+/ZllpaW4Diuc7SdIAiIjo5GeHg4Xrx4IXdxcflzwp+YSA/Y27YBN29CvmQJjqio4Km2NobMnt0j4K0bxGLg0iVg+HD8/PPPcsYYmzBhAjdy5MgeKgLGGPT19RETEwOd+Hg27dw5PPD0RL2mJh49eoSUsjJBx8mJtdnb48CBA3j8+LEQFxfHWlpaeFOxmGXGxbEmuVy4a27OXIcO5SZPngxfX1/W7ZyLRK/S6qOjyW4wbhygqQmlAQMgNDRA+vPPiNPXh61c3s1zj3nzqPPcQcKSk4FFi0g6PWgQDAwMEBkZyXR0dGh2t7k5ylJT8V1MDAzapyr0loWAqCgidF28+YIg4MDBg0js2xdtUimC//UvSKytu4fxSSTAjRswnzsXMpGIj4qKEjIzMwU7Ozv07duX3b17V8jOzhZuy+UsoKQEGrW1QoGuLhs/aRKGDx+OAQMGYLCHBydtaoLz228zkYoKDAwMMGzYMFRVVUEul/MuLi4cjIyI4NfUEGH6+mvg4UPIxoyByXvvwXbBAmhUV5P8fuXKV0Fyv/1G9oSkJDiOHs1aWlvx7NkzvqCggHd2duYYY6ipqUFycjLKy8uRlZWFM1evItnbWz7XwYEbNHUqMzQ0REFBAR8WFoaIiAhWUlLCGxkZMXd3d1y8eBETJ06EtbU1RCIRbG1t2YO4OKhdvcqbGxsz7NhBnewDB6ioc+4cdXmdnOiaz5lDPy0sUD5tGi48fcrq/fz4W4MGseTMTKF82DDeaN48TrlvX1oHbm5EpuVysjTs3UvXTC4nQpmcTN5ygIoAKioAxyEsLAx+fn7gOA7MwACi+HiomZoSia2qAhYsAP7xD9y0tZU/TEriIiIikJeXxw8cOJAWiooKEdFhw3rcXhUVFcjJyYG3t3fnlAisX0+5BcHBFNK4eDGpEGbMoELAW2+R4qSsjEj0vHm4P3gwnujqCgOHDOF687GD46g4VlHRK9l/8OABb1NSwhnOm4eWUaNw+tdfBc3cXEHJxISJPTzARo2iLAY7O5Li94KcnByhsLCQEwQBPM/zHvn5HOztSU3QQe4/+4zWoZ9fl1tahKSkJF5VVRVFRUWco6MjEfT8fJpoMGUKvXDAAFIYqahQ4cbCgv4mFlMxRE+POv8bNoAfPhyJKSlITU2Fp6cn/kzx1AF1dXWoq6tLnj175uTr63swJCREQyKRZDo6OvqNHz9ep6Kiol9jY2PA3bt3j/j5+Sk8vwoo8L8UCrKvgAIKKPA3REhIiJTjuPgFCxaoubm5cWZmZrCxseEGDhyoZG5uzv4zRL8DEokEjDHY2NjgyZMn8qSkJC48PBy6urqdQW8HDx6Ul5SUcNOnT8egQYMYAGhqasLOzo6ZmJjA0dERU6dORW1tLV9cXMyqqqq49PR0uUwm4xoaGqD/enBaejp15/75TyIm8+cD770Hqa0tNPT1kZqaCnt7e/yhWqGyEli3DrULFiA8IoILCgpiXb31ryMvLw/Sw4dhsXIlLhsZoaE9mf2TTz4BOI4lJyfzJSdPMp3hw4Xly5czS0tLhN65IwxbvZqpqqsj1MWFtUqlGDFiBExNTV8R6+ZmIhtubsDy5SQzrqyksXinTwOGhmDq6jByc0P5+PFIOXcO7jt2UHe4QxK9cydJgVesICJRVESWhREjAABRUVFCdnY2y87OhrW1NTQdHPDiyy9hpKTET9iwgftd+4a/P0mdu6yPnJwcJCYmAgAEjkO6gwO8Vqyg/TYwIGLCGAW32djAys2NDR06lA0dOpQNGDCA2djYYPDgwSw/P5/Z2dlh4EcfoeHrr5mRkhLvtXQp69aFtrEhq0EXufL9+/cFFRUV5mRoyKClRSRo9myavb5vHzB1KqLj4oRfTUzY+JUricR1+MWzs4ls7t0LNDSgcfVqZN27J9Q+fy44mptzD1++5JSUlAQzMzN25swZISEhgT1+/Bh1dXVyf39/7s3x4zm1oCAieBYWcHZ2Zg0NDayiooJ/7733OHd3dzQ3NyM7O1uelpbGNTY2CppSKTNISIBabS1MjhxhWsOGUTdZTY06uTo6wM2bZAXx8yM1hUjUqaZQU1NDfn4+39zcLKxYuZJTU1dneTU1wr0HD7g6nueNR45kSnp61OEePpwIImNkwXj3Xepm9+1LOQ137lDX/ORJ8JcuoS01FTaWlmAiEeUIjB1LBZE33yQyevkysGABHAcM4Pz8/KCiooLCwkJ+8ODBdJFqa8n3vnx5j6VTUVGB7OzsV2QfeLWOZswgG014OK3ZAwdIQRIXR7aRESOo0MAYXhYVobi4WHB3d//94p9cTkWywMBua1UQBMTevs3cvv6a3WpqEjIaG5Gdnc1yeJ5FNTRAWVOT8iFCQsgS4uPTY9ONjY1ITU1FdXU1mzp1KsaOHs2xCROosODu/uqF06ZREONr5Lt///6soaFBeP78ObOwsIDxxo00oaHLWE0MHEhr3dGRCj1NTbQdNTW6/1xdKTdi2zaovPceEq9dg1hXV7h//z6zsrKCVi8WhN5QVFSE3NzcBF9f39Ph4eFzra2tp8yYMUNVQ0MD/fv3l4SHh5sJgrDHz8+v+S9tUAEFFPi3g4LsK6CAAgr8DREeHq7KGPto7Nixot689P9ViI6OFpqamjgAyMrKgpmZGc6cOcM3NTVx7777LjMzM+vxHn19fRgYGCApKUmIiIjo9Is3NjZyubm5SE9PR3Z2NtTV1aGvrk5BY+fPE7kJCCAyt28fkWZXVxgZG6OyslJ+69Ytrq2tDVbtoXk90J6ofyU0FBo6OnJvb+8/PDF6hYWw27ULT3188LiqCgB1/P38/GBhYQHnx4+Z+Z07GLRnDwMArYsXoSMSsbMWFkjr06dT1jzYygpaxsZUoMjLo+OYNo3ImY0Nybm/+oqIfFAQSZ2LioA5c/DQ0ZGXFRXxLt98w8HRkUiAlhZJuj09iRQvXUpZBNOnd+67pqYmMzIyQkVFBcrKyuDk5ISYmzcF1+RkTm3p0t4PWBCo07luXbcAs6dPnwo5OTksKCgILi4uMHJ0hKmlJZG15mYiPIwBP/1ERNbOrsemxWIxBgwYgA4JfFqfPoL2kSOcoUhEnvUOwjZkCHVt24sWACASiVhyQgLz6SDdEyYQgb95kwLv3NwQFxfHampqhGHDhr1ifhs3kqQ9OBjy6GiEicU4o6qKant7ZpeSwvqdOIGnNjYwu3gRZxMTWUlzMxOJRBAEAStXruQsLS2JgHl7k+++vQtsY2ODoUOHdmZUaGhowMvLizPS0MCjGzcE7ZAQpv/gAaQbNuBCXR2cvvwSkqlTqYtNB0Rd+OfPqUPevz+FR7aP+oOWFszNzVl4eDjXr18/ODo6ws3NjbOwsEBiYiJCQ0OZq6trpywfAHW5fX1pf5WVaa0PGkTnys8PGDkSzf36IT80FLY8TwWAL74ADh+m41q7ls7VmjXdLAARERFCTU0N8/LyYu0Li9aplVUPr31FRQWePHnSnex34OFDIq92djQpQkeHxtmFhVHBwtCwU5VTXl6OZ8+eoSNLodfClKEh7b+fH3XCQVM8bt++jdLUVNZiagrDuXNZRkaG0NbWxt67eROoroZJUBDlOUyZQjJ6oJOs19TU4M6dO/zZs2dZZWUlE3geTjt2CJrDhzPxjh20Bl6HsTEVSvT0Ov90//593L9/nwFAWWGh3P7mTU55/vxur4GPD2UAKCnRvbZ5M6lPgoJevUZPD1i5Er+ePy/M3biRDZ83j5UZGiIlJYV3d3f/SwXb/Px8PH36NDc0NLROKpV+Nnz4cANDQ0MAQFpaGnJzcxM/+eSTb/90QwoooMC/LRRkXwEFFFDgbwg/P7/W6OjoVf3791dX/R2p6n8Fnj59ylVWVnb+npaWBk1NTSxcuJD92ecKgsBKSkr42tpa1q9fP6Fv377w9fVlmZmZaCspAX/2LEw2b4YwezYkGzeS79XXlwi/iwt15hYtArO0hOO4cZyunh7CwsIQFxcnr6+v53R1ddEtzZ8xCIsWoSgzk7eeNUvU8dDby44B770H5u+P2tWrce72baioqAgikQjjx49nxu2J2ZynJ5RXrKDXy+XAvHlQCQjAcyMjjLpyBXXa2rDMz8eQDz5A/TvvoOzRI6QLAooMDKD/+edgKirgjI0pnGvmTCJZq1dTx19ZGbxMhhOFhWzK0aOcVk4OkaKzZ4lcp6dTl1RFhchXcHC3Q1BWVkZ2djYeP36MiooKREZG4qWGBhsycSJUgV7T1AEAkycDr6kdKisrkZmZyTIyMjBt2jSYmpoS0Zs9m0iLvz/w6BERuYIC2s8/gUwuZ781NWF4djZYeTkdM2PU3X3jjW6Es/LXX1EICB7ff8/g5kZ/7BhdlpYGMIZzcXGQy+Xs2bNnfENDAzNobYVs5Up8BSA6NhaDPvwQ0X378n6TJrExEyagxcsLRzU1odzaCouMDCZtbcUkxuCnpoZ6e3s4u7m9UmKYmdExamh0ty50oKYGqKuD/qhRGDRgAPvFyQmR/ftjlK0t2lRUkN7SIvRdupR1C9nT0SGyOnQobdPfn5QKa9cCwcG4ExnJV1dXs1GjRkHUToK1tbUxePBglpSUJK+rq4O1tTUVHHie3v/2291mv4eEhCA8PBwaGhowsbREnZISLpWWYvjGjfS5I0dSZ/nwYQr2mzWLiga6up3EOy0tTaioqOCys7ORlpaGuPh4mHz4oXAhNZXdyckR0tLS+IcPHwrx8fH848eP0djYyGVlZclTU1OZs7Mz45KTiRB/8gkdr5MTpdpv3EVgO9MAACAASURBVEhFDlVVKnh5e5M9YOxYVFdW4kFSEktISEBKSgoaGhrkv/32G9fU1CRYWVkxxhgEAJBKwX77DRg9GqWlpfjll1+E+rAwNvvUKURMnszPmDOHeXp6ssGDB0N9yBBcra4WPAMDmYqKCq2fqVNRHR+PMLGYv3LlCqKiolhDQwNvY2PDVVRUQCKVwiEhgT01MECf3rIdGEOn0qRLp72wsBB5eXmwevoUfZOTuZiFC2WDAgO7FxZPnaL7RVOTfvfzAwYMQHVTE77Yswfx8fF8amoqn5qayuXm5jLHb7+Fpp8fLD79FNI7d1i8oaHc0dHxT6u4urq6qKysNFNWVp7i4+Nj4Orq2lkkuHz5cm11dfU6Pz+/zD/bjgIKKPDvC8XoPQUUUECBvyk+//zzp/PmzbM26er1/i9Gx/g0APDw8BD69u3LLCws/nKQFEBjzToIDd/QgHurVgl48YKptbUhwtsbzSoqsDEywqzPP4f4yZPustm4OPJtDx8OjBiBVjs7RERE8M+ePRNKSkpE5ubmcHZ2hp6eHszNzZH76afITEvD6OPHe+8YAtRVHzcOuHkTZ8LC+MzMTC44OBg2NjY9Xzt1KpHuLVuIMF24QKFwkyejbeVK7IiKImLSfnyMMYjFYqGtrY0BwPpVq6A8Zw6FmPWC/fv3o7i4GJs2baLtf/op+aADAijgzMiIwupew4ULF4SsrCw2ZswYJCQk4MWLFwAA76Qk9Kmp4eu//JJzc3PrnvJeWUljyt5/v8f2Tp8+LWRlZbFNmzb13Mm4OOpKl5aSpWDdut7PaxcUFhbip59+wsY1a8Bt2EAd+yVLSMHx7Nmr0X+CgEY9PVx54w0EnTnTM2Pg5k0Ihw7hKwsL9B0yROA4ji8qLGTaKSlcnqkpzKysUFJSAmOex4ING0i+DpJ7nzlzRp6VldUZ8jCkpEQ+tqlJhOXLKTDt3XeJRDMG/PILFVa6dF4z0tJgHhsLza+/Bo4dA6+jg1tPniArKwtqJSVYcuYMYhYvRhgAR0dH2NvbdwbdFRYWwvXGDeiPGkVS9A6UlQGHDiHvt9+EB7NmCTPWrOlB6MrKynD06FF5Y2OjaOLEibyrkxOH8PBuKe4A8MUXX0AikaC2thYLFiyAVCrFkSNHsGH9erpe5uZEwDvyIqZOpevg6AgcOICKujpcv3VLqKurY46OjpDL5ZSdsGcP1zByJEq8vMBxXOc/nudRWVkJLS0thF27hrfXrIGOlRWFJfr40ASFvDzaOWVluo9/+ol+LykBHj8GCgog//xzXBw6lK/T0eHyxeJeczi0tbWFlhcv2PTQUKSuXy+kZGQwCAL6PXkCteZmBB47hq7FxrR33xXuiERs/saNKCoqQmZmprw2OlrEqqrA+fkJLi4uzNnZufN+qDIwQMkHH6DCxwfOzs5QV1dHY2MjOI5DYWEhiouLUVZWhtZnz2AQFydP9vBAa2srJ5fLmVwuBwC8cesWVCQS3j0srCcpt7WlDIPhwyGTycBxHNK/+w6G27fj3hdf8IM8PbnKykrU1tYKxsbGzNXVld4XFYXiJ09wJDMTiysrof399xD/RQ//67h161ZrQkJCTGtr6/hNmzY1hISE9BWLxcsYYzptbW1XAFzbtGmTgkQooMC/ORRkXwEFFFDgb4ovvvgiZebMmS6Wlpb/bZ/x/PlzHDp0CADw3nvv/WUvaQ8IAnDsGJCYCMHICDFGRryZvz93+PBhAIBLSgqMX76EzaVL6LUjf+QIdSj/+U/qHvbpg4KCAiQlJfFPnjxhDQ0NDAAkLS0Iqq7m++3b1/MBnOdJkrtuXWcA2YsXL3Dw4EGYmJgIixYtou5sayuQmkrESEWFpOzz51PSd20tdd7xKqSQ53no6elh3LhxTEdHB5WVlUhISEBMTAyU6uvxzyNHwIqLexDZtrY2bN++HX369MHChQvpHJ0/T8f51lvk+3d0pM8tK6OALwARERGIiYnBkiVLoNdFOszzPJ49eoSGgwdxx9iY1zI2xqxZszqnECAlhY4/N/e108Ljxo0bSE1NxerVq38/F8HFhRLS/f2BixepS/2PfxCpFIu7FWlu3Lghz8nJwerVq0UoLQW+/JKuW10dbWPvXuDzz1E1ciS+vXoVGlpaWLNmTWdRqCsuzJvH61VVsWHnzzNIJMB330F28CCyjx+HlbU1WlpacHDLFrx38iS45887R8llZGTg3Llz0NPTk1dXV4sYY1i/fj24piZKhre0pGwEqZTO+aVL5HOfPBnFEyZAlpyMc0FB0FRXR42+Pnie55UEgfnU1sJy7FiWm56OsKoqwd7enhUVFfFNTU2CIAhCa2sr19TUxElaWrDqp59wZccO8FKpXE1NDXZ2diIne3tEjB8Ps+XLYVNZSUWQXiTbx48fh5KSknyyiYlIdPo02O7dqKysRFFREerq6nDr1i1YW1ujsLBQaGlpYQBgVVaGeRcvAomJKC8qQpumJkyuXqWkeE1NCDyPgqwsaJw+De7bb3Fg7VrBc8QINryrWiMvj8h5+zrvgR9/RMN770H28iW01NRoXSxdSmshNZV86fn5JL/v6oHvwLNngLo6hMBAVNXX49egIPk4Hx9Ro60tYmNjwXEctLS0UFJSIpifP8+eW1ig2MwM7vHxcDMxgemBA3jdulRjaIjc1ath9/77+Oabb+Do6AhHR0c4RESAq6ykQgTQOf7wyvTpeNS/P1h7QKBMJussaqqrqwuampq8rq4uTNraREOWLUNBQgK09PSgrKyMspIS6O7bh9qlS/HTyZPQ09NDYGAgjcFsR0pKCsLCwuStra2submZEwQBEpEIyysrobtxY6c1oTfU1NTgxvr1vPe1a1zE9u188LBhHP4T3/FyuRyXLl1qzsrKqmeMhfM8P27gwIFiTU1NSXR0dGNjY+P0TZs2Xf8Pb1gBBRT4H4Vi9J4CCiigwN8XAs/zAGjeeV1dHZ49ewYdHR2YmJiAMYbePPX/EVy5coUHwM2YMeM/R/QFgby8ixeTtHj1ajAbG/i0j+IbOnSoLD09XazS2IhUFxcM7JC9dtuEgNopU1Di4gKjpCRoHT+OZi8vSCZPxpAhQ7jKykp5S0uLSCQSCcZmZqzfrl0cysooXK4DPE9ecRWVbp5zAwMDMMZQUlLCrk6bBrUZM4SA8nKGXbtQlZgIjUWLIB4/nghNeDiF5rWPxctua0NFRQWbMGEC3LuQGl1dXQQGBsLNzQ2Hf/pJ+H76dFa+ZQtEIhFGjRolqKqqsvZJBYJIJGLjAgPJ53zkCI3l+ugjkj3PnEnE+MQJ4JtviEAxhuTkZHlgYKCoK9EHAI7jYOXiApiYwL6sjNuvocEfPHhQmDt3LtPS0qI8gC5Ev6mpCWFhYcKTJ09QV1fH5HI5EhMTMfx1mX5ZGQW7HTpEBYjgYCqAlJSQGuH8+c5AtPoZM1AxYAASZTKRQWkpYu7fh/ewYeQV37OHCP/evbTdmzdR0NgIDS0tvPPOO70S/djYWKRaWXFr1dWpS71uHRAUBPGoUXBsv47Kysqo09RE44QJUK+t7Zw08PTpU57nec7Pz09kamqK3bt3Izw8HCNHjiQ7AUAWiV9+IbK/eTNJ9keMgPKsWUBUFHQqK8EqKrDiq68Qff06N2LjRnAxMeDv38edUaOEKVOmMAcHB6CX0ZL5+fkoePxYsLx5E+lvvCFSUVHBuXPnUOXvj7jAQBglJcE6IQFMECjE7bUii6GhIWJjY0Xs9Gk4p6Tg9r59qKqqgpqamlwikUBfX180atQoqKiosLD586FTVoaC6dNxdsgQpO/bBwCwKizE1IYG1EyZAhN1dVRXV+PIuXNQVlXljebOxdvBwZxGQACdg6FD6YPj4mgSwutkf9gwek1ICH7MzsaiqiqyY+zcSZaBBw+oYLJ1K0n3b92i6RpdxzwC6CCuLCEBFdHRMDl0CBb/+hcQEgJ7FRUqslH2A4OGBuQVFWiaNw9s2DCoffBBj7GDzc3N2LVqFcaPG4fi4mIoKyvLp02bRospI4Pu2w7Y2UG0dy+qp0yBLD8fUsbwzjvvQFlZGWKxuGOsHwPwajGOHw8rNbXOz7WsqAAuXYLG1q2YOXMmzp49i1OnTgEAxo0bh7q6OgyYPRt2//gHZzZuHLOxsUFraytUVVWhJJGQjWXnzp7npR1aWlrw3biRixgxAi+yszksXQrEx1MI4H8AIpEIb775pnJhYaFycXHxNGtra+jo6AAASktLkZqa2vtsQgUUUODfCorOvgIKKKDA3xQ7duxINTU1da6urpbX1taKeJ6HqqoqJBKJUFdXxxhjCAgIgNfvdej+BDzPY8eOHZDJZACA5cuXo8PP/peQnU3d/LAwSue2s+u1g3n/7l1BacMGFhUYiIGjRvFWVlacSCRCenq6UFJSguLiYiaTyaCkpCRvaWkRqVdXQ6e8HIHXr+OBjw+aZswQhnh6sr59+9IGIyKIMHTIfGUy6kYHB1NoXhc0hYYiPiQEYSNH4u19+3DP3x81w4cLYomE1aWnY0RqKj/o1i2uU2r84gV5vC0s0Dh9Or5XUoKvvT08Fy3q/RwWF0M2eDBObd8Oc3NzxMXFAaCum3JNDd7R0YGSkhIR6rlzO7v3AKhQoq1NiesuLtSZ/+QTbPP2xsLly8lb3xvy8oDZs9EaHo5fjh6Vl5SUiOzt7eWBtbUirTNnIFy/jvj4eOH27dtMKpUKDg4OLC0tDfb29hg/fnz3HASAxgA2NtIkgXv3gB9+oNFyXdHYiDvR0cBnn6HFxoYvFYu5qceO4enOnRiUmUlr4euviWTHxRGx/sc/0JqXhyPHjvEm7u7CBHd3EXR1aY00NCC9tBTXTp+GZb9+8hkTJ4rwyy/AjRs0teDbV5ljoaGhiIiIwIYlS6B07Rp1mUGBkhd/+03wMDBgtkpKSH/xQq4UEcEJenqCc3k5Z1hTQ5aGvXtpNFp4OFkmli0D9uxB2vr1iFRWRvDKldCoqCDvNgCsW4fEFy9wq29f6Bsb83IVFaioqAh9+/Zlw4cP785ES0poqsHmzYBUis8++0xoa2tjgiBAEASsX7sWyjU1RJY//JDGK76OujqUNzTgt8uXeYlEIixYsOAVEb1yhfbrt98QHxWFG25uEAQBHMfByMgI2nfvQqmlBckDB8LW1pYPCAjgDh8+LKxfv551rrFffqHAxAMHKGtg5kwi6kuW0Pl44w0KGIyMpHVoaIitW7di/c8/47mHB2zPnKF92b8fuH2bcicAYMwYKhj8QbZUZmYmrly5wv9z7VoOMhndA8XFtFZSUuiz582jwL2JE3sN0duzZ48wc+tWpnz7Nh41NCAtLU2+fPnyV+eooICOce1aoLISvIkJfvzxR1ltbS3H8zz3wQcf9LSPdMUXXwAxMRSwd/06fY9ZWXUrOsTFxeHGjRuQSCRoa2vDqpwcQf+zzxh6K7auXUuFt/nze/24kpIS/PDDDwAAZ2dn+dTAQBE0NIDRo8nO9PHHv7+vfxGhoaHymJiYsLa2trmbNm0q+r/eoAIKKPDfBkVnXwEFFFDgbwqe51/k5+c7a2lpidavXw+ZTNbhY2UA8OjRI1y8eBH5+fn8rFmz/jDs6eXLl4iKioKzszMcHByQn5+PU6dOCbq6uhCLxezly5fYv38/TExMhGXLlv1xTPSDB9S5Mjam7tXmzb2S/A605OUJEiUlVq+iggcPHrCIiAgwxmBiYgKZTMZMTEyEt956i3EcJ5LJZKipqYGWlhbEOTmYeOwYEB9PD9WWlvQ5jx4RGd29myT5MhkRhS5p9hg3Dti2Da1FRTAuLYVIJMIPHePcSktZ//79eeP8fE5kYMDxjAE8T9Jhc3MAQF54OE4fOQL7J0/gsX8/ye6vXiXS1KXjzqmqQjp0KObNmwcA8PLyQsqFCwL27GFK/v5Qqq+nILzeJgx0HIuZGRELU1PIzM0hAyDPz6e0895gZQV89hmk589jyZIloqqqKly+fJmdffgQA7W0+Nxz5/D06VPm6+uLQYMGsdraWiQlJaGkpERQUVF5daFOnQJOnqSCjbo67Y+XF6kbamtfhY8ByC0uRlRUFGZ+9x0cHBy46Oho7DI0xMcLFtBM+Px8OndFRXQ9vvkGGDUK0mXLMKelhTtfUYGajz5C7ciRMJVK0XTxIiLGj8e7R49Camsrgo4Ovae4mNQB27YBp0/jxylTeN9ff+Vm2tgI0jFjGFauJGLWpw+sY2Nhq6rKXMPDUaerizG//CKqbGnBU3V1nHr+HE6+vvCfNo32RxBIhu7mRlaD9HQ0vPkmmmNiBBU9PdYt8HD6dERfuACf6GgMysnhUs6cQXZODkJDQ+Hr69tdYm5kRNu/fh2YPBkbNmxgDQ0NSE1Nxa1bt5BfWAgHBweyFeTnA9u3k9Wi63z5hQuh7+iIpVu3vtpwURER85UrSTHx/vsQjxwJrfv3hXfeeYdxHIfHWVnQCAnBsfYpAd7e3ly7f1xA+3cEGHtFOq2tqejU3EwBe8+f070bGEjnJyCAXpeUBJ3iYuyZOhX16uroTHmYNq37yL4bN3pfn12gqamJxsZGLj0rCwMGDKAQQ0GgnIFLl2jEYEkJEe6FC3u8//bt26isrGQl5uZ4npIir1dSgpGRUXeJyMcfkyLl4UNg7160jRiBYn9/sTuAN/z9/5joA3TcEgnt18qVtPZey/eor68XlJWV0WGnSB0yBH56ej3lHgAVMm7dIvXEuHE9/reGhgYYY3Bzc4O/v7+oqq0NOgDwzjtUlEpOpvd2WBP+E/D19RUlJiaO5Hl+A4A1/+kNKaCAAv/tUJB9BRRQQIG/KTiOexkYGAhPT0+IRKIegXS1tbWCTCZjUqn0d4l+Xl4erl+/Lq+urhb16dOHP3/+PCeVSvnGxkbO1dWVnzRpkqjjYfjnn38WCgoKWHx8PD9kyJCe22xsJPKweDGl169Y0W3E2u9B6eRJrlZNDTzPw9nZmcXFxSEgIAA+Pj4dT+GdT+NisfiVT93BgQLtrl6lB/r33yeia2FBhE8Q6PN9fKj4cPgwSdHDwwFrawg8j7NNTXzRnDmcXC6Hi4sLX15ezl6+fMm8PT05/XXrsHfWLFzevh26urr822+/zaWmpsLJyQk3b98WBnh4sIlbttCxMkYhfrNmURcyJoZIlFhMknwAePQIqomJ8L56lWW7uAhXxWI4ffwx+90gQbqIFNh34gRgbo6qzz+HztatMBw5Etf37hXGLF7c+4guFRXg+++BoCDo6Ohg3rx5XOPo0bh5/TqrrKzkly5dyum2y9337t0rAGDl5eWsvLwc+np6RLDS0mh+etcwRg0NIq6XL78aNQfA2NgYWlpafFJSkuDg4CDqCI3kOI5UFoMH0wuTkqiAMGYMEcvDh6Hi7Azz8HBcGDpUKCsrE5qamji2bBkmTZoEpe+/735MBw6Q1aG2Fsn6+ih58YLTXLwYZvb2DLm5RKzPnMGjw4eFB3l5rNDSEhkDB4LneawfOBB63t7QA1j1rVtC7rNnzL+8nCwIBw7QbHSAVAPHjmFIRgYiIiKE48ePY/78+a9O8tq1WPnGG0jauRP3IiNRefYsr5+Tww3YtEngOK7nxZg0iawsggAwBjU1tc6Ay9u3b8sdHBxEcHOjrvmjR9TJvnoV0NenIs/06bTWAdrG7dvUfc/OJv97+/WvqKiAWCzu3Af7+nrAzw/2Q4ciOTkZR48ehbq6Otra2nr/PliyhIoI27ZRUaVDpr9rV/fXrVqFMcbGOO7qio87usyJiVQUKCvrLrMfMoT2tZdQSAAwMzODhoaGIBaLX503xsgucPEiXc+cHPr7axYfnufx8OFDwd/fn/UdORKX798XtclkmDJlyqsXCQKt06wssnfI5XhaWyuA45jplSuoCQ0VVCIiGNTVqUCork4Fjtu36fMNDen+zc0lZUtWFiX9vwZPT0/24MEDeHh44MmTJ/DcsIH9kJkJ+2nT4N9bQaG6Gti0CRg7tkchVFVVFebm5rLk5GRxUlISAOCTTz6BaMIEesGxY1RQBWhd9RYs+icoKipCS0tLpVwu3/4ffrMCCijwPwoF2VdAAQUU+JuC4zhfExOTXr3Ocrkct2/fZgAQ0NGRew2nT5/mnz59ynl4eLChQ4dCVVWVa2xsRGZmJtenTx8YGBh027ChoSErKChAc3NzT//Y8+ckRd6xgwhdVRUR1L9A9oe0tKDpq6+QcucOSktLAQA8z/MtLS2cUi8P1j0wfjw9NF+8SERw2DDqxqWkEHGZM4dG+nl5ETEH8OTdd3H+/HlwHIcNGzagqakJGhoaXFNTE168eAGTxESI3nkHbwUHIzY2Vnj8+DG3a9cuoa6ujqWkpKCsrIyNHz+ePr/j/Ccn08+LF6m4EBwMvPcezYsfNIh86/PnA6dPo09LC9M9fVr+5ZdfisRisaChocFraGiIAMDe3h5DhgyhbenoEAFrJ4oGBgbQ9/KS75FIRE3Pn7PRwcFgHSqKrvD0pHFoBQWdqgHVDz/Em9nZDPfvd7uuEyZMYPn5+UhMTER1dTX0164lEtnV69wVIhFJ3ydP7vSZq6qqwtLSkisuLuYBdJKbTo98B86epfdYWlKhprQU3MWLHa9hANiZM2eQmZkJg66ZCzIZkfFz51BUVIQjR44ILS0tzHngQLlZTo4In30GREVR93bBApgaGbHgefPw28yZQuGAAUJTays7efIkgoKCmLq6OnSUlJjJd98hLTISjklJEHedaf/xx8CaNeDq6+Hl5cWFhobixx9/5CdPnswZGhoCN2/i2t27SLh2De7u7rwPwGzv3QM3aBDruE7d4OtL23Ry6gys67BKmJiYvGLGHEfXbP16KpSVllKOQ0MDdd3ff5/W9JUrlGyvr9/tY5KTk/nAriPgqquBZcsQ6OEBa2trnD9/HvX19WCMoa2tDZKuKe9yOVksHjwgm4WHR0+Z+a+/Usp/RARiT52S91dSEnVOe+jTh0joa356/Otfv+tNB8hvX1dXxxoaGnp/gUhE1hEzMzoXJSVkdwBw9epViMVi5mJrCw0HBww8eVJ4mJDAWltb0dzcDOX9+ykRPyWFJPAyGRAUBNVPPmHIyMDlCRNgYmLClgFUrLCwIPLcUfQ5fpyI9MCBNKVBR4eKX71AXV0dQUFBOH36NFRUVOQPt28XNdTXC5GRkczS0hK2trbd3zBjBlmLYmKoGPkaFi1aJAZeBaRGRkbyI0aMoJMbHEz/rl2j775p0+g4e8k7+T2oqqqC53l9sVgc+fnnn+cIguDE8/z2jz766Ps/f7cCCijwPwnR5j/wQimggAIKKPD/J7Zu3RosEonmjh07Vvx6MjVAZD8zMxPNzc3w8/MDY6xbdykjIwMxMTFs5cqVGDBgAOt48JdIJDA1NYVae0p1V2hoaCAhIQH6+vrMzs6ONpaWRt3sOXOI2I8ZQw/8HEfe1DFjus2o7oHnzyGWySCdPBl3793D1KlTkZKSgtzcXBYZGQk7O7u/NuaPMZI++/sTSZozhzzEWlpEFDpGhNXVoaWlBVE7d8LT2BhTnJyYqKQEShwHFBRAUlsLPRMTcIcOAd7eUDc2hkFKCnshlfLm4eGcfnk5CltbMScmRjBwcmKSuDjyiAcH00P7/ftU9Dh4kMjD1q0029zSkqTE7SFoYrEYrq6u3MCBA+Ho6MgYY+B5ntfW1mZhYWFMT08PRkZG1EkPDqYOfztBvHjxItcileLdFSugcuIEzfBWV+8+srDj2nz5JXVWATo306e/yjJoh5GREW7dusUrFRay2suX0XfGDFzr3x83QkOF+Ph4IS8vj9XX10NTUxNtbW2QqatDYm5OdoX2axMfH4/4+HjMmDGDaWpqQktLC3V1dUJsbCzrJm3fs+eV4mLSJFo7330HfPYZ/Tdti6+pqWGPHz/mvby8SLnw/fdAcDDuDRyIy5cvQ11dHSvc3ZmbsTEHd3fqfNvZkZLC2hoqhoaoCg7GtdxcNu3ECdY/MZFFWVoyQ0NDGMtkMOA4tCYmCudsbJiptXW3qQZgjNavmRksg4IwZOZMPHr0CPfu3WM6OjrQunsXDg8fIk5TU9DR0RF8Fy7k2IoVpHaYO5c68+LXejHq6lToaO/OlpaWIjc3l1+6dGnnzRsaGgoLCwtwEgndNwAVeubNI3uBqyswahSt5dfuz9LSUsTHx7Px48e/Uvhs2wb4+EBiaQkjIyNoaWlBEARUVFTg/v37iI+PFwrT0pjlihUQFReDW72abAdJST2yLQCQLaatDcX9+yMsLIybM2cOOotxmzYRgX1tbcHOjkizqWl3hUg7GhoaEBsbi5aWFsHNza17lSQkhAofn35KhQRtbeDaNcimT8eFixeRkZGBGTNmwMTUFBg6FNb+/qyyslL+6NEjFnHtGhvw5ptQ8fB45fPnOCApCQ9jY/kqS0s20t8fqamp0NDQgImTE90/hoavRiUGBVHRMDKSCivu7mQzmDixV1uSrq4uPD09IZPJOOVdu6AUEMAa5XK+pqYGRkZGTFVVtXuHv7aW7gF/f/rcXrCrXVXh4eHBOotfK1ZQMKaFBamVxGIqUlhb0z35Z7YEANXV1Xj48CEMDQ11R4wYYevs7Kz5+PFjd19f351/+mYFFFDgfxQKsq+AAgoo8DfDli1bxkql0mOLFi1S+T0iLBKJkJWVJa+treUiIiLw4sUL3tXVlQHUTTty5IgwZswYWFlZ/fmTYTuUlJQQGRkJKysrZiaTQRwZSSn3cjmRk67jocRietA3MuqRMt4N4eFAVRUK+vRBRkaGMHbsWJafny/U1NQwALBsJyp/CY8fA/v2UcjZ11+TLPrjj0mibW9PD/2CALGxMdqePeOLnjyBenY20ygtBdrakP3RR4KwZw/jmpog3r2bCFVbG1R378bA7duZVVQUqvPzUWBhAf3sbHajshJKFhZCdnm5kCqVyu1mz+YwdiwFps2fT8ffBrIRyAAAIABJREFUEQ7o7k4df1/fbg/jSkpK0NDQgJWVFXN0dORsbW2ZlpaWcPXqVWZqagpdXV3yyH/7badnWV1dHU+ePIHzwIHQXLmSHvAtLanz2LWL2q8fcOECEURlZSIqtbU0A/w11NXWCn6ffspkYjHO6ujgZUUFlJWVmaWlJTiO4+Pj47mYmBjExcUhNjYWL7Oz5fZbt3Js8WJEx8QgNDQUU6ZMgU27pJgxBiUlJZaSkgITE5NXXXpfX+qydpwDxgAlJfAiEX579gzqlZWIf/JEmDVrFsvKymIZGRlQUlLC/cZGNE6ejDvx8eB5HhKJBEOPHmWiwkJgzhw0mpvj9u3bsNq+HZyVFYR+/XDg0CFBTV0dz/v356W+vtzMwEBYTJwIHD0K0YAB0N6+nUXGx0Mul8Oxq0ceoI7yqFHAkCGQSKUY5O7OXr58KX/w4AFXGREBSwCPrawEAHB1dSXCbmoK1NfTMebmdstugIMDEBpKrzEygra2Nu7du8fy8/OFyMhIFhcXh6ysLNja2tLUC5GISP3ly6RWsLSk99rb90qajx07JrezsxOcnJxoX+rqyLLy/vud59rExATOzs7gOA6NsbGYcOYMizc0RF1LC87p66Ofry80Hj6kiQR+fq82/s031FXfvx/w80NcXJwgl8vh6enJKioqgNpaSFatokkJvc2EX7aMiGj7OW5ubsbTp08hlUpx9OhRQS6Xs/r6elZeXi44Ojq+ujkcHUkNYW1NFoPp04GPP0ZaQIBgcPcu67duHRwcHYn4njgBLiAAjo6OnFd+PnP/6CNUrlkDbQ+P7vsSGIir2dlYsncvs547F8Zubrh06f+w995RUZ1d2/h1nzPMDDB0UKSIIE0EKYIFUCF2DWqMsfcWTWxpJnmeGIKJPolpmmiiscTHFk2MXeyKioICShMQUEEEFOmdYc45vz82Q9fk+dbve7/3Xe9ca7mAmVPvc5/jufa+9rVPQKVSQVt60gb5+TSOb7zR3L4Qy5bR865dYEOSJBw6dEhISUnhwk6dgv3HH8MvJISlpKRI169fZ3FxcZKPj09zYBUqFT0X7O3pWdOOpBcVFSE+Ph6jRo2Cr5ERHcOUKaS+cHenwGFYGAUUhw+nYMvBgxTo7CQArEVNTQ02b94MAJDL5cL48eO58vJyZGRkZAUFBW174Yo66KDD/xPoZPw66KCDDv+LEBERYSeTyQ5Nnz5dv9N+9K3w9OlTFhoaCisrK/z+++9cZGQk6uvrhcrKSmZrayv5+Ph01P//BfQVCun25cvM7s8/oZHJoDx+HM6ff975wioVyUzj4l6cbcrIALy98eDBA8nS0lLiOI5Nnz6dnTt3Dnfu3MHRo0dhb2/f3DKqU1RWAqWl5MKfkUF902NiiGTI5WSA99pr1BXgyBFg5Ur0GjKEu3f4MH7JzMSaNWvAcRyOFxZKNTU1zN7eHhaLFwuy4GA+aPBgmM6aBQCQ79iBytOnpbr4eMZ+/BFlly5JZwsKWK2rKzPOyWGpLi5w6NIFRoJAmesFC6isAKDf09LoBT0oqEX63wl8fX1ZdXW1dPz4cfHdd9/lERFBUm4AkZGRePbsGQCSbdva2nLgOODSJSKDv/5KBKJPH9rH6tVktvbDDySH7tmTyHZrfPUVBjx8yP04bx7UCgW83NwQFhamlXk3tyGrrKyEttXjlUuX2KMTJ3Bt7VrxmULBTZgwAR5at/omXLlyRQLAHLRBIEGgAMSDBxSY0MLHB+tPnYLH5cswP38etR98wJmbm6O6uhrV1dVI3LQJQ5KSpKMzZ8LU1BSLvv2WJY8bJ20YNIipVCqxYu1aTtuZqNTeHjUJCaJlfT1XV1fHPvroI3AcR4P98cc0jiUl1OFg3Dio1WoUFhaK6KR1Hvz8SHFw+TJw/jxGjRrF//jjj5DPmiX+HB/PacrLuVlNcwMAEcGPP6ZMcFgYEX7tefI8+Rb89hvQpw9kMhksLS2l3Nzc5htDoVCge/fu9EdWFmW1Z82iOnieJxKXlUXGdRpNm+BaVVUV69WrV8s57NtH3hHtSd+ZM+iXno5aIyPkde+ONz/+GHJjY9z5179wfd06aeLXXzNZq24MtdXViI6Lg5zjpCf79rH8/Hypvr6ecRyHL774AqIoQt7QALfNmxGmp4dOqD5J5IFm00+tiR0AWFlZsYULF4LjOOzZswfbtm0TFsyZw8sCAqhGXluClJICAHj+/DlivLzYdHNzGNvb05zKyyOSu24d3WOTJmF/XBye7d8PpVIp8DyPxsZGZm5uzqytrVmVJDFuwQKgoQFubm54/fXXcejQIURFRQkGBgYsICCA69u3L2373DkyCdT6brzyCpW4vPMOBUFaBXTOnTsn5OXlcR988AHkrRzz58+fz4miiA0bNuDWrVvSoEGDWHPpVVAQbTMsjLbZCl26dMHE27elslu3mLh1KzgnJwqurltHwRxnZ/JJSUoi88uLF6lrwmef0eefftpGVSVJEs6fPy9UVVUxNM330tJSvrq6GoIgQKPRWEVERHwE4FJ4eHhcZ5dSBx10+K+HLrOvgw466PC/CLGxsccDAwN7NmcTXwCNRoPLly8zGxsbBAQEoKqqSpOUlMQVFhZyNTU1bPbs2ZyydZ3y3wCvVmPg8uVMKi5Gwvz5UM6ejd69e0PWXrLchH3nzwsm589zty0thdziYk5PTw+GhoYtku6aGmD+fNR+8QWOHj/OhgwZwqytrcHzPMrLy5HdZMw1dOjQTn0JoG09278/kaC1aynzVVxMJQRvvUUZyW+/pZdehYJ++vmB9/CA+eDBSK6sxJMnT+Dq6or4+HhJrVazyspKPDU05BrS0xEwfz70Fi9ulk27urqy2NhYBAYGguM4plKp0NDQIFZWVnLp6elwTk2FoVIJfuJEysRpgxzbttHLfHExOYuPGkWBiCY8fvwYaWlpsLKyQkNDAwwMDFhMTAxXVVWF2/fuSeVffIHY+HgxuayMq6ioAGMMXl5egp2dHQ2mlRVl77/8krKRQ4fSvlUqqgMfN47k4IMHt54kRHz37gVmzEBMcbE2y4pBgwZ1GG6FQgGlUgmlUoleHh6swNFRsj97lo3fuJF11pIxMzNTtLKy4nx8fOiD+nqq+W7nQH727Fnk5+fD7Y03EO/nh7qiIvTfvh3yN94QXd3dMdzFhZmr1ay/mRkbsHw50+veHV3mz2fXYmMBgJmbm8PX11fq378/84qLQ6G+PtJLShhjDGlpaYJRVhZnuX07Zdw3bKBxMjMDvvkGVU+f4plMxtLz8kQ/Pz+WlZWFU6dO4ezZs5KnpydTOjignDEkAjh8+LDUp08fMczVlQ9cuBDJY8ZIt27dkppLDbTo3r3FOX71agqucBxlcPPy6KdKhX79+jE/Pz/07NkTcrlckCSJ8/PzIwVAaioFRqZPJ6LPGGW2580jUjdvXrMHRVZREZKSkpifnx+pAgAK7oweTccCUPBLo0HFxx8jPj0dMe7ucF6wQHJ2d2c8z6OgoEAc+/nn3K3nz8UeY8YwABDDw/F88WKcGD4cuRYWrKGhAc7OzuLAgQO5jIwMTJo0Ca+99ho8ZszA45oalNrYSA4ODp1G9aQuXXCmtFQ08vTkFi9eDH9/fzg7O2PEiBEwNDSEgYEBfH19WXp6Oq5cuiT1tbRksqlTm4Nilb/8Aixdip8bGiT3QYOk3gsXMsyfD2zfTkGRlSuB2FgKsr33HnqFhsLV1RWurq5cz549uaSkJFZfX88qKyul/v37iy5z5nBgDPDyguX06XAJCoKdnR2nr6/PLl++jJiYGKloxw6JHT+OPV5eYkxsrJSamip5e3tzXN++pLqYOxfw8gJsbJCVlYWzZ89yc+fOZWZmZiTLnz+/OfvPGIOFhQW7evWqlJeXJ3p5ebU8v52c6N7Q3icFBVTuMW4culZUsNvPniHZ0FD0+uc/WbNyIj+fCL22DEBbOmVnR8d04QJt99Qp8hxomp/79+/nqqqqmEwmA8dxsLa21vTr14+zsLCAkZGRsZmZWUhpaems6Ohor+Dg4Hb9NXXQQYf/F9CRfR100EGH/0GIiIgwu379+tu3bt36KTo6etKlS5duh4SElLRbRv/q1auLrl69OuLq1auPQ0JCKpo+n2xgYPD25MmTFZ3V6bcGx3GIiYmR9PX10bt3b+bq6soFBwfD0NBQ8vX1Zbad9X9+EZ4+JaLYty/Y4MFI7dtXzHr4kMlkMnh6enZK9h8/foxr0dGczfjxkN28yaUwJiYkJODOnTtwdXVl+vr6RFosLHCsulpgjEljxoxpPimVSoWnT5+ioqIChYWFcHR0hCAIKCkpgUqlIpLarx9lN8PDW+rSAWphtncv8M03ZBwoSUSwtHW3TTCaPBlOf/wh2ezcyXao1VLXrl0RFBTEysrK0NDQgBoDAzA/P9Hp1VcZamshymS4c+cO0tPT4eLigoEDB8LDwwMNDQ0sJycHKsak4K++YkdLS9FryRKUl5dDo9GA53n8qVRKuTU1rMDQEIiORo2REYytrABDQxw9elS6ePEiy87ORkxMDGJjY5GcnAxBEPD06VN06dJFDE1P56zd3LiAxYuRkJAAnueh0Wi4jIwMoVm6DbTUGc+aRZnRmTOJDDx+TL8rFJT1V6tpuYwMYPt28E5OGDRoEKuqqhIfP37MFAqFZGdn17nTfxO6du/OumzezPjQ0LaS9SYUFRVxCQkJSE1NFZ49e8bZ19RAz8KiTa/0y5cvIzY2FoaGhlJJSQm8+/WD/Plzyev+feb4ySfMXqWiLOjEiXSNx40DBg1CRV0d4uLisHz5cgQHB8PJyYlZWVnBMCICvadPZ1bBwXB2cIBNfT3X9d13UTtuHAznzKHgR0gIZeslCTIjI1GWlcVU6enMZcwY7PnjDzx79gyCILDMzEwpNitLul5czAZ+9hnMpkwRR0ycyDNzc7BevdB35kx26dIllp2djfT0dJiamraQbZWKFCcbNlDWVqUi4hcZSWSuaR4qFAqYm5tDLpdz169fR9fISFhduEDEvpO2bOB5oHdvupYWFsCAAci+cgU9pk+XPH19GRgjc8zaWiL7BQXkYTFhAvZlZeGMnx+6z54tzZw5k/Xo0aP54rq7urINgoAnJiasuroaDfn5uFVYKKaZm7M316/HsGHDEBQUhF69enFqtRopKSkIDg6GsbExDK2sEN+9O9SSJHl4eHSYMJGRkYivqoIUHCxNmzWLyeVyKJVKmJubt6lhl8lk8I6PZ3UnTrAzAwdK/QYOZIwxZGRk4MipUyhpbES1uzubPn06zcuRI0nqf+gQPZ82bCCJvaEh9PT0YGJiAnNzcxQWFiI9PR2CIGDo0KEIDAyk+8XYmPw8vLxgLAjo4uwMR0dH9O3bFx7m5sxr/36m/vln5uLjw3Xr1o1LSEjgYmJiEBMTI2VXV0t9wsIYO3MGJVVV+PXyZQQFBaE5sFVURMfX6tloZWUFSZJYSkoKFxwc3DJADg5AejopkLKyKBB4+zYwejTKfHxwKicHffr0YT169KDla2vp2fbBBxRUaF9+YGhIiqqKCvLDqKgAbGzwtKYGCQkJCA4OlmbMmMEGDRoEPz8/Tuvn0q1bNzg7O3O9e/fWu3XrlsOVK1e+jI6Ofj86Onrs5cuXb4SEhAgdJ6QOOujwfxtMK13TQQcddNDhvzciIiIC9PT0Lri4uMh9fHz0i4uLpStXrlQ2NjYODA8PT9cu9+WXX561sbEZbGFhoZeUlKTheT5OFMUqnudDpk+fbmDX1Ou9MzQ2NmL9+vUYPHgw4uPj0bNnT2HixIn/sVwfANUfnzlD5PCbb6gOvqle+ObNm7hw4QKmTp0KV1fXDq2lysrK8MMPP2CsgwP8f/oJuHkTIsdhx44dQmFhId+nTx9pdFkZE21ssPHOHcyaNQv29vYdDmHPnj3Co0ePmo/fuKwMKysqwGmdthcs6FgnXFtLWS6lkkzRzp2jDGBnePgQeWfOQD1sGJyCg7F10iQUWVs3GxoaGBhgZnExrP74AzG7d0vXo6MREBDAQkNDWxQKjY1onDIFlaNH46yeHnILCqTGxsY2A2JhYSFN+/prPOzShUVNngyn2Fj43r2LM6+9hrpu3TBx4kScO3dO7Nq1Kzdx4sTm9URRbNlPQwNEPT0cPHhQLC8vZ1ZWVlJaWhrn5eWF1usAADIzSW7s4kKGa5s2kax7xAiSAAsCqQzaKQwAICkpCSdOnMCECROgVCrh0oqcd0ByMo21p2eHr8rLy5GQkAADAwOkpKSIffbuZf2cnRn3669Nl6kWmzZtkkaNGiX16tWL27BhA4KDg/HKK6/QBp4+JTImisCjR0RuBQEwNcWRI0eE/Px8tnz58rZRr6oqMjIsKqJOCJaWuDVzpnj+0iVOkiTIZDKsXr0asrIy4P33UfX559i+aRNGNTTAo7YWJY6O2CqK0ADw9PQUOY6T3NzceNfPPoPs88+pZh4A9uwBRo9GxE8/Ne9apVKJ7733Xsco3JMnlIWPiiLy98EH5J/Q+p6pr0fO5MniLRMT7pWVK2GlbVX4F3iSlYU/t2zB6w8ewO75c7pfo6IomOHgQG3zUlMBfX0cOX0aKSkpCA8Pb7uRlBQgMBC1eXm4eO2aYPTDD7xPQgK2f/QRFi1e3FxCI4oiLly4ICUkJLCAgAAMHz6c7i9LS5ysqsKjR4+ksLAwZmRkBMumTgG///67lJOTwyZPnAiH3bvB1q59aT05Nm9GXUEBNjQZ/4WFhSElJUVsbGxkI1xcmMrODubtW8317UulAnv2kL+BsTH5B1y8CAwahBuZmbh0+TIkSYKxsbH0zjvvtH1Y3b1LmfRr16jMpaaG2vWtXt3BKf/58+coLS3FwYMHMXz4cASam+P5W28h1dZWCt27t2W70dG0bqtzVavV+P7776VBgwaxwMBAoLGRjCeHDCGVQFISsHVrG3PES5cuITo6GnPnzkVzOcyhQ3Q/z5xJSp7Hj188nqJIXRkGDoQ0diy+MDNDcHBw2w4ZHVYR8d1339U1NDREm5mZBRkbG7O8vLwSjuPqBUEwEwTh7TVr1hx68U510EGH/z+hI/s66KCDDv9D8NVXX10bNmzYoL6tssuJiYlSZGTk08bGxr7h4eGFERERPXmez5g+fbosJydH9PPz465duwZra2v07t27U5f8uro67NixA6WlpWCMQZIkGBgYoLa2tu1L4n+CmhrKmMfEEHFo1wKvsLAQ27dvhyRJcHBwkMLCwpiFhQUkSaKs/rVrYl5eHjdnzhzYpqdTvbKpafO6Rw4fFgfu28ddHzgQ1VZW+PDDD19YDlBbW4tNa9fCrLwcM0eMgOrAAcrct6otboN//pNI6MmT9EK9Zw9JuLVErTNIErB/PwpDQlA4bhxUVVVIXLcO6WlpYJIEu7w8lNjZYdLs2XBsbXBXXk7rrlpFzvdduqCkpKTZAAsA3n33XeooUFJCZQQyGQoKCpDxySfQ79NHNDM15Q4/eQJjY2Phrbfe4jsdh8ZGWjczk6S6AJKTk8WjR49yBgYG8Pf37/wFftMmMi1csoTc3H19SS68bh2RhRfg9OnTUnx8PGOM4dNPP33xuBUUUAb52rWXdl1ISUmRIvfvZ7OmTIFNU2uzY8eOoaKiQpwzZw4HAIcOHZJqa2ulefPmEUMSBDrWujrqO3/mDPDZZ6jJz8cTPz/k9uyJEb//TiUSS5ZQ5rxfP1onJISI1pQpAMdBo9GgqKgI27dvx6xZs2BnZweIIvSCgxEzYoRwQaHg9WtrMSAmBq6Zmbi5aJE48dNPuTaBpJgY8huYOZOI9E8/obypu0JFRQV2796Njz/+uMUNvzV27CBJflIS3U+mpmS8CFBQLSICEs9jX48ekqBUsrlz5754zJtQW12NH777Tgp0d0dQbi7j3d3Jk2LfPiKtly8T8W0yyNy8ebPg5ubG2rTnA2j+Xr9O5DQ6Gpo+ffAkPR02AQGQy+Wora2FKIrIzs7G2bNnpTlz5rBmM7vRo4EhQ6B5/33s3LlTU1JSwjc2NjKZTAZBEMAYw/Lly2FqbEyGlWfOtFF2NEMUqdb8n/8EFAqo1Wps2rQJZmZmkp6eHtRqNRatXcuwejWwfHnLeoIArF9PpQ8HD9I9r1YDoaGonD4daf37w/ThQ1jHxSH+558F582buR4zZzJMmEABgqAgGqObN8lYMyeHTENLS6kbQDtkZGRo2+tJq1atYnK5HEmHD6P02DEh1MeHx/vv04KGhrSNVs/NgoICbN++HSOVSpicOycZ/fwzs5sxg54b8fH0MzGRvDeah0XEl19+CQ8PD2nChAkMgkBBvC5d6Lp21uqxw9CKuHHihOBYX88/+/pryLy94b19+0t9Q4qKipCdnQ1vb28YGBjgyZMnAEgxtm/fvjqNRrNGo9F8Fx4eriMhOujwfxk6sq+DDjro8D8EGzZsiAkMDBwQFBTUJhN+/fp1zbVr19QymeyyRqPpJwhCF1tbWzx58gT6+vrQaDRQqVTSm2++ybStriRJQnp6OhISEvDo0SMolUpp9OjRrKamBnfu3BEXLFjAlZeX/30ney0kiZyenZzIPb4z4tIEURRRVVWF7du3Q61Ww9HRUVNYWMg3NDTAxsYGr732GjM2NiY3/Kgo4MCBlnXz8lAwdqyU/cMPLKS183cnx7Pu888xZc8eOLm5gTt9+q/PISaGsvtDh9Lfe/YQ+f/mm04Xr6+vx6FDh5Cfnw+e5yErKoJpWRnmbdwIdOuGkhs3EJObizE//QSZSgX82VTKWlREBGnDBpKZN+HZs2fYunUrAJImr1q1qiVI8+mn1Ct8W5Pp9cWLKF+2DIeGDMGs77+HQfvWZa1x5gzV3Ddt69GjR9izZ0/z11qjwQ4QBOqRPm0a+Rh8+WWnju7tsWXLFrG4uJibOHEivLy8XrxgeDi1zWvvaN+Euro6bN26VZq1dSvT37cPu2/fFpRKJSsqKmJvvPEG0/Ygf/LkCXbt2oV//OMfkKWmEqm7eLENYUpJSsKRY8fQJzERfadMQfeBA0mdEBVFLcmOHyeydPFih+COKIrYtWuXlJ+f33zzjWEM/rW12OnoiIJnz2BqaoqeMpkYGhXFGdjbUw/zAQMocPD998D583Qd2pGswsJC/PLLL1iyZMmL77nycjqmL78k8n/tGpG8lSuBn39GqkyGP48cgZWVFQRBEEz09DB76lS+OQO8dCkZMF67Bpw8CVFfH9cHD0bAu+9CuWYNuMhIqtWOjiZFhFJJ25bJmlUUs2bNYm2UQb/8Aty71xIU+u47Cii1mkebN2+WSkpKGAC0UZGo1S214q2WLyoqwoMHD5CcnAzGmLh48eKX1xwBpOIIDqbxaAoKxsXF4dKlS81S/E/XrAFrP79v36ax3LaN6t5tbChw4emJ7du3CwUFBTwnCJji5weLwEBo1q1Dl/79wezsyEzxk0+oTeadO9QW8rXXyOdg82YKGj19Ss/DJn+T27dv49q1a6JareZ8fX2lkJAQlp2djdgTJzSLSkpkUCop+JCRQddaO0dqaiAuXIg/lUrJAoBxcjJT7NoFL09PenZs3Ej3qYkJ+W+0wo0bN3Dx4kUsX74c5ocO0Ry4fZueJS4uVLLzAkiShAMHDjT7n/QsLRUm5eXxyo8+oiDakCF/eWnao7y8HHv27Kmtqan5Q61WLwoPD2/8jzeigw46/G389QNUBx100EGH/xaoq6t7Ozo6OmPbtm011dXVzZ8PGjRItnTpUoORI0e+OnXq1C5BQUF48uQJjIyMREdHR0ybNg0VFRVs7969OH36tJiSkiLevHlTOn78uFRbWysNGzYMq1evZl5eXsjJyYGdnZ2kUCj+c6IPECnMy6NMaULCS7O/HMfBxMQEGo0GpqamyM7OlomiKK1evZrNmTOHiD5AEtmyshZDPQDcgQOwW7785US/vh7w9MQiQcDJefPEba++ipycnE4XFUURN27cwP379yEVFZGDthbTplFGtrwcAPkJfPXVV7h37x5SUlKwa9cu6fHjx+A4DoIgoM7MDM+cnQGVCtzx47Dy8cG4rVshk8uJ2D99SqQSIBLWTkLftWtX6OvrQyaTYcaMGWhjhDhgAGUTtRg2DCZHj8JFX1+8t3Tpi8cCoFrtnTub/3R0dISHh4eo/XvTpk1ip+vxPBl66elR9lMuJ6XAX0DbA/7ixYsvX3DFCuCjj164zS1btqCyooI1qNX45eRJydTUlNna2qJPnz5Cz1aSbDs7O8hkMpQUF1OAZvr0ZqIvCAJu3bolHTl2DNbW1gj74w90nzqVMuwXLxLx2bwZsLZukfFnZbU5joqKClRUVMDe3h6+vr4SAERKErap1Qj717/w9syZWLFiBca+9RZn8PvvVPccG0sBkkuXyGAxMpIy5qtXU8uzJuzduxcA8Ouvv0r79++XTp48ifv377cdCFNTOqYZM4gErlhBgaPVq4HffoNDYyNGFhaKMzdsQJcuXfiJ77/PSx98QBniy5fJA2DAAFIrMIayzExEBQXhm9u38fmrr6KgsZHG7Kef6Jjz88nDQaPBvXv3oFarWYcOHubm9O/zz+meT03tID3X1r/r6elhoNaVHqB1Ro3qIMt/+PAhzp8/j6dPn2LkyJEtX5aWUqCq6T5sRlwcmUVmZzcT/czMTFy4cAGNjY0oKyuDp6engMTEtt4cgkDmm7Nn03jq65Pip3dv4NEjzJgxg5fL5ZKJpaV05dkz8c9jx8St5uY4bmAg1fr7AzdukDJh1y66n0NCyOxTpaLs+aVLwKJFFFwJDgZ690ZOdLQ4avduziMtTXpy7BhLWLFCzLx9Gw21tRw++YTWnzWLFAqM0fH06wfI5eBUKryxejV75ddf2ZWpU0VTc3Pq2FBaSp4i69fT/dkOQUFBkMvlUmJiooQBAygooT1/4eVl9AUFBc1Ef9CgQZi5aROvPHKErsEHH9C5lZa+dBtALGYCAAAgAElEQVTtYWpqijfffNPAzs7uDT09vWf/+te/nq9fv74kIiJi8F+vrYMOOvyn0Bn06aCDDjr8D0FISEjhpUuXflKr1Yq4uLh+CoVCZmVlxXieh76+PqytrWFubg4nJycolUr079+fBQYG4tdffxUaGhq4mpoa5Ofns/T0dJaXl8feeOMNNmLECNa61v3KlSsaLy8vWac9o/8O0tNJ1vree1Qnff8+kfV+/Yh4eXnRC2arF3x9fX0xMTGRSZKExsZGdu3aNdy6dUv08/OjntJGRiQ7ffCgpcf73r1EkjsLSBQWUp/6sWOBHj1wwdJSLCwrY1VVVSwpKQlDhgzp4BFQVFSE33//Hampqej3/fd4qq+Pu42NqKiogLGpKfQcHSF++CEwZQp2794t1dTUsLS0NGRmZsLV1ZXNmzcPgwcPhru7O2439XIPDQ0lhQNApCYoiAhz9+70Uj55MkmmCwspkxoeTtnt7Gy45uYirrERJceP41FuruTRty9DRQWNn7k5ZYh79wYAMCsrFFdUMOtt23BLrYbc3h68TIby8nLU1dW1ZPtTUykbuWJF83m7uLiw0tJSPH/+HAYGBqx///5tx7K+njoSvP02kcply6icwMODCMxL/B94nkd9fb348OFDVlRUJPbu3btzvbC+PmVX7e1bxqsVunXrBiu5HLX+/vAcO5YNGTKEubi4MFdXV679dUy6elXo/8knnPyrr5pbBJaWlmLnzp1Samoq43keQUFB1KKutpZarV2/TkRx4kQan+XLiVSGhkLUaNDg64vIyEicPn0aDQ0NbNSoUfD392eJiYlQq9WoUSox2tYWhl260PFrj8nRsYX83bpFJMvTk+bCgAG0bJMhm4ODAzw9PeHi4sKKiorE1NRUrqKiAr7e3kRm8/Op5OGLL2h7GzbQNtPSyEthwwYo6upgN2oUU6hUcB49GjvMzCS8/jqz8/Ghmm5zcwpueHsDAAxMTNCjRw/cu3dPcnJykvr378+alR36+tR73ccH4rBhiH32TFR5e0t9+vRpWeaPP4DQULqXf/6Z3ONbqSjq6uqwadMmSJIkTps2jRs9ejSVo2hhYEAt6RwdW023ehw8eFAaNWoUmzZtGkybyHvzMQUE0Nxrfd0XLKDM+rhxAIDk5GTp2LFjbNSoUfD29kZSUhKKioo4M7kc0sWLUMyYAZ7nkfX99zAoKIDeu++isrISNTU14Hv1woPkZJj4+GBbWRlqFAoml8vR0NCA0tJSburUqbhy5Qq7e/cuvL29qeRCoaDnkFxO5Ub37wP/+hd5lSxeTCUR48cDY8agV1AQqykokO6r1cxWoxHdkpO5+1ZWwpRdu3jF/v30TPj2W8q8m5vTPe7kROUz48c3Z+2joqJYiKUl5AkJNK84joKhVladljno6emxkm++YSwqCnlDh8LS0hL8sGG03ZcgLy8Pjx49Eq2srCR/f3/WfD169iQ1jkZDRpBGRs3z6u9AJpOhT58+er1799b39/c3UCgU+gUFBeKgQYNO/O2N6KCDDn8LnRc46qCDDjro8N8STTWO4REREScuX7781cWLF4NCQkL0BgwYwLcmPgMGDGj+XRRFBgBLly5FRUUFjhw5IgUEBLDOjNNqa2t5CwsL1NXVQf9FNe0vg5dXMwnF4MEtrdpWrqQX+6NHiRRUVJBcvlcv9O3bl+vevTsqKirw4MEDMTY2lquvr+e0PdkBEME8eJAIXGkpZd7d3dvuu7yc1ATduhGp5nng9deRuWEDtIZ3a9asQWZmJqKiolBdXY2JEyeiR48eiImJkbp27SoxxrBl3DhOIUmCflYWV11dLZ44cYKXSRKmJCUhasUKVFhaspCQEAwcOLBNfXVJSQl27twJhUIhvfLKK21ZqKVlS026rS0RnIAAMv8zMyNSnZNDXgfR0bA6cQLGr7+OcSdOoF4UGa5fJyJw+jRlJx8/pu2NGAEAcBk5ElEAukRGSkUTJ7K9r74KplRCrVbDxsZGWLRoEY+gICK1rSTkcrkcY8eORVpaWqcGh4iOpozhvHlEahQKCub89hsFJmbMINL/AlWBt7c3d+vWLaSnp79YScgYBT2Skjr92tHREY4XL5IpnbYlXWcQRfR89IhVODnB0NkZ9fX1iImJka5du8bs7e3Z4sWLsXPnTuHs2bO8Sl8fbkuWQGNggA2DB2P40qVwrK5G1/PngW3bwM6dw+nPPpMyExLYKF9fyBwdoWkKhBw6dAiMMXh6ekopKSkMAPb17y/NzspiuHiRiLgWHEeEODiYMr3Tp9P3AQEtTuuNjbBjjMjvH3/AvW9f/s7hw5Ldli0so2tX9FyxAs/69MGTsDD4u7iQN0VkJCkFfvmFiNc337QYJ9bWQhkdjRm//MKU27fTMnv3EgkMCgKeP6cghCTh6IEDUldbW/bGG2+wDl4PHAfRzQ3Hp0yR+h49ynUfPx58Y2PLcX/6Kf1+6xbJ59uhsbER9fX14HmeM2nvx1BcTPd/u97w3377LTQaDfP29u4QkANA5HTNGgp6ABRQPHOm+etbt25Jly5dYhMnToS7uzvq6+ubvzuWmkqlOevWQSGT4Y1ff8XWceOg+fpraDQaSa1WM47jwHEc5B98gHqFAv63bkFcvJgNCQ1lRUVFcHZ2xuTJk3H8+HHx22+/5QYPHiyEhoa2FK87O9O93djY1vjTwgKwsAAHIDE4WMxPT+d9X32Vs/X2xmyAx+efk+9AWRll9jdupGP18Ohg8lddXQ1RFGH4zTcUvNHC3R04e7bTLgwDBgxAtb09Ep89Ey+dOMElJiaKc996i2OpqTR/OsGJEyeEu3fv8oGBgdzw4cM7LmBkRMd38CDNvenT6Xkwdmyn22uPpnaCAABbW1vwPN8fACIiIroA6AHgUXh4+PO/tTEddNDhhdDV7Ouggw46/A9GRESEu1wu/7Nfv37OQ4cO7bRAXqPRAMALDey0qK2txddffw2FQgFBELBw4UKYm5tDJpN1/uLdGbRmbGvXvniZ3Fx6Se3bl8j7P/5Bva43bwYYw/nz56X4+HgsWbKEmZub0zr19ZTt6tuXpNEXLlDtMkDkVa2mjKw2U9uuHvrgwYOorKyEj4+PmJiYyPE8D0EQwHEczMzMpKqqKkydOpU52ttD8vICS0lpJjWiKOLRo0ewr6lB9f79SBw5EgMGDOhQH3///n0cPHgQAwcOxIgmEt6Me/dI3VDS1CXR1ZUk2e2MCwFSGRQXF+PIkSMQBAE8z+O9996DfnIyEeKuXYGvviLp8O+/A2o1pFWrkJKSgtyMDCFg1y7+7sCBQrog8NUyGQICAjB69Gja+PLlpCQ4fLh5f1pDQEdHR2n27Nk0cKWlRMR+/fXl7udbt1LG1dOTXNnbGcNlZ2dj//79za3XXoiGBiLFv/zSqTM/srKo/GHQoM7XF0Vg9mxE6ulJ+YGBzMvLS7py5QpTqVSCg4MDP64p64vycuT17Yt0Z2ckeXujtsm/wNjYWKiuruZtS0rgkJKCwnnzRHt7e0RFRXEuGRlwqayUnJYtY6euXBEKzc35hoYGTJs2Da6urs3n6GFqitCff4bqyhUoX6SMkSTKxH7xBc2F2FgqdeE4Mof76itgyhQIdnbY9sMPKLaygsLAACqVSqytreVmnzyJrjIZyfIBUtK4uXV6jQ4fPiw8f/SI9/X0xAC5nLKw1dVouHED9QMHQnjnHShLSoCdO2Hw55+Uiba3p4DTqFF4dvcuTiYmirXW1mzO7NnM5MMP6Rr8+990bxQWEvH+7beW+02tpgz3vn1IMDeXYk+dYkE3bqD4228x7MABIogbN1IgjjFSs9jZ0bi4uuJ8YSFi0tKw6p130CFAAFB5RVAQnXdyMs2H0lJIcjmuXr0qxsTEsGnTprW0mQPVnd+8eVO8ePEi9+bPP6O+b1809O+P2txcSfHee+zIkSMwMDDAjBkzkJaWJgUHB7MbN26IsWfOcG/9/DPOrlkjTli5kmtvnLh37148fPgQ+vr6CAgIaCH9K1fSfdbaiLPpOIqLi2FsbIwbN24gMTFRePfdd/lWC5DnQVYWEfywMAoEtkNGRgaSNm+Wpqxdy2Bi0mKUFxdH+755s+O4JSbSTx8f1NfXY9u2bVKvggJxxPr1/IuM9vbt2ycWFxezVatW/fXDv8mgFJGRdO42Nm0DEX+B5ORknDx5skQmkxVqNBoXExOT+oqKCiXP8380NDQsCg8Pr//rreiggw6dQZfZ10EHHXT4b46mTMdwADYA7gBIDA8PLwGA8PDwjIiIiGlJSUnRLyL7f0XytdDKc1UqlWBnZ8d27NjBaTQa2Nvbi/Pnz+ckScKVK1eEsrIyTJgwgec7e0kcOJAylC+D9iUwIYF+JiVRZpAx1M6ZAxONBo2uriwpKanFIV6pJIO+69cpg6+VjIoiZftGjAC2bOnYRg8kA3dychITExO5xMREDqAa7mXLlkEQBCQnJ7PAwEAi7xUVYJaWbfpbcxyHnj17Amo1zAsL8YqBQafnqFUixMTEwMzMDAEBAZStP3SIghlXrzYbdWHpUspsNnkOFBQU4NixY4KRkRH/8OFDAMCYMWNES0tLbs/u3ZDV15MDvqtrS/9tKys6/4oKXI2MFMsPHGAN48bxxyZMEAempPCh6emQ7doFWWv/gZkzyb29FbSeAI8ePWJxcXF03JWVlDXVaF5qsoglS+jniRMkP546lWTMTdfH2dkZhoaGUm1tLQC8mDQoFEQSXpSAOHKE5O+dQZJon1VVaJw2TSq4f5+Vl5dLI0aMYH379qVJWlFB1yAiAvbvvAP7+fPxilyOsrIy8DwPc3Nzvr6+HrGxsWjw80POgwfcgwcPAABZ7u4InjeP3f/0U2HC0aP86fXrpQETJjAnV9fmc5wxYwb279+PtClTsHzqVCjDwwFtC8DW0NbaGxgQ4Xd0pPIK7bxtavHIA1jw/feoq6sjKXtKCpd88CAuvP66NPOtt2gcRZGI74EDnY6Nk5MTf+/ePZy7fRtOS5eitrYWp0+fFsrMzXkhLQ1YtAjvv/ceDBkjNQ5jVCpTWIiSzEzUrlmD8TU1nOkHH0BvxgzaV3U1Ba2ysoj0R0SQz8HTpyQzLyhAxaVLMPr0U2QOGcJGv/46euTngxs2jAIB+vpkhvf113T/v/YaXZuUFODLL9FTEGBaWQlVeTnNvVGj6HlhZUVBri5daN91dYCfH/DkCSS5HGfOnBGSk5O5+fPns/ZeI4wxBAUFcW5ubjB4/XVY29nR/leuZPDwQK8mY0jGGLp27coAICQkhOvbty9q330XmT/8wOV6eEA6cACu/fo1b3fWrFmora1FcnIyzp07xzfVxlMJyMOHHch+dnY2Dhw4gC5duqCqqgp1dXV8QUEBbLTu+TduUBu/XbuAY8comNGJAV5pcjLGHjjAsHw5Sf216NOHAkmdOeyvWEFlDj4+UCqVWDRyJDsTEcGXVlTAvPU2miCKInr37s2dOHGibfvOF+DBw4cwGzMG5jNnAj/8QM/i8+dpbnQS0GwPT09P8DxvIZfLLZycnMDzvKK+vh5//vnnpMePHz8H8O5fbkQHHXToFDqyr4MOOujw/wgREREqAOrw8HB1Z9+vXbt2uFwu3yGTybo6ODioLSwslLm5uXUlJSXKL7/8slCtVp+QJOlDAG6dtdT7O5AkCfX19dDT04NSqcQHH3wAjuN4pVKJLl264MqVKygoKOC2b98uFRQUMJ7neUEQEBYWBsZYx5fAzEySKP8HqHdzQ+qWLbi1ZYvoXFrKMUdHaflrrzHz4GDKfpaXkwx22jR6Cb53j7LOY8fSy+0PP5AsuROir0VBQQF69uwJY2NjKTs7W6qqquKqq6thbW2NYcOGtSzIGGWoOoNcTlLV4uJOv3Z0dMTYsWNRUlKCCxcuwKlHD1hkZFAG/sMPqZ5Xiz59gJwcqNVq/PHHH2JOTg7Xq1cvjud5cezYsVzfvn3BGOPuxMZi/q5deJaaCttjx8hN/NGjlpf85ctRVVWFnPff52adPw9+506gtpbDkiVEHAsLiUxpgyP9+9Px5OdTOQEAQ0ND+Pn54c6dO3A1NqZju3qVzLf+LsaNo395eRSM2LcPCAlBRnY26uvrme9f1AYDIOd6Pz9qg9bOURw7d7Ydv9b44guSph8/jvEAF0bkhCamRkOksrKSrhvPk+8A6AXIqtV+lEolQkJCIOrrI3/aNOQ5OIAxBjMzM9HS0pL71dGRj3r7bTjcvMnMN26UcPQo06oQnJ2d4evri7t378J4wQJSKHRG9rV49VXKfjb1k+8MCoUC2u4Z2LwZhsnJkvHHH7Pmec5xFOR4wTa8vLxgbW2N33//Xdq1axfTaDQIDAzknZyc4ODgAEmSWu5f7fzo0wdpbm44fvy45P3991JQUBCnp1LRteE4KuuIi6NlU1OBSZOozAMADh9GVV0dNm7cSJ4ZAMJCQsC9+ip9P2YM3auxsZTdX7aMrouXV3MpyOGvvpLEsjLWb+FC6pBw/z4FIO7fpzKIV1+lIMfGjTS+//43aqOjUfb777xnWBi65uXRPWxoSMEFE5Nm1YOlpSV9t3IlKRj69AGAF6qWjIyMYGRkBD2eh8jzOHzsGP7ZiuwDgIGBAQYMGID4+Hhh7969zNvbm/kNGMC406ebS2wAKmnQBkefP38OQ0NDdOvWTdTX16eDi4wkVcf58/ScuXyZjruJ7G/btk10cXHhXgkJQVlVFf5YsACzevZs+xKvUJCh4pkzbTtJ1NWRJ0aroJ9BQgIGXb6M58+fd0r28/PzcerUKfA8/5eqrsbGRuzbtw+MMaxZswZsxQoK+sXEkFLhyy8pCPwScByH3tryryYolUq4u7srnzx50qPztXTQQYe/Ax3Z10EHHXT4L0ZERISPQqE4xHGcEwB89dVXd+vr698KDw+Pb7XMELlcfnzSpEn6Tk5O4DhOmx7RE0URZ86ccbhz585ySZKWyeXyhlGjRik73dlfICEhAaeb2tF5eHiIY8eO5bSZ3sDAQBQUFIgPHjzgCgoKWI8ePeDj44Njx47hxx9/lGxsbMRhw4bxFhYW4DgOarUa8itXmknkyyBJEnJzcxEXFydkZmbyhoaGgq+vLx/05puQyWQc1GoijHp69AJrZEQy5/BwemGXy4nwmpl1aurWGqIooqysjBs/fjysra3Ztm3bpKqqKuzevRteXl7ia6+9xgFNL/379pEs+fr1zjc2YgRJbG1tO5hbKZVK+Pv7Q5IkdP/uO6lh+3aGR486z0g7O+PxwYPYX1Ag2djaYunSpTA3N2fQZr8lCdK//gW1qSmuBwfjQc+eGH3nDvz9/YnAtHLwv3TpktDo7w9+61YeokjjsX07OYEfO0ZkbM+eFo+DTz8F3nyTHNeboJVM7z93DouDgyF7Sc/7l8LennwBlErA3x9Cly5Sn2XLJEtLy7/u/iOX05heuUL+BFqIImU5O1MYVFURmf/22+aPmgmsIJB5W2oqEdTO6o7b4dy5c2LiypVcfdM90K1bNyxatIiLjIwEYwyNCgWyXVwgBQYyGBkRYV2zBujaFQ4ODrh79y7ueXvDOzSUiOmhQ82tDtugspLqs/8K+/bRXNy6FfVpaSz1+HH4+PiQwSBAQZHQUGDhQqqXbgU9PT3Y2NjA1NRUys3NZWZmZggMDGwuy2lP4kRRxJ49e5CXl4dRo0YhICCg5ZrZ2VGpRXU1EbmwMHK+z8sDFixARUUFnjx5grNnz0Imk0GpVMLFxQUqlaplBxs3km/A5MmUoQ8LIyLaqlvD4MGD2fnz55Gvrw/bhQvbjkVFBQX6Ro6koM2dO0BJCQwPHsSE3FzsvnoVZWvWwGzaNLr2v/9OZShTppDPxI4dpB65c4fKjETx5SUqTejeq5d4cPp0bqSnpwRra4aUlA7BqIULF/InTpzA1atXxZv5+ezV9HSYlJTA3NwcCQkJ0qVLlxhjTNTX12dGRkbs+fPneO+992jn9+9TV4WdO1uy4N991xy8zMnJwdOnT7nKykqYfvONNKqign07frx4/fp1Fhoa2vYi9u2L6qdP8e+LFwVfX18+MDCQgizz5pEqSHutp03DtocPsbq16qcV1Gp1s1Jp7dq1eOWVVzDoBSU0R48eFXme5ziOQ3p6Ojw8POj6jh9PwZ2JEym4+DfGuj1yc3Nr6+vr4yMiIrjw8PDOu4XooIMOL4WO7Ouggw46/BciIiLCTyaTRY0ePdrI09MTkiQhJSUlIDIyMioiIsIvPDw8EwA4jhvVv39/fed2UtCm7+Dn54f4+HiYm5tLb775prJ9PenfhSAI6Nq1qxAaGsqfOnUKP/30E+bPn4/Y2FhBX1+fz8jI4EJDQ5vrrUVRxLVr10QHBwfu7t27/IMHD5pr30VRhFn37mhMTUVPmUwzYcKEDv/HVFZWIjExUYqLi4NGo0H37t25xYsXw8rKqm1NgFze7K6No0epVnf6dMo4a+t9m9qV/RUyMjIgk8kkGxsbptFo8Pz5c047js+ePWOHDx8Ws7KyuFGjRsFv5MgWg8HOwHEkXT9xonMn61OnwLp2xWVvbwZXV7z9gs38npgoDbp6lU1+803WMzi47Qt7SQnqi4tRtXUrUl9/XXJcuJDV5+aKp0+f5rKzs+GgVmsGHjkiw+zZKC4uxr179/ilS5fSmPA8kQdTUyK6jY0kC05OpkzbvHkkFW734h3k7Y2gcePw26pV0nc9esDu4EE2efLkv10C0gZNBK9s2zbE7N7NRmZlMcyeTWTrr+bpjh0UqBCEllrk6GjKFD961HbZP/8ks7vY2LayZY2GiKSjI/W2NzPrKGvuBCkpKdLDhw85p+xsmMrl4sBffmmu0w4MDMTDhw+Fbt26cRUVFeyHvDys4HmY1dfT+L7xBno0laecOHECJYGBcKmuBv/TT7jRowfGjx/fxswRly4Bu3d3IOhtIAhErl1dAcbQu3dvVFZWSvv378eCBQta2uBNmtTRrLIV5s6dyx08eFCUJInbsGED9PT0YGRkJLi5ufFDhw5tDo5ER0cjNzcX48ePl3x8fNpHAkhFk5cHbNpEn9nZUUeDc+dwODlZKC4u5nr06AE7OzsWFxcnpaWlobGxkQUGBqLbzZukFJk8maTdAAVCWrWVLCsrQ3R0tOji4oKuXbtyHfb/xRdUSrBgAWXnbW2BjAxIJ0/ipyVLUGtoiK1z50off/wxHbu2tWFGBgUqlEqaW+vWkbnkiBF0nxw4QMT6BXPkyZMnAAC+e3eGL74gJUVpaRsJvVKpxGQKUHFpycl4/uGH0h/ff8/0zM2lxsZGadSoUczb25sDgD///FOora1lADjcvw+8/z6dW6tnfdHFi9BbsgR/rl0rVVdXM5lMhqWLF+PMkyd4bGMjhIWF8UePHoW7uztad04R16zB4X//W1Tb2fFXrlyBo4MDunl7tzxLm/B04kQMEkVJT0+v05M+duyYhFZlN5cvX4aenh4cHBxgbW2Nx48f48qVK2JNTQ3Ky8u5KVOm4Pz581JeXh48PDxoPY2G1CtTpwLPnpFx6n8ILy8vg4cPH/6jpqZm3fr16582NjYODA8Pz/mPN6SDDv+LoSP7Ouiggw7/RVi7du0UPT29XRMmTDDw8PBo/tzX1xfV1dXK6Ojo3yIiIoaEh4dXi6KYVlRUVA1A1dm21Go1OI5DYGBgB+Oo/wQymQyCIMDNzQ22trbct99+ix9//BE2NjasvLxcUigUrLWxGsdxWL58OQcAI0aMQHFxMc6dOycNHz6cFRcXo+fYsTgzezaSkpJk+vr68Pf3h6mpKTIzM3Hr1i0hPz+fNzMzE0NDQ3kfH58X14I+fUoZzdxcqmUdM4bIdVYWyfmnTCEX6JfIoAEKTvzxxx8ICAhg2vP9xz/+gcrKSuzatUsqKipiRUVFDABOnjwJv969/1qZMGcOZcVv3uzglI3t21Hr5oYyY2MMGjsWmzdv1qjValZfX88rFAqB4zhYWFiwp0+fInTWLNYzPp4kzFpERQGzZ+NORIQY/957WLZsGdcUSOHOnTuH27dvo6q2Vjawqbf1uXPnhB49ejBzc/OWgdTWLC9bRu3aTE2pvjo/n1q+2dsTOdRm4CsqwJuYADt24PWxY9mhQ4eQlZWF3Nxc9HyBU/dfQRRF/HrjhuAeFsbsu3fnkJlJhG39emrL+KI6XoWCJMzdupF0HKASjlYqBABk2BgdTS3OtCStro76ky9YQKRy7Ni2Nc0vgSRJiI6OZkVFRXAvKYGbjQ3XOittamqKZcuW8bt37xbz8vJoLjWNGSQJGDwYJsbGCFm9WoyKiuKuR0cjesgQuMXHw/zcOZzkOJiammLgwIEwMDBA3pgxsJg2DYUPHsDExAQGBgY4c+YMhg0bRiqL8HCSY9++3eY4Bw4cyKqqqsSDBw+KK1asoGjI229Tdjw2lq5vJ+d2//59Tk9PD5IkQa1Wo6SkhL958yYUCgUePnwo5ebmMgAwMTHpSPQBChTdvEnZci0OHYIE4Ilcjsa7d/ml69fD2NgYABAYGMgePXqEGzduCHcWLuRV1tZSl+XLWS9tfTpAvgVz5wJvv408a2vs27cPDg4ObNq0aayN6qCwkObFhQsUIMjMbAkS9OmDq2vXClCruYU//MDShgxpQ1IBkLJCq67w9aWWgcuXo3HtWtQlJ8Po7Fmwr7+m4MDgwR0CYd27d5ceP34sRUZGMv9PPwXLyaFgwdOndG+1g0efPkD37sxtxAjkmZkxFxcXpmwV1PD09ORTU1NRmZ0N41On6HnWqm1dVlYWjl6/jknOznBzc2OVlZWCtZUVrxo6FGPWrWMb4+N5k6dPwXEcHjx4gG7dukGtViMmJgZ633wjuZeVcQEbNmDLli1S2TvvsG7r1nU4ziyFQrTy9eVe9PxtPf4mJiYQBEGMi4uTzp07x/M8D1EUYWRkBF9fX87Pzw9yuRzFxcXMxcVFBMCQnEwqiilXdZ4AACAASURBVIsXSfly8iS1IfwP4eLigvfff99QkiRs2bJFVVJS4gQg5z/ekA46/C+GjuzroIMOOvwXYO3ataMUCsWuuXPnGrQ3kAKAoKAgvrS0tHdaWlpcRETEUABFlZWVL5QtWlpaQhTF5tZF/6eQyWSQmtqyqFQqLFq0CIwxdOvWjcvOzsbhVq7t7aFUKmFnZ4cFCxYwACQt9vTExLfeQnx+PqKiohAbGwu5XA49PT3Rzc2NnzRpElQqVef2z/fv08uhvT3V5IeGEul5800icf7+RPzeeYd6iw8fTkZbrWvu24ExBkNDQzQZxDWfs7m5OZYsWcIyMjJw+vRp9OzZU1IoFBB//JFxY8e+vMaUMcoK/vBDC9l3caFjPX4cco0GFtu3i1FRURwAWZcuXTBnzhyUlZXxtbW1iI6OluRyOeQjR1LrPe25f/89yYuPHEFGcrLk7u7Oa1/GOY7D6NGjoVAocCcyEpdlMpgnJiI3N5dftWpV58fp60v/MjKIaN+4QcaAKhURjPp6ymja2lLLrkmToA+q1wXQJmP4d5GWloaoqCjRzs6OUygUbOTIkRx4nkzZnj0jlUb//pQV7tmzjRFiM1avbhsMKC4mSbwW9+5RICA6moI92nOztKRuDCrVy1v0tUNxcTG2bNnS/HfunDkYMnt2p8v6+vpy+fn5kCQJGzduhCiK6NKlizTz+HFmVFiIIceOcYNKS5G9cCGcevXCvchI2CxYgH23byPVwADR0dEAAL/4eNg/fozjrcoxACA1ORkDbW3RtUcP5I0cCc+cHLR2lgcAMzMzThRFoc2H27eTdLoTss8Yw8KFC5GcnCx6e3tzxsbGyMzMFE6ePMlHRUWB4zgG0P08f/78jkT/9GkKqly71pYIBwUh8a23RNXFi9yskhIYrllDcvmmfTo5OcGppISvyM+XfnV1ZWaPH0OVlwdbW9s2Qb5H9+7htwsX4OTkJD18+JAlJSW1BBwSE1vKIT77jO49ZduKpQdGRqx3t26s27p16Obnx+H4cQoUfvNNm+UuX74s3Lhxgzc2NpaGXr/Ont2/j9iQEPQ0MRF6Dh/Ocm7ckIbNmcM/7dYNZyZOlCSOg0jBEV6j0WDw4MECY4yHoyMFHExMSF2iDUq1hqUlTO/ehenKlR2+MjIygr25uZg2dy7Td3VlvVeubPMyHhUVJcq6deOsVqyAk68voFLxKC0F+vWD4dChsH/2DNeuXYOFhYVobGzMvvvuO9TX1zMDAwMpcPx45qKvD57n4e/szOz++U/86OEhdvXw4IYNGwZzc3NcuXIFSb16cTMXLGhzXImJiThz5gxUKpVUVVXF/Pz8xDt37nAVFRV46623OCsrK9TW1uLZs2dwcHBA60iBKIrQ19eXMjIyuOHDh4NFR1MQU0+PnuN37nQco7+J3377TcjJyeHVarUKQPT/8YZ00OF/KXRkXwcddNDh/zIiIiJ4uVy+a9KkSZ0SfYDI3Lhx4xSmpqbON27cSGGMlXh4eLzQdc/Q0BDGxsZSXV3d3+yJ1zm0mX0tbFpn3kBt+yRJ+vut92bNgtzeHoEODqivr8f169ehVquxatUqTl9fv+2ygkAEcN8+qtMOCaGXeScnepnWyrjVaiKsvr4kn9Uu89tvRJBLS6muv5NjZIyhV69eQnV1dYcAg0qlgr+/P86cOYMHDx4wAEgLCYGysRHvaTQvl7CPHUtk+bPPqAb+66+bDblkMhmWLl3KnThxAnfv3kX37t1FCwsLThuY6dOnDx1obS1lvO7fp7IASQLMzPBErcbT8+f5sLCwDrt95ZVXEGJriwdLlkgHjh9n7u7uHVoAdoC7O2WJBYEIm40NBU/27aOMeWpqG/Ou0aNHi2fPnuU2btyIjz766C+duLXQaDQ4duwYFAoFd/fuXUyZMoVr07Gha9cWc7d+/Wifv/1GBLL1tevfn0op9u6lVovr1lFwp1cvaguXmAisWkXkXqMhIvrbb9Tv/ezZv3WsrY/5YlPNuFKphIODA161tgZnYgKkp6PBygocx0GSJDx79gyurq7NrSynTJkCQRBw+PBh9t2PP8LDw0Pw9ffnnX77jYwOL1yA97hxwJMneOeTT1Do749MlQpRUVGw9PREl+7dsWLFCujr64MxhoaGBpTNmQPVzp3YvGgRIJMhmdzbhenTp/MGBgZoaGjA5cuXMXz48Lbz+eBB+llXR4737WBrawtbW9vmC+nn58fn5OQIKSkpvCiKWLNmTefX+eFD4KefqFVju++Li4txr66Oe2PyZCimTSMfgqqqFjn6nj3AvXswjopiFZs2oTI3F7t27QLP89DT05MYY9LQ5cu5M0ePYvyUKfDy8mL379/Hn3/+ierMTDHo+HHu/2PvvaOqOLvv8f3MvZdepSgohC4gKEU6KqjYIolGY48ajSXGqFETTZMX04x5Y4oxJrbYY9RYwRYLIKhUEVHpivSO1Mvl3pnvH4dexOT9/NZvvZ/P3WtlGS53Zp555plh9jn77MN27CCiv3IlBYy6GOQBgKWlJRcdHY0KS0t+toMDx2Vn0zgUChr7ihWofPYMN2/eFAGAqqoqGxAWBtvSUvgYGODwlStINjGBmZmZKPHjj6GXl4dXKiuZaUQEKjZswMH791vPl7W2woS5OamMliwhDwGtLgKsWbNo3D3AdMAALDIz4+J4HmfMzfHX99/zhoaG3Pjx41FUVITy8nL2xhtvQPu112i/GhpU8rFvHwAK9BYXF8PX15cLDw8XZDIZ8/Dw4P39/TmdhgYyA507Fz6mpihJSYFzbi7Ly8vjt2/fzunp6SlqampEH33xBUSvv97JeyArKwsymQw2Njbo37+/wtXVVZTdojxpNbLU0NCApaVlt3PiOA6BgYHswoULKJgzB4NWrWpX4wQFkR+BVNotUPMiKCoqEikUCjDGpJs2berRzFYJJZToHUqyr4QSSijx/zHEYvEHRkZGOlZ9GMkxxjBq1CixhYVFv/r6+n72z6nDbf2+0KFVGc/ziImJgYqKClJTUwUHBwfm7e3d40u8IAhQKBQQBAGCIPTI5Ovr6wEAJSUlGNBaZ/s8NDSQUdobbwAgYiqXy5GUlCQcPnwYvr6+whArK5J0X7xI2bfZs4nMf/UVSVm7EvajR4kgXrlCNdsds2j29uT0vG4dSYy/+65Hwi8SiVgrQesJixcvhkwmg76+PtQdHbF79mwcP34cTk5OgqWlJdPW1u6+kYoKmWglJFBf+KwsUiCUlACOjkBgIIYvW4aJ06fjl3ff5YrOnhVMoqIY0tKIyM6cSRLmbdvIuf3ZMwBEPk+ePCm4uroyo66O9C3gdHVhOW4cg0yG0tLS7rLl3iAStde96+hQPfiJE1Qv/PvvVEs9YQLcRCKuwclJiLp/n70o0ed5HkeOHFHo6emx8ePHc/Hx8Qo7O7ueFRwASc6rq8m07eBBIuqtRIAxahGYnExk/8cfKVDw7BmZfm3aRLXuc+dSoOePP4APP+xZJdALpI2NiIuPh+qxY2hsaICGsTHW7t4NUXIy7b+lxdyhFSuEuZ9/zg7Nm4d6IyOBk0qZyMAACoUCtbW18PDwgIODA4qLixEdHS06c/8+rzZ8OFtRXMy4DRuIePv4ADY2MPn2W5hcv45Ro0aRBLy5ub2PenExVCMjobN3LyCRYJOWFhhjyMvLw/Xr17n9+/crVqxYIbp16xavqakpuLm5dZ5bxkg2ffcuKR5eAMHBwaKHDx9CoVDgq6++wptvvtk52JeSQmv65Mn2OnvQsyMvLw9Hjx6FaWCgXHXGDDF++onmf8cO4NEjOr/vvgNOngTT00NgYKDixo0bouDgYJiYmKCxsZGFh4eza8eO4aNt28A++ggAMHjwYCwJDmYxW7ciKztb0CotZSb9+lGwpweiDwB+fn546aWXEBUVhe+//55ftGgRl9qvH9TPn4fD5s2I19REVVkZD57nwHHgOI43NDPj8NlngCBg6e7d3dcpzwPnzyNbIsGK777DI3t7XOV5rmHCBLQ9D2xtqVtIbS098377rX0NDhhABow9tcHbvx98eDgujh+PBQsWoLi4mHv69Kmwa9cuBgCenp6Cqakpww8/0DH27u1EyidMmAANDQ2cP38eRkZG7O233wZjrFUCRM/WnBywV1/FgMREDAgIYABYXV0d0tLSRJWVldixdi1WDh6M1rub53lkZ2dDW1sbEydOZABELX8b0OPzrwd4eHgg5sQJqF69iurNm9FWOMBxFLC4c6et1WhfEAQBRUVFuHbtmlBfX89sbW2Rk5PTGBoaah8SEpL2QjtRQgklAACif/3rX/9/j0EJJZRQ4n8tQkNDLTiOO75gwQKNbpntXqCnpwcjI6M+s+l37tyBtbU1MzIyglQqxZkzZxAXF4eSkhLBxsaGRUVFob6+HjY2NmCM4cSJE4ozZ85wkZGRiIiIQHR0NNLS0qCtrc13ct5ugbGxMdLT0xEREQEdHZ2+Zd2thNrLq+0ja2trGAgCE86dY7m3brGXQkKgmpZGZG7mTGDECKqTHTCgZ4OsffvIoMzDg4zIDA0pw9sKdXXKHNXUkGw3KAhQUUFlZSXKy8tRVVWF+/fvMwAY1qEutiO0tbWhp6cHNVVViGJjofvOO7h7/z5///597tatWygrK+MHDRrUqe4WAGUOGxroBXbWLGDRIsrETZ0KjB8PbTMziF57DaoODgjLzWXGixejn50dmYyNHEmy6wcPSOZqZob0a9dw49Ejoa6ujp87dy7X6/V/+hTct9/Cd88eREREsP79+6Nfv359qy8EgQzthg8nsn/lCmXXZ8+moMWjR4C+PoSffkLx+fNs+O3b0D9/HszICPjkEwqoGBpSTb0gADU1qKuowIETJ3D12jVBLpez+fPncyYmJnBycup9/ABda3V1arVnYkKlBFOmkPRXX5/WxenTZLI3Zw7V+6anU4AgP5/m3taW5nzAgN6dvgsK6D9DQ+qK4O0N4c8/IQ8IwJFBgzDswgVwIhHGfvYZdIyMSAb/6qu0xnbvRu7Dh/zAqCjutq8v3ti3j42KikKkvz/W7t0LSzMzwMsLLDkZ2ra2GOLkBBcXF3b16lUWX1AA/dWrBSNbW4ahQ8kwcNUqCiQEBlK5xunTtKYBUi+cO0fmj6qqbddSV1cXHMexxMRELjY2VsjLy+OcnZ25rl4KcrkcT/X1ca6pSVAdNEgwNDTsMwAkEong7OyM2NhY8DwPe3v79rKgggJg504aT8t9U1ZWhvDwcOHPP/9k9+/fh56envytt94So7aWfCx27qRrtW0bmflFRgKGhrh165biwYMHaGxs5KZNmwZdXV3o6+vDwcEBlk5O6PfOO2CtiqcNG6AZEgLzsDB2Qi6H4Ycfsqd37qB42TKFqalpjxe5tSzHxcWF5efn8xcuXOAaGhr4vGfPhAR/f5ZdUYGp33/PzBsbUebqqggICBAZGRlR8MDEhMqGuq4fxgB7e6gZG+NwZSUa1NUxsaZGMNmzh8HLi2rgWxUpRUWUeZ83r53sa2qSWsnDo7PS4t49YPdusIMHUVlXh5iYGMyYMQNDhgxhrYEjd3d38ixobVG4bBk9X9qGxtCvXz+kpKTwvr6+bNCgQe37V1Gh9auhQfd5h2eeiooKTE1NYS2Xo+G33wTtSZMYYwz79+/nU1JSWGVlJQIDA9Fxf1euXIEgCPDsJdDSCQ8fwiEtDT95esJz9Gh0+nvXvz89G1+gNOjatWuKQ4cOcUlJSaiqqmIjRozAyy+/DFVVVZWnT58uiYmJ8b527VpiQEBARd+DUkIJJZSZfSWUUEKJ/wChoaH2qqqqX3Acpy2VSsMEQdgXEhJS1/I7K4lEEjN27FgV/dYM3v8gmpubcfnyZT4iIgLl5eWcIAjw9vZWjB8/XiQIAh48eIDExERIpVJMnz4dlZWVzMfHB97e3lBTU+uY8e/xbwHHcZgxYwZOnjwphIWFsfv37/OzZ8/u3RCwuJgk4QD1Pb94EcjOhsPDh3CwskKkqSl2GhvDY/x43sPenntuxujJE8pUHj/e/rI8cmTP9fkaGkRYeR5N/v4IW7tWnvr4sVhDQ4NvlWB7enr2naKurwfeew+DXVww2MWF43keDx48wKlTp7i6ujrhtddeY7q6ukTYkpOJnLm4UAZPRaXdGK9jdtTZGS4Acp4+xeHERCx1d4eJi0v77z/9FDIDAyR/8QVvf/Qod+nTT/mZc+eK+syo9+8PFRUV2NnZyX///XcxACxZsqRbGUYbnj6lOvm9e4lsrllDPbytrMhAa906oMVNHhMn4tLmzbAwNYXt+PFISk+H4ciRMNfRoaBKiwdAw7FjqElJgY6fH2bcu8e0HRzAGRoSKQ8MJBKkq0uZ7YYGIuWtPeJboaZGhLehgeTfjY3AkSNEUqqqgJ9+orldupSI1Fdf0bWeMQOtPe7bsqc//EDnpKpKQZ/cXJJ/y+VULtG/PyAIyPL0xKlVq+Dp6QmnkBA4tY5l5cr2cTEGMIYpb78tKnntNWidPi2kHj3KHkVFQSyXUzZXX5/8Bf79b1JnpKRAIy8PIceOIWLnTkTeuSM4engwHD1KxHD/flo3u3cTgZNKiRAePkzb93LNHR0dIZFIoKmpya5duyaUlZUBLWqO0tJSxMfHK+7evSsSBAHWlZVMsWwZhIiIPoM/DQ0NuH79usBxHON5Hm0lRmVlpJSYNg1PrK1xIDQUAD0PDA0N2YIFC2Bubg6O4+i5oa9PAZjSUsqI79lDQZoWQ8D4+HjO1NSUBQQEdCqN0dHRIUO/W7doDQ4fTi0EN2yAhpYW3p43jyX9/jsiHB1h/eQJ5+7u/tzzYYxhxowZIoVCQe07Ady/fx+nTp3Cb2vW4OWxY/FOdLQIr7xCEvz+/cmPYOfOXiX3urq6WPnDD9i5cyfC6urYe5MmEZG3siL/i/ffp4BZVBQpIaZPp2egigqt/7i49tabMTF0n126BGhpISsrS2hsbGSZmZmwtbWFpqYmNDU1aQ5ra0ltc+YMBbQePgSys4H168EfOIDLJSXQV1FhburqtL47qloWLKBrkZ7e80RlZsI6MxNRUVFIT0+Huro6Z21tLejq6gpeXl5ti5AxBltbWyEzM5M9evQIlpaW6Bbw7IgNGyCzsACMjCDpep83N9O9e+7cc68hAERHR4sAYMyYMfD09GzrYuHl5SVyc3MT3bx5c3xcXNyYLVu23GpqapoREhJS2edOlVDi/zCUZF8JJZRQ4h8iNDRUTywW3/H399fW1dXlHjx44JeTk7P5yy+/PCuXyzUlEsm4oKAgzZ6y5v8TEAQBbm5uXFNTk6CpqSlYWVkJI0aMEAH0orZ27Vps375dkMlkLDIyEhUVFVy/fv36rvHuAD09Pbz11lvs7t27CA8P5/Ly8mBlZdWdSAgCkfuwMMpizplDL79jx7YZa40CoHP3LqKjo4WYmBiMGTMGvZUZICWFnNRbif69e5SdbTEA6waOQ3VwMA4nJ+ONjz8Wu23dCsvZs//evF+/3k7kQeTG2dkZBgYGOH36NL9jxw7Ru+++C+1p04jkA0RkX32VZN8de8N3QXZ2Nm9gYMDpdXHFlq9di2gjIyHFxweDMzOxOiVFhOnTiZz2Zr7Yr19bOcP06dPFkydPxs6dO7Fv3z68++675ObeEefPU9axupq8EFohCCQ/5jgiKy3lF4wx2NvbC5mZmSz0t9/avm7McbCWyzHu888hk8nwY2GhYL90KWZMnsxYSQnNQWMjkRVtbTpuYSERkW3b6Dj29lTqMG8ecPYsBQDmzaMAwsqVRMDOnqVrsXIljXfqVHJKT0ujn8+dIxXAsWNUNnLkCAUzwsJI7hwcTJ4EAGXPW3HwIADg1oED4PX1MXHixB6nVyqVQmXuXOzIyYGmsbHQ4r7PSktL24IVSWfPkhy/laRHRxPpTU4GCgsxat06mFtYcNWCAL3t2+neKCig4MbAgVSaMHkyEWtt7XZ/ih4gFovh0KJmGTt2LDt06BCSk5Ph7OyMXbt2wcjIiE2ePBl2dnZovHkTZe+9x7Zu3YpXXnmlbbuuaGxsREpKClJTUxkA2NjYCDo6OgwNDcC5c1DY2kJ4+WUc+OILAICXlxdcXV3Rm+cIAFKsZGVRqcjZs4ClJYrDwjBl2zam9eqrMJg+nQIxdXX0TDh1itQkEydSKY+3N6k1AODAAYh//hmed+5AiIvDjRs32It4hzDG2gIK2dnZOHXqFACgmeeRnJEBp5UrqTSkro5UJN9/TyoRnu812FJYWIjS0lIAwCUdHX7CoEEcLl0i48j33yd1zm+/UQBg4UIi+lIp+XrcvElkPzeX1umOHW3O+C4uLuz27ds4euQIPnn5ZYji4ihw8P33FOxydaW1bmFBQYlHj8ArFKj+8ENIPDwwfvx4Jg4Kok4JCxfS/X3rFj0rhw/vvaxl8mT8/uABWHY2vLy85KNHjxa3tD/oNrkzZsxge/bsEc6dO8eam5uhpaXFz5gxg+sWVNy7F/jlF+w9eFBwtLWFlpZW5315e9O66KFuv6GhAampqTAwMGjzw5gwYQK8OijEWiGRSDB69GjJyJEjJb///rtfTk7OTAA7ez5RJZRQAgBYx3pPJZRQQgklXhyhoaHL7Ozsvp09e3abkV5ZWRmuXr2K3NxcvPnmm89/Of6bePbsGcLDw8HzPARBwNOnT7F48eLn1tP/8ccfisePH4u0tLT4iooKTiQSITg4uFdJ+/Pwww8/KGpqakQLFy6E2cCBwP37lIEKDwcSEymbt3cvcOECMGbMcwnM6dOnFSkpKSKxWAx7e3v4+vpSmYAgUC32Rx+1Z24BIm/l5WTS1QOqq6uxZ88eGBsby+f7+YmxYgVlJ0eNeqEe6wCo/js7m6S3XXDz5k083bkTr9+8CZWnTzvv884dIraff97rse7du4fw8HAYGhoqJBIJrK2tRRoaGgIXF8cSSkv5tzZtInPrpiYiths3Uhu+ji70rXj4kFrYHT7c6eMffviBB8AtWLAAenp6RN7lcvI9qK3tHigpLaVARUwMZexnzCBCPGAAampqEBUVxWtqanKDBw/G7du3kdqi2vjwww/x448/8nK5nHvvvfeg2lsbva4QBJrjvDwqYbh4kdQgI0eSgsPYmMhfSwYTa9ZQsAAgcjZ2LDB0KBGmOXPoX7GY1llvQaAeEBoaCrFYjI9bAgL19fW4cOECHj58CICM+qRSKVRUVGBmZoba2lph7ty5bPv27dDW1kZVVRXefvttGOvqErGrriYFQ4saAACQloZfvvsOutXVmPnoEbjvvqOsb2MjKRP276ex19X13oawF9y7dw8XL16EpqamUFNTw1rPoxW8TIbEffvwV2Ul3NzcBGNjY+bq6orS0lJERkYKNTU1QkFBAaeqqgp1dXVh4cKFTF1dHbk5OShdv16w0ddnv3To+W5gYIARI0b0/cwoLaWSm6tX2zo+8OPGIVZXF8llZfBftAgOeXkQT5hAc1ZbS2qSNWtIyXPmDO1HJiPC6+kJBASgtLQUu3fvxkcffdSJ7CclJcHS0hLZ2dlwdHTsFMS8f/8+Ll26JDQ0NDADAwOeMSYEBweLzM3N6QtyOakJNmwgc82UFArc9CAzf/bsGY4cOaIoKysT6ejo4L333mv/pUxGjvxeXrQ+P/iASkCCgymrf/YsBbPWrqWSiMBAynLn5uL01q28WVISpzJihOCclMTYsGE0HkEgFU7r/jsoqRoaGvDNN9/Q+jM2bh9HUxOtLS0tWmeqqr2qFTBrFu6UlAjmR46wXpVAPeDhw4c4ceIEHBwcMKNjYPPqVWDdOsiuXsVXP/+MBQsWdOsgAYD8QYyN6ZncgqioKPmNGzfEAAVqVFRUBMaYsG7dOu55BqkKhQLbt2+vf/bs2ashISHXNm/ePEEikcyXyWQbQ0JCnr7wSSmhxP8BKMm+EkooocQ/xJYtW46NHTt25vDhwzt9np6ejmPHjsHBwQFyuRy2trbw8PCATCZDVVUVGhsbe34Z6gNJSUm4cuUK3NzchJYMFvPz80Ovsvou2LZtG2pra6GmpgYjIyOoq6sLs2fPfjEmLAhAXh7OffyxwtvZWWS8fz9lnxYtohdSLy/KvFdWUoZToejTMO3LL78UPD09WUxMDBhjsLGxUcwZOVKEOXMoYNDR4bqigsZgaNhtPxcvXlTExcWJHBwc+BkzZlB6Tiol8urqSvXmXWWlPeHwYSKOs2d3+1VBfj7+PHRIGBgfz1QXLVK8/PLLok5Zxq1badt163rdfVFREdLT01FYWCjk5eVBoVCwGU+eCDdUVNj4Dz5AGxEBKFM9ahRJoseM6byjBw/onDpmrUFE4OeffsLkvXthf/06ZdIMDDp7HHRFcTGVL1hZUXBg7Vqasx6CFn/++Wcb4QeADz74AC/qQ/HC4Hki/kZG5KR++jRlQtevp/nw8/uPdi8IAjZv3gxdXV3FmjVrRAqFArt37+bLy8s5Q0NDODs7QyKRYPiqVeCuX6cSkRYcOnSILyoq4qRSKdTV1fnFx45x/WxswP/+OwqDg1FfVSWcefVVSCQSVldXB0EQsGzZMvTv359IqiDQNRGJKDAmEpHK4fffiWR2acP3PLQGt8RisbBmzZrOFys5GRgxAllxcbh5546Qn5/PRCIRBEGAlpYWb2VlxaWmpgoymax9O0GAQ3Ex7G/dwumpUwGOg7m5OZ4+bedNjDFs2rSp78E1N5MJ5a+/UnDmu++QMmWKEP7XX0wmk2HixImdasDlTU0QcxwgkUCenQ3xpEkU6Goh3g8fPsTly5eF9957r228x48f5x89etSWildXV+fV1NSgo6PDSktLIZVKmYqKCpqamjBz5kx0MjtVKEiB8Pnn1PHB2JgUFra2pBzR06Oxm5lRrfzTp8DGjUh5+JBPnTULc65c4RASQvfIpUtE4tPSqJRBV5eMCbOzKQiwZAkwaRIFuAYMICXQlGOSrwAAIABJREFUnDmAmRny330XzzIyECGX81UiEbdmzRpodXX1FwRaK/v2AaNHAwC2bNkiiEQi9t577/XcMaS0lM7RxAQ8z+Pu3buQSqXQ0tKCVCoFd+ECHuTnY/oPP3Q/3nMQHh6OhIQErFmzpl09lJVFz39dXfAmJti5cyfPcRxbsmQJ6za2vXspqPPZZwAoaHXmzBloaWlh3bp14Hn+hTt/FBcX47fffiuUyWSDAAxTUVG5ZWVlpZadnb3/o48+WvTCJ6WEEv8HoJTxK6GEEkr8c/j0lBkxNzfH6NGjUVJSolAoFOzChQvcjRs3+ObmZo4xhubmZri7u2NyT1nb58DQ0BAcx2HcuHH/qN3eW2+9hebmZuzYsQN5eXlQVVVFQ0NDz7J+QaAXX56nWuioKGDdOhiUlzOFgQFJR7vKxQGSmM+ZQ+S8tYd8L+A4Dm5ublBTU0NKSopg8ttvougbN+BLvb/bvyiXk/y7owS9A548eSIyMDBAG9EHSCr6++9Uj7tpE2Xc+vJNiImhc+pK9ouKMNDJCasyMtiT2bNx8OBBkba2Nnx9fdtrU6dNIznyypW9ZmpNTExaTQ7Z06dPsX//fljevcuKPD1x/fp1LFy4sP3L5uZE6hmjkoFvvqE6dIAI6NChnXculULj7Fn4jRgB+cGDuH7ypMJv+XJRn1n3X36hbgfh4RTsyMykIE5kZLf5eumll4RW2TcAbN26FR9//PHzWxS+KCorgQMHiPB+/TURsRMnSJpfV0fXc/Vqkr8PGkTz8zchCAIiIyMFxhhbtWqVKCsrC0eOHIGGhgY2btzY+Tx0dLoFPN544w3uyJEjQlZWFhOJRNzusWNhrKkplGzdCjs7O2GwiQlnbmaGjIwMiEQivP322zh37hyvqakJX19fbqBUCubjQ5nQ1g4Ee/cSSZRKybdg+nSSbj9nThsaGvDnn3/yMpmMmzJlSvdngYsLUFAAGx0d2Dg4MKlUitzcXFhbW7fVsg8bNoxFRUXB0tIS9vb2uLZ8OYYnJuLQG2/A3MICT58+xahRo2BhYQGpVIrU1FRcvHgR3377raCvr485c+Z0N6xshURC98GwYUQGr13D0OHD2dAPP8Rvv/3G5+TkME9PT1ZYWIirP/2EaT/8gK0ffSSoikSCcXo6Z2FjwxtWV3MOLWQ/KiqKt7S0FORyuej06dPIz8/n6+rquClTpkBNTQ39+vXD5cuXhYKCApG+vr7Cx8dHZG5ujqysLEVMTIzIrqCAMuwbNhDhXr+eSkPKy+k5Fx9PhH3XLlp/Z8+SqqChgerMAfCOjhg4aBB3OjMTfH4+OIWCCP7u3bTt8uWAtTVdz2PHaJ2uX0/BgIQECgLW1lLwLTER6NcPgwAMAjAE4LZs2SI0NDSwbuSbMboXOgSUZ86cyQ4ePNh2Tbvh2TPa5sABnDlzBllZWdDT01NIpVImkUgwUE1NGP7OO6K/Q/RboaKiIujq6tKaUyjoWT9zJrBuHTgAy5Yt4/79738LKSkpcHNza9tOJpPhtkQicHV1QsqOHaipqeGam5vRv39/LF26FABemOgDZKrK87wBgNGqqqprAwIC1BwcHNjevXtnff311z4ymewnnud3h4SEKFv1KfF/Hkqyr4QSSijxNxEaGioBMB2AeVFREQwNDTtl19XV1TFixAgAEAGU0S0sLOT09PRgbW2NkpISHDp0SKiurhbmzJnDvehLjrGxMaRS6d/re98BOi1S59dff50/fvw4x/M8++abb/DxmjUQP3hABGrrVsr0OjlRPaqhIRHNDRsACwvE1dQIRiNGwKQnot+KzZv/Vj9lxhgkYrHg2djILorFwk8//cSvWrWqvQagspKItL4+8vLycOLECT44OJiztbVFXl4eKioqMK1jS75WaGpSpvrnn4FXXqEXb03N7t9rxfbt3UmWXE4ZxgMHAGNjWABwcnISIiIimEKhQEBAAL2kWlvTS/7eve39pZ8DLS0tCIKAwlOn0JSeDiEvr/uXWoMwy5ZRAOHWLSL5dXVEVAAKxtTVAUlJwPvvwycvDyXXriF8/37u5pYtWLRoEczMzHofyDvvUC/1VlhbU1ChuZn+66CIGD58OHN1dcXJkyeFtLQ0JpFI/tYLeo+IjSWie/kyGZstWEDt48rKKKP54AGVcHz2GZUcnDhB7RYXLaISh78RaIiKiuIjIyO5+fPno76+HsePH8eQIUMQGBjYXTJ86VKP6obhw4ezrKwszNy5E5dGjoTxyJEY4+zMzMzMGEtMxJDYWKTNnInTp09j165dEIlEXPW9eyj76iuoh4fDIDycSPDp00Q4d+8mRcWkSZT1Z4zOadUqugdbiFBHtPZiX7VqVe+ZWUEgo8iHD6Gmp4fBgwd3+rW5uTnmzZtHPzx4AOdHj3By2jSA41BfX49PPvmE+smDeqt7eHiguroaCoWCxcXFYd++fVjxvHW+ahWNYeZMIsKOjsD778N38WIuLDxccefOHdHly5eh29iIokWLMGfWLGa8dCnjFixAhLGxEH3mDC5evKhwcXERlZSUcGZmZvj666+hoqKCoUOHIjAwsNMzd968eTTYs2dFqKkB+veH+ZAhoicrVgiFd+6wQS0lGrhzh55zrS3qAArszJxJXgqOjiS/t7Ghn+fOBQBsKy3l6+vrOQB4duIE9PX16TutAduIiPZzr66m58yUKRTIsbSkAFXrfPeApqYm9ueffwqMMUyfPp0ZtiiYZDIZ7js4oHrhQr5WX1/Id3VFdXW1yMLCgre2tu755hMEIDUVZWVlePjwIRYuXIhBgwa1P0/V1HouD3oO5HI5KisrYWBg0H5TpKZSKU2HQIRYLIa5uTl/5coVkYODQ5vy5/Hjx4h4/JitPXaMqXz/Pers7WFubg7bVo+GvwlNTU3Mnj1b9dixY+FNTU2qampq0NXVxZo1a9RzcnLso6OjtxYVFa378ssvL3Ecp9HU1PRVSEhIL46FSijxvxvK1ntKKKGEEi+A0NDQmXFxcb9GRUVt5Xn+C21t7UmOjo6Su3fvKm7cuMGJxWLe3NycyeXybgRIW1sbpqam6NevHwAiek5OTiw6Ohrx8fGwt7fvPUvWAWKxGNHR0Rg+fHh3t+MXRU4OjB49Yq5OTjD84QcMKCiA0ZUrUI2IoFr1ykoylJoxgwjJv/9NRNvKCggORnxmJm9lZ8cZGBigoKAANTU1kEqlEIlE7ZnRfv3oZdrGhjJlXUzpWhEdHQ03Nzcmv3wZ5seOYeDNm8x2/HgWExPDFRYWorm5GcXFxWCJiWj29sbNrCxcunQJGhoaLC4uDk+ePOGjoqLYiBEj4NFDnT0AIk+enlRmMG1ae6u3nmBnRy/7Vlb0syBQJtDRkYIFLXBwcGD37t1TZGRkcDzPw6r1+yIRGcZ5e/epIrhx4wYKCwsRtH49UsrLYRccjIEDB/b8ZQ8Pqm1esICywlOmUJbQ3Z0I8NGjVH+8di3AGLS0tODs7Mzy8vL4qKgo1tTUBGNj455r6zU1KRjS1EQyZsaA8ePJcO6VV+iYHbbjOA4DBgxg8fHxbedtbGz894JPCgUFRkxM6FhWVuSvMGdOuyFjWVm7yVloKBE0e3siwD4+JB2eM4ck2F2IbG8oLi5mVVVV/Lhx49iRI0cEdXV1vPHGG6xHZYtEQkGbLsEhQ0NDlJWWCroZGQjavZvZDRvGdHV16fxjYoBdu2C4YQPKy8sFz+HD2URXV1jLZJBHRUFv0SKo2dnRjuLjqVxi2jQilLNnEzlvIZdITiZjNg0NKl1Yvhxl5eWIjIzko6Ki2MCBA/nhw4f3HmlRU6NAlafn8z0B4uKA1asRu2QJOFNTaGlpoaSkBAEBAZ2uKWMM1tbWsLW1RWRkJBoaGhAZGYlHjx7xAFjXtVtZWQnGcYhzc8PZyko4nz4N0dmzuCiRCBU8z2VmZsLX1xdz+/VDv0WLoMdxkMTHQ7xhA2wcHDhfX1/U19cjJiaGAVS2YG5ujqVLl8LW1paJRCIq91BTo2CVqytl0r/7jkojJk5EvJoa7gOswd4eQz79lAamp9c9iHPrFsn2588nqby3N3gfH7DMzDYn/erqalZYWIjBgwcr+jRcVVWl55+ODj1vzMyIGD98SNejBzQ2NkIikbDHjx+zESNG4O7du/jjjz+EyMhIlp6ejqD8fGZmbs7pjBvH1dXVCQUFBVx8fDwfFRUFExMT1vq3BQCpBxYuxOEjRxTG/fsL/v7+nce7cWPvrU57wPXr1+WHDx/mqqqq4OvrS8HDPXtoP5s2dQu4OTs7czdu3EBdXR2qq6uRmpoq3Llzh1lZWQluHMcGWVrC6pVX2ts8/kPo6+vDy8tLHB0dDRcXFxgaGra1JRw2bJjE2NhYv3///h66uroulZWV9v7+/of+owMqocR/KZRkXwkllFCiD4SGho5SV1c/PnnyZOuAgACNcePGMV9fX4m9vT18fHy4QYMGITw8nJmbm2P79u2Ij4/H3bt3eWNjY6ajo9MjEVJVVcXQoUPZkydP8ODBA8HV1fWF3rxu374tDBkyhGk+L0PdiqIiIocPHhBhkkopS/rwIcq8vfEoMxOYNEnot349U1+8GNygQUQsLC3pZdXQkFzU1dRoe0dHGC5fDsNTp9hBxviEqCikpqcLd+/eRUxMDMvOzlaUlJTwNjY2HFRUiGyMHdurUV90dDTc3d2Z6PBhVDU3C6Zz5zKRSAQbGxskJSXxjx8/Fp4+fSoM3LaNpWRl4XG/fvzUqVPZ+PHjkZ6eLhQVFXGWlpZ4pQMR7xXGxmQEN38+keeeXnZra4lcamrSXInFRNzHjOn2XW9vb668vJxPS0tjVlZWlGHV1KQ5q62lOez1shTh0qVLCAoKwuP4eDT7+GDMzJl9n8P8+USOly6loIKLC7X/Wry42xyrqanBzc2NyWQyxMbGIi4uDjU1NXxWVhb/0ksvca1ZW4VCgbpDhxB3547wZ0EBSktL+erqak4yeDC0dHUpoNDY2IkwamhoIDIyEpWVlUhLS0NsbCxcXFz69o7IzSVTx3PnSCkxYQKtKy+vzvNbXk7O5Zs20edTp1IgonX/enoU/LC1JQIVFkaEqg/ywHEc4uPjmZGREeLj4/Hmm2/2HmQbNYqCCF2VC3I57C9eZLvNzVmzRMJbWFiwtvt7yBBSHBQUwMHLiw347DNItmyBzu7d+Lm8HLWNjYKdnR3jOI6CM5MnE6H38yP1xrx57fMwYgRgbw95dTWyk5L4Q0VFzHz5cigKCwW7BQtYUFAQ12eAxc+PlDru7p1M3trw+DHVrL/9Nuxeew0uLi6wsbHBnTt3oKmp2WvwycfHByKRCKqqqnj69CnLzMxEZGQkIiMj8fjxY9y9exd//fUXYmJikPP0KRqlUqgkJCDZygqsqooF19Zi5L/+hSGDB9N5NjW1r4mWICbHcbC2tmb+/v4IHDUKflVVcA4OBtu3j4Jab75JgSgjIzK9s7Gh+Q8OBoKC0NDQgAM3bsCof3/k5+fj8ePHvJWVFesx4BUbS9n44GAAQHpmJvY2NKBaVVVh9/AhB0GAhp0dkpKSUFFRwbm5ub24KeW//001/ytWUADnxg3qAtDl2tna2oLneeTn5wuMMf7atWucTCZjEydORFBQEAYsXgztMWMwsLkZ7mPGMG9vbxgaGrLGxkbcvn0b6enpLCEhgU9LS4NUKmX6Q4ciu39/btqaNVynwHByMnVCeJFnZtsmyUJJSQnHGEN2djZGDh4MZmREgdxeAqcKhQKZmZmKkpISISMjg5PL5ViyZAnj3N3pOdC1DOkfQiQSIS0tjW9qauLt7e07tQ00NDSEmZkZysvLhdzc3Hv+/v7H/0cOqoQS/2VQkn0llFBCiT4QGRk5wdraenxgYKBEXV29G3nv168fbt68ibq6OjQ1NSkmT57MMcbY1atXhYiICCaRSHgzM7Nub+Yt5IglJCSwxMREhY+PT5+a6NjYWN7KyorrlMnpDe+9R4RpwQIiVAEBJNueMwf38/P523V1rKChgSUmJiIlJUVwdHRkOTk5MDIyou0nTqRsmSAQyeQ4/CkIfIKODmc3aBB7Y+NG5rd7N/P392dO7u4oLi7mkpOTuVGtbst+fmQsdfx4e715B8T99Rf8f/mF5SxahARj47ZMpZaWFoYPH868vLyYl5cXM/Tygu3ChfAYOZLpt2TM3dzcWP/+/REXFwcDA4P2MT8PBgZExhYuJE8Bd/d2kiyTkVlda7snT09yhl++vNcMmKOjI3vy5Ilw5coV5uvrS7JnU1MiIsOG0f8DqK2txZ9//gkHBwdUVVVh//79vLu7O6+lpcWeZGaycj09uPv7950dZ4xI95497dlMV1fKEreqC7rA2toao0aNAmMMRUVFrKCgQIiKiuLS0tIUcXFx3MWLF5FgZARLd3fmHBDAsrOzkZOTw8cnJHBuy5ZBsmtXe01yB+Lr6emJ0aNHw8rKCpmZmYiIiEB2djbs7e27q05u36aA0ciRVCLyr39RgKJfv57n9sgRchJfvJh+Dg+nev033+z8PQsLul5ZWbTW/fxIGdADgRcEAY2NjYiNjcWDBw9gbGzM/J5n9nflChGSrvL+pCRwGzbA8rvvcOnyZejq6rJOHTdiYmhdqavTvfbuu4CKCsrKyoScnByoqalh4MCBDKdPU1ZfW5vaDdbUUEeHFhM2gFoAHr90iY/T1mYDBgxgJubmcFuyhJm01v63KDl6BWNUOz90aPfgU2EhBRxefpkCci1QVVVFYWEhYmNjERkZCXt7+26lAmKxGBYWFnB2doa9vT0KCgoglUqhoaGBhoYGlJeXY+HChRg7diwCAgLg6+uLgsGDBbfFi9nw/fuhGxEBtQ0baC0vXUrXd/lyks3zPJVxmJhQHfhff4EFBQG+vqRoMTMjlYezM23r5kaBjCFD2uZCLpejrq4OaWlpitraWm7SpEl49uyZcOXKFdy+fVuIi4vjm5ubuZdeeolOqLmZ7tdBg1pLrOAfFCTcKSjgjFNTofjxR+xrbISalhbkcjnc3d1fvH2pqSmNbfBgMsqMjSXJv69vtwCdqqoq7ty5g+zsbM7JyQmlpaXIzMxEfHw8Bg4cCIOtW4GQEGDlSojFYhgZGWHIkCFMLBZDR0eH9e/fn0mlUiEpKYlpWFryfqtWMa2unVoyMsiP4zltQrvCysqKU1FRQX5+PpysrHjHVasYnJzofu4FlpaW8PLy4jw8PDgXFxf4+vpCTU2NSo62bKGyif+0BKgFiYmJyMrK4mxsbNpK1TriypUrdZWVlYcDAgJu/48cUAkl/sugdONXQgkllOgDoaGh/cRi8ZP58+dr91b/HBYWxj958kQYPny4yNvbu+3zx48f4+jRo7CyslI0NzejoaGBOTo68iNHjhQDREIKCgpw6NAhfPjhh32OZfv27XIHBwdxfX29orS0FJ6entywYcN6fuPPyiKCdPw4mUS1ZK5a0dGk7/jx42hsbAQAfPrpp1SKMHAg1bgmJJCb9KpVnff/5AlgYQHBzw8yPT00HT2KX7duxfstvbkBEGnLyCBi0QVHli4VXn/yhN37/HMkJCbK33777e4F2AkJFHDoWBPbAdHR0XxcXBzWrl374m+OUim52VtYkHzawIB6U0+ZQgZ19fUkIx8woHNHgF6wZcsWwcTERJg2bRqnpaXV3hJv7lygJRt2+PBhDBgwgK+oqOBcXFz4oKAg7qeffhIWb9/OwkePFrJeeomtXbsWfSo2MjOJHEZHU533vn1kIpaZST29/fye+xLdkj1ESkoK7t69i0WLFsFkwABwlpbkHt5SDvHrr78qRCIRNyYwkFk+eUKlDOrqPZZkKBQKpKSkIDw8HNra2orVq1eLUF9PipKSEmqj+MsvFEDpq/ykoYEyvVpa7d8tLCQfiF9+6X275mbKYsfG0lpzd4fAGG7dusXfvXsX1dXVnFgsFjQ1NXltbW1RUFBQ72UTABk1ZmTQXLeiro7If0sw4ddff1VwHMe9/PLL1MKssZGUBn5+lLH+669Ou7x37x4uXbqElStXQnPvXuCtt9p9GaqqqP7Z1ZUIOICvv/4aUqkUK1eu7Cx5rqsjgjxzJpU2LFpE/hq9dcCoraXjtJLLmhrg5EkycuvYRq4FMpkMu3btQkVFBWbNmtWt3r8vPNdTpLqa7q2tWymbD1Dme+FCMie0sCAS+ewZlRGJxaTs+Bs4e/YskpOToaKiIqiqqrKlS5dCU1MTjx8/hkwmQ1NTEy5evAgDAwNBR0eHWZ06BQtnZxh98glu376NK1euYMaMGcjJyVEkJCSIGM9jUng4tJubceKVV2BsZiYMGTIEVlZWTFNTs0eC2Ya4OAritDjQo7GRrnNpKa1Tbe1OX6+rq0NSUhL8/f3x66+/8qWlpZxEIoGLiws/aexYurFfpPvKnTu0Tl1c/tbcdYVcLse5c+eE+/fvMwDYsGAB1MLCSKnwT8n65s0UvHue78sLoKamBnv27BFqa2vZkCFDFMHBwT0akubm5uLAgQNyQRBUQ0JC+P/ooEoo8V8IJdlXQgkllHgBbN68+WVVVdUTK1asUNfu8oLWF+7du4f4+HiUl5ejqakJw4YNk7u7u4vDwsJ4iUSCyZMnc7t374aKioowevRo1lP9eVxcHP766y/wPA+e5zFgwADB1taW3bx5E2PHjoW3t3eboVYnVFfTC/2tW+Sq31KD2hWZmZk4evQoAMDDwwOurq4wSU6mF++kJMqiPXjQ4wvenago3Dx/HtqNjVj86684+u23AmtqEhq1tAQeEHi5nPmePs1uBQfzipYWYCNPnuQS7e25qVu24PHjx7h06RImTZrUycEZAEm0jx8n9/IeIJfL8cUXX2D16tXUW/5FIQhEkmNjKVOuo0Py0m+/JbfshIQX3lVVVRUOHTqkqKqqErm5uSkCAgJEorlz8SQwEJlWVnxqairn7OyM+/fvQy6XY+7cuUhOTubz8vKw2suLS5JKEX7zJqZNmwYnJ6feD1RfT5nCI0eoNvnatc7nY2BAwZUhQ+hF/znqj7i4OCQkJPArVqygC3rpEhGDlkxgy4s0Ghoa8Mknn1CGOjqasq69ICMjAzcOHlQse+cdEWbNorVy+TL9+6JGeqtX0zq7erXz5ydPUhb/eWaDAKkcnjwBjh9H0Rtv4LfUVAQFBcHa2hovpIZ5HhYuJLVHbCwAumfOnTsHFxcXjBkwgKT4//oXZZ6trHo85z179ig4gL25fz/HIiM7Z3cTE8nFfcsW5MnlOHjwIFavXv389mipqXSdb9+m4EFVFRHljkTKzo7UPR9/TEGRr76igErHoFwX8DyPb775hre2tubGjRv3fELbEc3NFEzLy6MsfUkJUFBAwaI//iDDuilTaCzZ2e3zWltL6qGgIDKz+wcdHkpKSnDgwAEBgNDY2MgBwMaNG3uU3FdVVSExMVF49uwZr7F3r6jK0BCYMAGNjY3Iz89HcHAw3NzckJOTg0OHDkG9rg7TZDLc09ZW1FZXi/IGDIBEIhFkMhljjIHjOFhYWPDu7u6cnZ1de7AjPJwCix3vG7mc7t+aGrqvjI27jU8ul+Pnn39GVVUVAOC9996ja5CYCLz+OgVyn0e2Fy6k+e/63Jwwgdbnrl19zmd2djbCwsKE6upqZmBgAJvz5+FVXg79xMQ+t30uvv2WAlMffPAf7Wb37t2KwsJC0Zw5c55r9JeWloYTJ07UC4LwhSAIlwHcDQkJUZIfJf7PQCnjV0IJJZR4AYwaNSozMjLSXCQSuVpaWv4tK/zo6GhkZ2dDoVBg6NChQm5uLpeQkMAMDAxYXl4e8/b2RnFxMSoqKpiRkRFvbW3dtv+srCwcPXqULywsZPr6+ooZM2ZwJiYmmDx5MrOysoKKigquXr2K8vJyDBkypPvBJRJ62fz5ZzI3mzaN6pG7ZFUyMzOF7OxsBgCFhYVITk7GoG++wZnyckVMQ4NQMW6cYJuXx6HVYKwDcnJzUd3czM9bu5bd9/GBrqUlG/3JJ8zq2TNO6/XXOUt1dc7u+HFm8Npr3EseHpydkRFnc/w4M/70U5jY2UEikSAvL0949OiR4Ofn13luy8uJqPQiza6pqUFiYiLGjh3790ziGKPsq6kpZd1a5a3ffkuZxL8R0FFXV4eXlxc3ePBghIWFcbGxsahUKHjrkyeR7u3Npk6dyjw8PODg4ICamhrcuHEDDQ0NwrJlyzjVrVthGhyMWpEI0dHR8PHx6dnhXhDo5X3hQsrmxsQQaep4Ph98QG76GzYQkVu+nIhWF6LG8zzCw8MFIyMjwdHRkQ6mpkby2okTAZCk+NmzZ6ivrxc8PDwYmziRyFhGBq2pjgSU54GHD/EsPR0en37KqTk5EeldupTI7N/JAJqZUT1x1/r70FDKaHdQzfSIgQNJLg1AXFwMlTNn4DxvHnR7M2XsDW5udK90lGtPnkxz3nLuBgYGKMjLg/GVK/xAJycGExPKThsYEMnasoV+bkFZWRkSExOh2twM12vXGFuzpvMxTU1pLi9cQIxIhOpnz/iAgIDnL2pjY1qrjo40NkNDCjQIApUTFBfTeYwbR9ftyhXKNm/b9twSAMYYtLW1WfLt20LShQvM29UV7PZtCoLJ5RRwio6mIMP+/RRgGDuWSKyFBXUZyM7GnatXBVlxMQpVVJiGWAwVHx+qWZ8wgcbh4kKSfXNzkvX/9RcFJ+PiaO3m5dGaazW868X/A6BymdjYWCaXy9mgQYMEZ2dn3s7OrsfFp66uDisrK+bo6MhZ3b0LlYAA1Kir84aGhoK/vz9zcnICYwyNjY1ISkqCQlUVGfr6gifPc+P++AOjfvkF/uPGMVdXVzg5OcHCwgLFxcXs1q1byM3NFerq6hjHcdBxdaU10FGxw3Ek48/IoI4AVlbdDD337NnDl5WVtV2gAQMGYMCAAXS95XLa/nnPu7FjaT10DZoMG0bb9lH21NDQgF27dkGO9n/CAAAgAElEQVRXV5etXr0a3p6eyD5yBHeHDeOHTZr0j1q/tqG2loJ3c+b8o83T09Nx8OBBvqKiQvTaa6/BoeV+7w16enrQ0dFR0dfXH1VVVbWA47h5165diw0ICCj8RwNQQon/Mihb7ymhhBJKvABCQ0NFYrHYqcfseR/w8vJCfn6+oq6uTpSSksICAwPh6emJb7/9FoMHD4aenh5GjBiB48ePw8/Pj4uJiQFA2dWHDx+irq6Oa+knzUxNTWHaUgsOAL6+vpBKpbh58yakUim6GY6JREBKCmXn1dWJFNy7R1LQDvWc3t7erKKiQpGdnS2aOHEijh49ihJ9fVQ2NYnqKiogrqjgcfQoEU0bm06H4Hkeampqgra2NjxbJMhIT4dmYyP6x8XRy251NexTU4HffiMykJoKy6dPgeJiGDOGqZWV7FR9vYCDB4nIfv89eQykpJBc+dkzGv9rrwEnTqCutBSxOjrQLi6Gv5kZz02dykFbm4hNWFh7HW5eHpGe48dJgv7660QoGCNiWF5Ov3//fRr3pk29u/X3gZYgjBAWFsZybW0xzMGBzeA4qLbIxY2MjDBr1izcuHEDfn5+nIqKChAVBSxfjuDgYDx69Ig/dOgQCw4Obmu91YYPPmgnVwoFnV9XtL78//wz/b66mmq1nzwhgqqlBXAcTp8+LTQ1NWHMmDHti1lbmzKvX3/d5og/dOhQJCYmss8++wwzZ86EkZERtNetg1Bfj6j33+fVeJ552NkxtS1bILt8GScXLIDn3r1CQE+9318ErcGKZcu6/27z5hcPwHAcMHMm1BsawF26JNSNGsUqduzAS+PH911G0Ao7u87fHTmSzBBnz27/TBBgdvKkYJGRwW2TSDBxyRLoFRVBR0cHclNTqDo6QiyXQywWIysrCydOnBCcnJww3tWVYyUlPR/31VdRGxUF2Z496PfqqxwAlJaWQiwWo6qqCrdv3+anTp3K9VjuYW9P/2Zk0H1/4gQpJSoqSOrf2EiZ/2PH6HlQWUmqgORkKle4eZM+e+UV4KefMKy4GLaBgSzn2jXUGRlB8/59cEZGZI6oqkrbDB5Mc2NpSX3n9fRo/lu6ClwODaW1kJ9PY3vwAJYNDQpJbS2bEhTEqX/1FUnOP/6YPA5WrgS+/BJIT6d7s66Ofv/vf1OdfmvgSkODgnUDBwLGxnhYVISrV6/yADgTExPk5+f3bMbXA0T5+XBYuBAOTk7dAgOmpqZYv349MjIykJuby87cu4d+YWEwi40F9u2Dzm+/QcfEBCYmJnB0dERlZSUuXbqEuLg4PjIykps1YQJeGjsW5/buVeTm5nIrVqxgKioqdK8uX06BkiNHqMSqg+S+pqYGjDG0qm/bfCHEYgqGrF9PwaTeJP2pqcDnn9OzsCMyMnr0T+m8aSpOnToFDQ0NfsmSJRxXXw9hxAikBQRg1ocf/ueF9gEB9GxqbGzvvvGCuHPnDi5fvgwA3Kuvvgr71jX/HIjFYri7uwOAeNy4ceLU1FT7sLCwq6GhocNCQkJy/8EZKKHEfxWUMn4llFBCiT4QGhraX0VF5ZRMJvMFgEGDBvFz587lXqRdXkfs2bNHUVBQIHrnnXdgaGiI06dP8+np6WzIkCH8pEmTRF988QUEQYCxsTHPcRy0tLR4uVzOvL29RX3Vzf7www8KHR0d5ujoyLm7u6Nb3/BXX6WM4759JAd3cKAX7A7EKjw8XFFbWyuaNWsWrl27Jtf49FOx+oYNOJ+SAl1dXd5PTY0b6OMDma4u0tLSUFFRIdja2rLKykoUFBQo3nzzzZ4jIXV1RDQ1NEjiq6pKL3uDBlEWfcECNHz4IU67uirmenuLcO8eSY137mzPtM+fT1lPY2MIhYXYt28fnEaOhE2/flAzNYVmXR0da+BAIhaMEfGoqCDy/vgxEaCXXiK5vkRCL5qlpUQwvb3p96dO0TgtLJ4rg38empubER0dLeSdOsV8L15E7rZtcPX371lGLpPRWBhDcnIyzp49C1VVVWzcuLHz9548ISLWWubg7U1KhL4ITevc+/kBgwYhacMGXD5/HguXLoVJ16CGXE5BlS5Z9daaXcYYFHI5jKurBef8fDhdvswSPDzwyN8f5YIAfQMDjBs37oVewHvE8uVEeloDRh3x+DFlAm//PY+t+vp6nDxyRDFsxw6RZnMzrk2dKqjZ2rKpU6dC93k1wzU1bcERAJSxnjaNMtAAzf3atTg0fToKZTJIe9iFSCaDb3o6DDdtwvnz5zFixAhh5MiRDOnpVLf94489Hvr2sWNo3LULpkuX4rGurhAfH88EQYBIJALHcZBIJGCMCWPGjGGurq7Pn4CmJlojIhHdP+bmpPrYvZuyu0uWUNmEvT0FkdTVqQxEKiWVgLY2tm3bJtTW1jIAcHNzE4KDg18omNNaYvP++++joaEB+/fvh0QigYmJCcQXLsC8pATDW3vdJyeTN8PZs6S06UHaDrmcygLKykihIAh076SkoO7SJSQ7OWHYlCnQtrLC5YgIJHMceB0dYf6CBd1aA3bC77+TauM5waTS0lLs3LkTQIukXlUVWLeOgim1te33ZQecPXsWyXfv4rVz53Bv1Sq+uLwcY8eO5Vy61tGfPk1KhvHjiQh3wLlz55CSkgKJRILVq1dTMJfn6XiHD5Naqyc8ekSByxMnOn9uYED+J87OPW6WlJSE8+fPw8fHB+PGjaMPExIg7N6Nzaam0NXVFWbPnt3ZlPLv4uJFCii9/Xav90BvqKqqwo8//ggVFRV88MEHPZeuvQBu376tiIiIyJXJZHYhISGKf7QTJZT4L4GS7CuhhBJK9ILQ0FB7iUTyjiAIi7y8vCRmZmbi69evMwBCXV2dEBQUxA0dOhRyubzvtmOgl9+ysrJOJOvQoUOCSCSCVCoVCgoKOEtLS8W8efP+9htMdXU1IiIikJ6eLgwcOFCYNm0ap94xa1JRQS/LGhqAtjbkGRnYs3MnLDMy8MjREXW6uhAEAaampljc6oI+dSqwaRNCz52DSCSCQi7Hip9+wtWgIFT4+QkaGhpCXl4ep6urCz09PcXChQs7jZvn+c6S9FGjiERs305GcB1kqDk5OThz5oxi7dq17fuIjiYlwsaNFJSg7Axyc3Px+++/Cxs3bvzP5KQlJZSRzMpqc84H0E42T5+mMb5oNrgHPPnxR0SnpyPX1BS2traYPn165zkxNqZ2XC0lGL/++iuvp6fHzWxtxadQkELh0CEyb2vFmTM0zhcYW11dHa5fuoSnDx7wmqWl3IJ9+8DV1hKR7TiWb76hF/Hr17vvRBCAykrwBw6A+/57wMYGzVZWODlmDDIyMqCnpwd9fX3k5+djwYIFzze/6wlXr9K17ngdOkIqpeufmNhjSUdfqKutRf7+/SiPiIA4Px/JgYHC8i1bel8/6upEgi0sSPXx+ef0Gc9Tzf6tW4CJCb7Oy4NUSlT/zTffRFlZGa5evSpIpVJmXFcnvLFrF/tu1SrwYjFGjBjBjx49mpOmpUEUFgbJ+vXdDltbW4vdu3djYGwsBhQVIWPKFHnQa6+JTU1N2wJ4ycnJKCoqQkJCAubPnw/L57R5RHk5ZfE3bKAA2/r1NI+BgRTYOXiQMvRdzDs74sGDBzh58mRbpjkkJOTFJh3Ajh07eAcHB250hy4DANC4aRNu3r4Ny59/bq+3bmqioMqdO0QCWwMrfaCwoABHvv8ejqqqipd9fESoqQF/7hxK4+ORaWICJxcX6GtpUUDDyYkUTf37U5ZcLqc1V1j4XJ+AtLQ0/PHHHwCoLeCnrYaj9++T8ujbb9tKYFrB8zwePnwIh4QEiCZPxp+RkQCgmDZtWvfn+40bFEByd+/xWnz55ZcwMDAQAgMDmV1rKVV1NWX2e+sMkJ1N67eFEMvlcgDoHghuwbNnz7Bjxw4EBgbCx8eHPtyyhe63NWuQk5OD69evo7i4GP7+/gjoEpjoE7t3U/DhzTcpsPfKK/Rc+5s4e/Ysn5yczLX5GPxDfPXVV1KZTGYREhLSi8xGCSX+d0BZs6+EEkoo0QWhoaHi27dv7xeLxT+4u7t7TpkyRW3IkCEiQ0ND5uHhATc3NyaRSNiVK1cQHx/Px8XFCb6+vn0ST47j0NXcTyKRsNjYWDDGhKCgIO7Ro0fw9vZmpaWliI2NhVgshra2dp/16GpqarC3t8fw4cNZTEwMf/XqVS45OVlISEgQ4uLihLjUVKHq4EFBe+1atgsQEh8/5qsAbn5FBTwZg/dnn6G+vp5njLE2kzhjY8DeHpWNjXxxcTHT0dVFlZYWvAMC+HFvv801NDSgoKAAAwcOZDk5OVxDQ4OisrKSVVVVCfHx8fyxY8f+H3vvHVbVlbaN32vv0+i9N2mCIKIo2EDsXWPs0Rg10dgzGc2YxBTDzCSZZEyZMcmYYjQ6MZbYYi+AiCggIogiRaSIIE1AihzOOXv9/nioekCTeb/vm/zec19XLglns8vaa++znue57/sR+vbti+wPP+TC4cMw2b2bITycgveOPcWBtp7tbeOo0ZB7+8yZRNddtw7NI0YgIS2Nnzt3jjk6OvI+ffr8tmC/spKCt2eeoYW1jw/Rhw8dov+fP5/o/nv30gJ+5crfHPBb2tmhz/btcFy0CLHJySgvL+e9e/duP+/6eqLVtiRmLC0tWWxsLGprayU/Pz9WVlSExpwcNE2fDlEuh0ajodZ2Y8ZQ+6wuqtNarRYJCQn4+eefpbi4OHavogJTZs9mI59/HuLs2XRvvb2JWdDags7Xl6rZwcHtO6qvp4RD375AWhrY2rVEI16yBDUDBkBcvx72Y8bguZdfRnBwMCUWYmI4AJiZmTGlUvlkLwVJIh13RESXLQQhk5HuvKlJb0eAJ0GhVMJ24EC4P/MMFHfuoPzWLdYrJwdswAD993bSJKLy37tHrunLl9M5zJ5NpmtffgkEByM8PBy9e/fG5cuXce3aNTg5OWH+/PmsoqJCMnF15X137hQuxsZCJwgoKipiTU1NSNu8GeKpU/hXRQUsLS25o6Mjq66uxjfffINz586hubkZ/s8+i/DmZoQGBAiWLW0dGWNgjMHJyQk9e/ZEU1MTzpw5A8YYNzc3Z3qZRn5+RInfsYN8D+zsyIzx6FG6nu+/p3vcpw/d99aWaKLY9ny2VrQdHR1RX18PY2NjODs7P5VHxsmTJ9nYsWMff+/JZMi1tkZ0amp760yZjObBtGmk6c/IoHvejefD7t27dafPnBE0CgXmvPaaoAwKAoKCwGbOxHkfHymFc1Zjbc0Dhw5lyMigADgtjZ7/L78kD4KUFGL/tCQT9eHy5cvS3bt3mSiKCA4O5n5+fnTxrYkSOzsySIyIaGMIMMZgb28P4ZVXgJ49UURSDN63b9/HL8jTk+b1gQN0P1qSfw8fPsT+/ft1VVVVgrW1NUtMTISTkxN1ZwgKIlnGI4mUNgQE4GaPHvxMejpLSUnhqf/6F7P805+wXaPhGRkZvK6ujnHOYWlpCZ1Oh4MHD0pqtVqaPXs2nZ8kEftr4ULAzQ1WVlYICQmBubk5Tp06hbt37yI/Px8VFRUwNTXtuh3hyZMknTp2jM73nXfo56NHicHV1TOoB5Ik4dSpU0ytViMiIuLxNp9PCY1Gg/Pnz3PO+V+GDx+uRxNlgAH//4FBs2+AAQYY8AhEUXzDzs5uxgsvvGCkr2IviiIGDhwIe3t7ZGRk4Nq1a0JlZSUe01k/BQICAhAQEMAAiOXl5WhoaBAaGhrwww8/wNjYGMnJyVytVrNZs2YhICDgiftTqVRYtWqVWFtbi6KiIsY5b1uR89BQ5Dx4ACszM/QLCxONjY0h27gRaG6GbPx4eHt5IaNDz2289Rbw97/j2WefFTIyMvCHP/yBqtKffy5g82aYDx/OOOc8Pz+fOzo64vLlyyIAKJVKplarAQD/+Mc/MPrsWVbdo4dkzxiDnx9RpNPTO2lUOefoxDSTyah62lr1Gz0ahR9+yC84O8PL2xvTp0/vtGCWJAl3795FXV0d/P399Zvc0YZE8z95koKfPn3o91OmUJWvFQoFJST8/elvAgKoMtVdb3Z98PICRo2CXW0tTE1N0dzcLAFor+z5+3eqVPv4+MDLywtpaWlC4+7d8CguxqVp06T6LVuEVhr3mDFj+AArK8aa9JHHqZK/efNmbmZmxgcMGMBKSkpQUFDABUFgoihSAAhQFd/amroRfPghBUKiSD4CAwbQAv2110hTvGsXBRcdxjXu0iXdgAcPxP4dnpFx48ZBpVKxlJQU3ZkzZ0QAaJWtdAm1mrwZnmAahq++ouN/8kn327VAp9NBp9O1sW60Wi1Ox8TgslKJHqGhECoryfDwvfdI1tIxeD17liq+jBEl+tAh+t2779K2HejDrdVFSZIQHx8PW1tbzJo1iwaKc7z++eeo/PJLpNjaoqSkBGac436LpOPw4cPs7NmzaGhoaNufq6urdtSoUTIMG0bz0tmZTNUewfjx4+Hk5IS4uDienJyMV155hbVVbbdsoefL2pp6s7f6bEgSBblLl1Jw+cUX9PuGBvIjsLYmuUJFBXDxIvhXX8FEp0ODKOLevXsAgBMnTsDExAQBAQHQarW4c+dOm0SlY0eMioqKtoD3MXz0Ecb/5S9wlctx4MABeHt7Q5IkZGRkwN7eHidnz+ahhYW8/0cfCY0DBuDLa9eg0Wjg6Oiok8vlkMvlQlVVFaqqqkQAWLt27WMJhZEjRwopKSnI1OkYxo0jmnwrpk0jttN771Fi8dAhYO5cYhNs2ULP5alTlNiSyzFu3DghOzub19bWMjMzs85ZDnd3ene4uFA7walTO/t+bNoE+PgglHN8/fXX4q1bt+DziO8JALpfr75KXVPq69E8bx62b9/OOeds7dq1MDY2xjfffIP9+/eTzCcp6TFjv0744QecSkpiDwD06NGD9QwJgXFtLYYNG8bKyspYZmamlJiYyJqbm1nr2LWxykpLqWXm6dOPMWn69u0LlUqFPXv2wMTEBA0NDYiJiUFgYCBmdjCkhFpNMqkpUyghsXs3ne+1azSfBYEkFJGRlOR5Chw+fBi1tbXw9fWVlErlb/YPSEpKkuRy+YU33nij4clbG2DA7xuGYN8AAwz4X4eoqKj+jLFnOefnAER3bMMTFRXlLZfL35w+fbrxk6j5np6e8PT0FPLy8vj169fZr6Y1PoLGxkaIoojTp0/rOOeil5cXz8/P5w0NDczV1fWp9yMIAqysrGClZyF4cOZMTPnrX2EbHd2+IFUogDffhHTwIMzv3GnX+ZqZAYLQVlFskyt4egJffYWgNWugVqtRUVEhtZq91dbWYu/evTrOudi7uBg9Y2Kwe84cgDHBZNMm2NnZSS/s2SOwM2c6Bfstlcv2aH/SJFr4tgT7P7m6Inj7dvbSO+/AYe5cAG1VHuTl5enq6uoEQRCYVqtFYGAgn6bPJO6LL8j479YtojZ3RFAQVbAfxYABRGFfvpyCrs2byVn7xRef+n5g/XqY9ukD2ejRmLpkSWcK7+uvUzWww/1dsGABSktLUf3BB/BxcMCQdeuE+vp6NDQ0oLq6GocOHQKbPVvqb2kptF7knTt3EB8fzx88eCA9ePCA+fr68pkzZ7Yda9euXSwjI0Pn5+fXfvzWoH/ePApYOKcgUBAoODx5khICegKTmpoa3MzOFgefOkVzZfx44McfIdjYYMSIERgxYoS4Y8cOXlhYyLqq+FVVVSE7LQ0hM2ag4KefIHh7o6eebg9teOklCkIfgSRJKC8vR2VlJVQqFUxNTVFbW4uDBw9CrVbDy8uLW1hY8KtXrwoA4Ovri8mTJ5PZW309zTV7e+CHH9op0Z9+2q4hP3+e5s6qVXq1znK5HCEhITw1NZXpdDocOXKkvTMGYxDS0mDv7Y2JLds/9PJC/JEjkq+vL4qKipixsTFrbGzE4sWL4UatBWUtO6b5umEDtUrTkzAJDg5GcHCwsGnTJik3N5e1OZN/+y1d3+HDROVuhbc3cPs2BbIWFu1JBBMTSn4BJF+pqgLUarCPP8ZrR4+iNj4et7/5BrIdO3DgwAH8/PPPem+Rubk5t7Cw4M8++6xQWFgIMzMzSSaTdQ7KWiQh8PMDbt+GTqfDrl27+N27d5mJiYnUEnxKR+3sxGa1Gj6LFsFr2TJp4Pz5wtWsLFGtVqOhoQH3799vSxDqa4eamJjIOeedfQ3UakokjhhB93j8eHKuT0qisbpwgar1KSk0Dq+9Bvj7Qxg/HkvWrGGXli2DLCSEA+j8fpHJKEhXq6kqv2gRdUEBKEl08yZsFi7EsGHDsHfvXsycOVP/XPf0BN56C41r1yI5NlaS+vfnK9asEQVBwJ49e1BaWtous7K2pnuWk0MJuUfR1AT36mrJafZsYfDgwcSKWbECLu1JLUGSJOzatYs3NTWxGTNmCG3fGT/9RKyfLiQz/v7+WLx4MczNzWFsbIzMzEx++PBhVldXJ82fP19QHDpEDKlx4+iZ7cjGKSwk7xRBICPBpiZ6zzwig9CHVq+AOXPmCL9Fr3/z5k0eExNTV1tb26zRaJb+6h0YYMDvEIZg3wADDPhfhaioKLlMJosZMGCAeWZm5qtqtTopKipq/saNG+9FRUWZMcayhg4dKiiVSlRUVBC99AkYPnw4Tp06xQcNGqSfSvuUcHd3h06nw7Vr10QzMzOenJzMVCoVe+WVV2D0K12LuwJXqfDQ2poMzzpWn8aMQVFzM+/13nvQHjoEWUICLXRb9MCCIKCpqYmC/WeeIYOo/fsxYMYMhg6Vajs7O6xatUr8/LPPtP38/GT11dUAY7CxsUFVVRUcHR3B7OxIuxkWpt9ginMKVFoWw5xz3MrLg/vbbyPggw8gTZuGs/HxyMjIkFQqFQYPHiw6tThib9u2TScIQudV4LVrVM2fN6+z7r0jWjXNR448/hljwCuv0M+NjUBRES1gk5P1m8k9ClGEfNkyjPjlF56ens6GDRvW/tmBA526IrTC6eef4fTee21meaampjA1NYWDgwNeeuklVj5mDCvx8YHL3LkoLS3Fjh070Lt3b8nT01O0srJ6rO90r169EBcXp78SZmxMdGnOKTC8c4fujVpNP+sJ9k+cOCE5ODhwJycnEZJEgWNxMQUgjKG+vh75+fls6tSpeum9SUlJOHnyJMw45w9HjMDFlBQmJSfD1NQU/v7+0sSJE4XHaOL+/lSJDQ/vRPs9ffo0T0pKYmZmZjrOOR4+fChKkoSIiAj07NkTBw4c4BUVFfDw8MC4ceM6GxOamgLR0VTB3LCBgv4VK6iy+eABUck//JACti5w7do1pKamtp2sjY2NBKB9rL29aZ8eHsAbb8Do9m2M9fYWWluPnaV9Sw4ODo/fH39/kg68+y4Fk13QlgMCAoS9e/Zg/aFDMNq4ke7lmjWdA/1WCAIZHV68qP+6BKGdZVFQAAC4vHMnZBYWGN67N3yHDkXc7NnSDUdHwbSsDP4LFiA7Oxvjx49Hbm4uS0pKYidPnpR0Op3eIBzFxVT9NjZGQEAA7ty5g5qaGrz88suwt7cXAKC+vl785JNPcNXRURL27RNmJCQI2LABrn/+Mxo9PHD48GFIkoSRI0dymUzGO4036J0RFxfHgA5sg0uXKLgvKKC2fgoFJe8WLqTk3dy5VH22taXtxo+nv/vlF0AQUHD1KvxyclDT3Mwwbx5dR1wc6drnz29vH3j+PCWKPvmEnqvKSmJUAAgPD4cgCNi/fz9WrFjRiQkBUOLq5OXLuuteXuK0pCQhQpIgqNWQlEpkZWUBQKduLIiMJNaRPuzaBe/KSnZ/6lT6/4kT6fnskKgRBAHPP/985wdt2zaqxK9Zo3+/LXDv4KnQt29fVlFRIdmvWydUv/02d9iwgeGTT2jePzpnlcpOiV789BOZRt661e3xAGDQoEGIiYlBUVFR914VetDc3IwDBw5otFrtGwAOb9y40dB6z4D/FTBo9g0wwID/VYiLixtnY2Mz67nnnlOGhYUpmpubXUpLS1+Jj4+XJEmaLoriwNraWly6dIldvHgRpqamsLOz69b119HRkd29e1c6fvy4UFJSwquqqlhtbS31Rf4VaDXAKioqAuecKZVKbmlpKbm5uQkmJiZdU9N/BbKyslA8aJAUoFYLaGjoFPDfv38fR5RKVt6zJw+8cYNh82aqUnl54cKFC+jbt2974FZRASxYQIvcR9uAJSXBb+VK4f5bb6HX6tUYPnw4EhISuFqtZhqNhslUKuTeuyfllpfrrpaUSJmZmVJubi7q6upEzrnOo7pawLRpgLs7JEnC1q1btWq1WmCWlnAbPRp31q1DgqUlHzJkiDB16lTm6ura5mtw4cIFmJubs549e7ZrijdupMB8wYKuTb/GjCFDwicla8LDaQGfkkL7W7qUjM469p3Xh379UJGSgoqyMviOGNG+uF6wgIK5jiyShgb63fz5emm6JiYmyDl5UpKHhDDbXr3wyy+/cGdnZ2natGmim5sbbG1tH5sr165dQ01NDQ8LC9MvtG6t6jc0UFC5bh0FLa1mWtHRgJsbIJOhvLwcMTExbPHixYJSqaRkyKxZVK0dNw6YNw8yExMUFhby5ORk1q9fv04tIUtKSrB3714ompqwvrCQee3cySJHjoSxsTEqKyuRm5vL+vTp83iCSxBIWjJiRKcESVNTE7t16xZ/7bXXhKFDhwrh4eEYMmQIfHx8YG5ujoEDB7LBgwezvn376g8+BYEYJAMGUMVbEGjeX7lCOuy1a7vUjet0OnzzzTcAgKlTp2Lu3Lno37//42NcUkLH8PWlANvEpE0jXlVVhfT0dHbhwgXExcVBpVJxzjlr6xYQEEBV5lY5iR742tggLTsbvLgYLsnJEHbu7F5yMmIEBbfbt9M+uzGnA4CdFy+i0NMTYWFhMJo0CT5z57LBNTUI2bwZPTZvRv/9+2FhZgbP0aPh4eGB+Ph41NTUCEuXLmWP6aoTEuj5mTQJjN5rE4sAACAASURBVDH4+voiKCiIdWwnqFAoMGTIEAwaNIi5urvTcydJwMOHSFq/nl+Ry5mltTVmzpzJ3N3d9c7piooKVFRUwG/vXrgeOULeG5MmUQJTFOkd9re/URXewoKSgeHhdO87JklsbABra0Snp+uuBAdj3HPPMVlEBDBwID2f775LCZ3YWHpu//Qn+jkhgZKHn35KSc0WuYebmxuKioqk1NRUHhISwjomtQ4dOqTLzs5mS1euZK6LF0P4+WegsBCsZ0/kFBVJ9fX17Pz587h3754uMDBQYJ6edA7ffQe0muq1YuZMZHl4IDMzUwoLCxMweTIF/PraNrYPGr13Fi0ihsPTQJKA6dPhzTlrNjZGZXU1c/zsM0pE6Pve/OgjYnW0JhH79aPEQn4+nVs337V3797FlStXMHLkSDxta8X205Rw/fp1NYCxANZevHixZ3R09KH/lJFngAH/7fjPV44GGGCAAb8jqFSq1WFhYWYAUcdHjx6tWLlypZGrq+s7PXr0eGHlypW4f/8+a25uBgAcO3YMdXV13e6TMYY5c+aIixYtglarlbKysqRDhw6hrKte2l0gPz8fsbGxMDEx0Y0ePRrz5s1j5eXl4nfffYebN2/+xit+/Fw559RT+xFX7UGDBgkjRo5Eo0IhISeHAuSPPwZqaqDUaKDp2Nu9leb98GHnA2g0gJUVrg8ZotN1WOS7uLjonJycdDY2NroLFy7oKvv3FwZv2iQzq62VyeVymbm5uWBnZ4e4uDix+plnULttGwDgypUrqKyslEVGRiInJwdfpqaiTqvlS+3s2KBBgx5zlp48ebJQUFDAN23aJGlHj6Zq7ZYtVD3qDidOPHmbjoiMpABOqaRgaedOCpi7gkIBW19f5nXoUOftcnM7b1ddTYveu3e7NqsDwJubwaqqsG3bNqmgoICFhoZ2uULOzMxEYmIi6uvrheLWfuePIjmZNPtjx7b34Z46la5RoSBJxT//CeTno+HGDcjlcukxJ2w/PxqX5mYIOh0WLVrE3N3ddZs3b0br81RaWopvv/0WNjY2/PXx4+laWxIdYWFhmD9/fpdu4QBIfvGIpKVnz56Qy+UstUWaIQjCU3XHeAy2thSYVVbSPcrMpPaPK1dSgBIbS3M+L6/tHubn57f9ebdSm5dfpoDvxx8podSBeREaGopZs2a1nfupU6fY999/j/z8fHpWBYH8Cj77jHrZPwpJAry88KqnJ5yqq/mtXr04vL2ffL2CQJVtfRTwRzC1pTp88uRJSlJYWgLz5oG16PhRWkpJrytX4B4RgTfXrWNvvfgijPUlz3r0IM38E/DYPZw7FwgORqBSycKSk+Go0UhdJUAZ5xh+5gzsyspw29ycklFKZWdmT3MzGYC2zjelEtixA81ffw1NyeNF3x49erDGxkb6bnB2pmDfxISo/1OnkufBF1/Qfg4epKTCO+9QQrVPn04SlOeee05oaGjA8ePH27RD9+/fx82bN8UVK1YQnV4mo3teVQV8+SWei4gQPDw8AADZ2dliaxcI3L4NbN36+CAcOYKIN99k1dXVYn19PSUE9EmVWlFdTW35rl4lRsmT0NgI7N9Px798GbhyBef9/XFoxozuTTRjYjqbgAKUMBw1iq63G7Qmjjp9Fz0l5HI5Vq9ebbx+/XrjP/3pTwqVSjUdwFNQswww4PcNA43fAAMM+N0jKirKCYAtgOyNGzc26/ncGEAoACOZTDbyUaM7KysrLFy4sK2M+Ic//AEymQxpaWlISkriAFhpaWmbBl4fVZ8xBmdnZ8yfP18EgH//+9/S2bNnhfnz5z/1dWg0GpiYmEgd28+tXbsWn332Gbkvg6iIZ8+e1XHOMWzYMFFvpbIbtAT7HB9+SFrJnByiy3MOHDqEHj/9BAlg8PWlReqgQcCxY1j8xRdQBwZSRbVPH6pS9ehBi8J//5uqiDk5wLBhQFoa0kaN4pEt1FUAmD179uPfNxkZGGdsTLIAUOUlJiYGux8+5Fbu7swtIQEJCQnw9PTUDR48WJTJZDA3N4ff3LkMe/fSIviRnvCenp5Y4OjIvr52jWmXLoVs4MCnG5i8PGrF92sgCBS43bpFC/Pnn6dkx969KC8vR0lJCaqrq9HQ0KDTaDTQOjgwyc9P8ElNhazV+Ts1tXPrrLffJvPCCxf0HrKxsRHx8fGwqKoSbp4+DdPZs/nKlSv1+jMANKcOHToEZ2dn3tTUxPbt28f/+Mc/dq6EnjsHHD9OAe2WLZ1ZBozR/2dnU6Dw8cdw3rQJ8g0bKCjoGDyJImnMjxyhjgvJyVi8eLH4/vvvo7GxEQqFAlLLnFj+4otMyM5+7DoPHTrEvb29uZWVlf4o7ptvqGJ64EDbrxQKBcaOHYsjR44gJiZGeuaZZwS/Vj+C3wKFgqq1U6cS26F3b2KE6HRU+V+3jvqyNzVBLgh8zJ077JaREX746COsfvttqLoKdE6coEr6hAmPBV0BAQFtLe20Wi0++OAD7NixA/PnzyczN6WSdPjz5lFipjVA/ewzYl5cuQJs2ADV+vXs+5s34bVzJ0xMTKRhw4YJXZojymREbW9upiRGK239EZSXl+OXX34BAPTQJwsAiPoNkBTm7bdpDKdNIzbITz+R/OKtt2iu//3vlFT6LXBxwT+DgmBbUYEF334rwNycEimtkCTg9GnoRo6ELCkJRiEhqBw8mIPkRp3x4YePsR8q3Nywy84OM0JDcW7xYl5qYYHGxkYGAG5uboIkSbh27Rq8vLxgaWnZWaJiYUGVc4AM/zinbgfu7hQQl5WRXGD9eggREViyZImwefNmhIeHw9LSsrVVKTc1Ne18ru++i4aPPsKdP/8ZzU5OgIVF5/aH4eGkfa+p6Rxk+/lBHDkSRkZGPDExkY3+7jtiNnSUsXTEsmV0DS2Jpy6h1VKgf/IkSSBCQ4GcHHAjI+T9+c8w7Y7lVFNDf6OP9XbjBs2PhoYu2QetyZ3f6sLfCoVCgdGjR5scP378LQBH/6OdGWDAfzkMNH4DDDDgd43333//VUEQjpqami7S6XSvxcbGJg4fPryg9fOoqChvmUyWaWNj87yJicnM0aNHG7m5uXXLalKpVFAoFJDL5bhy5QouXbrErly5gsTERFy5cgXNzc2Sp6dnt32n6uvrcfXqVTZkyJCnpt+Loojk5GSWlZWlDQkJEQAK1i5dugQXFxeIoojt27fz6upqXldXx86ePcuGDh3arcTgUeTk5ECr1UqBQUECEhPJKVmSSLNuZYViHx+kurlJIRs2CPjjH4nu26cPtj18yN0jIpj12rW0eB80iPSqY8fS4lGppIWmhwcwZAguX74subm5Cd1KGUaNouBt6FBApQJjDF7/+AccGxtZjE6H27dvQ6PRYNKkScLt27dx7Ngx3LhxAz3Dw2GWn0+a4476dwDgHMrx41FjaYl0Hx+pd3g4e5oWYYiI6DLYeSKMjMAVCvDAQKjt7XHq2DGufPVVdtHCQlvX3MwkSRIYY4JGp2MTAgJgvG1be2XTzo6CIMaIBj9tGlUw9VSm9+zZw48ePcpqa2uhcHPjwTNnsqGTJwvd+Tnk5OQgJyeH/+EPf2AFBQWwtbWV/P392yekTkfyhaVLSYqgUnXtayAIQEQEEkJCUJaZycLWrgXz9aWFuVzers319qZtQ0IAtRrJaWmSra0tc3BwwJkzZ1BRUYERFy+SprljoAagoKAAt2/fFuzs7PQ7+Nvbk5b+EfduBwcH+Pn5wcTEhMXExEhP0wpTL3bupKrt4sU0r3v1oopsbS0wfToFS6tW0Zz19YVlnz7MMj8fUno6jBsbIf/732G2bx8e5ObCKD+fkj/37hHVetAgkgXk5JDRXxdBuCAICA0NRWpqKr969SprlSPAzo5YDZs2USJCo6HAaehQSkIwBotXX0VxSYl0+/ZtVl5eztLT0+Hi4tJlMghyOZCdDT5tGtTPPw+ZnuShkZERzp8/DwDIzc2FnZ1d114mKlV7C7ulS+k8q6vp/bJkCfCXv9AYBwYSg+L6dZrrSUnkhSGXU2Cs01FgWF9Pv1OraU4JAoyMjJBZUQG7WbPgaG5O7ITevSl5ERsLvPgibo0cia0yGWotLdHU1MTUajVPSkrSxcXF4cyZM8zW1hZ2n35KAW4Huvp3332HWkFAk1KJvlot6zt9Ohs0ejRcXFyQlZXFNRoNy8vLQ2pqKi5duoTAwED9LefS06mrwbJllBxav56OU1tLbKgjR6DKykK5s7MUGx8PHx8fZmFhgfPnz7OIiIjH2hretrXFjbNn4X/9OnqPG8cdgoM7b/DgAT0bixe3yQVgYwPIZKi3tmY5ubm6sJ07BejrjACQZGf6dHr3PEHSgdBQYrxYW1Ni5513AJUKnHOcP38eSqVSGjx4sP7n7+ZNSkzpS/bI5e2sgvXr9dL5lUol4uPjSU7yH/rYlJaW4tatW/nh4eHboqKixMTExG3nzp378dy5c2mRkZG5T96DAQb8PmAI9g0wwIDfLaKiooJlMtlPK1euVI0YMUIpCIKqtLTULjw8fFfrNomJiQciIyP9Z8yYoQoNDVU5Ojo+tXzJzMwMlZWVrKysDP369YOlpSWqq6t5Xl6eEBkZ2W2faVdXV5aQkAALCwskJSVBkqQnmv2pVCoEBQXh7NmzQmRkJACqYNja2uL48eM8OTmZeXp6IjIyUkhPT+eOjo68f//+TxfMtiA3NxeVlZWkK/bwoMre7dtUcZw0CfmMobi8nIeGhgqYMIECH09PXM7MROKVK0y1YgVcX3+dApZNm6hKuWwZ8OabFMzMmAGA+lK7uroKTl1VkQAKcKOjaV+truBXr8JiyBBEvvwy6uvrUVJSgvT0dOTk5CA0NBS1tbXSpUuXWOjixVAkJVGg6eJC1aC+fYFx4yD89a9wHjsWx48fZzk5OdKAAQOePEDr1lFVu8Xp/9fg5s2b+PbbbxF77RouVVZCwTkPq61lQz/5ROiXmMiCJk9GQFgYgoKCoAoMpMp0YCBV0dRqMsNqaCCmxNix+k3VABQXF7PGxka+evVq1uvkSWZZU/PEVoC7d+/mzs7OCAoKYikpKSgsLBQyMjJ4SEgIq7hzByYbNoB9+SXp1VetomC2hSr8KDjnuHfvHnr26oVzly/D7J134DRsGJlw/e1vFNxVVFCwERZGlPhXXkHF9OnsVl6epFKp2Llz59A/JIT3nDuXYerUx+i+/v7+rKGhAfHx8XzIkCFMkiRUVVUhNjYWP/30E+QODpJ7WRmDt3en6h9jDKampnByckJ8fDyTy+Xd0+r1QZJIcz1+fLue2MODZBp79lCAM3cuBZ1yOQXfDg6QjxmDhogIqMLDcUAQkGZri+KyMgR5eYFptZTUePNNCqJ27CD5TEMDMVpmzaK5UFZGAc6zzwKbN0Oem4u+8+czy3ffha5XL9g/fEgU8UWLqMK/bh09axs3kseCtzfwhz8Acjn69OnDhg8fjmHDhiE+Ph7Nzc26wMDALt97D4yN8Y+HD3E9OhpJcXE4efEicnNzpcDAQAYARUVFsLKyQkGLWV9mZiaeWucsk1ESafVqSghmZlJLx+JiCn4LCylo3LuXngvGiAJ/5w5d14EDlEBYsYIYASUlsN+3DzwnBz779sHk1i2aB0uXUhJh82bgj3+ETYuPR05ODmxsbKDVamFjYyMGBgYyW1tbJBw8CJ2vr1Tl78+K7txBbm4uduzYgaamJixZsgSDXnoJdpIEy6+/hunkyXD09kar74Ofnx+sra2hVCp5SkqKFBoa2j62kkQ09YSEdn8PY2MgMZGSeps2EYW9sRE4dAgBM2cyux9/xKGcHGbl7o6bN29i8ODBbQnc6upq5OTk4P79+0hubIRWocDYoiIGOztiTbRCqSTWQMc5zxgQFobSYcOgys4Weq5fTyyQR5GSQp0uXnjhMaZUG5qbKflVWUnbyeU0pzu0oWSMIS4uDo6Ojp07IHREfj5QV0ffFfrg5ATMmUPPFued22GCZDPXrl2Dvb09uv1ueQrs2bOnvr6+flVcXNwdhULxo729/bORkZHGRUVFnkOHDv3+P9q5AQb8F8FA4zfAAAN+txBF8flBgwapWh2Nb926Va9Wq/e3fh4VFTXQxMQkdODAgb/Zn2TgwIHQaDQYP348FAoFSktL2TfffIPm5uZuDYIkSYJGo8Evv/wCHx8f3b59+0QTExNpxowZQncuwkqlEqIo4ueff+bTpk1jMpkMAQEB8Pf3Z5IkQSaTsU8//VQXEhIiNjc3S5s2bYKbm5tu1qxZ4sOHD5GamooBAwborzYB8PDwwPXr19vHY/Nmqii3JCLaaP4A0ftb+me/9NJL7Mcff5SqqqoEKBRUUY+NpUVrbi4FrSdPUru+zz6DyYABjNXXP3mA16whGrxaTRXQCRPaKsuTJk1CcHAwMjIy0BKwYvTo0cJHH30EbmxM+vAffqBzGDaMAiVnZ+gkCZ+1aD8VCsXT3fs5c6iS2A0qKyuRk5MDDw8PpKWloaysjFdUVDBJkvi4ceNYYGAgJEmCsbExHVOjIRaEUknXZW5OAf4bbxCr4cKFdkqtkRFVZwcM6PL4Y8eORVpaGvLy8tDT1rZbIyuAgvP79+8znU7HAWDw4MEoLCzEpUuX2C+//ALzL76AjyBwOxsbZqzREFW/Q2s5rVaLtLQ0uLu7w97eHgkJCVJ0dLRgZWXFtVotM7OyokX/7t00dhkZ1MYsNpYSMOvWAQMGYKSrKzb/8IOwr7gYjDFMvnCB4dgxSq7owejRo5GcnMw++OCDNm1ua0IrOTmZDT15kqrizz//2N/K5XLMnTsXe/bsQWFhIZ81axZ7amPLmBiSVTxKQzY1peekoICClLVrSZ/dck6CIMDf3x86nQ4NDQ08JiaG1VlYoHHWLKI0T5tGQWBFBc313bvbXO7BOf2nVrfPv3v3AHNzVNy7B/vKSnJsLymhgFGppMqogwNRoWNjKVn23nv02SPQarWoqKgQampqHnN+B4g59P3333NHPz9p/qVLovbsWZx6910UFhZiy5YtvLm5mel0Om5ubs6HDx8unDt3Dg4ODp27DTwtrlwhentxMQX0EyeirdI8enT7dq2t5d58s/13rXIojQY1hYVI2r4dLhs2wM7Dg+RIJ0+2t8MURTQ1NSEuLg6hoaGYSNT6TlGjd1IS1OfOsdMuLlq5XM6USmXbw5SSkqJzcXERMW0aVaIvXKDzMzODubk5zM3N0aNHDxw/fpxlZWWJn3/+ubRy5UpBoVDQed6/T238Osq9nJ07U9Nb3f6LiuDr4MCqGht50auvsj6Bgfjqq690tbW1Yqt3hZmZmVRTUyMoFArYzpwpwdVVwJtvkh9Jx2SfiwswfDiN27hx9LsTJ+BmZoYrycm4P3EirB+9J63v/h079JuXxsRQInjtWjIALC8nGdeUKY9vC8DLy0t3+/ZtsbS0VH8wvndvO/OjK/j40DNjbAzs2tXpo9jYWMnf31/ora+Ly6+ESqWCKIpTRVF839XVNXDOnDnGdXV10Gq1AVFRUTNEURwol8vdm5qaDm7cuHHPf3xAAwz4fwRDsG+AAQb8nsE7LuRbTMAcoqKi2MaNGzkAXzc3N6lbw68nwNnZGbNnzwZAPeR37dol+fn58Y6LQ30QRRHLly+HKIqwtbUVtVotYmJihD179nBfX1/m7u6OoqIihIeHt/UOBmgBsmTJEhw6dIhv27ZNWrp0qQhQQNF6rTqdjmVlZfH6+noWERGBs2fPivX19Thz5gxu3LiBhIQE/uKLLzKHR9yUq6urER0dDScnp/bFupMTLZKfeQZYvrz1GLQwfvvttsqrUqmEsbEx55wjPz8fHh4eEBijYG/rVqKnZmdTtcnbGzqlkvsuXUr737+fqpLLlj2u1ezRg4LCe/dI0wx0MgxzdXXtVKFVKBTwzcmBeOYMBfcTJlDF9e5dat9EA9S2fas/Q3FxMZydnbuWVDg7t9NfH8GNGzcQHx/Py8rKmLGxMc6cOQNHR0fJxsaGFxcXi6tXr2bW1o8to2lsLl6kn5cvJ1PE69epejZ0KAV9f/4zeQ/ExtLCuhsIgoCAgAB25swZ3nP8eIba2i63bQnyAACtFVo/Pz/4+fmhsrKSa3ftYiWursjp1Usq/+QTcUF4OOTLl8PF3ByN9fU4ePAgbt++DYDm8vPPP49z584JL730Eq5cucKqq6tbe8ITLC0pSZOdTQmivn2pYr19O4xefhkvREdj69KlWL9+PS3gu6ITt1znmjVrkJ6eDhsbG/Tq1QuCICA3N5e041u2dF2BBODl5YUlS5bgq6++YhkZGbCzs8PPP/+sCwoKEiMjI/XPgcREmp9XrujfKWNkuLZrF/U2b6Xld6DHi6KIiIgIdvnyZQiC0Fm7LAgUoDs4UEKh9fo79qs/fJj+bZnHp7Zs4a7//CefPGQInfD48ZQYePddYiDs2kUJlp9/1iv7EAQBS5cuxa5du5CdnY2BHfwrNBoNUlJSEBsbCzMzM2nhwoUiFiyArLISz9y5A2nSJCE6NhZWVlYICQlhgiCwluQRz8nJYU1NTXq9S7qETkfju3kzJbwWLiSZx+zZnYP6J0ASRfx07BhvlsvZ7oQEbBw9mhIo77xD1f+RI4Fhw5A4fDjq6uowtgtvgB49ewJBQcxvypS2L4cHDx5g165dPC0tTQwJCaH5/eabNN7nzxN7pUNCJSgoCCUlJdLdu3eFk0uWSH2ys4XSl15ChlaLZ+vqYNdxfPz96R1YVNQ5qHZ3B778EmE6HStdtgwPDx+G97vvit4WFqgYMQLmVlawsLAQOOetCS+aC99+S0mRV16hedFaAR83joL+FpTs3s2LFQrerFQKxq3tQ9sGU6JuIL16EeOgI44epXe1pSV5euTlUTLyCV1H5s6dK+7YsQM//vij9Nprrz3+oDU00HvhSXjnnfb2jx3QkkjVKRSKp9eudX2upgkJCS9bWlqKgwYNEgVBgLW1NcLDw00KCwu/d3FxMTUzMxNOnDgxMyoq6vzGjRtL/9NjGmDA/wsYaPwGGGDA7xaxsbGeKpVqZO/evRUA4OHhobh169ZgSZImREdHH2WMjfXy8hrh6+v7Hy8MACA9PR0FBQXshRdeEJ7GIMjU1LStwi4IAry8vGBmZsYqKyt16enpgkwmk86fP8/Mzc07tekzNTWFRqPBnTt3eFhY2GMLJhcXF9bY2MjGjx/Pzp07pwsKCkLv3r2ZSqXCzZs3YWJiwq5du4Zbt27ByckJrS2tdu/ezWUyGaZMmSJ0bHOFHj2oOhYUhNLS0vbj+viQFrbFOfzGjRtSXl6ekJKSgrS0NN3AvXsF9t13wF//SsHdlStUgdywAcnXrnFh2TLBdfly0t1+/TVVhD77DPjgA6Ijnz9PyQBnZ1pMvvtuO+21FX/9KwUHRUV0Lm+8geYPP4SjRgNx4kT62xEjaNG8dSsweDCYICAuLg79+/dHfHw8amtrceLECSQmJvLy8nJ28eJFKScnhzc1NbGYmBhotVqo//QnyHfsQOPs2W1BTHFxMfbt26dLTEwUnJ2dERkZienTp7PBgwcjLCyMBQYGCufOnUNycjKKiopQVFSELo3hJk+mSnRaGgWJ339PpngbNxJNPDi4k0N7V/D29saZM2eYb04OzLKyiCGgB7GxsTh48CDMzMwwb968TpKTIBMT1mvrVvT98EOEzpwpJCUlcfkvv/CatDQmHzkSV69eRUZGBmxtbTFx4kQUFBRIly9fZhEREQgODkZeXh6ampr40KFDH5dHGBtT4PHii+SDEBsL4bPPUPj++7Crq4NvQQGxB0aM6PY6VSoVPDw8YG9v33buSqUScXFxrKdGA7MVK4i63QWuXr0q3blzh7m7u+PAgQPw8vJi2dnZiI+PR3V1Net0n7RaOu/Jk7uUMLTBxobo89u2kUxh7Fhis3RAfn4+r6+v513qls3NSb8+YUKX+uiUlBRkZWWxmTNnsjYGUXIyJeW+/ppYAOvXk0t/N87nZmZmSEpKkoKCggRbW1twzrF3715+8OBBVlBQAAcHB+2KFSvoJBijYHb4cDCVCt5z5sDZ2blt/Blj8PPzYzExMSwhIaGtZ/wT8fAhyUO2bm3vr84YMXOMjSlh0gUT6VEwxnDq1Cnm4+ODMWPGwNbGhqQVa9fSOLi4IM/ICKcuXYIkl2OEvnnGOXWX+NOfOlXflUol/P392aVLl9C7d+92n4PISJIeGBvTe6blmi0sLBDi58eGWlvDdvt2dqZXL6TK5ahvbERKSgrS09PRr1+/dk+VDRvofbZixWOndL+6GkcbGqQkX19mVlEh+Rw5wiwDAqBKTATc3MAeNawzM6Pqeut1+/rSmEZEUPIjNxfw9MSt9etZdW0tC79wAcpz56B84YX2fVRW0n5Wr25nCTU10bzauJEYDfn59M5+440ntyUFJby0Wi0yMzNZZWUlDwgIaH8GOCcWypgxelkoneDsTOPs70/PW0sbytjYWMnOzo75+fn9Nk+ODlCpVPD19RXd3NyEjnPcw8NDDA4OVnp6erLU1NSH9+/fv6zT6b4YPnx4N+1WDDDgvxeGyr4BBhjwu4VSqVzYs2fPtlWQra0tVq5caRITEzMwOTn5liAI8pCQkN/Qg0s/Hjx4gMbGRnz88cdYt25d967DesAYQ9++fdG3b9/W5INw8+ZNHDx4EPfu3cO4FuqlTqfDjRs3YG1trTdJ0aNHD/To0QMPHjxAbW2t2K9fP0iShFu3bkGhUKCmpgZubm5coVDwnTt3Yt26dYIkSbh37x7mzJnDWr0DSkpKEBMTI02ZMkWwiI4GDhzA0YwMiKIo7tu3T/fs4cOirEMVhjEGhUIBKysr6f79+2KJvz9cWzT6kMko+JozBxg9Gs7OzkJcfDysbGwoAG6t2js4kHlVfT2ZSS1bRoHu3/5GTIKyMvp3715aGF68SEH+hAltVdAT06bB/49/hAJoovFK4wAAIABJREFUp+7m5JC+d9QoMHd3MMYwYMAA5Ofn85s3bzIAcHV15ZWVlVwURVZXV8ePHTsGAMjLy4PdyJG8urKSaf/xj0eHW3z22WcRFBTEOgadrVizZg2qq6tx8+ZN6caNG0J1dbXuhRde0J9csrCgQP+77yio3L+fdMkZGe0u3k+ATCaDSqWSHrq4CF31fuecIyEhATY2Nli9enXnD2tqgJgYCK391QG8/vrrDB9/zPbfvi1t27ZNAIAJEyYgLCwMABAYGCh0pOU2NDTAzMyM4xFqdCcolbRgnz4dsLND0NChVH3W6ajC2bLvXwNTU1PY29tj5+XLeEUmg9Ejmt6kpCRkZmaioqJCampqEjjniI6OxjPPPIPevXszzjn27duH1NRUTJo0qT1Qfe89SlS1ztGnwQcfULuxL76gCuTq1YBMhrq6OhQXF7OW8dEPQSAGRGEhtSvUg6KiIvj4+OjMzMza55JaTQHeuXMUjCUmPtFMTafTQavVsgsXLiA3NxclJSW8tLSUDR48GCNHjoTsUdqTTEZJOCsrChpbvQvaTl3A+PHjcfLkSZw4cQITJkzovlUiQM/2kCEkC+qIXr3oOP36EauhK513B7R2cwgKCoK/vz+1Iiwra6+Wjx6Ng5s2YdmWLbja1f4yM6mq3RJAdoSxsTEsLCykmJgY5urqyhQKBd2vTz8lf4WEhHZDzbIyYM4cyAcOhP3ly1gEevYAoLCwED/88AP+9re/ITQ0lE+YMIHhz3+muaYHnHMUFxcL06dPR0JCAr86fjymWFmh1zffgB050maC16kqbmFBc3bOHDqXhQvpGduyhRITI0ei+C9/kUrv3hUeWFpiSkcD0lOniG1082Y7KyQxkfYZF0f7io6miv8TvGY6QqfTITExkVtZWbEbN24wa2trjBw5kj6srCR202uvPd3OzMzoO6UlEf7gwQNUV1cLc+bMeerz+U/x4MEDrVqt/nbjxo3Sk7c2wID/ThiCfQMMMOB3h6ioKJUgCIuMjIz69enTp9NnoihizJgx8n79+smVSiV+bWu67jBq1ChUVVUhOzsbv/zyi27SpEmiUqnEtWvXUFJSoktPTxcXLVoEjydVBzugV69esLS0xL///W/cu3dPt2DBAjE6Olqqra3F3Llzu61eJCYmwtjYmGu1Wvbxxx/DyMiI+/j48PT0dCEkJIRZWVmxffv2SZxzZGZmorm5mVlYWECtViMzMxPR0dFco9EIhw4dkl5wchLYjz/CY8oUnYWFhZiXl8cKY2ORHxEh2fbqJSgUCmg0GvHBgwdwBvgzf/87jNLSABcX5Ofno6qqCgMGDKDq3fr1mLp9O3NwcMCBAwe4r6+vNHnyZFGlUpGRWGsP8Nu3qdqTmkpaUIAWoC+8QIvxBw+o+t1+AwDQwvgxU8KePclssKwMCAlB78GDYWpqijVr1jDOOTjnEDqXITvvYN8+pqmqQs3KlaioqICxsTGsrKwgk8lg0kUbKACwtraGtbU1vL29hcjISHz11Vfi6dOnu6QP4/Zt0sk+fEjaZc6BY8eejtoKkqqo1WrB3tKSgjI9hoI1NTXgnLf1Ru+EFSso0bBkScedAidOYMrRo0LD/v1cLpcjLCys0/h01N+6ubkhJiZG0Gg0nVtgNTeTsZq3N2nan3+eFuqjRtFnr71GwUNDw1Ndqz7Y2Njw8vJytsvfH7ZffKHr98wzoru7O3bu3Mlv377NTE1N0a9fP+HOnTt89uzZzMTEpFNleuzYsSgpKeH79u3DnDlz6IM+fZ7cbkwfQkPJEO3VVylw9feHzsICDx8+RFNTk/D+++9zpVIJJycn3fz582UAtU68fPky+p05A/NuqtmiKKKxsbH9F2vWEOV97VpyuN+y5YmBflVVFb744guIoigUFxejuLgYANjq1avbWnnqhbMzsQimTCHZySPB3sCBA6FUKqXDhw8LqampMDMzk0xMTHhLYgFDhw4V+7fqsv/+dwrEn3/+MbM1ADQ/PvuM2A6Pto4DsHPnTl5SUgKtVssEQWhLLPi39oEvLibKecujrVar0atXL/x7/nyonJykUenpAoKC0Ckxxhgla/RAEAQMGzZMOHLkCGpqamDfUW6ydStJLOLiaHzs7Ch472BW2DrXevTogY0bNyI1NRUnTpxgo0aNgsLYmLoRKJVUPe8AW1tbRERESMePH2erVq0SMzMzcTQ2VjoxeDB7ceFCZrV/P43l8eMkWYqMpGsSRUqMrlxJ75TFi0l/DwAPH8InNlYI2b0bpiNGQBUWRuOrVpN/wJdfUgKBcwrsly8naVRQEP3s50fSoqcMrtVqNYqKilBdXc3efvttfPnll4iPj0diYiLGjh2LgLo6GD/CiIuOjkbPnj07S4I6YsMG4IcfcGvnTr5r2DBmb2/f/dz9H8bgwYPNCgsLP4+Kijq3cePGwv9rBzbAgP9BGGj8BhhgwO8GUVFRwYmJiWc455/Y29uPfO6550y6qq4bGxt3a6D3W8AYQ8+ePVFdXY3Kykp28+ZN3L17FwkJCaysrEyQy+UYN27cr2qFBxDVtk+fPrhy5QqLjY3FnTt3hAULFrAu+2O3wMXFBRcuXEBqaiqTJAlTpkxhERERLDw8HM7Oznjw4AGuX7/Oq6qqpNjYWKHlWDw/Px9nz55lAwYMYD4+PkhNTWWKsDDJbeRI1lhaKtx5+JA7ODgIvT/4AFednZFVU6O7ceMGKy8vZ1ZWVpgzerRw4+JFuK9ciZiYGJw6dQpZWVnw8/ODmYcHVe23boXrypXo168fu3TpEo+PjxccHBzwmLa91Y27ooIWn2vWUAVo926qds+YQVTSQYNoUSqKOH/+PIYOHfp4RZEx0pROmYLo3FwMOHAAMmNjMB+fbjsnAAAuXYJYVASTmTNhZ2cHS0vLthaMTwulUgkPDw+cPHkSndzg6+ooSLO3J3bCzz9TQqO5mVgNMhlVPp/CW+L+/ftITk7GWA8PqvDOnPnYNhqNBomJiQgPD+9s1PjLL2SytWhRZ3O/5GQgLw/irFkIDg5mQUFB3Q6Wm5sbrhw8iCAnJygdHCg4mD+fAqG33qJ7eOUKJTAGDqQFuyBQQqapiQKtjRspmPiVybjAwEA2fPhwuH37LbT5+cKR2lokJyejrKyMrVixAmPGjIG3tzf69evHFArFY/ddpVLBxcWFnT17ljk6OsJ22TKiFf8GpgEAOv9Zs0ie8dFH0NrYQO3sjNLSUkiSxACwyspKISUlBVevXuVnz55lBQUF0J09y33nz2d4/XW9u83Pz0d9fT0PDg4W0NxMPeFDQoB584DTp58oN5AkCZ9//jkkSUJwcDCWLl2KrKwsKSAgAMGPtm3TBxcX0oJbWZHM4ZHnwNHRkUVGRiI4OBhWVlbM1tZWcHFxEWxsbISYFu+JijNnIN+yBfVr1sC0g478MQQEUKV55UpKCsjlaG5uxnfffcfv3LnDhgwZwvr164fr169Do9HgxRdfhLW1NXhTExrmzkWchQUvbmhg6enpulOnTgn37t3joePGsWlz5zI2aBAFtKGh7cfbuJGSCx3MKFvx4MED7Ny5EyEhIbp+/fq1mqS0S44SEojFER9P1f7g4G6H0cHBAVevXuX37t1jAQEB1EteJgPCwsA5x/Xr12FrawtBENCjRw929epVaLVaFh4eDj8/P5acnMzybt/mocuXM7z8MgX0q1YRTd/VleafXE4yiaNHyfujb1+SmcyeDdsvv0ShWg1+8iRuennBrU8fYkn5+ZEJ3qVLJF/Jy6MT3ryZnmVbW/pv1y6aa914bOh0OsTExEi7d+9mGRkZMDU1lYYOHcoGDhyIoKAgpKamIisrCw0nTnAEBLBmPz/s379fFxsby3Nzc4Vr166hvLy8M+W/I8rLkXPpEleOH88WLFjwq79f/xOYm5sjLS1Nampqio6Li7sXFxenfepOFAYY8F8CQ2XfAAMM+F0gKipqsFwuPzN+/HiTgIAAKBSKJ4vm/w9AoVBg5syZyM3NZbt27UJpKXn2+Pv766ZPny4+jZZfH8zMzLBkyRK2Z88eXlZWJrm4uDxRDKtSqbB+/XoGANu2bUNBQYHUq1cvoTUIdnBwgFarFa5evQpzc3OuVqtRW1sr9erVS7xw4QJCQ0PxzTffcADsTEyM4FBaKplfuiQM/PFHFhAQgLuDBuE5FxcmCIKsuroaX331FUb++KNk5OIiFKxcqYv/9FOBc84mT56Mo0ePtrcWXLCAgrutW2H60ktYsWKFuH//fuzZswcBAQG6iRMnim2JmKVLqdL03XdkgBYYSMHMyZP0+fLltJg9fZoW2Xv3wj0/n+i7Lfrf2tpa3LhxA1qtFlqtFhqNRqoyMxM0SiVUp09TpdnZmRzvu0LHSvd/ADc3N9hYWfFrqal8UFycgNOnqXJ/9y4d/7336N9hw0i/Gx1NAXJgIBkNjhnT7f5bdcT1PXvCdNUqvdvs3buXA2CdequfOAH885/UnuzROSoIRNvtCufOUeX67l1gyRIc+8tfMPXwYRjfu0fdBiIjKXHxwQftFdMPP+y8f4Aqt61VubNnaQycnbu93q5g98EHqM7NhfrGDTQ1NeGZZ57pXIXtBm5ubvD29pYyLl4U/Corn5pV0S1mzkSpUon4ffvgkZsL5zlzUKPRSL6+vszHx4ft378fRkZGsLCwgLe3N66mpDD/v/0NXl3sLisrS+fp6Skm7tqF/gUFkB8/Tp4WmzZ1MgV8FJIk4caNGzhw4AAAYOHChejR0sqxvr6eVVZWMr3MGH0ICqLn4tYtmgOPgDEGKysrWD1yPra2trjw7bcYdvkyj1uzhuccOyaYnDundXZ2lo0aNQrGxsbIy8tDRUUFMjIypOHDhwtBc+ZQkq+uDpJCgU2bNkGj0bBWplRUVBQAYMSIEdzNzY0BQPThwzqdvb2YeO8ec2KMW1hYiIGBgRg8eDAzbzXbzMigKvbXX1PVW6GgxGIXnhG1tbUwqa6Gm6uriFWrqHo/eTL97b59xHYoKqJg2c2NxuiTT/T3jQexkJRKJTQaDcleVq4kM9IHD1BUXY0DBw4gPj6ejx8/ngmCgPv377d5NHz33XfQaDSwtLSkv1WpyF/lwgVKIK5bR5X35GRKSPzlL8A335AM6vXXgUmTwNzd0bt/f3zm4oK6wkLYXr4MXx8f0vbv2EGJR52Onlcvr87vhh496NlOTKTr1fPdFh8fr4uNjRVNTEywbNkyWFlZdeqAYmNjg7Vr14Ixhrzly/mNO3fY9W+/hbW1tTBx4kTm4uICjUaDrVu3YufOnZKRkZFQVFSk8/f3FyZOnEiTdOxYaI2MBM/XXkOBiwu8Bg/WO9b/J5CZmYmHDx9mA7gL4IFCofg7gDf+r52AAQb8D8AQ7BtggAH/9YiKihoul8uPzJo1y8T3KUzM/m8gOTkZtra2qK+vx6BBg9C3b9/fHOi3Qi6XY9asWWzz5s2IiYlp1zp2hCR1oqQKgoBTp07h3r17GDFiRKcEgVKpxIIFC1BeXo4TJ06wSZMm4fDhw2J6ejq8vb0lS0tLwcLCQnr48KEIAIedndmi5cth7e8PCALcxoyhoLtHD1hZWeGtDRuA69cFeHriueBg8e7du7C2tsa+ffskd3d3yGQyoaysDDY2NjhRW6v13LdP9O3Vi6Uyhps3bwIAsrOzxYyMDPxpxQoY5eYCR45QxffWLfp31qzO1d7p09t/7tcPsLFB35QUKFatItf+Dz9E4bhxiMvO5g4ODhBFkYmiKPQOCoLJs8/SWK1cSdTb9PSuq+dvv00BzYULv+3m1dcTA8HMDIveeoudmDGDS/PmQfD2psrioUO0XUMDeRAMG0bXbGJCtN4PPyTZQkND5xZdj6CqqgoAIBQXk443NvaxbRwcHFhFRQUXBIEWywUFxHj44IP2Vn8dsW0bGb/pdGQcuHQp8PnnZEp27BgFfO+8Q0HPhAmwsrLCvxcuxOTJk9EfIEbG06L1+AkJVDGeNIkCsY79wZ8Gbm7wee018KFD0adPH/RtNX57Sphwzj0PH4Z05gyEX8He0AetVouLFy8iLi0NoxcswMDYWAysrgYWLhTgReF8S6swBlBAbmNjg4s7dnBHmYwZL17caX/Nzc1obGwU09PTYXHuHBqbm2Fx5gzRuLtozVhXV4fr16/j9OnTAMjfYN26dZ22GTVqFDt9+jTfvn07LykpEVavXg0LPbr1Tti8mXTdlZVU6X0KBPr7IzAhAdi4kfWaPJndvXsXFRUVsqysLN2//vUvEQCMjY25iYmJZGRkJB45cgTXr1/XPbdmjcjnzsWNggKumDmTvfTSS22dSiwsLP4/9t47Kqpzex9/3jONXkZBelOKFEVAQRHBRuya2BKjsesnamJi4jXN61VzU0xMMxoTxcSaaDR2sSFKkSiIKEUQkCpKr8IAM+f8/tgMHcTkJvd+12+etVguYebMOe95zzvvs/ezn43KykrI5fLmKIXz119z2ZMm4f1//ANisbjz6IWhIQWivviC1Ao2NhQkVBuiqlS0pr75JjB1KvQTE/Hqd99hv4mJ4NavHxP360djnpXVcsz336fjCQJ5hvj4UCnClSu0nrXC77//LpSVlbHq6mrh7t27cHR0hPZzzwHPPYcTlpaQyWTqbhG8Wjk2ZMgQrrKyEvX19Zg4cSJ8fHzaBn45jq5r924yRE1OJlf+d94hJVSfPrTmbdoEzJoFlpKCN42MEDdnDiRLlxJ5HzKE1oTx4+k4XQXKZs+ma9TVpdKcVigpKUFkZKRo6tSpGDhwYJfBaXXwor+fH9c/KAgvODqCtYs2LV26lO3atYsJgoCBAweKEhMTVRMmTGhO4Q8PCEBZYyNOhIQAffogPT1dXSLDnJyceha8+gPgOA48z9tIJJIIZ2dnZGZmToaG7Gvw/xg0ZF8DDTT4n8bmzZunS6XSfbNnz9ZxcOgqD/b3o3///rhw4YIAgF29ehVyuRweHh64d+8ewsPDhRUrVvyh3YdMJsPUqVPZL7/80pHsK5XA8OFkZtW0Cc7Ly0NcXBwWLFgAy06ksurWdWFhYYKenh4bO3YszMzM4ODgwAHA4sWLRWpH+uDgYCb+6Sciez/+SLXWajJw8yZw4ABlckH9n6ytrXHs2DFVfn6+yMnJCV9++aWqqqpKZG5uriqvrxfVuLoy1fbtgnTJEiaVSrFmzRqkpqbi1KlTeLh2Lexv3sShN98UvA8eZK4BAfQ5mzcTiVe77Le9GADAyRkz4LJuHaTFxQBjEFdX4/mTJ+FiYMAQGkqZs9ZjsWMHyV5//ZWCF99+21E+/sorT82qd4C6y8C8eZQZr60FwsPBzp9HZmQku1hfj3GtZfaXL9Pr7t+nzXNyMsn3AQpyZGRQQOPiRcqqdQJ1varExKRTR+vq6mrEx8ejmejX1VEJwahRpIxoj9u3ieBXVlLbrnXriPj7+7cQooyM5pdXrVuH8G3bAAA6OjrP1m/97l3KtLaGVNqj8oUOMDSEIi4OOgMHYsSIEc/89mEPHoieJCZi88cfY/LkyfDy8nr2cwCN986dOyEIAh8UFMQNDQigeZSZSZL7uXM7jDvHcfD29obu558LD7ZuZTcFAYvURpMATp8+LZiamgpLLS25C+bmuBcby/u5uXFdEf2CggLs2rULAGBubi4sWrSIdWaa5+XlBXd3d3b06FFBEATcvHlTGDt2bPfrlLY2SdXt7anlYLvARAcolWS6+f33VHYAKjeytLSEp6enqK6uDrW1tejVqxcDIAKAhw8fYvfu3aKGhgYc9/XlLSQS9ubixRC1Ugy88cYbOHz4MI4dOwYrKysYiUTonZHBjigUqAgN5SdPntz1PJRKKWBRX9/SLvHll2kd2LePfD5KSgCxGEarViF2+HA8Cg1lSePHdwgiFeTmQpafj2vh4cK4KVOYzptv0h+Cgui4KhUF844fB1xcUF1dzSwsLCAWi/kLFy6w06dPc0PeeYc3sLHhjDIyUFFRAXd3dzZz5sw296Gyqa1mWFgYjI2N0Vftc9IeFhb0ExZGQYtRo+j/H3xAAQAbG2DbNrD8fNieOQNVURFqhw+HjosLKYvU3gfd4ZNP6Dth1Kjm752kpCThzJkzzMPDQ+hRWYggULDxxRc7JeaGhoZYvXo1GGN48OABEtuvEwDk8fGwPXoUyW+8gXhvb8YYgyAIePfdd5+p3OpZ4OrqCgMDg14SiQTa2tpITU213bhxo+6GDRv+uPGIBhr8zej5l7QGGmigwd+IjRs3mn744YcfSiSS/QsWLPifIvoAbZynTZvGBEGAVCpFcnKyEBISgiNHjqC4uPhPpRkyMzMFAwMDVYc/iMVEtpcvB5rKBxISEmBiYsJbPEUOLRaL0djYiGHDhqH1WIrFYgQHB2PChAlUAz96NGWCeZ6Mx9Ry2ISETo3V0tLSRO7u7jzP86qRI0eK5s2bh8rKSmZsbMwrhg0TyoqLmbB1Ky8WiSAWi+Hu6oolhob41dkZ25csQdCmTSzzm2+E8vLyloOGhlItaTdgjBGh37kTtW5uiB0/nsf//R8ZxA0eTAZm0dHkeK9SUWuq556jrFhNTUuZgBra2t1m1Nvgk09IUl1QQOZYpaWU0bt2DeA4SIcMwbhx41h8fDwaGhroPeXlJJP94YeWz1Eb9KnRrx+N+ZMnRL6bwPN8swv5yZMnBQAQWVhQVq4dGhsbAVBmF4JAAYXgYKrzbQ2ep6DC3bt07VIpsGULZf1MTWkMOzH/27lzp6BUKhEQEKDq37//U/cQPM/j4MGDOHjwIO7dvIm61qRFLCZSJAhUJtCkWugJIqKisG3JEgSPGfPshl25uTCdPx828fHw9PQUzp8/j/T09Gc7BpprlVW6urr822+/zQWoA1YAlY78/DON5RtvtBhQNkEmk8Hj6FHu8pIlyMvLg1KpbP5bdna24NOvH4dXXsGI335DWXExp3rttQ6fX1NTg9jY2GaiP23aNCxbtqxToq+GVCrFnDlzuKFDhzarbZ4KkYju07hxJB/vDhs2kAKgi1p2bW3tDvfLsinD/fjxY+QqlbBav56JvL0pONcKzz//PBhjuHHjBo/bt6EVEYGZS5bgzp07XGFhYdfnJAhE9BcsoGDTjRtE7t9+m5z5GSOPkJEjAakUEZGRKj8/P3h0UtP/6969uDpgABLT0tjPP//c4tA+aBAdXxCAadOgsrVF+owZfO9//QsDBgzAvHnzRGvXruXmz5+P1JISwXTZMkG4e5e3tbUVOlOr2djYYMOGDRg+fDh+/fXXNvOjU/TuTXPt5k3yzkhMBBobSc20ZAmwZg1MioqgLxLh10GD8N3o0cqanqpp1HN45Uo0Vldj9+7d/KlTp9jYsWMxefLknn3XZWbSeq3+PukEEokEYrEYFhYWUCqVogMHDiCjVaARAEZraeG5lBQYGRmpBEHA888//5cRfYC+Z6ytrWFmZgZDQ0P06dNHBaD7vqEaaPA/Bk1mXwMNNPivY+PGjToAAsVicbBEIvFVKpXOIpFI383NTRUYGKjVwdTtfwQXLlxQ+fv7s/z8fP7hw4dcTU0N09HRgb6+/rNlPFvh4cOHiI+PZ/Pnz+/chcjenrLQs2YBEREYMWIEduzYwS5evAh/f/8u2wFKpVIhNjZWeCpBs7en2u5DhyiokJNDGbAVK4Bly9q8VF0jP2XKlGaje4VCgfr6ei4gIID6vM+bp8KePaKl9vb0puvXYfrhh1gWH4/zYWEq1ZgxXOmAAcL27dvZoEGDMHHiRFIQCAI513cS5FG76+fm5iI+Pl6VnZ3NyUxNWyT/OTkk3T10iM593Dgyslu9mhy1MzOp3rWujrLYHEck/OxZ6gzQGjxP5PvBAyK/x45R7aqVFZUd3LjR6TC6ubkhKiqKP3PmDPeClxfJ9s+dI9l667Fun7FbsYKIx5IlwMWLKGtsxPbt2yGVSoXly5ezpKQkNnbsWHCNjWS4t3p1m7ern5UnT57QNR08SFL/9tm01aspq3/gAAUp+vUjE7JNm6iu/uOPO/Q+/+abb/i6ujpuzpw5cHR07NYlKz09HYcOHWrzO1FhIW5UVaHqm29QWVmJCRMmwNvbm7KFU6d2W4uuhlKpRFxcHMLDwzHt3j1hYHk5Q1PLyh5j4UJgyBCIPv4YU6ZMYTzP86dOncKbb77J9ahvPIDy8nJ88803ACCaNm1a5/3m7e2prjs/nxz0z50jM8om8DyP6Vu3QvTCC81mk/n5+WisrOT6GxgAP/wA7evXkWZhobq/bZuosrISPj4+/IQJE7iIiAhcbaqjDwgIwIgRI57eAq8JDQ0NSElJQXl5OVMqlT17n7c3PRtTplCAqLM1OSSEOhuMH9/WAPIpUKlUqK+vxy+//CLU1dVxFra2wK5ddIzq6mYVjlQqRVBQEK6Gh3Mep08Lph99xGyCg+Hl5aUKCQkRLV26tMU3BKA1JCaGyh9GjiRJ+vLlZB75/fe0znXi46FSqZizs3MHIziFQgHtvDwMzssTXDZtYkePHuU+++wzeHp6YuDAgfTZIhHuvvgiruzcKdgZGwvBwcHQdXEhX4joaFhZWeG1114T4e5d2M+cyeDn1+3Y+Pv74/r163xsbCw3tKtadZWKgol1dRRUys+n+zN2LCmz3nsPAMA2boTeyZN4vq4OR44cEZ0/fx4zOjH4bA9BEFDj7Q29Pn3wZP9+PC4r4/7xj388G8muquoYcOwCenp6mDRpEn/9+nXhl19+ES1cuBAZGRmQy+W4WVioKly0SDSCMc5z4ULoqVsu/k2wtrbWfvTokReAM3/rB2ugwZ+AhuxroIEG/xVs3LiRARgtk8mWiESiqaampg1OTk565ubmnImJCYyNjcEY+6+Y8PUE4eHhUKlUnL+/PxOLxRzP8/j555+RkZGBKVOm/GHVlEKhAM/zqKqq6lSWD4BIrbk5MGsWDH/+GbNmzWLnz59XxcXFiSZOnIiBAweW4WfMAAAgAElEQVR2kErOmTOH27VrF37//Xf4PWWDCZGIyN6VK0Sa9+3rVAKempoKHR0dvjVD0tLSQt++fVXHjh0T9enTh5/64ouiGkdH6H/3HWWZ1q8HCgrQizG8rFCI8MYbWDBwIHv06BEOHjwoJCcnC4wxjMnIEAadOiVSKxhaQxAEHDx4UCgoKGA2Njacr68v8/DwaNmZSyT0s3Qp/SgURLYBynodPkzEPiuLZKwbNxLJ3bSJXqNSUeZ/3DiqbTU3B/bupVpdR8fm/vRPw6BBg7iokydJ/vr11yTvbQ21QV97zJpFqoHychw9eZI3MTGBlZWVsGPHDhFAPcahrd2lydjChQtx9OuvkV5WBseQkLbE66efgN9+ozp7MzMKiBw/Tp4CEybQOJ05Q5n9Dz4gpUdTPa+xsTFXXl4O7VYE6cGDBzh16hTv5+fHcRwHV1dXxMTE4Pr1682vcXR0hLu7OyyVSlzIy4NaxXHmzBmcOXMGcrkcNkOHglu/HmO3b8eFkBC4uLvDxsYGUVFRuHHjhtpsUigqKmqe2HbvvMOQnd2je9GMJ09o3JtawzHGMG7cOO6LL77A3r17MX/+/M6JexPKysoglUpx9epV3tDQUBg/frzI2dm5688Ti6mMYtkyGsuJE6m2WioFx3GIGDECM1uRoOzsbEwLDYXWgQM0/3bswMqGBtGOHTsEACwuLo6Li4sDAMhkMmHNmjXsWUhXYmJis3nfgAEDns3Z3MuLDAK1tUmu3zpIEBdH8+irr7rN3nYGnufh4eEhiMVilpiYiJqaGshGjyZVipdXixM+gBEjRsDR1haJ16+zmOhomGRkCE5OTpyFhYWwf/9+QVdXl1u6dCm4Tz6hdevQIQruTJpEQb2YGFIdaGkRCf7wwzaKnv379wt1dXWcQqFoc35VVVU4deoUdGpr0cvJidm4uaG8vBwpKSlITk5W3bhxQ2RsbCxYWFgIycnJ3NChQ9nwFSvIiLSqqqUk6tVXKcC3axcFELtCQwOpe2pr4VtZiazt29E3JwemFRWUvXd0pL83NlLgIjiYSgny8+nzhg6lZ7ikhI5naUlzb+dOGKxaBU9PT3b27Fl4enqiX79+HT6+srISRUVFKC0tRXR0tKBQKJjU0hIzvvoKTrNnK6VS6bPxh5SUZ2q56ebmxrm5ueGjjz7C7t27m5/JAQMGYMyYMbCdNImhooIUVn8jzM3NJTKZ7ClfoBpo8L8FJrSWEGqggQYa/A3YuHEjk0qlP2lpaU338/PT8fDwYF1lpP8OqCXSt27dgrOzMwyesllNSUnB8ePHMX36dKG+vp7dvn1bsLW1ZYGBgfjyyy95T09PjB49+g8T/j179qhsbW1Fo5v6yndx0iQnLy0lN2gAd+7cQWhoqGBvby9MnTqV09LSavOW33//XYiKihJWrFjB6XTT47vpYFS/vX491ZWrgwc8TyUEFha48OmnPF9ezo3/9FOSxC5aBCiV4F9/HaW//opeb78NjjHK+GlpkVT87l3a7AoC1aXv399MxJVKJQoKCnD79m3cT03l165axbWX1vM8j82bN0MikWD58uXPLuFubCQjvpEjiXxbWFBv6SNHSN6/eTOR/TVrWhzILS3b9unuAcrLy/HdF19g+a5d6LV5MwUdWkOpJIfrtLQua9YbXn0VD8LDYRYdDaNevZCXl4fbt2/z48eP5yQSCRHW69c71O7v++wzBG7bBq3t29Fn8mT6ZVUVlWfs3k3lDGqFQWIi/V79OjVqakjWX19PEvspU/DVvn1CZWUlW758OczMzNoQx84wZ84cODg4tBDKVauAmTMhNN3vTergiho8D9eUFKS4u4NrbATfyvDS3NxcePToEQNIrj5gwAByu1uzhmqBu+u0oEZ1NbmnX75MSoZWyMrKwr6m/uQLFiyAiYkJtLW12wTNsrOzsXfvXgBU/rJo0SKYd2Z42BXKy8nYrW9fqh13ccHmf/0L81Uq/GZszIPjuIaCAow3NOQ9srI47NjRpuWdUqnEnTt3cO7cOXh6emJy+3v2FCiVSnz++eeCl5cX69+/f9e9zZ+G118n9czJk/T/rCwqWZg2rceBsK4QEhIiSKVSNm/ePPrF9u1E1Pv0oTUEAFavRpaxMcJtbAQtLS0hJyeHNTQ0sF5PnsAnIgKu3t4w8PamQEF748aVKyn7/csvlNkvLKQgXpN6QO36v2bNGkilUuzcuVNoIvsMAFwePID7gAFwa2d++ODBA+zfvx8ikQijRo1CQkICX1JSwr300ktoI9P//nsKsrm6kjLo/fdp7opElI0/f56UB7NmkQcIAFRXI6y0VHCaNIlZq71GBg+m9xgbA0ZGnSspvvuOAgJDhlDAMTmZDPzOnYOgo4PtR48Kbm5ubGQnQcPPPvsMKpVK0NfX5318fES+vr5IT0+H6PZt2H/xBdj168+2Jn7zDT1zEyb0/D0gP4o9e/Zg9uzZ6Nu3b0sgTm1Um5dH6pm/CTdv3sSlS5eSlUrlIgCxGzZs0JAoDf7nocnsa6CBBv8NDJNKpTNWrlyp81fW2/UEVVVV+OGHH/ja2lpOEATExsaqVqxY0W2669q1a4KXl5fg4uLCffLJJ4KdnR27deuWcO/ePUFfX5/LyMjguyXqT4FSqWSxsbFCfX09GzVqFNqTdgC00XnrLcpSb9gAbNyIgQMHwtHRkX377beIi4vD8OHD27xl8ODBLDc3l//qq6+Et99+u/uMYGUl9b6+c4fIvbU1Sb/9/YkoFxbC/Nw5Jisuxg99+/IL4+K4R56eKBCLYaWnh7NHj2Leiy9Cx8CANqLnzlEWWy1bLy0lotvq2kQiEdLT0/nk5GRu/PjxHBij1lc3bwL29lAoFNi/fz+vq6vLTZky5dmJPkAZf7URX2oqke5r10iOr6VFbbVefZVk5X8CdeXlkNbWImzcOGHC7NmsQyirpoYCJN1IqEvfegsPHj+GS3U1IJfD2toa1tbWLTvs+noisK3I/qO8PKhSUpDm7IwxakJfV0f3LTiYNt2tkZjYuSRbT4+UDnl54M+cAffPf8I7Nxfhnp4ICwuDkZGREBcXxwBqG9m3b1+e53nu7t270NHRwZw5c2BmZtY2c1xZCVhaNhPolStXwsjICNXV1airq4OZmRmUSiUCPv8chl9+ie0ffIC5c+dCKpVCLpczhUIBmUzWVrUSHU2Z355I+aur6d52ksm0t7fHqlWr8O233+Knn34CADg5OQlDhgxhdnZ2YIzh0qVLvJOTE4KCgjhBEJ6N6ANEzDZvpoDLnDnA4cPw8vJS9XrpJZF44UJObGyMVdu2QTx4MIdr1zqUXojFYnh7e1PpwzMiMjISkZGREIlEzNfX9+ku/N3h7bepa4VKRT9NQZw/S/QB4MmTJ0wikVCrOYDI+ZYtFHg7c4bG5OJF2B8/DnsXFwaAITQUis8+wyU/P9QZGsJg48auOwe07hyxejUFir75BnjtNcDAAJMmTcLly5eRm5uLM2fOQCqVCu7u7lzfvn0hFouh+ve/kXjjhlAaEcEcHR0RHx+PwsJCIS8vjwG0hl27dg1+fn5cbGwsCgsL25L95ctpzMaMof+fO0dKD1NTCgIEBdGaZ2TU5v4nbN2K+wAWTJ/eRlnTJQQBWLuWSPFzz5GKYMkSMiqsqwOzs4PXpEnI7qJEjjEmTJs2jbm4uDQ/wI6OjqQo0NKijPqHHz79PNQ4dYrUDM8ICwsLjBkzBkeOHGlrQstx9P0xcCAF0XoyJv8BuLu7IzQ01I0xFiORSM5u3LjxfQBJGtKvwf8yRP/617/+2+eggQYa/P8M165dc9bX15/t5+cn/ata5vQEly9fxvHjx+Hk5MQvWrSIGzx4MGJiYrj6+nrYq2vMW6Gqqgpbt24FYwzTpk3jZDIZEhIS+Lq6Oubr6wsjIyPGGOMDAgJERkZGf/i8XFxcmLGxMUtPT+fDwsLQr18/pt/ePR4gomhrS3JVqRS8oyNu3ryJnJwc2NraCjY2Nm0Gt0lmzYWHhzMHB4cO/bHboKyMAgkrV5KktLYWePdd2ux98AGgpYVTSiXfOH06d//+fRbdty+Sa2qEGrEYOR4e7GFBAUQODrAPDAQACA0NwOnTYNOn0/EDAohQtsq85eXl4fz583jllVeYs7qvs6kpHvXrh1+OHOHDwsKYoaEhv2DBAu6ZiVZXuHePNq6zZ1O2dd26jvXtfwD6s2ahf2Ulzrq5sYGenh29FNLTibxMmtTlMS5dvYosuVzw+/e/GZKSOhJaJ6cOvbEb1q+HOD4e4WPGICYiAm6HDuHKjz+iaP582Lz7bscP2byZNsrtSjuKioqgVCrxZUiIkCSTCYkcJ4jz87lpJ07gPmO4X13NRowejZkzZ8LHxwceHh6sf//+8PPzQ2BgIAwMDDrK4S9domtoGgsdHR1wHAdtbW3o6+uDMQaRSAQ9f3/cd3BA/pMn/CgXF6bd1BVALBZ3dPKeMoXG4WltLy9eJAVMkwqmM+jo6KC+vh75+fkAyEwuKiqKRUREICIiAg0NDVi6dClnaGiITp/HnsLLi8571y44padz8e++i8SyMqwOCICkpoZKLf6k0onneXzxxRf8lStXWHh4OLKysjB69Gi89NJLnQcPnwa1QVx9PZXFDB1KgbvwcGrJ9vLL9JpnKQtohfLycly6dInPzc1l8+fPb+41D4DUGI8eEbFLSiIVipMTddk4ehTgOIiHD4f1ggX4tbAQcisrmHbVSu74ceAf/6BgC2PU3SQ8nIKa7u6wsLfHrVu3+Pj4eGZnZ4clS5awfv36wdjYGIaGhtCvq0ONpSUSi4uF6OhoJhaLVcbGxsLgwYO59PR0LFy4EOPHj0dVVRWSkpIwd+7cljlbVUWBxoIC8jUwNiZFUUYGZbx79ya/DG3tDmtQQ0MDu3//PioqKngXF5f2nevaorSUiPXGjbSePX5MyggPDzquRALMn4+wggIMOXiQ9b5/vyX4AOowERUVxdSGiB1gZkYKBJGoo+dIZ6ivp3FfsuQPzQ8rKyvExsaqbG1tud6tgzi9e1OgSU/vT829niIrKwvfffcdAGDBggVMV1e3b3Fx8UKO414ICwurv3btmmlQUFA3tRkaaPDfgYbsa6CBBn87rl27lqdSqeZWV1fLDQ0NmY6Ozl/WJ7crhIaG4s6dO3j55Zfh6+vLiUQiyGQyWFlZITQ0FFVVVejXr1+b8zpw4ABvamoqLFy4kFNnV8rLy7n79+8zOzs7YcSIEZxIJOIaGhrQu3fvP3xNUqkU5ubm8PLyYgCEEydOsIqKCsHZ2bnjAbW0gKAgCPv2IfT0aT7hyRP23HPPMR8fn043hIwxqFQqPiwsTLC2tmaGhoY4evQoLl26pHJxcWmR/hsakoQ/KIjqLRMSaIP89ttEVnR18fjxY5SWlrKGhgbe0dFRWLp0Kefj48M8PT1hYGCA8PBwFBYW8jk5OYg6fZrpRkUhwsxMxQBOxHHgX3oJ0lblBOnp6SgqKuIFQeCSkpJw4sQJIU6p5GWffMLJZTLAyYmNGTOG+0MZ/fYQBHL7/uYbylANHEjZtE6yvs983NRUVLi745qTk6qwpISzs7PrSD4ePEBjWhp+KS2Fi4tLp7XTJ0+eFAICApjVsmW0oW1spKyfGgsXEllR/66qCjoHD8LiwAHUpqejvrBQ6H3lCosZOhSF2toYMGAAJE2kuLa2FteuXYPd4sVgQ4Y0y8V5nkdBQQF++OEHZGRkoLq6mikUClbJ8+yRpSWS3Nww7Pp1DAfg4eUFiYMDJK3IY5dmb4JA6omxY5/eao8x6NjZQfTee8wqJARsxYquX3v6NClc5s/v/phHj9IYduFzoEZ6ejoePnyIF154AePGjWPqoF9VVZUwb9489qcy4q2hr0/lMVFRsCorQ9CmTRBduEDS+Nu3SUmTkUFj5uREnhEcR/fpww/pvaGh5D0xdCgZOxoaAioV6mbMwJ6qKt49NJRzSU5Gtb+/sCQkhDmMHQuuuJjG4PXXyejz2DEqY+ndm6ThN29SIO6dd+j/Z88SudbVJSn4qVMUGHv3XepNn5FBZHnOHCpLiYsjafzy5dT27d13ySdj0iR6X2kp8PAh1f47OgI//ADh0iXsjo6GQ2goRo8Zw3oDpAKytqbzqa6mcxg1igKQt2/TcxoaSvf9+ecBd3dItLTQu3dvnDx5EmZmZpBIJJC1b09ZU0OBTLXyijEgMJBUTGlpgIsLbt69q1IoFNzcuXPRvtyJW7YMlq++ynwmTGAjRoyAp6cn5+LiwllYWCA+Pl5VXV2N/v37s7Nnz/K9e/dmnp6eJDVfsoTGXVubpPRHjwLbtlEQ9fnnAR8fCtx2gYqKCqSmpqKwsJCZmJh0HcwA6L5u305jZ2dHapZ2nQUEHR1ciIxkbgMHopdcTs9GWBjg7o7du3cL+vr6/ODBgzvX6Wtp0ZoTHt7if9AdiopIzfA0r5huEBkZyby9vTs+f1pa5GFz4AAFnP5CGBgY4Pr16+B5Hg8fPuRnzZolGjZsmEQikZiKxeLgioqKueHh4duDgoIUTz+aBhr8fdDI+DXQQIO/HRs2bGjcuHHj2Dt37mxISEiYJhKJtHv37q309fU1cHNz+1uIf0ZGhiooKEjUvm7V1tYWr7zyCg4fPixwHMfGN7U3u3HjBoqLi7mVK1e2ITT3799XARAlJyejuroat2/fRmNjI9auXdtho/hHEBAQwDk5OeHAgQPYvXu3asGCBaIOhKp3b0S7ucHnX//iRly+DP2n9E4eOXIkV11drfrxxx8xdOhQZGVlwcDAQHTgwAHVqlWrRKitJVnpgwf07+TJ9FNZSeQjNxeIj4dDbi6XIwiqtWvXdmCqXl5esLKywtmzZ1FWVsY8PDwgvX8f1dXVrPyNN/hYJydk79jB+fv78yNHjuSaxpKvqqoS3bx5EyqVCjNmzGDh4eEiWW0tirKzWaWtrXDo0CFh7dq1f65tLM9TIKOmhjbcVlaUCYuL65kcvDusXQtFaCi+njkTjONEjLHmntltkJ2NyPx8PsPIiPv222/54cOHc56enkhISMD9+/cFHx8fplKpmK2tLWXl/P2pRv+991qIrbV1S91sYiKRqVu3wG7eRMC2bSgNCmK/qtvnVVTg+PHj8Pb2RnJyspCUlMQAYPjixdA6dgxVTk6IiopCZmYmX1ZWxgFASUkJ9PT0UFNTA21tbYwfPx6mpqYoXbAAJhUVRA5CQ2kTP31694oIhYKI5ebNPRpGPT09XJs4Ueg7cyYzzcyke9ZJizL4+bV4K3SF334js7su2sG1xs2bNwFQN4UvvvhCqK6uZgDQq1cv1KprqP8sGhtJLfPll5Td/fJLIkPq37/yCj1nv/1GZHviRGDPHiLUBgaUVX3rLXoO79+nY1ZVobaiAr+Gh6u8S0pENtbWgtf06WgoLERkTQ1LtLIShlpaMvTqRYEBQSASCNB9O3SICCdjVBYBkBpCKqWuDOrMfmkpvaaujsj8li10rnV1QHEx3aeGBlovTExIeVJaSte5dGlLJtjTk4ITenp4kJ7Oq4yNOe9evZg2z1OW/eRJqjXfvLnFTK+6mvwBXF3JWLPJP6E1XF1dERcXxx86dIgDgJEjR2KE2pxT/bntJf6M0eds2EAdEABRJcdBt7NWnDU1zWaB7bF48WLRjh07hJSUFJSWlnLj+venzL2ZGX2mgQH4JUuA9evB1dbS5xoZ0fU2NlJAtb3HQBPMzc0hCAKcnJxw/PhxyGSyTo31EBJCRP+jj4gAT55M9zUggOYZgOLiYly8eJEHwKyXLWPQ0qJ7/f77ECZMgG5dHRqfFtTy8SGyv2NHs9t/l0hJofv2B1FTUwOFQsG6LF/46qs/rYTp6XkolUro6+sjODiYAyh47ufnJ/L19dX77LPPauvq6kwBlD/lUBpo8LdCY9CngQYa/FfR5MpvA8BHJpN9aGZmZjN79mydHtUl/gls2bJFmDlzJutMrg+Qa/X58+f5N998kxOLxfj888/5cePGce7tHNV5nkdmZiby8vJw9+5dfujQodzly5exZMkS9OnTp8Nrb968CW9v7+YMa09RW1uLQ4cO8QqFQli1alUzuS4rK0NmZiauXbvGu5uYCOMOHBBh9+5us0RqbNu2TSgrK2Nz5syBkZERdu7ciXXr1kEqCCS57kZijjVrUJ2UhD2jRvGrHR05vPBC92SvoIDKDdato436wYOIFQSEhYUJDQ0Nzd9Fenp6fE1NDQcAffr0QVlZGby9vXE7JgbBxsZCnLa20KtXL2RkZDCe52FsbMzPnj1b1G1JQmsoFESKR4+mzLhajr1rF0nrt2zp2XE6Q1wcYGqKk5cuqVKKikQjR47ssvPB7UWLkFNdjVEhIYiNjeWjoqI4Pz8/xMXFwdXVlc/IyOBqa2vx8ssvt2zqk5JIqlpfT6Rg927KSvbtS5JdIyMgMhL4+GPwPI+QqCgUFBSAMQaO4yAIglrZAYBq7acdOABh+3b8eu0a6uvr25yjWCzGCy+8AHt7ezQ2NnYuXY+Pp888caIl49zZPMjOJrl3TEyPh/Prr79Wjhw5Ujxg0yYikV2ZAf72G2W3OyNhjY00Pvv2kUqlG6hUKnzYrg751VdfxZMnT3Dp0iUoFAre0dGRCwwMfLZAXnU11WY7OFBGd+9eUpSsXk0lJFu3EjGeP5/k3KNHkxdBd9nbTvDFF1/wurq6bP78+ay1VF8QBGzatAl2dnb89OnTOT09PRQUFMDU1PTpbfcEge7noEGUWf/oI8qAnz7dXOfeHMT5/fenZ3nbQaFQ4Ouvv8akSZPg5ubW/YtTUsi8bvBgypR//XVzV4XWqKurQ2FhIS5fvsxbWlpy6oAtACrb8fen7H4TGhoacPr0aSEnJ4cffOEC18jzzP7jj2Hv49P2wPX1ZOz3yitdrnX79u2DliCo8lNTRcvi49HQ2Iio1atRUloq1NbW8oqCApFeWRm0+/VTzVuzRtRc6nLgAKkpsrM7Vb5s3bqVd3R0xIQJE7hLly7h3r17WLlyZVvlQmoqBULOnKEA2KJFtNampVFgpakcJiQkRCgtLWULFixooxB4VFAAvYoK6I4YgX2TJmHql192X+r15Amtl+PHd5+137KFAkAffND1a7rBzz//zBcUFHBvtTNFbAN18CkiggxF/wKcOXOGv3XrFufh4QFnZ+c281WlUmHLli0NKpXqA5VK9cWGDRtUf8lJaKDBH4BGxq+BBhr8VxEUFISgoKDKoKCge2FhYd/X1taaJSUlubu5uUn+SvO+mzdv8g4ODm1rAFtBLpcjLS1NuHz5MnJyclBcXMyNGTOmgzkSYwy9evVCZWUlUlJSWGZmJhhj0NPTg42NDWpqaiCVSqHO8B48eBBisRi2PSDjrSGRSODs7MyuXr3KqTNVGRkZ2Ldvn1BcXCw4ODgI42bMEHHm5pS5W7ToqW7JAwcOZD4+PrC0tIS2tjZuNPWMt9u/n8zcuvMdeO45sNmzkXL8OBvw0UcQzZ1Lm0q5vPP66bIy6nnv7081szY2sLS0hLOzM9PW1kZ+fj5EIhEUCgUTi8XgeR5PnjyBTCYTBg8ezHRDQuB54gRLDAwUcnNzuenTp7Nhw4axR48esYSEBN7b2/vp2f6cHCJSH3xAxLP1Rpkxkrw+431pxsmTNOarVyO3poY9fvwYs2bN6lBKceTIEdWJEyc4cWmpMGj2bNZn4EBYWlqy69evo6SkhPfx8cHEiRO5YcOGwcnJCWZmZi2EzNSUsqczZxKpPnGCsv6bN1Mfb6mUrmP6dLA+ffDkyRNkN7Wm69u3L19TU8Nef/11DB8+HG5ubjDS1VU+yMnhrtbWQi6Xo66uDq0TADzPQ1tbWxCJRMzCwqLz6zY3B3x96eef/6TsZJ8+9NP62ktL6fyeQcqbkZHBVCqV0O+ddxhmzaIsqUjUtpQBIEfzhgYige1x9y6RqB4QAI7jEBQUhGvXrgEApkyZAnW9tru7O6Kjo1lOTg5+//13uLq6dp75VWemRSIKbG3cSHN+61ZSJtTWEgEzN6ex0NMDFiygYIWHBxEWhYKev6VLSU3TA0UCAMTExPDjx4/n2ku8GWMYMGAALl68yGJiYpCeno5r167h1q1bfENDQ5cBTyQnU6Dk7bfpXF98kcj80aOk6liwgO6xqysRvvnz6Vqfwa8kNDRU9eTJE0yYMKH7OnSep3k/bx510eB5Wm8UClLmtCqDkUgkMDIywuPHj/nMzEzB19eXUygUePToEbLKy1E3dCgMXV2hUqlw+PBhnD17VpBIJMLo0aNF5rNmMdvHj9EnIQHMy4tUDWpkZ1OQ5qWXOj9HQcDF337D/C1buPrGRhwPDES6lxcvkUh4KysrzsbGhvM9f17wFwR23tCQc3BwaDFKHDCAjpuXR8S86ZlvaGjAmTNnUFpayl588UUmk8lgb2+PmJgYPikpCTKZjDU2NqL+4kVUGRpCf9IkyuIvX04GfdraQGxss/S+tLQUly9fZvPmzUPrZzohIQGHDh3CjdRUJDo6oqRXL7i//z5UNTXQGjas8+uVSmkN3buXnv/OngeADFCnTXvm4BUA7N27V5mbmytatmxZ98aEEgnNg6Cg/4jnSmews7Njffr0QW5uLh8dHc1SUlJUgwYN4jiOA8dxcHNzE+Xm5g6rr69/8cqVK78FBQX1vNegBhr8hdDI+DXQQIP/GWzYsEEJYNVHH31UvmPHjremTZum7ejo+B+X9SckJKCurk7UZR970IZx8eLFXFZWFuLj41UmJiackZFRpyeiUChwsqkNlVwuR1lZGTiOQ0hICP/48WNOLBbDyMiIr6qq4iQSiRAZGcmqq6uVEydOFNfV1UEsFvco0y8WiyEIAioqKqCjo4MjR44II0eOxNChQ1uIbnAwkaEJE4gMdrNB0tLSajbr4jgOgwcPxu34eD7w4EGuyw1tK0ilUuj5+vJ73dzYEktLhudi9LQAACAASURBVMmTSXqrbtnWmpQxRoRv6lSSfTYd38TEBCNHjkRgYCBiY2OhUCjg4OCAH3/8EYIgwMLCgj916pSo0d8fMX5+kBQWMj0DA1VFRYWoqKhIkMlkLD8/v9P7wvM8amtroaerS+3W1q6lMWlHbhQKBWouXwYqKiAfPrzbPuud4vp12mRevYrM0lLExMR0ej6PHj3CvXv3RMHBwfC9c4dxTYEmdU/vuro6Tp0tYoyhU4Lt6koGbsbGlN1vaKDMenw8KQta3e8m0iOMGzeOOTs7t7koHR0dWNTUiJGcDId33sGxY8ea/zZr1izU1dUhNjaWV/d1X7x4MaysrDq/fsaITJ85Q0ZcX35JBHXo0BZyX1JCGe5ngI2NDUtLS+Obg1Y//UREpj1x37yZCFJ7hIcDixdTicMzwMLCAgUFBXj06BEGDRoEAJDJZHjjjTdQV1eHkJAQfPfdd7C2tubnz5jBcRIJBTp0dYnE79lDKofx44kgu7iQnNrenlpNvvgitVa7d4/q3r//njLWH38MHDxIde4AlWkYG1PAYv9+eq66WQuVSiXrau7K5XIsWLAAjx49Qm5urnLEiBHiqqoq7uLFi5DJZBjWmtBNn05k85dfKIgllbZk0NPTSU0yY0bbYKKtLY31yy9TdrWHZmkGBgaoqalhWVlZ6Nud2VtWFhHWQYNoDJYupdKHKVNoXEJDO4zN8OHDRbGxsfj3v/8NZVMZglwu531/+439kpTEeG1tSCQSMMbYK6+8wpqDaps2AT/8QLL+zZtbulV0I+HHrVvAggWwnDqVT/z8cxY4axYbQ2t6yyAJApCYyDB+PFR79uDo0aO8kZERJxaLIRaLIZPJMOGzzyDt3x/cnj3geR5ffvmloFAo2OLFi5vJrlgsxpo1a7iTJ08KV65cUTU0NLDX16/nyuRyRBw+LAxOSmLaGRkta8Enn1AZS//+zYHD7Oxs2NjYNJ/auXPnBCcnJ4wePZoVFBSgd+/eyCwoUBXduiUy2LSJH+vnxyE4uON1DxsGXLlCSoIZMzqfn/n5f0hmHxUVhezsbPGCBQvQI8PbOXNIoXXiBJW//IchlUrh7u4OR0dH7pNPPkFxcbGo9fMml8uxZMkS3fDwcJcbN27c2Lhxo++GDRsK/+MnooEGzwgN2ddAAw3+5/Dee++t37hx47Vjx46FyOVyeXBwsF6X2ac/gCtXrqiee+45UQeH9HZgjMHBwQEODg7d7ly1tLQwf/585OXlqevOuejoaF4ulwvvvPMO8vLyUFhYyPXu3Rs2NjZsy5Yt4DgOmZmZOHDgAADA1tZWKCsrY6+//nqX0lqZTAYfHx/ljh07xIIgwMzMTGhD9NXw9CTSv24dSV17GCyRSCR8bVkZ9/DqVXQXCFHj4cOHyMzM5ILU8uj4eJJNHz5MLsnFxZTJNDQkIjRuHNV6dtIfnOM4+Pr6AiCZqSAIbNSoUQgICBDl5+dj7969kDx5gjVbt7Jtr78uui4IqKysZE3jwgAqvcjLyxMmTJjAmjbKqvqyMtG0khK4FhWRNFpXF42Njbhx44ZQVFTEjx07VvTdd9+h/507gvDkCbO8fbu5tZkgCMjMzISNjQ0EQeho9gVQtm/GDCIbAwfiYVO98/Tp0zsEDU6fPi0AYFpaWuDu3AEsLVFWVoaUlBSsXbu2Y1u5ruDnR1nuNWso83jlCmVg2wV2xGIxpFKpytnZufMJZWICrF8PPT09yGQyeHl58SNHjuTUgScvLy+urKwM27ZtQ0hICF577TXIu2jV1Yznn6f7e+kSjcm+fST3rql5+nW1g7OzM6KiokTq8gOEhtIf1qwhYqmW0cpkJK2+cqXlzUol/f3nn7vOOHaBOXPm4PPPP+9wv6VSKaT19VhjYIAndnaI/eYbrnLNGsT961+qsYIgwqBBVPqybBm9oaSEMuBFRVQTPXx4SymCSkVGdWvXElHmOHpeW2PDBvr30iUq4QCoHnvePJLPt0JKSgoaGhq41gSuPWxtbWFraws/Pz8xAFRWVuLSpUtUblRZCZW1NW4fPAjvdevALCxo3Rg1qu2Y/t//0f19442OH/DCCxQU8PMjaX8356JGYGCgSE9PTzh8+DDGjh2LwZ2pMwCaR1991XYtE4kowJSZ2SxZV775JhLu3kVJSYmQnJzMBg4cKAQHB7MzZ84IaWlp7NVXX+XEW7ZgwI4dUJibw9DQEDt27OB/+uknzJkzh9PR0aHPWLaMAiwrVhDxNzCgjgDtpf2hoXRvV60C1qyBTF+fu1VaKnh1FuxYvZqCYNbWWLFiBTIyMrj6+no0NjYKDx8+xIMHD1juuHFQPXkCo/feU4mcnEQymQxvvvkm2qvcOI7D888/z1BVJcKDB+BtbfFYWxv3oqOFQVu3MiQkUKYboMx6E9RqlNbtAMvKytDY2MgGDBgAU1PTZmm/1Y8/iiorKxG3aBEr2bEDlz77TJgwYgQzbK9+ev99mifm5jTHW0OppDWqq0BhN1CvhT/99BN69+4tzJ8/nz3tOxtDh5La4y+ETCZD//79eaVSybVf4xljGDlypFilUlneunXrEIA/3oNXAw3+Q9DI+DXQQIP/SQQFBT24cuXKtpqamgcpKSkjDQwMtMzMzP50ij8iIgI5OTnc+PHjO2yg/gyMjIxga2sLLy8vNmLECPj7+zMvLy+O4zgYGxvDysoKcrkcjDFERUVhwIAB3LFjx2BtbY3q6mpwHCdUVlayu3fvwsvLq4M7e3V1NcRiMaysrDg7OzskJyfD2dmZdWrSxBhl2CsqKBsaHNwjwm9ra8sGLV6MhLg4Xm/0aNapTLkJgiBg3759vLOzMxur7lsP0AZ8wADaJIvFgKUlbfRsbCijP2MGyeW7wYABA9itW7dw//59BAYGwtDQENbW1nD38YHh1KlweeEFREZGAgDMzMygo6MjeHt7szNnziA1NZX1798fe/bsUelWV4tGXLoEfV1dGB882FxPfOPGDURRPTtnb2+PlJQUmOTnM5GWltDvhReYgYEBkpKShEOHDiEuLo7FxMQgKioK3t7ebeaMIiYGZQoFlAsXotDQECKRCD///DMAIDAwsEO7PQMDA5aYmAgRY3CzsED92LHYtXu3kJqaynr16tXzvu01NZR9TE4m0vjllyRht7AgI7DycsDAAMXFxcjJyeGHDBnSebr3xg0gIQFGkydj+PDh6Nu3L2s/77S1tZtl7dnZ2YKbmxt7qgqF40iy7u1NAYj33qOaZLGYWnz10I9DT08PkZGR8PT0bEu8t28nIu/gQP+XySi7+3//15JRfucdItavvdajz1KD53mcO3cOhYWFGOjqCvOsLMrIfvghSaNnzgS++gpST0/I5s7Fr5aWAm9mBo+33mJwdqbnrLiYPCoWLyYDvfffp4x3aw+PXbvIFO/dd+k9BgYUFDM375gF7dsXmDuXVBwLFhDhrK+n/zf5KBw/fpx3dXVlTk5OPb7Wu3fvot8PPwgWBw7gJ4kEOWIxu97YiN6enjDtbF15+JACE/Pmdb2eGBnR+e/eTetODxRLFhYWzNzcHGfOnEFcXJwqIyOD5eXlsV69epE3QlERzfHFizt6AjBGmXcHBwgnTuC3hAQh7fZtVsEYKioqmLGxMRs0aBAMDQ1ZfHw8bGxsIP/wQ4hNTKClpQXGGJydnVlOTg5/7tw5LiYmRkhISOCVKhVnPWkSzdn33qMgVlgYPW9DhlBHgOJiMktUO8IPGoR+/frhypUrkPE8s9LRIQn9jRvUxeD772neBgZCV1cX1tbWsLOzQ9++fZmtrS2LjY3FP9avh4+rKzwXL+YSjI3x3IIFzKR92UprLFsGrF4NtncvzN3c4O7iwk6lpyPHxETl5OREz/28eTRXmvxmIiMj4ezsDHVXE5lMhoiICEgkEpWTkxPXOuCopaUFi6lTWf7kyWiMiBBsX3mF1Y8bB1nrtYoxUtysWkXztPUacvcu8N13pMR4RtjY2MDR0REeHh64f/++kJqaKnh6enZf7mFqSiUFM2eSAqidb85/CsnJyXxhYSFLTEwUMjIymIuLS3Nwt0mVxUVGRtpevXp1T1BQUNVfchIaaNBDaMi+Bhpo8D+LoKAgISgoKOnKlStnMzMzFw8ZMkTcnaGUQqFAVlYWqquroaen1yazqlQqcfLkSdy4cQMTJkx45pr5/xQYYygqKhKio6OZSCTCypUrMXLkSPj6+jJra2vExsYiKioKMTExuHLlCiIjI5GamopLly4hIiIC169fx927d8HzPJydnbu+Do4jknDkCNW3urr26PyqzMxwtrGRJWZk8MOGDet0V3Xy5Enh8OHDjDEmzJs3r4N0uKKiAheuXoWWri6M3n6bNrh+fkR8Bg4k5UFVVZekTx0gSUlJwZAhQyCRSGBsbAxjY2OI7OygvWwZehkZYcLatUhKSuIrKyu5hoYGZGZmorGxEXfu3IF5WRmbfP48S3NzE6pfeYWdOntWZWJiwsnlcsTHx6v09fU5lUqlio2N5RhjsM3KEgYNHMgsmlQHZ8+e5Q0MDDg7OzuUlJSA53kYGRlBV1cXDx8+RG1FBcSBgYjIz8fpykokJCQgLS0NjY2NsLa2hrOzM86fP6+Kjo4W3NzcuPDwcERGRqKhoQHBXl6Qnz+PjIEDER8fzwByDY+JieHDw8P53r17c522eLt3j2rAr16lzfXmzcCnnxKhMjammu8rVyjzumoVRP/8J2ofP4bT1KmsU3L288+UMZ4+vcv5EBYWhtzcXAwbNgwFBQUsOzsbHm5uYBxHSo7UVJKnz5pFLeKSk6nF2Jtv0jmmpZEU/K23qCWbmxu9Zt48Mlm7do3mahcy3djYWJW5uXlbb42XXiLSGRREQQ4rK8qo19e3ZLzv3iW5fFdeA50g4/ff8fvvv8N0yxb0v3cPg7y9wTZvpjZvgweTesDZmeTCrq7Q79MHF65cYS+99BI5hRcUAEVF4IOCkPTwIQ56e/NRtraCSCplbUogqqrIzO6116ivOkCE6aefiDh2RdjFYnqPnR0pAr7/Hli4EMrHj3Hp+nUMGzaMdeVB0gY8D8HGBmefPEGBXM4eWFnBYsgQFrRiBfQNDHDp0iUUFRWp6urqOFNTU1pHExKoK8C///30YI2HB53jiy8S4e/G2b2kpASPHj1CeXk5GhsbeR8fH5EgCMKjR4+EyMhIJpFIYFVfDwwejBITE9y6dQuMMejq6qKhoQEpKSm4c+cOcuvrsb+mBpZJSWxubCyGvPMOK1Ao+PT0dGZra4sff/wRADBt2jSwgAAKkjQpQ7S0tODh4cF5e3vD1dWV3blzh7t37x5GjBgB1r8/BRNefZUIvZkZ3bOhQ2neT5xI45GVBRw9CtG9e/DZuZOJDh+GxNQUkvBwMrLT1aX5r1TSe197jdbBVvM+MjISfn5+kMnlED33HLxeeglysbitb0BrJCaSjN7Dg9bXJ08gHjkSinXrEHHjBufi4kIBx8REWv/t7cEYQ21trSosLIyzawq6xsbGorq6GllZWZyVlRXatzYVi8UwMTVFhb4+C1WpEP3woeD/wQcMdnYtJVFyOSmFtmyhUi31ehMWRvf/KS0vu4KBgQGMjIzg5eXFrl69KlRXV/P9+vV7ep1VaCiVfPRAofZHYGdnx9XU1AipqalcSUkJnJ2dYdBKbRMdHa3My8tLFgThi6CgIP4vOQkNNOghNDJ+DTTQ4P8FpABQPHnyRKtTKXUTDh06hLy8PABEGNevX9/8t2+//ZavrKzk5s+fD7unZJb/atjZ2bGUlBTI5XIhMzMTzs7ODAD69u2LdevWISEhAREREdDR0YFcLkd+fj48PDzg0yQhPXz4sBAQEMC6cnpvhq4uZUHXr6fs5MyZ3b788eefIyw5GfqDB6v69+/fZelCQ0ODYG5uzubOncu1D76UlJQgJCREkEgkrPy33/BCTAwM0tJoU1xfT33Wr1yhjXNNDZ2fjQ1lzlrBxcUFWlpaQlpaGlPXTavBnJzg4e8P6OlhwoQJXGpqqpCens57eHiwgR4eXNHBg4Lr1ass+4MPEJ+YyPD771CpVKLw8HA4ODiguLiY2dnZYdasWSKlUgmxWIwrmzbhQkkJArOzYWdnB319fWRlZQmZmZnMzc1NlZSUJLpw4QLOnz8PM4VCZVBSwkpXr8aid97hJnAcTpw4oXzw4IFYqVQiJycH+/fvh0KhEMnlcmHr1q1QKpWwsrLiq6uruavnzwu9JJJmYzSJRIKdO3cCACeVSnHkyBFh8eLFrNkJOy6OMpsvvkgb2FmzaJO/eTOwcye1v5o7l17r6kpGaSIRIAiQ1NbSxvfVV+nfx4+JnAwdSr9rHzxTKqnWPSgIuHQJJj/9BOPhw4WxmzczlwkTcCYmhrLLdXXU5quwkDbyEgllPT09qUYYoIwmYzT38vKIeHMclT4sWkTn+MEHgJcXsHIlZb9/+43IUdO1GBoassePHwvqZ6QZIhHVwqszd1u3EoH75BO6/rff7tBbvA0Ega7hhx8AExOoCgpguGULHk+dCpGxMcyGDQM3dSoRl27AcRwKHjyA/MABYPt2PPrhB/w6e7agY28vBHl5cWlpaYiKiuL9/Py45s9dvpyO276VoL9/W9PILpCWloaT/fvzfQICmM+RI8x53jyI1qxhDk8LYO7eDWHPHlz45z9R7+WFcrkc81auRK9evZrd+/39/SGTyZCTkyO6evUqn5ycjFnTp3Na9fU033pqvufpScGRX36h+dJJdrqmpgbbt28HYwxaWlp8Y2MjV1JSIqxevZpjjCExMRGnT56Ew8mTKFq2jD95/Tonl8uFiIgIplKpms0kOY6Dnp4e7+rqyiZ/8AHjsrPB37uHyfv3cz96emJvU4u+iRMnUuBi+nQK2rSDrq4uamtrUVVVhTlz5rQEi8ePp/kbHEzPy7hxdH0qFZVeGBjQPXV0BBwdEamri5jMTLw2cyZ0li+nYOuaNeQboib9YjGVeezaBTCGmtWrAaBFOeTpSSVYu3a1GD62RkYGvebXX+mzAWqVamMDfSsriMViNAd+1q9vo8QIDg4W3bx5E3v27Gnu1GFubo4RI0YItra2XabNz549S8EOQWA1o0dDTyQiZUOvXhQMGzeOzBtPnWp5bvT00Gmt/zNCLBZj0qRJ3IkTJzBu3Linv+HHH0mJsn59j9t9Pgt0dXUxfvx4Lj4+Hk5OTh3K3qysrMT6+vr2tbW1WRs3bpywYcOGZzMO0UCD/yA0ZF8DDTT4j2Hjxo0GAKZLJBIfnuerVSpVNICrGzZseDZnro4Yqq2tLe6uDVBeXh4ePnyIpUuXoqamBj///DPURA4AfHx8uOjo6KfXHP8N8PHxwe3bt5VFRUXiX375BVZWVvzixYs5gLJMfn5+bVq2paWloW/fvs3Xsnbt2p6XMxgY0EZz6lTK/lhbd/lSLjQU/XR1ed8VK7ok+nl5eUhLS+MCAgJQV1fXpgVZTFQUrkZGCq+GhDCDxYsR6usr3KusZL6CQBtXNdzcyGVcLKZNq1JJm+khQ4jYVleDE4vBGENGRgY/aNCgtpmcf/6TeowfOQKrWbNgZWXFAIhQWQkcOQLzGzcYLl6EtUQC85ISPj8/nwPIY2DTpk0Qi8XczKbAh3pMRykULI0xHD58GIGBgVAoFFxjYyPjOA6NjY2MMYY5c+bAzs4O3KhRIri7A62UcQ4ODlxmZqZgb2+P7Oxs1lSLC7lcLhQXFzMAmDJlCqetrY27W7awzNRU3D14EPr6+vyaNWu4e/fu4ciRIzAyMlIplUouKSkJAUZGtHFWKIDnnqNNs0xGZHjdOmDECJKIq9ujqdFEDErfew/JoaFC8PjxpPBwcCA38dxcyiI7OVHWLSeHggj+/lQnPmMGkJqK2txc8A8eIOiDDxi0tWE9bBikUVH4dN06WB4+LPSdM4f5+/vTZx482PL5anNHxohMb91KGX417OxI8guQjwJAJScvvkgZwk8/JcOz69cx4+OPuRuzZ6vQv78IDx8SwVFf6w8/UJcHGxvKckulRKRu3+5gwoi6OgpiWFkRQdqzh4wVIyNRGhyM78vLoVyxAk79+wsjpkxhPWmtl5eZien79sH02DFEvv46rk+bBlV0NIaNHSsEBgZyjDGkpaWpevfu3fI8ZWZSkGvGjI4HdHGh8W9dFtMOSqUSp06d4i0sLJiJiYkQlpYmnF29mhv5wguQuLmRWkJt8KeGry+VNQQG4kJEBG7cuIGJ69djspdXp2aUPj4+8PHxQU1NDffVV1/h9qRJGDpsGGX1nwXLl1NN/bJlFNRrp7LIyckBAMydOxcODg4cz/P49NNPkZiYiAEDBsDDwwP6VVWoOnoUJwsLOXcPD0ydOpXxPI8LFy5ALpejtrYWgYGBaFM87eCATIUCBXV1MHj0CNZiMSZ/9x3EaiI9fXqX5QV6enoQiUQt2e2JE6ndoLp8QFsb+PxzUtKYmDTPY6VSiYMHD6Lo4kWhtraWBY4cycvlcjqnsLD/j733DovqWr/H1z5nGGAogtJEihSlCFKkWEFUrt3YFVs0iRpbTKLX1BvuGGOixuRqEo0licYWNdYoBitS7AoGREGKKCBdeplyzvePl6GDGHPv/fx+l/U8PuAwZ2bPOfvs2e/7rrVeYjVp5pS5OckcAArQk5PROTsbc3btwlHGMPmTT+hvS5bQWlleTuu4Zt6np1PQ/eqr1F0EoDXg9m3gyBFE/fSTum/fvpxEIqEDuncnicuHHwIAeJ5HSEgI1Go1jh07BqVSibFjx8LMzKzN75Xx48fj+PHjAGN4OnMm6f6XLyd20KlT9KQvvyQJl5cX3Ze3btHa9RfgyZMnkEqlqK6ubp+/SXY2JSPk8ud2pvmzCAkJwYEDB6BQKBpJvBwdHbF8+XKDu3fvGpw+fTpSLpf7hYaGPvy3DKIDHXgOOoL9DnSgA38J5HK5mUQiude9e3fd7t276ymVSjElJaUsJydHZ/369bdramrOCoKQCOAJACUAFYASADmhoaFVbb22trb2Uh8fH5nmy10QBJw5cwZOTk5wdHREfn4+fvzxR5ibm8PS0hKlpSSRO3DgAGbPng0AGDhwIDIyMoRt27ZxgwcPFn19ff89/Xnaifnz50sqKyvx5ZdfomfPnmJbz3VqoQr1QrC1pUBn3DgKcppWFAGgpgb3P/5YuBwVxZWeO4fExES1jo4OJkyYwKekpCAiIgLa2trqyspKnjGGuLg4MSoqivWys4OU5yGcOycE793Lya5eZZ169QLz88OdHTuYXkCA4N9SRKGpYH7zDf1UKiFs2IC94eGC27ZtzCQnh1XNm8cC1q9ncHWlinXDzd3hw+S6PHUq/T8piR6rrKTqEmPQASV5MjMzAVAFcObMmRAEAc1o8qWlcHJzg02nTupr167BwsKCnzt3LgwNDbF582YmiiIOb9uGwUVFgv/x41xTanJ+fj6srKxYz549kZ6eDrVaDYlEgvv379d9dk1Lxv7OzsgsKcHpJ0+g8VxwcXHBBx98AIlEwh//9FPox8VR1X7JEqrAaz57UREF5deuUaB+716rl11bWxuCINCxteaHIAYBBRC6uvXU8H37SC9ubEyJGAC/m5mhePFiYZ67O4fevQEAr7m6YsOGDUhPT2fp6enw8PBo5k3QCDNntplgqoOREVHTAWIqAIBSCcWkSXisVnM4e5YCi7w8SgoMHEhB5KNH9HhQEFWSAwOJcv7oESWR1qyhyujatUQxXrKEaPivvQbY2qJm/35s27gRhpaWmDt3LvT19Z+/LsTHQ/zwQ9w1MoLS3x8O69fjxt69qJbJsGTBApiYmNRdc0dHR+7MmTMUDOTkAPPmEbOlJTlS9+4U/CmVjYLRrKwsCIKArl27Ys+ePUKXLl0wc+ZMxhhjwxsGUmFhFBRu20aeDp06UW/6V18FPD2RJoq4Xut47+bm9tyuE/r6+pgZEoKq/ftRPWkSdNp8disYM4YC3ehoSk7V9noHaB0HgMrKSgB0f/bv358dO3YM3bp1w6VLl8RuX33F0ocOhar2ftI8b+TIkW2+rURXFxFDhmCinx/cv/iCEkgff0z3wpIlNI4dOxofJAjQ1dHBkJQUtThoEI979+ia1NTQPJ4+ne7FX34hVkttskIQBJw9exaPHj2qmz/Z2dmspqaGvCYsLVvtpCBOmYL09HSc2LsXHg4O0DYyEjBxIgdTU7pXhw0jj4YRI2guA/VSqFozUAAkldm0CXj1VRQXFzM9Pb36N7t6tZmUQuPt4ODgAJ7nm3nEtITjx4+DMYZp06bVG/xt2kSJhp9/psTjvXuU7Hv/fVpTHjygRMNfACcnJ1y5cgXr1q1Duxh6vr7kmXD+PF3HlnwoXhL29vawsLAQTp48ySZPntzsAnt4eECtVhueOXPmjlwuHxEaGhrzlw+iAx14DjqC/Q50oAN/CSQSyXI3Nzf9V155RbMnZIMHDzasqalBWlpav6ysLL/c3NyK4uJiURAEiKLIampq+KqqKp0vvvjikVKpXCcIwo+hoaHqhq8rl8u7SCSSCd7e3nU70+rqaty6dQt37twBx3FQqVQwMTFBSG1F0dDQENOmTcPBgwexe/du8dVXX2UAMHPmTC4qKgphYWHMx8fnL2/p9yLIysrCzp074ebmph40aFD7+lS9DIyNieI8fTrRq5sGG8uXwzEmhouYPBlXrlzB0KFD+YKCAmH79u0AqOe4TCbjs7Oz4d27N/Tv3WNpXbvC3NsbyUFBQslrryFn+nR4eHsTLRuArq6uGBwc3L6SipYW7jg7I/fSJW7YsWP44YcfYGpoCDNnZwpK16yhzfnjx7SxHDeOdOAlJaQdP3mSDOE0dPZa9O7dG7XUePTp0wf2GlO3pnjlFaBrV4S4uTW7Fu+++y4LCwuD9datgsOzZ6xRla0Wjo6O3M2bN1FUVCSOGDFCcHZ25rdu3QqZTCYKgoA5c+bU66m7EaogwwAAIABJREFUdoXV5Mn4x4ABjSqS0owM4Pp1+B47hpIJE0hr2zQge/iQGBCazXtgIAW6Tfx3SkpKcOrUKbHVTbwgUCAokVDrvunTye08KKjus5WVlcHGxqaRYRdjDMuWLcOWLVtQXl6O1irgcrkcr+3ejepVqyAbOxZ/SjmrpQXjzz7D088/Z9WTJ0NHc22HDaPKfXIyVQ01LfYOH6YqanY2+RGsWUOJBk9PqjRGRDR7i7S0NPA8L7755pusLT8QANRl4uefgc8/R6K9PWINDWFuba1et3Mnr6GUb9++XXz//ffrfCzc3NxYWFgYrl27Bos1a1BuYyPqpaWxhkydOhgYUBUyP7+uCr53715VWlqahOM4SCQSsaamhps9e3bLa5eTE7FA+vShpIiWFjBpEpRyOTYdOoSKBi7lCoWiru1mq6iuht2qVfhu8mShXKVifsALL5iCIEC9bBm0fvqJAsB16+qkF87OzgCAI0eOoKamBn369IEmMfftt9/CsKaG9cvMxG1jY7j07InRo0e3+301XiZn4uPhHh5O59TXF1i1iqrqmmSKIBCryNaW6Oh79kDRrx8Xr62NwQAxEhYtooTY77+Tx4SbG80DpRKlb76JX/r0wdOCAgDAO++8g6KiIuzZs0fYvHkzP9jVFd5vvQX+zh2IooiCggKkpaUhISFBnZuby0skElRVVYHjOAwMC4NUKuXg709jioig95XLaR4XFRFrZ9my5syVoCAaF2OQyWSIj48X/f39yczu3DmS/bTgBdFek9rExEQAZMzaLPnMGCWUevemxMjGjcSI2LKFGDsvq5tXqYDqatjIZFg0ZAh+/eUXGD56RNc0PZ3eX1eXEr2140SXLnTclStAeDj9/c4dSmj+xVV+Dw8P7urVqyq0ElN5e3tziYmJkrS0NH8AHcF+B/7j6Aj2O9CBDrw05HJ5P6lU+s6gQYOa7R5r29SgVgNu2PTvgiAgIyPD4dy5c18XFRXNlcvlAQ0DfolE8rarqyu0tLRw8+ZNhIeHQ62mP3/44YfIz8+HIAjNepI7OztjyZIl+O6779iRI0cwqdaEzNbWFrq6uv/VQB+o32SNHz/+3x/oazBgALmiBwVRH+KG7buWL0fxwIFq7cxM/o033tDoPTmNnMDCwgI4eRKOPXuS9nv5ctg/fQpkZMCrU6cWd092dnZCXFwc5+7u3q6TfefOHbF3796ipaUlZ21tLWZkZLCCr76Cqakptfrq1490rp9/TpKE/v2puhsQQJr22iRDQzDG4FLbl72qqkpEawFLTAxtVmsdqxtCRyLBxKQk4NdfOchkLW4We/TogU+IfkuSAgB/+9vfEBERIaxYsaLxNb50CfD0rK+s1tSQoV1sLPDDD4heuhQmtraiG8c1HmthIVXzajXIAKia1kKF6+7duygqKmLLly9veX5t3Ei031OngFGjiC68dCkxJEaMAOzsoK+vj5ycHLXm82igq6uLOXPmYMuWLfjuu+/UjDH06tWLD6o14Xr69Ckgisjo2hVXU1NRuXMnLCwssFCjLX4B1PYfF3Jzc7k6M8qFCynJ06lTfRCkYQ9oOkD87W+kF16/vl4y8t13JGXo2pXo/rNnQ/X++xikpcUkY8ZQFdDRkXTVajUxYKqqgGPH6F7JzCQmiZsbHo8YIQo3bjCO49j8+fORnp4unj9/ntna2jaqmOvq6kJPT0/M/fZb9tTUFPyYMWLq8eOsurpa0xpR0NbWFmQyGW9sbMx8Dh9GYWQkknx8kJKSAkEQJG+++SZqvSBYcnIyoqOjBXt7++aT8NIlGl9SEunMFy8GunYF//77GJKVhcS+fTH+k0+g396uD2fPAtXVEE1NucLCwjr2UVlZGVJTUxEfHy+MGzeuRTPJ6upqREdHI6ZWpmFhYSHOdHRkelevgg0YAJiaQktLC3//+9+xYcMGREZGin369GGpqanw9vbGnTt3MNDGBt3278fSpu3c2gFNu0ZdXV2i4Ftbkwzh6lVKmN24QcmhDz8EfvuNztnFi4CHB2I3bWI6np7iYM1a8dVXxBTp1Imq6hMnAqKI+AsXYHr6NArNzTFp0iRYOTqC4ziYmJjgnXfe4a9du4ZHR4+qFVZWfOqJE+qnT5/ygiDA0NBQ7ejoyAcGBqKsrAxmZmbYuXMndu3aJSxYsICCfX9/SkR88gnJO8aMoTEYG9P4G5roXbxI6+BDYolPnjyZ+/7777F69Wp88sknELduBael1brxYzugkTW02hoRoISaUkmsG29vkqSYmJBUS6EgY8rHj+kzaP4fG0vrl5YW+YmcP09MBj09Sljt30/fVy4uKH78GKrISPg7OKCTnR2tw8nJ5LpvZUWJECsrSpR17kzssYEDidlTXEwSmvHjieHxHC+O9iIlJQW///47/Pz8Wv0eFwQBaWlp2qIo7gEAuVzur6Oj84FCoTgqCMKe0NDQNpl9HejAy6Ij2O9ABzrwUpDL5VKpVHrwlVde0f0zeniO42BnZ4c33nhDb+fOnR45OTmvAvix9rUlEonk7YCAAJ3NmzcLFRUVnI6ODiwtLWFsbAyO4ygIbQWaav+BAweQmJgIS0tLwdbWljM2Nm4WwPwncfPmTVy/fh2GhoYiz/P/2ayDiwvRmN9/H/j2W9owxccDFy6g19tv872aPN2iooKo/599RhWm118nWub06VRRacNpOyAggN+5cyd+++03eHt7NzYxUirp38OHQHk5rt69C+uLF5lvSAjD++9jysOH7KhMhuqBA0kbq3F2HzuWNpK6uvW9m+/fpyDt5k2qarYQjBsYGIiOjo6tn+vOnWlj2hIuXCDq7ltvtauVmAYlJSVQKBTNB5OQQBvYvDxgwwainf/zn1T1NDCAEBsLtVrdPDGxYQNV/BrC15eC9gYb+cePH+PSpUswNzeHUWuGasHBFBBqYGtLQc+WLRBWrEDRpElITU8Xx0yc2OJ9YmJigqlTp6K6upovKSnB5cuX8eTJE3H8+PHszq5dmHrtmijZtYuNEwTcu3dPvHfvHouOjsa9e/dElUqFadOmtcs5/urVq6iqquKqKyrIdO+LLygxcvYszYeZMylIUCjofBobN2atjBtHP0WRqo0KBW38s7IAOzs869ULVU+f4lZEhOCTl8ehpoYCiIwMotxPnkxeAIcOATNnQhRF3LlzR4yPj2ccx6Gqqgrbt2+HlpYWpk+fDgcHh2ZzzMfOjjls2gSDXbtgNHQoR8MRUVFRgWfPnnHFxcXcs2fPkJ+fr07V12d4+JAT+/QR3N3duaCgoDrJSbdu3eDk5IQtW7ZwxcXF9df29m26dsuXk7Slc2eq/rq5AV27gjt1CtUbN6r1oqP57DFj0HP6dAoO27h3ERtLLIFjx1D4+efQycpiAJCTk4Nt27YBAPT19bn9+/eLc+bMadSm8/z580JMTAwHkJHZ8OHDcerUKWxUqzF42zb47duHnPfeAzMxwb179wQAnJeXF1MoFAAoUQVRhMvRo9DIR14EarUaa2op74MHD6YHKyvp84wZQz3hKyrovH3+OSWEAMDLC4WFhSgtLYWnpyddx0GDKKGmMYU7fBhlBw7g0bvv4sTo0VAvXozFCxfC1NmZmB8NZBV9/f3Rd8cOPvObb/Ds8WN+0KBBqE0GNbqn0tLSoK+vj9wnTzjcu0frg7ExGcvl5NDaMHgwJSfc3en6NgTPkwSmNoFtbm6O6dOn45dffsHq1auBUaMwxcsL7evH0jKUSiX09fWRmZkpAGi9NK6lRetYURGtx6JIa3KnTpRgKy6mpK2ODq3/tra0dunp0WcLDCStv1RKa/zGjYBMBkEUsenTTwEnJ3zwwQfg29s2t6yMJA63bpEUbM0aet0pUyiZJ5e/0JreFGFhYaK/vz8LDg5u9buF4zg4OztXP3z4cKNcLj8ulUq3+vv7m929eze4srIySC6XLwgNDVX+6UF0oAPPQUew34EOdOClwHHc6127du3s2s7Wbm28DoYNG6Z3+PDhD1Ab7ANw1NHRgSAIqKio4ABg5cqV7dIXatCzZ0/MnDkTVVVViI6OZlevXoVdUwrkfxjXr19XFxYW8r6+vkhNTcWxY8fEqqoqFhISUqfh/rdi4ULamC5ZQgH/1atEUX377frnLFtGwZG+PlFX1WraHLcGQaDKs0pFm7pHj2Dq4oL5eXnI+de/xKhu3ZhzQgI6e3rCJjubKvQffUSaTzMz5BgYCP0sLbnO+vpA377QCwiASX4+TltY4M1PPqnrJw6AgjCgscu7Wk0Vt1WryP1bJqszqisvL0dZWRkrLCxsffx5efQaTbFuHQV8N2/SBvQFYG5uDp7nmwftZmbAkSMUUGp+b8Cy4HleE+zXo6iIrklT2vyVK5SAycmpe8jU1BROTk5ISkrCjh07BA8PD87Pz6/+mMpKChz+9a9GLyUIAu4HBiIqK0u037WLjVar4awJlpqgIWMCIO1qTEyMuGXLFrimpkKVmckMZTJNgMri4+Nx4cIFuLu7Iz4+nl27dg1jxoxp9dyVPnmC7QcPCoEnT3LLbW1h5OJCLISlS+maaAwfV6ygAGvyZEoKHThAzIfff2864Po51KULtaUE8CgoCOnp6fC2sWFYsqT5QN57jwJfIyOgtBTXExMRHh7ORo0aBScnJ9y/f59zcnKCkZFRq5v9wUoldgwfjurERCyrNVTT+Dfo6+vDut7TgEdgIFUeZ8xoMaDq0qULLCwsVN98841k9syZ6G5sTDTtjAwao8YwcdcuOle1Vfz+K1bw8vJyFHp6opuTE/R8fMiobulSYkI0ZDqJIiX05s0DpFIwxsDzPPbs2SOkpaVxJiYm4rx585iOjg7Wr1/PvvzySwBAcHAwYmJiUFlZybm5uaGqqgpTp06FVCqFu7s7e/ToEXaLIopjYyGsWYNkJydUy2TcgAEDEBAQAI7jNOwYCHl54J48ocDwBbFv3z4RABs5fDjcL18m1s+oUZSwe/11WscWLaIgtEmg9+zZMwBAYGAgPRAQ0JgxtGoVuF9+QaabG0ba2ordJ05kXbp0IcZNr14UoPv7E7MkJgZIT4eVuzusmiYtqqvJd+PBAyQmJAijz53juubkQDA3B1dWRlKdTZtImpGRQcmtkycpUdEQaWnkh/DRR40e7tGjR928ClyzBlcfPoTr3r0vfC4BIDMzE0eOHEF5eTnGjx//fA58TAwxrxYtovUtNPRPvW9DnK41AJwyZUq7pQcQRUoerF1Lgf3s2cRKAyjZcOoUMQnOnKF15E+041UqlSw1NVVsK9gHgNGjR+uGhYVNqqioeMXLy8vAw8MD/fr1k+3bt29qbm6uGsAbmufK5XIegCuAYgCZHZX/DrwsOoL9DnSgAy8FbW3t2f7+/nrPf+bzUWu4000ulzuFhoYmAZBWVVXp7tixAyYmJhg8eLDA8/wLC+4cHR0hiiJUKhU7efIkevXq9V+r6gPAggUL+LNnzyIuLo7FxcVBS0tLNDU1Ffft28e98cYbzdr4/OXgOAqMz52jiuWcOVTpi44mJ+/ISKq6KBQULKxfTxTmyEgKoFUqokYOHUqtjYqKqPL/449UYbewoAqOmRlMjIxgMmkS6xEcjCP/+hcs+/aFzYQJVF3heWDCBFRXVyNhwwYucMkSXHnwADAwwPXr19WlpaW8xMgIjwoL0b1hsK9BWBgF+2++SZ8pI4PGtmwZfZZ79wBRhJ6eHlxcXJCUlKQeMmRIy9e+ooI+c0M8fUqO7yEhLxzoAyQlOX36NHctLAx9z58nOrCmEr9qFYqDgnA/Oxt+enqNaCa1wX7jF1u1is5XbVW1DqNG0TgbQFdXF8HBwVCpVEJubi534cIF0c/Pr34zeuUKsRUaBHiZmZk4cOCAoFQqOX1zc/gePAjDK1cYFxdHQcbHHzeWfTSBjY0NrK2tufyNG3EzOFg8am2N3jduYEJtS8UPPvgACoUC+vr6rKKiQigqKmJomgTZtQv5RkZILCvDoFdfheOhQ2Kfd98FJ5HQWB88aPymxcWUoNq7t761m6cnUYXbAUEQkJ6eDgAYOnRo88361avEIujUiRgonp7QrXU019CZ/TXGh63h6FFg3z7keXhAVVRURy9vFcbGNP5nz+j3FjB//nzJxYsXwQcFocrTE7onTjR/kolJi8dnAfgyNhayuXPFaTU1zGbrVpr7o0aRFwLHES187946Q7NOnTqpHj9+LOE4jnvrrbdgbGzMADp/NTU1AKh95Llz56CrqytOnTqVNUwEadC9e3e89/77UKlU0F63Dtwff4A/cKDFPvJcaCitSy8it6pN/o3meVawfz96WFrS+jBoELX2bNgB4Y03SN7RpCXgvn37YGlpCa6ykoLUL79sNIaEqVNxWk8PkwID4fjRR6yODq4J5jMyKHlSUUGJhC1byAzzwgVi8Li4kCxEoaCEk6UlnIKCuLOiiMkffIBOGrZSQ/zzn3T83LnN//bDD0TvbwKFQgETExPcvXsXj21t0fs5hoZt4fr16+ri4mJec37efffd1k05k5KIPZGYSJKZ4GDyN5gzp93v9+jRI+zfv18cNGgQu3z5cqO18NKlS6Krq2v7JkVVFX1HDRtGyZWkJKr0GxhQMsXPj9bOyEg6hxs20BxpJcHZEqysrNQZGRl8fn4+yc1agZ6eHqZMmdJoomtra2PGjBmyjRs3zpbL5fLQ0NAntY/v5Xl+nEql4hhjCXK5/DWQoXE6yNy4P4CK0NDQO+0eaAf+p9ER7HegAx14WZQqmwZJfxIcx8HFxYWLi4ubDOAzAIMYY/zgwYPF/v37M7RFH3wOTp8+rY6Pj+cmTJjAev8JauhfCalUijFjxsDZ2RmJiYmwsrLiHB0d8c033zzfNOuvQE0NbX4WLKBN74wZVOHLzCTTozVrSN+YkEA0SkNDoon+8QfpK93dqeLv4kIbuc6dyXRrxozm79W/PwBAG0Cll5e6UCbj0WSjWFpaCp7nkZubiwsXLsDExETo06cP69evH8LCwnD48GEsWLCguYP+/ft1OlUAFKhIpcDWrWTclJwMDB4MdvkyKioq1GZmZq0neYYNa+zWvG0byQSSk5v3uG4LJSVEGR06FNywYZjt5IT9FRWi/6lTjE2fTlX8HTuA3r1xOS5OjIuLY2fPnoWfn59q5MiREvoYXPNgPzCw5X7VjFGFdvHi+jZcoArwrFmzuNu3byMsLIydOHECRkZGVLHs1w+4fRulpaUoLi5Gbm4uwsPD4efnx4YNGwZO4xUwZgx9nsOHaRP8z3/Ssa0EYAyA2ZYtGL11K+v16qvQalA1lUqldRW5wMBAbvf27VBVVEBy4wYlMm7eBE6fRirPI8LFBRUHDqjHT57c9onfvZuSOw3lAC4uVKHbsoXOSRvQ0MY7deqklslkzd/rzTcpKRYaSpXBf/0LImNwiIho1mqrRTx7Rkmtf/wDc7t1w86dO+u6NLQKnqeKemVly8G+Wg28/TaGjB+PQ6+9JhQaGbGFgsCaOevr6NB7N8CAAQMQExMDW1tbODg4iD9fvszmzJoFm/R0YrZ4e9M8CwsjNk/tdXZzc+Pj4uKE119/nWsoC9FUwQcOHIih9XOvzUCsbn1bvZp8Q9avr0+oaFBURKaRa9e29VKEqipKWvbqRVT7Ll1gtHMnwvr2RbWXFzzmz2/5uLQ0CkhXr657qLy8HAAxFJCQQGNo0tYyPCoKg69cgePQoRTIRkY2TiJoWupNmUL3+sCBxJCKi6O10NeX7iFra4AxxMbG4uTJk4CZGcxbCvT37aNj9u1rTjevqACWLEFSTg6enD8PURTRuXNnxMTEqEtKSniO4zBkyBB4vfkmZC/RcnbgwIF8RUUF0tPToTGibIbUVJKR/PorGWRq/AYMDCgJ/ALBfmVlJZRKJbt48SIAMtydOHEizM3NoVQq2xfoCwLJrj79lGQ9+vrE9rl5szE7omtXknIolcRI2L+f5lRFBd37zzHz69mzJ//gwQPExsbiby2tz8+Bjo4OfH19xdu3b0fK5fL1AH6SSqWl/v7+OoMGDeKioqI8b9y4cZXjOKGiokKXMaY2MDBQlpeXM7lc3iM0NPRpa68tl8vNAQwDcKOj7d//NjqC/Q50oAMvherq6l9u3LgxoHfv3m3032o//P39tRMSEj76/PPPe2lpaY0eMWIEvL29X1rXXlhYCE9Pz/96oN8Qjo6OdbT9rVu3Ck5OTujSpctfYxUsikSnj4oiWunOnbTR+eoroj2HhNAGWUuLKmtZWfSYkxNVnFaupGChtpIJgCitL4FBgwbxR44cQXR0NPr3719nZHbt2jVYWlqqDQwMeKlUikWLFtWdg7Fjx2Lv3r3Cjh07uHHjxtW1igJAY2wJHEefQRSptZ+tLYZOmcLlu7lRYNwCKrZvh/r112Fob08B1fffkz78eYF+VRWdp+BgYN06iMnJEFetQs61a1BOm4b8Tp1Q8fAhS542DU6vvELnec4c4F//Ahs8WJDJZLxUKhVv3Lghyc7OFvz8/BjP80ylUtXvqmfNokRKrYt5M9jaNgvsNPD29kZVVRUuXLgAAIiJiRH//v33jD90CN9evChqNs99+vQRg4ODWbOqc6dOlBAaP54ct21sKEBryrSorqZkUVoaAKB7S4O5cwe4cQOxXbsKK7/+mpNYWZFRlkZXf/gwKi5cAKKjMXLq1LZP/Kef0jlv2JZQg6dPiWkyf36belxNQkWtVre8vsTFNf7/uHFwevgQ3cLDcW3VKgQ0kUE0w+efU6Cxdi1O1TIyiouL8Vyvgrg4qki/+27jx1NSKEh89Ajo3BnjP/iA+/rrr8VffvkF5ubmcHV1RVeN+V5aGgUstYiMjKwzy5s9ezZ4nufS0tKEn3bv5gYMGIBh06aRDGDUKJrzCQkUPM+ciaH6+mxoWhpDZSVw+jRUjo7Yc/cuHmdlARz3fHZDS2CsPgieOZM8BzTXMTGRAsRWmA2oqiKZQlER3eN371Iy8uJFwNoaPAAWHCzE3bvHefj4tPwaGlZSA8THx4tSqRTdFQoGFxcy8WuA8vJylJeXw6ymhtbW1atpLXV2bm7suWwZUcQXLGjWIaQhzp49KwJg06dPb/7H+/fp+MGD69tSNsS6dUg/ckT8ZepUZm1traZD7jM3Nzfm4+MDQw0Tp0sXkgS0MY62cOjQIfHZs2fM2tpa1NXVhUwma3y/lJVR0s3AgO43zZpZVkZr8YIFFHy30wXf1dUVZmZm6ry8PH7hwoWNfHnanQzXtHs0M6t/7PFjYmo0lUIANG7Nd92ZMyT9cHSkOTB7dqvra2VlJaRSKfrXJrX/DIKDg7VtbW27R0VFbczNzQ1WKBRP8vPzqxljsoCAAElAQIAEAFQqFZRKpURXV1f73Llzilu3bl2Qy+VTQkNDm/VflcvlOlpaWjcsLS27ZGdnc6tXr574ySef/N783Zsdpw9gLICDoaGhQnvGL5fLGYARAG6GhoYWvNin78B/Ah3Bfgc60IGXgiiKe/Pz89dnZWXp/xX0c3Nzc8yfP183LS0txNraupnL/p+Fra0tn5qa2rob+38JJSUliIyMFIuKijgAyMjIqGsb9VzU1JC5nrk56T9PnSI9c79+FMi/+ipVhLp1I6dkZ2eqUKak1NPSjx+nBEBqKtGWDQ2JkvoXditQKBQoLi6Gk5MTQkJCcOjQIVy6dAkGBgZqDw8PPjY2FmPHjuUtLCygUCgaVU05jsOsWbO4r7/+Wjhw4AAHAHPmzIFd9+7EKLhzp3kbKg0Yg3LcOGRlZSHB2ZkZ2tiIiIpi+PlnqvzWBoLZ2dmoSkhA1LFjMDp2TOwNMLPISOi3JB1QKMjrYNs2+hkRQZtyNzdcjIpSRxUX8/yCBZDu3StIpVLBuLycm5CQwHX59lsyReQ4oEcPKJ4+Rc7Zs3y1jQ0mTZrE9uzZg8zMTO7Zs2cwMDCo14DX1ND1cndv/QR/+SVRhVs8BQwDBgyAoaEh9PX1sXfXLnbdxgZP09Oho6PDZsyYAQsLC+jo6LR9wU1MaK4cPkxBw9y5ZJaoqVJv3lzPqNCgrIwqas7O1P4qLg44cQKPR43CzYMHEaDR7DcIutzc3BAdHY3MzMyGWvbGSEoi+cmCBS3LKxwcKKlSSzFvDXp6ehoDT+7KlSuNN+xTplCl+4MPGh2j7eCAb157DXoSCQJmzybPi5aM7srKqFr+zTcAyNjO39//+YE+QPTigwcbP5aYSMm2iAgKjAFIAcyZM4cdP34caWlpePbsmXqyhg0xY0ajlmePa6UNtra2dcmyWbNmcZcuXUJqaqowzNeXwx9/UDV0/nyimm/aREHsw4fENOA4YP9+PCopEa3t7THt2jWmvWIF+LVrKdGzYQPNEV9fShpqabUtf2GMtOYa34lvv6WgavNmGocGokh+IOHhxOb44ANKYo4fT9epyVqlVCqRmprKtekc7+dHFfnsbAgWFrhy5Qqio6MZY0zEsmV0TQ8danSISqUCAOgeOlQfRC5YQPP32LHGr+/uTswOgK7b4sVkatoAd+7cgVKpZEZGRqKTk1PjD1FcTOyKmzdbdNFXKBQIKy4WcgIDuXnz5sHGxqb15FhSUpsSnOchKCiIHTlyBA4ODggMDGw8zh9/pOvx9Cn5ZWiwZAmxSzZupKTpoUO0VrcTixYt4tevXy9kZmZybZnwtoqcHEoCNUzWDhlC65NK1bz1bEOMHEmJruxsmnPx8ZQId3BolnCtrKyEQqHArVu36s0gXxCMMTg5OcHW1lb3woULowoLCxX+/v7NtC0SiaSOFTRs2DCpsbGx87lz5259/vnnJYIg6EkkkhxBEAwZY9sYY0XW1tams2bN0r179y5+//33Tz777LNBEolkuiiKV2tqaiIA3AoNDa3LaMrl8i5SqfQ3lUrVVxAEAwDb2/kRjAGEMcYUcrm8b2hoaOyLngO5XC4B4AEgNTQ0tLiN5+kBUHQYGr4YOoL9DnSgAy8IwLqKAAAgAElEQVSF0NBQ1aeffrrx6tWrn0yePLnlptsvCFNT0zb1b38GNTU1go6Ozl/bYPclkZeXh23btsHU1FScNm0aO3PmDA4ePFhHWTQwMCAatVJJm5SwMKqyzp5NG+CPPiIt9dKltHlxcaHg6swZ0ktKpbQZbg2pqVSZGjyY3OHj4oh6WVFBdN72BCbtwI8//qjOzc3lBw0ahCFDhuC9995DdXU1oqKiWFJSkuDg4ABra2uuthWZWFhYyLo2aA/GcRxWrFjBAcC6devEBw8eMJtu3cBv3NimqVJBQQF27dolCoIgdh42TBwxdy6P2FjaSHMc0dIXL8b58+dFg969WVHnzvC4eJFlWFpiz1dfQUetRs8nT4R7Dg7c1IMHxc6Ojqx0wwbo//Ybovr0ESetW8fq9MZff43Eb7/lPD098QrpeDkAHM6coY1u586NNp7iypUYPHcuuLAw2Nvb4+233wbP89i4cSMqKipQUFDAKxQKSHftIrpzw1ZbTbFhA0kDUlJa/DNjDBpGi2dJCZKcnJCZnIzevXtrfDLaBy0tCiIHDKAAp6CAAmI3N6Liv/Yazcc1a6gFXEYGcP06VW61tYHXXoM4bx7Yd9+xyhY223l5eXUMhFbv/0uXSLt//XqLWu86qNVUGb5yhXT8rSAmJkYEwHSbVu4mTKhv59cAjx8/RpVMBuvu3el8h4fTcxsyCEpK6P45dQowMEBYWBgAMgttF0aNqvObwK1bVNUNCyMZTZPkZ9euXbFo0SKcOHEC9+/f58+cOaMeOXIkj3ffBS5eRDnPY9OmTVCpVPDy8hLHjRtXF6zxPI+UlBTBWa3mMGgQXbsjR6iquXcvJSqOHiVde20iJO+nn3Bwxw62ePFiyDSf+e5dCkoFgWjtWVkULP/0EzEsDh6kxMu331KyaOBAum+1tCgI7dePAtv58ykJZ2VF8+rkSUoUTZ9OAe+iRXQuBg6k9aoVcBwHX19fdWxsLN+lS5eWmQeMQX3/PnKLi7FbrRZ1dXWhpaXFFNXV7Mj8+epJr7zSLHiuqqoCAGiVldH4S0sp4aBS0Zqr0cUrFDR3HjygzzJhAp2/mhqoeB4//PCDurq6misuLmYeHh6CpaVl80Tb6NFkDJma2igwFQQBd+7cQeHnnwvdeJ71/uIL2NjYtHouANDaEBLSYovO9kCTeL169SqrMy5MSamXMAwa1Lxq379/PfsnJISu2QvC19eXO336NJydnVv3CGgJYWH1xpoNwXG0LqxaRQnutsAYJcuOHKHr+957NHevXaO5bGeH7OxsXLlyBVKpVAwICHjp7LiOjg5Gjx6tDVK9PWd4DD4+PszT01OnuLhYRyqVori42LG6uhqHDx9eAeBKt27ddBhjKCwsVNXU1PiYmpp6jxkzRjstLc2msLBwQlJSEuRyeb/Q0NA/5HI5z/N8ikKhMOrbty9iY2PHoTbYX7169UCpVPpRTU3NyqYsgtWrV4/U1tbeqlAoxH79+klv3rwZDsCshSG3Crlc7iaVSs8wxswAnJDL5QsBlIWGhqqaPM+TMXZLIpGkfvHFF8/UanUvjuPK1Wr1wo8//vjki7zn/xo6gv0OdKADLw1BEH5KSkqSK5XKRjrd/ysQRREpKSlwcnL6bw+lEaqqqqCtrS28+frrHHJzsczQEKdEUXg6bx5nmJ8vGhw9yjBiBFVSPTwouFKpqF2QuTltgIcNa/7Czs7tG8CJExSYaCpjnp60ufnhB6I0hoS0ualuL8rLyzF48GBER0ejuroagwcPhkwmQ3BwMBccHNzouTo6OkJBQQHftZVe4D4+PoiOjsajkyfx2rx50G6DGnr+/HnBwMCAW7hwYf1GzNeXNm0VFUSz9fPDLFdX9mjNGtH9zh22f84cLLhwQfTt0YPFFxeLvt9+yw1OSUGOhQUOx8ej6OBB2H75JZ48ecKOnDsHQ0NDeHp6wsDAAD169EB8fLwoCALjrl8nmUFkZOMWd7XQ9vNDjakpuNre7ho/Ah8fH1FHR4dFR0cj4cABtffGjfxz6beLFjWrGraG3idPgo0fjzAzM+GPP/7gsrKysHTp0nYdWwdbW/JqOHmSAsMDB2iu/PADsGcPMRh++IHaaQGUQKpFYmIiysvLMazJvC0sLMSOHTtgbm6unjBhAtci00CtJnr0P//ZdqAPUGJF026rDfj4+LDHjx/j1KlTuH79utrd3Z0fIJHQPOnRo9Fzq6qqsHv3bgDAlJkzSY5RWEhV7J9/rg9oTp2iam6tBjs5OVkwMTHh2p1Y0dKi4PnECaog9+tHFe82PnNwcDAYY7hx4wbfs2dP2KnVuBgZiZha87aJEyfC3d297pwKgoBr165B9fAh13/QIJIMSCSUaABIL69QUDC7dCkwbBiqq6tx7NgxtYeHB4yNjeuD4QED6rsA7NtXP6jlyykBYGRElf/KSmIoaGvTPXjkCFXq336brlNQECUYx44l34KqKppf+/e3f00DJTFGjRrF9+zZEwcPHkT37t1h3qAi+/jxY0RGRorqsjImPHuG/vPmISAggKkrKsDMzfH93Ln8utRUcerUqaxh5xaNmaNY2wHhWXk5DDp1QoWeHvjNmyELDAQnk1FQ+dtv9a1B33mHflpbI6pvXyHHzY2ny6yFESNGcM2o6Xfv0vXo37+um4IGkZGRuHz5MsalpXG9588Hb2///BPy6680N/9EsF9QUIC4WjmLh4cHMeNEka7zjRuU4GuJNWBhUW90Z2tLspQff6TntwOCICAwMBBJSUnChQsXxFdaSL60Ck9Pkq21VL3v04fu1ReBREIMhdBQMldduRJ49108AAQA3MyZM5t7ZvyHIJFI6thCGtnG5MmTZffv3x+kkT+mpKRUAPisurr6ExsbG20bGxsJAMmtW7fEs2fPRqxdu/YXANfVarWR5nVUKtUwuVwuBcBLpdLvHRwcej18+HDQunXrbguCEKVQKP4BwIwxdmry5Mmcvb09UlJScOvWrbbpVKBuA9ra2pGiKNoplcqlAEYYGRmZDB8+XLpnz54pACZra2vvl8vln2pra+8EUF5TUzMeQIFEIinR1tZ2LC8v15xwfcbYc9/zfx0dwX4HOtCBl0ZoaGjeunXrYpOTk/v26tW0U/t/BxkZGbh8+bJaFEXk5ubyPM+LQ1rS6v2nUFlJwYe1NVUbT56EoVyORZ9+yiEigtrhnT6NMe++y2Xr6yPy4kX2NwsLlMXEIDsnB2ZmZrCdNo1e60+0CGoR7u6NqL4AKNB4800KUpOTqeXThx8212i/AFQqFefs7IzOnTuLERERuH37NtPT01OHhIQ0CupVKhUqKir4tqjOQ4cOZTExMfC9eROqxERoX77c6O9VVVW4ePGi+vHjxyw/P59b0lI7NYAC0ehoAEDFpEmwffiQCRwHNy8vUfH0qajfvTvr178/w+LFMAZg/MYbzCAzExkZGWL//v1ZXl4ejh49KuTm5rJbt25BoVAwAIzjOFw+dw5BPXvSBrtBNb+4uBiHDh0S3N3dmbe3N0t0cMCwzMxGwxo9ejQDKLCIiIvjyz/6SOTj4oQBAwa0vtk1NCQd/dtvt83GEEWcmDcPQ0eOxCJfX27t2rUoLCzE7du34e7u3v6WVhqMG0e0ckGor95nZLR5SHh4uOjr68uamtQdPnxYcHV1FSdMmNDy58zLI7lCdDQFj+2BqyslIebMQYGvL9LT01FaWoq4uDgMHToUHh4ecHd3h7m5OZ4+fYrs7Gx2/vx5+MfFQSKTNQ5cgTrN+/Lly+tN9kxMqHotlRJNubiYqvIN9Pz6+vosLy8PYmkpJeyMjalCWFFBHgiXLpE+ODqa9PiLF9N9FxlJz2+HHlgmk+FBbbeCvXv3wtXfH1m1XRrmz5/fTA51/PhxIff8eS7k4kVIx4+noH7tWqquayCVEvU5IgKxhoY4SW3L+BktGXE2gVCr0eYkEmI5aPD99/W/r11Lc0fTGSQ8vL5KvmgRafAfPybJjKayn55O61Y71iNHR0dIpVJcunQJI0aMQGlpKX777TcUFBTAxcVFDPrgA2YyeDDYjh0MjEGirw+cPo0JPXtix44dLDExsVGb1r59++LcuXP47rvvYJGdDZP8fNzz9IQoinDX1UXx0qXI69lTfOX+fbgsX87Ky8tx//59VFdXw8nJCcfGj0dO587cSH19scecOex0eLjw9ddfs759+7Kg2qSqEBcH+PggefRoFFpYwE0mg66uLhISEmBlZYVr166hp0olehw4wLj2Jq/bapnaBkRRxP79+/Hs2TONCSPDu+/SHD16tPUDMzKo4l9UVP/Y9eskE2sj2BcEAVevXsWDBw+QmZkJxhh0dXVZbm4uZ2RkJDaTELSEY8dIBnLpUst/9/UlqVt8fNvSqJZgaEgJqUuXAKUSgQMGcFaiCPXkyc2MHP+bcHJygpOTUx07QF9fXyKRSCbXGa/WwsfHh1lZWRknJSUtTEtLm+Xl5QV3d3fwPI+HDx+qsrKy0gDk2dvbO0yaNAl5eXl6OTk5ARcuXPBRKBT9AAwRRRHdu3fHnTt3VGfPnq1RKpXtMYYINjAwcB85cqTBqVOndvM8Lzg4OIhWVlbo06ePytTUVBIZGdldS0trZ01NzcCePXtWPXr0KFMQhJ/VavW1rl27BhUVFaG4uFglCELIJ598Et7wxeVyOdfQb0Aul9tKJJLbgiB8+o9//GPTS57e/0+iI9jvQAc68Jegurr6eGZmpk+vXr3+q+uKKIq4cOGCcPPmTc7FxYWXyWTw8/ODi4vLv7fdniiSTlAUaTN08iRt2mfMoArZhg1EfV60iALN/v1x//FjMfnvfxfmfvwxD46Dpo2TZd++eFpRoT7222/8o0ePYGBgINTU1DBjY2PRwcEBbm5unIWFRdstvJ6HlBSq2DVtZ6ZBQABVSHbsoErG4sXELnhBqFQq1NTUMH19fZibmzN3d3eo1WqcPHlS/PHHH+Hm5obevXvDzs4O33//vdrS0pJ17dq1zTLJypUr8a2Ojpjh4CBOFEVOcx6USiVOnTolZGZmcn5+fszLywuy51WAi4thAKByyhRcsrYWUh4+5PzlciZaWjYzd7CysoKVlRUDyFti0aJFnCiKePToUZ0T9tm33kL/L78ECgtxcsAAddKGDbyHh4dgZ2fHnTx5UhRFkbt8+bJ49uxZmNnYCMZPnnB17aAaoHd2tujw88/sW0NDhkePeI7jhH79+rV+Xn77jSqibQX7+/Zh+oED4nVPT+YG4MMPP8TRo0fFU6dOsTNnzmDFihVoRmdvDZs3E032p58oGG3QCaA1aNpfWjVxHU9MTEReXh7XZhC5ejXJWVrSx7cBtbU17ty7J4Tfvs3p6OgINTU1nEqlwokTJ3DixAm8//77MDMzg5mZGQwNDbkbN25AcuwY3ccNoFAoEBMTA319fRg1TTaEhBBDxtOTkhKffkrJj4ICYOlSjNy8meVJJBBv36ak3zvvUOXRwoK8DwwM6Pdp06gq7OpKVdGBA6kDw7JldG2fc78vWLAAmzbRXtb7zh1M2b69RZO76upq5J4/z2kD6PL550TDLi+nILuhVh4A3noL4b/9hj6jRmHmhx+K1kuWMC0tLZSXlyMqKgq5ubnw8/ODq6srMjMzERsbi9jYWIjU8lJYuXJly3M2I4MqvdrapG2XSKg3+5AhJHnp04cYMX37UsBfXk5JlE2b6LzEx9NxmzZBfeQIKtzcIPH3h8zYuFGCTSqVisnJySwpKamupeW0adPg7OxM43JwoHmcl0dtNk+ehCWA8ePH4/jx47h3754wYMAArlevXmjYdcYpJwf9Kivh8+qrqKyshM2ECVAvWYKnc+Yw3a1b8QtjYrK9PTM2NhZ4nkdERAQn1N6bXhs3Mi1DQ8x84w0uOjoakZGRJDVQqxH23XeCwbhxrGTaNKEoPp5dunSJU6vVGsacqFQqWXBYGOP09IhB0x64u9O5bsvDoAmUSiV27NhR13HBu1s3ug7Dh9M1awtWVpT4ajhfV6zQvHCd5EUQBMTHx6OkpAQ3b94UqqurOQMDA7FHjx7i2LFjOZlMhvv377MHDx6ImnX3uSgro+RRW7h+nQwst2xp10s2g6EhoqKihIjJkznL4mJMP3iQEnWbN9O9+1+q8reGCRMm6N29e9fPuQV2jIWFBSwsLLjAwMBGX0CzZ8/Wy8jI0CsqKurm4eEBjuM0z0WnTp1kP//88xCe56sDAgJ0JBIJ4uLiKpRK5RYAnnK5PA+ACDL62w2gHIAlgFwAFQC8zc3NOXt7e7z11luN9BljxoyR5OTkQKlUOiuVyj4SieSmj4+P6ZAhQ3SvXbu22MDAQKtPnz68oaEhzp07h9u3b48FcFpzvFwu9wVw44svvvj2/fffXyaXyx0kEkmkSqXqAuB/lgHQEex3oAMdeGHUuq/aAPDnOM5TS0vLSiqVBjRz6f0Po6amBrt27RKePXvGZs2a1brB15+FKFI1rrCQNsZDhlDVKTKS6MsjR5Ke3tubKlYAVfjMzamiHxnZeLyXLjF1t258S5uD3r178xEREbCzsxNmzZrFKRQK3Lhxg6WkpAi3bt0SpVIpPDw8YG9vz9RqNe7evasuKytDUFAQ3y66cEwMbdzaCiAMDWmTlpRElNwBA0jX+wJJBolEAo7j6h30QTTbCRMmSLy8vBAZGak+ePAgL4qiqKWlxS9cuPC5rymTyfD27t3suwkTcKd7dzg4OODatWvCnTt3OJlMJr722mtcszZ9LSE/n6rhCxZANnw4RoeEcEJRkbBz505uwYIFaE1K0BCMsfrq361bUAYGqq85OfE98vKQkJDA29nZISsri8XHx6uNjIzE119/XQKAJSYmQl9fn+O++oqcz/v1a/S6fiNGsGf29kBqKiwsLFBWVga5XI433ngDLRph3r3b7CFRFJGVlUV9wzkOMDVFootLoyrvxIkTmbu7O3755ResX78enp6eAmOM8/Lyavn+EQRy3rezq6fJ6upSgus5mnSFQoGqqipkZmbWSWqqq6sRHh4ueHt7w9DQsOVd8tq1lJhydHyhuVdaWorvjI1hUlyM1/v2RdcxY+pe/8yZM7hx4wa++OILLFiwAAYGBjhz5ow48vffWfkff6D0m28anaeMWsbChAkTWn4zUaQK9u7d1OJr3Dii9/v54djo0aK1lxfzmjq1/vkN23S1pClfupTWkb/9jZKEOjpkutmGCaqRkRHc3NyQkJCAcn19OqYFqO/dw+hTp8A++oj05ABd05Ur0bQtpkqlwo24OBQPHw6jhATx/Nq1Yr5EwgGApaWlYGlpyR07dgxxcXF4WNsG09TUFGPGjMGhQ4c4uVyOHj16qGfMmMFDraYAa98+qq5KJOTtYGhIkokZM8g47/XXKYGyaROQnAzVzJn4448/YGFhActac0JkZSHim29we+tWDIyORs3p01BIpRhcVATJhx9S8KWlhQHDhomxv/7KlD16IL+qCm+99RaMGyZAtmwhIzZTU0ow1MLd3R16enp49OgRd/78eZw/f75RksdILgdzdYVtQzbMqFEwLC9H9YMH8Hr8mI2ztoZMJuMAQC6X1z0t6fffBbfevTn28ccYOGcOLqpU2LBhAxZs3YoxVVWctKAAnJYWD1DHiNLSUnTq1AlRUVFiZEQEy3jjDZjMndvqPGiGJmaNGrQlu+M4Dvn5+XW/602bRmtUQ2ZGa1i7liQDTY1T33yTZBy134NHjx7FvXv3oK2tDU9PT/j6+qJz586sYUsQX19f+Pr6tu+mv3mTpC7Pa/M3axYF/C/QIaApunXrxglaWhA9PaH3+ut0z+vq0j2/ciUx9f6PQCaToV+T75fngTGG7t27t+jpYmdnBxMTk9KCgoLQ6OhouaOjo6GDg4NOWVnZUgsLC+309PR3ABg4OjrqJycn/0OtVhvo6emVV1dXS3iez9TV1bXw9fXVa+29zc3N0blzZ2leXt79rl27Ct26dYNMJsMrr7xSt6CpVCokJiZWKpXKSLlczgEwADAAwEkAqKmpWSKXy/8BwEelUlmamJiUFxQU5L7QSfj/ETqC/Q50oAPtglwu1wHQCcAIqVS6hjHWxdLSUmljY2Ogp6fHjI2NYd8e/eBfhOLiYoSHh6uzs7M5ADA0NBTy8/N5Q0NDcdWqVdxLaegKC4lm6+hI1MPjx2lT2KsXBbxLllCw7O1NvchHjKDNalpafTAyfjz9bMM8KT8/XxQEocWNTGBgIFxdXWFqasoBZN4TEBCAgIAATlMRuXXrlnDr1i1IJBLR2tqa79y5Mw4cOCByHMdMTEzUKpWKqdVqSKVS0dramllaWnI2NjakDy8ooApke+DkRIZdv/1Ghn/PMcZrCh0dHeHhw4ecexPaZO1mglepVIiPj2cWFhbt83xQKCD18ID/iBEsPDwcoiiiS5cumDFjBrp3794+BkdNDQVkf/87JT0AYNQoDDt9movjOPzwww9wc3NTjx49mm/XmI4eBd58E7LvvsPV/Hwx+qefWJ8+fTBixAiAOkA0GperRks+Zw5tDmt7SgOgYOjOHRhv3Ah+zRrk5OQgJyeHA4Dff/9dHDNmDDNv2oZPLqdq2okTdQ9FRUUJly5d4iwtLYUBAwZw6kuXxJhevdjS2naPGvTo0QOOjo5CcnIy98cff3AAEBsbCz09PSxZsqRxtX/OHNLfNpRPrF5NQeNzKo3a2tqYPn06jh07hlu3bokcx4k1NTWcg4ODOGLEiJav27lzNO8WL27bQbsFXL9+XdDS0mKvxcdzfFoa3au10NOr32vu2rUL2traopaWFtL8/NSPS0u5xJ07GcdxMDIyEmfNmsVSU1Oho6Mj2tvbN79fJ06kyv7588SEOXeOmDOXLgHe3ijU0WHOL9rnfN060rX36UOGY19/TY9t3EgMmxaSHrt27VJnZGTwAKBdU9Ni20HVtWs4vHUrMHQoJoaE1P9h7dp6jXkDJCcnQ1dXVwz6+muWkZDADZkzB/jsM2i9+ipAJpSws7PDwYMHYW1tjenTp9exaUxNTaF49gz21dU85syh5MOAAcRyGjiQ2EOzZ1PA7+1NzKZOnSjgnzMHWLgQf6xZg2fnzyMqOBhqtRp6enrCggULuN1Hj6qLdHX5SbNmweidd1BSUoJff/0VHrNnQ2QMJjU14FJS4NmpE+eanIyEhASoGIPR3btkIHn2LFW8eZ5kSnv2kCa7FhzH1bVG7dOnDzZv3oySkhINtVw4ceIEZz5xIlQhIaL1Z5/RxXj/faBTJ+hYWsLp1Cm6R1xdEf/okcgplUzQ0sLMmTPh6Oio6TkKFhCAt956C0J6OnQyM6E9ezZYg+vG83xdciIwMJCzfvttVA0d2moruBYxb14zxs+tW7fE06dPMw8PD/Urr7zCN2WJ8TyPPt7eapPPPuPt58+HNDq6/VKu/PwWzS3x3nuNGDNOTk5ISkpCUFCQaGlpyenr678cW+2f/yQmyPNgYUHr5LNnxKz5E7C3t4eZmZmoVCopMtb4suzdS/KFRYtIBvPppy/VCeH/Kjp16oSCgoJMQRB23r9//52hQ4dqBwUFaSsUCnz55ZdW/v7+6qFDh0pjYmKkUVFRWLlypX5ZWRlycnIcHRwc0Nb+jDGGoKAg/by8PPXAgQMlLc0JQRBQUVGhpaOjs6yqqkqjtxJsbGxYZmamqKWlJQqCEAtA7N+/v3jlyhUdAFpyudwAgDo0NLTy33Fe/q+iI9jvQAc60Axyudyd47gJ2traQaIoWqpUqq6MMZlEIlFZWVkpBw4cqG9nZwfG2AvsOP4cRFHEmTNn1I8ePWIKhYJZWFgIlZWVePr0KW9tbc2GDx/OBEFAYWEh7+PjAw8Pj5en60+cSMH+nj30/9GjaROallZPi23BdO1FkZOT06YbemuO5BzHwcPDAx4eHppvzLpvw7Fjx7L09HRkZWXxUqkUWlpaKC0txZMnT8QHDx6oy8vLecuqKnHIsWNIcXcXhv7tb+07XyYmtDHq2pVMvHbvpnZ+z+tDD7qGTTXaDSGRSODl5dWuYQCgQP2nn9BfWxvllZVifHw8KykpYdrPo5dqkJ9PtOjt26nNoAazZiEpPx9T1Wqc0dIS7969yw8aNAhd2nLCLyoiZ+fantvjZTI+PDwcKSkp4ogRI56/c/XyooRQTEy9ydmVK3WGZDNmzEBBQQGuXLkilJSUcJmZmSw6OhpWVlbw8vKq19mPGNFIZiEIAuLi4pgnaYq5q/v3q6du385PiIhoTkMHEBISwgFAbm4uvv/+ezg6OiI1NRXr16/HhAkTRBeOY5LKSrAvvmh+za9ebXeFzMnJCe+88w6Ki4tZcnIyu3z5MkaNGsW3OD9+/51e9/Tp9uv0GyAhIYENGTKE8StWUHDcQFfr5+dXVzVVKpUwNDRkQ8zMIOndm0dgYB3FOCIiQty0aRPjeR48zze+nt99RwHye+9RQowx0vSGh1Mwu3EjVMeOodcff0D9Ir3oRbF5t4F33qE15/Jlcsn/8EOioNfis88+g0ql4jXH61VUNL8m2dngFiyAjosLrJYtq+/DTieLgm4Aly9fFuPi4gSZTMYVFRXBz89PNDMzY2ZDhpD5oERC46jV4js7OyO0QaAMtRooKMDIixfBnT4N4eef6X4bO7aebSCKxCbIziaDx4sX6xMYgYHAgQNIHDQISp6HWV4eZoaEQFcmw7bt27ktW7aISqWSX7FiRZ1Lu5GRESQSCbbUrtl6enqiSlsbNeHhDEOGwMLCQgx2dWWstJTW8MREapmZkEAV4YULqWtGeTl1MmkAY2NjzJ49G3v27EHfvn0xfPhw7u7du0h48gTZjImvatbfigr6Z2BAfidHjgB+fuj2449sycOHODN+vNht+nQGT086FwMGAPr6MO7dmyRg4eGUAGljXqi0tXFVKsULOePY21Nyo9ZA8uHDh7h8+TLr0aMH7t+/z4miCAcHB7i6utav06+HdSAAACAASURBVFVVsLK0ZP+Pve+Oq+Lavl9n5jaKgFTpIiCgIM2KWEFsscVeYolGE03RdPNifPjynsmLxkRNoolGTYyxxt4QUQKooDQrVaqIiPR6uXfm98emXZqoicn3/Vifjx/lcp07d+acM2ftvfbaqKpCOdB+oi+KFDRpac20s6PODKGhwIIFcHNzQ2lpKSIiIgSlUskZGBiIS5Ys4Z6K8OfmUklRe8t8+val7hbPgOLiYtbsGV03z3v0oFakCQk0Xz/4gLqW/I9AJpNJJRLJRpVKZZ6YmFjl5+enqH0dK1eu5BljPAAUFBTUj6lOnTpRh6F2wMnJiTk5ObW6aZDJZFiwYIG0tLS0/7179xAWFgYvLy/luHHjFAAgiiLbv3+/WUJCglZqaqpaEAQ1z/NeHMdtValUnQIDA51Xr17dcvua/0F0kP0OdKAD9QgMDJTK5fLdCoVinLu7u8TGxkaqp6cHPT09dOrUCbULeDsZ1R+D1NRUXL9+nfPz82OMMeTm5vKmpqYYOXIkLC0t/5ziuP/+lzJpEyfS5uH8eSKIQIs1sE+LsrIy1mJbqGcAx3Gwt7eHfSMiUAsGgFepVEg4eZLdyc1F9NWr/JDhw9sk4ppHYEQqhw2jzJu1NblGNzH/aorKykruD1V9zJ5NhP/sWQQEBDB/f38cOnRI3LZtGwsICGi51VYdyspoo/3ZZxpE/+zZs4iLixOtU1PZ8BMnYPnFF+LcuXOZ4eMystev0yb9n/8EdHTAQG7GMpmMnKsfB8YoiBIVRZv/sDDq3V17bt26dUO3bt3Qu3dvrjbDj+PHj+PmzZs4c+YMPvjgAygUCqrHvXQJAEkcv/rqK9TU1GDkyJH0+7FjecyahZ6Pcac3MzODTCYTXV1dWU1NDTIyMnD48GEm2bcPplZWkB861HzD9vPPlNWuC449BnK5HGZmZjAzM0NsbKz6ypUrbOTIkZpzuaSEFDRbt1IN9xMiPz8flZWVzMPDg67x5s0kC6+VmisUCgxr2mnik09I/h0SohFQu337NoqKinDu3Dns3LkTs0aPhkxXlxQYq1ZpyvDlchqbhoZAYCAkqalw3bYNpZ98goMPHqh9R47kH9s3vKaGgo06TZSuzs6kIFKriaDWGtkdOX5cVKlUzNzcHPfv3wdEEVF9+sAStal3gIJJN29C3LsXiQcOwNXAACUlJUT4c3NJ2lz7PWJjYwUHBwdeX18fhoaG6NGjR8M4rvMlmD6dWn829lm4fp38Sd5/H3B1hemSJfjC1BTizZvw8fGBb2OiP348MGIEBbsATaWClhbUu3fjQG4u/TxjBhauXy90SU7m3j50CCmpqczCwkKjHZuuri769OkjXr58mS1fvhzHjx8XunTpwkdERNRl0xs+ICuLyPiuXTR3KyvJc+LiRcrI3rpFSh1v7/prYmJiAo7jUFJSAgBwd3fH7TfeQN66ddy3334rujg5MXt7e9g8eEABEW/v+s4GwuTJ+GbTJrjY20Nr+XIyIRQE6lAgkdBY5zjyTmgDqt27kfXSS7iXn9/m+5ohP78+yFJaWor9+/fD09MTo0aNQnZ2Ntu9ezdu3LiBhw8fws/Pj8afvT08vviC2/b660LOvXucw549wqxZsx7/vI2Pp/K2xuZ8jZGQQCqYWvj4+MDHx4e/cuUKzp49y+Lj4+HRRqvMVrFgAflcfPBB+96/ZAkFmR49arutaSu4e/cuVCoVrK2tBTSaZvWwtaVnTHExKQJTUijr7+1N5oV/EzO/p8WECRO0srKytExMTKCtra1RL9Q4WJOcnKzu0qULL4ris6k2WkBdmZWTkxO8vb2hp6dXfx6MMUyZMkUrLy8PnTt35m/duiXev39/uSiK8piYGABwA9BB9jvQgQ78/weZTPaNhYXFCzNmzNB6YmfuPwF5eXk4efKk6Obmxvo8gbnQM6NvXyJe166Ru7ZMRhvY4GAyc/r1VwoEPImUsgXwPA+lUvkHnXT7IJFI4LphA3r897+4FhSE8vJytKu+vTHkcmDvXsqM//ADZSxefLHFDUx0dDRkMln7Awrtwb59tEGvBcdxmDp1KpeQkICDBw/CzMysZcVESgqVIezfr9FWbe/evWJGRgabPHkys7W1hXTxYkyVy7k2SWZMDBGD8HAiXo3AGIMoNnF4awvu7iQrzcujWu2PPmpmhshxHCwsLGBhYQEdHR2kpqbi6tWruHjxYl2pAMThw7Hn3/8WUioqOABYtmwZq2/r9eKL5LvwGLIPAPr6+iw1NVU9f/58Pm7qVDwoKcHhmTOhEgTgyy/Rv39/+Pr61sv7OWvrZtnQ9sLHx4c/deoUAgICGjaDubkkYb98mVrPPQVyc3PBcZxY70A9c6ZGTXaLWLOmxZfrSi7MzMxwfPNm1Lz3HmS7dtUHVzRQp0aog7099A8cwLXt24VRb7/NR3t7o8vp0/XqiNLSUujo6NTLWkVRhJCYCH7hQlp/QGqLus8Hz1NJQ3Y2dQFYsgQJxsYMWlooKyvDsmXLkHHnDnpu2NBwPcvLgZdfRtWaNcipHQ+HDh0CQBnw/ikpzOHRI3SZOxdpaWmorq7mO3fujIF1SpOmMDUlkgzQOQQEUHA0K4tqujdvrh9nPYuK1AkJCfz58+chiiIGDRxIAQFvbyL9Cxc283pQDR6MPZ6egqy6mhs/ezZ69uwJ3LvH4dQpdALg6eDQYqZ5xIgRbOjQoZDJZJgzZw7/888/CwC4yrq1YssWyuZ/8gnNr86dKbC2eDGtJzxP5SgSCdTBwahKSUF1fj60f/gBIaNHCxzHcbdv30ZmZiZsbGzgbGUF5wMHsHPAABh/8IGoKihg2z76SJx59SrTuncP3D/+AYBaj0pkMphYWzMNJVHv3qQwuHsXSE+H+MEHyP/wQxQVF0NLSwuPHj2ClZUV7ty5I1wJC+MWr12LlBkzMKRRgEWpVKLOwI/n+ZYJ1QcfUFDK1BT379+HWq3GmNpAhI2NDT766CNs3rxZuH37NqezY4cgXbRI9P7tNz6ipka8FxLCAUBaWlr7Auu2tvR8bA2rV1Ogo7Ky/vn53XffqcrLy/l+/fqha9euT84IRZHUd+1s6weAnlUhIRSUeNLWowDi4uJEmUyGgICAtq+Lvj6Vd4gicP8+tUE0NycfnJdeor3F/0HI5XI4NCkHawn9+vXjQ0NDkZKSAscmrUz/SLS0h+F5vt53x9vbWwJAUlpaCp7nER0dvWft2rXvrVy5cvOfdlJ/I3SQ/Q50oAMAgMDAwK4ymWzO1KlT/xZEHwAOHz4sGBgYsNF/gGT+icAYEdgDB4j4M0Z1pqJIWY8336QMV34+ZQbq6vOfAImJiVCr1a1K9f805OcDWVlI1taGWq1++uMwRtmR27eBtWspOzVqVLO+0OfOnROHDx/eXAL9LFi2jAhFEzg7O6Nv377qXbt28c0M9tLSKBP59dcaRP/w4cNCeno6t3jxYtRn8fX0KGN57lzLSo7qajJdHDKkxbroJ/aL6NyZDMIiIqin+GMIuZOTExwdHZGfn4/Y2FikpaVh8uTJ2Ld2LUqrq7nRo0ejW7du0GhhKAgasu+GlwU8evQIJ0+exKxZsyCTyVBSUiIGjBjBQ62Gh6cnHsnlGPnOO8jMzMSFCxcQGRmJK1eu1B/D3c0N2aWlKPvsM7i6ugovNDLCawuxsbE4e/YsRo4cKTDGGv7PK69QFvspiT4AGBkZaRIfIyNSoMyZQxm2pvj6awpgXb7c8gGLi2G/Zg2qzcywd9IkLKzrR98UdnZUV1/XJhOAtp4e7nIct2vePPS9eRPiunVggwfj2MOHqtjYWEn37t3FsWPHsk6dOuHQoUNCTng49+qwYWA1NYiMjMT58+cBAD179hTGjx/PyWQyKh/49lsU3LiBhX5+iHN3R8+dO2FsbAxjd3fK5DJGqqTffsOjU6ew4/BhlNd237C1tRUHDhzI0tPTmbqqSh2sVvPizz/j3r17Yk1NjUZ/+WYQReoq8M03RKCTk6ktYpcuzUoHxowZw48ZMwYxMTEICQkRfD/7jGMWFhRYGTiQShOaBAJzHj6EV0gIp2dv3+AXYWlJ4+Ljj2ldTkhoFlxkjGm0j+R5XnQwNxfdNm9meO01OjcbGxoLX38NQRCQeOcOqqur4ThtGgp9fJC2cCFUKhViBg5EWVkZTMPCxL4PHiAtJ4e9uns30g0MoJw8GcjPB2dsDFRW4mXGmDBlCuLOnEFuZib7US6Hm1IJrYgICByHoKAgANBQkoiiiPKICPAvvICoH36Aob09tOPixKRFi9itwYMFlUrFqqurGUAGa+MHDwZefBFFR46IYWFhzNnZGdHR0bhWGxCSSCRQq9WwsbFRT5gwgdcwIQwPR3JcHE7cuiWWlJQwACgsLNQwKrS0tBQTIyPhcvw4l+zvL5ROnozcoCARAJs4cSIUrZg9NsPp048PKI4bR+vmkSNQKpXIy8uTvP322+2WeDfDnDlktPq4zitN8frrFHh6CiQnJ7Om7SzbBGMUHH7tNVJxHT1KyrjUVApAt9VF5f8wBg4ciEePHiE4OFhwdHT8y9sUdOrUCY6Ojrh69aqCMfbkkrH/o+D/+c9//tXn0IEOdOBvgNDQ0DHdunUb4+Xl9Vxl+q0hPz8fYWFhbNq0aeypNwHPAjs7knn27NlAOhij7M/77xM527mTsv3TplHW1Nu7ufS2FQQFBanNzMy4Xo0zPc8Dv/+OEFtbMfjOHda3b1/BxcWFPZO8zsSENm/JySS55nmqXwYQHx+PtLQ0NmXKlGf7jMYoLaXs0FtvtagksLe35+7du6cuKCjgutdlDK9eJRO8NWsoeFOLuLg4XLp0ic2fPx+mjYmlkRHVE9vYNCf7wcHkSv3JJxTcaAE5OTnIyckR+/Tp0/rmps7V/uJFqlt+8IDcqseO1QhGtAbGGNzd3REdHS0WFhayq1evwv3iRUy1tYXdzJmaLQfT00mm3Oi4t27dwr59+4SgoCB27do1FBUVISYmBlFRUWqJRMLGrFvH2KVLwBdfQLu2z7u+vj48PDwwZMgQWFlZobi4GCUlJSh+8ADL1q9HaL9+yMnNZZ6enlAoFBBFEdnZ2bh58yZsWjCqPHDggGrgwIHcgAEDWP012bSJWs1Nm/ZMUleFQoHQ0FDWr18/TVXJli1EDpr6DnTpQnO+JaJy7x61eouIgO3bbyM0KwtxcXGCs7Mza0aC+vQh6Xej6y+TyRAaGgqlQgGzadNw7dQp2P3wA6LKyzkvX19kPXoknj9/nsXFxYkPHz5kFjU1QlpqKnc4NRV5eXlC//792ejRoxEaGoq8vDzUz1nGEHnnDs5oacFTKhXt791j0Nam72JpSQZ0M2dCXLgQO6KjxU6dOrG+ffvCwMAAU6dOZcbGxrC3s0PX117jjNatw72CAvWDBw84ExMTtVKpFA8ePNhg6AlQ+cCPP1LJipER/bG1paBf9+5t3i99XV3EnTvHzPv0gcHLL9N68d57zR3bQeNMpq2NjIQE5Ftbi05OTg0HHjqUDDUfPiTC35pRaFQU9Hft4n6XSFi3kBDxNGOwXbyYyYcOrb2l95CQkIDjx4/j4cOHqsyuXYWUrl3Fh+XlrLS0lOnp6WHcuHEYMWUKs1i0iHE6OiyovByWAQFwNTCgQN/gwWT2N3062Pz5MB8+HIMHDwYMDWG1dq14JzWVXSktBQDo6uqKPj4+9d8j6sIF/BoUhEQHB2TwPFLT09X3TEzEsX36cMN8fZnv1Kls8ODBMDQ0hP/w4cxy3DjIR46Ek58fi4qKQnR0NHJycmBvb49Zs2bByckJLi4uyMjI4G7cuCH07t2bAfQcPWZhob50+zazsbERTUxM4Onpybo3VlPcuwe7KVO4GCcncP/8p1gkk7FDhw6xvLw8BgDTp0/XDBy2hSVLaM1sS4k3eDAwYwagUECtViMiIgI9evTQ9JBoL8rKyFxyxYonJ/tmZrSGDx78xIHFpKQkked55v4U7WhhaUlKI1NTCpgdOUKB2KqqP7RM8O8CbW1tXLt2jfnWekb8lcjMzMTevXsrRFEc8Y9//OOnv/p8nhc6Mvsd6EAH6sD+OEb29FAqlTh//rwQExPDOTo6CmZmZn9dNDgwEJg3jzKuLWVr60ypqqrIefuTTygAkJdHAYFGKCkpQU5ODqRSKdLS0pCWlsa/9NJLf/53aIqff0ahnh7cx40THitBbC+kUtq82duT4dUbbwD//jeSkpKgUCgapNR/BDp1IiluG7C3t+fCw8OFUaNGcZLoaHJz//BDjRr9kydPCvHx8dzYsWNFCwuL5ue3dCkFb/bvrw9eIDKSNobHjrUpv6yX8QsCyf2rqhpKH4YNoyDS77+TadbatVTjGhND5OmLL4jAuLi0evyKigqcP38eVVVVKCsrY0uWLMGePXsExnGctCXDxH/9iz7/22+RlpaGgwcPCtXV1ZyPjw/r3bs3pFIpsrOzcenSJbW3jg5v7+0N5uPTIhGrQ51TeT0CAvBJ377Y8sMPwsGDB9mIESPY2bNnxZycHAagRUm4XC5nBQUFDTWv27fTxnfRomfuVS2VSiGXyzVNMA0M6LrHx2uWSdy/T/N3wYLmB/rPfyhAkJICDB8OawCenp5CbGwsd+LECcyaNUtTyVFTQ8GbRnXAHMdh1KhROHPmDK5duwbDoUPxZffu6HX9Ogbt3o0hS5dyyoULcfHiRebu7g6Tgwf56txc9J43D5aWlvWdRSZOnMj279+PtWvXQq1WQxRFiKII6Onh4bhxIvLyGObPJ2XBpk3Atm1AeDjyi4uRHxPD+vTp0/w+JCQAcjks3dww3c2NT05OxsGDB/no6Gi4ubnh0MGD4vJp0xjbvp2ytm++Setc794N5L4dFSvc7Nl44eZNGF2/TpLy1FSaR61Ad9Ys2H73HY5HRbEXXnihQaXBcTQfv/6agou3bjWchyAQeerTB0hOhvLuXai6d0fQm2+y7OxsiCdPws3Nrc70FRzHCba2tsLcuXNpL/zxxxQQGzeu2fmUl5cj39QUV0RR7O3ry3D3LgXqDh+m+d1I4dOvXz/g449Z8S+/IEkigVwuF1955RWNNcb9n/+EWFOD/g1KEpq4Bw5QUPLnn8Hp6sLd3Z0I7bx5QL9+MOE4ODs7q5OTk3m1Wo05c+YAQD0ZNzIywtatW7ktW7aIRkZGQlJSEr/iiy/4mrAw6Lu5NV/nbtwAHB3BL1iA7t7eiLh0idW15BsyZMiTGacCVNryuPFgbU2+OBYWOKGtDV1d3adXuJ05Q5/5NAkBxihoEx//xOZ5FhYWYmZmpoiW6vXbi06dSMmlVpNSbeNGKo8pL29WxvV/GWZmZlCpVMjJycETqSH+BFy4cKG0pqZmLYArj33z/xA6Mvsd6EAHAAChoaGVZWVly/r06SP9Q+urnwDJycnYsmULHj16hEWLFrG+ffv+tcEHQ0MynSopaXszIJGQPE9bmwIDjx5RBmrIEMocdOqEjRs3IjExUUhKShLKy8sxZMgQ5lzruP7coFKh4s4dHNPSYv4BAawlV/ZngqUlbcTv3QO+/BKdBw/GldRUNrgth+knxeTJJK8fP77Vt1hYWLCEhAQx88cfRduLF5l07tx6J2oAiIiIQEREBJs7dy40soaNwXFARgbVdPbpQ8R88mQyJGxMgu/epVIGlQrKzz/H1RMnRMnevWzgoUOcrF8/sEWLwB49IjVAYSG1GJs0iYJBNja0ie/bl8y8liyhrPDly0QifHxaLBO4cOECrl69Cn19ffWAAQM4BwcHDBgwgNnPmQNJv37Ns9YODoCfH67cuYPffvsNRkZGbPHixXBycmJyuRxSqRRGRkbw8PDgTGfNgrS4mEwD26lSAUDETSJBVx8fdunSJTEmJoaZmJiw2hZmahcXF41NcVpaGrKysriEhARmZmYG4ytXwHr2pM9tx7hUqVT1BLCqqqpZy8aysjJEREQgICBAM7OvUtH1eOEFyoAD1Npu3TpSVtRh927yhnj5ZSK4jczgzM3N2ZUrV1BYWIi8vDzR1dW1YQy98grNf39/jfPp0qULwsLCIAgCJkyYgILiYoz9+GMoXFyAkhLwn3wC+ylToGtjA2ZmBqm3N/QdHTVKEYyMjNC3b19cvny5vgRHr7AQImMQ09OZ+7VrDeMmLY1MNLt1g7alJaytrXHmzBkYGRlBo21jWhplGWvJlr6+PuLj46GtUIiztbSYzqZNzFRfH9n37gnf29szXT8/mHp4gNV5DLi5oSI8HF8kJCArK0u0t7dnGmVgVVWI3r5dOFpTwxIGDhT62toyiZsblcm0Mb5UajUqN25EmZYWTiQkID4+XtTT02MGBgbgeZ5arC1ZQuR4504gLo7m2Lvv0lo9Ywa+ffAAvdzdMXPmTCgUCiQkJKjT0tKE9PR0QSqViosWLeI11DdHjtA5teDtYGdnh6SkJEilUnjp6TGsWkXr/SuvUFDYwoK8NgYPBiQSFFpZ4c7hwzCxsxNzamrYrVu3oKWlBV1dXcg4DrFpacLvXbsyB1dXDaNB9OxJ8zcjo74jB5YuJSVTrcIiMjJSLC4u5pYtW6ap4AFlUfv374+IiAixurqazZo1ixkaGUExYkTzAOXFi1RG8dZb4EeORHcnJ4SGhkJfXx8rVqxA165d29cKtQ4XLpAyqT018CdPAhyH35VKgTHGvLy8wHEc8vLyoKWl1b5SqDt3yPPh1VcpmPk08Pen9bZ3bwiiiNjYWOTn56O6uhpaWlo01lrA0aNHmUqlYk/av75FcByN54ULae1YsICeO127UkDgr8/BPBN4nsetW7fUoiiixdalzxEpKSnqhw8fjpJIJIsvXLhwfujQobl/5fk8L3Rk9jvQgQ4AAFavXp2ydu3a/QcPHpw2c+ZMrWfqU/+UyMrKgqmpqfDqq6/+5bVdAOghu3w5ZYumTGlfn+9ly+jvykqSCRoZAStX4oXoaDFt+XJuTGu1vs8Dmzah4O5dCHZ2CA0NVevo6PBNMyqiKKK8vBwVFRWa0vb2QlsbWLoUwrhxkAQEYLiVFbByZbta9LULH33UauaopKQEcXFxYmlpqeiYnAwxL487YmoqzOrfn2vyPlEURWbexF+gGdauJeOxCRPIiPCtt8h8qqqKsvTvvEOSZm1t5Hz6KRKvXEG6nR0rdnXF766uKDl/Hpg2Dfr6+phoYICuy5c3/wy1mrI469ZRRtHEhMzuPvyQMqnOzs2k5f7+/oiNjRW9vLx4l8YKgOxsUldUVjZkxusMyQ4dglXta7m5uUhNTYWGBHXVKgpQRUU9nWnUsWOAVApjb2+8//779dc7NTUV+/fv52tqampPMRvV1dU4ePAg5HK5oK2tzV3cuVM0//lnJuzaBcPHlLX8+uuvSEpKava6s7Mz8vPzMXr0aFhZWeHIkSOCmZmZqFAoNAeeREIO2Y1JzPTpDTX2FRUU3IuKoixvC+UHenp6WLp0KbZu3YqEhAS2ZcsW8dVXX6VNbHBwi+fdeD3V1tbGwoUL6Yc+fSgA8eABZaq9vKjsxNmZZPiCQGqBmhrgk0+g+OILDA0NFY3S01nWN9+Iw6dNY6f8/KDl5yfgwgUOJ05Q/S9jpA7ZsAEsJwf2y5ZBWl2NzMxMuLm5NZzYd9+R50jtGHuYlIRBYWHoGh7Okt94A7GenjAcPRqXOncWKxIScOTIERw5cgTGxsZwcXFB9KhRqJHLYWdnJ969e5etW7cOnp6eah8fH97Q0BDVb74J2+BgLnjJEnzw6qscBg8m1cFj7vPly5fFW8OGsWnz5yNPRwcRERFs//79sLKyEocMGcLu3bsn+vr6Mr6wkFpfSiRkaPjeezR/Hj2Cjo6O6OzszADKtvfr16/tRWjjRvI0KS5usYUb9/ChulNmJl/++ed4tGABrBcuBKubK0VFFBCcNw+5hobIyMyEtLIS3nFxbMCmTQgODkZISIj66pYt/Iz9+3F26VLO1sVF2LFjB3v//feZxvN2zBgKhtTUUPDvwgW6T7VQq9Wcm5ubYGxs3OJzUiaT4e233+Y0jteYDN+4QevNjz9SsKc22FBn3ufs7Px0hqpWVkRY24P//AeoqED+p59yKrkce/bsETiOQ0ZGBjdw4EDR39//8aTQwoKCW89S5ieTAb/9hhRdXRzLzxcFQRAlEolYWVnJKZVKZmFhIeTn53OvvfaaRstSAwMDUaVSAe3puNJe6OpSsCcigtagWbNoLJ4/Tx4cTxJ4+ZuhX79+/NmzZ9GzZ0+oVCpYWVn9Jefx4osvao8aNQohISHGN27ceBnAG3/JiTxndGT2O9CBDtQjJCTkdFlZ2ZiKigoTBweH5xoMrK6uxrlz50RDQ0PO9e/Uj7ZzZ5L+VlQ0ZFraA6mU6o55njY1AEtSqUSPSZMY5szRyBQ+N6xZA92FC2Hm44Nr165xcrkcVVVVkMlkkMvlKCkpwebNmxEaGopr167B19f3yc3marFlzx7VlS5duJHdu0Nr1y4iHn+ECVFYGNWft3Bev/76q5CcnMwsYmLQJSaGi7e0RLqFBRtaW6dbB0dHR3b16lXBysqKdW6tRrKqiuqCx4wh5+R582gcODpS9m74cNqIL11KTuc6OjiYn49iAwNUKxSw7NFD7D9gAEtJSUF1dTXi4+Nx9epVwcHBgWlk8gSBNuLTpzd8J4WCMs+PHpGpoFSqoSxhjOH69evC1atXOSMjI9HMzIw2nHp6RNhtbBqyQZGR1EFi+nTo6enB1tYW8fHxSEhIwJ07d6BWqaDQ0oL2r7+SYqExEXwSvPRSixlRQ0NDxMbGqq9evcqFhYUhLi4ON27cwIgRIzB9+nQ20MYGHoyxi716iSfT01nXrl2hr6+PyspK/P777ygoKKjPSH/11Vd49OhR/bEVCgU6d+4MU1NTPHr0SCwoKGDXr19HeHg4SkpK2CuvvMK1aDbK86SmqKkhifTAgRS4qamh61xRQeUUbbRw20T3PAAAIABJREFU1NHRgaurK6KiolBeXt4wxr78kko/Ro2CIAj1mfmEhATcunULALn7a7R05DhqQTdoEMnTd+6kmvZly4i43r1L9/Xjj3HdwwOx6ems54svwmPaNMY++ADdp01Dt4gIhoQEKqf5179IKj1wIJl/ubpC+fXXMAoPR1djY+gBRMw4jrKac+YAEREQ1q1D1M8/o7qyElnvvCMYjxnD4ouLxSuRkSw/P5+TSCRYsWIFOnfujIcPHyItLU2wffBAnO7pyfrOmcMGDx4MHR0dpKSk4FJQECvYvBnHbWxw1d0do154AeYKBa2nkyY9djjp6OiwO+fPwzEwEN0++wze3t4oLi5GUlISu3HjBtLT01lScDDcd+0Cb25O37l3b/KnSE0FfvsN9j//zPicHOgxRveZ5x+/7vr5kZqrsZS/shKIjITj1q2cShDEY1OnCtdqajgmkYi2trZMpVLh3qNH0P/gAyglEojdu+NCdTUwbJjQe9w4pmNtDVcvLwwYMICz79wZ2TwP84kTMXbsWBYVFcUqKyuh0ZpUJqP18t49CiJ89ZVGAE5bW5tduHCB9enTB+0y0zUzI+WZri6ta8nJFMyaPFmjo8zNmzeRmpqK7OxsNF0z24XUVFKztUMRlJ+fD8WwYdBNS0OBj4+Ym5vLCYIgzpgxg509e5bp6uqK5ubmrRPpmJgGz4RnSEwUFBYi6t49ISIri7kPGcJmz57N+vfvzw0cOJD16dMHhYWFrLCwUFSr1aK9vX39+Zibm7OIiAjm4eEB+dOqClqDRELXcM4cWqcuXSL1goMDzeu/IBHzrCgpKUF8fDxu3rwpxsbG1q/zzxt1Jp4ymYzdunXLIiQkJCM0NLRg6NCh5c/9ZJ4jOjL7HehAB+qxevXq6sDAwBeio6MzfX19NeWFfzBEUURKSgqUSiWys7Nx7do16OrqChMmTPiDUsB/IMaNo82FStW+7H5TjB8PiYsLCg4eFLFiBYOpKW20tLWpN7ko/vlSvZwcYN48cAEBsKmshFKpRGxsLEpKSuDv74+BAwfiypUrolKpZBKJBJMmTXri7E5hYSGCgoKQkZEhKpVKyRsrV9ID/cwZUkZs306k5mkzFA8eUOZo6tRmvzpw4ICQlZXFfeDgAJlUyjB/PhxcXVv9DlpaWmJ0dDTS0tJgbW2Nbt26gS8tpYze1KlUxx0eTlm10lLKuGzc2OqpZWZmAgDef//9OgdxVlpaitOnT9e/p6Kigvvpp5+wYsUKOq+6TOT58y1v4Hx96TOzskjevm5dfcBk7ty5/Pr16xEcHMw0MrWPHtFx64wIu3Uj8lkLOzs7rF69Gvv27UNZWRlsXnwRUR4eGNPoPJ8KX31F9aYtHGfRokX86dOn0atXL9jb20MQBPr+oghMnw7pmDEY+/HHTHX0KIKDg9WDBg3iT5w4geJG/bh37NgBAFi4cCGsrKwgCELTQBRTKpU4fvw4fHx8YGJi0vb4fecdur56ekTQX36ZrvGJE+0O6tUdX0Pqa2mJ3Lw8/Lphg7qkpISXyWSivb09Ky9v2EvatmYqJ5eTmuTXX4k0AZSFrVuHb96EEBeHHCsrKEeOpNfOnaMs6dq1FDB66y3KTnfuTAT3tdeAXr0g7NyJ0598gpcsLUm+vWoVBXYiIiAcPoz4mTOF28XF3N2BAzFv0SLY2NjUt2/85ptv1FpaWhg1ahRf288eta1QObzzDs2RWv+R2t9x2e+/DxYZiZseHjDp0gXau3eLyshI9nD/flg+5roqlUpIJBLkmZlB19aWCK+BASZMmIAHDx6ozExNJV537kD500/IP3YM5j160Prp7k5t5mbNAgQB4S4uatu8PN6qsJCCAKdOkZ/KwoVEgM3MqOyosYLpyBHNrP7x48COHcDUqei0Ywf6OjiwvgC/bds2dUhICH///n11VlYWX1ZWhuXLl+OrTZvg7esL59GjMcjRkcPatRR0WbYMmDkT+lOmQP/rr+sPb2xsLFy/fh0+Pj6ctrY2EfHMTAo6jBhBcu7p04FffiF5/PLlcDE3h9nDhygg9cJjriZIPQQQMd61iz6jBTLfmHy1ML8AUBvIzMxM2NraQqFQIDExEQ4ODoiNjUXvmTMRMmQIiseOFebNm8epVCokJyfDyclJ41g5OTn44Ycf0GnECJTL5bDU0hJXrFjBFAoFJ5PJMG3aNOzfv5+ZmJi0ngGuqSHF2DOWHB47dkwsFkVu2aFDkPznP/WvcxwHXV1djBkzBj169GB79uxh/fv3r+8YYG5uDolEgqSkJPTu3fuZzqFVcBx1/fHwoECsqSkFm2fNonv5fwhOTk744IMPUFhYyLZv3/7cWw43ha2tLYyNjU1ycnIO8Tx/AkBzo47/IXSQ/Q50oAMaWL16df5///vflPz8fLc/k+zn5ORgz5490NHREbS1tTFhwgTO1dX170f0Aaqn++or2hj6+T3VIQoLC0VOS0tEnZR77VraxOblkSFbTg5t9p/UUbi9OH6cTMZmzIAgCAAo2s4YQ15ennj9+nV2+fLl+ohDSEiI2KNHj8dGIMiHTsDFixcRHh5e9zKbPXt2w+Zx1CgiL8uXE7l69dUW28A9FmZmRGCaQBAEZGVlcXaJiUg4cgRFL78sDvbyYm3lvEaOHMmfOnVKXVJUxMeePAkbFxdx6uuvM8TEUHbVyIgIxKBBJKt++20ihS1AqVTixIkTMDU1bWgVBmrz88Ybb2Dr1q1QKpWYNWsW9uzZg3//+98AgAHV1RjSowfkbWVqunen2s2oKCph+OgjqKyssHPnTjUAvlkGbvt2kob37UttpUaMoPNvYow0vXdvwMoKxaKI+JQUBKhUTyfdrUMdcW4B2tramDx5cv3PHMcRAfn1VzKRqy1FGDZsGDZs2MD/8ssvMDIyUr/yyit8naHTqVOn4OjoWL/5b4mIyGQyjc9pE9OnU03+jz8Smfv1V7rWdXX87YCOjg6kUinUajU2bNiglslkrLK4GIzjuAH9+nEeHh7IyMhg169fVxcWFnIAmLa2dsvX+dAhIoQXLlCWus7gs8ka7OrqiqNHj+LK8eMC5HLOLiyMAkb9+9MbfviBAj4qlYb3gUQiQaWODu46OsJ8/nwy0bSwIB8PU1PcefCAuXTrhnFz50KvUemCTCbDihUrWl+X16/X/LmkBFi1ClaffYaKf/wDNseOCQ8fPmR5qamIdHBA+rZtWF1nbAryVvj+++/BcRxMTU2F7OxsrrKykn7JcZD/61+kqKn16Fj80ksSXLiAmvBwbJg+HW+Fh9Pakp9Pjux1QRCOg8TGBqmmpvCeNo1ee+MNIv2ZmUBuLnDlCmVPhw4lFUenThQkOX6cCP+dOxTEePdd8kFohEWLFvE5OTkIDw/nAYgA2NGjRwEAhh99BI+ePWlcz5tHCiGSfGsarx09ipndunGny8vVSgsL5J89C5u9e8nkVC6nczAxIbVGdTVlzgsKUB0ejvnbtiFs3DhYz55NJRiff0613uvX02clJ1P9vCgCAQGkQFqwoMVAaR3sa9fkXr16NZtf6enpuHHjBmJiYmovLweO46Cq+14AYubORZVCAXV6Ord9+3YhJyeHq3uviYmJWFhYyPz9/ZGQkACFQoFSAGNOn0aP11/ndBqtHQ4ODnB1dcWZM2eERYsWNZ/oN29S2VDtOvq0UKlUyMrKYiPGjoUkMhJISmpR2dS1a1dYWVmpt2/fzvn4+DBPT09IpVJUVVUhOjr6zyP7jVE3v0+eJFPN1atJ+bFmTbO1/e8KhUKB8PBwWFlZCQ4ODn+pPIHjOMyfP18eFBSE69ev/8+34Osg+x3oQAc0EBgYKJFKpRZ/JtEHyGxKKpVCKpWKdnZ2fy/pfktYvpykvcOHP1UW/tq1a6K3t3fDprlx66Pff6dN5uDBlLn97Teqv/4j69osLChDACLoUqlUNDExUY8YMUJy/vx5MS0tTejRowcqKioAgEtPT2dXr16FtbU1urRBgGJiYnDixIl6ufI//vGPlsmMlha5mu/YQRs1IyPaaD+JJHH5cvoeTTodcByHtywtUZ2RgcIvv8TR339nvSsqmplXNYYjx+GtpUv5mnnzkH/xInQSEhjGj2+5BZNUSsSgFQXGxYsXARBxaQpDQ0OsXLkS5eXlUCgUmDRpEtLT06HauRNZBgb4zNYW/c6cEUaNGtX6hZDJKItVVARxyBDEWFqKsokT2YcffthcQnr8eMO/1WpSAzTdDIoiZRv/9S90WrgQqn//G9XV1c9G9t3dSSLcXvzzn0B0tEaLPT09PcjlctHX15f5+vpqEMw/zOtCFGlT/+ABlUikphJB2rePyieeADzP491338XatWthZ2fHGxoawiUiAkb794P7z38YALi4uMDFxYUHgHPnziEyMhJr164VdXV1xcrKSjgXF3MWRUW42asXeq1cCbcLFyDl+VbXGAnPY+mECVCPHs0lOjqia2hog4nfp5/SOrJsGSksfvyRDOxA5qcAUN9yrXNnUtzo6iI8OlpUx8bCraIC0u++I3Lq6UlqnC5d2lbi7NoFHDzYMO6uXiUVlEQCbS0tvDR7NocJE4DAQFwKChJHDh2q8cUOHTokiqIoWltbcxUVFdyYMWPg7OyMO3fuID8/H/LiYlI/jR9P57VmDSAIiFy5EkJ4OKTz50MYMYIs0efPp2CDqSlw5Qr09PT4xmUfYIwypI0NNt97j5Qz9+/T3ydPkh9HSQkF2RwcyMTt2jVyTg8JoT+jRsHipZegysgQxu/YwR2aMgWWYWHiKD09ZurjQ8Hc336jY/TrR/ciPJzKaoYPp4DD1q2QDRiACe+/z9+4dUuMjIoSF61fz+HTT2lcnjtH51JVRWPzzBlUVVXh8zNnoAgMxDt+fjS3eZ7GdefO9O8TJ+jzxo6lYMGjR1SK0BCMbRFSqRQWFhZiTU1Ns8F36dKl+jEEUIBVEARMnDgRZmZmkF66hOzAQBx58UUAQG5uLtevXz8EBAQgMjISycnJzMDAABEREerq6moWEBDAeXp6UslMowBpHYYPH45NmzaxxMREONV1Q6nD7t0UKH9GZGdnQxAE9O/fn8bx+fOtljHNnTuXDwoKwqVLl9QXL17ke/fuLUokElZWViYqlUrWrnKKPwIuLvRnyBDyvjh3jgI9vXrRPc/MJNXD05Zj/YlQKpVITEzEggUL/hZ1CFKpFBkZGWqVSlXzV5/Ln40Ost+BDnSgHoGBgZxUKv3ewsJCy6hR66g/AwqFAkuXLkVGRgZ/9uxZ8DyPgICAP/Uznwn9+5OU+5dfiKQ+AXJyclBYWMj1aa33cN3rwcG0icnMpE1mQQFlomxsWs2atgvZ2UQWb9wAQHLNjz76iKH2GbBw4cJmD9/t27erTp06JfHw8BCHDh3KOnXqBMYYEhISYGtri5KSEujp6SEpKUltb2/Pp6amws/Pr23CyBjJpVNSyPiusJDqd1swQWsR3bu3TMZ//x38zz9De+NGaHfrBu1r18Tbt2+zZhmXqirKitSZnwUHY+/gwSju3198XU+PtXqNPTwoIJOY2KLEOyAgAImJiSgoKEBRURFa6nJQJ7ft1asXevXqBaxZg0MAsm1tERkZybWnbKZAELB/8mTBKSODLUhJ4aRZWTROGuPKFZJux8aS4VvTFk6rV5OMOSkJ0NMDB0BbW1udmJjIe3l5tfn5bUKppAxiU/O7lnDmDElRly9vZgbo7+/PgoKCcOXKFZHjOOjo6IgGBgaiIAhiVVUVq6ioYJWVlczOzk7o168f3y6jJ1EkefaFC5Sh3bGDFBu7dpEEvrqavCC2b6fsbwttAltDSkoKAMDPz48kvu7uRLJaPA0RarUarq6uTFuhEM27dOF0Nm4En5QkWk6ciMiUFDE1LIzr5u+P5u4HoNr9NWvwEBDPz5zJPF98Uc0Y08y6111PExOgrAyXL18W9PX1uUOHDsHLy4tanFVVkULp+HHA3R2d1qxhkV264D+g8pbXAwKY9tWrVCu8dSuN/xdfpHnadK66uBAZLiuj0qSdO+la1iE1FSgvR56ZGaqrq9mlS5egq6tb38EgPT2deXh4sAkTJmgctr40pbycyGB8PI2bnj2BJUtw7euvxerqanbm9dfFYp5nfd59l1pB6ulRWzc7O+jk56OyslKNurZ2TSAIAqqqqlAqk6HU0BBWbm5Q6OpSRv/ePVqjysuJQKem0hiva+MYEAA4OaGXsTFXduAA9I2M0FMiYaZ15RqnTtEawxgFEtRqahM4ZAjw/fcN7wG19bvo7Mx4pVJEcDAFS5YupcCvvT1dz1p1Qq2/imhiYgJRFJkGqfvxR/r7zTfpD0DXbMYMGucvvURrQxOVQh04jsPDhw9ZjyaGoPHx8bCyskJycjLGjRsHmUwGc3NzGBoaNgSaFAoY9e0Ll5UrUVRUhPPnz6svX77Mx8bGinZ2duKcOXPqnjGa9+Lzz0llUVamoWLR1dXFgAED2N69ezFhwgTRw8ODPuj+fWDx4mcKhJeXl+P+/fsICQlpeFEioZKpCRNaNfwLCAhAQEAAHxMTg7i4OOjo6AhVVVXc+vXrxUWLFrGnbh/4JCgrIxXga69RkHLbNlJxKJX0HTZsoJ9DQij4s3UrSf/ffJOeYUePkh/AiBGtGlH+WcjIyIBCoRAtLS2fmyN/aWkpeJ5vNfDv4uLC//7770M+/fTTkI8//nj48zqv540Ost+BDnQAgYGBDMAQuVz+uZGRkeuMGTO02XNo92JgYAADAwOYmZnhxx9/hEKhQElJCcaMGfPUxnB/KqZNI0nnjBlPVCt44cIFtZOTE694XOZQJmsgs8XFtMl9+22S4+7dS7XX06Y9uUHPmTNEYJ7gni5cuFASHx+PI0eOsLi4OHTv3l3N8zx3584djYNoaWmxefPmoaysTJ2XlwcAfJ2jf6vk1cGBNlZBQZRZmziR2n89DtOmNTf5O3SIrsuuXYCREU6ePKmqqqqSWFo2qgwOCyPCsmoV1SvHxUGZl4c9Bw8KGQ8ecE17YLeIyEjaCN6/r0Fm09PTERYWhtLSUjg6OopaWlqPP1ZYGBAZiQmiiIDKSuzbt0/88ssvmZGRkXrZsmWtSqb37t2rNuzenRu0ciWTbN9O2c6LFzUDIN26kakg/QdNciYIdM2HDgWGDat/2c/Pjz9x4gRcXV3bZ/jVEnR0KJDyuHlx9SqVI+zdq9GLvg69e/dGr169kJGRwQRBQH5+PisoKADP8zAzM4OBgQF0dHRw7do17qeffoKHh4d6zJgxmtdMraZWbMXFJM+XyWgueXrSJnf69Ia58OWXdE9796Z2Z1VVJAV3ciJVRBvXQ6VS4cCBA+jUqVN9LS9EkbLDTdzmCwoKcLm2p/rEiRMBHx8OHh51BI3ZAhjh5cVq/vMffOHsjIvr16s7d+7M2dvbM/cePWCwYwcZIPbqhYNFRWyov7+ooX5ITKS1om5T27s3CpcuRfCpU5wgkcDY2Fg9cuRIen9lJZUOGRgAEyein6MjbPz9kZiYiIiICLbr7l1hyUcfcRzHUVAgM5MUAlevUqDoxg0irQEBFKjs2ZMIm65ufQu/+nt98iQQEgJTkN/C+fPn8dtvvzEHBwcoFAoMGjQIkZGRYt++fVvujqGjQ/4KlZVE4mvLNKZMmcIOHjyo7n7mDCexs8Oe/fvB8zzGjh0rus6fzxAcDI+ZM3Hh7be5TZs2qcrKyjilUsnxPA+JRCKq1WqmVqvBGINEIgGrrsasc+dgs3Jlg/eEry9do7w8uq8JCRSgzMykvug9e0LCGM4NHYqS8nIcs7YWFi9eTItz44CHUkkdMaKjqaRp1Kj6XwmCgB07dojC/fts+PHjXNqECTDYtg36hoakVvD3p0ytWg3wPDiOw8CBA1lISAju378Pm7YCpfv3U6B32jRaszw9KSvOcUQAm8w/tVqNmpoahISEwM3NDXp6eqiqqsKRI0fq32NqatpyHb2XFzByJGQ8D1NTU8ycOZOvrq7G3bt32YEDB9ijR4/QagJh4EAKAv/jHxovDx06FDExMUJBQQEHkCeM1ltvgenpQb5tW+vfuw0UFRVh48aNEEURnTp1Uvv5+dGcMDGhz29UltAavLy84OXlxQAwURRx7tw5ccuWLWzq1Kn4w9vpFhWRomThQmotaWwM/PQTjQsbG1LzREVRuYhMRuS+DmFh9J4HD2jtYIxUH506UbDTyAgIDaUg4ldf0fhcs4bWrrFj6dkydOgf1gVAT08PSqWSteYH8UdCEATs3bu3Jjk5WdqrVy+1v78/HxYWJnh7e3ONW48OGjQIpqamOHjw4LDAwMBpq1ev3t/GYf/PgomttDDqQAc68L+PwMBAa7lc/qkoiqO1tLS0Bg0apOvh4dFqb9k/E6mpqdi9ezcAwMzMTFSpVGpnZ2eJf5N+1X85fvqJNgajR7fr7aIoYvPmzWK/fv1Y3zrTtCeFKFI2vH9/yjidPEkP8daUAk3xyy9Ecp6wlZ5SqcTmzZuF0tJSrnPnzigsLETXrl3VOjo6LCkpifP09BRHjx7NAKr/37hxI15++WWEhIQIqamp3MCBA8WhQ4eyNrP9N24QkY6MJOLVWhullBSqTa2u1nSaf+89kssaG0MURXz77beikZERm+HvT1nu0aOp1r/2GhSVlODo0aNCZmYmZ2pqKkyePJkzbm+XgMREIoGN8Pnnn4tGRkbisGHDOPv2+BBERZHhY0pK/XetM6vcs2cP7OzsVHPnzm12wXJycrBjxw68/vrrDV4I5eW0yevalTL2ddcuM5M2frq6RJbUagp2fP11q54T69atE8aOHctptPJ7Urz3Hm0SW3PyTk5uyJT+ATLToqIifPfdd+LEiROZi4EBbVyNjan3uY0NbWCLimiT3Fqg7fvvKfB082bDa/HxlBmzsKD5/u67VGLTZF3ctWsX0tPTMWPGjAapcWYmzcsHDzTeGxgYCACYn5ws2K5fzyEnhwhX44DYb78BR4+iautWZGVlITMzU8y9elXoeuoUr1NVJca+8ILgNWECf+TIkXpTzXr06gWMHImKwEBoa2tDpVJB8PLCzv79cd/SEo6OjoKvry+nvnsXtiUl4Gpr4JGeTnOw1n0+KysLv/32m2hhYYGpU6dqBq4Egb7XsWN0vaqrieSfOEEy96bKkMmT6Vp8+KHGy998843awcGBjRw5khNFERcuXBCjoqKwdOlSptdYXVNTQ59pbU3X/v79lu8hgGPHjiE2NhZ+fn7w9fUFBAEPt23DjqIicVRAACsqKUF4eDhqamqwaNEidO7cGXK5nJ51JSWI2rFDNDx4kDmcP09zZ+9e+l61zyQNqNUk+e7RA8KOHRC+/BKfL1+O99PSIF2yhMZbU6hUVCoSH09BC9C8P336tPphSAhm+/nxD06exG4rK9SoVOA4Thw1ahTz8vKiOfXvf9eXYa1bt07o06cPGzx4MGszKL94MSkD8vNpfNSaKGLlSgoEREeTEqKWeFVVVeHzzz8HAIwcORJWVlbYvn07AMDU1FScPXu25v1pDFtbag/YQrnNpk2bxIKCAgZQ/butrS0sLS1hZ2dHSrDCQgqqtPBdwsPDcf78ecjlcqhVKlilpCDP1BT6Dg7CpEmTuCfNpoeEhCAsLAxvvvkmmnViuXCBlAZnzjzRMQHg8OHDwvXr1zkjIyP19OnTm7W0bTdqaihgOmcOEXILC1JlHDpEvzc31wz2x8Q0lCDVrjHtRq13D9LSSMXz0ktUAtS7NwXy3NwoaLphA62H8fGk8Jk3j9bD7dvJELSmhj7/MQReEARs2LBBbWxszKZPn849NvnxlBAEAdHR0ThFyhmhR48eXFpamqqyslICAA4ODpUpKSlanp6eqtzcXHh4eEjqjHRXr1793FQHzxMdmf0OdOD/U6xZsyZAKpUe6t27t6JXr14SExMTPI9sfmuwt7fHihUrkJmZiQcPHuD69euSW7duqf39/f9epn3du1O20N+/XRHvuLg4lJaWsmfyJGCMiEFd/en+/ZTBdXWl+vUNG1rPqObkkGx5ypQn/ti6fs07duxQZ2Zm8hKJBPPmzWt8P+oHjK6uLkRRJJflTp0wZswYhIWFibdu3cLUqVOZRWsmQm5u9N0Yo43i9u2afgZ1sLcnIsUYBT/27SMJ4/nz9fch7e5dWIaGsoEff0xy4t27qYXdw4cAY8jJycGuXbvErl27skmTJsHV1fXJ0gt12bHo6PqNTU1NDZsxYwZrl8dFdTV935gYjaAGY4wkyADS0tIkMTExcHZ2hra2Nu7cuYNLly6pc3NzeV9fX7W+vn7D9dfRITK6di2VgJibU0Bo2LAGef/OnVR3PW9em63kevbsyQUHB4vOzs5tE4i2kJND17olVFYCs2fTeSxb9nTHb3I8g8pKjI+JYZ137SL5fWYmBXdiYkjC2h4sWECZ/sZ+DO7u9Eelok1s585037y8yABPLgc4Dn379kV6ejo0VCR1mbQmYGo1xk+aBNtlyzjcukV1202RkwOsWgWFQgFHR0c4btnCEBTEq4OD8UClYvapqVxQUBCAhvlWf6+io7Fjxw4h84svOAcHB6GgoIBZdO/OynV18corr+DYsWPi3r17BdeLFznjtDTU+PqiqKgINllZkHzxRT3Zt7a2hrW1tfDw4cPmc4PjaIwtWUI/l5QQcX3woJmSAT/9RMG7FjLPkyZN4nfs2IF+/frBwMAANjY2LCwsDBkZGQ3y/ZwcykaeOUMBhTpH+SYQundH8IoVyFSrBS0tLc6jlhCrBAHf3r8P/6Ag1v2XX3B7xw7U1NRAKpWivLwcFhYWYIxBzMmBOG8eOvXvz8JefhkOdUqOvn2Bzz5r2aeD54kMAeBWrcLJXr0gXrsGCc/TeW/dSvXUFy8Cd+9CcHTEoeBgQS4I4uDgYD571y7kmJuLSUlJ0Lt5k5uRnMwkw4bBcvNmfID6IACOHz+OO3fuCLMHDOCQmgrp4+ouAAAgAElEQVR4eODhw4coLy/nXFxc2n5eHz1K64KhIZG0xoGqtWtJ1n34MD3LNm4EnJ0hl8shl8vRtWtXWFtbIzo6GgDqglltLwpbt2qohRpj/vz5rLy8HFFRUcLNmze58vJyITQ0lNPX11cvX76cR+fONP7efrvZMfr37w8dHR3o6+uj68cfI8/dHZKFC3HgwAHu9OnT6rlz5z7R/sDNzQ1hYWE4d+4cptUZN9bB25vuX2Vliz4CbWH8+PGcj48PgoODuV27dgnvvvtu+54tgkBrd7dupChZuZLGu709Pd99fevNKVtEWhrNsezsJ+/qU0fO7e0bDHO/+abh9wUF9PfHH5OyAKCynS5daM5v2UJkf/p0um7R0UD37ihfvx6ZKhVMfvkFMYsXwyI/H3JTU6TU1MDb25sPDQ3FL7/8Ii5cuPAP33CKoohDhw7h9u3bADACgDohIeEwx3GneJ4PV6vV36SkpPwEICc+Pl4qCMLU+/fvO8nl8kvV1dUv/9Hn83dBB9nvQAf+P8SaNWvGSqXS/bNnz9ZuUwb4nKGnpwdXV1fo6+uzyMhIvPLKK38vog8QmTp8GLh9u1k9dGFhIfT19cFxHDIyMnDx4kV1dnY2P3To0DbN4p4Y+/bR34mJQEQEbeT+9S/KfDd1I6+ooNeeoRfwvHnz+PXr14s6OjoCWql/BQADAwN1WVkZN3XqVM7a2hre3t7cxo0bERERoZ46dWrr91KhoM3EpElE+EeNohZajTdc33xDGeyxY4ng//ILZRilUiAjAzVHj2J3YSHeuXwZOqmplI199136v4whLS0Nu3fvhqOjozh9+nSuvYS2rq5XW1ubPr9nT6CiAlmFhThz5gzkcrmGA3+bWLSI7kddlqYRGGMYOnQoLl68iJCQEFy4cEFQKBRCfn6+REtLi1+yZAmMjY2bX0Ntbbr3x4/T9123juTT169TxqV7d1KCvPdem6c2cuRIxMXFsby8PDSWOT4RfvmlZVJWU0Pj9KuvWq0XfizqjPUSEoi81GaibJ2csM/UFA9LSmBoby/M7d//yTJGUilJVysrgW+/1fydREKlGwCVP0RFkaR2926UL1+OUzExAMdB2jTo5+BAKoO6IEB+Pj787DNsLitDr/DwliWsVVX0f2bMoHF95gyVE3z0EXgjI1gAsLC0ZF5eXli/fj2OHDkCpVJJLfAGDQKWLYN1t27IfvAASqUSWlpaQh8/P75XXh4sLCzw6quv8igrwzZDQ/WX9+7x2LQJADBh7FgYTZoEaW4uunTpAlEUkZ2dzZmYmDx+gujpkenbpk2awcYbN4hQjhzZIvmwsLCAhYWFEBQUJE6bNo2vrKwEYww9evSg67B5M/k5fPttwxqbnU0Zx7t3NdQQ6V5euJqdjcGjRjE3N7f60qG6VpiVb74JmZ0dymsN3dRqNfbt24cePXqIg8zNWWRwsFrKcXyqmRlkKpUAkHoe3bpRsOLGjeaBjCaorqkR1BIJd37mTAwfPhxcVRUpTIyMII4cidvV1SgcMYL5xsWxI+PHq72/+Yar9vGBH8Ccxo4FZ2ysoQZgjKFLly4MAFJSUrh9WlrC9JAQDpMno7S0FADw3XffaXQ10EBREalbwsNJqh0fD1y+TOSsDubmFHhTqYhwvvoqVKtWobq6GomJiUhKSoIoihg8eLBGf/kWce1aQzeZFlBX5jJ+/HhuPBFXLioqCqdPn+YLCwspw96zZ4vqG4lEAk9PT5r/lZXoMnEiYGyMCRMm4IcffuAPHTqknjx5crv2CRUVFdi+fTs4jsOoRqUU9dDTIzPIixfbrdyrQ12Z0eTJk9nnn3/OKtoyiBVFCrIEBdHceeUVWrenTKHMubY2rUntwaVL9Lxcv56I9xN0E2k3jIwaSj4ad0Co9SvB8eO0xgO4PWoUgiIiYK5UCv1u3+bu37+vdlq7lqvQ0WFFS5eq/ZYt44tWrhQcc3OBqVMZDhygNdXFheZ6Tc0z7VXi4+Nx+/ZtcBy3ctWqVcG1Lzc20WmyyGNVYGCg9MMPP/yfNunrIPsd6MD/ZwgMDPSTSqX7X3rpJe12mVs9ZxQWFmLv3r3w8vJCSUkJjIyMnlv9fmVlJb7//nuIoigqlUqmpaUl8jwv+vr6olevXlxpaSkKCgoQVlODwTNnwvzaNfAKBYqKiuo3Ejo6OqKlpSXS0tJYt27d+Jdffhkt1qL+EXByoiwmQFn/khLKCsycSdkCnqd2VK1tCtsJjuPw3nvvMbRB9DmOwxtvvKHx+3v37qG0tBSenp7tC9oYGpJc8JtvqK573rx66Wo9ed28mTZJR47QRsnfH0hMhPqHH8CmToV45w7ul5Yi/8aN+ixhWVkZ9u/fL/bp04cFBAS0m+gDwMmTJxETEwOpVApra2th6OrVXOf9+3G0okKtr6/PLViwgLW77OW116ikoBUMHjwY7u7uCA0NFePi4rjKykrOxcUFL7744uOd8seNo2zkyZNUH3zjBm3GEhPbbM1UUVGBW7duwc3NDTKZTF1cXMw/NdlftYqksP+Pve8Mq+Jaw33XzG5segcpgoA0QQUs2Bua2HuJsUSNLfHEVE01pBtLzImaozFRE2vsDSuiWIgFRUGKggIqVXrb7DJzf3xsOogmuffcHN7n8VGHzeyZNWut+cr7vV991e9Fi2heHjjwbOfT6Sjbde4cOUPLl1Om67XXKDNpZgYjAFPKy5GRkYGwsDBs3rxZXLBgwbNljEJCyJlsDo6O9EcUAR8fFOp0mPX998i2s4Ns0SI6rndWhg0jg/XhQ5qvy5cjfv16lDx+jMTERNQXQANAWTQvL3JmV6ygAE69cgiVSoXVVe0fO3fuTEKPAAXJgoNhnJUlCoIALy8vLjg4mNbH1as1JwgMxKxRo/ijvXohISEBHTt2xJHjxzHk6FE8iIpCoq8vjIyMoFKp2PDhw58+bpGRRDeuXU5UXEwMluPHm53rI0aM4NatW1dd3gAA337zjThILhe7bNnCYe5cui89nJ2Br75CQWUlmFYLExMTcCoVrvXrByelUte7d+/qRahWq3Hy5EnR1dUVgyZNYgDQKzAQ7du3R+Xy5YiOjsbDiAhWeeAA+AEDmMXnn+PK8eOQyWR1XzTXr1O9/sqVzQ7D+PHjuZKSEly7dg3R0dF4/fXXcUYi0WVu2MC3/eIL3LxxA2+PHs3kX30Fn+nTeRw4AL/vv6fg7KJFjbYhVSgUMDU1FV999VW2fvVqLv3CBSgSE9HOywtt2rRBRkYGdDpdw5I7UaRnkJBQ46C5uUE4cgS3Y2IQGRkpFhQUsOHDhyMwMJAczeJiCHI5rs+ZI3h4eXElbm54UlQEiUSC/v37P30tRUTQGp3V8sRoly5dcPz4cfz73/+Gk5OTOOubbxhu3aK505izt3UrBV+qOim0adMG7u7uiIuL48eOHdsiVmJubi7UajU++OCDpvfT7Gwqd3pGZ1+PzKpSkxs3blA5CUD7wKNHVP43eDCxYaRSKn0wMiKtkOeBVkvr7IsvKPt/587f4+y3BFUBz6OOjkLHjh25IUOGcFi9Gi4AjxkzAADegsDD1xejO3bkEB1NgW+gRoPAxIRYfps2PdNcqg19+19BECJa+jvLli37Rzv6QKuz34pW/M8gNDSUSSSSpXK5/OPJkycb/Dc6+gCQl5end0CEK1eucDY2NsKMGTO4vzQzDlKGFQQBlpaWKCkpQZs2bSCVSlFIGSAmkUigVCqZIAjsxIkTMDQ0rNYUgKkp/Hke1idO4IqNDcLDwwEALi4uopeXF7t165ZQXW/5fwtr1tDfyck1Na4hIZRRnTWLnInsbDLATU3JKCwvpxesoSF9XqOhbLpSSf9njAwvmYz+/4yt2WJjYyEIwrO1dFMqKQt98iQwfz4ZRl27UlZq61ZyMNzd6XoOHyYdgpdeAjdiBKSrV2NVrb7fZ86cEVxdXbmkpCQAQGVlJb744gu4ublh6tSpAMiBKigogEajgUajQWZmJjw9PSEIAvbu3asrKSnhJ06cCDMzMxw+fBg7d+zAom++gWbePP7Fjz5Ci+r9dTq6h19/bdSw14Mxplfy13Xo0IGLi4vjEhISEBMT07JezkVFlP386CNyrrt2JRbB6tVUY6kXW6rFRLhy5QoiIyNx8uRJ6HQ6vkyvJv48mD69IZX3/Hmaf97eT6eYarXkYDFGzzsnh4xAX19y9qOiGj2HUqmEu7s7Zs2axa1atQqrVq3CwoULW864eOEFCo6lpz+9MwRjQHAw7AUBXy9cCNucHHj+/juVS3z5JTkjb75JFNknT4Dz55GemoojmZmQqtWwAMihV6vJCdBqqaTjnXdojbq41BV3q4Xt27dXZ56DgoKo7eKWLRQUs7TErZMnOQCIiIgQg4ODGebMqds55PJlcFIphiqViImJQUhICAYPHgxNbi4M8vKQqlCgoqICOp0OZ8+eFdu1a8e0Wm3T63f/fhLqq/1MFi6kfWLLlmaH8fz58wAAa2trDB8+HA6nTqHk/ffZL0uWsJh//Uus2LKFabVacc6cOTV14nPmIKVbN1zo0QMV1tboev26bvjJk/yaDz7g8/PzYWFB7bJLS0uRk5PDFApFtSgV27IFts7OgFwOR0NDlA8ejIo+ffDC2LHcnTt3AAAaTT2bf9IkCjI2Qo8WBAHl5eUoLi7GuXPnkJ6eDicnJ+Tk5IgrV65khoaGjDEmPrx/X5xibs5J7eyAkhIKym3eTGUcPN9gP3j06BFOnz6NrKwsUSKRMENDQ0x79VXcfPRIuLd+PVfp5CRoNBpOIpFg27ZtQoPa57VrKViakFBzLDAQKba2YlhYGGxsbFhhYSGOHj0KQRDg7+8PuYkJYmbMwKXwcPZ2eDjY9esoP3YMqhaI1QGgufsU5lB9MMawZMkS3L59G8ePH2c5OTmwGTKE9qqXXqr74eJiEs+7dKnOYZ7nBQDc4cOHdSNHjuSbc/gFQUBERIRgZmYmSiSSpqOzAwfSPqpWNyvO2RQKCgogk8nEXo6ODLNmUYZ+9mwKBO7dS+8AvVjuhAnPfP46uHePAmIGBrRPtvR5/Y3w8fFBdHQ0evbs2VCgl+OIGQlQ0FYfDDlxgvbeN98kdsNzsE1FUYRWq0WtVpvlz30T/0C0OvutaMX/AEJDQ01kMtk2ExOTgS+//LKB6f/FdivPCnd3d8yfPx8PHjzgPDw8cOjQIXHNmjVo27Yt5HI5ysvLxZKSEsHDw4N/3lZ9+fn52FJljEokEnAcJ4qiyHx8fHQKhYIfPnw4fH19AZCRsHPnTt22bdt4nufRs2dPuLq6Yl9FBeTvv4+IiRPh27EjEhMTUVBQIJw4cYLXt1mrbSjn5eXhxx9/hI2NjXbu3Ll/397r7k6O//z51KanooLqKSdPJjqnmRlF/8vKyJA1NKTggE5HzhTPE21VpSIBvMpKqmWUSMjR1rdYk0qJVl1QQNRsExOqH8zMBPr0gYbjYHL8OMYUFcFCKqWsaHExCYIFBpIhJQiU1fD0JCdfpyMHycWFsvyrVhGVd8UKalM1ZAiJfX34If1urdZJMpkMS5Yswf379xEbG4tbt26huLiYu3XrFjp27Ihbt26xR48eiaIostTUVJSWluLkyZNiYmIi02q14HkePM9DrVYjPDwcHMfBy8sLs2bNqnYa582bxwFAxWuvYWxRUcscfYCM/I4dG4j7NYUXXnhB8s0330Aul4v9+/dvPmiUmUkaDiEh1NVg8WJyJIYPpzpza2t6xgkJNPZbt5LOQ1QUIJOh7eTJsM3JQddp00RRKmX6ef9ccHKqYZoA9Mw+/rhGAboxZGdTZhAgQ9/BgepWp0+nefUMlE4jIyMEBATgxo0bWLt2LSZNmtS8WnltrF1L119Fb38aOI6DmYOD+FguZyUvvQSTIUPI6O7blwJuUimtuYAApL/xBuZFRcEcgNTQkIIYAK0tV1fK6JeW0vzW18Y2grZt23KMMajVavGnn35iEp7H4jVrkFBUhLCiIqBKQ0MURVbrl0jUMyiIGDFt20IC2vcKCwthaWkJ+bffwu/6dfj16gVRFBEeHi5eunSJ6bPulpaWQu/evTk/Pz/k5eVR+76sLBqv2oJsGRlUz9+581PHLy8vD15eXrpJQUE8EhKAPn2g/u47lKSkoKSsTH/97LvvvgNALQHbtm2LoOJi5gaInuPGMWHMGL7ixx/hfOqUsGPHDjZw4ED26NEjsbS0FHK5nKlUKpaeng4LCwsY+fnRXmhsDE6phNHu3TAaNw5grFrwUhRFHDlyBBUVFVCpVKisrBQGr17Nrp46pXvo6sqqFPxZbSV/qVQKvdD1w4cPsWD+fFapUqFw0SKWz3Fiua0tZ3D0KH6Oi4Pg5iYahoQwb55H56QkcG3aUDBu5Uo8OXIEDx8+xLFjxwAA3bt3Z9euXQMA2NnZ4cXOnbmQ+/dxf9QobufOnQCA1NRUrrCwEHb6bK4gAKNHI7VtWxz/z38EOzs7PH78GAYyGQacOMGN3bcPXlVMqd27dwunTp3ibt68Kfr7+7NTp05h6NChYO+8A9y/D+UXX0CZnU16MFVBlCbh5EQZ5mcU3VQoFOjatSuio6OF+Ph4zubBg8Zr5UtKKAhYjyE3efJkbvPmzWJMTAzfo0cPNCeKV1FRgfT0dO7VV19t/qJ4noJx779P75+WQKejd2VwMHwWLoSkrIxh1CgKEnEcBa71gQi9g/tXQC/yCdD54+NpD/l/iOHDh3M3b95ETExMDbPhaXjwgN5dCxYQQ6QJEdnmsGPHDlVycrKCMaYSRdF92bJlj5/5JP9gtDr7rWjFPxxVQny/+fj4mAwbNkzxTFnW/0ewtbWtrhueNWsWHx8fLyYlJQlqtRp2dnbM29ubP3nyJBQKBeLi4oR+/fpxempsdHQ0zpw5I44YMaJBv2A9EhISwHEcQkJC4OPjAyMjI1al3srb2Nhovb29qweJ4zhMnTqVv3nzJpydnavbB8376CMYGBjgXUdHKMaPR0xMjJiTkwMrKyscOXKEO3LkCE6ePCl26tSJOTk54eDBg7CxsUFRUdHfV5OQnk717MuXU83sypWk5OviQg7GwIHkBD4vdDpyUASBsghqNQUNOK6GKVBYCBgaIvrSJSS5usK4pATljOm6OTnxrLycfk9v0Gk05OyZmJCzX1RERp2nJzmoFRWU7bx3j76zooKc1NmzSQjOxqZOxo0xBjc3N7i5uaFPnz4wNDSEWq2GsbExRo0ahfz8fLZx40YMGjRIzwBgU6ZMgaura3ULrnPnzuH8+fN4++23oVQqG80AGZiYoK2nJ9XGt2vX/JjFxFDJgb4Hdgsgk8ng4eGhS09P5ywsLBqWsZSWUoaoTRtyqIuLyTm+c4fGUy6n2k99Zqq2SvP8+fQcRRFISoKLVosXw8JgWljIzNq3J6f3ww/puv39GxdLbAoaDSk6jx9PgaB27UhwsbaRXlFBxvvKlWTYvfMOjeOAAeT0VwXKnhcjRoxA165dsXXrVmzevBleXl66CRMm8E8tBdq8+Zm/+8mTJwygIANMTEigql8/ouw6OVG2U6lE+fXr4kY/P2bRpo24cOHCxtOP9UTBKioqcPr0aZ1UKmV9+vThDA0N8eDBA2RkZGD69Ons4sWLgFaLlYsWAYWFkEgkGDBgADw8PGoyagYGlPkrK6O/nZyqz29ra6s7ePAgGzlyJGetVBKd+/p1MEND9O7dm3l5eaGkpARKpRL37t1jR44cwbFjx6DVamFlZaWbX1REY6oPxmRk0L0fPVq3w0ATyM3NRc8ePXh89BHtCXv2wNrDAwMuXoS9vT22b9+OWbNm4dKlSygtLYW9vT2Ki4uFS++/j97+/ryrTEbrytUVU6dO5Y4ePYrjx4/rKisrOalUCldXV+HevXvc5s2bMSwqSghyc+Pwww8U7NTpaM/q0gVYuBDHr1yBiVKJYjMzlJeXa5VKJbO0tOQVCgUnDwpCL6VSUj5qFBQKRZ0/egr9wRUrxPTMTNYmMxNyT0/sfuUV9K2ogMzbG1k9ewqq99/nplhZIT8/n926dUs8vn8/8121Ct8vWyYG2NszCw8P4ei6dZxFZSV6hoRo+/fvLykvL69u1QgACAmBZPp0tP/2W5iamgpFRUWcqalpHX0N1Qsv4IG3N/bb2MDPz48rLS2FXsjPbOxYmNfaqyZNmsRt2LABubm57I8//hBNTEwQFBREc9PNjdhBq1fTXP7Pf2idNpbpFkVa88+yT9SCIAjIzc3levXqRdnvgADa2/SCttnZJCxaO4hYhUuXLiE9PZ0BeGrg1dDQED4+PsLPP//MjRs3Ds12Henfn6jxzUGrpX21Z0967375JXD1Ku5Pm4bT9+/D38eH9pS/E3fuUBAdoLW9d+/f+30tQHx8PERRRIsEiVUqeg8cP06dc/TdXJ5DIDY5OVkB4GdRFP+1bNmy1qx+Pfz3W/2taEUrnhuff/75eJlM9uuECRMMWtQW7L8UPj4+zMfHp47jpdVqxVOnTrFOnTqxQ4cOISwsTFAoFKy4uJgxxtihQ4dEHx8fBgC3bt0ScnNzxYEDB/KMMbRt2xYKhQIlJSXQU0S7dOmCwMBAcBzX6L7YuV62ysjICBg3Dvzp04BajU6dOjEAfEFBAWxsbISQkBCO53m2Z88eXL9+vbpkQKvV/vX9TpOSyFGKiSGjKza2plPA+PFEkysvJ6ry4MHPRU8EQFmPFpZTeDo7I93KCg8ePECCSsX7BgXV9CKvjcmTmz/Re++RwXfzJhk248cT7XrdOqKme3tT5qlLF/p5laGgp/TKq5yRrKwsbNmyBV5eXmKXLl2YWq3GuXPnsHPnTtjZ2QnTpk3jJBIJevbsieDg4OrfaxQyGZUXtESB/8wZClY8Axhj6NixI0tJSWGRkZGih4cH3dThwxQ0WL6cskX/+he1jquNH38kcbCmnrH+eNW4cwCivv5ayMzIYG8OG8Zw+TIZ3Zs3E5tj9GjqsT53LgV6JBIyyGSyhq2WjI3JsczLo+DD0qUUdEhMJCEptZqcwQEDiIEyZQoxHuqrYv9J2Nra4r333kN4eDguXrzIf/3113j//feb1/4wNyfGyZdf1umDXh937txBampqNWPH0NAQXHY2jVFsLN03x5HAZHw8MHgwultasqj4eIwfP75pK3bAAAp+VOHBgweIjY3lGWPgeR5KpVIsKChgAGBvb49pkydDbWKCTa+8glxbW2i1Wpw6dQpWVlZ1HZ8XX6T5UpUh12PGjBn8+vXrxfXr12PJkiVQzJtHxrehIeRyeZ1e6m3btmXBwcEoKyuDoaEhVi1fzuds2oQT774L6fbtGDN6NJQVFcDSpbij0aDkjz/QtWvXJsf7p59+0k7cuVPikpdHoo5Vn2OMISAgAOvXrwfHcXB0dMTkmv2hRjNk8GCaa/b2gEwGjuNQJfzGo7KS2EZyORNfeQXfLlqEZDMzzrRNG3hwHLEuVCoqZ3J2BiQS9D9wQLQ/f55tmTEDIyMiJAYzZtQI5gUEkNZE/ffnhQvklK5Zg5HLl7Pwzp0R16EDfp88GW6DBol+q1czxhir3YTPyMgIzs7ObGifPigTRYyfOJGFh4cLCUFB7G1raxjNnw988YUEoKy3nposkUjo+8eNAxIT8eKLL3KxsbG4c+cOvv/+e3Tu3FkM7t6dRZeVId7ERBgzZgzXINC9ezc5zFU6EFqtFllZWeB5Hl27dhWCg4PrBjZNTIBPPyU2UHQ0sYc6d6aSmtpITSU6+nOKqoWFhekMDQ2Zr68vB8Zob6ldlqDVEhW+XttYtVqNM2dIf23ChAktqtkfPXo09+WXX2L//v348MMPm/5g167EUImJqdGMycyke9y3j9ZTQgK1n+zShYRX584FABR06gR1cbGIWp1q/jb8/HON2KuvLzn/z1l+8GcRGxuLs2fP6lQqFT9w4ECdmZlZ80I2yckUqFargdOnac3euEEBpufHbIlE0vaLL76Q6HS6IcuWLVP/mZP9k9Dq7LeiFf9QhIaGdpRKpVtnzpxpYPf/SrTlb0RwcDALCgqCVCplQ4YMwd27d7m4uDjdtGnT+DVr1kAqlbL79+/DwcEBBw8e5ACgXbt2OHr0qOjo6Ai1Ws3qB0CeWQiwQwdytk6fJiMFgLm5ORYsWFB9okGDBunu378PExMTPioqCrWFpP40cnPJEJJKiR747bdkpNWGjw85iB98QJngKVPI8T906C+7jMZgbm6OiRMn4ssq9d5mneen4cgRUkW3sqIa5BdfpP/b2xOd+M4dctB69qQskKsr0RudnKDT6RAWFibcunWL69atG0JCQhgA9OzZE507d8bt27dx8uRJrqysDEqlsqGyelOYNYsCER980HSbt0uXgJkzgbfffuZbzs7OZqJWi4Ht2zNMn05sB0tLqs1s27bx56fRUIbkGYXwRo4cya1ZswZJADxfeYUOVtGJUVZG3+3gQK0Mz5+nLNK0acQS6d0bSEmh+maJBHj9daLfjxtHARqdjrJkffsSNXbKFNKM+Jvx6NEjXLlyBaNHj8bBgwfx+eefIyAgACOqWszVhiAISE9PR5GXF+6FhwvlOTkwNjbmnjx5IrRp04YrKysTU1NTRa1WywGAq6urTq1WA6LIt4uKQkV2Ngzc3KiFmYEBlZfY2tI4bNyI61Xzyqaew1IHubnEqKiq43Vzc4NCoRDLy8tZVFQUFAoFrKyskJubKyoUCgZRhOq332Ch1aLw/n1Rp9MxAHUF2wSBxBoLCho4+2lpaSgpKWHDhg2j87m40JxqQhjL0NAQ+vKkd6RSnA0JQVpxMfWoHzUKnjyP45MmiQ/37mUmJibiuXPnYGdnpxs1apSkihIPZ2dnpO/YgcK7dyX2CxZAOnhwnYDR8ePHtdHR0RKlUikwxri4uLiaVny1cfRoXYemrIwc7wULaH1YW5OewJEjUEVGIsnbGxVt2sADoLn3ww9UOzxoEACg/SKcDOoAACAASURBVJEjrLigAJXffIOMx49Ftxs3GHbtohKjlStpX1UoaG8ZO5b2IDOz6t7iQmYmrq1Ygd69e6N3797AUxw9Pi8PJp06wYRYSDUDEBJCzs+yZeC+/hoymUwsKipiejYZNBogMhKec+fC09MTQUFBCA8PR1R4OLN4/XVEDh+OEZMmNXT06QHSOq1y9iUSCd58802cOHECFy9e5Hs01SXDxYUyxiUl9I7p148E7PTO9ddfE2vs4MHmbrnq8jWIj4+Hl5cXNBoN1Go1YmJi+IULF9a8ez/7jAKZ7dqRpsWCBbT/14NMJoOnp6d49+5dFhkZKfj4+Dz15a1fG9bW1hAEofn3vb6v/AsvUADP25sCzD16EPtJIml0n7106RJMTEz+fkc/M5MCUXobhufp/Zea+twsi+dFVFQUTp8+jcDAQAwePBhSqbR5GycpifaZOXMoYA1Q0K8p9kgTKCoqgkKhgFwuh0KhgEqlglarHcTz/AEA/3jRvWdBq7Pfilb8AxEaGmonk8mODh06VPlPdPT10DtmCoUC/v7+8Pf35wHgtddeQ1xcnLhz507GcRwMDQ0FQ0ND4bfffpOYmZkhNzdXHDt2LGv3NAp2S/DSS/TS19ex10NAQAAfEBCAsrIy3Lp1CxkZGUJ5efmfExzMzKRMzcaNZMQHBzd08vVQKCiDFR9Pzv6qVZSRiI+nDNffLCKoz7ioVCrInjfj8MknlHW1tiZ6qSCQ0dWpE2Wy+/UjhfakJMqiP3gAfPklyktLccHLS8yXSjmFmRliYmLE/Px8ZmBggOHDh0OpVEKtVsPKykqwtrZ+tkgPYzX1hY1lgnU6YiH85z817dtaAp0OKC2F1759LHDbNmhHj6Za2OnTm1U3B0AK7m+80fRcaAJ6WnJ6ejo86+sKGBrWtMv78EP6A1Ago7ycxvzRIyrfGDyY5ua+feTcd+5MjubataQTYWTUdO3+X4jS0lJs375d7NOnj9ixY0fOwcEBmzZtwo0bN3Cjig7s7++PMVVq76tXrxbKyso4v1GjdH5xcXyCkZGg1mi0np6ektjYWMHCwkIcP348b2VlBQMDAzJmHz2C+t13cb64GJvLy7Fw/nz6cp2OnOYPP6RaeQDaFStEjUbDtm3bJowZM4YzrFUukJ+fj/j4eHi4u8P2l1/qiMF5eHiwmzdvws/PD926dWPbt28XXFxcRAgCj2nTYLJ2LSabmyMpKYnt3r27rsq4INDamDeP9oC4uBpqNID9+/eL7u7uYlBQEM37sjIyuJ+mgq1SQXnpEoavXYvh7u6Ij4+H9uJFMdzbm6lUKgwfPhydO3dmDx8+xO7duyVr166FKIqQy+UQVCosWrECL7z7rmC4cCFXn64bGxsrGTBgAHr06MEdOHAAN2/e1Pn5+TV0HGQyWlcLFtB+NnUqUapnzqQypqp95vcnT3TgOF4ikaBjVQs/lUoF8c4dlEqlyLK1RVlZGcrLy1FeXo5KExNc9PGB24wZVFJ04kRNMHHcOHL6+/enrP769RQAu3sXko4d0adPHzE8PJxFR0frXF1d+eDg4KaDO2Fh5MDWZ7RYWZGOyokTwJdfQiaTCQUFBXy1sz94MJVLVMHFxQWzZ89GxPLlomlREVPL5WhSj2f27Or2aHqYmJggJCQE69atg1qtbnp/Zoz2lKtXyZmcPJkCqp9/ToGT8qezpvPy8rBv3z4xKyuLHTx4sHqe2tjYaC0sLOr6Ii+9ROOTnV0jHtsIRo8ezU6ePImYmBiusLBQL27aEIJAt5Gfj7E6nW5/Zib/4K234ObvT/Pdw4PG/PRpYjNkZRGT4dEjCuS+8w4FNPTj04yuiVKpFB0cHP5+Zz8lhVhRtddQx44UlPm/BEEQcOfOHZw+fRrTpk2Dq6tr805+RQUFRNPSqPWgXk+lspLKvvR7aCNQq9V4/PgxXKu6MaSkpNQIJleB47gVgiB89NFHH7Vm9Ouh1dlvRSv+YQgNDeXkcvnRLl262HWs1wf+fwVWVlbo168fs7a2FmNiYtiDBw+4l19+mbtw4QKCg4OZo6PjX/cy7t6dnO4jRyjr0wQMDQ3Ro0cP8cyZM9yKFSvQtm1b3cyZM58ty3/vHtHCr16ljP3t2y1TyB82jGiGgwaRw9+mDYn4/fAD0emeo0aupVi8eDFWrFiBM2fOYGwz49Msahm4ACgbGBVFDsrs2ZRNXbeOMtBVzmrh2LH4/ZNP0NXcnIVYWkIbG4vSAwdYysCBQoJCwW2MjcXc999HQkIC3N3dn28Arl4lI1AQGlLa8/LIwdIb6s1BEIgCLpdT5nvkSJiNGYNfAChv3sSslihdFxVRRmzevGe6BZVKhQ0bNqCkpARqtVqHZtor1oGeKu7sTBnJ/HwKRgwYQDX4s2bRvCoro2cVEUElIF27UsZfpSJ2gFZL5RcKRY0w459stXnixAkIgsB69uxZXc+7dOlSZGVl4erVq7h58yZu376NESNGQCKRQBRF5unpKYydMIHH22/Dc+dODr16cQDQp0+fuhej1QI//QRs2wbZF18gKyUFuWlpyMzMpBabokgUfv26PHECg7/6ipX9/DNux8VxaWlp1a33BEHAli1bRKlUKoaHh3MzIiJEw/nzmfn48bh8+TJu3boFmUyG4OBg2Nvb47333qNrefKE9gJjY2RkZGDPnj1o06aNwNVOVX78MT2TFSvImA4JoaxplWaHSqVigwYNqpn348bRXqbTNelcASCq7axZVIahVsNn8WJg0ybm37YtUCuj3bZtW7z11lsQRRHS4mJg0CAUrVsHzfz58LO1bfQBy2Qy0dzcnD158gTx8fEYO3Zs3QvR6Yjmu3AhMUwYo8CKsTGtn3ribq6urlxiYiIYYzh+/DiOHj0KAJD4+UEuiqLk7FlRLpeLcrkcBgYGolwulxQVFQkAeJiaUiBv8WL628iIdA0ePaJe7AoF7aEyGfDhhwiYMIE96tcPTBD4Ntu348DMmeK8gAAGD4+ataLHzJk03o3B358yymlpmPvZZ/zdgAAaa4CyyyNGUFmMvoQoJQX9u3dnn6lUAMgpahSxsRSgqydAGRERoQPA63S6xn+vNhQKEpP85BMq8zl+nJ7Fzz+TMFxsLF2rnsVVazru27cPWVlZbOnSpeA4rnaHh7ovMMZoTy0roz3t998bvxa1GoriYvj6+kLcvBmq27cpADF3Ll3X4sX03vj9d5ofP/+MR1otnP79bx5vvgm+sJDWB0DPw8SEgkZDh9Iajouj+3rjDfpMCwPV/v7+iIqK+vtp/NnZFGyqjZISWp+BgX/rVwPEYDh79iwEQcDIkSNFV1fX5u83KYnmdXo6lUHUDvrevk1zppFSU0EQ8ODBg2rH/pNPPkF+fj5SUlL0HxkPYG/VZ5NaqfuNo9XZb0Ur/mFgjM0wNzf36t+////8+vb19WXt2rXD6tWrkZWVBRcXF7Rppuf4c+PDDymLO3p0s45Kjx49mIeHB6RSKdatW8fv3r1bHDNmDHtqxvvhQ4qIK5WUhViz5tmo0D4+RP2+cIFo1wAZQwsWUBZ2505iCvwN4o337t0DYwyxsbEIDAxEW3IKWo6vvyYjcseOuscZI4N37lyqKb17l4zDqp7fYcePC9k2NpzD/PngrK0hEwRYJCXB4sIFzis7G3dPnMCD3bvRzsEBge+8w1Bc/MwZcX0bNixZUtfJPnKkxjFoDjdu0Jjr7zEighyJDh2gBJB36RLyHj5EUlJSw4x7fVy/TuepbwA+BWlpaSgsLMTrr78OS0vLZy8xqaykLOfevZQZs7KiwEtkJM2pU6dqxgigLGBmJmWmBIHGKCWFHGgjI2Jp3LlDWci+fckobNeOvsfDgxgCjczTnJwcREdHo1OnTujTpw/i4+MbfMbOzg4jR47Eiy++iPXr14vffPMNs7a2RmVlJfPz82NgjAIVTTEo0tKoFMHREThwAI/Ky5EXHS0A4NLS0sjZT0mh7heTJtHvvPACkJMD37g4JERH13HGCgsLUVJSwj7++GO2Z88eFBw8yKL37UNiSgoYY5gwYQK8vLwaXodKRYEmUIbLwsJCmDNnTs3G8+23xAZ58UUaUyMjcvJKS4H793E5KwuCINRtjaVQ0P71449NK4aLItHl9fd27Ro5QU10PJBIJLTndOkCDBkC06CgZp0mqVQqlpeXs4MHD+q8vb3h7e1N8/H0aXIIFi+msR00iEpjPvyQHPzERDo2YACJfNnbA4yha9eurKKiAufOncOcOXNgY2MDiUQCptUCJiYMd++y2qKFhw8fFvLy8ug7160jRsr165Rd1jMuzMzIWaFfoL91OhRu2YL0iAgMt7ODWUkJOs6ezdCxIwUKRo4k/YpffqG5/f33xHr56acmxwJOTogfPhyFarWIpCQGT096RoGBVKpTVYKAxYsBR0cEjRiBa9euYdu2bVi6dGnDsikPDwqQ1MOTJ0/g5eUlGBgY0PwRBHIk09PpvuPj6djt2+RMBgXRHElMpP02J4faLA4ZQvNmzx4KRs2ZQ2t94EDAzg6ykBDh3VWrONmECbRXf/cdMaMWL6b309y5VMKiH6NevYiOPnQo8MortC9MmEDsruJion9HRmL/zJnilOhoxqKjKeOuZ9dNnkyZZICu0dAQj69cwam338aLQ4bApWvXmkGoXb9vbExzSxQpsPTGG8Bbb9H7swUIDAxkERERzTMl/grs29cwsOvuTnPqaR0H/iRUKhUuXrwoDho0iHl7e8PMzKx5R//0aQoOjR5N66o+fvmlUeFglUqFLVu2lD958qQSgDkAfPbZZ3U+s2zZsn2hoaFGAPoBCHvOW/rH43/eGWhFK/5JCA0N5eVy+ccDBw40fOb6838o9K2RwsLCIJPJxIiICIiiiObU+p8Zbm5E9du1q2GP4FpgjFVTO6dPn47NmzezpKSk6rrU0tJSSCQSVPdNzs4mQ2r/fsqm9Or1fPXOjJEBEBNT4+wDFE0PCqKXsVZLRtpfXPaRkpICOzs7oby8nDt48KDYpUsX5u7u3nz9cm1060ZMhKbQvTv92bGDnkFyMspFEffu3eMA4OzZs5g0aRIFYby9AW9vGANo/9prOL15sy4gJYWzOHOGISKCsvEWFpThcXFpmRjhgQN1VM4hivScDhxoPHiSnEzPc/Bgoua/8w45y2Zm9JxqtY+aMWMGtm7dirS0tOad/cpKMvLef//p11sP+lKYFmX26uPuXWo5df8+UZNNTfHHH3+ITv36MYedOyk75uxMgbBp06icQamk9eLmBlEUa4S1ZsyouZecHKLSZmXRM8nIoIBURgaN28OHlH22swNcXFBkb4+IgweFIkND7lpUFMSqzHR0dDT8/f0bGN1SqRTz5s1jZ8+eFSsqKsROnToxvZgnRJGu7969mgx3SQmtkZUriS4+aBDAGH4hijrXrVu3GvXp3Nw6VFpRFCHwPCxffhnDeR6nLCwQExMjqFQq5Ofnc46OjjqO4/hJkybhoqkp+llYQJeaKjo7O7NGHf3YWGJHFBUBMhkePHgglpeXc/fu3YOHhwdl8tPTydmqvVf07EnMj9mz0WnTJpyTSpGUlAR/f/+az8yc2XxWPzub7q1fP6LLp6RQYKspZlB4OO2HiYnAN980fd5a0Gg00Gg0MFEqeWHYMHA//URr5s4durbkZHpGQ4cSjbxDB3pegwbRHrBkCa3dvn2B3r2r99LU1FQ46ANhUillf2utNUEQEBsby00aOZLmmiDQvRka0t5obk6Bqcb2X56Hsls3aK5fR/vXX4dk8WI6npREf5eWUoCgXTsak+homsM//URrYtw4Gqeq1oAAAI5D4uDBcC4vJ3r2vXu0z3z1FTneAJ1j+3ZALkfn/HzoW/WtXLmyoQCdXn0+N5cCGAUFgIMDpjx6xMdu2wbNiROQlpbS++CXXyhouGABBbjs7UkM1cSE7mHECBqPJ0/ofTJ9Op2b2j8S9D3kf/kF4Di43r8vnhgwAMNsbSEThJrSJltb2nNFkeYtQPXyOl3NOmrfnta6gQEFmwAq4wCwWK1mqwVB7BkUxGwtLWsCMPp+7kB1l40TJ04AALrWdvQbg7t7TQDr3j16ji109g0NDSGRSJCWlkbr8e+ASkV7a8+edY93707B1b8RWq0WGzdu1Dk6OrKuXbsyvrn9oqKC9ksvL1qXjTFNExPJLlm/vsGPUlNTkZ2drQTgCWAogPOMsZWiKOojAyoAWLZsWRmAY3/23v7JaHX2W9GKfxB4nn/d0tLS5v9n5f2/GhKJBEuWLIFEIoFarWbHjh1DbGwsEhMT8Zc5+wBl0r7/ngy3FojROTs7w8HBQUhKSuL8/PxQUFCAdVVRb8eKCp1PcTHvFBWFDE9PeJ46BaM/K2rm7U2GUFlZ3RZjLi6ULTt9mpzc+PiGtNM/gSdPngjW1taiIAhiXFwcO336NLKyssT79+8zmUwmTpkyhTXXHxnW1mRoPg0vvURlFDduQDF/PrxnzECuQiFW9cBu4I0YW1hg7Ntv11gqlZVUjxoeTnXASiUZolIpZac6dmxUkwEdO1KGZcQIyk5MnUqZqo8+qvlMYSFRQl1daZxVKqpPvH27USaIIAg4f/68GBkZyXier65TbBIZGWSgPkfZzo4dOzBw4EDR2tq65bRTUSQq/jvvkFhZLWrwyZMnGQAEvPqqMHzRIo7t2kWlFRYWFBSwsADMzHDz5k3x8OHDDADmzZsHjUYDR0dHMLmcnJraARSAAgYAOQFPntCYJiSg8skThP32G9xSU7mgsjJo+/YFKy5GWlERVEePildcXeE3bRozUyigMjCA4OUFuZkZFAoFhg4dylB/btjZUV12SQkFYM6fJ+dDrxpda+2Ym5uL+fn5bMiQITVBCw8PYOtWAEBSUhLCwsJQXFwM0/HjRUdfX2aclSWamJhw7du3h5OTE5ycnKrnYK+SEuDLLzHxwoWmn4WfHzlgVQGMoUOHsg0bNmDHjh14OTsbTl27Qj1+PIwa640+ZAjw8CGU+fl4oXdvHD16FMXFxbpevXrRNYwZQ/eoV6Kvj0WLSICRMRKmnD+/cUc/LIwCI6dPk37GU4Jmjx8/xsmTJ4XCwkLO9/JluJ04wf/Yqxc6FBeLdiUlDAsWAAsWQBRFREREiEZaLWtraAjLjh2rjdgKQcBNT08UWVsLkkuXROPff0f7pUt5m4AA8Pb2yM7OrivK5uhI5VdVAmGiKEKr0cD5zTdp7v30U02wTiKh+xWbbqSiVqshiiIOHTokjhs3ru6gGBlRGcWnn1IWeeTIGuexb1+aM9eu0b+LiihoYWKCiooKnczdnUd+Po3hggUUNDtyhEqzevQgRk23brC3t8fHH3+MTZs2CZmPH3Mnt20T+r3wAid/7z3KckdE0P3euUNr0M8PcHKCcYcOeFJUJGxSKLhXQ0MhsbOjdd0S3L1L59U7+7Wh3yur7rO7jQ3/TadO8MvPh7uvb03de+0A5Y8/0j568iSVM+j3vdqfqVf+IJPJYG9vL8TExPA5OTk6JycnvnPnznWEVo8dO6ZLSEioXmdXrlxBt27dGr+nH38khog+uBoWRsGagoKmhVhrIS8vD1qtFo8ePfr7nP1792ge1A8mm5oSm+J5WGotxK+//ioYGBiwiRMncs06+vfvU/KD5+mZNaXVsnUrBbAa2Uf07z2O41Z9/PHHk0JDQ7lajj4ANLLJtaIxtDr7rWjFPwShoaF9pVLp12PHjjVoSRua/yXoX/xyuRx5eXmCkZERN0hPg/yr4O9PztbVq3Wz582gX79+3Pbt22FpaYnY2Fgx0MJCGJiRwedlZPDJPC+cnjFD1BoacuEbNsDS0pKZmpqKzbbvag52duSoJCY2XtMXEkLUa8YoCv/113+6djopKQk5OTnciBEjYGtrC3d3d5SWliIyMhJqtRrl5eVsy5YteLepmnSNhq710aMGrZcaRZViNvfyyxg9fTpOzZ7NYjp1erryMkABmlo1/6ioIEflxg0yNl1dKatlZ0fGeffuNVlQExNyPgGaA3rBvl27iL74/feUzQsOJmPyKdBoNIiMjGQA4OjoWNN6rzHo+1y34Lz1UV5eDkEQ0K1bN9biPaOggLK0RkbApk00JtWXIsLU1FR0cnJisUlJ3ACFAoZbt1I7O4CMvuJi5O3ahcOHDzNbW1tkZ2djw4YNAIC+ffuCMabT6XS8j48PGhUX5XnA1hbFBgbYdf488vLyRLM+fVinrVvByWSQiSJQVAT3sjJoLl9mZw4eFI/t2oW+SiUqzp1DuZERBFFEoaUlnDMykO/lJfrPn8/SkpLgGhgIqZcXtJ9+CsmJE+TM6HTk/FepmNeGIAiiTCarHruioiKkffmlYBAXB/mWLZze0VcoFEKRSsWN7dgRzq+8wnDjBmW76qN//7rZ0fqIiyONij/+qD5kZWUFiUQieN68yZUkJ+PfSiXK0tLA83w1W6NLly6wqGIUmJiYsMm//cbaPXwI13HjEB4eznfu3JmU9jUaotnOndvQ+L57lxgX3buTgX7oUEMWkEpFgQhjY8q0t6BVZ2pqKn7dvBlvrF/PKQ4fhryiAsYchw7OzthrYYGFHh7gQMyTXbt2CcnJyVz/8HCcdnaGy5UrKC8vx/Xr16HT6aBQKEQbGxtm3KULV87zSG7XTrA+f56bfuoU4v38cFcigRe16KPA3s8/Vzv76ogIjNu7F/c++QS+EyY0vP8RIyjzXE8EThRFZGVlYePGjbCxsUF8fDwb11g9fkkJ7QeCQPvK9u10/K23aj6Tn0/Z66QkQKGAoFQiaPhwCgSo1cDFi7Q3t2tH59m0ifbHqvpz7rPP4BEcjD67d8MmJ4c7tWmTMIIxDlZW9Gz+9S/aK5ydac+SyZCZmYnbd+9yjo6OgmhjwzXL7KiP7OwWt2KVy+UwNzcXb9++zdz1GgR6CALNG0ND2j9lMqq1j4gg9sJTMGHCBH7z5s26Bw8e8HFxcbC3t4dTVbBQo9Hg+vXrPAAYGRmJ/fv3Z5307fTqQ6ejva3++7FXL5r3VWyCplBUVIRdu3YBgL4rw9+DtDQK2NQHx5FGTEHB3+Lsp6enIyMjg3vttdea71qzaxeVo330EY1bU++W3FwKTtQLUouiiJiYGJiZmcHAwECsqKiYGBoa+tKyZct0oaGh1TX6ABwBPFtf2/9RtDr7rWjFPwChoaH2Uqn00OTJkw0sWyII9j8MU1NT0dLSsm696l+F4GCio3XpUrdXcBO4cOGCCID9cfIkxiUmol1hIS9ZsgT2PXrA3tSU6w168f3xxx9ibm6ucPPmTS4jI0M3duxY3tHREQUFBSgqKoKLi0vLrq9rV8rCbtnS+M+9vChLfOoU0f5dXZun9TYDQRBw8OBBsUePHrC3t2cAqhWxg4ODWWJiIvbs2YOJzfVYl0opi/sshgvPA++9B2l+PnrFxkItkSAmOhoBVbX8LYaBAWXofXwoe11aSkb4w4fkvJaXE1XVyor+ViiImrpsGf3c35+YAZMmkXFeX3OgGVSxEeDr69t8b3aAaPQGBnWU1luKkpISiKKIysrKlrUcjIykwItMRrXRtea4TqdDZGSkWFZWxvr06YOSkhLdUUtLNsnEhENyMjEP9uzBwV27dJp58/hZSUmi0+3b7Nr16wgLo1LL8+fPg+d5XqfT4erVq1i6dGmTl3Lv3j1kZmbCz8+PjR49uiaYo6+rNjODdMIE+Hbrxvbu3as7JJfDZfRoftiwYRBKSlCSnY2KK1cQd/AgS9m2DRZZWSj+7TdYlJdDlp8Ph9xcsJEjKUPdRNeO0tJSjuM4ZGZmYvv27aisrIS3Wg1HHx/uzLZtGDZsGI4cOYIRI0ZwYWFhQjnA4epVWmeNiTpaWdH45uU1LuwolVL2t5bxrFKp4HX5MtevUydwX30Fa0ND2NjYICcnBw8fPkRaWhrS09OFe/fuscLCQi47Oxtfm5mhW3w8WHKyAMa469evi3379mVo356CRjpdw6zhpUtUIhARQcGrxsQ2p0+n0ovIyOYDnlot3fuXX6Ltnj0Qx43Dw3Hj0EEvZjdgAIIzM/Hbb7+Jn3/+OeN5HlZWVkJBQQF7efJk2GzciPhu3cQ//vhD1Gg0zMnJCb1792YuLi5118qoURyWLsXuDRu0hidOSJxv3CDV9f79ac3eukWfy86GwbJlKBs9WoxMSxPzLlzgioqKYGFhAY1Gg4qKCsF97VoYPH6MsIULxcrKSlZZWcnUajXTarXV6zU/Px+CICA8PFw3cOBA2jiLioiZdPQoBUx+/bVpSrj+nfTttwCAypUruetTpwo9HBw4hIbSM7G1pf1l+XJiabm4kDP6xReAUon+L77I5b7wAn7YsgX9raw4cdMmsORk6lwyZgztpf36UfD0999RUVEBqVSKGTNmcM+cJOB5CoK0EL6+vrh586YgCHW1JPHxx+Tc371LcwsgNlVUVIvOq1Qq8dprr/H79+9HbGxsdYlYSUlJNVvOyMhIePvtt5uP+KakUEa6/jvv/PkWvYOOHz8uPnnyhAGoLUD41yMxsaYsoz5KS2ve338xDh06BDc3N8Hc3LzxcdRo6Fl6e1OyoHaJUGO4do0+Wy9wERMTg8OHD4MxphZFUQbgxWXLlukAqtHH3y1++A9Eq7Pfilb8f47Q0FBLmUx2Ojg4WPmXtJL7h8PNzY07evQonjx5IsydO/evFTbo0oUM5Zs3m6bC1sJwX1+WHh0t+F67xinmzGF4+eUGitKMMQQHBzMArHv37vjxxx/5hIQEHD58WJebm8tLpVJ88MEHLbu+YcOozvXhw4Y0aT3atKHrz8oiozQs7Okv7Ubwn//8R6vRaCSNZTg4jsO+ffsAALXbkDXADz9Q5lrfi/cZwCwsYJaSgvTvvhOHjB/PsGhRy+mpjcHIiDI+gYEkNFRYSEbXgwdkwG/aRKUAa9aQM/HSS8/dTz42NhYAkJycLKanpzPnJgTQABDFmSirIgAAIABJREFUfNOmZ+6oEBUVhYiICHTq1ElQKpXNrwNRpO84e5ZaHDaiS3Hz5k1cunSJDR06FNbW1pg8eTL/3XffiaePHkXnTZuQ+Omn4tVr11BaWsqPGDMGTikpDIKALioVuixbBkEQEB8fDx8fH6xevfqpGgKaqjZiAQEBzbI2nJ2d8dZbb9Wx3jljY5gaG8PU3R0jpkxBXl4eLC0t8fnnn8Pt3j30z84W2ZMnDFotZS9ffZVEwl5+ufocjx49gk6n09ewAgAMDQ2FYT17cnJ7e2SUlgqnTp2Cm5sbfHx8uPPnz4tZWVmCV79+HH74gcTf9DXdtXHsGIm31W/XmJ9P67bKEdRDe/kyOsTF4Y9hwzCkfXvoybIODg5wcHBAd6pdrh6g8vJypKamwv399yHr148Tpk8HevemycMYMVGuX69RIQcoA3fmDAULzcyIOl6blvvuu7SfbNzYNF1XL/xmY0N06L17galTEV+lj6B877065UP29vZYvHgx9/jxYxw4cEB0c3Pj+vbtC1lqKrB3L+ZX7YmNf1mt7xRFVEilyPb2Rp9//YuCYxERFLhQqylo5+gIXLgA5+xsZrBvn3j37l1dZmYmL5PJRBsbGyaXy7nEl16C0sgIvlZWMDIygrGxMYyNjWFqagqZTIaEhARcu3YNDx48QExMDD9gwACwykraN/r2pXIknY4CNtOmNXPJQvW/nVxdWbabmwCplBz0kBAKUvA8naekBEhIqBnzqrpnawCOjo6IiIhA+/btYffLLxQU0DusYWE0NqdPw8XEBIIgiNnZ2eyZ2/TevdukOGNj6NKlC7t48SJbtWqV+O677zJs2kRza+lSKm+ovYeNHQtcvkzzvrEsdiPQtx3U7weRkZGorKzE+1QG0Pwel5BAQZPk5IZ0fVNTem8mJyM1NBRt2rRpVHxPpVKJAJqvY/+zEEUKyNVi99TBwIE1mg5/IUpLS1FQUICxY8c2Po5lZfReCAqiZ/e0FqtaLZUV1hMZ1Gq1OEy6CxpRFI0BaJctWyY0dopWtBytzn4rWvFfjNDQUFMAQxhjHaRSqT3HcUrGmCkAJ41G004QBCnP8wgMDETfvn1bkJprRWBgIHNycsKGDRu4R48ewdHR8a/9gpUrqTb2+vWms+LJycCePbCuqIC1ry+Hr75qUebAysoKjo6OwrVr15hCoeBfffVV/PLLL3VqENeuXauTy+V45ZVX+AbZBZ4noyo8nMS4moOdHWWLHB2phjIkpMW0/osXLyI3N1cyc+bMJjPG7dq1Q3JyMtatW4epU6eiAbUTIAPizxhOHIeOAQEsfMoUcWS3bgzHjpGzUl/Y6HlgZlYjDjhlChnhCxdSgGTBgj95ajPY2NiIOTk5bPPmzfDz82u8beGNGyTY9owdJgRBQGRkpDh8+HDm7+/f/EN98IAcv/nzSUG7CYcgNjZWdHR0ZAEBAQAAhUKBN954g93u3Rvnfv5ZyP/9d8576FAEBATAVq92f+sW6Rw8fAjOxKRa5C4oKAjnz5/Hnj170L59e1hYWOCXX34BALRr104cO3YsO3nyJAA8e3eHeuA4DtbW1oAoIvDaNbjI5aLDunUMeXlEK/b2pvvPyqJ6dZ0OWLIEfJXwZ7t27eDp6YmzZ8+KZWVlXOXp05D37InR8+bVGVcTExP+ypUr6NevHwUOmgqgnTzZeJBo717SkqgdIDh8GEYHD+LCZ58JV5OTuTaxsdVin01BqVTWaJVs2wbu3Dmip+vZQYGBlB2sjbQ0mudLltB4rFhBx3Nza2jc7u4NKO4AqHzF15cERvfto+zp9evV5TJ7f/sNdnZ2aCxQLZPJ4NqmDd7q2JGhe3dizfz2G2UQs7OBgADal955h5zO+/cpGHLgANH07eyAWbMwfc4cifjqq7gzdCj8Dx2ijOInn5BTIpdTSQLHwd7eHq+//joHAPHx8Th9+rTulVdeoU1Uo6ExiIpqtKOAp6cn9uzZAwAoKyvD1jVrxKlLl7J9n34qlPr7A9u2wTE2FgF79nAFAQF1BDf1pSxiPU0Ah/R0DM7LIxr+t99SkKC8nIKxq1fTe6SJ2vOpU6di+fLluHj4sDA+I4PDp5/W/LDqmam3bEFKWprIjRjBFC1gojWAkxOJ57UQJlXvOFOlkqGsjFhkBgaNO4YSCWX7+/ZtVvS2NoqKimBubo6oqCgxNzdXiIuL4y0sLASZTPb0F5e7O70Xm6rL794dcSoV9v/6K2QymTh79mxmaWmJkpISGBsbg+M4pKWlcQDwcq2gYHMQBAG7d++GkZERvL290a5du6eXm6Wmkn3RlM6Ntzfw+HGLvv9ZcOzYMdjY2AgODg4NL/DwYdobjh4lFlRLAs83b9K+0rlzncPXr1/X/7NTaxu9vw6tzn4rWvFfiNDQUI7juHkSieRbR0dH0dnZ2cjAwIBJJBLI5XIYGRnBysoKMpkMOp0OyhbWzbWCYG1tjcDAQGHHjh01vav/KtjYUOZ306aGrXEKC0mk6ckTql/u379xA7kJcByHGTNmcHfv3oWjoyNMTEwwceJE7N27F8XFxXBxcUFeXh5vY2Mjfv/998JLL73E2dvb1z1J+/aUvWuMRlwfM2eScblwIRnHesX0ZvD48WNERkZiwoQJzTpiU6ZMwZo1a1BSUoLt27fDyspKCAkJ4drXNh7ffLNFYodNITExEZGRkeAMDVnhgwei9/btosO9e6xNUhIDz/9pTYI66NuXxK8SEsiR+RPnTktLE3Jycjhra2uxsrJSDA4ObvxkpaVEnW4JBb8WNm7cqJXJZPzTHEOcP0+ttMaPJx2CJu5JpVIhPT2dTZ06tc5xpVKJ7r16AQoFh3ffpT7vtY3pjh1pLWg0RG3ftQvo1AkBAQGIiooSExMTWf0Wevfv32crV64EAPTv319gjP35h6hWo2DDBjhlZMDsp5+Izi4IdE1HjpCgGkD0+u3bUZGeDsnEiRgREiL6vPEGU5iZISgoiAEAFxfXIBOZnZ2NlJQUiKJIHQj02d7u3UnQcdGimg//+ivVZu/dW3NMFKmOfs6cmmPp6bQm9+/HQEdH7urXX+PkyZPo0KEDWkzH1guIjR1Ldfh+fsCsWdQtQo/KSvren3+mgMCQIXRcoyEn/ttva5z/2td24waN28CBdC+hoSTEBVQ7+vfv36/6+qpAVm4uOdMjRlDXhX79iH7+9tsUKOjenYIH+hrfrVup3MHCgo7b2NB36B3brCyA43AnNhYHli3D0q5dyRn58ktiVqSkkGPy44/0vD/+uNrxrHq31gykVErMg4KCRlszRkVFVTvr/bRacEFB7M7atXD09q6en2KbNtir0UB17Bg8PDyQmpqKmzdvIjU1VeB5nnNwcNBNHziQ5/7zH1LALy4GnJ2phd/p08Qa6t6dSnZ+/pmCjKtXN9puU6FQwNTERPRbuZLbOWgQRmq1MKy1l164cAEXO3SAx5gxwptXrvCy776jZ/Qs+OGHRlXUm4KerTNp+XIKVHz3XdMfNjAgfYpnEB21srJCbGwsIiIiGAAeAJycnJ6+GHbupPu4cKHRHwuCgAft2uGPK1fwQlaW7n6vXuzo0aMsMzNT1Gg0rG3btuLYsWMZQEy82uyM5qBSqXD37l0YGxvjxo0b8PHxESdMmND89T56BAQGQqvV4uzZszA3N0eX2iVqVlakG7RgwTOzvZqCXtC4Z8+edffaigpal5GRFDB7FmHob7+t0XKpBasads9T+ta24lnQ6uy3ohX/Zahqn3fIzMys3+jRow2fmVrXiqeCMYaBAwdysbGxOHPmDP5ysb6ZM4nSqlJRXXNaGhnwX38NvPceOU/PGaCRSCR1ugg4OztDo9Hg8uXLuHz5MkxNTcXZs2ezw4cPY9u2beKCBQtYHX0Cb+8akaiWvJyVShIG43kKYixe3KhYmR6nTp0SvL29RR8fn2ZT8hzHYerUqYiKigLP87hx4wa3c+fOmh7ROTnEKigre2ZnVg8nJycYGxvD3t5ed/fuXf5Bjx5M0qsXPvzhBxLIunDhuZ9DoxBFKt/Yvp1KJp4Tffr04S5duoTc3FwGgJ05c0acNm1aXcvt4UOi1F+5Un1IEARcvnwZrq6usLe3B8dx+hpidO3aFfv37xeLi4tRXl4uef3115t2CkWRHNDUVNJ3eEp3hpKqFlkmTbFTgoLIgcvIaJg5k0opi/fyy+SInTgBkx498P777zMA+OKLLyCVSjF9+nTY29sjISEBSqUSW7duhY2NDdci8cXmUFAArFqF+CtXxIw338SEwEAaFI6j9m63blU7p6KFBR4MH479+/ej7auvaif07i3Ba68BJSXgVq2icVq0iIzYWoyhioqKakdQp9PV1PO++WbDThNBQTVij3qEhlIJRWQk/f/CBcqkRUUBBgaQAViyZAm+/fZb5ObmtrytJUAO/5IlFMjIzSXH+Ztv6LocHCjb6eBAwcnoaNo7Jk8mY/3GjZr7FEW6zgULSJ/iyBHaLwoKGnU6Hh05gquHD8O9fXtYjRpFpQCJicC2bRRYmjiRyqI6dapZS76+tKfqM8G1g1X6PdHAoKYUqmpeeHp6wkalEi5Pncp1EwQYTJhAjqp+3nz0EantX71K+3XPnpDJZBAEoe6F//47Uf9robCwENu2bRMLCgrYkCFDBHuJhHMeMABs9uyGugU9euDxsGFIKinBN998g6pOG7pBffrwpr/9BsW//81vHD0a3dPThU6rVnHV9ySKNSKh//oXjSdjFLhdtYoc/kYwxMyMSUQRd62t8ccff4j9+/dn+rVy/vx56HQ6pKamclEFBUIfHx8OGg3AcWAtZVMJQotatZaVlSEzMxOqJUtEizZtmOLw4ZZpjNy/T/etb6f3FPTp0wceHh7YtGkTJBIJzM3N4e/v/3SP19aWgm71oFKpsH//fjE1NZXxPI9e2dm6ThERfNGoUeLly5cBgEkkElRWVrIffvgBjDF89NFHyMzMxKlTp1BZWYlevXrBvAm2gEKhgLm5OQoKCqouw5bp97P8/HxYNFa+kJyM9IIC7PvhB0EqlbLS0lKmVqvRU89Ws7Ag9k9+fuO6H88BfdC+zvuirIzYbO3aUbDsWRh48fG0pzQyB2rdswGA4ue+6FbUQauz34pW/JdBIpF8aG1t3X/mzJnKv7X2638ccrkcgwcP1oWFhfFGRkb62ta/Bm3bkgOzcSMZlCkplBW7dq1BTf6fhSAIcHR0FBwdHYW2bdtKJBIJk8lkGD58ONu3b5+wbt06DBo0iPn6+lLPacbo+nbvJgO3JdBfs68vOQVNCYgBKCgoEDt16tSiiWtra4vRo0fjxo0buHHjBgDg3LlzwpAhQziYmQHnzj23ow+QHsBbpHbNl5aWorS0FP+Hve+Oiupqu9/n3im0oUgXpUkRRLGBChaCJXYxGkuiaZpuoummGtOLiSU9ryUaE7uxK1FABaVIUxQQaQLSkTIwDMPMvb8/HoYOgsn6vnd9P/ZasxJhuHPvmXPPPft59rOfX375BaWLFsGmf3/KnG3aRBvKfyMLwhhlEw0MaIN+n8dsaicl1tfXs6qqKmRnZ7ObN29CLpfD2NiYZOcXLqBx1ix81pRVfeWVV7CxVabM2tpa7NevHysoKEBdXR3i4uKg0+mYpaWlOHv2bFGhUHR+ctevU8Z4xQoK6nTnqdDyWTA2Nsbx48fFFStWdH7cV14h2fV331FtbGsw1tKq8O23KdP8/vsAgPdatzAE4OXlBY1GA47jsG/fPgDA5MmTxfHjx/d+sG/fJtk8zyMlJERXkZcnSUpKQlpamiAIApZ98w2Hr7+m+lKJBHV1dfj999/1GTjaPwUHk+mbUkmEODeXAnutrtHZ2RmmpqY6Kysrvs2avngxvX/IECKaxsbUTu3Onbbz5/HHW/qGl5aSbP2PP9qsJQYGBpDJZKJEIun9OCxeTO03N20iov7++y1z+OhRyqwXFhK5U6nIdM7AgDLp585RIOLTT4ngBwdTDXZrc8UjR2jNqakBXnoJwv79UH/wAXx1Ohi/8QYKamrQb8QIGIWEoHzlSlhKJOBaGYzpdDo0NDTA0NAQzM6O+nK3Q0VFBY4cOSKOHz+eKRQKWFhYQKlUgq+rQ9WGDQisreXyVCoUfPwx3JtKTZphYgJs2ULrzSefACtXQhYQ0DFD+/rrdA1N8w4AwsPDUVFRwR6aNQseX3/NyX/7jQIc7Z/dKhUgipj13HMYWlyM/gDMGxvB3n6bx5AhFBh4+GH4Gxnh6IkTnK2FBZo1WQkJ9HrnnbbGiW++SbXbN260tLLTQ6uFV3Q07h4/Dou//0ZUVBQbP3485HI5Dh48qOM4jhs4cCBrbGxk5wcOZEWGhrphvr68VBBgEhGBDoqw9mhspLKCHrRp/XHTJqgbGvBEbCxzf/xxyLtyw28Pnid1US+Qnp4OqVQKQ0NDoaKigktISNAplUo+LS1NV1hYyI0cORLGxsZs8ODBUCgUFMAxN6cypXZISkrCrVu32JIlS+Dh4QHGGA8A/uXlrKKiQldSUsJXV1dDEAQhMDCQS0pKwhdffAFRFDFgwABdXl4eX1BQIDz//PPNpSHx8fHC7NmzOXNzc/z44486QRC4RYsWsYyMDF1ERAQfGxsrDB06lIuNjUVAQADGjRuHsLAw+Pn5oX///sDBgzjv6irWWFlxr7/+OhITE5GSkiJoNBruzp07mDp1KmwnT6YgZXBwm+upra2FRqPpPIjQDerr6wGgpdTmzBlqTfneexTc7u1zLj6egomdlMNcv34dAMBxXDiAIR3e0If7Qh/Z70Mf/ouwfv16xvP8m/Pnz+8j+v8DGDFiBN/Y2IiwsDAxOTlZtLS0FJo38f8Uc+fSw/bll6nWtBdy/d7AyMgIK1as4NDOgMjAwACurq7c7du3ceLECYSGhore3t5sypQpMGmSR1avXImYpCQEBgb2rDuBXnY3bBg9rL//vsNbpFIpq6ur69U1tJ7rzU6/x461yY7+U5iYmDRv3q3696fspL4X8Pz5VPPbA2J7TxgYUPlGbi4RyfvE008/zfSS0E2bNol79+5tdnmW19Vh9pEj2KfvPQ9g27ZtACjAMXz4cFy6dImVlZUBAFauXIna2lrs3bsXTk5OrFP5vk5HGZfly8npWy/X7iF8fHzE2NhYlpub23l3CMYoe3viREey3xqJiUQyH3+c/qaTzhEymQyvvvoq4uPjERERgbS0NDa+u2N2hqQkKmcZNgxYvx7PAZJTp06JFy5c0FlZWfFZWVms7O5dWEdH01x86CGYmJjA0tJSrK6uFqE3h5NIyHcAIFn5rFmAkRFyjh8He/tt8eIzz6CssRENDQ18dnY28vPz0cZwccAAYMaMls4GHEdk28+PsmanThG5XrqUiJ2+9V4ndc6CILD7dgF/+mkKJOil7Vu2ULAnOpqyt1OmkAogK4vOacYMku8rlRScYIyUB/v3Uy338ePkrJ6RQevfihUUDPngA6QqlTgUEkKXu28fFJaWOtWff/KWlpZCaWkp5+joKDz66KMcYwynTp3SXbt2jRcEAdbW1uIKOzsmbVKzFBcX48yZM7rq6mquqqqKAWD61me8KMI7PR1Drl1Dlpsbbg8bJpa6ujK/7taUoCAq3bh5E/2WLYPZiBFtWcw779D1tkJgYCDy8/N1544f58xjYljmiRPChPnzuQ7fQlYW8N13UFRUYMinn5Ii59w5CiAEBUHkOCQkJKC26filpaVEuE+coMDOqVMdA58KBR13+3YK0rQmXX/+CSgU6OfpCfuUFNHQ0FCUy+UcAEilUr6xsRGlpaWQyWQiAKbRaJjZrl1IOH8eBZs3w2/UKIyYP79rV/myMnJ9f+GFDr9SKpUwMTEhFcvdu3hlwwb8Z/FibH/6aTDGcOu774Rly5ZxXWW8m/HNNxTIqKvrdm2uqalBQkIC9F08li5dChcXF66iogJ///03d/78eZ2dnR0XEBDAUlJShNraWvHKlSt44YUXOGzbBkyfjj/Ly3VqtZotXLiQ0yuU7OzsIJPJcP78ecHT05OeS9evw8zfH0uqq/lGkLLDysqKY4xhwoQJqK6uhomJCa5fv87n5uZCpVKxTZs26RwdHbmKigpWWFjI/fDDD+B5HiYmJtyqVauYRCKBp6cnf+3aNRgbGyMhIQETJkxAZGQkYmJiIJPJkJmZKU4fN465VFVBOm4cdVgAUFtbK5SUlHBqtVp0cnISt2/fzi2VSOBcXNw8PqmpqYiJiUFBQQFkMpm4du3aTtm5IAhQqVRt9gKlpaX4+eefMXjwYJ2LnR2PixcpIPaf/3TdEaA7KJW0frUL4upRVlZWL5FINmi12k29P3gfukIf2e9DH/67IBEEwcDsPl28+9B7jB49GnK5nJWUlLC4uDju6NGjmDNnzj+TBgNkdBUURO7aI0cSwenKVOdfREFBAU6fPi3cvXuXAWDTp0/HwIEDcerUKTE7O5t9++23GDhwIAYHBaH0rbeQ7OyM1NRUhISEwMXFpWcfEh5OBGT/fjKHa0W0jI2NmUqlaiFDPYCvry8iIiJ0KpWKv3jxIvz8/MD+/JPqNf9FxYWhoSE4joNarSafC1dXyoBUVtL/b9/+j+T3zXjppY6ty3oJvWSyyaeBJSUlYcyYMdixY4foefEiK7KxAXgeq1evRkNDA6KionSMMX7s2LGwt7eHm5sb7O3tqSSiCQ8++KB45coVAU31rM0oL6dsfnk5ZRDvI9A4bdo0dvv2bezatQtr167t1K0aS5cSmd20icpBOr9weq1eTSZsd+5QJqidO72RkREmTpyI8+fPo7CwEL2S8585QyRi8uQ2x505cyabOXOmRKVS4ZtvvkFlZSWs161rU+rh6uqK27dvix2OeesWZYabiG/eH3/AVCJhDu7umPbxx2gcOxZ3H3+8uf93MyQSMvX86ScKPn39NWXZ9WtFdDSR8HHjKLi2e3eXTteCIHQ+7j2BPsjw0EMUeMjNpfvPxIQIpV7q/sgjFMSysaHgxrp1REanTSMC8OOPdC9Nm0bZZo5raXEHAAsXIq+p1eKSJUvg4OAAExMTPjs7G7du3eKWLl2KX375hZ08eVJ0cHBgaWlp7Omnn0a/fv3w+eefs815eRji6qor3bmT5ebmcu7u7vyIESOg0+kQGBgICc9Dm5EB8YUXIHd3By5cgKe1Nc6ePctKL19GUVFRmzIHpVKJvLw88DwPtVoNlUqFuoYG0XzQINE1NZXDyZNUzsEYSY/ffJNk801zzRbA6g0beMTE4M4zzyBy2zbOwdcXHh4epAjR6SiANX06+Y+sW0feFY6OlNlsWnNTrl3DqVOnYGdnJzg4OMDFxYWDSkVjvndv1wqnlStJ4VFY2FK7r1LR+a5YAUEUoVarUVVVxem7TkyaNAnXrl3DokWL4OTkpF+nOQBwGD0aJdOmoXb/fhzU6cTFixezTst9qqs7lEAVFxcjNjZWSE5O5jitFmNiY1G4eLEQ8tNP3LOLFkGr1SIrKwt//fUX9+OPP+LFF1+EeXdB8CtXyBRz82Yq6+gEKpUKP/74o9ivXz9RJpOJwcHBzMXFhQMAS0tLLF26tLl+HwDGjh3LabVafPbZZxDS08EdP47cO3eQu2cPP2jQIOHHH38UrayshNraWqjVat7Ozk7n4+PTMgA+PtSGUiqFFKRq0oPn+easef/+/eHr66uztrbmTE1N+fj4eJ1KpWKzZ88WL168yCuVSsyZM6c5OMdxHOzs7ARjY2OuuroawcHBGDduHCQSCcrKynD06FHx2sGDYpmZGZdx6xZbtWoVjI2NUVFRIQLAvHnzmIuLC9uzZ4948cIFZuPoiJtJSbhx4wby8/MxfPhwWFlZ4dq1aywvL6854Hj37l2cPXsWCxYswJ49e3TZ2dl8UwlLG9n+QyNG8OWPPQatTIZ+YWG4nZeHI19/jREjRgguLi7cpUuXdKamphg4cCDv6+vbdZAoPp4UQl2Yyubk5AharfbIunXr7nY9MfrQW/Aftnbo7EMf+vC/iqCgICE6Onqlu7u7meJerUv68K+AMQY7OzsMGjQINjY2CAsLQ2FhodijWr97wcWFjLgKCshF2tCwdyY2PUBiYiKqq6tRVlaG/fv36+Li4jgvLy9x8uTJ3PTp09G/f399tpeNGDECFRUVQkNDAxQ8D3liIpNMmYK6ujpkZGTonJycuCNHjqCmpgbp6elwdnbunEAZGVFt4LZtRJwWLWrOKkkkEhYVFcUCe+l4P3bsWM7DwwPR0dEYP348uKVLu/UGuB9wHIfLly/Dzc2tuU0TGKPvJSiIarO//Zbc0O8lY+0ONja0GV62rNNa0N7CyMgIrq6ukMvlKM7NBfLzcXv4cDZ14ULRycmJmZiYwNvbm/Py8oJCoQBjDObm5h02XIwxFh0dzfXr16/FEf/0aarLHjCAzM3uU1HEGMPQoUMRFRWFoqIiDOvMbZ4xIi2vvkqZ++7MF+3tKZN89CiR0FWrWo7RCpcuXYIgCLCxselZrfqJEyTDXriQyH4nSEhIQGZmJhYsWECk288PmDsXgrk5Tp48yZydnTkXF5c2ihS89BIpEpoUEQO8vfFnXZ1YXFbG7C0sdO7Tp3N29fVgc+YQYdaX1OiRm0uGVxMmUMb32jXKMk+bRjXFzz5LZL+bbNr58+cRFBT0zwKVwcEUuBg7lq7pzTfJSC0nh9QwX39NngJz5pDx3syZRIDmzydH82eeoZIlK6sunbmtra2RnZ2NuLg4lJaWCsOGDWMWFhZwc3ODXC6Hm5sbu3jxopCamspNnTqVeXh4gOM4eHt7w0oux+i1a7mchx5itra2ePjhh+Hs7AwXFxfwN2+CbdsG/s8/IVm/nsasKSOsUCiQmpoqpKamMhsbG+h0OshkMmzbtk1MSEhgBQUF2oKCAqGiogJqtZqr9/JidhMnov9PP1Fwc84cujcef5zULwoFBWGsrREbF6fbU1a+1k5bAAAgAElEQVSGpORk2DQ0sMkNDeCGDSOFg1ZLRL+8nFoXjh4N7ciRUKpUqK+vh0qlgkqlwu7du2FtbS3OmzePc3NzY423boGfPRtJGzciR6tFTk4OsrOzkZmZiczMTGRkZCA9PR3pGRlIuHBBNH/vPbZdrdZFRUej8ocfUHPuHNum1eLChQuoqalhGo0GcXFx8PT0xKlTp0SpVMoeeOCBTueKyfLlqJ0zB8U//4y648fFxuHDWWVlJXbv3i2mp6eLw4cPZ0hNhUqtxu6sLPHYsWMsNjYWsbGxkEgkGDZ0KHvQzg5D9+xB4tCh4tmiImZhYQEHBwdYW1tj/PjxiImJaSahXUImo0DRrFnNLf5qa2tx8uRJVFZWwt7eHlu2bBHc3NzEZcuW8SNGjOAGDBhwz+c2x3GIOncOE196CeqRI3Gjtha3b9+Gg4OD4OnpyXEcJ5qamuKJJ57gRo0axTk4OLQ9Zr9+dJ8vXNipFB0gJdngwYM5R0dHZmtrixEjRnBjx45lVlZWXFhYGNzc3DCxnV+HVCpFdHQ04zgOEyZMgFQqBc/zUCgU8PPzY0O1Wubk6YmAZ5+Ffn+oUCi4wsJCccyYMczAwABmZmasMjNTJ922jTsskUAikWDq1KkIDAyEp6cneJ4XTp06Jfr7+7PIyEicOHFCLCoqYnK5HNevX2eBgYEMgODn54dJkyYxrVYLs/Bw1F68KN4SBJzw8mKFhYW4efMmqqurUVhYyJKTkyGTySCTyfikpCQhPDycFRcXC6IowtbWtu3YLV1Kfh9dlAGmp6dra2pqVl24cOHzoKCg7vuv9qHHYO1bffShD33438VXX311btasWZOHtK/B68P/CGJiYhAZGSmGhIQwd71b9f1CEMhEav9+qvVMS6NN/Acf9Lh3cNeHFnDo0CHx5s2bTKfTged5TJo0CcOGDUOPlCEaDRrWrIFk3TrsPHlSyM/P5ziOg5mZWbNh0MyZM9s6/XYGUaR67MJClH7/PU6cOCHm5+ez999/v9ek4+jRo0hOTkb/igo8ceQI8iIi4Orq2nN38XugpqYG3333Hd59993O3yCKJGe2sSHJubn5/dfy19YS2T9w4B/5DrRGTU0NzqxciVElJXAIDUVv22WJoohdu3ZBrVbj2eXLKUP19ddkrDZu3L9yjjdu3MBff/2FF154oeva0NxcknmvWtWz8RVF8hKYNo1KDVrJf2NiYqBvw7dixYquW2kKAvDDD6QWWLmypdVcOzQ0NGDLli1QqVT44IMPaO6tXQs88AAuGhoKUVFRXGNjIwDoa+TFMUolJj73HAcbmzaKDpVKhVOnTuHGjRt4/vnnYWNsTNnw55+nrPeCBZTp5Th6iSLJ3a2sWnqoGxlRq8hx4zrU4LaGRqPBF198gQ8++ODe40knR+S1rIzI7GOPUS9xBwfK6I8eTe8LCaG5XFBAJRUXLpAZXkAA/dzS8r7KX0RRxN69e8Xs7Gz21ltvdZoJ1Gq1HX+u01EQ4datFqKVn0+BRwMDClotXdpl0Or8+fNISUkRq6urmd4dnuM4vN/kEdEBGg3NuVdfpcDH9On0PRUWUnAjJweb9+3TzfjhB/7clCmwLS7GjNRUGKWn01xr7dx/+TJw7hzOKJWINTGBTCYT9WubKIqM4ziRMSYyUcScPXtYipsbSx06FLa2toJMJhM5jgPHcSLHcYzneZHjOPA8D6VSyc8+cYKpX3gBnIsLLDZsgLByJaRDhkAmk4ExhsbGRhw9elSsq6vDAw88wPbv3y/U19dzI0eO1M6aNavTNGzDp5/i1rlz4qkZM0SuqTVhTk4Ot3DhQhRu2CA0FhRw16dORUhICBoaGlBfX49Rubk0ThkZNKcZw+7du5GVlYWHH3642Vz2xIkTYkJCAgsJCYFvO8d9QRBw7tw5lJWW4uFjxyAbO5bGH8DGjRt1FhYWrKSkhOM4TjQ3NxdXrlzJ9fYZsf7DD+EjCEKaTMYZGxvreJ7nNBqN2NjYyDU2NmL58uXdK90WLqTAcOuSnB7i8uXLQmRkJCeRSAR/f39uQisjx7q6OgiCgE6TPW+8QeU09yqxamyEzsEB/3nvPXHoqFFiaxd9URSxfft2oaamhqupqYG5uTlcXV2FxMREzsDAAC+88ELLZ9fX49SqVYJzdDR3+7HHcBUQbWxshPr6eq68vJyZmpoKc+bM4c6ePSs8/fTTnEQiaVZvHDlyBDqdDsOHD9elpaXxLi4uugc5jpeGhUG2ZUuX635ubi527twJAKbr1q1TdvqmPvQafTL+PvThvwyiKFZqNP9ee1FRFHH8+HGhoaEBU6ZM4QwNDXtNEv5/gpWVFdRqNfvzzz/x1ltv/bOx4jjK7F66RBkvX1/K3r31FmWIeltn3AoXL15EamoqW7VqFYyMjCAIAox7s+mWySA3NQXCwhAcHMzduHFD5+vry9va2iIpKQmnT59GRESEKJPJWPvNWGvUKJWQPfUUbvz4I6K+/RYezs7C/Jdf5u8nuzhjxgzKPG3dinAvL8Ts3g17e3vxmWee+VfYvn4Tk5+f31FODdAGZOtW+v8FC8jROCLi/j7MxISMyfbuJYLwL3g27Nq5Uxcol3ODPvqI4T7mJWMMM2fOxJGPP0bl0qWwePBB6kn+b3gVNGHIkCE4ePAgTp061XW/aXt7aiVmb0+b5nufeEubN3NzquV9/nnAyAjR0dHNb+tSwl5fT9n8pCSSzHcShBAEAUePHtWlpqbyjDEEBwc3B5nE9etR/uyziBo0iFvWJMVvaGjAzZs3maSoiPV/5BFsU6kE83Hj2Pz585lGo8HRo0dx8+ZNrFmzBuXl5bh06ZJu/vz5fHON8759RFaPH6cAU3Z2S//4p5+mrHBmJl3rpEn3XCtUKhUUKhUFCNzdKRs/YwbVO3/0EbUXe/JJyjT//DO959dfKQjy5ZdEkJVKytq/+SaNuYUFqRr8/MgUr7qaHPMvXaLfb2oqq/XwoHZ7S5ZQMMPCgso0wsKImNva0rFHjWp2/GcDBkBZU8O0Wi0+/fRTrFmzpkOQslMpMM/TmCiVgKkpfZ+5uTQ+ISFdljjoMX78eCQlJQk6nY7nOA6GhobiI4880vX6IpNRR4B16+hzt22jMUhKIlO3WbOw8Ngxvv7IEXH+3Lkspr4eJxobtYsASYcWfQEBgE6H/l98IY4dPhwPrlvX/nMZ1GqGxYuBn36CpZsbMn79FSUlJVxz4KkrPPooEcGAAJo77UwIpVIpfHx82KFDh3D8+HHd7Nmz+Rs3biAxMVEyc+bMTo8tf/dd+Lz7LvN54w2GrCzg8GHExcVh3759cNTpuDnPPoup8+ZRULe0lALZ/v4UQGwVbFm2bBk+//xz8cCBA8zPz08cM2YM69evnwCAP3PmjOjr69v84aWlpdixY4egUCggk8lY9ZUrzDoxEXj1VVRVVaGuro5/6aWXUF9fj6tXrzIfH5/Oywy6Q04O3vjxR0Rt3cqtCQ6GiYmJ/mSZRqPB5s2bBaVS2f0D7OBBKjOwsup1R5eAgABuzJgxCAsL48LDwyGVSiGVSjFq1Kiun+GCQEmDngTzpFLwb76J52bPZnB1bTM4jDHMmzePu3LlilhcXCwOGTJE9PPz4/38/GBra9syD27eBD77DJPHjOE29++P+oYGMMZYaWkpt3btWpaSkgJPT09OJpPBzc2teaya/AdgaWkp3rlzh6Wnp2PAgAHIzMxkJmfPomDgQCyoqekyIZFJXgQNfUT/30Uf2e9DH/7LwBiT3K8MU6PRQKlUora2FleuXBEVCgWLiYkBmurx9D2rZTIZ1q5d+69lTP8vwcjICDzPw9XVVTAwMPjnPbzffpuI/uLFJA9/8UXaGL/8MmV9N226r+yxTCaDnZ2dYGlpef/n+OyzwEMPwTkpCc7Ozs27s1GjRqGyslKQy+XcyZMnUV9f36FbgUqlwm+//aYrKyvjAWCAn5/waF4eZ/XJJzxaOWn39poGDx4Mt0cfRSHHIebIERQVFbGtW7di6dKlvQtmdILy8vK2rc+6w++/U0bv7Fky03r33fvL8q9fT9nIfyjnj4mJgVlsLO9eV0fk734girA+cAATrazESxUV4sznnuOqqqrQUFMDCwuLfzUImJWV1fUv5XLKItfUEGnrSckSx5F8ur6eSGpgIODnh9WrV2Pz5s2oqalBXl5eRyl/WRll4AwMqBa+SWVRXFyMc+fO6YYOHco7ODhAKpXi+vXr/HPPPYft27eLraW7ecXFUF++jPleXs21rgYGBvD18QEUClQfO4ZAKyvuzJkz4meffdbcTxwAbt261XlLQr1JoqcnEWJTU8oSLlpE5+jsTAHBpUuJSFVVUcu9y5ephWdQEM0pV1fgkUfQuG8fpp86RVn66Gjg8GHKwDs70385jhQKMhkZ7tXUtLSe0wdlliyhkgl/fypteeUVymxbWlJWESB1hR56f4uGBurQYWxMRLOqigIqeqf29HTK9JqY0PHLyoB33sETv/+Oqw0NkDY2wvjGDSLP+/bR386fT/efvmxBIqEARWMjvefuXarlXryYTO7MzVs8HgwMSDZfXk7XWlZGP8vIgMTAAK+MGMHH7NqFxtxc+C1Zwgz276fPPHmS3j9yJNUWZ2dT2ZVWSzXG0dHk76HTkUmZTgfMnQsHcuhnsLbGgPh4hIaGSkpKSlpKZVqh2N0d8ba2bFRsrIjYWGDMmJZfCgKtO05OwJgxsOY4vPHGG/jyyy9x9+5dWHYmfdarDDQa+m43b6brOHaMFEre3vRzAwN4enpi1qxZyMjI4Pbt2wdzc3Nx6dKl9ybLjz9Ovg1qNfw9PSGTyWD21luwqqtrmUPr1tF3HBZGc6Ad3nrrLXbp0iVERkYiMTGx2dneQe8z0IRTp07B0dGRLVmyhBUUFCA0OhquQ4bAv6Gh6XJFSCQSKBQK9NqUUw9BgNHLL2Pa3LkdfvXHH3+IRkZGzKsn5nMhIVT69PjjvT4Fnuchl8sFAFxoaCjMzMwEX19frstnU2YmtfTtaXmnKFIQTO+g3wpWVlaYMWMGQytfnTYtnvftoyBhcDDkjz2GJ8vLcfXqVfj7+2Pjxo1Mq9WiU5PXVli0aBGrra1F//79aV+Rn89VpKTgir099u/fj4ULF3bakrBJmSVfv36927p16zJ7drF9uBf6yH4f+vDfB4v7MVkqKSnBzz//3PpHDKD6yJEjR2LYsGGIiopCdHQ0NBoNSkpK2i7wfQBAhjWNjY3Iysrivv76a2Hy5MncyPatmnoDxojk//FHi3OxoyMZbf39NzB1KmUse/kZxsbGaGjaAN03nJ3JkKtdqzCe5/Hggw9yAMBxnHj+/HkkJiaKQUFBnLe3NwRBwMaNG+Ho6MgeffRRyOVyyOVyklKuXk3keOdOMh27j8CVZNEiOD77LBYsWICIiAjcuXMHly5dgru7OzIyMqBUKsWQkJBeO48XFBTA0NBQsLe3v/dJGRmRlDkmhgzJ1qyhDVAnG/hukZZGG6/qapoH94no6Ghh/vXrnMknn9zfAVQqIokVFXB79VUWeuoUvv32W0Gj0TTL0u+n9KIzmJubo6p9r/jWEAQisEuWEIl67z0abysrIlfW1m0CK7W1tdi/f79OqVTySqUSxs89h5rQUKyZPx9ZQUGoGTwYUqkUHe7TjAxSZpiakpqm1bUVFBQgKyuLr6io0KlUKk6n0zFRFBEeHi4YGxszMzMzbNy4URw6dKg4ePBgLmzaNDzXziQQH3wAREfDLDwcZgA8PDzYjRs3oFQqMXToUHz//fcQBAElJSW6SZMmdW2G4OFBmeI33qCM6BNPEJGMjKT7ackSWi8qK4m4AqSI8PMjAhwVBSWAk489Jnq9/joNXCvFA5raM6J1SU5rgqfTkZP+229TqUB6OgVTJk8m5cfrr1PngqZ+2x0gl7cYbrWuQ/b07PjeKVMgCAJKS0shTJ6Ms7/8AuO6OjhMmQJrd3cKZNXV0Ssvj44dHt5SfvH++5RBPniQiI8okjIBIDm/iwtdZ2wsEf+FC2nMzM2JvDs4ADY2GDF6NGKqqoRDcXGcqUQijg8JYRaPPEKBDTs7UmHxPP1bEChQsXIlZXPXryc/BYmE5vFPPxHhHj8efmfPQqioQKWbG87HxoqCs7O45OWXm2Xm+/btE6ucnNiD06cz/PgjBVX0/haff07X+803zXO1qRZaLC8vZ+aNjeBSU8GcnEjRcPMmlX3s2EHrtz4YIJWS78OdO6SISU4GRo4Ei4jAcBcXeC1ezGzj48VKmYxJHB0pOOPiQtfYmY+Gjw+9nnkGSEzE8Ph4GhsXFwoYGxiQn0Q3fh/6OvQJEyawnJwc7Nq1C87OztpHHnmkzSLu7++PAwcOsMbGRgwcOBBzBQG6L77A0ZgYpA0bBgcHBwHtOs/0CnFx3brBe3t7swsXLiA2NhZyuRyjRo3qek3Mz7+v55seEydO5BwcHPDHH3+gurqa+/TTT7F8+fKWFnetkZvbpaldp7Czo2dObyAINAdzcynQ11RyYW1tjSlTpgAAzM3NxejoaNa69KAzmJqatg1yJiXB0tcX40aOFK5cucJt2bIFTz75ZJvOJIIgIDk5uR6AIYD+69evvwNA0pfl/+foq9nvQx/+y/DVV18lLly4cESnC3432LRpE6qrq/HKK68gMzMTbm5uKC0thZubW/N7tFotPv/8c0gkEjg4OIiPPfZYX2q/E6jVavA8j6tXr4onT55kVlZWor5Gbfr06VyPov6tcesWvaZP77g5SEykjNbHH1NdbmdZwE4QERGBxMREvPbaa707l/Y4doyyBk01ke2h7y1eVlYGnuchCAIEQYBUKsXrr78OaWf16LdutSgXANpE9gZaLW3ipVIIgoDt27ejuLi4TcYUADw8PERra2tmZGSEgICAex62qqoKW7ZswXvvvdd7UhsbS4GRc+d633LopZeo1vnatd79HYC8vDzs2LEDtsXF8AGE8Vu2cL32ADh7lojcTz+RJFkqRUNDA1JTU2FlZQVbW1v88MMP0Gq1whtvvPGP2X51dTU2bdrUsplrbCSXf1dXugeCg+n1ySdEqubOJbJ05w50O3ciTaFAgb09jAE06nTIcHVFvaEhak1MIEgkYIxBFEXY3bkD3sFBnN2/P7OztqZMmx5xcVRjPnYs1aO3g1qtxubNmyGRSAS5XC5oNBpu1qxZ3JEjR8TJkyezK1euiHV1dSLHcWJdXR3v4+Ymzn/3XYaICCK9ajXJ2V1dmx3VW+PGjRs4ePBg87m++uqrUBgYEGlNTycim5REGXZPTyKRLi6UyV+9mub/5cs9VpOkpqbi77//FtesWdO7Nb2sjKTpN26Q8mHOHFIN3L7dUtJy6RKdc3Bwp9faHlqtFk315WhsbERCQoJYVFQkGhsbM61Wy27evImamhoApJBQq9UYM2YMpk+f3v2Bd+8m0n7sGCkXfv6ZspDbtnVYN8vLy3HhwgVotVqIogh7e3twHAdBECCKon4dE8vLy3Hz5k32yiuvdK7A0CMnh8wTExOB4mJao9oHl1QqICUFFzZtEsoBbkBenihwHPO9exfywEBcHTRIlxsby9dYWuKJH34gEv7FF/QSBCLuR45QUPDKFTKn8/fH9SeegEyjQXH//lBUV8P57bdhUVdH30VgYLNapaSkBJWVlRBFEaampi1Zc1Gke/DmTQpO2Nkhf+9epCcmwnfwYNgolfTsefllCmZ+9hkFfwYOJILJcRT4rKigYICREbVh/eADmqODBtHY9AJKpRLffvstAMDV1VU3adIk/siRI2JlZSUDgIkTJ8LCwgI+J05AEhGBhpUrIYSEwNDQsFef0wHvv09ze9euLt9y7NgxsaSkRCwuLuakUinWrl3b9fFmzaJg3caN931KjY2N+OyzzwAAb7zxBnWKaY/t2ymY0z7g2BXCwigA89dfPXv/rVtUGvXWW7RmdqEg2L59u2Bubs499NBDPTsuQHPb15eSG/b20Gg0+Pzzz2FsbIzXXnutWWGan5+P7du3t//ru+vWrevcza8PPUZfZr8Pffjvg1bfD7ynuHXrFqqrq+Hp6QlTU9PmDFf7zUtOTg4MDQ3FRYsWsR07drDLly8LAQEB/zyV938Mejnz6NGjWU1NjTYrK4tbsGABO3bsGBcWFqbz8vLqnWW5mxs9SA0NgQceaPu7kSOJSK5dS/Xdr71GWZR7wM/PD9HR0cjJyel5y7zOMHYsSVZrazsl5cbGxli+fDl27NghVlRUMF9fX0ydOrV7Sb27O7m8X7oEPPwwHb+nWYnoaJKiNvXL5jgOK1euBAAUFRXB1tYWO3fuRF5eHjIyMlhGRgYAwM3NDVZWVt2SeH2bp9ra2u439p1hzBi6JgcHklpv2NCpOVNoaKiYlJQEMzMz0dfXlwsICCBSe58lM6dPnxYAcEtFEbKhQ3tH9BsaaJNYWgp8912bzK5cLseIESOa//3EE0/ghx9+4A4dOoRZs2b9I0m/kZERZGo1tN9+S2P18880B65coczRAw+Q4VtUVJvglyAI2GxiAuPGRnHEwIGsLi1N6Jeezi0zMIAxz6MmPx+KlBRwkycDEyZAHDcOzMaGYe9eOtacOURsTp8mcjp/PilnOoGBgQEWLVqEkpISJpfLJWFhYcjJyYG/vz8LDQ2FVCoVX3/9da7VfGLIyKDztrcncvTdd12SX1V+PuwKC+EGwNvHB4qpUymDvmIFHcPWljL4trYthOqnn6hc5IsvKDjUizmjVqshlUp71fISCQmUNRcEUuIsXUrz2tqazlWPwEAgJYW6CISH0zrWCbRaLX777Tfxzp07DKB5oNVqIZVKRTMzMy4vLw9VVVXw9PTEk08+ibi4OGRkZAimpqZcbGwslEol5nfW272hgbKNGzZQAOKjjwDGUJGcDFVGBvjiYtj++iuujx2LqKtXhdraWqZWqxkAjBw5UpeWlsZnZmbC3t5eZARwHAfGGNM/a5OSkkRbW1vm6enZsbxNEOj7ee89ksZbWdG99NVXbTs6GBkBY8Zg0p49+knDtm3bJl5OS2P9KiqgzczklwweDEVhIfDUU/T9Dh1KXgaGhnR9jz1GP6utJcI1eTKqFi3SxSiVvNzRUayrq2NecjkUVlZ0XpGRGDVqFMzMzHD4k08w/Pp14VxwMCcIAmbOnNl8as3XZGYGplYj1NAQfmvWwKb1/fHEE1T6oNPRvBRFCnIUFBDR/P57uq+USlpT8vPp3u7M/+QeSEhIEORyOVu+fDnbunUrX1BQAIVCwaRSKaysrMSrV6+ipqaGnW9owNgRI+BvbAzunxL93FxSz9xDCj99+nS2e/duQRCErk1G9Vi9+h932Gn9zKqsrERMTAwCAgLarsHffUeBrZ7Cx6fnqoPISAqMPv88+T50s+5UVVUxmUyGX375RXz66adZj4Lmv/9OXTuaOtzIZDK89tpr+Oabb7Bv3z7Mnz8fcrkcNjY2mDdvHtRqtRgaGqo/iWldH7gPPUUf2e9DH/7LIAjCgJ4SEa1Wi/r6ehQUFAAAFnXRi1aP7Oxs2NjYCI6OjnxISAiOHDnC2dvb/zOy+H8cwcHBkuDgYIiiiEOHDqFbOW5XYIw2UllZHcm+/vdffklZ40OHgFOnSPLfjnwXFhbir7/+0tXX17N+/foxIyMjtmvXLvA8j5UrV95fWYaNDck9ExK6rAU3NjZGSEgI27ZtG2pra3teOx8YSBkUCwtyQn/++XtvQBobu1Q32DdtFp588kmUlZVB3z3gp59+En766SfO1NQUzz//fJdEVRAESCQSHD58GE888UTPrqE1hg0j4mFigut79yKhrk4HZ2fewtISOp0OpaWl4t27d9m8efNw9+5ddvHiRdy9e1ecPXs2Q34+beJv3OjwvSYmJiIlJUVYvnw5p88+3r17F1ZWVqivr8eEYcNgZmzcaYa6SzQ2ArNnkwrh88/vacJnYWGBRx55BGFhYcKmTZvY5MmT2T07MbSGTgdotWj4/HPUHT8Oo/HjYZWcTGqIbdtaOhLonaQDA4EPPyQZcBN+//131NbW4smXXmJN9ZxtJouZVktZubQ0QKcDy8gg06q4OJq7ixdTZtTBgchrVBQREcYoSzp/PmU3LSwAOzu4UD9zVlJSgoaGBgQEBMDU1BQP0D3acaK+/jpt7l1dKcsdEEDzobSUpMGFhUQEd+3C6Bs3ID74IFRKpXj2yhXmv2aNOHj+fNZlu8GKCqpDf/VVIv29rAOur6/Xk/17Qx8Q2b+fZO6zZ1PWTaWiOTppEimNWsv2n3uOAoMff0wSX2triKKI27dvIzw8XMzPz2dNKgb2yCOPwNzcHDdv3oSjoyMcHR2bx1Kj0TQbKU6bNg3Tpk3j0tLSsH//fqSmpmLWrFltyX5ODsnHn36agkVSKaDRoPHIEaQMHy4Oqqxkf+zahSU7dyInMhKDFy6E55w5LOf2bTg7O2PgwIG8s7OzePjwYfbkk092Sk6uXr2Ko0ePMlEUsWrVqo618Q89RF4F+jIsjgPeeYdKDbpBdnY2CgoKmJ27O6asXo3i4mIo9PeUKAJFRaT2qasjpUB0NJUIjBjRpoNHmCjyDp6eeOqpp9jx48dRVVXVXCZz+/ZtXLt2DaampjoDpZIfw3HcqLfewu7du4X4+HiBPqplWgiCwJRKJd9UutM2OMQYBXoAkoEDVJZRU0NzIzycumJ89hkpK5YupRKR06dp/p8/T+qae5QrabVaREZGcs888wxsbW2xevVqKBSK1q0sWdO5Iu/oUXCvvALVqVMw6aTGvlcICSHj1a46LzRh69aturKyMn7IkCEdvGo6YNo0KvMKC6N5eh8QRREKhQJKpRLbt2+HpaWlcOXKFTZmzBgWFBREaiAnJwqi9xTW1pRIqKnpWi0oirSmpaXRc1rvsdEN/P39hfDwcF4URXbkyBHxoYce6j64KIoU6NXfO00wMTHBwIEDtVlZWUto3YUAACAASURBVJKvv/4agYGBGD58OIyNjZGQkKB/m8O6desKe3C1fbgH+sh+H/rwX4T169dPMTY2NrPqwaILAFu2bIFSSeVMEonkntLkO3fuiM7OzhyA5gX1npHrPgCgiLtEIkGvJfx6LFtGWc4pU7ps+4UpU0gu+c03wH/+QxmfiROxbds2sa6uDnV1dWzYsGGcm5sby8vLE4qLiwV7e3uWnp7OhYWFiY8++uj9pY+XLSOjwG6M3+zt7TF+/HgxOjqaffnll2JwcHDPyOCUKRRM+PZbInjd9VUGaIPSrv9wZ7DWb0oBvPjii9zx48eRnJyM0NBQcd68eZ2OA8dxePbZZ/Hbb79h27ZtuhUrVvQ+cCOXI2L5csTFxuKlXbv48qFDcWnpUh1jDN7e3ry3t3czWfD09MSOHTtYZmamznHAAN5v1iyUXL+OorIy+Pr6wsbGBjk5OQgNDRU1Gg23ZcsWHQBWW1vL6XQ6SKVSNDY2cma7dokYOZL1yJxJFEm6+fXXlAX19u5xhtjV1RUODg7chQsXcObMGURERAjtstttkZVF2T2ep3rmjz5CkUKB2EGDUGVhAZOIiK6DOzdvdgh6lJSUCM7Ozlxnxk0AqEZ60KCOmTRBIKJ96RKRkNJSyrhv2ECEPDubgk2zZhFBGTKEjDIffhgNX3yBumPH8Oq5czB8+20iWnPmkFz2o4/ode0abVg3bQJOnKCg3MyZlG27dImu38eHzmvoUCAoCKx/f/jTuLO///4bB2Jjmf/587pp06bxHTLH771HrvzJyXQtmzf3uhViQ0ND5yU17VFbS+etVJIM29WVAg2RkRQgkUjI0E1fR94KuqFDcfmddzBoyhSkb9yIyMjIpq9FwgwNDeHg4IDAwEA4N61vre9RPTrzoxk8eDBMTU1RU1OD+vr6Fhnz0aP0Pc6eTQqhpnErqqjAvmXLMGHmTAwYORKv/PADamNjEWJvD0yezGHXLgz4++/m9w8dOpQdPnwYWVlZ6KydakVFBURRhIGBAXbs2IEVK1ZAo9HA0tIS9bW1ULi4UKlJayxYQOROJqPSlHY4e/as7vLly7yDgwMWLVoEU1PTth1AoqJI8XP6NI39N9+QouPVV+l3cXFE+I2MYG1trRs2bBjPcRzmtZNxp6am4uzZs4KtrS0/ZsMGcFZWkAF46qmnOHQSsNJ7+zz88MNwd3fvfGEQBJrXEyZQcNrMjL6LkyfpPvL0pCBaSAgZG27aRIT05ElaE2xtW8oSOpGk19bWguf5ZgND8y46lXAcB+cHH0ThAw+I56qrmVd6OjwHD+70vfeEKFJmvAdZeFNTU5SVlYExJg4YMODei+fVq+QPcp9kXyKRYM2aNSgoKICJiQksLCy48+fP48KFC3B1dYVjURHNsd6owziOgkm3b7eYgbbG7du07syZQ0HXHhr/jR8/nh8/fjzi4+Nx+fJlAUD3z9DkZAo2dOLf8dRTT0k0Gg3++usvxMTEiBcvXmRNwW4GoL6P6P976CP7fejDfwnWr1/vJZVKD8+fP9+oJ9KoPXv2QKlUwtzcHA8++GDzBqsr6E2RJk+ezADKEvv5+cGk1Ya7ddalD22hl6Sq1eo2Y9YrDBtGWc6PP+76Pebm9PuYGCJrUVGokkpRq1IxAPDx8WFOTk7w9PRsniQ6nQ48z9+//8KECcCff1LtfiuPh9bgeR6TJ09mAQEB2LVrF4uMjBT8/Px6phN0cKCawOpqIlp79nRKJgDQ52/aRKZkPYR+E+zv74+tW7cyX1/fLu8HS0tLPP/889i0aROfmJjY0dQNQFpaGkJDQ3VmZmZs7ty5XOtMX3R0NKKjo7FkyRIYrV4Nx4oKOG7fzkMq7XDO1tbWWL16NVJSUvicnBzdcR8fNvL995k4dqy46+pVTqfTQS6XY/jw4fDx8UFZWRlfW1sLb29vXL9+XTA0NOQ8Bg2CxQMPMPz6670H4u5dmje//UaGkL30/QBI3j9t2jQMGzYMv/zyC1dSUtKsqABAc+T77ylTo3eD37oVOHMGcHGBoyBg58cfd93pQxAoAHHwYIdylZEjR7K4uDjk5ubecz1rA8aILP/1FykaeJ7cycPDKYu3ciW9AJKj61FUhA2ffALewwOWAwdiBQDu00+JyFhYUNCpXz8iXRxH6gVrayLKc+ZQ4Oq553D24kXU19ejsLBQGFpVxZXcvAlXV1cMbwpsTZs2DV5eXvj99995tVqtnTdvHu29dDoq4Zk4kc6PMQpMzJjRazPHhoYGyGSy7jP76ek0ThoNjYteFv3RR3Rd/foRQXjxxQ5ZPlEUkZWVhXB/f6SWlmLM2rUY8uKLmBoS0mUbrZ6CMYbly5fjp59+aslC791LQYmtW0lN0Qq7d+8WZty4wXxEkSEoCJILF2BuaEglUH//Tdfw229UwnLyJGBqCmNjY0RERAju7u4d1ix/f3+o1WpwHIf4+HicOXMGGRkZcE9Ph39cHCrDw+FILuHt/5ACJJ2QfScnJ/7y5csoLi7G/v37dc7OzryTkxPcBw1qkcV7etJ3HhhIQTO1mp4PGRm4uXcv+n34oZiwYAEqrKz4rgI53t7e8Pb2pmsKC6PvLj29y7Gur68Hz/OwtLTsGBwKC6N7Z9AguqbCQiL5+sxwSgqt5WvWkILm+HGqVV+0iN6zfz+97/hxyhQHBZEK5LnnKHjW9HmmpqbQ6XSoqam5dzmVkRH6A8yjogIpGzeKnr/80vvnnFZLhopHjlAw6x5YtmwZv2nTJrG2trZnZTFvvkn/LStrUUb0EhzHtTGrCwoKwsWLFxEWFoYnDQ177OXTBlIpZe3bk/38fAp8fvghBa16EUQQRRHFxcWIjo4W+/Xrd+8/vH6d6vW72NPKZDIsXrwYAFheXh5KS0sRGhpaodVqu3AD7cP9gP/www//t8+hD334/x7r16/3kEgkMTNmzDD19va+Zyuc+vp6HDt2DADw1ltvwcrK6p7txA4dOiRqtVpxypQpjDGGiooKMS0tDRcvXmSRkZGIiIhAVFQUamtrde7u7lxfW762kEgkuHz5MgB07pbbE3h50YbO1fXem44BA8hhWatFwH/+w4Y98QTyGxuFmJgY5uLi0maD/Y8d1DmOnL5zcymz2Q2kUinKy8uF/Px8zsfHp+eGSYwRuaiupux9UVHnG6MHH6SsZm9N6AAoFApUVlaK58+fZwBga2vb6X3RVBeK48ePY+zYsc3yUUEQcO7cOYSFhWH8+PGcVqsVTp8+zSUnJ+saGhq46OhoJCUlYenSpTQHpFLahFVU0KZm1KgO3gcSiQT9+/fHkCFDOD8/Pzbg9GnmOWEC83joIXh7e2POnDlwd3dnZmZmsLe3h5OTE4yMjODs7MwGDBgAw507Kavp69v9xWdn06Zaq6XWdF1lx3sIExMT3L17V3f1zBk2YswYxubNo/IST0/KdE+aRBLQhx8m066mzysrK0N8fDz8/Pzg4eHR8cBaLRmcLVrUYQPo6urKlEolLly4gOLiYl1VVRVnZGTUuWGVHoJABoShoUTwjh8nI7cHHyQC7eFBWdkrVzqQMhFA8tWrYq1Wy5SGhoiJiYHGyQmuY8fS9xoQQKTbx6fFXDMkhFQ3W7YAZmYoq6zE4cOHUVxcDI1GwzIzM6FQKITExESWnZ2t9fX15QDAzMwMubm5EARB9PHxoQtftYrO9aOPiGgD1D2gupok871AU1tVYciQIZ0vBkeOEBkbPZrmif7+Sk4m4rlkCX2Px4+TAd6CBW3+vLi4GDt37gTH81jz2Wewv3UL3nfuwKC1KeI/gKGhIaqrq3WXfv+dG/zuu5C/8AJlSltlw7VaLX7++Wcdx3HctJAQJqmtpTVywQJSS50+TfeJmRkR1poaGseXXkJe//6CijGuMzWSTCaDu7s73Nzcmgk/AAzMy0ONmRmkEydCp9MhJiZGHDhwIGuWm/v60hpWWoqtp08L58+fh6GhIezs7JilpSWCgoIwfPhwpKWl4fr166y4uFjnt3s3h08/pVZ1M2a0EK1vv6UgzIgROHT+vC4iJ4ezmDuX8a6uWPzdd8yhpgasVQ1+F4NIZVnddHa5desWcnJy4O7ujpKSEuQnJ0NctQrnTU1h8MknuHPlCo5IpUJMcLDucmKicCkhQQyPiOC4778XHLVahrffJjUDz1MrzJdfBoqLoWoyZOQ4jtaIRYvoe1AoaD387DO6ZyZPBispQa5SKVy6dElwdHTk7kn4d+yAorER5bW1bF9BgXjt2jUmCIK+Tdu9UVdHa/SSJT0mtvHx8YKHhwff46Djr79SSYy+ReU/BGMMDg4OuHTpEkbGxEDr5wdZb2T8QAvZDwykf9fXk4Lk66+p5MLX957jcfjwYV1lZSUbMGAA02q12L59uxAVFcWcnZ2xaNGi7veJtbUUGPrww867PLSDoaEhduzYAVEU9wE4HRQU1Njja+1Dt+gj+33ow/8y1q9fP4HjuIs6nc40IyODJSQkgOd5ODg4ID8/HwYGBpBIJNBoNACAM2fO4ECTy/n48eN7RDwPHDgg5ubmsmXLljF9vbWXlxcLCAhggwYNwqhRozB27Fj4+voiPDyc8TyPgQMH9rH9drCyssLp06eRnJwsqlQq1muvA2Njqs0XRcpw3wuGhlSn5+kJw82bMWrECHa5tFQ0NjNjvcp89gRyObmDBwTccwOgUChYTk4OIiIikJKSohszZkzPow0TJtA4+PlRy6bWm++4OCJlvZQwt4aHhwfLzMwUk5OT2ZAhQzpVYaSmpuLMmTM6jUbDpaSk6C5fvoyoqCgxMjISlZWVWLRoEfPx8YGXlxfn5+cHiUTC4uPjwfO8OH/+fObUvgWZlxdt3PfsoU3u88/ThrgzLFwIuLvDJCMDFvcyYlSrqYZ36dKu6ykbGynTHhtLm+/76PncBjodEeeiIrhcu8Z5fPUVCzcwgNuECYh3d4ft9Ong5swhBUq7eZKQkIA///wTALlpdyhH0kvU167tMpgzaNAgNDQ0QKVScWlpaUJkZCSbNGlS50oBnY6I8unTlEk0NKTsY14ekX0TEzpHFxci7EoldUZoymYxxjB69Gjm6OiI2bNnw8jICFeuXNGNGzeu6/msUFBGt6oKsLODsbExTE1NcevWLbz77rvw8/NrPmZkZCQXHR0txsXFCVVVVVxaWhqmT5/OWWi1ZGy2YgXNldYb4V9/peP3cmOfkpICuVwutlb8AKD58ckn9N+5c9t6hjQ0EDkZMqQlmCSRUBa03fqiUCiQlZUFtVqNCRMnkmeBmRm5ss+c+Y9akAFEbuwqKriao0dx18QEji++CNYqyFNaWopvv/0WgiBwL730EpO7uZFyY+xY+t7Ly6kcqb6exs/YmAIB9fXA7t2oNDYWrTiOOQ8d2i3xcHR0BLRajPvySySOHo3swYORkZGBpKQkFBQUMJVKpfPw8OCKioqQmZWFO3v2oH7zZlwaMICZmZkxmUwmurm5NU9WuVyOsrIyweHAAW6KhQVn/P77EJ95BmqtFrW1taiqqkJZWRmq5HIUS6XYEx6OvLw8ztzcHI0WFtpStRoZjo7IKS9H7tatrN+ff8Jw4sTOM70SCX0n3ZQBOjg44MaNG6LhRx+x2suXxesGBuKQU6dYpr+/rmLaNFHzwANc//79maurKzd48GBu6NChnHVUFITiYjht2MCgl9w/8wwpe6RSaG1ssD83F6G3bsHJyaklEC2R0Nxyd8edESOQXlMjZNy9Kzi/8go3DGCy/v0RvX8/M/P2hkV35YS+vpCEhMBx6lT0HzqUxcTEIDMzEykpKYJEImGMMSi6kqHfvUuBla++6rY1YHtERkaKFhYWnJ2dHeQ9IKoYMaLLsoX7haWlJeSAoPjiC/a9nR3khoY9D3AAtN4lJJCJ5K1bFMQrLCS1TCfn2dDQgIMHD+qqq6shlUpZXl4ezp8/z+Xl5bH8/HycPXsWjY2N4muvvcZ8fHzumZTCL79QSce9umw0QRRF3Lx5U11bW+sH4J2goKD1Pb/YPnSHPhl/H/rwv4D169dbABgrkUhC5HL58vnz5xuGhYWhrKwMGo1GPHPmDDtz5gwAko+rVKo2f29tbQ1/f3+MHj36np+1Z88e4c6dO2zlypVoXwvLcVyHh8fcuXPZ/v37YW1tDXt7e9TW1kKtVqOoqAiDBg1Cv379Whvp/H8FLy8vrFmzBomJiSwyMhJFRUWorq7WeXp68pNbuzJ3h8cfJzLSBEEQUFZW1ly/2CnGjwfGjEHF8uV4KCGBJVhZkUTy34SXF9Xwpac399ftCra2thg1apQuMzOTy8zM5A8cOIAFCxagrKwM1tbW91YayGREyiQSqlFdsoQ26PHxRNxambb1FhzHYcGCBWzjxo3Izc0V7ezsOuxIQkNDdV5eXrypqSkMDAx4QRBgZ2cHAwMDWFpatjl/Q0NDjB07ljUZNXW/u1m5kohPZia1MPrjj5be163x1VcUGKBsbNdITaVNdVd1qtnZtJlLSqIgUndzqDuIIsmff/iBena/+SbwwgsweO45xI0ciYRLl5BRWAilUolTn34KBwcHODo6Ij09XVdfX89LJBLR3t6eVVZWAgB8fHzg2VmP9Zwckv2+/HKXp8JxHIKDgwEAGo2G+/zzzxEfHy/6+fm1HXu9gsHEpKXWHKC5RLLQFuiDR7GxREoZo+DAkiXgZTIMaqrjtba2Rn19PZ+amgrv7u6B1FQyWty0qemyckSe5xljrNm8cuDAgQgODoapqSmrqqpi8fHxYnBwsODq6srjlVdISrt6dVuFT309Bbw2bOj6s7uARqOBQqFoO0bl5STXd3YmItxe7ZGdTRLf1tn5DRvIDK8dGhoa4ODgIBYUFDC1Wk0mmH5+9B389hsRnX+CDz+EycGDuD53LhrkcoxpbIRBq+fM77//DgBYs2ZNS6lZeDiEwEBwwcFU/uPrS+qTwkKa0w88QLLzQ4eQ9fvvbPo331B9/MGDFGzqgqwEubig0c4OI0NCMHbCBKjValy/fh1hYWHN7ezOnj2rKykpYQauruIwxngnY2OY2NggLi6OS0hIaC5H4DQa6ASBn6BS4cqVK0javBlarRY8z+tfAs/zoolKJT7066+SxpdfFi0sLJi9vT2MjIwk9vb2MBk2DAqFAqf+/FMcXlLCoNFQGcmbb7ZteRcZScHEpraGHZCTAwQHo2bFCtQqFJD06ydaODmJFrdu4WGJpPOHeng4+pWW4oCnpzjBxqZlwJq8gjKzs3H8tdfEp954g/39998IDw/XPf7447xarcbFixeFfv36cSYmJjhw4ACcXVxYTk4OV7lunXg3KwuLGxs519BQJHp4wDU/n4KanSlaDh0CsrPBJyfDLSkJH3zwAXJycnDjxg124sQJAFTOMGPGjI7B3UuXaI3s5Z4lICCAv3z5shAfH88FBAToJk+e3P0BOI7UA5MnU3vGf6q2a8JYCwuuceVKTJ05UwgNDeVKS0sxt6dGhU5OFNhKSaG15tFH6TnRCTQaDb744gsA4IuKinRRUVGiKIqYMWMGUygUiI+Px5AhQxAYGMjdS0XadEAKGu/c2eNrlUgkWLp0qcGmpnW1D/8e+sh+H/rwP4T169cbyWSy9YyxxTzP29nZ2alcXV1NxowZwxsbG7feHLPU1FScPHlS9PLyYomJiQAoiz969GgIgtCBtHeFw4cPi4X/j733DovqWr/H195nZuhFmggqihQRsCGioIgKRsUSWyxRY4yxJDHR9G40uck3lqhJNMZEYzSJLWrUoLGBoqiADREQKYqKCCK9DDNzzvn98TJ0FCz3fn73sp7HBxlmzpyyzz57ve9613vnDps9ezZrqsN/586d4ebmhq1bt0KWZSgUCigUCkmWZXb48GEGALa2trK7uztTq9VSu3btuKOj4/+M0Z+FhQUGDhwInU4nZmVlwdPTU4iMjERAQEDT2pUNGkQLtS5dUOjujg0bNojFxcWChYWFKIoiNBoNlySJqVQqqXv37rxt27bo1KkToqKicNrbG727dEHPtWtRxhiMZ81qkjyuyRg6lMjesmUPfaufn5/g5+eHY8eOSadOneKVMmKYmZlh+vTp9bO6dWFpSQvy8nJakHXrRnXgdVx7HwXm5uYYN24c9u3bx5ydnWFnZ1f1t6SkJFRUVAjBwcFNMzRrLhwciFQ5OlLm9MyZ+kqFjz4iN29RbHwRKkmNEi8AZBS3eTMt4H75pXnmTVotSfHbtKFa2iFDiLgFBJDaokZde8DAgTCztkZ2drbUunVrvm/fPmRmZiIzMxOBgYFCZGQkALCUlJSq7HujWba2baleuYnQ6XRgjOHSpUuoJb+WZZLAK5U0Vmved9nZ1BKxvLz+gtvPj7wpNBrggw8oqOXsTGORczg5OaFHjx4IDw8Xu3Tp0vjiftQoIjuyjMKiIiQmJjJZlrFp0yZotVqptLRUdnV15aGhofqLwgMCAoDERAHPPkvXy8Ki/v5dukRkoSmL6TrQarUwMDCo3uCpU5R1f/NNYPBgqDUa1Jqdrl2j7gSVkvUqHD3aoBT5559/lnNzc5m1tbWkUqnoewwMKHu3ezedzy+/bH6LyYQEqlOfPBnC/PnoePSomJycLGg0mqr59OTJkygpKcHs2bOrsqzbt2+XCzt3ZnmHDmGMoyM9P3fsoCy/JJFpmkZDWd2UFBj378+yxo2D/fTppC759VdSEdUtQ1q/HjA2hvLECfSrfMnU1BSlpaXQ6XTYv3+/EB4eLpeXlwv9+/fHgAEDgH37MOCHHyD9/TfygoJQo7UfzHr0gHbyZNzeuJHKwG7dwkcffVSzvIjOpSwDv/6KtyZPZmgke7vHyAixoaHySEdHhqAgOndJSXQdpk2j+7gm0S8tJYXD0KFUbrBxIzBrFlq3bi3HDRgAQ0NDXpiQgBEjRjRcBpiYCFy+DONp05AZFcVPnTqFfv0qz8r48bgYHy8diIjggc88wyy+/BIBe/Ygce1alp+fj7CwMCkrK4sZGRmJFRUVcHJykqdNm6b47rvvpMSrVzkAfKNWw2DuXHlicDDDjh3k+xEdTWPz3XephINzKj1Rq+meEUUwQYCzszOcnZ1ZaGgo4uLi5NOnT2PFihXMwsJCnDlzpmCuL6/y9qYgSDOg0+lgamoKlUqFkpKSesmWRuHsTHOoTte4squ5uHsXSg8P9OnTh1tYWMg7duxgfn5+D04O6GFuTmP95Em6Tx+gFuKcIzAwEHFxcXKnTp2EkSNH1vp7s42Jjx2jUq+Ggt0PgLGxMTjnOkmSmlmz0IIHoYXst6AF/wYsXry4jVKpPOPs7GzXv39/I3t7e3DOG3U1qjTdYQAwYsSIR/rOI0eOICUlhb388svN7ik+qb45WtUiUq1WIywsDDdv3gTnnF+5ckVSq9W8a9eu6NGjB9q3b9+4Odd/EUJCQgQAyM3NxfHjx7Fy5UoIgiB5eXmx4cOHP/gEDB0K9bp1WOvqKnt7e7OAgABkZmYKxsbGMDAwqJIxnzlzRoyPj+fFxcXMwsJCHjNmjNylSxce1r69WPrtt4JjeTlaDx780Dr7JmP6dCJ/D2rXUweDBw/mvXr1wv3795GQkICMjAx5y5Yt0sKFCx+eSmGM2owBlNG5dIkkx2+/TfLLShL2KPDy8sLx48fFtLQ0oSbZP3r0qOjv78+USuWTSb00BCMjIjD5+dSb/LPPasvrOadzbG9PrvQN9anOzKT31VVwFBVRsCAoiAIGD+tuoEdhIfU79vOjIMLly5SBWryYOiY0sjgVBAE9aHxxAOjYsSOMjIwgCAIUCgUGDhyIiooKcM6xadMmZGdnQ6PR4NatW7Xdx7dto4x+Tk6Tdvf27dvYsmWL7OLiIvfr16/6Wmm1RASCgyloVjfYZWsL/P03joWHIy8/H5Ik4c6dO6KRkREvKiqS3377bc5VKjq/ANC/PwpNTPDH6NHSqFGj+PXr12V7e/t6Y6OoqAixsbHo27cvjFu3BlJTodm+HXs1GkiShP79+6OgoEBs1aoVV6lU/Pjx44iLi4MgCPKAAQNYn169iMy4uzfup5CfT8TmEaDVaiWlUskhy+QpkJQELFmC4s6dsX/bNjElJUVo166d3L59exbYvz8Uhw6BvfYaWM1MaGkpGbI1oMoQRRG2traYPXt27e4MRkZk9rVxI6kS/PyavtMlJVTS0bs3HTdjCA0NFa5evYo9e/Zg2rRpSExMRHh4OIYNG4Y2bdpgz549cnJyMrRaLRvbqRNMf/lFzhk/nkGnI2VLVhapPfR164cOkcLho49kp7w8hl9/BU6fJiKSnExj6aefKAsqyzRO582rt6sFBQUyACbLMnr16sUcHByqW9YOGwb89ht4QQEFOWWZtrtwIXDwIAQ3N7hwjtzcXNy4cQPr16+XxowZw2sZXzJG4yMvD42R/cGDB7MDBw4gODgYRm+9RS/u2kVlPP36USDr8mUKgKnVZIJaWFjdRlGphOadd3Br6VLep08fpKamSiNGjOANBqnv3qXAR58+UAYHY5qzM7Zs2YKUlBTR0NAQA8PD+VFZ5hNnzICLiwtga4uDBQXoZWvLf/jhB9jZ2WHevHnM1NS01nNg/vz5vKioCL///ruck5PDXn3tNWZmZlY9j12/TooorZbmxeefJ6XX1atUjhMXV8uTgHOOHj16sO7du6OoqAgHDhxgP/zwgzxw4EDWe+VKGtOV/kZNxaFDh3Du3DkolUo+f/58tGrVqmmyAIWCTCU3bCCly5PI7l++XHU/enh4MHNzczk2NpY1aV147BgFvlJT6Z6Ij2/YmR+omsvt7e1ZWFiYNHLkyMfb+ZSU5s0FlVAqlbCystLk5uaGAPjpsfahBVVoIfstaMFTxuLFi61VKtVpf39/xwEDBvxb7rnTp08jNjYWL7744hPPuBsaGmLcuHE1ySyPj49HRESEHBcXx1xdXWU3Nzd27tw5OSAggHk38nD5b0FFRQUYaUp4JAAAIABJREFUY9BoNLCwsOCxsbG4fPmy7OTkxCZMmIA9e/ZgwIABsLGxqZaHv/girmdmwlqSMGLECA6gQbWGl5eXAFCAxcDAgOmL5EJnzBD2W1uL6du2CYHHj8Nu6lSqQ37cTLWBAS1cw8NrS3sfAgsLC1hYWMDZ2RmlpaVs+fLlQn5+fpMVKADIUCspiSSXAC3sVq2i8oJJk8g8cOVK2sdXXqFFbkjIA4MSRkZGws2bN9G3Rma9sLBQcGmk48ATR6tWlH0DiJxOmQLMnEm/m5tTFrUhog+Qq/YXX9TOlKalkZFX27aUrauUjDcIUaR//+//VUvDDx6kRfXmzdUk+WGmX3XQUJssfYCqdevWuHPnDs6fP4/z58/jvffeQ1hYGPr27QuH8eMbL0doAHFxcbC1tZWnTJlSe9E5cyaZ7tVw964JCcCJAwfkBICJ7dujqKgInp6egqmpKaKjo+v3WT92DDF79kjme/dyg48/xr3585lf5SJVo9HgwIEDiIuLq3r7pUuXJD8/P+7n5YXUlSvl68OHMy8vL3HQoEECarSh8vPz09djs3MrV8J73DiYXL364BZXhw+T4eEjQBRFWSkIRDJsbID33kOJqSnW//ij3KpVKzZv3jxs375dio6OFsrXr4fF3bs4ExqKEQkJsLGxQUFBAcS9e2WPiAjGDh6st30bGxtZq9WyBjPAlpZEVN9/n5QCr7764J2VJHLOP3+eDAlrqFtMTU3h6uoqpaSk8M8//xwqlQpKpRIRERFyeHg4tFot69evH3x8fGCanY3sH39EeXk5Su7dg+Lll6HW6VBvhNrY4JabG/JGj4aVszNlj8PCaJ5LT6d7ijFqR7Z3LwUwNJpaAbCKioqa56J2Cz+lkozPFiygemjGgMhImrd8fABA7zIOALh37x5PT0+v3eUCAE6cIJXTxo0NnjZPT08cOHCgdhndsGE0h/zwAykbbt0iV/gZM6gsS6EggldJ6K9duwalUomAgAAEBwc3TOhKSylw4OVV1WFEX+5XXFwsmJqaytk2Nhg9fjz0c2mKIKDAxgaWo0YhYP16DHjmmUbJorm5OebNm8c2bNggbt++nc2cObM6gNSxI+03QOfw1i0K/h44QMd061aDBoSMMVhYWOC5557jcXFx2L93Lzp88gnsHqG0qaKiQgbADAwMcPbsWXHo0KH122U2BlGk0pmAgIeWwzUJP/5IZnqV8PPzQ0RExMOTQPHx9My5f5+CDmVlFFR7800KZj1AhajVah8vW3PzJl27R1Tp5efnGwH4ccmSJWtkWVYuWrTovz979JTRQvZb0IKniMWLFzMDA4N/evbs6RAYGPhvud/Onj2L48ePY8qUKfUXE08J3t7e8Pb2ZomJiTh27Jh8+vRpiXMu/PXXX8jOzkZgYGC9ln76msb/P6gAysrKsHHjRrmwsJC5ubmJQUFBgr6HtKOjI959910kJyfj8OHDMDExwfjx49lff/0l/+tf/2IAGcLZ29vDw8MD/fr1Q4lOBzk+Hj2trZvU2qehzMvIkSOFVA8P/LF+PV66fx9mL7xAi+3GWto1Fb17U8b3EZGRkQGVSiW3atWqaRd21y5aiPzyC2Vz9AS2sJBIwf37lH0GKFulb801dy5lLiIjiRTfvUt1yT17UkZt/nwMW7AAWzduxF1XV9hXLhCNjIxw5swZady4cU8vs18TeiOk6dOJPFy8SBlIBwcyQ5w5k1QNNXs0nztHJQA1F4srVtBifscOytI1hPR0Og8VFXR+vvqKpJseHpQdCgt7aoepNzEzNDSU1Wo1A4Bvv/1WKi8v5+b//CM6GBsLWL266v26SoMyc3NzcM6RlZWFP//8U3J0dOR3796V7t27x21tbTkAXLx4EVFHjoizTp0SDF9/nVQNDZDOnJwcrF+/HnN27GA933wTfNYsnDlzRu7Tpw8zMjJCbGxs/faiKhV6BgfzowUFYlR5uWBtbY0eX3+NzFdfxcbISEiSBICMA8eOHYtLly6xS5cuSadycrhz+/ZModUiNDS0XuZPoVDAxsYGNhUVaD1gACKKilB28KD03HPPNTzuysuplrwJJTQNweD+fdlz3jzK4j7zDKBSYfuGDZKlpaW+5zrmz58vSBUV0HbpArZ9Owru3JH//vtvaLVaJooi2t28yVJVKoRSK89a2y8pKeHZ2dmN74BSSXXB48cDY8dSiUhDuH6dsrSdOhHhb6CMZcqUKTw3Nxdr1qyBRqOBIAiYNWsW06tJzMzMKHBqbo7ESZPkS/v2saSKCpiUlSFt9Wr4+vqiXbt2EEWxanyJoshkWSbi07dvdWlNUBARdL3C6MIFUhh99hkpLXx8AF9fuM2axca9+CK+ff11qDZvphKA8HC6rwcPpgz0nj3kxXHiBAXyCgqqjokxBkEQIIoiFAoF7t69K6Juj/Jhw0jt0AiMjYxgWlSEuG+/hW9xMd3rHTpQQNHVlQj6hAlUkqNWkwz/9m0inpXzjPvJkzhtYiJ+/+mnQmtPT3H6jBm190EUad4AgIULce/ePfz222+ykZGRrFAoeFBQELp27crw2WdULlOJ3NxccCsrycrTkzs10PGgIbzwwgvCihUr5M8//xyBgYHywIED6ZkhyzT3T55Mz7PVq+nnxIkPNB8ESInUs2dPOE6aJCdnZjK7n39u0r7UhJGRkWxiYiL36NGDR0dHc3Nz8+ryhYdBqaTrUjlvPBYyMoiwOzhUveTo6MgYYw9eN8gytfPcvJnUTwA9V9PTaVxMn077SCVYtXD06FG5e/fuj7co27GDnmmPUI4EAB9//DGTJAlJSUnKP//8E1988cVSURQ/XLRoke6x9ut/GC1kvwUteLoYbWJi4hEcHKz6d5Da6OhohIeHY/Lkyc3rU/2EUKvnL4CjR4/i3Llz8uXLlzF37lxmbGyMlJQUXL16Vbp27RrT6XTM398fWq0WWq1WunPnjixJEps2bRqvGxz4T4JzjqKiIqZQKGS1Ws3Wr1+PDh06iL6+voKTkxMMDQ3RrVs3ODk5YfXq1bCzs8Mbb7zB8vPzYWhoiPPnz0tJSUnyqVOnhIiICAiCgLZubrK/mdmD67YfAhcXF7gPHChuTkvDqxMnCti9mxaar7766BLCXr2IPI8bRzLzZqKsrAyCIDStPzFAi2uNhmpO615zzkmWrZfAf/BB9d/u3aOf7u6APssRFESZIY0GOHoUDsuWYcCFC5L5b79x3LyJQicndO3RAz5jxnAMGEAZk+hoWmAHBz/WtXgopk+nn6+9RousuDjKAHp51XM+x5UrlIlXKKgG/auvKDu3ezd5AdRESgqwdi0RrWefpUXxmjWUCas0nnua0Ol0OHnyJCIjI/HMM8+gT58+TJIkpKenQ6vV8nv37iHn++8F0dq6FrPZunUr0tPTYWBgILu4uCA1NRXW1tb82rVrcHNzw/Dhw2Fvb49jx44hJioKQw8cEE6Ym+NiTIxslJAgv/HGG1UDXJIknDt3DmfOnIEoijBNTa1qCTlkyJCqcejg4CCtWLGCmZqaStOmTRP0KgVra2tMnDNHSAsORtIff+BeWhr+OnJEDjY1RY5CwS6VliItLQ1ZWVnw9/dn/v7+rKioCJrnnoPy9m3cu3evdsmCHrt3AwsXwurCBfQLDcUvv/zCfv75Z3HmzJlCPYXB6dOUwXwUdc6FCxixdq0ie9kymNaotc3KyuKv1zFD5MuXw2DPHqBrV4wCmN7sS61W48KMGYhzcMCWLVswY8aMWp/z9fXFvn37UFJS0mCHCwBE/qKj6V565ZV67ftQWkp15bNnP7RFmY2NDebNm4ctW7bAzc1NsrOza3BCG3zzJh/s60v3AWPY37OnmJiYyFNTU+WioiIuCAIYY7JCoZBsbGxoCObmUh3zhQtEhj08SC6dmEg1/i+8QOUAAGX6DQ2RfOiQfH3kSAYrK7Tu3786EOflRUobSaJsaUUFBTSSkiiLWlQEhITA1scH77zzDpRvvonI0FAkXrjA4OlZW+3i4EDHoZdbazS0rzt3ElFr2xYjIiJksw4dGF5+mea6Tp2qx0x2NgV63nmH6t7nzqXXU1MpmJSUhLLbt2HUtSsmfvMNJHt7Ad26Ufb45ZcpCLlrFwUo334bWp0OW7Zskdu3bw97e3vOOUdXfTDZ3Lw68Ap6RhqZmMhmBw6QgsjUtLZ5YANQKBRYuHAhu3TpEo4cOcLOnDmDERYWYteVKwXs30/PIX9/2tagQWQEuXs3Hc+DIMsQhg9nZ5VKFOzfj7r15w/DsGHD+LBhwypPXap47NgxhbOzMxxqkO6HokMHUijUDOI2F9ev0/iqsXa0srKCJEmNP1tLSmgsZmbWd9xXKunfzz/TGIuKogTBH3/UUpg9lgFzYSFt7+zZR98GoA/+AgBEUXwHwGoAmY+10f9htJD9FrTgKcLQ0PDtoKAgk8fug94ExMbG4tixY5g0aVJ1LeF/GMHBwQgODmbLli2Tli1bxpydncUbN24IHTp0YEOGDGE5OTm4evWqpFAoOADWunVrnpiYKCUlJaHbw/qK/xshCAJ8fX3lmJgYNm3aNFZSUoKwsDC+f/9+saysTGjVqpWkVCplnU7HAPDbt2/Dzc2tqoSif//+vH///tDpdJBlWW8MxzByJMM//1DN6yOiX79+wvnz5xHZtSsCX3mFJKkjR1J0/UEy78agVBJh3L+/cXO4B8DFxQUHDx7kVY7djSE0lBZEa9Y0fx9rwsCgmizPmlX9+tWrAICCt9/mG5KS5J5RUez6kCEY/tprsDI1pQwRY5RNvXGDCIqFBdWpOjtTJiwxkRbCJiakGjhxguoQm2LE2Bi+/54WZOvXU+/zXbuoTveHH0hemZZGBGP8eFq8BwdT8GbGDApEZGdTT/bRo4kcTJpEBEMQqgMIAB3LU4Ysy9i+fTtSU1OhVCpR2bEAnHO4uLigsLAQ57ZsQZaTE+Qvvqj12YKCAjE0NFSws7NjR44ckVxdXeWxY8fq5bIcIEXM5YgILIiJgeGSJYg2M5MqDh/mFQUFTJKkqrKYjRs3IjMzE/369UO3bt1g9PPPlO1ct67Wd77wwgs8Ly8PJ0+eZL/99pv42muvVa1qNRoN4uLiUCFJWDdqFIKCguQ+a9dyZmCAZ9atQ/rly1Wu/QBJkTF/PsYYGDRcinHwIN1He/YA1tawBDBnzhy2ZcsW9v3334tz584VagU0r11rvKSjMajVdP/8/Td2zJ8vBvv4VB3PvXv3wDmvTczDw4ngLlhQb1OGhobwv3ULqsBAhGVk4OTJk2JAQEBVUEIfzDh//jyZ0jUGxqjc5oMPqststFoiPiYmRDBqeGg8CHZ2djA0NMSFCxd4SEhIw/PJvHk0Z02aBOh0GGlvrzcXY/fv38fmzZvloqIiFuDnJ5jcuUO19ImJFHQbMYKy4JwTsf7pJ7r3Fi6kbQcEAG5uiI+Px40bNxj38YFGo0GqsTF66gOQ775bvS/DhlFZzJUrZH5YaZYnvfceOLVRQ8XNm7gYG4uAy5d58S+/wOT2bfAuXeg4xo4l482YGMrQ68s+zMzIFLJ7d5wwN4d7585waOga6HRkHJmURPNVYiJ91tiY/vXrh7CbN+X0lBThzxUrMHnkSAoCODhQoHPKFAqCzJgB9OyJYkFA5x495OFubhwWFlTeoNNREPLVV2uZG3LOIevler/8QkGIh5B9AFCpVOjduze6ffcdchMTcWbaNHRdtYqCIDVN4ZRKmi8dHeuVWNSCJAGvvw6bzz7DqPv3sWvXLgwePBjGj9gSb/bs2Yply5ZJpaWlzVvE/fln0/1UGkN2dq2sPkAlU6IoIiYmBr17967/mZdfJqLfQNa+CubmNLbVaupYYW6O0hdewFF7e6nMyoqXl5c/+j7/+eeDW882Eb///jsAgDE2SJblq4sWLcp6rA3+j6OF7LegBU8XdkZ13X6fApKTk3HkyBFMnDgRzs7OT/37mot58+bxw4cPQxRFITg4GH379q2KTA8ePFj/EKVVPuds3759iIyMlOzt7eX+/fsL9s3IMGu1Wty6dQu5ubmQZRmCIMjXrl0THRwceGlpqZyZmalvIdOk8HVRURHWrFkDpVIpv/jiiwygutKJEycyAIJarUZ8fDzX6XQwMDDAtWvXsGvXLsyfP79eBqxevevzzxPZewyyb2ZmhilTpmD79u1yYGAgw1dfEdHp3ZsW2M891/xs9dtv02Jz5sxmf9bS0hLGxsby6dOnmb6FWi1cvkwy9HfeoczUU8agQYNw/vx5HD9+HBPeeQdWbm70h1276GfNNme5ubTwz8mpzsjcvFkdNBkxgsjK6dNUC3/jBi2ufH3p56JFZJqnXxA3FhQwNaWs5+3b9N7vvweOHKFFUm4u1eOvXk2vnThBi/+YGPreVatIkaBvU+XqSgGB/wDOnTsn37hxg40dOxZ1vTnOnj0rHzp0iE3ZuRPtPT1rjX2NRoPCwkLB3d0dZmZmeOmll2otpE+fPo2zZ8+K0r17wuS8PNlo6FCGkBD0YYyfiopCaWkpsrOzq8qUiouLpUGDBvH+enLRsSORlzpQKBSws7NDSEgI/+6776DT6ar2a8eOHXJOTg578cUX4ejoCEEQSP0BwPDPP9Fl1iySdddUaIWE0H126hRdUz22biVn+qNHqSVcJYyNjTFz5ky+fft26dtvv5Vmz57Nq8xTKyooi9dUZGXRGFEqgYMHUbF2ba3uEmlpabK5ubnEOacbuLycSmI++aThIKAoAt98g149e8I4JQU7d+4UwsPDMX36dHTs2BFmZmZgjDWsYKiLrl1p0e/jAyxZQlnwmzcpCFCH6J88eRKWlpb1xo8eEtVR8EbVE/rAXGkpkfUasLa2xsKhQ1n02rWS/PHHPI1zeLz+Opmo1b03lUpy6P/0U6qZ37iRyodmzYJgZwedToeuXbuiXbt2DQeiKypo3I0ZQyT1q6+Al16CFByMr6KjwRhD165dZdNFi1jRiRO4+fLLOJiQgLn37qH1+vU0J967R3NCRgYFcebOrefxUFpWJllaWjY8Ketd4PWqpZwcGpc1xuykSZPYuXPnEB4ejkNRUeKYMWMEfPopkeSAADqPS5Ygf9Ei3IuORlB5OceCBaSaOnyYtj9nDs2bpaV07hUKcM6rM847dtCXJSXVJux1ceMGeUy8/z4Mnn0WR62sZGZlxdBQPXrfvnQ/xcfTWGrMdyUzk+bNFSvgbmMDc3Nz+ZtvvmHu7u7yhAkTmi2v1Gg0KC8v581WZvbuTeOnY8dqVVdz8ccftdVsQFVZUUGNEpEqlJbSGH5AKUgtGBrS/SmKuJebKxuVlfEeZmYY1Jhy52EQRfJUqNv6tJlISUmBPuDw6aefRjzWxloAABA+++yz//Q+tKAF/7WIiIjISUpKCjU2NuYODg5PJb2flZWFP/74A8OHD5f1Dv7/16BSqeDh4QFPT8+HLhZdXFyYr68vDA0NWVZWFo+KioKjoyPMzc1x4sQJKS0tjRUUFCAlJUXevn07O3funJyRkSHduXOHpaamyunp6ezAgQMoKCgQb9++LaempsLBwUFIS0uTKioqmKmpqZCUlMT8/f2bdK5+//13ycjISJ4/fz5vqKWYQqGAo6Mj2rVrhzZt2sDLywuXLl0SATAnJ6cHf4eHB0Xvzc2b3aKmJlQqFU6ePMnKy8tx5MgRUdW2Lbd//XXKFmdlURa7OWZ5xsYkG1UqG68Pf+DHjVlkZKTs5ubGTOoSi6AgqtF/4QUy9nrKOHnyJG7cuMH8/Pyker3a60KhoOCGuXl1v+fBg6szVB9+SFJXF5fqWsqUFCIc7dvTwnf+fAqyzJ9PGVRfX9qmszMFXiZNogVrbi5l31JTaUG3YweNhdGj6fvOnKHAw+jRROydnSk49NZbVNrQrdtjjZnHRUpKCnbv3s1CQkLgU2lCVhOHDh1iRUVFiPf2RucPPoB5jWsdGxuL27dvo6FgkEajwa+//oqBbm782RMn0GrMGIYXX6wiLF26dEF0dDTOnz+PqKgoXLt2Dbm5uWz06NHVmV9XV8DTs9G2lAYGBrh06ZIsSRJrX1l3HBERIYWEhHBXV1fUU2J16UILdiMjug7+/iTdFgQiFubmlIkURSKL48bRWGjAHEwQBHh5ebH79+9LBw8eZJ06dWJmkkSBno8/blr5TVoajZ0hQyC9/jqOnjiBGzdu8F69elV1XgkPD5fatGkjuOmDW6tXkyFeTfVLTZw6Rd0S5s2Dra0tAgMDcfLkScTFxaF3794oLy9HdHQ0XFxcmtb2S62mzPZrr1Hw48MPge3b6f/+/ihcvhwZ6ek4HhmJO2fPolQQ0KFTp3qt+3x9fVlycjJOnToFPz+/+u0yDQ1JLs857b+BAX3vpUt0rNHRaDtmDCsfMADbDA1x4t49dHJ3h0Vd5QtjwHvv0dzHGHU46dIFOHoUtufO4aaVFbQKhTRkyBDWoMw5I4PMBkeNAuztcd/QEFf/+gvRYWFSib09/P39WVRUFMvIyEDXrl1FDw8PfvPmTTEkJITDyYmI7IIFJH+eP5/miR49UGJjg0OHDiEpKQm5ubm4evUqDw4ObjBTrS4vx/27d2HYpw+4tTUFo3JzqX4b+mGwWrxy5Qo3NDSU/f39ma2tLZ3ws2dJGbRrF2BmhmsdO2KPSoUb3bpJFlOmMKuJEylglJ1N5UIxMTT/HD4MzJmD+888g8K4OKnrwIEcjNH2+vUjmXjdMf3zzxR0mjSJ9u+55yB5e+Pv8+fZ6NGjWUMmoGCMSpV27qSgRo1j0kPWapF++DDCBw+GwtAQZmZm8PHxYeXl5bh69Sr69evXrPWRTqfDqlWrZK1Wy0aMGNF8efuxYxSsacBQ8KEoLqag1OLFte4JhUKBvLw8KT8/n9UKOsXHU0nbO+80uZOOHjJj+DY1lem6dsVEAwOULVyI5cXFsC8thbV+/mgKLlygcTFtWrO+vyYkScKaNWvAGFsE4MWgoKDCR95YC6rQktlvQQueIj755JPtixcvvhQWFpbUvXv3x6uFagBZWVnYtGmT3K9fP7l79+7/HsOxfwOMjY3Rq1cv9OrVC2FhYfj111/BOYeBgQEsLCzksrIyydjYGIMGDRI45ywhIUFITEyUSktLuU6ng7Ozszxt2rS6J1sAiEwsXbqUPVRmDpIp5+Tk8Oeff75Z+29kZMQ1Gs3DFxaCQFH4336jCPsjwtjYGAMGDJDS0tJkV1dXISwsDN7vvw++aRPJxefNI8MpP7+m1/L37UuEvwlSzLro2rUrEhISsHXrVnnOnDnM0NCwmqjGxz+ycU9zIEkSwsLCEB8fj6lTp8LJyenJ3R+WltUt0vQtsADKagCUwVyxgv7//vtEzEtLiQAxRvLyW7dI4u3nR1m8rVspG8gYya0nTKDzb2JS7ej/fwRarRZHjx6VevbsyfXS/bp49tlnYRgYiLTAQGnfgQPyvHnzBABYsWKFVFJSwl1cXCTUaOmph0qlgmVBAdolJEA1YABJm2vA0tISEydOxN69e6FWq5GZmQlzc/Pa7UXT0oioaTSNHkNgYCA7cuSI1LdvX845R3l5Obd+UPBEL6fVX8/ly6lUYuVKkksDJMGOjKQF9wPKKDjnGDlypGBhYSFt2rQJL6pUzD4kpEEVTVlZGX744Qf4+vqiX9++OPbKK2Kvy5eFzPffx+l795C/fLmk0Wh4t27datUUGxkZQdSrG+7do21/+mnjx1daWotAcc4xa9YsbN26VV61ahXrWUlYrl271mgWHgARse++o6xut24UHDE3p+8ODga8vbF21Sr4Hj6Me61bo3+rVrJnUhL7s7wcJVOmwKBVKyh37iSjwWefxaXUVLicPg2POXOgOnqUgiyenlQvbmBAx3X8OJXCXLhAwbcLFygDvWQJES2FAq4AnrGywqFDh7Bp0yZ06tRJnDJlSu0TPnEibVufBPPwoP3/9luMun8fe+Pi+KqcHFhZWaGsrEzMz88X9OfY7do1uGdkIGHLFvnu3btyRUUFd1QqMfL2bT4sJAQGAQFVXUE450JhYSEqKiqEn3/6SXze3Fwwio4moj1lCqkf3ngD+P577GzXTmLdusHQ0FA+ceKEAJBioS7UajU2rV4thW7bxr/SatGlSxdp3NatvLy0FAYlJeCV2dqysjIBACRJktu1a0f3nyhS+cKwYRTk7NYNXX/8EXZ2drhy5Qp2nDuHXowhRG/cV15O11SlonIVlQqG169jwvLlCpw8SXNfejoFBvREtbiYgjLDhtFnx4yhcqRK530OwMHBAZcuXZIanatnzQIiIyEPHQrIMhISErBnzx74+PjAyckJBUuWyO7h4SzxtdeQlp4uV1RUsJ49e8qyLDOdTsce6DfRAK5cuYKysjI2ZcqUegbDTcLnn9N9lZjYfGf+lBQK6DWgKMjPz5drBdxEkTweYmNrlVY0FYwxBAQE6KKiohSrLS1FvPuuYJmSAocpU8jUtXfvpsnyjx17pHZ7NbFz504RgCDL8gzGWA6AdQ/7TAsejhay34IWPH3YmpmZlQqC8IjaqIahJ/p9+/aVAwMD/2uIfl2EhoYiJCQEFy9ehI+PD6+U3dZapFUuRHlRUZG+prRRoq1SqaBQKOSioiL2MLJ/+/ZtAJAdHR2blRGoqKiQKvu4P/xzkyeTqVVZWX1DnSaCMYagoCAeVNmT/cKFC7h9+zbat29PcvShQ0niuns3SUObYtzWqxdl5caNqy1RbgI45xg1ahT75ptvsP3336UXXnqJQ6UisvuUiX5KSgoKCwuRnJws3b9/n82YMYM1y1jpSUEfVOnblxa3CQnVMu34eJI4x8TQ35ydifgD5GLu5kZk//9Yp4ojR46IGRkZyMzMFADwlx/g6WBtbQ0sXow2zs48Z/9+rF+/XuzTp49QWlrKp0+fjvbt2zc4ZxVfuIDAyEhYv/pqdZvCOujcuTM6d+6MrKwsqNXq+h4lzs60WH6+nRNZAAAgAElEQVQAunbtiqioKLZ+/XrJ19eXV1RUsPXr18PPzw9Dhw5t/IP6HuxqNRFNSSJi5uRE2fNjx5pksscYw4ABA7i5ubl88bPP4DRqFLoAyM7OxvXr15GTkwOlUomYmBgAwNm//0buypVwS0kRfhw5EhWXL8PGxgYTJkzgHTp0qKVGkCQJqampwtixY2n/Fi6kUqEH3QeCQJnxGnBwcMDChQvZV199VdV+sJ5SR4/iYiLd77xDGeqPPya1y6uvUinKmjWARgP54kUoDQ1x8/33MXDQIFhZWTEA8EtOxv6AAPFeaqog/fWX7GFnJ9lotUJnDw+kRUXJx86cYQHnzpFaYsoUCh5Mn0718X/8QYRn7Fias8aMadC1vWfPnoiLi0N+fj7S09Prtwd99tn6CigDA+Cdd2AZEwOvV16BQquVC15+mZmYmgqmpqZo1aoVCgoKYLRsGU61b49WrVrJ/v7+vF27dli2bBnY6NEwvHkT2L0bQg3DQktLS7w8axZujR0rFKtUMNq3j+bZLl1obLVqhczPPsPgESN4Ox8fYOJELF26FM820hJ1//79sm2rVmgrCGjTpo1cVFQkb7twQRLDwnjw0aMIW7xYatuhA5dlGQsWLMCOHTsQGRmJ4cOHk4ooKYlKkzp0AOzswBhDmzZt0KZNG25ubo5z586JISEh9Nw1MqJab4Ck/59/joqYGBwaORIWgGT15pusc0wMU6xeTWPB1pauk1ZLwZTKvvF10bFjR5w7d47funULjo6OVWM6Ly8PZmZmSDI3h21sLEo3bsTvNbLHsbGxiL90SeZeXuj5+ef4lLLRrLIlsFReXs5FUWQ3b95ElyaQ7hs3bmDz5s2QZRl9+/YVXV1dHz1L88YbRPZPn27e5zIyKBjSABwdHVlmZmZ1sLRTJ+Cjjx7JY0eP4OBgRb9+/RAeHs5u3bolGfn5sR+trPCmnx+DlxeVsOkD2A3hzh1y/79y5ZH3AQDMzMw0NjY2ytzc3I6CIExFC9l/Imgh+y1owVPE4sWLTZVK5fbBgwc/glNa46hJ9IOCgv5rib4eKpUKfk2IGJubm2OgfhHyAAiCIOfk5DC7hxhFRUVFiU5OTry5BovBwcHCrl270LFjx4fXuDo6EgkvKXn02r46sLW1FZOTkwW9RBnt21O2auNGkouGh1Ot5IOOy8aGFrrR0SRlbyaUSiUgSZj4+usc7dtj98iR4t1LlzCyXTuhSXW/jwCNRoPdu3fLoigyURT5vHnzYPOQVk2PDa2WspnZ2eQW/d57RDgqKqhuu1s3YMMGCnLcvEmk5KOPiJC6uVGGf906kg3/9FO10V6/fpQ1bsiE6T+A+Ph4nDt3jnt5ebHMzEwMHTq0vgdFTXzyCTBnDmzbtsVUCwv89ttvwp7KgEZjBqK6y5dxdtUqmXt6wnDmzIdGOhptLco5lUWMGNFozTDnHDNmzGCHDh2Szpw5I3l4eMjp6elCdHQ0hgwZUl/KD1ArtZMnyfFcraZrf/gwmeuVl1P5QDODWT26d2d3DA2xIz4eB5YvR2lpadXf9OfX7u5dzJBlXJFlme/YIb/Sti1XqVSNKpPS0tLAOZfc3d050tIokPjccw/eke+/p3Fb59roM/xhYWHy7du3WT0lR2EhzSmRkTTmT52qTbSjoynQcOgQsHIlrrRvjyF//gkrf3+Y3bpVRWjc3d3h7u4uyLKM7OxslpKSwmMTEqS/U1K4MGgQkyQJ7Phxqslu3546UFy/TvPYzp103xgYUHDj228pyFCn3EClUmHQoEHYv3+/aGVlxb///nvWunVrSaVScZVKBVONBjYXLqBEoUC3bt1qlyv07o0zw4dLz9rY8G5ff033bGWJU+vWrQEbG0yZNg3w9KwaOE5OTmKUWi2M8vUlJYipKY2dyvNmu2QJzrq6yjHe3mxwVhZcnZ0pUBEaCpSVIWL3btnugw+k9qmpQtaaNdBqtcjOzoaTk1O9DPWdO3ekgX5+wuXr1+W8vDx5wYIFwvLlyzF7xQoYrVyJttbWSE9Pl8aNG8ctLCwQHBzMt27dCt9evWD71lukLAJImr9hQ5ViSZZlnD59Wvb29m6Q8JaWliI/Px9alQqZISG4mJPDGWMwHDQI74SGEtnXaEjV8c03NBZlucFAZlBQEJKSkuSNGzcyzjlUKhUEQZBLS0ur3jwlPh7tMzLQ1spKnvDCC0xfzqCYO5dBEGhOrURlS+BmE/WtW7dClmXMmzcPdnZ2jyfHXLfu0Tq86H13GoCtrS2PjY2lX2QZ2LLlsTPqAJl0Dh8+nANUwrB06VLczMpC+0OHqDRm3TpScmzbVl9BsHYtedY8ZoB6+PDhRr/88oumch+mPtbGWlCFlpr9FrTgKeLEiROhDg4Ozw0bNuwx7LtrQ0/0/f39/yeI/tNARkYG7t+/L3nWWJjVRVZWFsLDw/nUqVOZQSO1v43BxsYGOp0OYWFhMDMzg11lpqRRWFqSBLiyDdbjQhRFfuHCBbFPnz7Vx8c5ZZMtLKjO+J9/KHv/IDWBmxsR1smTm70Pim3b0DokBIfKy3He2Bg3b93ilYsUqaZB45NCbm4u1q1bJ7Vp00aePXs27927Nxqs/XwUiCIRvY0biaR//z2wdCll301NSWpvYkIZxlGj6Hr27k1E/733KFvn7k6Ei3Oq+be2poXaa6+R8Vu/fuRiPXZsdUutr76i9zk6PlpLtieEiooKbN26Ve7Tpw8bMmQIgoKC0LZt28Y/oM92V2ZYrayscO3aNajVakyYMKFWAEan02HdunVi/NatUH3zDStr2xbuX3zBzJtZd1oPH35I5Ltma7M6qPQS4b1792aenp68d8+euHP4sHwgMpLlr1snm4aFMfPgYAoY6HRknrZkCXVKSE+n1pTTp1MN8ltv0T2VlUUGdQ+AWq3GP//8g/3790sn9+9n9tHRuNy9Oxhj6N69u9yrVy82YsQItHV0hLR9OzreuIFOL7wAx0WLmK2tLTMwMHhgoOXEiROiiYmJ4G1nR+MpLOzhMtyKCqrxbmCuMzU1hbu7O4uKikLHjh3p+qnVdB/s20djevJkcnGvO584ONB2+/YFXFxQ8dVXiJg6FX7t25OZWG4ujfHKe5UxBlNTUzg5ObFevXqxbl27onztWsgAzOPiYDN1Kt0zbdvSvdauHRmKXrlC18TOjn527kyy8dLSWq7o5eXluHz5MubNm8ctLS1haWnJTE1NoVQqJfNr16Sua9bwnfb2iI+Pl+vWeMckJEDn4iK7+PgwfP453ZdOTjQ/nDpFTvw1zl9FRQVPTEwUe48axeHpSUHWu3dpLhg6FAgIgDh1qqwB5CNHjjA3WYbZG28A06dDtrLCIQ8PFjJ1Kjfr3RvaFSvA0tNxxcJCvnz5shQbGysfO3aMnTt3ToqLi5MLCwuFOxcuoFNMDAZ/+y03NjbGmTNnpMKiItli5Ejm88UXzLd/f2ZTWZbVqlUr5ObmSmXr18Np0CCGylZzyM0lNdibbwKgAGpERAR7/vnnq8oQZVnGrl27pKNHjyI8PJwlJSXJCQkJTJIk2djYmKnVasgKBQK7d6es/t69RPYzMoDff6fzkJFBY6OGDw5jDIaGhiwlJQX29vZyYGAga9euHRs/fjzMzMzg5+cH1zlzoJgyBT0DAphBq1bgnFNgrqyM2vM9aF5qAnQ6HaKiojBw4EB4PMhcsKngnMoznnuO2lE2BZJEde//+leDJq/W1tY4efIkVP/6l9R2/XrGFi9+4i1jOeeIjIzE7du3ZaM2bZidtzddy9u3ybNk7lwq+TA1pUTF0aNUqvcoHYAqIcsyoqOjceHCBQFA50WLFqU9uSP630ZLZr8FLXi6cGvbtu2jabMbQE2iP2DAgBai/4jo1q0b27t3rxAXFyd369at1oJOlmWkpaVh586d8PX1xaOSjry8PFGr1Qp79+7F3r178fbbbzcugR00iAylTp0i0vcYKCkpQUJCglxQUNDw09/VlUjk+fNUP/naa7SwaCgY4eZGi+lr12plTB6K8nLgzTfhERGB4pdekq9evSpNnz5dMDExwerVq3nNtmlPApIk4ddff5U8PDwwfPhwQZ8VahbUalqU9u9PtY9r1xJ5c3Ki1959l7wVBg2ioImdHWVxCwurF2SVZRRVC+cHQaulxV9wMJnwHT1K+6BHUBC5as+ZQw78W7Y0KE3+d2Dfvn2ikZERAgMDm7aizM+vJ+fUt6bsXId8JyQkQBkfL4ywsoLxxx/De/z4JxMIOnGi4dcLCoj4Xr5MRPXLLykrNmgQVIGBmPrnn0y9eTMKFQqWduwYrBUKGG7YQNfc3LxafaNvzwZU92Q/cIAyuH36AGZmUJubQ61WVwWdTp8+jaioKEmr1XKtVgsAPCgrS7Z0dMSizz7THzf9LC1F55MnYVlRgWODBols1KiHnnutVouoqCgpKSlJGD9+PGVSx459eKvIa9do32fMaPQtxcXFAIATYWGy+8WLDF98QSR7zJgHm3hyTvPB9u3AxIk4+9xzGL5pE2X8hw6leeiVV+j8Ll5M75dluh9WrkSrsDAMSklBOGP4y8FBfj8vj0GhoHssOZnI3f37FGRYupQUBqtW0e8DBpDiZvNm4PhxXJ82DRfy8lBeXs5lWUaPHj1q7SkGDwaGD8dcBwf8+OOPrKysrJYRXllZmezl7c3Rti35G7zwAnUdWLCAjqeOgWtZYaFspFAwJCfT38eOpbnkrbeo5MHZGV0AfvnKFdHY2Fiy8fbmWL0a2eXl+HvOHNmnXz/J2tpayCspgcVPP2HQoUPof+MG+0alEnQ6HebOnYv79+8LhYWFcHJywpk9e0T1+fN806ZNup49eypmzpzJDx48KG/fvl0OtrWVe2Vn15p0/X18eMbSpSidPRsFmZnIzc3F7du3ReudO3lPjYapVCoYGBjA1tZW2rRpE+/Vqxe8vb1x7do1JCQkcH9/f3h5eaFNmzassrMFAyod4199FVi2jPwbAAqSOjtTgCYvD/j6a5pLv/iCgiUhIYCVFczMzGBkZCS9/PLLtfa1qs1cZiaVDrz3XrUHxUcfEZl+zHa9ycnJyMjIgEKhQEBAwGNtqxYGDapqw9gkpKRQ+Vwjvh8GBgZ455138FNZGXdwdkaHJ7OX9TB16lTs27eP7dq1C2fPnkX//v3humQJeFERBVeuXgUuXiTFWuvWTW6p2RCKi4sRFhYmJicnCwYGBl9rNJr3lixZsvvTTz/9+wke0v8sWsh+C1rwFKFQKNobGRk9kfvsv47ol5ZShiw0lLKYublEnExMKDtiZUUPE4WCiGZ+Pi0aZZneY2VFrXs0Gvp7URFFxIuL6SFpbU2L8Px8SO7u0OTlwdDEBMjJgWerVtBYWCBp6VLWxtMTdv37A6WlSEhPl9KPH+dlxsbyMH9/1l2WSbLm6EjkzMSEska2tvT9RUUU1ba0rN6vzEzAxAQlZ85gjIsLrExMUC6KMLh4kd6Xk0MLWjs7Ogd6E63CQjL0WbOm8bZCjeDGjRtISEgQMzIyWF5eHre1tZXGjRvXODkQBMo8b91KBPbdd2nxVJdMKpW0YL5ypWlkPyeHZKoREfR/AL0B1rt37ypzRADVfgJPAJUZfbRu3RrPPPNM4yUXkkQSbGdn2rcvvyTZ/ejRlLXdto3Ixpo1dG369qVrGhNDv3NOta1AbWn4w4hUY/vy3HNU9zpuHI3x0FDUaznFGBksnjpFZRju7pR1a6bS5HGRkpIivKDvK/4wZGeTzDorq1bNqZeXF7t58yZWrlwpLly4sGpsilevIiQiAnbffEOZ0SeFN94gQhUdXd2L/fXX6Zz/8ANlspOT6dp/+CGpL1xdwa5fhxEARZ8++JFz5PzzD/r06YM2jQX9DhygbP/Zs7T/w4eTDPq777Br1Cg5VRCYj48PKioqkJqaKgcGBvL4+Hh5yJAhzN7eHobvvMPqkezkZNrHjh0RM2WKaKBQPJTo63Q6bNiwQSovL5eff/55dEhJoex2U1Q5587VDjQ1gNYGBhhYVIT2R49Spvz06aa7fh87RpnciRPhNXkythcWYmZAAEyiomh+8fCglpY9elDmUF/+0q0bIEnI2bcPcb//DiNDQxmVhBIA3Q/Xr9O8GxhI19DTkzpg6P1JACSFh+NeRgYu/vUXJu7cCTNPT6SNHw+PuvXbKhWwYgVaf/gh3NzcxDVr1rC33nqLc84RFRWFiooKXmWya2FB8+cff9Ccp9PRfT1uHCk+FixA35EjWe6kSTTHb9pEgSJjY3qW1GiRq1ar4e7uzlVnzgB37iBRpYJcVsZ0338vfB0dDYVCAYVCgVcmTYLJypUYd/OmvN3bm8myXKsGfdSQIYJ6507A319x6NAhdO/eHdOmTWMxMTE4Y2Ii9woIoIz9N9/QNU1IwF1nZ2nVoUNcp9PB2NhYcnBwEFw++kg+7+goG37xBTM0NERhYSEHIIWHhyM8PJyXlpbC29sbISEhVd9dU2nCJYnGhr59aU0wRs/mpUsp6BwbSyUe588DeXkwfeYZyBUVjY8lR0cKhOqfH6JIQbtGxnldI97ExET8888/olar5QYGBpIsy9BqtVwURehNdSdMmPBgJV5zYWVFfhAffkhj+2HIzHxw4OLuXRj36QPPr74SDxYUYF4dD6MnBScnJwwZMgTbtm2DSqWStm3bxtu0aYPZs2fT87KigowB8/IoUP4IyMvLw8aNG6XS0lKOyuOoqKh4r/LPYwE8/ZY9/wNoIfstaMFTwOLFizmAkUqlcoZXc3onNwI90Q8ICPjvMeP75ReSk4eG0iKJ8+rssizTaxoNPcy1WnqwlJXRogqgmrH8fCLM9vaUsauooAdPRQVt69YtFF+7hhNRUZAKCzFqxAgi646O6OHgAFMTE9zatQtG5ubISEwUr2dmCv4qFVp17sy4hQVl29PT6YEmiiRZO3aMsuOurhTRvnWLFh5KJZH5iAjAzg72d+8yO7Ua9rJMGR99C7wTJ+i9ffuSpDM3l47TzIxI3eef08KwTRsil/n51YSlEZw8eVIsLCwUvLy80K9fPyiaQA4AVBv7bNxIC6i//qLXai50unQhwjl69IOlgvn5tKjp06dRApyWlgbGGIwewTG4MSQmJoJzjmnTpnHljRv03aJIEshFi8h0KjKSHLonT64mEm3b0jj76Scy5bKyqnZVB+j6ADS2niTu3SP5/xdfUIZKf64tLIg4NqTs6NePxtv779N7OnQgYvRvgizLDbb6ahCtW1M7wTrmUp07d4aBgQH27NkjLF++XFIoFKybWs3ahocjcuRIOA0b1gQ3yyZAp6N7bd06uq/CwoiAW1rSWM7Orvaq0HfZGD263maUSiWGDx+OuLg4af369bx169bipEmThHqlIe3a0UK+Jl56CejdG+0OHmQ+Gzci0dJSzBBFQa1Ws169eqGqjEUU6TzVkJljzx7K7Pn5QZwwATfWruW9H+LbUFJSgg0bNsicc/mNN94QuEZD5oYffti0YFSlsqFBFBcDmzej9OpVaNLSkDp1qtRhzpzmkYsanUa6dOmCO6NGYaMsY+7gwVAeO0Zz3ZgxNJ8uX04KAwODqvaXiYmJEgBeXl7Ok5OT4e7uTs7s5eUkCwfI58LZmdQCb78NXLuGlLIyJN25g/j4ePRftEh+2ceHGYSGouDnn6FauFB2qqhgxj/9RPeTvkwmNxe4excTJkwQli5dimXLlslmZmZScXExDw0JYW1u3iSfhrIyen717k0E9Px5egbNnk3X1NUVMQcOIC02VsarrzK8+irduwkJpHLYsgWYNg1qtRrOzs7C2bNnpRG5uZwXFqLYwUG2zc1lzikp6LJmDdq1a4f169eLEXFxGLF4seB+6BB7+59/YFzHlV/JOZStW6NXr15ITU0Vf/31VzZnzhweFxcneXp6MrRpQ/fDhx9SgCQiAt4LF3Iolfjrr78wdOhQ7u3tDYlzFp2ZiZMnT4qlpaVChw4dMHnyZK7RaHDw4EFoNBqMaqzk7NQpUiNduvTw0iNBoGvcpw8943fvhsXPP6OrgQHDV1+R6snXt/7n3nuP/ExmzKhuGdhAkPenn37CnTt3YGxsLBkaGsoAWHFxMQ8JCeFt27ZleXl5QllZGTIyMuTu3buzTp064ebNm08sEF0LOh2pQBYteniwNiWlwbadVbCxAebMQcCzzwqxq1YhJSUFrq6uT3Z/K+Hu7o5FixZBrVbzpV9+iaK0NBq7n39eHWQJDX0kzwC1Wo3vSPnBAaBt27ba27dv1xw0TXASbkFT0EL2W9CCR8DixYsZAFsA7QFYAWinUCg8lUqlhyzLLpzzdpaWltrQ0FBjq0YcVZuK/0qiD5DM7+JFku/5+ZGhVt0Wdw/L9I0c2eifsrKycKiwULqj1XIHBwfcuXMHI2fPrhWxdx0/HuvXrxf/zsoSbL28MOaTT2DdmOmXHi+99OC/V/axPv/ll9xn9uz62fLGHHNlmYi2fvuffEKE9MQJeqjOm0eL0jlzSHo/aRLw99+4fu4cMlNThSkvvfRoixSFghao48bRd/fsSb/rSa6nJy0+9JnChhAfT4ve/HzKSDYClUoFWZYbL2d4GEpKiHwYGVFW6MUX0S8hAd2++QbfCgJeX7kSquefB587lwI+skzZ3Dlz6Djv3Knelp4sP25teHOQm0uS5VdeqU/qIyMf3J6pdWsKkB04QMc+dmy1B8C/AU0qu0hOppKQ6Oh6fzIzM0PXrl1hbGyMq1ev8qsREej8+++InDoV101NUVxc/MglM1X48EPK6F69SkG4nTtprHh5VWcCmwFfX1/4+vrypKQkHD16VNiyZYs4f/782kRXoWj4nvb2hrulJa4dPIgB1tZCsCwjPTCwdp/49HQaE5aWFNxcvpx+nzwZ6NED/4SFiaWlpbznQ/p0//3336KJiQmbOXOmwDknEvrBB0SWmoJ336X5ZMKE6tfKyqimfuNGYOFCXA4IQJSNDTytrYXk5GS4uro2rxSne3dSW7z4IoKDgxETE4MfBg/Ga6Gh4Lt309z2xhv0T5ZrfbRz58784sWLAFBtTPf668C9exBFEXfv3oUoCNBu3Yo/YmOhUqlkl5Mn0SMqiiU89xyGjhsn+/j40MQ/ZAjGDByIPdu2yYf/+osFAzB1cgJefJHO2V9/AeXlEDjHqyNGIO/aNSZERgrFERGwNzOjYEz37nQPDx9O4+r990mWrtPVKuHJLymRGGPsxo0b6KBUkuz//HkKHi9eDHnyZGzYsEG+f/8+k2WZX3/+eXTy9kb6t99KQYsXC1lFRdKpzZu5f0AAzMzMhMLCQh3MzMCGD4dJTAzNAx99VB2EtbSsemY+++yzwrZt26Svv/4aOp2O63Q6+Pj4wOLqVZpHTE2B+/fBe/WCVWXLUGNjY0iSBD5hAvomJ6Ovp6fw22+/iSqVSgBo/h5dIzCm0+mg0WggiiJEUYQkilAkJECeNg1lubkAyPQtNzcXcuU1VSqVYIxBEISqf7///jtKS0shyzJkf39YFBezIQ4OFKCdM4dI/fTpVb4OKC6mefD0aQq0pafXK6GoHDe4c+cOysrKeFlZGQDg+eefh4uLCwOqDT59fX2rFgVODypJeRzY2VG5TEHBw8n+1q3kh9EQ9GrIDz6AVHnOnmRJXD1oNMChQ0i3tsaC1ath+vzz5PXz+++0HniMlsGGhoZ45ZVX0KpVK5SWlsLExES5ffv2stTUVGMAkxYtWnT/yR3I/zZayH4LWtAMVLrrf6RSqWbJsmxmZmZWYWxsLFtYWChat25t0qpVK1haWsLGxgaGhoaPrbXNzs7Gxo0b0b9///8uog9U9xsPCqJMR0gILbbs7GrXwzaC0tJSxMbGysXFxZKlpaVgaWkJtVoNxhiKiopw9uxZuLm5sTfffBMqlQorVqyQtm/fjqFDh/Ka2blZs2YJN27cgLOz8xOTwhUVFUGn0zWrpy8Yo8j/mDFE7F59lV6fMaO6lvbUKSIvRUWUFWQM2pdekmdrtcxq8WIKmnz/PWUbY2KaZ/hnbU1GQsuXk0TP2ZmCKYzRwnr5cjIiq4m8PODHH+m6Xb360Cyic6V09fjx49TyqS4kiZQahoYkNX3mGcqEv/kmSfCDgigIsWULZcjUavAhQ2Dh5IQhbdpgOdVBI7SkRO6xeXOzEsXl5eX48ccf0b9/f/j4+DTno03DpUtEZFavrp3JBei65ubWf70hDB9OBnBxcXR9v/6aAjJPCRkZGZAkCU0yqRQEklM/QALr4uICl6wsDD9/Hr+99x6uFxVBoVBg1apVmDx5MpydnauMwJoESaJ67wULiBjopcN2dpTlHTuW7pfvvqtfJtFEeHh44OrVq1Jqamr9OXjiRMqiL1hQY5ckxMTEQJZlxI0bJyqsrXnfZctY9y5dKMikP77kZLrXc3Lo80OHUrCwMkBsY2PDZVlmZWVljXpQFBQUIC0tTXjjjTdo0X/5MgXcfvml6QfYqROZbgFU/x4ZSaUIXf8/9r48rKqqbf9ee59zOMyTgCAoiIgCKqKMKuJIpmg4pWmQU1pZDuVrs/G+faVpaVaWllpqOGLOE6WAgOCEKCqKKJPIPI+Hs/f+/fFwmARFs773+8V9XV4IHM7Zw1prr+d+7ud++lLtvKEh3NVqXP/5ZyEzMxPXr1/n58yZ82iTxpb46KNm2b9p06Zh+/btiHj5ZQyfP58c9B0daV57e9Nx1BMjDg4O8PHxQWxsLMrKymC5ZAm4Tz9FvJ6eeOLTTzmFQgFjjkOX8nL069dP9Pb25kRBAP/RR1g4Zgz0+/ZtNiDlcjmmzJzJ7QCEr/fs4ZedOQNFSQmpgNavJ7Jh9WoYhIXBYMAAICAAm2tq8PLMma2arEmShMrXX4fW9Omoff11yIYPh1KphJ+fHyeXy8Wd27czg9pacfShQ1wPGxswGxsixRISUFhYyFxcXHDt2jWYTZmCovfeQ1VVFX/w4Ed1RUwAACAASURBVEG89vPPnK67O46o1ZDL5Rg+fDiNPx0dyqyGhdGYX7+eflZcTGt3cDCUSiVeeeUVrrS0FFFRUbh8+TIyMjLQp08fek10NClwAJiZmcHIyEjasWMH8/X1xTALCyJ9a2owePBgPjQ0FCqV6qExuHLlSgiCAJ7nIQPw4s8/46y/v/Sga1ew7dul6upqTqFQoK6uDvr6+oJKpeIEQWCSJEGhUIiSJEGSJKZWq9mCBQugr68PmUxG41jj3TB8OJFOX39NqpwRI+g5EBpK5OjFi60G+gAwZMgQ9O7dG3p6elAoFNi/f78UFhbG3nnnnSdbY54V1Gp6fl24QIRPa8jPJwK6rTXdza1B4p+UlAR9fX3B3t7+2Z6MSkV7sk6dUHfqFGTx8Sh46y2cmjsXix/Vfu8pYGZmBgAwNDSEIAioD/TXAzjzTD/oH46OYL8DHWgnQkJCvORy+cGePXvqDx48WNvCwgKMsb+0eDYjIwNqtRqGhob/XQ23nxXkcgryo6IosLOwoHr4sjIKVuszU5IkNcvI3717F3v37oW+vr5kamrK5+bmipWVlWJ91ozJZDI2ZcoUzsHBoeGPXnvtNW737t3ixo0bsWzZsgY2nOO4hiD0WUAURfz8889Cnz59oFQqn+whLEl07m1J+Jpurk+cQG1tLXZPmcKW1bdJwtChFOifPUsZn/HjqUZ58GBi4N98k4J2haL1jDDPk0Ty0iUKjnJz6T0GDaIMX0lJY3YFoN7MoaGU2WpHRoQxBlsbGyQkJOD5oiKSpuvoELHx00/02YmJpCI4dIg2RE5OZGilrU1KEM04ONLEt8feHmkHDkhaWlrM2dkZp0+fbmm+9VhkZ2ejtLQUFy9eFAcMGPBsibULF0i58vHHDwX0arUapXv2wDQn52E5eFuwtibpcEUFZYGcnCjofMYbWEmScOzYMcnW1hZKpfLRa1BmJnlorFnz6DfNygLeegvc7t0I6tkTmZmZEAQBv/zyC0JDQ2FlZSVOnz6deyxRlpBA5Mkff9D4ef55Wjuaols3Cq5nz6ZN9h9/PFUbSQAwNDRkVVVVrKSkpHmXhxMnmhlppaWlYe/evaiqqoKRkZFUUlLCC66uAsLDeRQU0HwcPpzkvNu303EvWULzrIVSw8PDg12+fFnasGEDe/fdd1vN4GVmZkJPT0+tp6cngyhSadDcuY+WATdFfj5lGpVKIgmys0ni/d13zea0TCbD3LlzeQAICQnB5s2bsWLFivZfwHHjKGv+4osAiPjr0aOHcPbOHb5rcDB6fPwx8OGHNOf370decTGuXr2K+/fvC4WFhVxtbS0DgD07d+LdvDxoGRnhdny81L9/f6Snp4vOffqwITIZw/jxjRfpxx+JKNy+nUjJJs8Qxhh83Nx4duoU0sPD4RATQ9nuwECaU926Ue30sGEQbW1RbG4uffvTT+jatas4YcIEXiaTNTyTIiIihKioKH5kRQXKN2xASmqq9OabbzJ9fX0899xz3IAdO1AVFcWF6upK+pcuYcSIEay3nh7Yli2wcnMTy8vLMWrUKNyMi2NxycnMxM5O7NevH3exqEgs7dwZUKk4uVwOa2vrxnPT0qLxcu0arc3BwUR81XulaGBoaIjy8nJYKpVSn127GL74gs7x/HkiaK2soFQqsWjRIhYaGqqurq6WwcmJlB2MwdbWFpIkYdOmTcLChQubLTDjxo0T4+LiUFpaymYNHcrMExJgt24dqydpWq4XLRenx6+xjNEzQmPiFxdHWf2BA8kDguMafXvaIMOadv5wcXFh169fbyAo/nbIZEBqKq3dbSElhciMloTpmTP0jNSUrdTjUeeRm5sLQRBgZWXVvuM7dQr47juUrFoF8fPPcWnwYDHW0pLTCQxE1a1b8Bo9un3v85QoKirS/DdqxYoVeY96bQeeDB2t9zrQgVYQEhKiHRkZ6RAZGWkQGRlZERkZ2U8mk0VMmjTJ2NfXV66np/dsDVzaQJcuXZCUlCRmZ2dzlpaW0NfX/1s+92+FtzcFkUVFtBHs2xfSr79CvXQpdpqZCUcPH+ZOnzmDs2fPIiYmBjExMbh27Rp8fX0xadIk5uLiAjc3N+bl5cW5u7tz7u7u3IABA5hpi3pGhUIBNzc3Fh0dLfXu3Zu1uwb5CVFWVoaIiAjO3d2da/dDVoOSEpKztgxaWoEkSdi+fbuoUChEbx8f2jiNGkUbVmdnCuwBMvsbOJB+/q9/NcraP/qISgOCgqjUoHNnkkOamlJLpDFjaLO7Zg0F5NbWlHXv3p1Y/6Agqot//fXWM7lnz1INrpYWyZLt7YGffoLLu+/ixoQJcN+xg47J3Z02a4MG0euWLKGgdc4c2ugZGVGALJO1mTFOSUnB77//zl599VU4OzvjzJkzzNPT89F94FvAwMAAZ8+eRUVFBXN3d39yN/+2cOAABR1vvNHoA9AEt2/fxta7d6F8+eUny5QyRvJ0NzfqHLB1K8mwn5GkMysrC5s3b0ZxcTELCgpibfV0b8DmzcCXX9LYagtHj5LkPS6uIRg1NDSEkZER/Pz84OPjgytXrohnzpzhnJycHvIJUKlUyP7wQxhkZIA5OdGGf/RoGkOtlYZwHAWZZ8/SvAoOpiDuSTpL1OPChQusrKysmSkZcnMpI//SSw0/2rp1qygIAlOr1Vi6dCnz9fWFra0tB46j8e7mRgFKcTEFofn5RMQNG/bQ+GaMwdLSkl29ehX5+fnNzNgAIhYPHDggWlpack5OTgw7dpDfx5NIaw8doqxpZCStE4GBdM3aaFupUU1pa2vD1dW1/fOkrIzI2yVLaC4D6Nu3LyeTyXDw4kVY9OkjmR09ytClC+DujlxfX+msiQnrZm/Pubi4sMmTJ+NqRITU/c4ddmPGDPHE2bMoKirixo8fj9u3b4up2dmce24u+JaEmYcHyb2dnYmUSU8nM7H0dBi//DLMBQFHeR4WkyfDcOlSOn93dyJkxowBunQB27MHXmFhDJ6ejN+7lzt28SIS0tMljfw7OTmZMcYwYf16JqjVqIyKYg7jxkGSJBQXFGD35cswnjsXU+bNY1VVVSw8PBzmPj7odPo0HGbPZlGXLjGhuloa1rUrF8VxWLJkCbOxsYHD8OGsT1oac54xA4mJieL169eZhYUFGkoDOa6xk8svv9D6oq3duM6oVCjbsgUWX3yBAi0t5mxoSGv+888TsWpnR8aI9SUuycnJIsdxnKOjI5mV3r8P9O0LLS0t6dq1a1xkZCQ4jkN5eTmys7NRV1fHzM3NmfHWraz41CnYHjv2zAnHBtTU0Lz55Rd6Nhw4QOR4RgadQ3Q0SfsVCnpe6eg0m08qlQpbtmyR/Pz8YGdn97+3iTIwIAWPpWUzk8YGXLpESoWWJV3p6XSu9WUikiTh0KFDkp2dHde0Xr+mpgaRkZE4fPiwEB0dzSUmJmLw4MFISkpCfHy8aGlpyRQKBe0jKytp3zVtGpUY6OhA1NfH9rQ0KcHDg3UZPZqNGj0apqamUKlU4uRn1SmlDeTn5yMxMbEOwAI/P79HuDR24EnRkdnvQAeaICQkREtLS+sHnuen6ejo1AmCwNXU1Ch4nhfHjx+vaNk26u/ApEmTuFOnTonbtm1jCoUC9vb2oq2tLe/g4PD0tc//RZAUCoiMAe+/j+K9e5F8544UV1QE4fXXpd51dfzyzz6DeOsWVCYmqKmpQU1NDQwMDJ5MIt8ECoVCLCkp4Tv9RW3MDA0NMX78eBw/fhyGhobo8STO+nl5tMF6VO12Pc6dOyfl5eWxt99++9HRXdPa8Nu36esPPzRmgGQyyurFxFB2saKCAjYTE6oJTUigYzp5krJu3brRBjM1lTZYAwfS5mv2bHrPN96gz/niC9rQrF5NG20LC2DpUpzp2xe16ekiIiI4gAKW1AkToM7Nhb29PRRPEazm5eVBW1u7IYujo6MjREVFYfTo0e3eeWZlZUFHR0dUq9Xszp07rN+fbOMEgDodlJaS8qGN93tw/7649KuvuM11dVJpaSnr2bMnOnfu3H4TQyMjCrSTkqit11tvEWn2J4L+qqoqbN68GTY2NlJAQAB7yJSuJUSRMqiPKr9JSCBC4uDBNmtWFQoFXn31Vf6nn37Chg0b0L17d8HHx4evLC+HWWgoDpiZSX0iI1ldWZnULTiY8evWte+E3nmHslZHj1KG8NtvyffiCVBQUCDVewo0bnhzcijgByk0vvvuO6GsrIyfM2cOjIyMmtfna6Bxmff0JBn1zz837+5QD0mSEBcXJxUXF0OlUrGkpCTcu3dPmjx5MrO1tQVAWf3S0lL26quvMkgS1eqvXNm+E5IkCo4WLqQN/+HDj1YV1cPAwACLFi3C119/jXXr1uG9995rX82wiQnNhRYYPHgwLl68iH15eWzBoEF4sGyZlDN8uGhfVsa/GhAAnSZyZu/8fMkuPJxt6dePCwgIQPfu3aFUKjF37lx+3bp1Yt3ly5wiLY2IHQ2MjcnMzdKSgpuvvyYHf39/sFu3YKBWI3/NGmy9eBFveHrSGuLtTcRpeDiNVXd3cMuX4/4vv8CxqAieWVk4k57Ozu7ahSsDB6JIX5/5Dh0KAOhuZATzo0fxxeefQ5QkzN+wAfazZwsDp0zhAWDYsGFQq9XYGxYGNxsbcfRbb3H2c+aID8LDOfnvvzdvf1jvOWIWGIgJEyZwx48fR0pKimhvb994wTmOSlc0hmkXL5I6Y+FCIC8Pf7i5iWXu7lyNpyfu+vvDzs6OBjBj1O9+8mQinHgecrmc1beEbDTGBeDp6cl69OiBb7/9FvHx8VAoFCLHceB5HqraWjY2PZ1d8fMT0Z5s/ZMgOZkC3+nTiRz78Ud6nj33HI3zvDwiiqdOJYL699+JBIiKouAYIPO/fv1ws6ICKpWKXb16Vfzjjz+YnZ2dUFpayg0cOJAplUrIZDIqcfg74OlJ47I1hIfTPdFAFIlYX7eusbUrqHwnPz+fza33CDp58qSUkpIilpaW8mZmZuKgQYN4PT09HD9+HKtWrdJ0wuFSIiPBiSI8Ll7EgKtXURYXB/OxY+mZYWKCq1euoPD4cSxbtqyBLLeysoK7u/szLyPNyspCbm4u7t69W33jxg3NA08OYDKALc/68/7J6Aj2O9CBJpDL5R916dJlWmBgoFJPT08JECPcUEf2vwBLS0sEBwdzoiji+vXruHnzJh8ZGSkcOXKENzMzE/v168fZ29ujU6dO/3VZf0mSUFhYiOzsbGRlZYm5ublSTU0NVCoVU6lUrK6ujqnVakCSYNuzJ6SQEKnc2VkcPnw47+rqyjiOA+zswFlbQ/baa9CZPPmpZbgaKJVK3Lp1C3Z2dn+ZlK9///64du0arly5Ivbo0aP9A6dv33Zl9a9du4bIyEhMnz6dPUn2ugEyGW2OAJKAalBRQV9HjyYCQJKIGIiJoWDp888b3e1v3aKfnT5N2SQjI8panj9P6oDDhxvft0kAcjMrC2q1mh07dgy3bt0SqqureZlMhurqavTu3RtTp059olPJzc1FTEyMOHjwYIb6QMzHx4c/deoU/Pz8Hpt5lCQJ0dHR4unTpzmFQsH8/f3Z0aNHwXHcn9v8ffstbVYXL26zlaIkSUi8fJlZv/ACxr3yCjt69KgQFxfHm5mZwdHRUfLz82PtGqMcR2Nn505Sb2hp0b1oGvS0E5Ik4eTJk5KBgYE4e/bs9k2QF1+kTWlYWOu/37KFep0fPtxmfW1TTJgwAXFxcSjPzeViVq6UKrt1E6f++CNfN306uzVvHmIKCiT9H3+UHB0dOZVKhdzcXOnBgwesX79+UteuXVmzDLhMRu78okhlQ1lZEDZtwnVJgv64cbCwsIBSqURaWhoqKirg5OTUqiLE2tpavHbtGr927VpRW1ubOTo6smGDBpG8FjQnS0pKeIBM5NokIysqqPxgwQKaP4sWUea5xWfGxcVJ4eHhzMLCAgMGDJAMDQ1ZTU0NCw0NxbRp09C9e3dkZmZKRkZGIsdxPGbNoqCoHUQhCgqIjCsoILIhPZ0IvuJiCnI//JCIjDbqho2MjLBkyRJ88803iI2NxaBBg9r37PnxRyJcDhxo9uPBgwfj6NGj2JCSgkEuLsw6IYHPe/tt2GtpUUZXqQQKCmDw5pvcBgsLyAVB6tGjB9PMbZlMBh0dHRQ4OkI3I6P5uBcEWsc6dSIy45VXqOSkvkRBV0sL48aNw5EjR9CsrZ62NpWc2NcbguvpYeysWVhdUID58+djZEYGuH370H/8eOhMnw4uJwdwcoJ88GAY372LD+/coeunVuO5Tz5pNo9GjRoFb29v/LhhA3NKSkJhZCQbv3gxambMIIWFBkplQ392B0ND3L59G/Hx8VxGRob06pgxDNradA/ffZcUDCtXEnHDGJnd+vtDduYMilNTBammBrt37+asra2lqVOnclpaWkTa5uUB5eX448ABdWJ6uqwhofHppzRn6mFqatq0bIOeabdvo2TBAvw6f776jSVL/nw8IUlk7pmeTs+XM2eo9GnlSlrPlEoi7qKiKMNtbEzjac0aUrI1VRWVlBCpEx4OHDmCnqKI106fhqRUcrd9fYGSEr7I0BBnz54VZTKZVF5ezqekpIiBgYHcX76PCgkh8jMxsTkJXFdH5Wn1rREBUDlFWtpDb6FRWp0lhQvu3r3Lhg4dyjs6OsLY2JgDiIDs1KmTVHrlCptqZATDCRMgjhqFykWL8NugQVLc0KGsZv9+ODg4iJMMDTkeNJdUKhX7q/e7lZWV2Lx5s+ZbTaD/CSjYb+NB0oGnRUew34EONAHP835ubm7Kphu1Zybn/ZPQBB/1AQhfU1ODc+fOcRcvXhROnjzJv/DCC3gm2cg/iYKCAiQlJUm3bt2S8vPzOZlMJmlrawudOnWSdevWDXp6etDR0WnYEOvp6dGD684dYPZshg8+4JvVpmvY7Koqetjfu0fBzVO65j733HP83r17RV1dXfj5+f1lTzQLCwvcv39fevwrm+DmTdqIPsKoTRRFREdHix4eHpztUwRz7cKkSY3/1ygApk+nYG34cDKFY4w2JUlJtInXbJDayljUw8rKSrp+/Tp78OCBMGLECL5Lly4wNTVFfHw8zp07J6CdPYNFUcSvv/4qZGRk8G5ubpKnp2fDvfT29sbZs2fF5ORkrm/fvq3+fWVlJWQyGU6fPi1evHiRAwCVSsUsLS0xduxYHD58GLm5ueLw4cO5J9r4iCJl2bp2JXf4R5RyJCYmSlxmJrP/8ktwnTph0aJFfGFhIcLDwxEdHc0cHR2fTNpvawtx1y5I33wD/ocfiJxxc3ukYV7jYYu4desW0tLSpOvXr7OgoKD2M2Fr1lCg2Br27SP56Y4d7Qr0AcBMWxsBfn7AypUMsbHAxo18wauvwuDYMYwcORLm5ubcsWPHkJaWhqKiItHIyIgTBAHx8fEsPj4eM2bMQGlpqZSYmCiam5uzHj16cN18fRE/YYKQP3o0lzJuHDNPTET/XbukX597juno6ko1NTVMJpOJFy9eRHBwMMfzPCRJQnJyMrp3746AgADe3d0d9+7d40pKSsSYmBjmunw5jL29UfX55ygsLJQYY8zb21s0MjJqfcCIImWWeZ6CleBgKmmYMoWuE8+jtrYWly5dQnh4OBszZgzq2+413EBdXV3s3LkTAQEBUmJiouTk5MQjKYmIpSaZv1ZRV0ftPJcto8AoOLihzR86d6bynM8/pwzx/Pk09y9dIvVOCzLCwMAATk5O0pkzZ5iDgwMs2uERIPbpg4L792He4ucXLlwQAXADBgzAyHHj6PMvXKDjWrWKPAg8PeEwYwZ8hw1DVFQUy87ORtP1z9PTkzsXFwdlUREajkQQ6NiDgijjnZxM2f1evei86omRfv36ISsrS/z22285IyMjMSAggLM9doz8GOzsAI5DaWkpDA0N0alTJ+HatWvcyJEjGdO0RIyKwq1jx5CxaJHoHB3NXfP1Ff2PHeNgZ0fBa4trt3//fiEzMxNl1dX8seefxyRdXWZx9ixq79x5eI6sXUvKnT/+wNh79+C3fz8ODRpEKhpfXypfuXyZMtjvvUf318uLzvHNNxHw5ZecpmtNVVUV1qxZw6KjozFCQ5rLZMCsWeh+8yZfvnIlhg0bRj+/eZPWjurqtm/oiRNQW1hAfBrCuSnOn6exN3kylRlMnkxKoQ8/bFQoiSLtEX7/nTpurF9PRLOBARHNOTlARETjHDAyIr+Oeu8WbUmCdkEBcO4cLO7fJzVDejoQEcEhMBB3bGxw6vffOdHfH/zfoZhcvpzGX1N10u3bpNLQKJ9+/pmk/tHRD/25UqmEj4+PmJycDEEQ2EsvvcRsbGwaX1BYiOKPPwYrK2ODb92CgakptJYtA9LSoK2tjXn1a0pRURE2bdrE1qxZAwMDA+Tn50NfX1/gOO4vNTVojVCVyWTjPvjgg1Z6LXbgz6Ij2O9AB+oREhIyUkdHp/8Tya7/F6FUKjFs2DC4ubnx69ata7dcXNMuR/NPEATI5XIoFIqGf0/K6hYWFiIpKUm6cuUKKisrmampqejk5MQ7OzvDxMSEoT1rTY8etPnMy2tuRKfBL7/Q19deI8fpmJgnOkYNunfvjpEjR3JRUVHS0KFD/zI1RFpaGh4rf24JS0tyoW4CSZIQEREh3Lp1ixkYGIg5OTm8JEnSkCFDnuHRPgJZWZQ12bOHNsr9+xPRkppK7sLvv0+ZsNmz6fj79HlkcDlp0iQWGBgIvkXKul+/foiNjeXCwsKkSZMmPfKm1NTUIDQ0VCovL+cWLlwIQ0PDhzYmHMe16SCfmpqK0NBQSJIEQ0NDadasWdDS0oIoirCwsIClpSU6d+6M7du3o6ysTAgMDOTbNU4EgQLfsjLq3f6YtpsnTpxgs2Jjwc2bRy29QBm0adOmYdWqVVJERASbOXPmYz9WFEUcpTZtrKKiAvdLSjgHHx/R6+efWZeNG9mN8eOh4+AAW1vbh66JJqCNjIwUy8rKoK2tLc2aNYvv8igTqaYICaGAauzYh3+3ciWRQWvXtkuxArWaAuEePSiD9+9/ky8EyGgrKCio4aVN+nw3LFYpKSkIDQ3V3Fvm7u7OZ2dnSzdv3hSdg4JYba9efH5+vthv0CA2xssLXGAg6+bri5uMMW8fH4iiyK1fv1787LPPYG1tLRUWFqKyspL169cPL7zwAiwtLTXtujhTU1PhUHo6371PHxilpiImJoYBQGxsLNezZ8+HW3hlZpLceMsWcp23sqLs+ssvkzT57beBdeuwb98+8c6dO5yrq6vk4eHx0KDz8fGBsbEx9u/fzxhjzNPZmbKfx49TNrotXLlCJRQ5OUTamdeH3EFBFFSvX0+B3aJFZM45cSLN4ylT6F5MnUrtLJsE2IGBgay0tFTcv38/s7W1Zfn5+ZgwYQLy8vJQUlKC9PR0qNVq3Lp1C1ZWVqIkSVxpZSUsv/xSUNjYoLKyUpo1a5bM3d2dO3r0KAYOHKi5ufT1tdeo0wIAxMeDNzCAeUoKADJpbRrs9+/fH7yFBa5u2gTLHj3QVa2GfrduYMuX0/splZQ1j44mmbuxMc3R4GDIJk7E4MGDuStXrqC0tJQLDQ2F76BBGDBnDnL+/W8cqq4WNKoNfX19duHCBaarqyv5+PgwALhWUYH9BQXwmjWL29azJ3QYg39pKZnn7dxJ43nNGlK+1NXhzp07zMXFhRMEAZ4uLjD/4ANSMGieu5JExxgTQ/dFEIBNm4D0dHC6unAPD2dRL74oDVq6lPHdujUSBG++SePIx4fW7YoKmlOffAKMGoXS7t0hSdJDXhjYvRsH16/HOH19GGrMJh0dKXiWpNbX86VLgVdewQM/v+ZqhPagqopKOkJCKAM/ejSRTba2NE5bw/r1RC5nZJCRqbc31eWnpdGeYfJkeg3QOunFGK1BTTvUCAIlD+Lj0UMQ8ODmTYjPPw/e3JwMgx0daZ44ODz7FqenTtHXptc3La2x5S1AqgQXFyJ1HjodhlGjRnHNPEQEgciDQ4eArVthUlyMPiNH4kCPHrB67TW05rtiYmKCd999l4WHh+P69euiv78/5+np+Ze7FzYxuCyUJMkPwHeCILSzLqsDT4qOYL8DHQAQEhJiKJfLdwYGBuq0q8XUfxHkcjk4joMgCKioqEBxcbHmn5Sfny8WFhaysrKyRsk8yMGV4zhwHCcxxiRRFFn9PwiCAI7jwBgDYwwcx0Eul0taWlqSlpaWpFQqoa2tDR0dHcjlcu7WrVtSWVkZZ2pqKnp5efHu7u54alZ49mzKSnz6KclJW8P33xPLf/YsPeAfPHjiB3H//v1x6tQplpeX166M1JPiwYMHKCgowJT6Os12w8eHzqcJ7t69i7i4OG7IkCGsrKyM69mzJ9zc3Pi/raxEraZNRG0tkSy7d5O09Ycf6PfHj5OUdPt2ygq+8w5l5QIDW1UoaHost4RSqURwcDD7/vvvERYWBn9//2ZSaJVKhaNHjyIjI0MoKyvjzczMpFdeeYUzbOKE3hQymUzat28fhg0bJvj4+DR8YFVVFXbs2AEHBwdMmzatzbFqYWGBBQsWcBs2bBBXrlwJGxsbwd/fn2+zXKa6miT0/frRprsdBpC1tbVI+PRTPOfv/9Dvhg4dyk6ePImEhITHdhb45ZdfpIyMDN7c3FzU1tbGnDlzkJSUxO0+fx5uMTEQduwQJZ5ne3v1YoZGRmKvXr3g5eXFiaKIffv2iQUFBczJyYmbO3fuE5kaAqDsWEsvk/rWZbCyIj+H9gT6cXG0wc7IIILgKTw1HBwcMHHiRNjZ2eH777+XbG1t2fPPP99Q3oH/+R/AxYVrICYiI9Fp3z4M2bmT1h2FAm+99RZ3/PhxZGZmsmHDhuHBgwe4dOkSBg4cCAsLC8TGxkoymYz169ePz8vJwZmMDGgVFkoA2LBhwxAbG4uYmBhkZ2cjNzdXDAgI4PiCAspCvvBCY33+xYt0joyRTOybtgAAIABJREFUyeX27chbtgwZJiZs+fLlj+x+0Lt3b7i7u0sZGRnQWb+ewdi4TUM9lJWRE31tLQUOH3/cPHg7f77x/9OnE4n35ZeUeeQ4uh+CQITN2rXk33H5ckMQPnPmTC40NFQ8f/48A4B19ZlKAwMDydjYWEpPT+cAoHv37uzu3bvi4t9+4y537cqdGDqUAcDq1atFjuMYAJaTk4POmmBn/Hj6/MBA+sycHIDnYWdnB3t7e9y5c0dsaEUHIvdcn3sO2QkJ0u7jx8W5//43f2zkSOSMGydOBzhtSQJTq8ljQaM+6tuXMqfJyVDyPHR0dFBVVQV/f38cO3YMF6ZPR1lWFpS6uvybb76JiIgIWFlZcZGRkSgqKmq4iJ06dQLP85AXFGDCgQOSY0ICBysrWv88PEhFYGFB5+PoiBd69mTXjY2FwFu3ePj50TkKAlRubtD74QdUd+0KTq1G0cSJ6KyvD+biQgam48dDq2dPVN+5g8gDB5gpY7CorUUnfX16Jv7xB6k2ACLM9+5tZmLXSS6HV2oqIs6cgbOzM+o9KACFAipBYF3Hj0fCv/4l5Xt7Q6lUYkhxMWPnzjW2ZdQgJYUy7CtW4EF8PARBePzDKD+f7mFYGBGbGzfSXAgMbDAIbBOpqVQOVV+fjokTqduMnR2VKwQHE5kiSbQetbfrhoZY7NEDycnJiEhPx+D336c5oekusmMHkWNvvkmdbuzs6No+pbKwGZYtI6JEMwczM+lalJdTl5sWzvsPQRTpb4qLG5U6NjZE2Nnagg8NRez330scxzFz85Z6muYYNWoURo0a9Uw2FdXV1airq8Pt27dx9OhRAMBzzz0HzyatNz/99FMAAGMsesWKFUkAhj6Lz+5A6+gI9jvQAQAKhWJN79699f+vZPWbQkdHB126dFGvX79exhiDQqEQtbS0RF1dXd7Y2Jh3cXGBpaVlg6ldC3a3cSNcD1EUUVNTg7q6OkiShNraWpSXl7OKigpWWVmJqqoqVFVVoby8HCqVCgMHDmTu7u6QyWR/ng1mjOoPT51qO9gHaNPk7U0BJ8fRJuDDD9tdo8xxHCwtLcUTJ05g5syZ3LOu3ZckSdMy8cn+MDubNipNWtzoU9aGDW5qtPd34P59ypDEx1Om4NYt2qRdutTc+VyTMdEYtOXkULC2aRPV7uvpkVu5tfVj5eQmJiaYOXMmIiMjha+//pr38vLCiBEjUFVVhe+++040NDSEq6sr8/LygpaW1iM3JgsWLOBXr16N06dP8z5NNqtKpRJOTk7irVu3uLCwMOFRhIyenh6WLl3K5eXl4Y8//mA//vgjGGOQy+VS165dRV9fX75z586UpdqyhTJswcEN/cEfBVEUoaipQb9Fi0he3AJeXl5ISEhAeHh4m8F+VVUV7t69i4yMDGZvb4+ZM2c2XBNra2uMHj0a+fn5sCgu5rB6NUYUFyNx6FAu4cYNQdMHvmvXrnj77befzvvh9m1qB9WSeFqxgoLMJj3j28SCBVRnvG1bQ0/39kAUxVYVSBqfBblcjvT0dPA8D0dHR/plQQFtjjVgjBQJR44QyWZuDoW2NiZMmNDsPYuLi7F161b0798fly5dYgAQd/Ag3jx5EmkjRwqCJLGhQ4cyLy8vVFdXi9euXUN6ejpTqVScQ2EhnNevp827pgb+2jWqW//oI/peWxu1zz2H/O+/xwuvvPL4zgcAqqqqJPWVK1yUjg7KnZxgcfEiHupgcOQIzd3+/Yl0ae1ezJ5NZm5ubiTpXr6c1tKNG+neMEY/X7aMAq7KSiJlNm8GXF0h09VFUFAQ99lnn0n6+vps4sSJKCgokPr168cAsCZtU9mIESMY5sxBj+JiNvbePdTW1gopKSlceno6AwAXF5fmx2ZuToGPWg1cvw4cPw6dbdsgfv65MHrVKv5KfLzo+vXXHF55hYIyPT1YZWezJf7+PGbNgrsoYtu2bUhJScGhQ4cgiiIMqquh+uQT6JmZSUpbW6nkjz+48bt3S6ywkFUHB2PkyJFwd3dHz549kZmRAcfAQNR9/TV0TEwwceJEANQbfM+ePZKRkZHk4+PDXbx4EcraWvT18EBVZSWLi4iAT3o6kSuMkfJFo1pITkan+/fZ/Q0beHVUFGSiSKq1o0ehJ5djjr4+kgcOlLK7dZNSOY7z2LABXk3W/qp6Qp8xhn379qFz587i/PnzOeTnU1eOloEzYw2+LPJDh+B/8SIS7exwZv58uIaEoBbUYaGmthZbPvoIul26MK07d3AzPx+DExPB+vRpHuyHh9McSkgAeB4qlUpoTVkFgF63fz8pV2bMICXFrFlk4mpmRgTb45CVRdcxM7ORAJQkCmoB+vrhh2T+OWcOEVNffUXriOaatwO3b9+GKIqNewtNR4OXXyYi4epVOpbkZAqmdXRordfWplZ6AwbQs+5J8PrrjQQGQFl5jQ/O+vUk6W/5zBRFUlzY29P5ZmURUbpyJbXebbEmGhkZgef5dpfHPQusXbtWqKura/Z5J06cgIeHBxhjuHTpkuZ47kmStOjvOq5/MjqC/Q784xESEuKrUChmjh49+v9WSr8JZs+e3XQuc/gTrrgcxz0k8/srst9tIjCQslBffUUBZFuQyRoyIkhOpgDr9m0K+Nvhs/DSSy9x69atk+Lj4xvkmM8K4eHhgo2NDeN5/snug5FRg2N1cXExOI7DlStXIJfLn73T8aMgCLQZmz69MWPo4EBBipERyWuNjYHPPmv+d4yRlP/dd+n7xESSDt+4QT4AEybQRs/QsM3Av1u3bggKCuKzsrKwc+dOJCcnCz179uT19PQwd+7cdtfPK5VK9O3bF1euXMGBAwekMWPGsLt376J79+4YN24cd+PGDZSVlT32vstkMlhZWeHll1/mRFFEbm4uKioq2IULF7gtW7bA0dBQGHP+PK/j40OKlHYeX1paGrRqaqDdrVub18LDwwNHjhzBhQsXBHd394c2a8ePHxeTkpI4c3NzBNTX5TYFx3E0dy0sgA0boLxxA55BQfD89FP+wYQJKCsrg6Oj49ONK0mizfpPP1GmDaBxs3w5/Xz0aKqnbQ0VFUBAAPVynziRxpRSSS3PHoPc3Fzs2bMHRUVFMDIyEvv06cP5+vo+pEiwt7eXzp8/zxISEqT333+fLvDatTS/MjIagyIdHQq2vv6aAuODBx/atL/88suIiorCmTNnwHEcBgwYAAsLC3D/+Q/e1NJqdl/8/f05/3qlxq3NmxEbGwvdefNg2aMHGh4wd+6QMqkJwq9eFYoCAxGUksLj0qVG+XobcHdz4+q+/FJK6dYNFQMGiBePHuWPHj1KJmoqFWX6dHVJ1q0hO1pDeXkzIzZoa5PsOziYAoqmvbXlcvqXl0f3/803KTOZlATjzEzW+8UX0aVLF3Tp0qVhQD+kghFFmAYEwPT0aUCp5D09PREWFobs7GyhpKSENzAwoI4c27bR52/YQCToG28Qgfj++/CvquKL793DuZwcTpGYCKeCAsrShoXRs2DWLODSJZgDMDc3ZwcOHADP8/Dx8YHPwoW4N2wYLnTrxjIyMhjP8zgwZQqrq6nB0Kws9JoxA4UXL8K0UycY9ukDvPUW5C2ef5aWluA4DtHR0Vx0dLTknpiIJb//zvj//AfXDx1C9NGjondCApc+dCguhYUhICCg0ftHqYSJvT3MPDzErywsuLlqNUxeew04cQLM3x+6+/ejf2oq69+rF1u7dq2kEsVmFzAqKgpXr16FhYWFUFhYyNvZ2dGzISyssUd7Wxg/Hhg/HgP375dcNm5k8ZWVKHR2FiQDA9jZ2fGTJk2CTlISJD8//OeddyDs3g2uKXEpSTS/Ne1RAQiCwARBaHxNbi7VmmtrE0Ejk9Haf/lyu9ROzXDvHj3Pc3Mb15L8fNobtOy48K9/UWDu60uka3g4rTOP87Goh7W1NRISElBZWfmwuaa+PikrNJgzh8iHrCxqVxsRQcaP48YRwSCXU+bfy+vRrQjt7EgF98YbdF3796frNG4cPSub4vBhWjd69yaS8PPPiUA0M6Pnh8ZroQXq6uokU1PTvy3Qr//Mhs+bP38+5HI5KisrwRhDUVERjhw5ovn9+BUrVqT/ncf2T0VHsN+BfzRCQkI85XL5sRdffFH5V/Vd78BTwM2NHmjz5j3e1IvnGw1sPD2pZvynnx77EQqFArq6uqJWi836n4VKpUJ6ejo/cuTIJ/9ja2tAWxuCIGB9ff2hvr6+8MILL/x9D+uSEtpIXbzYvF/3L78Au3ZRC74RI6jG9HHQtBmTJKpFTEmhTc2DB7Q5UygowGsl2LW2tsbChQuxdu1aPjY2FlOnTn0yozyQq7uxsTHOnDnDcnJykJub21CaAgD379/n7t+/j/bWp9crQgAADg4OrPr6dVxbt447m5MDpzFjYNPO46utrcX+/fvBdekiGq1d2+YfDRgwABcuXEB0dDTn3kog7OLiwiUlJWHAgAGPV5FoadFmcts2YMcOWGZnw3LatHYdb6tgjCSzmvkpipRdkiRqjdValis+nsbQl19Sr3sjI8DJCVVVVdi3bRtEUYSdnR2GDh2Kc+fO4fTp05DL5VCr1ZDJZGJ1dTVnbGyM4uJi6OjowMbGBmfPnkVMTAxGjhwJb002DsD9+/cBAN27dxfQdK+zZAmNwxbBNl57jciKvDwysmthNOng4IAzZ85AU+o04OBB8rFYtar163PoEBy3bEH5/PnYk5Mj1X7xBevSpYvk6+vLegQGElFZj6ysLFy9epVfsHBhY+bwyJG2pfkAulRXA4GBzHbJEoAx/saNG9i3ezdiPvkE3nv2YK+Hh1Teu7f4ko0N/8gn2969D/9MX5/KcsaOJcKgaaADNBJaGzYAKhXiwsLwytatEF96iQISK6u2AzuZjNa54mLA0hIymQzPP/88vvrqK/67776DlaWlOC81lUNSEq059S3tcOkSZTpXr4aFvz9M3n8fh9auRVZlJZwiIug1X3xB7SfNzCjQfP99vLRvH1PV1TUS2Hv3oiY9HVlXrmDo0KHo168fDAwMcPbsWYkVFrLY7GwYJiXB9+ZNIkzeeotKx0xMGvqix8bGQhRFNk0UYVJdzfS3bSM3fgBOTk6IOHMGd7OysOf8eegbG0sbN26UevXqxWVnZ0tVVVWira0tP2DAAE7n+HEonJ2JzMjOJiXD4cMUtBYVQUtLS9LR0WFqtbrBa6empgbdunVTT58+XTOm6atK1ZyYeQSGT5zIMHEiAkQReOstHvv30/V68ADw8MDlPXsgXbgA/sYNKpVLSSGlztdfE7nT5Jks53lOq6aG5sHu3TQmHjygDh1vvdWu42kTXl70vk3bEW7cSM+mph0d+vdvbKno6EjfV1UR0bVrV7sUf25ubggPD5ciIyMxduzYx5P/Njb0T7PmfPQRBf75+XQtNR1oXF0bTB7h60skY1NiUkuL1tGMDPr9vHk0Bry8yCRx1SpS3xw4QEq5xYtpfW0nrKys2O3bt//WzL6FhQVy61uSbty48VEvvYYWytIO/DXoCPY78I9FSEiIn1wuPzx58mTd7vUP8Q78l6BnT5Kz7dhBm/D24ty5xj7a27dTcAEydCstLYWxsTEUCgUyMjJgYGCA6upq1ukpaoPbQl5eHkJDQyUjIyPY2NgwgCT98fHxiI6OhrOzM/T09JCamiq4urryrq6uUKvViI6Oltzc3JhSECB78ABZWVmQy+UYPHgwfH19/75APzeXssC7dj3cLs7aujFLMnkyZSRiYh4OBFoDY42B/6RJpBBgjAKvujoiFTSZ3SYBs6b+nDGGx9UctgVfX19oaWkhPDwcALBgwQLExcXh3r17QklJCZ+WltbuYL8Zrl2D9oYN6OXqytZaW0M7LQ2Z1DdYVKvVUmlpKeRyuVRveMlEUZQMDQ2Zt7c3X1JSgsrKSny4fTvJb9sKGAG4urri5MmTbNWqVXj99dehr6+P7OxspKWlITIyEhYWFq0aubWJ/v3pPqxYQdmg339/8vp4larRwEtfn75fvJg2vkuXPmwUt3s3zencXAoEGKNNez22bt0qFBQU8CYmJlJERASLjY3VeIVAFEUMHz5cMjMz43bs2IHi4mLY2toiKCgIjDHOw8MDmzdvxqlTp/DgwQMYGRnh0qVLUk1NDWdnZwd3d/fm+5xvv239nBQKOnZNv/LISEBHB6IoQhRFbNq0CQBgamoqjhgxgmtppNkASaLAY8gQYMsWDHR0xECAlZaW4ptvvmG//vorFnz/PYrnzpV6ffopy87OxqFDh6QePXowExMTkkyvXUsS+q1bWzfdy8oi1c2hQw1EmRPPY3ZZmVR28iRbPW4c6gwMmKVSyb766isEBwejmVN3U2hrN8+caqCrS2U7fn70ta1npEKBqLt3pczNm9mUwYMpK1lVRet3Whopglpizx56TT309fXh4uIiqvbu5fw2beLu7t2LriEhqK6rQ+aNG+jatSv0TExozP70E5CSguve3qiuroapqWnz9+7cmciSDRsAU1PI5HLITp9GxaBByMzMxB+nTwvDN23iR37zjeTt59cwb/zq/782IwMud+7QOHjxRSJcjhwh49QPPwQAePXti/SUFOHW8eOcpUolOTPGcfXXlzGG4IAArvzECcwIDkbnzp3Z3r17xfv37wvW1tacjo4O/8fx43hw9Cjq+vQR67y9OWRl0bwsLCTFS04OUFODGe+/z22fMQNHzc2b+ei4ubk1n+9qNWWEFy5s/R61BY6j+VBTQ6VX/v7AkSOQdHQw/fhxifv9d4YpU2hMf/MNrfl6evT62FhAWxs+H32EmwYGEBcvBrdhAxHu7ZHnPwrFxTSub99+uKxn8mQaYy1RWkrr6MGD9LeDBtE4W7GCAuiWvgMtUFVVhZqaGmZnZ/d0x8xxDfX/8PYmeX5tLZFfRUWkNPjxR1oXtLSITHRwIAXP4cNEfnfrRoqBWbOIFP/2WyIqevSgspmngJGREausrOQqKirabgf6J1BVVYWkpCS4ubk1qKuCgoKwevXq1l5exhh7UZKkSwDWAXiKjEgHngZMkp6sM1QHOvD/A0JCQvrJ5fLYadOm6XQE+v+lqK6mwHDRItqEPAlyclB+7BiyvbxQGhyMU6NHQ1AoGowJBUEAz/PgeR5KpVICIAYGBvLW1tYP1QE/ePAApqamzVowtlYvfPr0acTGxsLa2loKDAxkhoaGmiBBLC0tZZ06dWJZWVkNLrR1dXWYOXMm8vLycKremZdTq+Fx8SLiPD3BOA5KpVLy8PBo2Ij+pVCpKHNw/DjVWLbE1asUGGg278uX0wazPoh+KkgS1VEfOUK1nS+9RLWgL7zw2M1Ze5CTk4PU1FRUV1cjJiYGr776akNmHgCeegMUG0vXw9QUVWPHYu/evZJKpZJEUZQYY7ypqSnMzMygUqlQW1sLURTB8zyuX7+OqqoqMMbg6uqK8UOGUEa8ZcDSAiqVCp9//jkAYOnSpdi7d6+YmZnJOTs7Y9y4ca26LLcLGRlUi+3iQlm49npM1NRQCccnn9C42bqVMtJffNHYNgogImHECLqXL79MNaot8Ntvv0lXr15lffr0wcSJE5GSkoILFy6I3t7eXNONt6ZrQGVlJZydnaFdHwQLgoCbN28iKytLjI+P5wAKHsvLy8k0TS6Xli9f3nz+/PorkQ1RUQ+fmyhSoC+TATY2OJGcLMXHx7P69xWXLl1KEz85mWTmLf0Z9u4lufnPP1Mtbz1KSkqwYcMGdOnSBTpHjsDI3x86vXsjMjIS9b3PG2v1JYmOLzaWlBgtsX9/o0qmspLmz7FjwIgRiOjaVUxISOAWL16M5ORk7NmzB6NGjYJPa/NJFCnQCAhou/yksJCy64cPU4ayFaxduxYWFhbiSy+9RG9SU0NZyaFD6WtVFf2tJqO5aRO1idMQJioVik+dQuoPP0j3ra3ZlSZzVE9PT1Cr1fzzzz8P5Oai4vBh0aWujtM1NUVo166itokJN6lpq9DqavrcM2eIsKishNrCAj8EB6PSxgaeXl6i96JFnNavv9K4b4GdO3eqc3NzZZ07d0aP7t0xcNw4CtJGjCAVmbY2qcdGjIB6zRqsW7dO9Pf35zReEQDI72T37jbL0KLGjBHdr1/ntDMy6AclJSTJrp8fKpUKu0JDhS7793Pn+vdn/S9eRJWrq5jfpUuDskQURSZJEkRRROe0NOYREYH9M2dC8zO1Wg2e52FkZCSWlpZyarW6wWyX4zhJEAROFEU0jQG0KipQq62N+d9+i7Lu3SX7336jeXPoEAXPiYk0pt9/n67Dzz8j6/ZtbI6JwaxZs9D1cUZ77UVgII1rjWN9U7zyCimDWq6ZkkSJgZUrmyti4uMpMx4T80ilzMGDB6UrV66w9957769tt1xWRgqEnBxaIwSBjkvTvvbkSZovPXs2mnn+CdTW1uLgwYNCamoq99prr7En7hDUBioqKrB161apqVElACxbtgylpaUN5CgAKwDnAdivWLFC9aj3rDfKXq2lpWVYVVV1XxTF7StWrEh4Jgf8D0dHsN+BfyRWrly5z9fXd+KzrtXuwDPGhQu0cfTwaB5EtIHExET07t0bCoUCa9euFcTMTH5GaCh+nDsX78+di+pOnSAIAgwMDJCTk4Oqqircv38fCQkJqKioAAD4+fnhypUropWVFZeVlYWioiLo6ekJb7/9Ng8AW7ZsETIzM3mO4xAQEABXV1d8++23UmFhIQOAV199FTdv3pQSExNRXV3NZDKZ9M4777Cm5MDhw4dx+fJlMMZgamqKTp06oaSkRF1QUCB7d9UqlN+8iTsPHiA1NRXJycnw8PDAkCFDsHPnTsHc3JxNmDDh2dbvR0ZSNqawsO2+8Joa3o8/pu/r6uirIFBW/lmguJgydwkJVPtYWUnZNQeHdvWKb4kjR44Ily5d4gHA3NxcmDNnDv+nN3IxMRSIzZjxxCSUpjXcwIEDMbZPH9rsaa7nY5CUlISwsDDY29vDwcEBJ06cgJ2dnRQUFPTn1rCKCmqB5eFB2abHlZ+o1WRYtWwZzc333qNx8cYbFMyJYmMGf/RoCvbacOOPjY1FeHg45HI5FixYAJPHmfk9Bvv37xd0dXXh7+/Pa1pWXrp0ib3zzjvN50t6OgVj//pX22/2+edQb9mCb+fPR2llJTp16oSePXuKo0aN4iBJtEG/fr2xTahKRdn4oCDK0tYTJ6Io4sqVKzh+/DjMzMykV6dMYcdWrRIvaGtzAKBQKKT33nvv4XtYV0c16DduNC+nOXaMyIpff6Vg6MgRuv7Tpze206vHlStXcPDgQfTq1QsvvvjiQx8hFhcDUVHgWtYHt8TNm5Sp/O23hz4DANauXStxHMcWLWrhtVVdTUFh//7kfL9hAwW2pqY0jvT0aLyMGEHqkj17UFFZiUOHDiE1NRVOTk6YNGkS1q1bJ1RWVvJ9z52D+4UL+HH+fAQVFUllUVHsyAsvwKxrV7GyslJycXHhRowYwXD9OsniR41CYmIiDh86hGHDh2PQa69RC8EPPqAx2rTNWT1SU1Nx584dMS8vjxUWFoqLXVx4eHjQOahURMBIEt13jsOaNWvEgIAAzrGpL8KJE1SCsHNn8zffvRtITMSJIUNw/tw52Ds6Cq6urrxBbi60UlNR4+8PjuNQVlaGsLAw+Pn5oa6uDn0++ggVXl4ofuEFcDIZeD09yGQyyGQy8DwPRXo65OXlEMkoFzzPQxAE3L17FwqFAkqlEjExMeA4DsOHD4dSqYSWlha0tLQa1AIabwXGGFh+PviEBCpNmDePjn3TJjKPDQoChg9vtuavXr0aU6ZMadYK8amRnk6+LyrVw6VAZWU01rOzWzdBvXyZTO5aEmSlpSR9/+abVk37cnNz8dNPP+Hll19+doRFe3HqFBEUZ86QSsrdvdHb5hkaB2/btk2orq5mc+bM4Z7KjLUFEhMTcaBpKQWQCcAGIDVdVCORygFwBGAM4PaKFSvakEQBISEh8wH8MGTIEBQUFIg3b95kcrn8gSiKJjKZ7EZtbe2HAMJXrFih/tMn8A9DR7DfgX8cQkJCDHiez126dGlHnf7/BUyfTg/ANrIkK1eulOoz7ywtLU2zKUdsbCyWLl2qcbOngENT/9YCv/32G65evQp7e3upqKhIkiSJMzAwEKysrPi4uDhYWVkJ8+bN4y9fvoxjx45h1qxZ+PXXX2FiYoIHDx40ZPpFUdRswqRu3bqxPn36wMLCAq2VCoiiiJiYGKSnpyMgIKCx5nrgQMrcde2K6upqfPHFFw1/07NnT/HevXucn59f65m6p4EkUYC/fj311G4L58/TJt3evvFnH39Mm9/ff382x9IUt29TRqlvX8o6jxtHMlp9/XZvgsrLy/HVV1+hb9++QmBg4J/fOR04QNmt8eNp8/8EEEURK1euRF1dHWbPng2b27fpfM6da/d7hIWFISkpqeH7adOmwfFR5mtPgjNnSDY6dSpd66YdF5ri8mWS0l6+TEFNfDwF/xoyZsoUCvRjY4kIesS9+uGHHyQTExNp6tSpf4n55Lp166RBgwax1vwOkJ9P2dSWAWo9CgsL8ctnn6HXzZtQ9e6tfv7zz2UNRJEoEiGlMdGrribC7OefH5LenzhxAvHx8TA3N5fmzJnDFGFhwLJl2LFypZCens6NHTuWubbSohIABcYhIVT3GxzcaIr4n/+QXNnWliTDrShxSktLsX37dhQWFmLhwoUPyd3T0tIQ+T//g4m7dmHXV1+J8+bN40pKShATEwMfHx/o6+sjLi4Ourq61A3i/HmSRG/ZQsFYE3z55ZdiRUUFt3jxYhgYGLRqyoeaGir7ePFFymp++SUpSzp1IuJM41wPICIiQoqMjGT+/v7w8vKCKIooKyvDxo0bJUiSpKdSoUAUOcfkZHheuIDdU6ZAqldScRwnDa+uhmdsLLv13XfYtWsXdHR0MG3aNNjk51OZ0r59ZCL6xx/+JTyCAAAgAElEQVREUN2/TwFk//5EomRl4ZKNjWgQF8ccvL0Zzp+n+11XR0H8jBkAzyM7Oxtbt27F8uXLmxtE/vADSbfff7/xZ2o1lUclJuLM889LUVFRzM7ODoWFhYLb77+zrnfucGHz5on1nVw4AHjvvfeaX8dFi+iYm6wBAMjkctYsUmi0gV27dkFfX18YO3YsTci6Opqbe/ZQ4OziQsZz771H8/q33+ied+lCgX1paZvGt1988QWmTp3654P9ffvIl6GwsHVyt6yMjqUtwra6mvx+Tp58uCvB5csUQB8//lCG//vvvxdMTEy4KVOmsCf1hXlqSBKVKa5fT8/RX3+lbL5mrP38M7UcfPXVdhkOPw4VFRXYsGED1Go1Fi9e/JAJ89NAFEV89913muz+CwBiGWPLAcySJKkt5la5YsWK2pY/DAkJmQRgr7e3d+3o0aOVAJkU5+XlwczMDPfu3cPx48cFQRB4AJ8DOLhixYr4P30S/xB0BPsd+MchJCRkYteuXbfOmjWrDavoDvxX4d492mB9+GFzYxsA165dw/79+wFQRmLSpEmIjo6WcnJyWP/+/TF+/PjGF5eVUaD45puUNWiUmUGtViM0NFTMzMzkmvZlr62txcp6o51evXpBX18fRUVFwsyZM/nw8HD15cuXZQqFAlOmTEGXLl1a77/+pAgNpTrZJhl2SZJQVVUFXV1dxMXFSSdPnmTy+syGq6urVN9L/MmxaRNlaWxtH7q2D+Gdd2jj0bNn48/S08ksqamM9q9AcjIZdN2+TZu2+fMpwzhgQJvBZGVlJUJDQ0UA0rx58/58oB8VRWTRmjVPJa8MCQkBACxZsqSxv/VTIDQ0FHfv3sVzzz2HgU/QWqpdKCkh47offqBgaMiQ5r+XJKpDra6mbLOJCRlTVVdTvammJtXA4PHjCXRNDA0NsXjx4j9/7LW1NK+zsmiua2vj2MaNooOpKedgaUm/NzcnwiYvj9aCI0coOLh0CbhxA2LPnjgdESFZWVmxQ4cOQaVSYdTt26L3rVsczp9vDEDCwynb/dZbRBrMnEmBREBAsyAlMjISERERGDx4MNX5ayCKWP3llxgzZszD7eZaIi2NMsQDBxKxYmBAgcE775CBXhub9vj4eJw4cQLGxsaiUqnkDA0N0a1bN0RFRcHa2hopKSlwcHBATU0NMjMzG8hKgNZSzd6Q53kEBASgX79+VKIQEUH3vgl58Omnn0KhUKCmpgY6OjpYsGBB2+UxlZV0zHI5kQCLFpFHQQts2bJFUigUmDp1Kvvll1+k7OxsBgCvBQfDrFcvHP33v3FVrUbnlBSMPX4c8shIVOvpITo6Gpn37kkvm5iw/SqVWFhSwi1cuBDN5MvvvENkg6MjlZcYGBAxNXQorTWGhth7757aXF9fNnTiRCI4zp+n8fPll6R+MTODats2rFq1Cnp6epIgCBgzZgycnZ1Zg5maZv5Mm0Zj8tgxAI1rwQcffEAkQXU1Sbfrr+lXX30lOTs7w9/fv/m6rlHNVFUR4RYb2+h18vvvrcvUU1KAjAwcvH8fbps2STZLljDk5NC8vXKFgvuuXakk5PBhYMwYCi5nz6bnLs/T/6uq6PtWSn2++OILTJs27c9lxTMzyfCuuPghc8wGzJlD5/vdd22/z717pLhpq67fx4fUY/XGehkZGdi6dSv8/PwwVGMG+VdDQzysXEmla4aGVBrCcUS0fP89/a62logAPT0i9Nq6Lu3Ejh07pNTUVPasSOLTp0/jLBmd/gDgdQC2AO62eNlYAJErVqyoDAkJGQogCkBXAC8qFIoZoigaARC1tbXNJ0yYoGPfNJnQAseOHcOFCxfg4OBQl5KSIpfL5dl1dXUzVqxYEfGnT+b/c3QY9HXgnwh1B8n1fwh2dpTZCgqiQBjEKJeUlODgwYMAqE5Mw1Q7OzszlUr1cN2dJsCaNo2yLqWllMms33AFBQVxoaGhOH/+PKfJmqtUjSVmt2/fhpaWlqTJXowaNUo2atSoZ3++cXEUfDcJ9hlj0K3PtHp5eTFPT08UFxfj7NmzSEpKkiorK9mIESOeXAa9bRtt7Fqa8bWGffsoK9cU3br9P/a+Oyyqc+t+vecMwwwMDB1EiiCCFEUsWFAUjT2xYu8xiS1NU25iEglJjLkmlsTojVGTqFFUrpqgUeyCIiBRUJQmoCK9Sh+YmXN+f2yGJtiSfN/vS1zPw2NhGM6c85737LX32mtTRWzt2odLov8ounalLwBITSVC9fLLRLR++omqhn5+qNdqERsbC57nERERAUtLS/HFF1/8Y0RfFCnYj42l39WOJL0t3LhxAzdu3EBmZqYIgI0ZM6aJ6HfvTnLiNuTV7UGlUuHWrVsAKPn0p8PEhAirVEqk5/x5IgG6e+nbbykIXb+eAk8vLyJMSUlUCezf/7FHD+rwQICt0dC9qdEQscnNJXJYWEiBfng4EXU3N7omCQlN4zYdHani3bMnMHw49G/f5mQcB8HDA5yhIUmvv/iC9pS1a+kzTJ5M13jQIAiff46UxEQmSUyEwaRJ2vfee48HwKG+nojGmDFEshITSeFx9y5Vqfv3f4DoA6QOsLGxaUn0580DJk5EXV0dDh48CGdn54dX2Tp1ooTc0qXk9j1wIJ2DRwT+Xbp0wYkTJ1BWVsYB5D2SkpICgNpJjI2NMYUxcFFRSFmxApWVlfD09ISRkVFj3zdjDOvXr0dkZCSR/SlTUJyWhtKFC5E4cSKYkRFu3bolGhgYsCVLliA9PR2HDh16eNKzro7O9+bNNKpSoaC2mJMnaV05OgIAioqKmI+PD9asWQOFQsFGjBiBkydPoqS2FlYpKfAQBKQcOiR0mDqVO2RhIb40bhwz++9/4eLigpSUFJa8bx88NBrO6/DhlkRfFClp5+hIqjFzc4Ax3LlzByEhIeAavFLu378vMXF1peTX5ctkfqczntu3DyguhjQhAe99/z3Sf/2VHTl9WiwqKhIBMCQnk1FdXByt1U8/bdGG5uLiojE2NpY0qgHef58SiIsWAQAsLCxYSUmJgNZO5RxHqoqioiYp/Sef0DNNqSQC7+NDa0M3qnDbNuDOHfBvvIEqU1MRLi4MI0eSEsDAgBJHOsyZQwmF0lJK/AkCKXzGjyePjpAQalVpBVEUH/CweSJUVlISOTHx4c+i0aNbKsvagqEh8OWXdP5b79VKJRndbd1Kz1dHx8YE15+mkHoYdH4g16/T+Xdzo3aoO3fout28Sddy6lRSvMTGUkLy3j1qQdixgz7DUyaL+/Xrx3JyckQ3N7c/pX3V2dlZR/YXBwUFLQkODs5r/n2JRLLhgw8+OBYcHMwFBwfbAVBxHPcrgNGenp5ae3t7/crKSpiYmMDb2xv8IxR7Y8aMwY0bN4R+/frpjRs3Dvfu3bM9cODAueDgYN+goKC4P+Mz/V3xjOw/wz8RETk5OXKdSdsz/B/AiBEUbGRnA3Z22LlzpzYrK4t3cnISZsyYwem16t97aF+2TvJ65gz1xK5cSeTCxAT+/v746aefWMOoLxgZGeHFF1+ESqWCiYkJ7ty5w3r06PHXLhoTk5Zzr9sAYwxmZmbgeV5bW1vLJyUlISkpCQEBAfD393/071i5ksimbmTh4+DmzbariPfvU9vBX0n2m0MXlEVEUNB78SL1wiYmQpuaioyKCtx1dISjk5M4f/78P3attFpaJ4cO0XSHJ0ymhIWFQa1Ww8jIiLm5uWl79+7ddDzvv/94kwwakJqaisTExMZ/JyUlwdfX94mO57ExciRd17VricTu30/rcuJEOu9ffknBas+eVHni+Qc/iyBQEF9cTCSloIAqmPfuEZG3tMTQU6fgcuYMkYk7d8g/4Px58g8YNIiIfEkJyZRra6my2rMnETV7e3qdQkG913p6RLab9beXy2TaPWlpfMfYWGFOWBiHsDCqIvv40LUMDKRKH2NAcTEkgoDxO3ZAe+wYugQG8hg+nILvefNIbXPkCJlHLl9OyZDZs2ndf/xxm6dRq9WisrKSE0WxiQCbmQHm5liwYAG2b9+O8vLyh5N9QSByeeMGKReWL6fjfustmqYgk7Upea6vr4coipg9ezY6d+6Muro6qFSqliMajx8HbGzg6enZ4mcZY43PRn9/fxw/fhzBwcEwNjbWVqjV/NCSEtifOyde8fERn3vuOebj4wOO42Brawu5XC5s376dLVmyhOnp6bUk/qJI12zWLGpPeOklSprExBA509en+3vxYvj26aONvHCBd3Z2FqdNm8ZUKhVOnjyJo0ePCu7vvMM5z5yJt62tuV9cXCA6OYGdPAnMmoVen32GMj8/aMrK8FxFRUsjt9paiB06gEVFkcKrrg4wN4f25En89/x5cByH8ePHIy0tjV27dg0Gly+jKCMDlsOHU+tOYSG9j6UlfdXWQu/DD3E7Px+BP/7I7Dp1og+bk0Nk7c03aZ/duLHF+RVFkbV4RsnlLarydnZ2uHDhAhcXFwee52Fvbw9LhYISS7GxtCbc3Ki1beNGuv4vvUT3kJsbKRS2bSM1SMPzTnryJH6fOlV09/Zuf61dv07r/O7dlq1Zfn6UFOvShZIDs2a1+DG1Wo0DBw4IhoaGoqurKx/Qzsz3NpGXR60V2dkPNypVq0nZ9SgVmZUVmfhVVbWdmO3XjxIm06cD//43btWRotza2vrxj/lpMX067atHj5KZ4JkzROzffJOKGfPmkSLq0CFKqhQVkaLsww8pub17NyWcT52ihM4Tkv6cnBxRIpFQQuopoVarERMTg6SkJE1+fr4EAKRSqW4MhCFj7IIoip8CMNdoNEeDg4O9ASQAAMdxQseOHVWTJ0+WKJXKp+Kfjo6O7MKFC9p58+bx7k0Ku8vBwcFttgc8A+EZ2X+GfxyCgoLKv/jii4KioiI7mzYMep7h/0MYGABnzwKvvYaar75CVlYWP2PGDLi6uj59OWHYMJLT1dcTWbhyBXaenjAwMNBeu3aN79XQj9t8ZJXlE1R1nxrW1vSQfwyMHj2ad3Nzw2+//Yby8nJcvXoVEonk0f38dXVPZnhXXk6VkAYTw1YHQcmYrKwH+yT/alhaEgGdOBGorYWwfj0GhIfDpKwM9rGxInr0YPD2fipzP9TVUT/ljRtE8p6gcqXRaLBhwwZRrVYzFxcXYebMmRxjrInoZ2eTUkFn7vYY2LdvHwCgT58+GDFiBP4Mk6WHwsSEEmx5eUS8ZTKSBC9dSkGmrgdZo6FkQFISkYS6OiJtnTrR9y0siBTn5lJSwNAQsLKCoFQi294eGmdnDJo0iT6PUkmV0D+jHQbApHPn+LLLl8VtQ4ZwV6ZNg0/XruCaE9tVq4ioT5gAMIbcggLsKiqCZt489IqPR8fAQBpTGBFBwXdJCeDhQddv/Xoi+m30Ses8PHr27In09HTx0qVL8PPzY9BqqZptaAgrtRpWVlZiWFiYsGjRogeTUuXlpPwoKaH2mSVLqGXG0ZEInIEBEeb9+4kAnjpFJK9hTcXExIgAmE4WqzNka4HRo+mrHZSUlODs2bON0w18fHw4Y2NjOCxbBouPPmK+cjmDj0/jvWFubo63336b+/LLL8U1a9aA53ksXbqUFEcHDwKenrSP69Y9z1MS59//JsWOTEYkVaVCwMWL/JCICLCFCxk4DlJjY0yfPh379u3jBEEAN3MmYGmJqlu3YGZmhmoTExgfOQI2fz4c3NwQ6ekpwsaGNe5LoohtP/+sNRwzhs84dAiDS0rg7++PkvXrsSsiAur6enH2nDnM3t4erq6uqElLE5z+8x/u0HPPYdHUqSSVbw25HFWzZiF+40YMHDsWUldXSqBs306y9xMniKDm5AAdOiBk717R1d0dgiCILSrhL77YeIy4dw8DFQqoysoE7WefwSAri8vQ14fC2xvy+/dpzxs6lJJd5eVE/o4cIQK5e3fTe7ZKvunp6UGtViMvLw/Xr18XampqxFGjRvFyubyp4uzvT1J9nc+NDnZ2tA7v3AFWryazu2bEfNq0abh//z6XlpaGa9euaQICAh5/cxo4kIhuUNDDXxcVRUq05j4I7WHs2KZkYVujKx0dgbVrIURFIb+gADAxwb1792BhYQFRFCGVSqHRaBonfvxh7N5NypVPPiHlgiDQ8RUU0P9NnkzPVo2GJPzjx1Nip7iYnhMnTwJr1pCCbc0a2mN79qT9Yf78x94v+/bty86fP892796NOXPmPNVHKSwsxNmzZ4Fm/JExNgTAZgA1HMf9DiCIMeas1Wp3M8Y4QRCwePFiWFpachzHPbZZgCAI2Llzp6ayshKMMUgkEmZpacnfvXuXr6urg76+PpydnZGZmQkAHfFgC8EzNOAZ2X+Gfyqe6fj/r0GhACQSqDduBCQSpKenw7V5//jTQioleaytLTBlCsba2fGhx4/Dysqq/dnUfyUaqoyPA57n0aVLF7z55puIj4/XZmZm4tSpU3yXLl3aTkwsWUKVg02bnuyYBIEqR+0FFf/9L8m9b9/+04jaE0MuR9VLLyFEo4GvjQ26lpdzyM2lysnw4RRUGRu37eLcGlVVFEBnZpKE/wklqtu2bdPW1NTwXbt2xYQJE7gHZM379pGR282bj/V+OTk54Hkeb7/99tOP2XsYNBoi6927E3moqyOC2akTkckpU1oG47GxRPwDAqgK9emnRII5jipQenpUwW6n4g2QRbNFXR2i4+KQeOSIOG/ePKb8A14GjcjNpdaIVauAUaMQZ2nJakURUaam4tn168XJkydzjeNWDx5sdGQXBAHl5eXQjSgbMWJES2Os9HQiDoaGRFC/+QY4exbl5eUoLy/HzZs3kZSUpFWpVLxOGcTzvFhfX89Onz4NPz8/4LffKDgvLUV9fT14nmd1dXUtn0VFRaSoGDOGEn+rVtHa1WjIS+HGDSJkkydTMmbuXFrX27cD0dEo6dsX9zZvRqafH3Pr2VNoONVtY/RoSsy0dNVuxKlTp8S6ujr23nvv6f6raSFv2UL3lq0tkauGNc5xHBYvXsyuXbuGGzduCFu2bOEM5HLM27ABqSNHit2//popmt9Pfn50bvfvp0q0Tpk0eDBYp06UAHBwAJYvh+uyZYAo4j//+Y+wbNkyDsnJGHLgAHb168c2btyIUaNGiX137mSGS5age0qKiI4dGeLjUf7GG6hxd4ezuzs/4OhR/Prrr9qIiAherVYLUVlZnMft25h85gxjDYZ4XF4epkdFccKxY8jft48SXM0nIjTD3bt3YahQiMYffkgnYONGun/CwoCtW1E4ejQKjI0RM3AgZu/cyX4dPx4O+fmS/jdv0rX296c2gfHjqQd/wABIBwzAGC8vDl5eqHB2xk/nz4vyiROZd3NT0MOHyWtiwwZKpkVHU1vC7t1t+mXU1tbi3r17/I8//ggbGxsuLy8P/fv3J0J79iz9bE5O+yZ/w4fT+r18mT7bxImNaoQuDeNY5XK5jgg+GvX15GMQG/t4iqlBg9oeldkWrKxoP4qNJaVCGxD8/HDywgWh74kTnDwgQDh27BhXUFDQ+H2pVIpp06bhD41mrqwkJdPhw6Qk6dqVFEEjR5KiRaGg5ypAiUMHB3pGV1fTNZwxgyr4oaG0/k6dogJFUhIZKxoY0D3csSO1bDxCqaqvrw97e3shKyuLi4mJQT9dW8oToGPHjggKCkJeXh7y8/MRFhaGurq6EQ3fflmr1S63t7dHnz59YG5uDhsbm/ZbPASB4oaiIjr+VuONt27dqlWpVPywYcOYIAhQqVRIS0vTiqLY+EF79eolZmVlCQAugAj/M7SBZ2T/Gf5xCA4O7qqvr2/5P1KlfYY/F6tXwyguDspTp55uPnp70PXH+/vDrU8fuJ87JyatWSPab9nyP2TN2wy9elEG/wnh4+PD+/j4oLa2Vrtlyxbey8tLHD9+PGusAGu1FGS0rto8DqqrKdhrD1OmUKXpfxkRERGCUqlkg+fMYY3SaHd3cpo/cIAI/PTpFAh6e7dN/EtLidjKZFRleUKUlJSgsLCQl0gkbY47A0AGYW+//djvmZqaCgMDg6cn+lotEYNevegcXL9OJNLLi47D1ZWub3k5Baf19UTePv6YAspVq6jy5+dH7QcqFVUjvbyI9PfvT73NYWF07rp2pddu20ZVweRkCrxjYui9YmMBJycMHz4cAQEBWL16NUtLS0ObrvmPix9+oJ7isDBSmvTvDygUSLh5E3oajWhubo68vDzuzJkzgrOzM9f4M97ewNSpuHbtGsLCwiCXywVzc3MmkUhaZmhsbSk4jYykc9CpE44cPSr4rlzJRQ8ZgiJ/f3H48OG8gYEBrK2twXEcVCoVU6lUaGwzGjmSyBKAq1evIi8vD7NmzaIbtLCQkmbm5nS9unalZApA61X3dy8v8iWwsSHDN50R2blzAIDr330nyBjjrG1sNNM/+kiCo0cpMZGcTFXU5oH3jz82jdBsA0qlsv3MHccRQR89mtbK2LHNfw7+/v7wHzSIq5gwAekeHkjcvRtRly6xU+vWwdHRUZg8eTLXOClFT4+I7i+/0DkAKAkxdy79/exZSrB89BEW7d2L3bNnc/WFhZBKJLArL8fK997D6bNnkZiYKDg5OfG5S5ag+tNPudTISDF28GDx7tdfc3YjR2LgK69ALpdjyJAhfGpqKq5fvy7OmTMHTh07EiFjjM79lCnAypUQOncG02qhiYmBpA1jOjpMfajVaobISDrPS5bQ9Xr7bYDjEPqvfwm9e/fm5nh7g9uwARMEATU5OdArK6M3CAykCrSfH/Vkt3quyerrcf/iRVZb10yhfP06rcV3322ajNC7NyUpExKQaWKCkob3l0qlkEgkKCsrg42NjVanIvn8889xbO1aDLp4UbQ8cYKZtDfOToexYynZVFhI9/GpU40eOjpoNJrHN6l94w16n/jHHKM+diwlyqZPf7zX795NZoqDB7eZgD527Jj2Js9zA9euhd61a1z0tWuC47hxTK1WCzKZjAHg9u3bhxkzZqBTp07Izc2FoaEhjI2NH8+foLCQWj9GjKCEKEDKjaoqWhvHj5OiJSGBvrd1K71+4kRqW3JzI7WGVEoJTFtb2qP79iUX/23bKOH3zTfU+vTbb037bzvPYsYYXnzxRe7YsWPaEydO8Lm5ueKkSZNanJzCwkIoFIpHuvV36NABHTp0QFhYGADozI3yAGDu3LmPpzw7dYr2ELmckhtDhpA3RmAgYmJiUF1dzb322musuSLp7t27nL29vSCVSjkA8PDwYFevXmUZGRm2wcHB/QFcfSbnfxDPyP4z/OMglUpX9O7dW/KsX///f6hUKtTU1EAmk+HLL7+EhYWF4B0ezoYVFDCPdev+/F/42msAgEG//MJUx4+zhoP48+bIPw7S04kQPKUz8OzZs/nCwkKEhIRg9erV8Pb2FiecPEmzpyMinu6YzpwhItWWwzFAgb+hIX3/t9+e7nf8QVRWViI5OZlbsGBBy0DFyYm+AKqWqtVkhHXnDiUASkooyJBKqbK1cycF620YUT0MWVlZCA0NFaqqqjgAeK1hLbWJYcMoSGvVK90WioqKcOXKFejaStqEIBBZ6tWL1k5oKJnp+fsTwVu2jKS/aWnkdq2rYH32Gf2MvT0ldAAy+dJh+nSquo0YQRWmdevo2H/7jQJVoGmW+JQpTaMbk5IoYSAI9LuNjKh6k5VF358/nypakydD0rUrLNetE7F2rYiOHTls3EgS+QkTKFGgUrXfm1pTQ+8zaRKRnilT6F5t+AyiKMLCwkKUSCRMrVaL5ubm4vjx45si9fv3KbkDwNbWFhKJBK+//jrXblJlwgRKIrzxBlBVhayoKFY/fDjGzZ4NWWQkYxs3UoKoITg1bD2+8McfyS/AxQXm5uaQSCQwlUrpuixdSvLiTZtamjYePkztDc0nQHh7U2Vw6VJKCjQzNbMbNozbW1CAj956S4LZs0kllJJCx7xqFY3z0mqponbxIiUP2oGZmRn09fXb7/HleVprugpk8/YhtRrgOBjb26NnYCDQqxf8Bw9GQUEB9u3bh/Xr16NTp04iz/MiYwyzNm/mUFVFhPKVV1omJRrMKG8rFIgsKcHzY8ZA6uNDvc6hocCxY+jm44NLly7x/9myBd62tlrfrVt5o6++YnO++44JCgUqs7JgsmMHUFAA89GjMeGXX+B94QKPhAQihqtWEWHOyiKS5esLCQA3Bwfh37NmcaNu3RJ79erFaNncR0hIiAYAk0qlvEIQRBQWMnTuTPefpyetg7NnYTJpklhaWtoiUSfTKdLi4+n+qqggVVRp6QNkv6CgAKIoNlWYCwtJ0TFxIkm5G99UBoSF4cabb6L+wgXELVwogDFotVpotVpWV1fHvJv1608LDERtTAy0p06horwcJo9yemeM7tsjR2jvun2bjCJHjWp8iVarBcdxj2b7+fm0P92//8iXNqJLl8faLxthaAjN778j+csv4bR0aWNxoKamBvX19cjMzOTt7e2heP55KJRKOG3ezEGhAAYNagwMq6urhT179nCMMTDGIAgClEqluGzZsvZH9Gk0pHTq2pVUFw2u/wDIeX/MGIozfv+95ThhO7umfc7BoclPSKulz37yJCWEjI3pvk9KIhWJTEa/5/59up/LyppGDDdfH80wevRoXi6XIzIyknXr1q1RmbF582ahuLiY09PTg6Ojo9i7d2/WlnFhcXExjh8/DgA6ef25zz//fCXP86kcx6UePny4S2Bg4IOKtuYQBEp0bNpE94wuOdKxI7KDguDy3XcwOX4c+s3eo6SkBOnp6eyVV15hzd/b1dWVy8jIAGj0X1VwcPBMAGcAaADwQUFBte0fyD8Dz8j+M/yjEBwcbCWRSGb37dv32dpvgCiKf9xN9y/CN998I9bW1jbu6t27d+eq7ey0PbOzeT4v74l6np8ENYsXY4+REVYmJYH16kUP0P8pwm9mRkT0D8DKygpvvPEGy8/NxZ4NG5jqzTchq/sDyYSztIwAACAASURBVO7Ro9sNHBrh6EiBjlr9eFL5PxlGRkbo2rWr8OOPP3Lz5s1re+Zzg9M3zpwhEnT9OlWnLl2iyndmJgWvc+cSKTIzIxLzGNWqH3/8EQC4hQsXQqlUwuhhCgpb20b5eFsQRRG1tbWQyWQICQkRO3XqhKESCUNxMZHmjz+mikhgIJ3r3bvpGkVE0DXQBdEff0yfuWPHJr+FBQvoCyDy2h508v2cHJLQ2trStZVIqL86N5fWxPXrJJttDo5rul8++ID+nDWrydgrOZn+VKuRu3cvylNTYdqnD2sMdvfsoQkcKSlUvaqtbSKUW7ZQla+ykipDJiZEAtoYhxgZGanNz8/nRo0ahZ49ez54Eb/6qrGybWZm1ujM3S6GDCG59caNwM2bWHD0KNtQXo7hfn6QOzhQe8a9e0RCP/+c2iKa48gROn99+8Ld2RlXAYh+fnRejh1re5725s1tm5J5ewMJCRBu30b266/j6tChSE5Obkx0ZWVl0T2gq/zGx1NlcccOcj1PSCD39V696GvYMLpuCgUlK+zsUFNYiPq6uocvfqWSFBILFxI58fOj3+PtTf/37beNL+U4Dh06dMDy5cu5n3/+GRkZGUyhULCqqioEf/IJHK2shDnffsvxFha0tlvBwckJesOH40BkJAasWycM79ePw2efAZs2wZrn8W5QEKpMTSFbsYJP2bJF7CmRMGZnB76mBiZaLd3fMhlEUYRlQQElpPLymtppDAyIcDdLrE3bto0r9fXFf8LDWWZmpujh4cGOHz8udurUibO1teUUH30kds3OZkhNpes0Zw4RLRsbgONgZmbGynRVfKBxjXEcB3z1FQSlElkDB8Lm3Xchq64Gjh2DKIqoqKiATrqsq5KmXr8O/RMnAC8vFHfuDOHyZR2ZhyAI0Gq1SLWxwXipFEvHjeNgZ9d67yIiu307On/2GXD7Nv6dlweH6Gjcvnv3oZfZ3NwcXgMG0D0pCHSu3n+fyOeAAVCr1aipqXnoewCgdoPnnqM96mGGfABOnjyJvLw8GGs06OHjA6du3QCQ+WRhYSHsHvL8r6isxAFbW/D37iHs668xYcIEnDt3TltSUsLzPA+O4+Dh4UH+GroRiVlZVCVvkP5PnDiRGz9+PIqKiqBUKiGVSrF69WpWVFTUtqHf7dtEWhMSKFmsu/cASlqq1fTeqan0vGmYvgCA9jDd/vfpp3QcWi0l1O7eJe+Tioqm13h4UFL01Cnyk9i+ndp/VCpKru7ZQ4lsmeyBEaqMMXTq1AmRkZG4du0aTpw4oS0tLeU5juPmzZsHjuPw22+/sX379kEul4vDhg1jCoUCWVlZMDY2xsWLFwUjIyOO4zhRFEWmVqunAJgCAFqtdmBKSkr4xYsXDQYNGtR+UHn0KCU5//UvSm4EBiLl669xLCJCq9Fo+JlvvQWPHj0YLC1JwbJoESru3IFEIoGFhUWLt/L19UW3bt0glUrx22+/6cfHx4cxxrSiKPIcx9WvXr36ww8++ODLdo/lH4BnhOcZ/lGQSqVrunXrxj00EP8Hoba2Ft9++y1qa2vh6uqqnTx5Mt/a2f5/CxqNBjpjF6VSiZqaGt1oOR6XLlGAfOLEX0LC7ezswHGcWGBmxmzi4+l3jB5NxEXn5v9XoXt3qlT+CbDavBnzfvgBR/v2RWAbwfNjIySEgruGYKtNmJhQFfLCBaoi/w8iOjpadHBwYO7u7lxKSgru3r3bNtlvDgsLCryMjCjQMjSkQKq8nCokv/xCRMDOjgi0vz+dB1dXqnjfvEnJgA4dAMagLCtDRxMT0U5Pj6F1Rbc5VCoymmqdQLh4kQi1QoG84cPFH8aNY2PPnRMnZ2fDOj2dwdGRgruePZvGl61cSddFIiHyq8OwYfTn014HrZYqwQ4OgLMzVaR9famafO8evcbGhvpILS3Jufu5557415y9cAExKSkICAgQXfr3bwoMr1xpepFOcbBsGQW+okhVMbWa5LGbNrXbq1pfX88kEgk6dmynlfP990nlEBKCuro6MMbanuSRlkZeBKdPU3Jl3TpAIoEBx8HExER7/fp1buDAgQyffkpJlb596Xr86190ft56i663TvUSHg726afo6O+PAxMmYPHnn7edbM3Pp0ROey1nZmbQ5uXBYO9epOvro16hgEKh0L755pu8si3Zuc61HSDCNmoUXUdPT7rmxcWkLDp2DHBwQGdBgH1sLK3X6dPpHjc2JlLTpw8pQjiOZLgffUTS4txckht//fVD1UmzZ8/G7du3sWvXLri7uws8z3M3btzgvp0xA6MsLODWUDWuqKhAdXU1pFIpbt26Jebm5jIrKyukREVxvbKyYJacTMefmgqZpSVkUVFI/+ADnM7NhWrqVHRcvhyODg7g3niDKojr10MEsGPJEnxkZtaoSBFFEXd/+gnVx47BOCcH9jqz0W++gczKClPUaoSEhLCMjAxRFEXWW0+PdSouBrZubbrfIyNpr7C2pi8vL3gvWMDt7N5d3Lhxo1BfX8/UajXHcZw41tycxfv5abIKCyXCzp3Qc3VF4KRJOPjpp1CLIhoIqdgwyYH9sGOH6Hf8ODNVq8XzM2eK3OXLYIyB4ziR4zjovuS2tqjavZvHmjWUtFm/vmmvqamhnu/Jk0kmzhh8fHxYdna2zuSsEc3HE9fW1qKurk70WrGCobKySXn2ww/0bCwowHcHDoilpaWM4zg+IiKi7Zn1hYVU6c7MfGRCWKVSISYmBv3794floUMCO3mS+5ExYcqUKdy2bduEiooKztLSUjtgwADe1dUVMpkMpaWl2L9/v1apVIqTJk2S5NrYYGVICFI//hgnTpzQajQaNn78eDg4OODGjRtCdHQ0V1hYiKlTp0IyaBC1wmzYQAmsBn8EjuMaif2tW7cgCELbfjjHj5OEfsMGarNpjshIStqFhtK1+PRTamVqTvbj42lP69OHnklbttC9NXYsPavCwsitv7S06XoqFKTw8PKiBNMrr5ByYM0a+v5PP5F66/x5umebkX4bGxvY29sLGRkZnKurKzdw4EBYWlo27pVLliyBVqvF6dOnxZMnT7L6+noYGxuLenp6Yl1dHTdmzBi4u7uzI0eOqK9evdp4MRlj4RzHfXr27Nl/q1Qq7dChQ/k2VbTr1qE+KAjxsbEoLS2FrSCIN7duZf0XLOB69+7d1PqkS8SFhaHTq6+Ce+st8f7evcx0zJgW40d1Zorjxo3Te+GFF1BbW8uXlpaCMSbdtWvXZ1988YWPIAhlEomkv1qt1tdoNGOCgoIenuH6G+EZ2X+GfwyCg4P7y2SyGcOGDdN/9Kv/b0EUReTk5KC2thbW1tZNs7wfgbS0NEgkEu3bb7/Nf//99+zYsWPa8ePH/6/3N2g0GqxevRoAmE7u2kJaO2AAVf4yMynD/SdDIpGA4ziqVOjmmdvb04zfS5co+G6Qvv3pqK2lh/O8eU//HvX1QFQUuI8/Rpa/PzKvXXvAqEuj0aC2tvbhFWgd0tOpOvwolJZSouLuXQqY2kBeXh7y8vJga2uLh03DKC0tRWZmJmxsbB5awVGr1Th58mQjc+Y4ru1Aszl0Y+EiIqjKnZlJfZTPP99EUHS9oVotVaE4jip+ZWVEkPLz6XvXrqEuNxe2ubkYdOwYww8/UN9hTAwFafX1RJKGD6cA7+efKehNT6e/f/cd/f3VV+l3vvIK6iUSdOnUCfzy5czaxYUqezk5TcevM1R7lNriabBsGSUR8vPp37qpFWVlFDjGxNB54jgKLuvriTCFhxPJfUyUl5fjwoULCAwMhKenZ/sVIB0J1iXZIiKIMOzaRQmJmzeJTLchQw4ICOC0Wq2wY8cO9tJLL8GqtQJhzpxGGb9arYZWq0V2djYcWk+VKC2lfUAXgDJGayE2Fh4eHnxUVBQG6o5PoWhqhcjMJOWDzkgtPJx+7rPPgNWrcef2bbGcznPb1fOVK+k+2rCh3dOj5+kJvVu34LR0KTrduoWjzz/Pb9++Xdu5c2c2YcKEh5/XFStovxkxouX33nwTABCxe7eW8/fnXEaMIJJXXk5ktrqa7vHKSqqGXrpE56asjAigsTHJjD/5hBJYc+ZQgqZ37xaeIToS5evry3Xq1AlDhw7FoUOHcGH3bjgcOoSC8+ex7/hxiKKI+vp6GBgYiIMqK1mfO3cQd++ecPHuXS7g++9h5OREazQ5GeA4uPTtixHJycx0wQLsmjULr7/xBkw3biTSFR0N/tdfwTXbn8rKyhAaGiqUlJSwzvn5Ij76iLP76SewCxcQvXu3eNLOjunp6cHQ0FB4++23udDQUEjWrBHRrRvDuHFN5y0u7oHpBtaJiRj90ksss7KSz8jIwOuvv44jP/zAnFeswIW5cyXWPXpg4MCBCA0NxbUvvsDCyEggMREWFhYtJPGFBw6wRKUSXiEhzEuheLTU6F//ohGZxcVNyaIvviDSmJDQSPxGtL72bSAlJaVRto2BA0lSPngwEeJVq4C4OHR65RVtaWmphOM4nD9/HoIgoMUIPo2GEofh4e0mzBvaI7SOjo6cra0tk0gkGD58ONCtG1c9fz60iYnYsGEDXFxcxHnz5uHmzZvcrw3EWqlUilVVVczV1ZXduXOH//LLL8FJJOAWL4azWo3Kykqe53nI5XKYmZnB39+f69KlC0JDQ8XVq1ezgIAA+AcE0F594gQl7VpVxG/dugUrKyuxRatCURGd69dfp+p6azUPQIlcd3faN+rqaL9qnVQcNaqlQuq111ruaePG0RoXBPpqnizp0oXW9qpVpFp79VW61+bPJ5VaUhLd6wsWkAGjnR3kcjlefPFF3f7Q5nrieR4jR47kBg8ejNraWpiamrLWr33hhRf0GGO4cuUKZsyYgZCQEIVWq30NwBtxcXGLMjIynAYOHCh3c3NrJPBCeDji/fxwMiZG1JfJIJfLRcW//40Za9cyJpOxFp9NFyPMnQs2aRKMf/5ZUL31Fl9w7hwqJ0xAp7Q0SF57rcX5YIzBwMCgUeW0dOlSaWpq6gy1Wg2O43Dy5EkAeANAsz6Kvzeekf1n+EcgODhYKpVK94wdO1b+p41T+f8I0dHRQkREBNPX1xdqa2t5hUIhjh8/nj2qupmbmytYWVnxBgYGWLBgAbdlyxbRzs6usTfxfxrXrl1DXl4e7ty5I8jlci4wMLB9o5cNGyho+Oknqrb+QZSXl+PUqVMoKSkRjIyMmO7/GvH99/TnW29RdTEkpElm92fC3PyPy+B37aIRSZmZ6NijB1Sxsdzq1avh7u4u9OjRg9PX18ehQ4fE0tJSJpfLMXXqVDg6OkKlUqG2thZqtRo3b96ETCaDr68vJCtXPp5jsp0dSRQbkk3Z2dkoLS2Fq6srJBIJYmJihHPnznEmJiba0tJSfsWKFQ8kGwRBwA8//CDk5+dzJiYm2vLyct7IyEg0NDQU+/bty7y8vBhAvezx8fG4evUqzMzMtDNnzuRVjzI2FAQiOQMHUvJi/37qP502jSopzapZjeD5Jrlpc/fiZkFdUnw8ksPCkOzpiaCgIHqfykqq1OTkEAlSKIgk3blDgZ4okou2LthuMGrKzs7GnkmT2MT+/eHxFySyHgpBIMKUk9OU3HnnnSbi/847dB+IYlN1SSoluShjRHRWrHi4mWMDjIyMYGtrqz19+jTXpUsX1mZFvTXq6qgX+ttvmxzot26lqtYXX1C1shkkEgn69u3LxcbGQqvVPvh+pqZQZ2RAVVmJrVu3AsCD4+nWrqX10vB9AHR/OjigIicHkZGRMG2v31k33io9nRJ4ajUZuPXpgx0//CBmZ2czBwcHMTo6GjU1NSgoKMDzzz8PExMTGpGm0Qgad3c29hFzsU+dOYN7NjYYVVAAj0WLcCMriz8WHo6UlBTRx8eHubu7P5jAAIiArFz5INkHUFVVhczMTH727NlNBqY6tDXas7iY1C8jR5ISYsoUIvYjRtCaX74ceO89qgofPAikpcHglVfgrVJBk50NJCTAdOhQzJk9G0dMTPCfDh1gvGkTevj5iaOmTGFCVBS4des4dO8OTJ+Ofn37chs2bxbVV6+Kk52cOAQGEkGqqQFMTNB94EAk7N8venp5CaYzZvB49VVKUmVlgd24AaWXF+5fuoSw9HTcvn0bnTp1Yu+88w5jK1awpOvXxcTERLifPcuMY2PZC0uWoCcl1jgsXgyf3FycevllYcHChS03f7m8JUE0MACflIQed+9Cevs2srOzNUYKhSRw2jTkeHign5kZsrOzNaGhoRIA0JswAeZ+fuAtLVsqf06ehOGWLUgbOFAc9jhEH6D2nW+/peMxMaF7Y+3ah07IaA+CIDQZ773wAj1bFixAja0tLvbvL3QAGJ+TwwBKInfu3BmxsbEoKioSp06dylBSQsdw61ZLaXsrbN26VXRycmKpqan4/fff4e/vrwXA47XXYPj555g3bx5XVFQEW1tbHgAGDRrEOnbsiL1796K8vJyZmpqKU6dO5Wpra3HixAkxJycH3NKlTL5wIRYsXgxzT88WPhodOnTA66+/zj777DPcvn1b9Pf3p1GSlZX0nD94sIXZna+vL65cucJOnDgh+Pv7c/LSUqrYm5lRMrAtleHy5ZRA1flq6CrtFy60fN25c/T81PkSjBxJz5tff226/5yc6P+NjUkl0BzNFQM//0ykf8ECSiB4eVFCTqUiBZahIal39PUfq0VNJpM91Bz2+eefx/MNfj5LlizBmTNnzNLT0zeq1WpWWFj40+HDh1+wsbFRzJ8/X1+P55HxySfibW9vzHjlFV2MSgeRnw98+GH7vj8KBfr4+vLfL1kCiCIc/vtfKMLDcYgxITA6mlPOmQP9NqZJKJVK+Pr6AqCYroHsLw8ODt4ZFBR07ZEn4G+AZ2T/Gf4RkEgk79na2lp7PonBy/8hXL9+Hf7+/szPz48XBAHnzp1je/fuxeTJk9GWwUpFRQWuXLkixMfHc6MaDHaUSiWmTJnCDhw4ALVaLfbr1+8vJ/ypqam4fPky+vfvDxcXF/zSULG0trbGq6+++nBHWI6jnuNt26iC8QcQExODEydOwNXVVevi4sIXFhZq6+rq+A5tBSY6B+KdO0kGnJv7h373A1AqSdKnI6ZPgqoqkjW//37j/F1ra2u8//77KCwsxPbt27nExEQAgKenJxYtWoTjx49j586dbb6dTCYTCwoKhIlffMHjo4/aN+hrDj09IoppadixY0fjf/M8D5lMhilTpsDQ0JDfvXt3i+tbWFiIoqIixMbGCuXl5eK7774LqVTKV1VVIS4ujt27d48dPHgQ8fHxwr179zhRFKHVaiGKIl566SXe/BH9nygpoYArKoocvxt6asFxVDV55x2qUh858ujP2Arh4eEiADZixAgyM2OsqbfS3Jyqn8uXU4Vt0yYifHv20Lz2hnFfOtxv6Lf/Hyf6gwYR8Ws+OuvCBaqep6bSv3v1on7vQ4da9pHr1qm7OwWkBQX0WR+yfjmOw8KFC/kNGzYIly9fxsCBAx+93+jc85vPaV+6lFoMli2jczxqVIsEnEQigZ6eHhISEqC7nzMyMhAREaF1jYtD57Aw/vvkZMhkMjEoKKjlMYgimTj27v3gsezdi4gGl+2lS5e2f8waDZHAvn0p6FYqAcbg6+vLFAqFUFlZidOnTzNDQ0NUV1dj06ZNUCgUgvvZs5yRuTk7nZfHbq5dK44cObKFwZoOxcXFuHnzJmBiAtmpU+C/+AJ9YmNhunYtcgsLxdjYWBYTEwOlUokhQ4bA1dW16b5TKimwLi9/QIkTGxsLnueRmZmJzp07P/y6/Pwz9WJHRpKaJSuL5OO2tnStoqNJ3cDzJEueOROQSlGgUKBOrcb1gwdFl+hoBktLSFevxuSkJAg3bwJubuAOH2a4ehWcVksJHR+fRoIil8tZnc5TYNUqSiy4uQG3b6Pa0RG/DRvGZOnpfLmLCzTGxpDt3AnDvXtRHxYG7XvvQT8wELKBA2EzbBjmzJlDpmvffINbhw6xxMOHca1TJ/He9OlY2bMnQ3k5hLo6pHIcLnfogCFDh7Yk+oWF1ObRlrHnuHGw7dMHand3huBgSI8dg9Ply3ACcObMmcY4/Fp6OlyHD4fH7Nn0fJFIKFFUVISihQuhetRI1vJyarUZMIBUQsOGETl//30id0uWEIF1dm66fx+D7DWQfREA02g0yJs6FaXvvCP80qMHZ2ZmxvIdHNj4oCB+4Mcf45CeHkpKSsRFixaxXbt24bvvvtMu2raNZ716Ad9/D0EQsG3bNm19fT1GjBjBd+7cGRKJBPfv30d9fT0bN24cA0hN0K1bN77RyM3MDHp6erBtlXhydnbGlClTkJOTg6ioKBYZGQl/f39MmDCh6YNZWMChwXSxLRgaGopdu3Zter2/P52nDz6gfaVBsWRhYYE5c+Zg//79rMM338AlKQl3Dh6Em7c3CgsL8f3338PZ2Vk7bdo0Xqoz3jx1quXYxilT2vZKqatraVjI81TEOHeuyesEoGSniUn78UHfvpSI/v57io3c3Jq8XfT06PmXkkLfP3iQkpg69SJIJSoIAnieh0qlQlxcHLp37w5jY+NHTloIDQ3VJiUl8d27d5ePGDGChYeHQxTF+aIoIj8//8bx48e7mBUV6VebmLCx69ZB3jq+Cwykz7ZjB/l9tAFdAWve/PlQKBSo+eADdMvM5Ir37BGS163jnLOyYL9hA+03bagLb9261ewU8++sWbPGpL6+fnlQUNCtB178NwL/8VNk+Z7hGf4vITg4uBPP8yFz5swx+DtW9QHg9u3bQnFxMbp3784YY3B2doYgCIiJiRF8fX1b7NDp6en44YcfUF1dLYwaNYrr3qxCaWZmBkdHR4SFhaG6ulo0MzNjMpns8cfpPAEyMjKwd+9elJWVITExERUVFcjPz8eiRYswZMgQ9ljeAb6+VC29d6+FI/WTIjY2FlKpVJg7dy7v7OyMbt26cYMHD374eL/u3SkosLEhgvHcc0831q41GCOZ9tixRBKeBNHR5MS7aFGLWcs8z8PY2Bienp7o2bMnkpOTYWJiAkdHR+bt7Q1/f3/06dMH7u7usLOzg7W1NeRyOUpLS8FxHHp26cIwYsTjfT65nIyEevVCWV2d1tzcnJs1axZ8fX0xdOhQZmFhgdLSUsTHx6O6ulrr6urKAcCBAwfE6OhoZmVlxRYsWMDpKr1SqRROTk7w9vbG/fv3kZKSwgRBwMyZMzF48GBoNBp4e3u3v0a//ZYk+suWEVnt148+B2MkdxwzhpIY06aRCdxTrPWLFy9i0KBBrH///i1dmuvqSDFw4QL1YkZFkbkbx1EQHxlJPZfNfmdUVJS2uLiYG9RKQvqXQRDo92dnU9WoeYC0fTuRf92cdY6jALisrO0RWCNHUpWrXz/6fM2cutsCYwzm5uYsPDycGRgYiLa2tu2f/IICIjITJz6oMrG1pYTNl1/S6+zsGtfq7t27hfLycubp6Qn7hird+fPntRkZGfxdqZRL8vSE3MICo0ePZi1k/hUVlNjbsoXIUWvMng2nGzdwsUMHeHl5Pei8D9D1Hz+ekkgbNtC5vn4d6NcP1tbW8PLyYj179mRDhgzBgAEDMGTIEMhkMq1Wq4VnaChX5uSEgUuXsqtXr7KUlBTU1tY2OmcDRPS/++47iKKIlStXkgrK3R3Iy4OZvz8cO3dmfv7+6NixI+7cuSOmpqaymJgYsUuXLkyhUBChCAwk34dWioaQkBBotVrcu3cPvr6+aHM/FkVaN2+/TRVLnZJMJiPFjKsrtVl9/TW1Xpw/T+1XHTsCjOGaqSkuV1aCd3JiPbdsAWsw6sKUKWBGRmBqNcm+x4whxYiVVYvqaX19PRISElBcXCx0DghgfFISrcHYWMh27oT7K68g5uZNXDYywtXsbKSnpMCza1dIhwyB48sv4+xzzwn5Li7inIMHmczaulEZ4jZuHKqlUuGFDRu4Hnv3MrlMBnh64lp0tHCmTx+MWbToQdXc5cukiGk2grARL7+MSj8/XLl8mQ18/nmG8eMb5cl3794V1Wo1k8lkqKurg2ePHrD84YcmtcXKlTh7+7b2uETCGRoaovF5HhtL95hGQwTS0pJI0rp1tNelpFACLzCQ7tdRo0jJ9PPP1I4mk9F+GBBAa/L8+XbbghpUVCwuLk6MiIhg92pqtK5lZfzQlSsx+LnnmHfPnpD5+UHfyAguvXvjfEwMCwgIgI+3N7scHs5ddHJCvzVrwPT08OOPP2rr6+s5Q0NDFhUVxeLi4kSVSsVOnjyp7datm+ju7s5JJJKm+exlZUT8WpmyNYeFhQWcnJxgY2ODo0ePIjs7G83jGnh703PJxqZN1VxRUZEQHx+P3r17s8b+cqWSVAgvvkgKnYb7w+TWLXj9/jtLMTERY4YOFRLv3hWjoqK4uLg46OnpiVqtVkxOTkbXykqml5FB94FuzR48SImLtjx5bG3p3m3+OUeOpGvs6dn0jDA1pc9gaUnxR1tj9vT0aA9WKilZ8OuvZJypr097uJUVxU7GxuTLEhBAv9fDA7/++qsYGhrKamtrxRMnTiAlJYXFxMQgPz8fzs7OjfuAVqvFrVu3oFKpkJiYKMTGxgpJSUk8ABQUFLD09HRIpVJ07NhRW15ezomiaFVcWKj1279fkmJnh24TJ+KBXn7GaE9ZtYrup169KJ6pqgIuX4Zm1SrsuXEDs0NC0OG336Dw9IRy5kw4WlvD0t6eWSQlIS4/Hy6xsWBGRg+0YQCU/K2qqlLZ29trBEHoUV5e7gbgyyFDhlS0sbT+NnhG9p/hb4/o6OgNvr6+PTw8PP7Xe9H/KiiVSq6hb7QxWLazs8OZM2eYp6dniwrqlStXRADs5Zdf5toymlEqlXBxcWHR0dHCxYsXuYSEBNHLy6uFzFYURdTU1DSaAj0uKioqsHnzZm1UVBQSEhKYKIpYsWIFoqOjcf/+fQwdOlRwd3d/fLbF8xRsdOtm1wAAIABJREFUfvwxPZAfZ7ZrGwgPDxdsbW1Fd3f3x/8wjFHQWlPTZJ6j6+f/ozJ8tZqy7Y9L9gsLiaiuWEFS1nauiaGhIRQKBTw8PHDx4kWcP3+eJScnC76+vkwqlUKpVMLc3Bx79uxBSUkJXnjhBebn58eEM2dQ1qcPriUmoqysDHfu3IFSqXxQ8qzDgAHAli1It7IS1RoN16tXrxYyQFNTU2RlZSEpKYmzsrKCqakpjh49yniex6uvvvpgENCAhIQEbWlpKSeRSDBs2DAolUq4ubk9SPRFkSpXpqZENpycqKravEJZXk6GSkuWkMR+3Toik0846/3+/fu4dOkS8/T0bOktcO0a9ZfHxVFPZ2UlJaUmTqTve3hQ0KcbHzZ+PMrKyhAWFsZNnz4dj1QqPCGqqqqwY8cOnDt3TkxMTGQ5OTlUzXJzo/P17rsPVkIEockoSocpU4iwPWwSxqxZRFb27CElQBsVaR0sLCygp6eHU6dOsezsbK2JiQnXprncTz9Rf3kbMk0AFFBPnEgJlIsXqb3AwQGxsbFQqVRszJgxjSZOtra2XEpKiqhXUMCmhobilr8//P39W67nbdso2fHyy20ngPr2Rf3gwYi6eRO///47cnJyoFKpoOsh7mhmRr3++flEvvT1SVr91VcUxLZzfe3s7DgvuZyTvPACQgsKWEBAAEaNGgVra2ucPHkS9fX1jZX2ixcvIqthnOGQIUPoPjA0pH7q996j5Me8eTC3sICvry/z8/NDfn4+EhMTWU8dsXvnHeDGjUYHch2uXLki1tXVMXNzc/H8+fPs8uXLwpUrV1hBQYHo5ubGIAjAqlVQ79yJkPnzcTgqClFRUSgrK0NXT0+6/vb2tO4//rjpfisoIIJhbAwHBweoVCohJSWFxcfHo3///rSHm5jQn9bW1Cq1di0lmd57jxJ0DW0kGRkZyMzMRF1dnZi/bx/cPvuM/T5kCDqMGQPGcVDcvQvngAAMGDoUcrkcN4qK4Lt8OaQSCa6Eh8Ny3jw2qbaW6cfFEdFqUGEwQ0O4zp3LJP37Q376NF27V1/Fz9XV4tixYzlnZ2eUl5cjPT0dN27cQFpamqC3fj2ude8uxOXlITExUUhISBCvXr0qXrlyRYy7ckUUv/kGMzZv5pilJe3VGzYAnp44FxbG3CUSOPj6wsnRET169QK3eDFdk9RUQBCQlpODAb6+bJiREeOnTqV2mbfeItO1CRPofAwdisZWBo6j62lnR3+3t6fEy9KldF3MzOh1H31Ea+XECZJ9T5hAzzQ7u8ZRfvDyglqrxc2bN8XAwEDm5+eHwWPHcuaJiZArFE1jTe3sgJs3IV2+HMk9emgz7t5F+bvvslG//oqrI0aIvgMGsPDwcDE9PZ176aWXWL9+/djgwYNhYGDAzp49C6lUymbOnMk9EE+sWkX7Y1sTKVrBwsICZWVlYmpqKmvh22JoSPLwqqo2ExqdO3fmLly4wMrLy9G1WZUbdnZNrVY+PrSnTJ0K2bBhcPnoI+bj58cNGDCAMzExQbdu3TBhwgTm4+PDRUREoMdnnzFZ585EsnXYs4eSiG21Of34IyVomvsZSCR0nTw8Wu63Ov8Yf/+HJ6dtbOj3y+UUn1hb0zpgjL48PGjPt7amfx86hPoLF1iaUom8wkIml8tZbW0tpFIpCgsLcenSJQwYMAA5OTn4+eefxYSEBJaYmChmZ2ejrKyMl8lkAgCmm3agVqsxfPhwLikpCQBgWlQkcUpMxMWAAOTm5kIulz/4nAsJoTbEuDh6Nq5fT2tx4EAkFRbiOsdh5Oefg5s9m67J66/TeRg2DNKKCpiEh0Or1UL/v/9tMw4zNDSEl5eXxMbGRnLhwgWVVqudGhQUdLn9k/j3wDMZ/zP8rREcHNxRIpFM79+///8fFvN/EeRyeQv3XIAymNbW1kJcXBxGjRrV+ATt0KEDu3nzJvXCtYMOHTpg6dKlPABs27ZN3L9/v7hgwQKuuroaERER2mvXrvFig2PwokWL2u9ZbYWEhATo6+uzESNGcPr6+rC0tIRcLseqVat0hO3J5/+NGEFkLSbmqWbT37t3D5WVlU9fSVUomtx3lywhier77z9VhbgRhw8ToXrM8wqNhojZY/oHmJqa4o033mCpqanYt28fl5ycDPeG0WVSqRTTp0/H0aNHtceOHeNZTQ2WffMNtsvlEEE9mYaGhkJcXBxbtmwZa7OiLpUC//kPTN58EzWt+30b4OPjg9u3byM0NBQ9evQQAbChj3CPV6vVOtl+26qLu3epn3TrVgpCTUyIaLYmm1lZJLltaGkAQETyCRJX9+/fR3R0NJKTk0UnJye4uLjQiRBFkuCGh5Pz+XffEfE3MKCArjVmzwYSEqAtL8ettDQoFAqhS5cuf2gOps6sMy0tDUOGDAHHcdi1axeKioogkUiYgYGBmB4ZyQr69IH1tm1tG+vFxNC9VVzcspL+668UOEdHtz+jXUfW79yhxJVupB3Hob6+HmVlZTh69Cjy8/MbEzUajQY8z/O7du2CjY2NoFKp0LlzZ66mpkbramrK258/D+mmTXho+osxqjKfO0dEJTUVixYuZN9t3y5u3ryZWVtbC35+flxBQQFqamqYm7u7VmZszJeUlGDTpk2YPHkyXF1dwd24QRW9doh+TU0NLly+DOc9e8D17IkRI0aIKSkp4vHjxzkACA8Lg+eSJZAPHQq2dm3TD/I8JXi2bHmo6R7efx9KDw+4e3kJISEh4pIlS3jd/RkdHQ0PDw/Y2dmhsmECw/Dhwx9Mun71FSWbEhMpyWBiAgBwdnZmFy9e1GZlZfHFxcXo8cIL4HQTFpqhrmFU56uvvsry8/ORnp7OVVRUiFevXmVl+fniHE9PJpaVYb2bG5Cbi0mTJqGsrAwRERHo2bMnampqkLhtmzDy4EHOKDKSlFenT9N9NmQIYGaGqgMHcPv2bU53/Xfv3g2gyQnePDMTZlVVqDp1CiazZ8Ns7lw4NkxiOf3pp7hVViYCYBMnTuRSunbF6o4dIR4/juLiYu2YwEAeH38MhxMniDw0IDIyUpRIJIgdPJgFTZxI96aJCd2HlpZU9bx2jZQKr73WNCvdwQEeHh7cwYMHwXEcBEGAgYGBVqlU8jKO41hxMVJEkS9OS4O3tzf09PQgkUhgUFEBWFnBOTwcTBQp2SGKdH0mTUL35GShf1QUp5+bS8nIgAAa2+jvTwf8+efofe4cp3FwgPTll4n82NmRSZ4ODa0DNTU1jfd+bGysoFKpoNVqmXFpKcZv3cp2v/eeCJoZL9r6+6MiMxMvuLlxd9zdxZgXXhDx3XewmTkTVRkZnEVkpDDw8GHuQGWl8MLXX3P+dnZMERgIi4gIUi/07UtS6eZ79pgxiNu0SRQKCrh7+fnMYNkynMrKEplWK547d47Fx8ezKVOmQJfMY4yhZ8+ecHd3h56eHmvTn2fcONo7HxMDBgxg169fh0ajaen389pr5BnQ3G+kARKJBPb29tr79+9zaO6PIQj0fJ87lxLYgYFEQlsdZ/P2UAnHwfXyZZTs3g1lsxGOKCwkYtrWyD6AEmCtx+PqTDTbSn4+9xy1nL36Ku2z7cUb+vrUzrF/P7XBxMRQgk8XWzDWlIA+dw6ucXEwLS2FW0oKhoeFoV4igUQiwd69e5GRkYG8vDz89NNP6NGjB5PJZEhMTBSrq6s5R0dHrZubG+/k5ARra2tcunRJOH36NHfo0CEsWbIEBfn5sJw/H/vHjYMgijA1NRVCQ0M5MzMzzSuvvCLh0tLomenmRsmQ6dNpnXt5kcLC3h5uISE4PHcuqjp1gqL1Odm3D8KHH+JWnz7oun37I9fM4cOH69Vq9e6goKBfHvrCvwmekf1n+NsiODi4s1QqPd2/f3+uTYnl3wi1tbXgeZ76hZvhueee4/bs2YPy8nKth4cH7+XlhYYA4LHfe8GCBdyGDRuE77//XigpKeHMzc0xZ84cyGQybN++XSwsLGQPI/v19fUIDQ0VKioqRMYYb2hoKHZp5WT/h9sEHByIZO/Y8UQu+UlJSfjll1/g7+8vmJubcxqNBlevXhUZY0KfPn2eXAly/To9PF97jSoz588/8VsAoICkpOTRrysspCDk4kWaW/uEcHNzg6GhIeLj4xvJvu7/3dzc+JSUFHSwtITxjBlY6ekJjUaD+vp6yGQybs2aNdi8ebP40ksvsQfMexgDMjJQc/gwxHbWWrdu3dCtWzckJibiaMOxx8bGCgMGDGiX6Pbr14/Pz88Xra2tWy6YyEgKlBwdKaCrq6NKfXtYv54UIS++2PR/H37Y/uvbQEFBAS5fvgwAbMmSJVQ1vnWL+saXLqWqqk5i+fbb1PfdqnoKgJQEffrgVteuMAbQfdOmpyL6KpUKFRUVMDMzw86dO6FumB+fnJwseHt7c0VFRQCAUaNGib169WLFFhbISU6G9bFjbb+hrS0Fmq0l80OHkkT0cVQ0OuXgu+8CZ8/i6zlzxPv37zdeu2nTpsHMzAwmJiaNI+8KCgpw9epVThAEZGVlCaIg8I5ffokzHTog//BhLF68+NFqooAAqlp99x24Tz6B0thYREOL0pEjR6BSqTBu3Dj4+PjwGDIE46qrcSk6Wty/fz/jNBqs2LABeZ99hhgLC1FPT0+YNm0a///Y++6oKq62+31m7uXSe1NBiiiIoGIBsWAnir03bIkl1hg1MTFGQ0xMNMVYEqMxsWLvNUbRgL2LAiogAgpY6PW2mfP74wEEBDRf8n7rl/dzr+VC7h3mzj0z55yn7Gc/AOlK7Nu3T87Ly2MmSiXanzrF0KQJfv/9dzZlyhRmb2+PjLt3cXHXLvmQh4dg16ULula9tpEjKRh0716lWtmKuNG8uXxWoxHMCwoEURTlstenTJmCq1evyhs3bhTMzc1RUlICf39/3rZt25cXUJWKgjXvvksaIJcuAYzBw8MDhw8fFsPDw6HVanFOpULfjAw4qtXl7ButVguNRlOe/Xd0dCzrnMFaNG6M3AEDWJxKxU+NGMHlkhJh0oQJ5Rm6vLw8eePGjQJjDO4tWwp7dDr4nziBJsOGEW3YxIQYULdvI27MGB6UkMAevf8+F1xcyveBsp82qanMwNaWx6akyHFxcYJWq2Ul+flo5eOD1Lw8udeRI7AJC2MW9eujfv36aL99O4pdXfFLdLSQmZkpaerUgXNaGvMPCxM6LFqEM2fOICsri4miiObNm9M4lQUDJQkIC6NgTPPmRJ/WaokuX4qQkBDk5uYiISEBTZo0kfr16ycqlUqc27AB0Q4O0Bgbyx2aN+dBQUFiuVNpZUUBv337gBs3IM+di6fp6dj78ccSDh/mRa1aKdj06egI0Pqh09GabmZGNG6VCte6dJFaZ2SIeP99Gr87d8jZVijoGbKyQlpaGtavXw9TU1OJcw5LS0vWvn17QaVSAbIMk5070bNVK6an+cx4aXvOfG9vOKamsoFZWczozh08mTEDe6Ki0GzCBCF54kS05lzIFQTEREfDPTmZdD3KVPXXrqWa9D/+gDx/Pm48eiSf7tJFmLt4MYSiIuSsWgUTLy926tgxZMfEYMiAAdzTwIDhyRPKNpuZAYKAGssrZZlK2qgzz2vBwcEBNjY28oULF4SgsoAJ8KKDh4UFldZUgaOjoxgTEyMhNVVEdDQxiBwd6Zno04fKr0aMeOW6d2/RIgScP8+sq9ohZYyL7dur/0M7u+r3/C5dKIt/7drLZXRvvUX7zOvYT25uJCb466+0LpR1Dqj4t507w7BzZ8gzZ6JuRgZw8CAMDAyw58kT/iAzkwHAxo0b4ebmxg0MDHDp0iXWs2dPwcvLC+bm5pXspXbt2gn169fHb7/9hvDwcNn52jVmYGKCZr16yR2CgsT09HTh0aNH8tMnTxTazEwYjh9PQYn33qOxKBMU/ekn+pmdDRYaCiMLC2jatoWpry+wYwcFPL76CnB1xbFZs3jLyEhYlwXea8C1a9fklJQUAwCbazvuvwmsajbwDd7g34awsDBblUr1PYCukiRZMMZ0siwbcc4VwcHBLCAg4G9lyf4NSEtLQ3h4uPzhhx++9F1TU1Nx48YNxMfHy7IsC5IkYcCAAX9JAKy4uBiRkZHw8fEpr3v95ZdfZBsbGzZgwIDqs7ulSE5OLheAc3BwkENCQoRqlaH/LrZvp8xI69avtflptVosW7YMISEh3NfXl927dw/79++HIAiQJAnz58+vvk71dZCZSRTMJk2o3nDXrr+m2r9/PzmK1QmDlUGSKCiweDHRY/+qmF8prl+/zo8cOcJGjhyJqkEYAJQd/P77l3oHp6enY8uWLbxhw4Z84MCBL3+4LENjZYWzs2ahW1hYrddQWFiIX375hXt4eLA+NdG0Ady9excHDhzA6NGjiTIfGUk0xdBQypisWPHqL1xG2VUqK9cpBweTQVRRdf0V+Pbbb3nDhg3lfn36iDh+nAzTbt2I6l52P9LSyMkxMqrVUDy4fj1Pv3aNKU1N5QkLFwp4zfaZZdiyZQtPSkpiKpWKGxkZsdyKYk8V8GnHjhBcXXH03Dn51sOHwls9e6JV1edMlimjEh5e3m+6EpYsofKVL754rWvTZmdj2yefIMPCAqEWFrCeORPGxsavF+S7cweYMQOJa9cifMcOjB49Gu7V1dBXB1kGduyAOioKx2SZmw0Zwtq2bYvz58/zDh06MCMjIzIsY2MBe3vcvHEDp7ZvhyjLKDA3R8OGDeWEhIRKz3bdunXh6+uLli1bQhAEZGZmIj4+Hn5+fjA1MQHatAFv3Rqf29nBwcEB71Yn2Hb8OOk4LFlS6WXOOVJGjuR3c3LYk2HDkJqaCn9/f/Ss0s6t4ppa47x9cVJivFy4QE6stzfy8/NhYmKChw8fYtuWLZj888/YNGYMJGtrbmhoyEvLHDBu3Di4uLi8OFd6OnD8OAoBfJ+aCi4IL90PnU6HX3/9lavVavbuu+/i5s2bUM6YARtJwr7QUHnIkCHl63/MtWtI++QTNJg+HR7h4eRYVRSUXbCAdAAmTCh/6dKlSzh16hSGDRyIhgsWkD6JszPVHG/fDjg54XFAAKKjo2FmZobivDzYLFmC+i4uONytm6xWq/nIkSNF69q6iyxbRqU369bReb/8kmqIOQdEsawkRjI2NmZjx44VEj78EI/u3cOtTp0waNAgNMzIoGzp8+dUxmBhARQXI7t3b1xRKlFkaoqYpk3Rt29fHDt2DIIgcJVKJbvGx6Prrl1i/hdfwLlPHxrvBg2wIjxccnBwEO1sbGCelAQhJQW+LVvCIDIS/PBhsKFD8aykBGczMzFo8GAKxpUJkJYhKor2xZoYbE+eAEuXQjNtGhIGDIDPxo3kZAJISkrCvvBwPnfQIIYDBygA4uVFjmbr1pAvXkTkgAEyt7REixUrBMtmzWhevfceSnQ6FMTGIuvYMbj07QtjExNaE/ftI/ZCo0YUtL5+nRgDZcKe8fG0jx48SCKSKhXtec7O5PSamNRY5nb58mUeFRXF58yZU7ksYOtWOl8VJXutRoPHvr4oWr0avjExlAW/fJky5vXrv/7eGhuLy/HxOH/xIry7dJH9/PyE7OxseHh4QJmWRnT0mtrN/vILzdPq1tSQEAqYVhcsBmj/Mzd/4Ri/Co8fE0U+IIAy6BXq/ktKSrBs2TIYGhryeR98wDB0KLITErC5SxeY2NvzNr17M61WiyNHjmDo0KGVkgTVoaioCDevX+d1Dh6E+8SJjJUGOLdt2yaVZGaKw06cgKmtLX3/slLRnj2pxKRK1w+9Xo8dO3ZAl5WF8f37vxADdnAADh5Ecm4u4tauRfedO2u03RISErB79+48nU7XYtGiRUmvN2D/frzJ7L/BvxphYWHmSqUytnnz5pZ+fn4Gpqam0Ov1UKlUUKlU/xFhuf9fUFhYiJMnT0rZ2dkoKioSFApFtZG7+qVZD1mWhQcPHsDNza3mdnY1wNjY+CWD08HBQUhPT5c557U6+66uruW0x3ffffc/F3gZMYKMhzlzqo3cV0WZUx8REYHff/8dCoVCNjU1FQIDAxEREfGXx6gSbG3p3927L+jhN268fl/0pCRqk1OTs19cTJtcZCQZyH8DLVu2ZE+ePOH79u3DxIkT2UtGsFZbLY2wbt26GDlyJPvtt99YcHDwy7R6QcCtuXPlfDu7V95zU1NTvP/++7VOVr1ej5iYGADAjh9+QOOWLeWQyZMFFhVFEf7XQW4uZWkOHnyZur506V8SRNRqtSgqKmLdO3cWMWQIOfK//kq0zxcHkXG9bh0FAWpAUVERbqWlMYWzM8bt2MHw4AEFfF6B+/fvo169ekhLS4NKpWIA0L9/f9awYUPIsgyFQoH8/Hzk5+cjLS2NFxQUyMLnn4to1QohS5cK1pcu8aNHj7KUlBQMqlgT++wZGds1MYCOH6fezWFhrwxi6fV6fLNmDfSOjpjj6grTr76i2uvXWZv1eprPW7fCvW5duLi4yFu2bBFe2+EXBGDkSBRaW8P2m2+Y6+7dMOnWDcHBwS8+/Pvvy++Z3+HDaH7sGI4uXcqbNm3K6tevL2RkZODXX3+FSqWCp6en3L17d6E8EzliBBzq1YPDt9+SY3D8OLBxI5iXF/D55yhjU7yEtm0p056SQmyUUpw9e1a2vntXaPX++7AbOxayLFfLYiibo8HBwa8u+WCMHOaVK6mM5ORJmJcGkjw8PLAwLAy6tm3h/OgR16tUsLW1RUxMDGxtbSsLJmo0NHcGD4bpxx+j5dGjuHbtGs6ePVtOv7e0tORqtZrJsswA8KVLl7LevXsDq1Yh5/JlNM7NFXbu3MlnzJjBsrOzcSIyUi5s21awt7KS4eUl4PRpymC2bEnO5LNnJJxZAf7+/sjMzOS79u9nn5R2Q8DIkaSH8eefwMOHcHJyqqSf8cDVFVHLlvE2586x/e7uwk8//YRhw4ZVvxfKMjmFMTEUrE1NpXpnQSC2y4wZMJ02DTOCg8UfT52Sdu/eLY1KSBDrf/ABGq9Zg7SjR8F/+QXuW7ZAIQjla6esVkOKj0dS374Yp1Siw7hxsHdxgaenJ7IzMxmuXhXNjx2DZGCARI2GgurjxwP+/gjs31+8f/8+0jIycCkzE3qVCqcSE7nS1RUl77zDOri68icXLjDR2lrCvn0ivv+e6O8ZGeQ8N2tG7I7Hjyngo9dTEEKpfFEClpUFTJoETXo6NMbGxD45eBDIz4dzx44YsmkTe3D0KG/w1VcMQ4bQszt6NHDlCtRqNc61aiXMmTMHxpJEATpTU0AQcHjXLumuublo+e670uTJk8Vysbq1a+lz1Wraz549o9/z88kZz8sjQTvOaW0OCSEGm6Eh3YeiImIXNGpEAV/GwNPS8FyhgFvDhizx5k1WuHEjzF1ciA5uZESZY0tLKvHp25eYS7du4eZXX8HC2Jj7uriQEO3s0vbrFUUYAwMpiFv2XlWUlAADByLgs8/gNncudu3axaOjo7ksyxh84wZv2KqVgHnzap6nQUGV1fgrYts2uuaaMHp0rQKGL8HJ6UXb2fBwYmoMHgwIArKzswEAarWanbtwgbffs4dZa7WYsW4dxBUrmL5/f6zetYv37t+fvcrRB6hGvn1REUN2dnkgT6PRQHHokBjQrh1Me/UijZeKrVetrV9q0Xj27FmcPXsWOp0O9vb2FKDYvJmCQIsWAa1awbVTJ5z195fOnTsnlmuYVEBmZiZ2795dotPpQv4vOfrAG2f/Df7lEEVxeqNGjcx69OjxGk2aawbnHImJiTA1NUWdOnXAOUd8fDzUajW8vb3Lo4Scc8TExODixYuSXq9nNjY2PDAwUPyPZKprQVn2xMjIiHl5eQkqlQrNmjWr1eoWBKH2DNBfREhICJYvX44DBw7IISEhQk19WAsLC9GgQQM8fPiwRuP1H8Onn1IW4DWcfYVCgZCQEJibmzNTU1PUq1dPAID169dLDRs2BGPs7ws6Nm5MLY9kmajF+/dXrnGsCe7uNTueGRmUHdixo1Kv97+Dbt26seTkZKxatYr6xFeEt/dLGcgylLUyW7FiBQYPHgxzc3OU0vskURRZcZMmrOmqVfTdq2kB+Vdw4/p13L1zB50uXkSzK1fwg5mZ4HntGjwaNXq9E3BOzve5c9V3btBqKzvqtSAnJwe/rFsnd8jMhNGwYQI++oiElao6voJAtbm1OPoAcOnSJb1CoVBwzhGzdCmrFxhIWcrmzekZqgYbNmyQUlNTRZVKxTUaDTMzM+NjxoxhbqWCWWUihxYWFrCwsIDz8eMMVlZiWWs9BiAwMJDdu3ePx8TEsMTERB4cHMz8/PzIKcjMLK/zfgmrVtF4lZS8csxiYmKg1+sBAKZjx5LjFB1NgluxsS+pwFfCunWkw+HkBAHAuHHjhC+++AIRERGvn90H8MTJCXGdOklBtrYihg4lCmtZAKu4mBS/lUpg0iSwYcPQu0Ibrjp16sDNzQ22trbyW2+9VXnxGjnyRYvFcePofg0ZAoB6U6vV6vJDOefQ6XQoKipCUVERlAoFSrZuxeOOHVFQUCAXFBTIOadPK+z79YPP2LEAUONaef78edSvX18KDAysdY3inCMrKwvPnz+H4YwZcKtTh+qG+/Ujx6cUypgYjCgqYli4EABYaWD3haV86RK1Pdy1q1zkskmTJrh27Vq5QKCnpyecnJyYIAho06YNBEFgu3fv5keOHGELFy4Ea9wYclAQpBYt2A8//MDr1avHCgsLhWnTpsHW1lYoFyb74AOi5f7+OwXQbGyozr24GDA0hPDoERyTk1l2YiI5he7ugK8vBT8//piyzZ99Rg5AKRr4+sImLIw9GjaM+2dlIWPQIGnbtm2il5cXhlUJJmD5cqJcKxTkAO3ZQ78DlN1XqYBz5yAMG4ZR8fHildGjId+9CzN/f5g9e4anMTH80JEjvKSkRJCvXoVKpeIKhYJrNBqmnziRNW/eXDaOjRWMo6MBFxcYq1Th2a/uAAAgAElEQVQwnj+fggqzZuH3lBS9xt2dbPNS2rk/qfADoC42W7duRZ8+fZgkSTAyMkJERITs1r+/2K1bN7E8C52fT0HjjAxq13b+PAlG3rtHDKaICAreODjQsVFRQFAQmKkpis3NOVJTGeLigHv3oJgwAbZ//olVW7eyAXXrwlOnI7bF7t3A6dMwfvttmJqaSomJiWLT9etJOPDwYTx69AgZGRmivb29PGXKlJefVUGg2mpjY5qDK1fSmG/aRKUPSiVl+xs0IKbcb79VprKr1fSdNBpsWL1atgKYlJbGdE+fommjRjB//JgYNB4eVB5x8yaVHZSUUJeRt98GdDoUZmdLJwcPFidbW+NlyeJSzJ9fc4kg5xRs2rYNaNkS9gCmT58uAtRlpvjyZVYuZFgTrl6la61OP8XIiNbCdu0qi8yW4a23KGjj7U1ztCYtlYoQRSo5i4t7UVY0ZgzqurigY8eOiIyMxOXLl1lKSgr8/f3RcPp0YOBA7NywgY9dvZqZ29nRevcqxmJZIGn0aAo8FhXhSVQUOp45g6NGRvCpTsfG07OcAVFcXIwtW7ZIeXl54sCBA7F37144OzlReUzfvjRuTZpQgEmlQofp08Wdu3bxjIwMPmTIEKHMdler1di6dWuJJEnzFy1adOHVA/TfhTfO/hv8q2FgYDCsefPmL3lFer0eDx48wIMHDyDLMpo1a1ZOP68OFy5ckKOiopgsy2z69Ol49OgRDh06BENDQ+nQoUOioaEhlySJlWbL5FatWolmZmZISkpCeHg4Pvroo9dmERQUFCAiIkKytbUVnJycWN26dVFR6b4q8vLycPfuXZSUlMDc3Bz29va4ePGiDIBPmDBB/I86z7VAoVBg4sSJwrZt26QVK1ZgwIABaFTB8Tp06BCPjY2FVqtlAODt7S1zzv+zF9u9O2UEPv8cpYZrrWhdRXk9LS0NaWlp4rBhw5CTkwOFQgGzf6KdniDQhqdQUAukxo1rF+gqLCRaY9XWZZJEGa9du2iD/4egUqnQp08fbNiwAZGRkaikZLxsGRkzK1e+9Hd5eXlQKpXQ6XTYsWMHDAwMOOecWVpagnPO8/LyhLYaDRkUf9PZbzliBCQvLzmyTRvhepcu+HTevL8WOFq0iDKvV69W//6HHxKT4rvvUFxcDENDwxrPf+SXX1Dv9m0hKCMDbM2a6r9bYiJRea9fr/GSsrOzkZWVhXPnzpXvxXfi4uS3QkIEHDgA7enTyP/qK+Tm5uLp06eIiorinHMmSRJkWRYbNWrE4+PjmYuLizxmzJiXlawrIj6+WgX44cOHs5KSEmzZsoUdOnQIvj4+UHTsSIbwqlXVn6u4mLIxw4eTY1YDMjMzcfDgQSgUCgwdOvTFG56ewKRJ5DjVxHjJzCQnpGKPaQDt2rVDVFQU1BVqzF+FrKwsLjg4MEyYQJnAnj1p/gUE0He0sCC1902bKqthl3/dYtnExOTlwe3alRyyo0ephKNCcGTSpElYuXIllixZAp1OBwMDg3LRMIVCIVtIEu+8f7+QYG7ODaytBTMzM2HwzZswqK51WwXIsozo6Ghev3594fz580hISOAmJiYsLi4Obm5ucsOGDQW9Xs9zc3PlGzdulFvioiiiTZs2UjcHBxEHD1LQsWI7rwr9p6t8ear7/+KLSo6Gq6srQkND8ezZM0RERKBz585wqCI+1qtXLxYXF4fbt2+jWbNmEDZuRDAAk9u32bmHDwEA69ev5126dGFlziy++Yaeqa1bycFJSiItFA8PYOpU8DNnoLt9G8729nTNNja0Lrq6UvZ13Tpy6jinezt5MqBSwdLdHca7drGkRYvk5tHRQma9elCr1ZWFanNziVnwzTeUQc7PBzhHXn4+9u3bJ6vVat6xY0fROyQEG1eskFJ/+UWce+UKWGEhXeOIEfAHmD/AypxyjUbDRowYwSJWr+ah69bBIC9PgKcntQS1saFg8MCBVI6VlYUCJyeoyu5L3brI8fLC+bFjUeLhAaVSWf7P0dGxnOHh5OQklrJ3UK9ePVq38vOJWbZ0KansR0VBb2mJpPbtYefpCav33682WJyTmorLpqa8w9y5DI8eQd2sGZbu3YtGjRpxf39/REREyJ6jR9Mz5OtLGVa9Hu7u7mJsbKzkO2qU+CgnBw/OnOFRUVFlez/jnL9sI0kSOcicA+npeHjxIpdbtmQN3n6brjkujqjrlpbkbJ86RXTvMpRm+dPS0pBqbi6UNGiAYjc3ecyYMUKlNppl+OMPciIliQIJZmaAiwu6AmJJSYm0adMmNnv27OrX0YYNqXSgOixcCJw8CW1kJKDVVrLn6jx/zm54e/NmFde/6sA53bPqoFLR/lSLnQiFAhg69EWt++vC25vKVE6eBBYsAAsKgkdICCIjI6HT6ZCYmIjExER88sknUNStiyRZZtKff0I0NKRgkYUFsGVLzSVqp0/T+ydO0Fo/dSpcvvwSmoQEPFq+HBkZGXBwcMDBgwdltVrNunTuzEz37sXFFi1QJEmIi4vjbm5uGDNmDBhjYAUFsNm2TZZDQgTB2ZmCg7//TgyF336Da/366NChAzt58iTLz8+HjY0NZFnGjh07iktKSnbIsvwatX7/fXhTs/8G/1qEhYUZCoKQ/+GHHypVKhUyMjIQHR2N2NhYqbi4WDQyMuKOjo6yIAhITk4W3dzcpBEjRlQbhoyKipJv3rzJlUolLygoUEiShB49eqBFixYoLCzEs2fPYGRkBEEQYGdnV8kJWLJkCSZPnvxarbLy8/Oxa9cuubi4mBkaGsp5eXlMrVYLFhYWsru7O2/ZsqVYli3VarW4cOGCfOHCBcHCwkIyNjYWCwsLJbVazYyNjfnYsWPFWvvA/y/i6tWrOHnyJCZMmAB7e3vExMRg7969aNKkCTp37gxLS8sa26n943j0iDKpFy++LC72Gvj111+lrKwsJkmSoNVqMWLEiEpBjL+NMjVflYocha+/fvmYQ4co0/Ltty9ei4oiPYKcHKIx/pPgHMjNxa7Jk1HQpAneMTenDXTbNqIZGxuTuE+3bmQglW7shw4dknJycoTRo0czvV5fc9AqIYGMwtd0zspx+zbRN+/dI8PVzw95RUX46aefuJOTE+/bt2/1bdqqQpJQePUqNHo9bKpx5qoiLCwMVlZWcvv27YUGDRogJycHaWlpsLe3R8PcXNwdNw453t4I2LGj5uf66lViX9QgFJiVlYUff/yxXHnc1dUVbm5uePr0KdLT0/VarVbQqtXCWwcP4l7jxkht3BiDBg1CnTp1kJqaiuTkZLldu3aCubk5BEGoOdg4bx4Fj378sdbvnJOTg5UrV8Lexkbufvy44BAWBrOaykiSkkjjYMoUotnXgIyMDKxbtw4AMGjQIO7j41P5Ip8/fyGqWK9e5T9eseIFjb8C9Ho9vvzyS9ja2mLatGm1fieAWFA7d+7kAFhoaOiL6589m4KDoaFkRP/8M4lDVTT0OQeKirBp+XJ9G1dXhWf9+vRabCxds7ExOVMtWtBcUaletDsDdR85c+ZMuYDqvHnzKn//99+n7NjYseSA3LxJgcBaBGVlWcbXX38NnU4HhUIBWZZhaWkpaTQa0cnJCU+ePJFUKhUsLS1FpVKJkJAQCIKA/Px8rF+/Hj169OAtmjdnaN+exnbQIPrs06dfbgm2eTM5z6dPV+toHD16VLpx44bo6Ogojx07Vqhu/h87dgxXr17FggULaK7s2UOlE8ePIyU3Fxs3bgQA9OzZszx7XY7p00nzJD6eBEhLywUePnyIrVu3ws7OTtZqtTwgIEAMCAigwESvXtSNIS+PnNmTJ5H9+DEM3N1h6uqKZ+fOIW/SJJz390eKmxvs7e1llUol5Obmyj1zcwVHW1tYTJ9OezznyE5Jwfpdu2QXFxcUFxcLxcXFko+Pj3j+/Hna73Jz6VmIiqKM6ujRkGUZkZGRuHDhAnr37s2bNWvG1n7zjf6t4mKFaxnjoE8fWiO++ooo6Z07A02aYNeuXXpDQ0NF3759cenSJSjeew+6ESPkzAYNuEaj4VqtFsnJyYqAgADY2Njg6dOn/MaNG4wxxjUlJWyakxNsHz5EZlYW8hmDZvBgGB0/jqRGjeTLz58LZk+fot++fSjx9eW227a9VLYVHx+PI0eOSP369ROfZGQgZvNmPHV0BBdFdOzYEU9/+gmDbt+G4u5d5OXno2TQIFz18JBv1asndC0slBro9eI6S0vY2dlJjRo1Eq2trXHy5EnZ3Nwc3t7eQp06ddDA1BTsp5+IDTN+PDBtGtKPHYN4/DjWTZoES3t72R0QOl27BpNSbQpIEu19n3xCrSwrBCpOnjyJmJgYPnPmTLZ27VrZ1taWDR06tPJce/yYdALatKEe85xT0LF/f2DZMkiShLVr1/L8/HzMnTv35c4AnTpRoP3nnwGQfRYREYF7589z05wcpjEyQra5OURRxIQJE8oDX0W+vohxcuIBx4/Xng1KS6NrrC6zD5Bd89ZbtCfWVmJ49iwxW06d+usdgZKSwI8cgRQRAfWqVXiYl4d9+/aBMQYTExM+YcIEtm7dOrlOnTo8NDRURGoqMUTs7Gj9W7z4ZebBwIEU2L15s3wvL+nbt7wTz/Dhw3HixAkJgODo6Cgn3r8v+l2/jqf9+0uCIKB9+/ZiOYuLc8g2Nnhka8sTFy5kna2tIWRn07OweDEQHo4rt27h1KlTGDJkSDmT9dSpU7pr167d1Gg07RYtWqT/a4Py34E3mf03+DejpSzLym3btvGnT5+Cc87s7e2lHj16iA0aNIChoSFDadQ+Pz8fq1evFjMyMuDo6IgHDx4gLS0NoiiiadOmCAwMFC5cuICuXbtCq9XCy8urvDe9qalp9W2+SuHg4CDt3LlT6N69O3N3d3/J+C8sLMStW7f47du3eXZ2tuDo6MjfffddwcDAQASIXhQXFyfcuXNH3rBhAywtLWVnZ2fExMQIJiYmPDQ0FPXr1y876f+Sx/zX0Lp1a2RkZPCtW7fi7bffZqIoQqFQ4NGjR9LGjRuFqvXYZXTWMkflH4WzM210GzeSMf0XN7x33nmnfIyXLl2KQ4cOYe7cuf/c9ZWxCQ4cIGoiQM5HRVqyr++LdmUAGSajRlF2rZTi+5chy2Q0W1pSPer27aQw3KIFZTvnzEHAjRvIatuWjCAzMzr2+XOKyDs6kmG6cSMZHidOwBCknr5+/XoeHBzMXCvWOFbE8OFEuataIlATFi4kA3jxYvq/iUn5uFlYWGDGjBnst99+k1evXg2Anj9nZ2c0atToZedbrweaN8fx7t3lOEtLwf3hQ7Rs2bKSQOV3330nd9m/HzleXtxj4UIRAMzNzVlkZCQ/fPgwMzIygp0gyNi3T8h0d0dCt26o07s3F0Wx+ofrwgWistbg6MuyjJ9//hmtWrWSZFnG9evXxeTkZCQnJwMAQkJCFA4ODjA1NYVxVhaaN2oEYfJkCKXfzcfHBz4+Pq+eOLJMmWqt9pWHWllZYdy4cTCcMEFItrCQj5w7x2e1alX9euPuTobz7t0USKhhfaxTpw5GjhyJbdu24fr16/D29q483+3sKJuqUJCT9u235Ow+fkz04w8+eOmcCoUC3t7eiIuLQ1xcXLVCo5IkISkpCTdv3pTi4+NFlUrFJ77zDoNGQ7TTlBQSs/rsM/oMCwt61n75hebawYPkXPj5AVlZ6HjunGjZvDk5Cg4OdEzbttSm7eJFYgqIImX6jYyADRug2bMHF/LzYeTlxbmhISwsLCRUtbkWLiQnYsQIcmzd3GoX5QQ5ujqdDnXr1sXEiRPLXq54n6q9Z4aGhujcuTMOHz7MvLy8YPzuuzT2hYU0v95/nwJ8Tk70/eLjKdu3dm2NGUVRFKFUKvnEiRNrfBZ79OiBu3fvyps3b8a4ceMENngwZTAzM+Hi5obx48dj06ZNOH78OM6ePYspU6aU772oWxc4dgw8MBDMzQ2QZRTPm4eHnTujSZMmuHPnjgAA586dkwMCAgTk5JBzAdA9TUnB+fPnYTtlCrgoYs+wYbDQajm6dmUNExLAGYNn9+6CWq2GNi1NyNu5EycCA9H22jU0bdoUaWPGwOL0aRh/9hkLCQlhy5cvh5GRkXjp0iWEhobC/vBhGq9evSij+vbbuGdvj6N37shgjIWGhjIXFxcGAFwQoK24PrZti/M2NrLN6tVMZ2SEs4xxFhXF8/LyFHq9HvHx8bJarRYGrlsHr6wsYXtGhvz8+XOuVqtFvV6P69evc0NDQyk3N1dho9Xi3QYNWNH8+bgTGMiTgoJwQhSZysyMOx4/Lo/84QcxZ+BAYfCSJWj49Cnk/fuxdcgQ7j5gAPN++hSmt2+XB2o1Gg00Go24detWWFlZyWNPnxZy163DjqtXERkZiQampjjXuTNXXrjATp8+jW6WlnITnU64IcswvX9fSHr6FN2+/x5lJSZarRZPnjwRrl+7hsdr1yI3Px+OHTvC9PFjeq46dQL27cPlnj1xp359jH3nHaSlpQkZmzfjkU6H8n4VokhMCDMzcix9fIDSINaVK1cwZswYJooihg0bJqxduxb379+HZxnjSqcjhlrjxuToA2QX3LhB+8zSpRCdnDB48GC2Zs0afPnll+jfvz+aVWjZGrVgAc6cPQujZctkxhi0Wq1gkJeHGdu2MezfD62nJ1QqFSIiIqRNmzYJ9evXZ7Y2NkgKDZXN7O15wKtst+vXSVm+Jmff2ZnWy4SEGku7AJCzXaEV4F+CuzsSg4Nx6coVvNWqFTImTQITRXBBQElJCVMqlZg4caKwcuVKpKamwtnZGWz8eJrP16/TWjJpEgVQg4IoaREURKVz9+8DkyejyMMD3y5bBsYYmjZtigMHDnA3NzcMGDCAKZVKUZecDOHIEYjjxlUer4cPgT17IAwciJKxY/nNy5dRcOAA4wMHolNyMqymTsWh33/nMTExbNiwYWhQGnRISEjAlStXCnQ6XZ//q44+8Caz/wb/YoSFhQ0HsD0gIEBu0qSJ4OTkVCuV/siRI9KdO3cEQRCYTqeDJElEC2IMbm5uUkpKijh69Gj81fp7WZZx+PBh3L9/X9ZqtYKdnZ3s5uYGKysrITExUUpKShItLS2lZs2aif7+/rVS9vV6PaKiopCRkUF1Uv9gjf3/Bnbu3FmuXh0QEIDu3bvjq6++4kOGDGGl2Q45KytL0Gq1EAQBXl5e0uDBg//5AIZOR0ZfUBD9NDAgh8LUlLJxr8kyOHToEG7evInp06e/FnPjf4Rnz2gjT0t7IbJz4wZlv7ZuJdG3wEBywF913ZJEdYzp6RRMCA2lzG56Op1v0CASR7O1JSelrFbU1RUwNcXevXulp0+fYurUqTV/UFnbpKAgSP3747ReD+2tWzCdNQsdq2YGy5Cc/MJQqwkaDVHHv/mGsgWiSDXRteDevXs4c+YMZFmW8vLyRIVCgcaNG0t9+vR5cf35+ZCXLMHXxsbo1K0b8vLy5Bs3bgghISFo3LgxDA0NERYWhvEJCUi0spKv1KsnaDQazJo1C+bm5iguLoZJVBTw4AGePHiAX01MoFcq0bt3b7Ss2Ee5IkaOJEelIjMDtFbo9XpcunQJZ86cwezZs2FmZoYnT55g9+7dPDs7mwHArFmzUImxwDk5ge+9Rz2fXwdTp1JQJyrq9Y4vg709ijw98WOfPtV29yjH0KF0/sWL6bmqBWfOnEFU6XVMnjy5rI3bC0gSjdmKFTQ/v/2WBJqmTHlxjFpNhrmNDeSDB7H83DmYGRpiXHExDJYtg/ztt8h9+hRRbdvyttOns5MDBnBFdjbrc/gwDPLzofDzI8ds2zaaSwcP0nM5ahRl4sPDic5uZUXj7eJCzCClEl9//TWfMGECs60qgpWYSNdUwSlAXh54Whqyvv8ep/R6DE9JoYDZiRMkOBYcXLnl3vr1RCm+coWynK9w9m/evCkfOnRIaNOmDd76i6U8sixj8eLFAICOHTvKndq2FdCwId1DtZoCcvb2VPt+6RIJ3tWyp966dYsfP34c8+bNY7UFbcvYGP369XvR8q5PH3JKvv4anHMcOHBAvn37tmBgYIB5ZSU6Fy4ACxbgq+7dIUkSnA0N5d5ffy38Nn48LLRaPLOygiwIGDBgAMzMzJC5ezdU4eF834ABTKCWbnJRUZEAAAsXLID21CkoBwxA2u3bcEpOBvvkE1on69QBjh5F/p9/YrmpKQwNDblGo2EqjQaCLKPY0BCMsXKhWRsbG65UKnn7zZtZga0tvx4czCVJ4oUFBULPffsEew8P7rBxIxMrMJkOTJum771li0KRn0/PgYkJjq9cCZfQUGg8PCCVCsbeuHGDq9VqFhwcjLy8PB7o58f0detiw9SpvP2oUcze3h7W1tYQOAeOH8fN337jmidPmKWLCzy++w47z5yR8/LyeLt27UQDxmC4eTPqb9wIccMGKgtTKgGdDvLZs3hmaYk/f/5ZdhsxggVERzPMmoULFy7g9OnTGDJkCDnLc+cCU6ZAdnND3qpVSE9NxSFbWy5JEgsKCtIH1a+vkK9dQ/jTpzCVJF5kbS2HhoaK165dQ0REBEdhIQu6d49ru3blgZs3C5dsbfmZli3ZgiFDIHJOrJFGjbAuJUW2sbHBoEGDBACI9/ODMHMmPMaPf/mB0mqBVq1QvGAB1qWnw8DAQJ46dWr5A3jt2jV+6tQpGBoacqVSyceYmopmWVmkQF/dc/rNNxRg/OILPCssxJp16+Dm5sbHjBlT/vBHDBgArVoNl+++g4mJCQyVSphrtTAqq/0vhU6nw5kzZ5CSkiIHffONkNe6NW/6668vt6etiuvXqczg449rPiYjgwJy1Y1JVSxaRPt8md7Ea6JsjRC1Wow8fhwqT09g9mzUKe0+AgD79++X7927x+rXry+PGjXqxV6r0xFTMT+fgszTp9Pafv8+YGoKvSTh119/xbNnzyCXJjO6d+8uBwYGCuW2+82bpAdRsfxNr6eEhJER2S3m5sCzZ9D7+CB8zhyp648/ituHD0exiQnGjh2LsqRDZmYm1q1bV6LT6bovWrTo/F8aiP8yvHH23+Bfi7CwsDqiKKYsWLDgtfqjqdVqxMTEgDGG7OxsbmBgwNLT0xEfH48WLVrA19cXNWYmXxP5+fmIjo5GUlISLyoqkhwcHBTdunXDa1GN/0tQXFwMWZbL2RDh4eH61NRUhSiKsq+vr9CsWTM4Ojri1q1bOH36NHr16gVDQ0O4urr+s90TmjcnB3L4cNpwLlwgMR9/f3L8Y2Npc+rUiTJbjx9TZDoggDaVwkLI+fk4nJSEPJ0OoSNGQFCryTFWqSiAwDltqAYGRFH/n5YqFBeTk9O6NRkkbdsSxTEykmprhw2j2tMy5OeTId6iBWUDDh2iTL2rKzn4PXqQ87J4MTnzRkYUMHgFCgoKsHLlSrxu0EuWJOwaMwZv3boFq6tXSVxp2jTKdFXFuHGUGa3aiiwxkWqep0+nv1u5kjb2v4ji4mIcO3YMsbGxaNeuHXx8fOB48SKyN27Epk6dJJVKJUydOpUBwPXr1+XTp08zjUbDpFLF+X69e6N5ixbgoLXCyMiIMuOffkpj+PHHgLc3bt26hcuXL/OsrCzMnz//5Qf23r0X6s9VnoedO3fye/fuMVEU4eHhIQ0fPrz8AK1WC8ZYze0ey5xUD49quyOUQ6+ngAxjVPde0RF9FVJSAAA5JiZYvWYNPv3005qPjYwk47Nbt9dSgl69ejUvKChgH3zwQc2dLoqK6FxaLdVbt2pFzvHdu/RcJSYSjdXNDbGhofxiZiYLOX4ct77/XhI3bRKZXo+LrVsj8Px5pAUFcbUo8rGtWgnG3bvTGlDd56am0vzPySFn9/LlSkGpwsJCLF++HJ988snLLKTZs8lJLm15pdPpEBERIUVHR4sAuK+vL0K6d2eIjaVg12efESsiP5/qkb/5hlhIx4/T9wsJqXUMOedYtWoV9/HxYW3atMGFCxeQlZWF5ORkbm9vL48fP/6VC5BarcaaNWuQn5+Pt99+G86PHpEDePky/bS0pHVy+HAKfLzielauXMltbGx4aGhorUyT0tIYzJw5k15ITyfB0lGjyrUO8vLy8PPPP0OtVmPOnDkwVamgX7cO36alYfDbb+Px48coLi6Go6MjvIcNQ1Hbtojs3Vu6n5AgKpRKGKSlwe75cyQ1blxe2lKmk+Dg4KB/++23FcjNpfnj6EhrTloajf3w4cCFCygxMEBeXh7s7Oxw79495H/+uZwGCPebNoW/v3+5loegVgPGxhAEAQqFAkqlEidOnECAlxeCIiIoGObjUy7guHrVKn2Hdu0Uzfz8KNgTHIyE33+H2+XLUFSg0u/YsUMyNTUVe/fuXf5a7J492Hv7NroEB0PMzYVtZCTq7t6NP5s0gVufPnji6orzV69CqVRCq9WCcw5RFNFv/35um5bG9g4aBHtra7nHjh1Czuef40R+Pu/z2Wcsztsb54KC4PH4MXocPIgNc+fKOr1ecK5fH+UlLzt2lLe05b164XdDQy5OnswCAwNJz+bZMyq1aNwYuHUL+OMPXLp0CTHr18MPgE/nzlDt30+dO5o0weVLl3Dq+HHMXLEC+PBDmM2fjzt37uDAgQMICQlBy5YtoSsqwoNWreB69iwMa1pbtm/HH8eO8Uw/P3QLDWUVa/Q554iOjkZBQQGKDhzgrqdOMYe9e2FVnTBrRcyaBURG4vmJE1i7bh2sra3RunVrNGvWDAkTJ+LJ48foGhFBx06bRmtKKa2/IjQaDW7dusULPv2UtVi0CNbt2tX+uQDZI/v20X5TE7KzaY04duzVJYrffUfHVAkM6PV6nD17Vq5Tp47gVTHoWAHPnj3DmjVrAM4xuLCQN8nLY3jrLSp5KF1D1Wo1li9fzj08PHjr1q0FFxcXst8KCsgucnQkIcSuXYETJ1By8ybWnT/POedyq1atxIiIiOrbqGZmEtOxjIERG90n/+UAACAASURBVEvlRDk5lTqnQK8HHjxAQXw8Hq5cyQ936sQsLS2l7OxssVOnTnKrVq2EdevWFRUUFMxesGDButoH678fb5z9N/hXIiwszNfAwGCnp6eny8CBA43/p+dJTEzErl27YGBgwOvWrcsDAgKEiIgIFBQUyC1atBACAwNhYGDwn1WQ/z8KvV6PDRs2SEVFRVytVostWrTgwcHB/8xAFxWRQW1q+nI2mXPaKEpKqK6zTKW9oICcJBMTej8vD4iPx5W0NP7o8WNmWlICf1mGUevW0ACwUKvJyW7Xjuh1qakUde/Th+i4JSUk9tSmDWXuJYmoaA0b0kaoUJBon6MjOQIKBW32PXqQUzN/PhkUgYHkuH/3HUXLnZ1JrGfhQoreq9WUoXz3XQoa/E1BwUOHDuljYmIUs2fPfqUAmizLWLlyJff09GQ9u3aljGzTpkQ13LWL6mwNDOiaVq6kcRoxgv74yhXKIp49S9nNV2QRk5OTcfnyZbRo0aJWxkt4eLicnJws6PV6LDA3R9SxY1AuWsT9/f1ZVVZNSUkJ7t27BycnJ9h26AAWGkq9vQHKIMycSQZG8+bl43rmzBl9amqqmJKSwhZWFYHU6ciQX7asUrY7IyMDly9fxsOHD5Gfn4+GDRvKgwYNElS1KdFXB0kiunBYWKXe45UwezZliErbFP4lBAQAaWmQU1OxZMkSTJkypWZGS0YGUb9jY0kJuQIuXbokx8fH85EjR4pljv369euRlpZWfV/4nBxyFD77jM5XVETlKsuXAw8ekCNRTSDt0aNHCA8P53Xr1uVt27YVwsPD0aFDByQkJEAQBIwbN67m4AlAJSlmZnSvioup68TixURf79YNEARER0cjMjJSnjlz5strU2wszVtPTxQWFmLr1q2yRqPhPXr0ED1rE6TMzX2hwdGyJY0lQAGlbdvo99u36Vlq0oRYDwsWoGTFCqgXLoRRSQlWz5iB2d9+i3teXhB9feG+bx+Ojh8v9zp5UlDKMl2bpSU5tps2Ua2zvX35uc6PG8dNjxxhvubmEBYtIieCcwrYhYe/duAyOjoaR48e5R999FGt2f2wsDB4eHhgVEXBxawsGoP9+8uDUiUlJdi+fTvPzs7mM2fOFPi0adip06HxtGmVBVVlmebD99/T+pGQAHnVKhRlZMAwLAzp6enQ6/VwcHBAfHw8Dh8+DBuVSrKWZaZs2FAIiYmBSUgIraEnTtC8L2U9VMKcOSi0ssJeZ2e5sLCQT5s2jQamUSMaqwqdSlatWqXv0KGDonnz5nQvb92i+2llhR1z5+q7JyQobMLCqFbfxwff7d2L95ctq2RfbN++XW9hYaEIKQv8cI78Q4fAJ0xAWuPGsijLLMfYmEX6+UFtbAxPT0958ODBgiAISEtLg5GREczNzZGTkgKHoUOhGTYMfNYsnDt3DvLOnXKOWs2Mc3OZ+bBhcPTxgbKgABbe3tDpdNBlZMAuMBA3t21DYFk5xJw5FLwMCIDcoAG++PlnzP/kk8oBu+HDad0xMQGuX0eyiQn08+cj08oKDQ4dgl2ZI/7sGTBoEOR58/DDjRu8gHNWxpZwcHDgQ4YMYTY2Nsi/ehXnFi3CnY4dKWAWElK+Maxdu5Y/efKEmZubS0XZ2eIHGzbA4IMPwN577+V7l5oK3fbtOJaTI98yMhK8vLz4sGHDat5ktFrKLBsb4+5PP2GXoyMsLCx4YWEhK+uosHDhQmpT8eWX1HmjyjxPSUlBeHg4mty9K/sMHiw0eI3OQABoH/zpJwra14ajRykIWkUMs1ro9RRM+/HH8oDszz//zJ8+fVo+BvVLAztV18mkpKTylpp1NRo+9vlzZuDrS857aZlAdnY29uzZI2VnZQn1rK15aHGxwL74guyoBw+oFKhzZ/CHDyG1aoWty5ZJYwICRDRoAL2lZfUs14MHifmyeTPZUN27U9nggweVgrV80iQk29tz7NjBrn38sTxg7FhBoVDgzp07OHbsmKxWqwWlUnlw/vz5/V89UP/9eFOz/wb/Onz++efdlErlwe7duxu1bNnyb6WC3dzc0LRpU+n69etiQkICSyhVJK5Tp44QFRWFqKgoKBQKMMbQsWNHtHudCO0bvBYEQYBer+eSJAlmZmbs4sWLrHv37n8/u79uHTkNaWnVO4+MUQZLqXzRNqsW+APMNC4Oe/bswaUKwdFFX3xRmabNOW1OGg3902qpZVTZexoNGd6iSL8XFpJT/OABbdxqNf0eG0s1bs+fU3ZTFMlYnzSJqOFlCsWxsWRMtmpFRurgwWSwpqeTQeDlRZlDa2uif589S06iLJOh0r8/aQDIMgUSwsOBVavQw8REcae4GMLChUQBLCoi52fGDDpvnTqk4HvyJITOneHImGwcHy+iZ09qr2NhQb3lDQ0p2FKvHmUXZs2i73XqFDlSY8dSRmjuXPq7V2DHjh1co9GwpKQkODg4yL179xZ0Oh3s7OwqGQ2jRo0SAOBMt26If/99ROXnY35AAKvO6TMyMoKfnx/9smcP3YfiYjL+t20jTYMqcz4pKUl4/PgxC6yOKcEYlV5Uee/o0aM8JyeHGRsbyzY2Nmzw4MHVipm9EqJI98LRkYIRAQEvaKnZ2dRe69tvKXD1P8HEiUBhIdRqdXnde43OvqUljVPDhi+YKQAOHDggR0dHC4wxhIeHyyNHjhSUSiV8fHyQlpZWTt8EQE5tcjI9A23a0Pni4mhuLFtGz+miRTU6ns7Ozvjoo48YALZ3714JgHj27Nny95ctW4bp06fXzKy6fZvWgEGD6Pq/+ILm4YgRxJhp2xYpKSmwsbHhZRligLp2PHjwgAetX8+wZAmePn2KDRs2wNHREZMmTaq9Q0pxMTl7y5aRg/TFF+QERUbS/Zw2jQJk1tY0FubmNI8CAnD0wQMpc+hQsb2rK6ZNmwbB3R3efn6AtTUynZ1h6u3Njufmcge1mlsmJQmenToRw8TVlc7t60vncnZGQJ8+LO7wYaQ+fgzbggKYKpW0fkVEUPDljz9oTXnFc3rq1CkeGBhYq6MP0HqfmJhY+cUytkNODn22kRGMjIwwcuRItnbtWnz11VfoaWoKZ6USp06d4q1bt2YVTkj/3n+f1sOiIggLF8LMzQ1YsgQu06aRY9K9O/yCg+G8dy8Uq1eLhpcv49uJE9F9+3YKyn72Gc2p1avJsa3SbrJ48WJsWreO67Kzhbz8/HKmAC5ffml/0Wg0glUZG2LJElovDx4EmjWDKElgubmQ+/eHYGyMnJ9/RmHVwKxWC4vUVFgKAu0dUVHA48cw9/AA8vNhoVYLOHsWsLVFm4kTUWBri4Lx49kvOTl8rLExc3ZwoGBxZiYcevUCJk+GqlTgslu3bkC3boI6KwsPu3blwvLlzGnmTJgsXEhOmUoFODriyrx5+jP37oneYWHMYsYMWrtlmVgvmzdDEEWo1eoXOkac07UOHUrr5fr1uNu6NY+ZMIEVFxdjplJJf79lC7V87NIFQnAwWEKCPLRHD9Hd3R06nQ6mpqblg2memIi3goNRWLcuu3r1KtLT03lBQYGs0WgEzjkbP3488vLyxJiYGP7LkCFsiJcXHA4dImZY2Vqh0QCrV0Pp7o5+8+YJbZ8/xy+//MKSk5NrZnAaGNA8OXcODU6fhmLwYAzp149ZOThAeu89Znz/PtioUbR3Xr4MmJhAq9Xi2LFj3NLSkj158kR6+PChaGFhwftduSKgb99a50QleHvTHv8q2NvT51+8+OpjBYGSFtnZ5c6+o6NjJWc/NTUV3333HWbPno2srKzydroVM+7pKhV7OGcOPO/dI10Tb29gwgRYGxtj0jvviNzdHRfc3ZH+/feoN2YM2VZeXkB8PKSSEkRmZvJrixZh1tSpotCjB+DiAoPVqykhMGpU5XlkaUnrVFlXjBYtyHapMtcynjzhaQkJ8GnRAkPeead88fH19YWxsbGwdetW6HS6l0Vf/o/ijbP/Bv8qhIWFMQMDg81Dhw41blBdv9G/CFEU0bt3b1Gn0/Hbt28zExMTzJ49G4WFhbh8+TKMjY1lNzc3YcOGDTh16hTu3LmDYcOGwcrKqrz103+8d/x/KZ4/f45nz54p+vTpg+fPn8udOnUS0tLS8Oeff0qenp5CJcPudaHRkHHSvv1fV6KtBd7e3pg/fz4OHz6M27dvV38QYy96BpehKhW+Q4eaP0SWaSP/4w9ymDMzyZHau5ccD39/+qnR0PFXrlCmXBRJKM3GhmiphYX0/ty5lC1jjIx2pZJopWXOVr165eUKkCQ67vFjwNwcoiSh8NgxWI8cSQGIrVvJ2V+9ms45dSowfToKNm+G2+nTgs/FixRQCAoig6vMiW/ThpgOW7fS9Q8fTp89YAAZf5MmkQhabCywcycFAwYPBoKDoW/bFonTp/PI1q3hkJXF/VNTBYtly2SfkyeFE6mp2LxsGRo8eYIEV1c4qVSyt6urUOjigtQLF/TPcnLE8deusY3nzqFV+/aSUql8dZoyPp4yIXPnUtZu585q6ztHjBghfPPNN7h48SKCgoKQlpaGnTt3ws/WFj3DwoD79yHLMv7880/k5ORAr9cjPT2dderUiQcFBf39hcLbmwJJw4ZRkKdMsHHLFmDDhhftkP4qdu4kx+TQIXK8QOKLNUGnUCB2926oo6NhfeAAPIYPR25uLqKjowUXFxeMHDkSa9eu5evXr+d+fn7s0qVLEgDR2NiYDNBNm6hed9w4+mwnJ2qZaWVFwZ+4OLoPY8ZQ4OUV81mj0cDCwgImJiayu7u70LZtW6xZs0b+4YcfhBEjRsDW1hbW1taQJAl6vR4qAwPKCleFoSE536IIBAVBUacOT/T2FpcsWQJXV1fZzs4OV65cESDLrNXevTjati3XmZszvV6PcePGVX9/CwtfZM3L9DQ+/5wU2Bmj8XB3pznZrx8F+QIDKwtxde2K9NhYHjRlCnzK6t4raBrYfvcdugEssWNHXL16lT2PjETDgQMh+PuT8VyxZdnQoVAAeLx0Ka5fuwbHK1cwavhwqCZOhDh1KrGU1q9/4SQYGZGzV809cHV1laOiokQrK6sX9fjVwMDAAGq1+uU3xoyhLN7331OGXxRhaGiI9957j8XFxeHk2rXou3s3zr39NltCWXTu6+vLevbsSU53mYOm1dJzGx1N1z1gAGUgGzYEO3UKdk2aAKUtRc1XrODJu3ax8uvVaIhl8OwZBVt++42cX5DWz9sLFoi3Jk6U7zVtygVBEDF+PM2/Kq1RtVqtYFkWLGAM6N2baPAjRyJz1Ci2390dTTQaPB0yRH7w55+C56NHXDh8mOHxY8qGrlmDhn5+YkHTpsTgCg2l58DYmJ6Fzp3puuLiABsbmGVkwGT4cJabm4vk7du5d9u2DN27074AUOBm1Chymt55B3B0hKGBATyvX2drv/pKGv399yK6daskBusfFqbIPHpUliZOZAgKorHcvx84eBBnMzLg9ewZNzExYZgyhQJSixe/YGXdugV948aoFxHBuj17BmXHjrQuLVtG369dOxrnceOga96cefTvD+WPP0JlYkKBxjt3aD3Yvx9inz4YMGAAAp2ccM/AgNm5uIh1mzaFsYlJeaDB19eXLXn4EIbNmtG8uXGDgjcABT6LisrLxuzs7GBpaSlnZmYKryrXPAcgauxY9LK1let26iSwc+doX8jNpeBkv37lHTOKi4sRHR3NAMDHx0ds3rw5WjZqxDBx4isDZZXw8CEFrm7dqv04Pz/al54/f3Gfa4IgENswORmYNw85H32E6OhoAQA++eQTrF27lmdmZjKNRoOvSluoLqogojtt2jQ8f/4cu3btwo6dO+m9Fi2gP3kS2gYNYJSVBZacDHb4MC7/8QcXNRpWr0JwmE+bhotjx/LLJiYYMWoUMetOn6a18NYtYigOGkQ2TpMm9N3Uagq6f/013c+kpJe+VkpsLE45O7P+jRvDsopOUE5ODvbs2VMMYMCiRYtq6Cf6fw9vnP03+LfBWxRFi5fqfP4mBgwYwHr37l2exTc3N0d3WkTKF8anT59i7dq1WLNmDZRKpVxcXCwYGBjwsj7yM2fOhNUrahzf4AXs7Ozg4uIinThxQpwwYYJgZ2eHEydOyBkZGWJKSgoaNGiAqm2BakVODjnXt26RQ/QPo0wF/Pbt22jXrh2io6Ph4eEBk1raZL0WfvuNRPjOnyfl66ZNia5WFsyKiSGHu0sXctjLDIiKwa6yIELF+uyKNO+PPqKfZXWYADEgyrBzJ/1ctgzP09KgWb8eG8aP53OaN2do3pzoigDVFoPq9a5u3crPnj3L7Hr3lhtv2ULOdGnvbABkaAFU06hWkwPaqxcZ1j/8QManvz9ds40NOVmMAa1bQ3J2xvbdu7mfQoG+/fox4c8/mbVaDaWfn4A5c9B31ChBdnGBsGAB8t99F0VhYYKwZg32zJjB3/l/7H13XBXX9v06M/de2pXeQQEBBQFRREARa0RFDcZeYqzPbkw0iaYaTHnGEjXG+jQxGktUjIqi2BEbIEUQlSKCdJTe4c7M749NFTSa99735f2e6/Ph40fu5d6ZM2fOnL322muvWiVL6dwZ13r3xsIdO8BPnsxLAwaAVVZSMDtgAJkWamhQacGxY0ReBAcTGbJlS1O9YBvQ1NRsdJiXyWSIiYmBQqFA2oMHSBoyRBIyMtjJkyclmUwGpVKJ3NxcBgCXL19mtbW1lGH7Z6FQ0LzQ0CCSRZLoXNqSsr4szpyhlmWMoUHh9Ly2ghkZGfjpp5/gHxQEo6IilCmVON2uXaPyycHBAQqFAgsXLuR//vln8dy5c8zBwYGfMWkSdL7+mjaghw9TwNRcjlpYSEGvri6RWbGxRET5+5O89QX3mru7Ox8YGChNmjSJa2h7tXTpUi4oKEg6ePAgAwAjIyOxsLCQEwQBb1y6BOfHj6F2/37rcpX6877t6CilKhTMNDsbnXv3RrZMxuXl5aFz586Sd48eLGngQBQnJUkFjx9DEAT25MkTGDVswAWBynESE6kO98sv6cfJibL1ze/figoy+SopISWDJBFBNnlyI+FUUlKCsrIymaWl5QsvY8OatHPnTtw/fBhWVlZoq1dCZWUlrKys0Of6deSfOIG1Eydi2IoVcP/qK3DLl1NWWl2dgvCGnuqbNlFpS7NjHz16NM9xnBgZGcm6dev2XEamzUC/AePGNamZmpk3dunSBV2+/x5SVBTemzgRFe3aISEhAQkJCdLGjRslPz8/zsLCgpQb+/fTeM2e3VQ65OVFH9SMhHj06BHKyspYdXU1iouLofvRR/Te9evp7woLUZeZieTcXNx5/FhIS0vjxPPn0cvNjevVUHYjl9Oa1QwRERFgjFEde3NMnAgMHIjpbm68elYWUhwcJPVbt1if2Fjw7dszCAKRugMGAF98gbiTJ8XU1FTudmmpZG9iwgZoatKYqqkRCePighpjY9TU1OB2ejpu6+uLRvr6MD95koOODq1ts2ZR5nfVKiIwi4pobH/9Fdi0CdzTpxi5bx+f4+oq2uvqcrCyomswbhzg6QnX27e5U35+GFBQgPYzZ5JSaORIlN+5gzd/+olJGzeC9e9P87iyksjmPXuAL7/EkYMHpSRzc+b4/vtEwISE0PyeMoWUFBMnAhUVUEVFcarZsyHv1InutyFDaB1++JCOuaIC8uRk4MYN6amWFnO5ehVqlZW4P2YMOpSXQ9fXF6yiAvZ37qBdbS09R5VKCpj79aNg8XpLTzZJkp6bmMnJyYFMJkNISIiYmZnJTZo0CTY2NhzataOgev16WpPmzCHFUT10dXUxf/58BAYGisnJyWzs2LGs3ZAhKHr3Xeg1+FO8DDQ02jYPfBYyGZG6QUEtjAFfiNxc4MYNJNSXdllZWUEmk2H06NFs587nl7M3EKQAoKWlJQLg0KED7trZoWtaGqJHjpQ6KxRM2bUrdCIjpcePH4teXl6NJ1GWkICLGzYwU3196DZXzDBGgX12Nv3/6FHyizEzo+4oeXmUXDh6tNUxlZWV4e7KlZgQEwPl48ctCE+VSoX9+/dX1NXVfbFy5cpzLzc4/xt4XbP/Gv81CAgI4NXU1EJ79+7t2bdv3/8IURUfH49jx45BW1sbfn5+KCsrQ3V1NS5evIhu3brB/2Xrs14DAG28Dh48iPHjx8POzq6hPlbF8zzr0aMH79WwWfsjqFT0ELx+vZXs+l+Nr7/+Gg2mbkBLJvyV0LC5cXamje4ftdR77z2SszV3qf03Yfv27aKhoSE3duzYVq9VVVVh69atkkwmE0eMGMG/tMKmXqbbiF9+oXrH6mqSvJ4927jZCQwMRHJyMhYsWADtlyi1aIHZs6HKycGPb7whlhcUcALPw0FPT5owahSDuTmNoaNjU432Bx9QNunRIyKJQkP/8CuePn2KLVu2gDEGIyMjaN66hUFaWthvZSXV1dUxLy8vqV+/fiwrKwunTp2S/P392blz56TMzEy2YMGCpoDwz0KSaON/6BDVYisUVLbyZ8nGmhrKqrm4oLCiAkFBQcjMzISfn19TmUMzREVF4dSpU5hqbo6OFRXYGxODR/UELM/z+OSTTxo31ZGRkQjfuxeTa2uhr6ZGsszRo1uX0GRm0lxoMNGqrSWjypUriQQ4epSCiuf4SNTW1mLbtm3gOE5cvHhxq11zcnIyMjMzoVQq4ejoiJKsLFzfvVt4qKfHDxw4UHJ3d2cN5EZ9a0RVSUmJbNKkSTD/8EMoqqtpg92An36iTXdYGFQqFX744QeUlZVhTu/eMHV0BBs+nDKyp06Rl8OzHQieRUlJkyIjM5Pm5PDhFLwA2LJli2BmZobRo0e/VDF9cHAwnh48iJFffw09K6tWr2/YsEGsyc3lBl6/jug+fQBra3HC+vWc3qFDTX3qAwKaApCsLGq9OXRoUxD1zTcAxzWWbrxoLTx06JCUmJhINc/PU2kMH05zY9aslr8/e5YCgXoyUxAEbNiwARX1hKKBUgnfY8fAl5cj1c9PqNPSkgatXy9TS0sDdHRQU1ODxMRE6Onp4ZdffoEkSRBFETKZDM5378K1f39Y1xug1tbWYu+330qT161jtz7+GK7z5sFALiePlI0bSTng4tIqMNu4caPg7e3N9+zZs8kPJj2dlAK7dtG45eURoRsZSUFNG0ak2dnZSEtLQ2FhIe7fvy/17duXAYD+pUvQzs1F6aJFCAwMRE2DwguAqamp2MvTk3XdtYvBzIyCKScn8q15660WrTErS0uxe88ewe7qVb776NEwbd+eWkcyRuUeoaEQ334bZzgOpoMHo8dPP5GSICoKvz98KMXFxTFNTU2MGDECjo6OROZevgysW4fThw+LyTzPpk2bxvT09ABRRGlKCoru34epgwPUrlwB5s6FSqXCt99+i08//RR8RgbdVykpVJttZ4dQX18h7v595hEejtvOzpyJnR2Sk5MlvraWde/QQSyPjsZTQeDskpPRrrwc7p9+CmzbRoRGRgYFt8uWUb33rFlEIEyZgqTUVKlm61bmMm4c8NNPuB4UJLrs2cNt/+wzcezOnVypjg7uTJokTt2wgeMOH6Y18bvv6HoZG9M1f/iQOnU8A0mSEBISgtuRkXCOigImTMCoBn+al0FZGWW9X2YP+fAhlRpdvfrc9fBZ5OTk4Mr776NWTQ12c+Y0ErOZmZnYs2cPBEGAh4eHOGzYsBYTOyAgAACt6xMmTEBwcLBQXFTE6xYXQ1FbCydJkvpu28bKy8uxadMmyOVyjBo1Cvb29mCffYandXW45O4uJicnc7a2tqirq4OhoSG6devWWDLQiMhISlzU1RFJ+oyhoiiK2L17t6hbWiqN43ke+votutOcPn26Ji4u7kJtbe3IlStXvg5um4H/skHy8hqv8RdGQECAplwu/4exsfEgf39/tX+pa/srwMTEBB06dMDAgQNhamoKc3NzaGtrIzw8HLm5uWjXrh3Mzc3/I8f234iff/5ZcHV15bp16waVSoX4+HgpPz8f+vr6vCRJorm5OautrX1hu0IAFEDk5r58W7J/Ag4ODkhLS0NlZSV69eol2travvxkvHuXygymTCFW282NAswXyF8b0b8/mVkJAsl8+/b98yfxB+jQoQMLDg5GRESE5OTkxNTU1PDkyRMUFRXhwIEDkiAI0vvvv8+/kvLC1ZU2vw2yu27dSLpdUUHXbsgQYPx4xBQX42Z6OsaNG/fq91JSEjB2LLjx4+HRpw9zdHGBBOBhXh7zbqjnFATyDWjfnsbR15eCmr/9ja5LG6Z5Fy9eFI4dO8ZZW1vjxo0bwu+//861a9cOMpkMpqamguv166y9gQFLsbWVOnfuLPr6+nI8z0NXVxceHh5MR0cH3bt3Z3fv3pXCwsKYnZ3dq5MYAAXDBw+SkVNWFmUYZ8ygjHdqKmVcX9GgUZIklGzaBMXkyThvaysGhoQwnuclQRBgYmLCrJptbEVRRHp6OsLCwlBeXg4rb2+YJSXBNjYWDsOHI5sxcejQoawhs47r12H2ww/Iqa2V8ouLmd2PP5Jqoi1jwnnzqGPGqFEQRRH5BQVIAKQMUWSp1tYoNDKC1uzZuGdqiszycuTm5uLu3bs4cOAAbt26hWvXrkEmk4l+fn5cWz4DBgYGsLGxgYWFBRS1tdD+8Uc4rV7NGRgY4NKlS2J4eDjT1dVl58+fx++//w51dXW2cOFCZmhoCH78eMpI7thBdfYzZhAZ0akT4OwMLisLnfPyoJ6SIhl++y27VVoq2Wzbxth771HAr2wrt/4MvvySzr9fPyJCRo8m1cPbbyNeVxdxjx9z0+pNqF4GwYcOYdrOnWi3Zk0r+b1KpULyzp1s1smTsA4Ph7ufH9zd3ZnGu++SL4i7OwVwqalkIAjQMfn50Tk3mILWb7aT6upEy169uE4v6KKho6PDYmJi4ODg0FTv/SzMzel7G4LPBly7RlnVehk+x3Hw8vJC//79YWhoiOqjR1EhourUAQAAIABJREFUCFBJEsS+fbkiS0vuZMeOeBwWJio++QS7njxh9+7fR2JioiiKIps3bx769++Pfu7uSLt9WzoHsLCwMPTs2RP37t1DYk6O1Pfzz5nNyJHQ3LKF1qoVK+i6d+9OY9CsxCIvLw/3z57lRiQlge/bl+7D1FSqrTY1pQCma1cKwH19iTBISaHg9O5degbUn2/9vBby8vJYSUkJKysrEx4+fIiMkhLJ7uhRFqitLSqVSnHp0qUcYwwFBQVSNxsbTmvRIpbTvbto+OGHjFu7lkph5s4FOnXCQ5kM27Ztw+PHjwUrGxvu5s2bnNPbb0sOw4YxJCWRsmDCBJrfGhoIt7UVb9bVsVGpqZBNn05z09wcjt27s/79+yM1NVW6du0a69+/P12bESNQFxgIjV27mPuPP7LG+2/zZuQvWyb9ambGkkNCYL9xI46Zm0sRt2+De/yY9TYxofIQW1uSyFtbA19/jcATJ1jnzp25Htu3M7FjRzi8+SYePXok8erqbOSUKczc25t5vfUWFIMGQTluHHS6d28kK9GnDxG2Y8eSweebb9KzxdYWIRUVkombG9P39MSB1FQxg+NYlylTmJ2fHzMfMACWkyej2/DhjDk70z1gY0PJAycn8nUwMCDpeRt48OABzp07h8GXL6Pc21uqMTBgzs7Oz70fWiEnh55DzdV3z4O+Po2Vvv4L1U7Ncf36dcnm0CHWw8oKDgsXAqB6/Z9++gkNSV83NzdWWVmJnTt3wtHRERkZGbh79y5MTEwgiiKio6NRXV3N9btyBd1690afXr1gv24dY4sWQaGhAWdnZ5SUlEhXrlxhNjY20MnOhqaFBZymTGH6+vooLi4W9PT0WHZ2tnTz5k306dOn5cK0bh2VIvr7E9G7dm2LZ9q5c+fEjIwMzIyM5FlQEM3XetLt/v37uHLlSnFdXd2glStXVr3kqP/P4LWM/zX+0ggICHCQy+VL5HL5ZGtra9mYMWM0/9P18c+WEOjq6uLTTz/FN998g4SEhOf33n6NVrC1teUiIiIQEREBANDU1JQmTJjAX7x4Ubx9+zYXHR0NnuexYMGCljKw5hBFCn7+DdL9tmBsbIz58+fjq6++gpub28tNxo0baaMwciRlt0WR5JavAnV1CpSuX6cat48+ajIb/BfD2NgYPXr0QFRUFEtKSkJycrKYnp7OyWQy0cjIqNEE75Vw5UrbRmtOTvRQFwRAocCTsjJ4FxYK9keP8i/sOfwsCgqIEDl+HPDwAFd/Hm+88Qaibt9G/ubNMO7fnzYImZkkgWxeH6mnR54Ed+401jdnZ2dDU1MTN2/e5Dt27Cjt2bOHSZLEDxw4EDdv3hQ9PT25fkolj59/BkxMMIux544LYwyLFi1iR44ckQ4fPoz333//5UgiUaTA6uefSYa7di0RE25utNGprqa5YW9PG9uAgD9s4dYc8fHxuJ6cjL6OjlJCQYE0ZcoUXL58WeJ5nnXt2rXxfdXV1dizZ4+Yl5fHAcCUKVNgZ2sLzJoFpa0tlBUVmD9/PgdJogDg3DkyTfP3h7W1NTt94QKGvCjo/fvfATU1ZGRkICQkBFlZWeA4jr21ezfKunVDzMCBUn6/fpL1unUsauhQsdjAAJIkSY6Ojry+vj4LCwvD7NmzuVYy6rZw/z7J1L/9lqTiXbrwYWFhOH78eGNZ1uzZs1v2xuY4Gleep8zTb79Rhi8+Hpg5E/pWVhjw668sc9ky3PjlF/YoKEiaM2fOyxOBdnYtaqehVJLypX9/lP34o6Tm7Mx27NghyuVyjBw5krOwsHihmSmfl4diQ0ME7dolaWhosLKyMrGsrAyCIHCy8nL0FAQJGzeyFsHC5MkUnH7/PZEa48ZRzbiLS8sPHzGCfqqqIEyciNq0NNZ35UrK8h47Ru95hqBtMEkMDQ0VJ0yY0PZ9MmAAreM9e1JZSYMCplcvymI2Q05ODqqrq1GQmQnLp0/Fju+9xz1auRJRqakQS0tFuYYG69yxI2d57hxGDhwIYxsbmJmbt/zevXvhd/o0GxgXh++++w4bNmwAANTV1XEPDQxgy3EkQ7ewoEwjY5Sdl8nIU0WpBEaORLalJXro6ory5GQOZWVEOjaM69tvU3Z5/nxy6J85k9Q4dnZUyrJhA3kO7N8PLFiApKQkITs7mzcyMoKzszP8/f2po4UgAPn5+GD2bK7BRNDY2BhqZWWs95kzqJg8GbtkMin4+++xQBRxLjxc8LhwgY+6fVu6/9NPTNPQEBkZGdyWLVsAABcvXmQ6paVw2L2biKVPPgGmTUNRURFCQkK4t5ydoXbyJMnhZ80ikrY+K//o0SPm6uoqIDqax5MnwIABqOncGUGlpZjC89i7d69QVVUF77Q0/q63NyZPnoz27dsj/O23odq+nWnX1KBfbCwuFRdLafPmST2DglinKVOY2uzZUIkiKioq2KBBg6B49Ah9BQH4+9+xYMUKbt26ddL333/PGuaTb69e6NxQhlVeTs/XiIjGc0GDOeBnnwGdOiHf2JhFRkfjbEGBqKuri6kzZzKlUgl9gILnBgwbRv9qaxMBBdA4PHnS5rQFiKTRViqlXrm5LNXNje2PjsYLzQCfhY7Oq+1hKiqIfDp16rlvSUtLQ25uLlJSUpCens78f/0VRg2lanPnoqioqMX7g5opl3bs2AGO4yQArMG7pXfv3rhx4wbMKyrQydycxik5mdb7fv2gr6+PMWPGsMzMTFVBQYGsw6JFtFYCcHZ2hrOzMw8AKpWKfffdd7hy5Qr69+9PX/jjj7RHevNNIkhVKiqts7AAxo5F4uPHiIqK4v42bRq4L78kcrh+P1FYWIjjx49X1dXVDV+5cmXhyw/i/w5eB/uv8ZdEQECAvZqa2kY1NbUBHh4eCldXV/65rtB/AURERIgAXpjZeI3W8Pf3Z4MGDYJmfb9i1HskTJ06lcvNzYWhoSG2bt0qZGVl8W0G+6tXk5T5j0xt/sXgOA5mZmbCyZMn2aRJkziN5vL0BlRVUTZowwYyfmKMapHbqEN7JXh7U3ug1FTKPsTFUYb8Xwxzc3NERUUhJCQEFhYWePfdd6FUKv8c0/bRR5RxeZE7Mc8Dv/6K6pMnIYaH82JxMThBoA3yZ5+9uHOCJFG2+NixlvX2ublQDwyEvihKLCCAPdXXh8Hmzc8PkhwcgNJSSJKEhIQEBAYGAgB0dHSEyZMn8wAaDTl9fHw4iCIF2V99RYHSS8DKyordu3cP8fHxcHk2iGqOp09pI3f9OmWYLC3JyLC5ASRAwf748SQD3bCBFCP79lGQ8YJgUBAE7N+/HzkJCZh/+TK0w8KYk7ExHxQUJBUXF3Pz589vkYE9ceKEUFdXh88//7xl3ev+/U3H1rDx/O472oDXy1itioqgOnsWkiS1PfY7dgBxcbg8dqzq6tWrMqVSCT8/Pzg6OiIoNRWTzM3Ra9YsBoDhzh04fPwxjxUrGtUt1dXVjWqDlwr2e/YkUqcZfHx80KtXL7Zv3z48fvwYBw8eFIYOHcq3UJd06ECBz759ROAZGlLWNzy8McNkaW2Njh07IjU1lVVWVkLz2evVDFVVVaiqqoJSqUT12LHQSExEzuPHyMzMREFBgVBQUIBidXWupkcP9u6vv6Jw8mTuXKdO0p49eyCXy+Hg4KDy9/dvex/HGE75+kImk8HQ0FDs0KED1759e+ipVGj39tvgN21ieLZM6u23m9zoDQ1JRTJ+PAWlbZUhaGjgsJaWkKmjw4YeOEBzICKCxui77+heNDEBeB7a2tpQKpXSgwcPuOfOA4De36sXzftR9V2zOnem8U1JaZT27tq1CwDgmJsruIkiZzx0KAzXrkW7YcPAW1hwhw4dgnbXrmgXGQnX8+cpMLl1q2Up0dSpwPDhUFdXx8qVK5GZmYkLFy4gPT2d5rimJmWJRZHmeE4OkTxRUSTNz80Fhg1DdH6+4D19Oo+2+parVMCDBxTINPQhv3YNsLODNG4cbtvYgI+LQ4ewMFQ9fQrNykrOVJKkMi0tKTs7mzM2NoaPjw+tj05OpOipv0YOPA/+2DEpcepU1uWDD7CUMf5WUBAiQkNxLzWVT87IwKh9+1i3mhocmDkTgiAwANDT05PKnz5lOWvWQDFqFDr269do7KqlpYWedXVS3bffstLz56Gto0PXs568KK1fH729vXl88UXjs6eMMbjeuYOICROQ7+vLj0pNlTIVCrGkZ0+YmZmxwidPIC1fjknh4UgfOxZ6wcFIf/gQo776iruhq4tbAMyCg6GpqQmZTCYpFAqaIPn5wE8/QTZ/PpYuXcqSkpJgolLh+tq1UlRMDDNLT4feggVE+APkLzFtGnlLZGWRSeGVK8DGjdA3MmIdo6Ml+dy5zK1PnzY7tLSJ2FgqC6iro7KIZ1BRUYHbt2+jm1Ip4e5d1pHn4aVQiHv37uUkScKyZcuer2ZpgExGJPTLYvBg8mlpIHuboaqqCvfu3UNwcDA0NDSkiooKNmbMGDg7O9N8XLMG8PCATbO2gSNGjIClpSV+//130cnJifPx8UFtbS3bv38/Hj9+DIAIa04QYHfjRlOSQU2NSlImTGhUPejr6yM0NFTqdusWY6tWNbUWbTxVGbp27Ypbt25J/fv3Zzh3jkq1Zsxoer7JZI0EX52nJ2pqazFk1y4Y8TztCerVCYIg4NChQxWCIHy2cuXKiJcfwP8tvA72X+MvhYCAAE4mk30il8s/8fb2VvP09PxzLar+j5Gens40NDQkLy+v/0x9wX8x2noIchzXKOGura1lWVlZuHTpkjR06FDW2KNbkihL4un5f3m4jZg+fTq/efNm6cyZM+Lo0aObop+7d2lz5+9PcvHc3Ba9mP9l6NiRNp7m5hRsLl7cqm3Un4UkSbh//z4AYPbs2TAzM/vn5DSv0Apu6NChWBMXh16LF0OnpITqdZcsoQe/mVmTrLg5Vq0imeW1azQvTp+mGsuQECA0FD0+/pht5XkgJQW9L1yQBg8e3PZ9+sYbqOvcGeGrVyMMkN544w2WlpaGkSNHNkoSWgS6lZWUwX6FziA9evRAaGgogoODJRcXl5bHUVtLpQ5r1tAGdcsWOvcXyUF1dWl85XIiVHJzaS7cv//ceVdWVoabN28iIyMDb7ZvD+1Hj1B5/Tq2pKSIjDE2bdq0Vvdleno6P3HixNYGV7dukQ9CYCCNw44dEC5fxrnz58W0bdvQsWNH9O7dm5PL5Th//jx4npc8PT3ZmTNnRHt7e+7x48eCzqVLXHVxMbt19aqsc+fOGDFiBJRKJUpLS/HI3p6Cxi1baIPn6kqZ0StXgKoqlHh5YdeuXZKRkZFoZmb2x/XsKhUFXnFxrWpvZTIZZsyYgerqapw+fZrbs2cP7O3thdGjR/M8z1NQHxhIG9xhwyiwra9Nbl7D3a9fP6SmpmLt2rUYMmSI1K1bN/bw4UMUFxeLxcXFnFKpRHZ2Nh49egRRFCEIApgo4oM1a3D8vfckNWtrUVdXl7e0tETPnj3Rvn17aMyYAYvERMzIyGDi4sV4kJWFI0eOyEaMGNGmkaJjejo0q6qkXrt2EUkCEAEZE0OkW1t+KP36Uc1zA0xN6d6aMIHk9c9ce0EQkJSUxPfq1QvKzp2beo6fPEnS29mzqb44IgJIS8Nbb73F9u3bh02bNkkLFy58frC1eTOtbcuWkTEaQGU3N282BvtDhw7F5QsXpLdiY3n5nj0AAG7ePHTx8QHkcsjl8qa2kd7eRDzJ5RRUNJQf+fiQsVz9+ywtLZGdnQ1/f3/YWFtTJvfUKVILubpS0BIVRZnjb74BZDIkDh+O3KNH2/QuKS0thXD2LPK2bcOTzEzIcnOh9fnncJEksPx8lCgUCA4OhqmpqRDu7w9JktD97Fk2PimJU//oI3Zt9Wqx1t29adBVKsqkOjkBsbHggoKQ6ubGsvT0pC717ImXkRHK27dH94ULsWXLFgT7+cF/6lTMNDbG7du3BRMTE65z584s1t8fJoaGOFhUhN5xcbB9913khIdDQ10dHr/9xq54eaFHwzh164aSgADsiYkRamtreTMzM8lQQ4PhnXcAR0dUV1dj79694rDOneFmYsINWboUcHZmtjt2MBulEmnTp4vy8HDuYZ8+8Ny6FbZdugAlJRi8aROTAgJgY2oKzfx8KTc3V4iKipJpaWlJjXPWzIyI7cxMKLZsgfPMmcCiRRgFsE39+wsHPDw4i5gYUS8tjddQV4dVRgYEAOZ79hC5UltLiq/+/VH1/vvomJvLKg4ckMKPHJEe2NhIvhMmcB2e7ZrzLNLTiehrozVeSUkJtm7dChMDA9XgL7+UoWtXwNsbAwcO5HR1dXHlyhVcvXoVfn+ktpIkUnC9LLS0aH0/fBi1EyeitLQUhYWFCAsLE3NzczmO4yRPT09ma2vLAgMDRWdnZ5pHMhmdT3U1lKdPw8PDAxzHoXv37uA4DvPmzWucb7GxsY2Bfp8+fcBxHPqGhUHq0YPWT4DWhKAgOp7cXMDUFFOnTpV9/fXXKB03DjptnHdRURGio6Mxbtw4hpQUIhPnzqV7/BmoVCrsffNNyUxdHX5PnzKMGUOKmk8+AQCEhoaqSktLowVB2PTyg/e/h9fB/mv8ZRAQEGCipqZ2UE9Pz2PixIkaz+2N/BdEfn4+q6qqet2G718MURRRVVXFRUZGQhRFVlpaSi88fkxBX2IiST//A1AoFJgwYQLbvXs38/f3Bx8cTGz70aO0IRw7ljJd/04MHkzM/u+/08a1Tx96mP8TqKqqwvHjx5GSkgJzc3OYNHdL/zPIyKBA7Q/uC5VK1fivJEnQ0NAgKXDDpuKTT2iz/sMPlK0ZOZJ+L0mU4e3bl9zCZ88mCfLnnzf+9AbQe9AgbNq0Sbpx4wbz9vZuM+P69OlTxL//PlxDQ9EhKop16NCh0cioFXJzqQ733r1XGg6e5zFw4ECcOnWKPXz4ELa2tpSxvHaNspnt21Nd79atL1+isXIlGp24TU0pgElIoMzo1q2NUtScnBw8ffoUx+ql1kOHDoULzwP5+cjKz0dlXBw3ZcoUGBsbt3XcUmlpaWuSxMaGjJVcXYHp01HTpQtUxsZIee89WDg7c3fu3JHi4uJQV1eH+Ph4sby8nLt27RoAcFlZWSpDnufsfH1ZRdeuWGJv36JcRxRFygAbGtJ1bWhn5e1N57thA+4fPy4aeHqy6dOnv5RxHTiOzPXaMNlqgLq6OsaMGcNKS0vxww8/8ImhoWj/yy/Q6tYNnI8PGcnV1dHPkSNU07xnT6P6pHnwcPXqVSkkJKRh3DhtbW1RoVAwTU1N1r9/f3h5eaGoqAgGBgYQhw/Hu66uDGpqrc9FW7sx4ODOnUOXwECoqalJBQUFrK3r9URTE5yZGeteXY2YmBhcvngRI44dk/Q9PNiZHj1E73v3uC7Pyob37KEAIiur6Xf9+1PGbs4cymY3A8/zcHFxaWxD2Vj20BD0nzpF2cqkJGDmTHRctgyzbW0RGB7OKioqnl+aBdBatnZtU3A+ahTdc/Xo2rUrajdvxqMOHdCpc2daZyZOBI4cgfTWW+AqKnD16lUMHjyY/DFWrCDlz/z5FOzIZDSmzVVRZWVwyMsTlDt2cCgpYejRg45/8WJSg2zdSueUl9dornfmzBmhb9++nFwub3FvJCYm4tz27Zi1cydCli8X1U1MmCAI0pMnTzgcOwZOJsOladMkDQ0Nae7cuU3Xe8EC+vfOHdhERLBCfX2qZ+/enaTmgYFEpBw8iDRvb8TwPKYNG9b03RERUBoZQWloiDlz5mDnzp0ouXIF9gcP4s3wcB4A6n7/HdXt2sFy82b0f/QIoVeuwO4f/8CVmhrJ9+RJ9uvw4WA2Nk0no1RC/fBhlC9YwItqalCpVOzUO+/ANikJR8ePB8/zsLW1lVw++ohnMTE0zocPI+6TT6SHMhkzKCjgTNevxztdutB64epKJNBnn4Ht2wenigo4zZzJcPWqLEMUUX7vHsP16+TB8+WXZDRoZUUqi9paGgOex9isLP7BgwcoKiriHz58KAl5eQLLyeGDjx1jy+3toV5URKR4ZiZgYIAiExPsNzcXZYIA/zNnOKeTJ9nBrCw4+fhApasLiQAA0NfXZ05OTjSnzcxINbV6dZPnDMhg+MiRI6R08PGR4bffGg2CeZ5Hz549oa6ujvPnzwt+fn4vXp80NUnB9irgOGDLFhzlODH54UNOTU1N6tChAzd9+nRYWFgwAEhPT0d1dTV36tQpjBgxoulvQ0LALV2KYWlpz1WAeXh4wMHBAVFRUbhan2XX9fLCg8JCdI+IgEeDis7cnNaO9eupXZ5cDplMJt1PT2deZ8/SNeSac1YqyOVyXAsOFhwfP+bZmDF0f7WBoKAgoVypxNApU3j8+ispPb76CgCQmpqKW7duldXV1U14bcj3YrwO9l/jP46AgAAml8tXymSyj9zc3PhBgwYpntfy6a8KLS0tFBcX46uvvsLgwYPh4eGBlzVSeo3ng+M4zJw5E3p6eggLC5NCQkKYnZ0ddCwsaCP4KgZx/0Lk5OTgt99+EyrKynjzvDzKrM2fT3Lk/2vTU3V1esACJEOfMePV/QDqIUkS1qxZA47j4Ovri169ev3zx9evHzmLf/HFc98iiiLWr18vqVQqplAoJCMjI0mhULRkB375hf6NiKBzfPyY6qXfeYdkhIJAm8wpUyi4aAMjR45k+/btQ35+fqtaysDAQNX9+/dllsOHSz779jH9P3I5ZozqzA0N/2gEWkGhUEBeU4Oz69djYWYmbWBWrybC5hVUAo2wtGwp5dTSos1T37407mvXIqe6Gjt37gTP82jXrp00b948plldTeTCZ5/B/uOP4ePjg+DgYGnx4sXsWZm1nZ2dGBsbyzk7O7d8wdeXxt7LCxgwAIHHjommPXpwc1es4BSTJiGzrAy7vb0BkrNyZ86cQUZGBqytrSVfX18ZPvuMMubPOrCD5oUkScgwMED7BgXBoEH0orMzsHw5ZOvXo/u1awzTp7/cWO3ZQ20sXwLacjn6Z2UJmjNn8ue9vFCnoyOOHzGCY4xBUihQ2bcv0jp2FLUAZvXoEWMGBoClZWO3Di8vLwwZMoRTqVRISUmBjo5OmyqZhgw0l59PxNjSpW0fkEJB3g15eYCvL5xsbMS0tDS+rWDfu7JSOmlgwL777jvI5XJM6tMHNVeuYJ+hIeQlJdyNGzekLl26tLyWCxY0BZvNMXgwEToNtfzN0KdPH8THx+PmzZsY8CzxynFEUDS0RK2rg9HixZj8++8oGjcOuvHxJKVvq0THwoK+c/58uqc7diTzrsGDAY6DhijC/sED3J47F50AIvrMzID8fLCqKiz/+9/x3YcfQrFnD0YaGNB119Ki0oTqalIC7d9PCpgbN8gfYN069NXS4i/37CnaffQRg7V1UyBUU0M+BcuXE8E8bVpD6zPJ0NCQiaKI3NxcPH36FDExMWJaWhqnZ2kpaaamsiUmJg3XnAFA5fTpKMjIgCdjTMfAoO1Iy9UVoStWCLra2jKXwEA6v3XraEzc3IBp05BQWgobdXXBwsKi5YZp9GgAQEN5Wfvhw6m8R5KAmBgU//wz0mxtMdTcHN7m5kRoJidjebt2rMTaGid1dIDiYty6dQs2NjYwMDBA5eXLYEeOwMXFRdLX15d6GhlxT/39IaWlwcrKCuPHj+cZY0TKxcVBnDkTNTk5zDc1FbL4eKjPn0915ufPU0lCbS2kgQORWFcnFlZUwEpfn7OYPBmPHjwQSxwcOMehQ2kOVFWRV4mJCREEUVGNtdoWFhawsLBoOGuG8+dlQkICzjAGNTU1mg/h4Y3KDcYYJk2axFlaWhL5U16OYZ9+Cs0VKxA1YQLKTU1ZTX2S6d69e8LZs2f5TpaWwpsff8ynrFmDLgcPombdOhQVFSE2NlaIiYnh+/Tpg6ysLGiOHi3hxIlW17Jz5844efIkn5eX92LinOOoFKyk5LnEeAMR0dhFzd0dd995Bznx8dyijz6CQRtzycTEBG5ubmJUVBQnSRJGNpDk/v6k8ElJIVL5Od4C2traGDBgQMOzATrr1yPMxwdhYWGSh4dH0/e98w7dx/W+I126dGEh58/Dfft2yN5/v0WnGCMjI3y4bBnuDh3K3zA3lxIyMpATEMD8/Pyknj17Nn5mbGyslJiQwL0nlzOuTx9S2IwcCdjaorq6GoGBgZUqlWriypUrW9YJvEYrvI5GXuM/DoVCsVZbW3v+lClTNF7I9P+FMXnyZKSkpODRo0fS+fPn2fnz5wEAbm5uTYvra/wp6Ojo4MSJE1JWVpYkiiLT9PGhDefLbu7/Dbh08iSq8vL4MTIZ7A8fpozPq9Tb/btw4AARIKdPk9St3r36ZVFZWQkAWLJkyZ9zi28L9+49N3NQVFSE06dPi9nZ2UxLSwtOTk7C1atX+crKSrZ582bR2dmZaxVAeHiQvFYQKPCrqCBp69ixtAF/QZDesWNHKBQK6c6dO8zQ0BAcx0FNTQ0HDhwQ0tPTZe+99x6USiXDsWMkFa8vZWiFkBCSHu7e/erjERkJl3v3YP/4McIzMiB88QX4/v3bNi98Wcyf39SzuAGMAUuX4srRo4Jb1678rd69Ye/vL02cOJFxHEcXpK6OarJ79wZAgVt4eDiSkpLQuVk9JwB4enryu3fvRlZWVvMNNuHrrwEtLRTX1iL5yROOmzWLam4DAmBZUcGWGRpCs0sX4IMPMGzAgIZrRMfw4YeUuWsDGhoa0NPTk/bt24cVM2cy7r33SMVSL+Wuat8e8RYWzOc5gWib2LKFNqUvMs4SRSKSPvoIfeztefHePRiKIrZs2cJWrVoFQ0NDUV9fn6txdIShkREXpVTC/+hRyfXcOcb27kVS/Ya3Z322SiaTwaGteu5nkZ0N3L794vcwRuqNd9+F57Zt/KmgIKmnuztjzwQI7bOz2bRvvkFMcTFcQkOh++WXEC9dYgvKyrBx40Y0N1/zFUcdAAAgAElEQVRshCRRQHvyZEuFkEJBc2znTlpbhg9vfKnB5Ku2tvbFx83zAM9DtmMHtpibY9yTJ3QfGRgQeaGjQ/dv87WCMVLPbNpEiilJoqy8jQ1w7Bie9OkjydPSGP7+dwqE165t/HtWXQ22YQN0u3VrDPaweDEFJWfO0PsNDSnAsrMj8ig0FJdPnYJKpZLQPLMNkMfDgAG03hw5Arz3HkQXF5SWlsqOHDkCnuchk8kkDQ0NQalUcuOVSph+9RWrmj8fzzq6aFpZQfPoUbS/fr3J0LDNIeOZVFVFx2hvT2Rgbi5luFNT0efuXezr2ZMvePAABiNGEAmQn99YX5+QkAAjIyPRxN6ew+rVpNCwtYX222/jaVwcgnfsEP3mzuUQGUlkzODB0Nm7FyvbtUN0dDTOnz8vhYSEMI7jMPL33zGmc2fJLiCA8XfvMvHaNeyxtYWBgYEwcuRInmOMAtXCQkAQwDk6omrYMJzZvx/ixYvihBMnOACQPv0USUuXSgllZWL8hQu8XF2daerrs+thYbCzsxOyams5uy5d6Dn28cekoKCyAGDLFqRHRaFi2zaoDxkCU1NTXLlyBVlZWZKRkRHrExKCWJlMkiSpiazs2pUUH126oJYxlDZfa5RK2GzaBHzwAfwKC2n+jR9Pa5JczhcUFCD09Gnusq+vEP7wIY/Fi8GtXQuFQiFpaWlhzpw5MDQ0RGlODgo+/ZTlqanh2XBeoVDA3t5euHLlCjdhwoTnlnmGhoUJbgC/4csvIb3Cs6DnrVt4s7wcz/O0UldXx/Dhw7moqChER0e33I8yRkZ3VlakdnoBZDIZRnh5QXXvHiL8/BrN+xrfwHGkvunSBVi3Dr1790ZMTAyCd+3CSF1dJD54gISEBKGmpkaqqanhuly6xBWrqyO6UydWW1/T36BGAID89HTIpk1ji5RKqG/fToRfvQpHkiScOnWqWqVSHf3iiy/OvfRg/Q/jdbD/Gv9RfPPNN+9qaWnNnzFjhuaLjIz+6tDU1ETXrl3RtWtXNmLECCQmJiI/Px83btyAh4fHPy+F/h9FSkoKfvvtN4iiyLp168YGDx4MuZnZi43e/o0QKytxKzYWQz/7DEkODrC/fBn8X6l9qZsb/btxI22gfXzogf6SrSoVCgU0NTWxceNGaGpqiu+9995Lt/pqE2PGUK3s2LEtfq1SqfDjjz8K5eXlvL29vdSvXz+ue/fuUCgUvIuLC1JTU1FbW8uFhYVBU1MTns19GWpqiNT48UfatKupUUmHq2tTPff165QxbCPw9/b2ZpcvX0ZsbCw4joNCoUBtbS0/Z86cpjr1N94gQkGS2h67lJSmAOJlUFhIWamlSynA+OADqA8ejMRTp8TwqCj2VocOzNbW9s+XAJWWUsBSXNyirV1WVhZCExL43ClTMFAmg3GD6VUDZs4klUQ9KaRQKMAYw7FjxzBnzpwWG0hTU1O4uroKx44dw6xZs/gW6/XnnwM1NdB1dcXfFAocOHAAly5dwsD6DLoSoJpvpZJkrhYWRJYcOECEycWLbZ6WhoYGxo4dy7Zu3YrTkZEY+f33gLo6ampqcPXqVfHu3btMy9RU7PjTTzxOnaJs3ddfv7iUJSrqxWMZHU0BWGEheSe4uoKrP4fly5ezwsJCxMfHczdu3JBqbWxYp7g4ad6SJWz75cssoXNnmJ86JSAzk+f09fFKrSkBkspPndrKA6BNjByJGyqV0H/ZMr4uJQWK/fub/qauDvjuOyidnOBTWkoB+vbt4DiuUXVw8+ZNNnDgwJYKNI4j/4fS0taqKRMTyqp9/TXg4ADB2hp37txBUFAQ+vXrh74v2Qq0srIS4Di08/Cg9QGg9ercOZKqb9pEQWkDObJgAa33c+fS9Y2IoHsoMRFaQ4Zwtbt2oUwQ0A5AeUUFcnNzYWdnh9zCQnAVFciSy5Gam4uOq1YRwZOSQn4LgwdTl4GAgBatEdPS0sQRI0a0jrY8PCjQB8gPZO9eFHbvDm8rK4lftox1dXWFvr4+Q8O+OjERR8PD4VNWBo229jZvvUWBeVsoLQV++QUmRUWwPX+elAhXrpA7eWUlBaOrV0Pn7l041tQgY+1aqFJSJJMePRh++IGUCt7e8LhyBVbp6VyRpib0Nmyg0h5RhNqhQ/C5fRu91qzhMGcOjfHDh6g5dAi/RkXB0MdH4mQyqbq6mtPX15emTJnCBFNTGNXVMfA8sG8fuPbtIZfL4e/vz+vwPK3zjJFh7j/+AXHWLOSfPSvdc3FhZlVVrKysDD+vXo3JO3bg7N/+hq76+vz08HDoHTrEZDIZYmJikJOTw1fk50PIzUXVggUonzcPGlOnQvnrrxT4R0bi8smTwsh9+/jDWVnSE4WCKRQKODo64smTJ+Ld1FTuQadODADWr18vaWho4MmTJ8wdkCrKyiRRqeSOHDkCQ0NDSU9PjymVSujo6MDQ0BCOLi7gzp6lcpDBg4EuXWCwejVGP3rEMG0a79mlC3QtLCBUV0MmkzEAjXNE+/59HH7/ffHpwYPcBx980ErV2aNHDz4wMFBEfXAcHByMsrIyagOqUOD27dtScXEx7/zZZ/hk8eLGThbNnwfPezZ8/8kn8IqMfO6zqq6uDrt37xYBcJaWlkLz4wZA9x3PU7lcWwRgM3DGxlA8eYLBsbG4fPlya9k8x0H45BNEJybiQny8BIB1+fBDnNm/H7ednGBtbc1ra2uDDwoC8vIQ16MHRo0fD0EQEBgYiHv37knmBQVM+OorRGppSeY+PlB+8QXDM8ql27dvi8nJyTm1tbVtyJBeoy2wRjnIa7zG/zECAgJ81NTUQubOnauh10zi8/8TTpw4IcXGxrJWDtav8VI4cOAAampqpIyMDPbG9euiYVYWF/XppyqVSsU0NDRgYmLCeXh4MLW2+nb/KyGKwOPHEO3t8e1HH2H0m2/C0cPjha2v/hL45huqb4yKeumAv7a2FsXFxdi5cyfMzMzEWbNm/fmJ+9lnqH3zTcTzPO7cuSPZ2dmxvn37Ijo6GqGhodLChQvZ8ww4KysrsXHjRkyePLlJch8aSln8W7fIOKy5UzpAQc6tW7QZPnSIpPEeHjhjZiYVFxeLkyZN4gHgxIkTKCwsFAYNGsTX1NTAysoKrY4jO5ukv/VGQI24epUCoT/qoSxJwKVLtHm8cIFkyBMmtOipXVdXh9OnTwsJCQm8UqkU+/Xrx3Xt2vXPrRXx8fTZPI+ysjKcO3dOePDgAd+zZ0/4+vo2tWrS0iIpeHU1BU3e3pRhrcfBgweRlJQENTU1acWKFS0mTW1tLdauXQuVSgUXFxeMHj0aBQUFMEhJoaCpWzfg229x8eJFKS4uru32grW1QFERZWg9PUneOWkSZaslia6foyOVM1RWAikpiCsslEo0NZlP377A4sUoGzgQ37u5YdDgwejduzeNV3k5ldCYmlIGt6014a23SFK+qQ0vp4wMFK1ahZj8fLFMVxcpzs6SxBgTRZExxiRJkqCvry+OHz9etnXrVklNTQ3l5eVsxu+/S5YTJrDHkyYhMzMThSEhkvv27SxozBjM+vHHV7+WZmZEgvyBF4koivjuu++kqWPGMMv4eAoQe/emevnYWMrYbdpE5EF4eAsZ7ebNm0Vra2vuj1Rn+fXBqJqaGkRRRFZWFsTQUOicPo3fPT0hKJWij48P59G8A8YfQKVS4ZtvvoGnpyeGDh3a8sXcXPLkGDGC2vjp6hIRIIr0O3d3Os9hw4Bt24CaGtz+5hvp3LlzzMLCAk/j42GakwNOoZB8rlxh8tpaXB8wAMr8fBgNHozuS5a0agmIgQPp3ty1C1lZWfjll1+wYsWK1tftwQNSDtSredLS0nBi1y6MysuDlZ8fZTUb1tgTJ4C0NAR17CjFxsaycePGta3sSEoiYmn5cjrHzZvJkPSHH4APPkCYh4eQZ2/Pj50woeXfXbhAZoWffw4AOHToEEpLS8U5f/sbhy++oHlubw/U1eHk779LT6urpRnjx3Pss89oDf3HP7ApOhoymQyDBw9Gp06dgL59kb5kCcRly8BJEg69/Tb0OnSQ+vbrxxwcHIhk/cc/SKZ/9SrQqxe+2bQJM3ge5q6upGybNAnhP/+s4kJC+EpNTbSPimIxa9eSwiA3F3Zpabg3aJC44N13Ofm9e0TenDlD5yRJEGJicH/aNDATE4SOGKGqVKm4iooKzqakRNLX1BTh5cWioqK4993dod21KyQLC4Axeg6rVESmfv01ikURERER0s2bN5mzszPc3NxQfucOdPfswY1Jk6Cvrw+VSiWWlpZK5eXlyMrK4qdMmYJGk8UnT+geDA8nlUtgIBEAM2dSBrz53Hj6FOjUCdWxsfju558xceLEVqooURSxevVq1NXVQaFQSAqFgpmamoqpqamcvr6+YGBgwMaPH89xb7xBCpaXIAlVKhUuX76MGzdu4G1tbdiam9Pz5RlUVVVhzZo1mDFjBp5rRKhS0b12+fJza+cB0Ho9fToqp03D999/j0WLFrXy3fjxxx8Fy4QEbkB2NtM+fhxVa9ciTkMDbnPnQqFQoCwsDJGrVqHf3/+OKgeHJoL92DEy5VyyBHd27xavd+kizXv/ff7Z+/DRo0c4ePBgaV1dnfvKlSuT/3CgXgPA68z+a/yHsGrVqjFyufznMWPG/H8b6AOAl5cXi42NRXp6OmyelQW+xh+iU6dOOH36NJPL5ei9ahWXGhqKdu3ayRQKBSoqKhATEyNGRkZi0aJFzw0a/2lMnUqB38WLOL95M9praAhdPD3/O0wlFi8mtr6khILfefP+8E8UCgWMjY3h5OQkpaenIzg4WNLW1maMMURERIiOjo4YOnToH0cw16/jap8+uHzmDDQ1NeHg4IBr167hzp07QmVlJe/i4tLUXqkZ8vPzceHCBSE/P5/T1dUVra2teaSl0car4Rxmz277O+VywMcHCbt3415kJHrL5bCorkbJvn3MOyyMh5sbYGmJ9u3bIzY2lo+MjBRGjx7Nt0naVFaSIdny5U0Se0kik7iPP35+sJ+TQxm05cspOJk+nQKBNkqU5HI5Ro0axQ8ZMgQRERG4cOECzp49C3V1dREA4zgOAwcOZE5OTn9MLN27RwHJuHE4ffq0kJ6eztcbNdHrWlpU+xoTQy3W3nmHAu5n7puSkhIRAFdTU8NycnJgZmbW+JpCocDChQuxadMmPHr0COvWrRMrKys564ICcXJ4OCerlw+bm5uz69evt32cCgVdJ319GpNJk8h1XRTpZ9Agel2hAKqrka+nh/jLl5mlvj7VVUsSlNHRMPD1lYwPHWIcQGZuSiWRWz/9RJ/37beta8E//LB1uURNDQVwV68ix84OyY6ObPCoUaxrfRBRv9lkMpkMJ0+exNatW2FmZiZOmzaNPmjFCobycnTQ1aXNdO/eLHPUKOhu3Ih7vr6ic0gI90olGlu3Npq/vQj379+HXC6Hhb09vX/9eppnsbFE7Dg5URb7m29aBPoAdTh5bllBjx6oHTYMwe7uwp07d3gADUSYpFKpmLq6Orx0dcXx0dGc+fHj3MuSiA2QyWSwtLTE7du3Wwf7pqZNHSRqaojAOn+eiL0vvyS1RXAwkRiLFwM3bsBdoWAWMTGS+ubNDAsWQEcmQ761NUv38YHzW2/BX1sbe/bswc3MTNTGxKBeQdT0nXv2kOomJgaXb92SbG1tRY7jWl+wqqrGTHxBQQEOHjwIua6udEAU2ccHD9K4BwTQe2/eBFQqjFyyhFVWVuLOnTuCg4ND02dWVlIZUoO546ZNdI4GBvS8sbMDTp5EcVAQhPrSqhbmv717E6Fw7BgwejQMDAxQVlYmgTFSQZw506jy8ps2ja1Zs4alV1TAurQUCAxEaWwsXI4fR1j//jh48CC6deuGkatXw6prV4ijRuHU119L3jdvos+DBwwNvi0KBREwokjBvqsrXFUqQbF3L49DhwA/PwiCgDsJCbLemZnImDVL7OPhwTqOHo2BAweCjRiBUicn3Cgv53ieJxVWcDDN1UePgO3bUWlsjFhvb+nt7duZU318UnPwIErDwtgdPz8+NjYWCoUCyqFDgZ49wRYtavBNoGvz9CmgrQ1dAL6+viw7O1vQ1dXlbWxsiAguKMCEceMagvXGZ9iqVavw9MQJ2I4fT87/Y8bQOh4aSoGwpSX9zciR9P/m88fAAIiNhXqHDjAwMBCKiopazR2O4zB16lSUlJTAxMSE6erq4s6dOyw7O1tcuHBh0/t79WpNRrWBzMxMHDhwAJIkSW5ubsxWJiNiu41gvz4pImZmZj6/64BMBhQUEEGanv5889L33wfc3aGpqQl7e3sxJCSEm9DsO0VRRHFxMT994UIoly0DamuhuWgRvKqr6byePEG7U6dQbm4uRksS66muzrBnD63d4eGAry/iNDQQbGfHFv7tb9yzgX5ZWRl+++23KpVKNfp1oP9qeB3sv8b/KQICApQKhWJPu3btho0ZM0bzD1ue/JfD2NgYVlZW0q+//sq6dev2un7/FeHu7g7LykoY/e1vwNKl6OjpiY4t38KtX79eSEhI4F1cXP51poiCQBm2S5dIFl4fqEU8eQI/P7//HomGtjZtUCIiaDMwdSq5/r7EBt3X15dt3bqVRUZGNv81l5iYKLbapLeBUn9/VPv4YPSqVXB2dgZjjPn4+CAuLo6Lj4+XnJyc2hzHwMBAUU1Nje/Rowc8PTx4bN9OUsO5c8lc64+M8wAcP34cenp62GVoiC5GRnhoYwP1igocO3BAnLpzJ2diYgL1YcNQePYsL/r7g29r3tjZ0cavuLgpUM/NpY38s5mXujrKyBUUUBsiZ2fKCD1b2/4caGhooF+/fpyPjw+2b98u8TzP9enTB0lJSQgKCpLOnDnD5syZgxd2KGmQco4bh9raWq66urp1dlKhIDly374UFNjatuoYUV5ejo4dO0q6urri3r17mZ2dHTe8vhc5QB4avXr1Eh49esS5u7tzXbt2xaGDB9l2AOaMCXnbtvFPnjyBTCZDcXFxa8f1H38kKXh2NmUDOa5l7/NnAt0LqalSXbt2rO/u3USgvPMOWI8ecHNykuq2b2ens7PBJydLQ2NiSMI8Zw4FXfv2Uf2tkRF90P37FGS98Qb9XxSpm8f06UQw7NyJ/OhoyFNTxY4dO7YZnc+dO5f77bffkJ+f33QDyeU0pqtXN8rSLbt3R5a1Nbpdv86JMTHgnJxanuOL4OpKZSjjx7f5cnR0NBITE5GSkgJRFFlycjJlZpctI5PDJUtI5XD3LtUqN3MPb0BNTQ1LTExEaWkpNDU1oa+vDxMTE4iiiPvz5kkXHz5kanl5WLJkSfPr13TOtbUcfvmFruXixS93Xs0waNAgHD58+MVvGjCAfgSBAu2OHan1YnKzPb6FBZCaCrORIxnWrqUghTGYAjBt9lGzZs3CsWPHpLNnz7Lz589jypQpTeR7vYHgkz590OvJE2YUGdnq2ldWVkJla4uLM2ei+uBBMTU1lbOwsBC1tbW5+IoK1G3eDPmlS+TYPnw4lSHo6wOiCK2yMlQXFTF89RURrydPUtnK6dOUSW0IHn18SGnTzPBTJpMxQRCwZcsWVUFBgWzQoEFkpqepSUFueDiQk4O4uDixd+/edLNraRF59cknAGMIDAwUVCoVX/j0KawfPQI6d8bjjAw4PngAn507cTohQYyNjeV6bt+O4DFjpIL27aGmo4MYT0/mamWFdhUVdM98/DH5XRQUEIk5fDhs5szh982ZI442MOB0iotRXV0NG3d3Sbh1i9WZmLA0d3fY+vpCT18fWLcOee3awXHLFoFLS+MbDelSUsiF3ssL6c7OKAgNFdFMaq724AGM9PXxxhtvID8/H7q6uiLH8xx++IGOpUG+HhzcSulVWlrKDBvGs1MnMvg8d47UTBoatFYfOQIjb290WbmSxnXSJGDv3qY2h8uXE6ni5ERkYY8eqDQ2BsdxUBfFJiUNgIKCAt7U1BRtof3/Y++7w6K61u7XPmdm6L2DqBRpFhSxUexdMSoRe+81eo0muUk0lsTEGmssUayosUTBFlGxg11EBZSiFOkgAkOZmXN+f7wMHTX35t7f931hPQ8POkw5c87e++z1vutdr60tbMtby71+/RoXL15k/v7+1W/EMTEU/KijHbEaL1++RFBQECwsLDBjxgx6vUpF4y0zEzUl7wB51dy9e7dyjNQFDQ0qrZoxg85rzT1CXBzNFUdHvH79GvHx8ZxXudcLQKqvI0eOCDo6Oky3RQuGCxdoHiQn02vDw2lNbtwYDsOGcSnLl+PdwoXQP3iQrv+aNcjJycGZHTswaNAgVtMzSBRF/P7773JBEDYtWbKk7rqvBtSLBrLfgP8ali1bJpHJZGccHBw6DBkyRLPeHrv/h8AYw+jRo9mtW7dw7do1xMTEiOPGjWMNNfwfD8uWLWnjWw/J69ixI//HH3+IZ8+eZY0aNVL5+PjwjuUGXn8au3dT9jMsjDZuTk7VIu0SiQR2dnb/w7X7daB9e8qeZGTQpvnGjQ9mD3V0dLBo0SIAJDdXKpUIDg5WKZXKahsGpVKJ+/fvg+M4eHp6IioqCpGRkULqggXcZ/PnQ7s82wsAhoaG6Ny5M3tffe/bt285S0tLla8g8OjWjTYC69e/31CtBkRRxNixY5GYmIjff/8dbTt1UnX58kt+27Zt3LbJk+Fpba1ql5vLvIOCOP7qVTovenq1vSASEmiDnpFBm7DWrYlUq8n+q1ckO9+wgYiJvz9lVz6W2NUAx3Fo1qyZePv2bebs7IzmzZtDEAS2adMm1a1bt/De9k1r10IQBJwJDlalpKTwDg4O1bLyFWCMSOGuXZXO9lWgqanJJSQkYOHChbyjoyMiIiKETZs2YezYsZyVlRUYY+jduzcPUGBg7969QlZWFjfryhVo5uby1/bsEf39/dndu3eFffv2iXPnziUpZnAwkesZM4ChQ/GusBC5nTqJTyZMQPeZM5luXRvcGzfguXUrYhcuBPvsM6obHz4cMDGBV6tWXMmDB+BfvcKd9eupXzNAmdIBA8hQ7bvvaLPeuDF9fnAwEZenT2lj++IFObKXrxcfKmtkjMHR0RFv3ryp/sQNG2heVYH/lCnYwxg+DQ5G86++oo1uPUSgGqKi6JjrIfs3btxQ6erq8t26dUNxcTGqkQtDQ3Ksb9eO1i11YKMGFAoFUlNThaSkJJSWlrJ3794xmUwmKpVKZpiXx/zc3WGnVi7UBZmM3LxXr6YM8yeffPh7VYG1tTVKSko+rlUtz9NnvH5NATUHBxrD0dFEbHbsoODRgwcUFHB1rfNthg4dyry8vHDw4EHs378fn3zyCVq3bl3x9z0DBohDfHyY/sGDVA7TtSsAyiZu3boV9g8eoOfly7i4bRs3e/ZsGBoacqtXrxZdXV1FqYUFh379KOCyZAl5AWzeDPj7w7e4GC9/+olDTAwR+VWryIxQJqMMfGgolRJ8+y2Nyfh4+s6Mged5LiUlBcXFxZK+ffsiNDQU9vb25AHk7g4uLAyZ332H0saNuRZqpZGbG3D+PN69fo29wcEVmebcly+JsEokOP3gAVr98gv8jh3DYEHgWowejYKgIJQArLS0FMbGxkJ+fj47r6uLgPbtab2IjCQSHBNDxK1HD+iam+Pd3r3c3r17K86jzrt3rLOGBmJiYlhsbCyWlJdI4NYtRHzxBfofP86jaVM6zjdvSK0RFwcYGkJy755obWvLV3hWJCVRQKBcFp+Xl6dycnKicenjQ7LvMWNoDuflUWeQKigqKuIqOlWUldF79u9Pgb4//qD5YmWFgoICcdvChRjety9ramBAZSKzZ1Ogv2NH2hMAQGAgzj54gPtPn4LneZiJosqnRQsu+d49pvY3ycjIqNXppSauXLmicnFx4WvK/ZGTQ2Uq9ewPnz59ihMnTsDFxQXDhg2r/APPU0tIuZwUPjXQunVrLjw8HMuWLYO+vr44d+5cVmdiJCCAzmFxMc2xqvexwEDaF92+jaNHj8LLywsGBgYVLXO3bdsmyGQyNmHChHKHTEbX1cuLOuns3En/DwhA84MHoZeTIwaFhmL4sWPMyMgISqUSQUFBorOzM2p1fAFw69YtZWpq6muFQrH0vSe3AXWigew34L8GqVS6wsLCop2/v7/m/7bWev8OpFIpunbtColEgsuXL7Pt27fjiy++qOxJ3IC6IYq04VqxoqKval3w9vaGt7c3y8/Px61bt/jffvsNtra2KjMzM2ZjY8O5ubnhg+Otf39g3jyK+Ks3/KNHV3tKSUkJlErlX+dS/9+G2sV77Vpys96zh27u78kiqCGVSiGVSuHk5MQHBwfj4cOH8CiXiZ47dw6PHj2CoaGhePnyZcZxHKbt2MFJly6tRvQ/FsO9vfFk3TpewXGQrllT0bf4z0BbW1uIjo7m2rdvj/LrzzPGMGPGDDVBogHx9dd0vf/5TyLurq702PLlZBBmb09ZOG1tet6uXUT0jx4l8v/77xRIuXSJggV/AXr27MlFRUXh0KFD4vjx4xnHcfDy8uIvX76MXr16ITo6GqampjA3N6+uZJHLIZqa4tmiRbwglSI7O1slCEKtmkcAZEI3ezZJ+as9/BA5OTlwd3cXdXR0mKurK1xcXLhr164JgYGBMDY2Vjk7O/MdOnTAo0ePcO3aNTg6OoojR46Err09EBSEPr17MzCGvn37cjt37hS3bd6snDNtmgRPnlA5iZ4eoKeH80ePip1UKpZZUID169fDzMxM0NDQ4Dp27AiurAwuJiZAZiY0DQ2Rkp6uwtChdM1u36bAT6tW0NTURHJysljQqhWwcydtECMjacx06kRlH3/8QcTgiy+IOKgzeG5upACokcH6ULlEbGxsJeFQY8AAynAvX14RCLK1tUVbT08xPC0NzbW0GLKziZDUQ0Yr4OdXze2+JpydnfnU1FSVj49P7UUtM5M2/jt3VprJ5eRUM3jtKQMAACAASURBVJMsKSkBYwzTpk3j1N81NzcXZWVl7MyZM0KLGzc4o0uXcNPBAdra2hXzvBbMzSkLGhZGJSRubu//XlUgk8kgkUhQUFBQW61SVkZKmadP6TxkZVEm2cmJVBQ+PhSUMzKizOybN/Qdd+8mkjJ3LmVix4+n9c7KqiJbbmlpic8//xynT58WTp8+zeXk5KBHecDLwMhIdfTqVcngO3cE17AwTtK1K0RRxLlz5wQzMzN8unEjx0VGYkS/fgAo0FVcXMzs7e2ZSqkEn5hIip59++j4zMyAqCgcPnRIMNDQgOePP1afiF99RZnjxEQa0wcOIOncOVj+/jtkmzcDv/0GqVSK4uJiGBkZie3bt2eRkZHCzp07OcYYZDKZOGTgQFYSGiq2srSEnp5excDNXrYMsWlpIv/pp9y8efOQkJAg3jtxQuzepg3HATA3Nxe09fQYhg1jmDkTDnPmIGHSJNgYGQlNrKxEPz8/fl9goMBycxlWrGBwcKD18fVrWgcdHAB9fTQBMHXqVLWkXJBKpSguLeXk2toYMWIEfvvtN5R+9hk0jI2BWbNg/+oVdi1YgH9+8QV5hly/TsGDLVuAb75BzvbtYu9ff2V4+ZLm8MaNRPQPHQIYQ3FxMavmOt+5M63JcjkdV3nALSMjA7du3lTZRkfzT8PDgd9/h8mVK8g6exY2UinNkXKFhODri5KVK5mHh4cYFBQEExMTVV+plNfLyYHxJ59QgCAxkYIS+/cjzdxcGODvz7m5uODt99/zT6ZNU+Xk5IixsbE8AGZfI+hXFQqFAkeOHBHS0tK4/v37137C0qX1Ev03b97gxIkTMDIyEut09Z80ibwe6kBWVlbFv0tKSth7A2yGhnRebWxISafG99+TggCARCIRo6KiWG5uLm7duiUWFhbC0tISo0ePZtWSeMePU3Dcx4fKSs6do8c3b0ZjnmdmJ06I27dvx5AhQ/DixQuVSqViQ4YMqXVwWVlZuH79eqlCoeizdOnSD7T9aEBdaCD7DfivYNmyZa00NDQ+CwgI0Po7Ef2q8PLywtWrVyGRSP46ufn/ZYgiuTN/TMsqkLy4f//+aN++PSIiIvjs7GxERkaKL1++FIaqiUJVPH1KWZiTJyl6b2ZGn1XP5718+RJ6enpiuRPv/16MHUsSxXXriPQMH/7R5n3u7u64ffs2bty4IXp4eDBBEJCQkCBIpVJuzpw5LCMjA8bGxtDU0wP69Plzx1VSAjx9CvtFiyB3dhZWOTpy2uHhgg/Pcx07dvxTb2VoaMhFR0er2rdvz1edawYGBtXJhbpTwY8/0v8zM4lIKhQkgS4spIysuzvJHMeMIfMrX18yDBs7lgjIXwjGGPr374+jR4+ykpISZGZmIiwsTCwrK2M/qOuZy2FnZ6eysrLiTE1NmampKd4MGyaam5uzbv364dChQ/ypU6fEoUOH1r64ixaRBLgG2X/58iU0NDTg5ORU0bqKMYauXbtyzZs3R2xsLHfv3j3h1q1bnEQiwfDhw+Hg4EBzS73xzsgALC0hkUgwadIkluPgIMm9dQvGNWTbSa9eie3272ejWrTA7t27RUtLS0RHR+PYsWMYt38/3hga4u2BA3g8erSYFRfHl5SUUIDU0rIaeW3atCm7e/cuduzYoRo8eDBvERxMfzh3jua0ri4F8zIyKLjl60u/awRnysrKkPIR7TNTU1P5Nm3a1LxotKm9ebOaOuTVq1eis7Mzh6lTKSv9zTdESt3d6/8AjiOSO2IEEdYa8PHxwc8//8zHxcXBwcGhMjihUlGGePBgynQDlI374otqru95eXkVXRfUUHcNaNOmjfhQFFXPOA5CdDTevHnDu7i4oN5OOW3bUiZ6xw4KnPyJ1rkymUx4+/YtZ2BgQGQtLIy+t5sbzbHvv69sbTl7Nv3+4w/y6/jpJ+olr6VFpnmFhXTe/P0pq65U0rVftYoy55cuEaEcNAjw9oZfv37c27dvERkZKfbo0YMBwIwZMyQlJSXYt2+feFkuF8f06cMK7OyQ0KQJN336dHAKRbVxV1ZWBi0tLfFsSAhzXLoUhpmZRF6Tkqi2udwg0s7OjktOTlbVOgFeXtQFIzISGD8e+zhO9SokhOdVKsxu2xZGmprocu8ekq2tRaapKTDG+AkTJnAxMTFo1qwZwsPD2cmQELHnuHHMeelSlI0eDVm5WivJ2xtFwcFs1KhRMDIyQps2bVjUpk3sSVgYtHr1Qtu2bbmrV6+K3bt3B7t0CWzkSDg8fgyHefM4uLgAc+di5P793IEFC1RIS+PRvTsFv/v3p3E2ciT5DWhrw9raGmPHjkVgYCBbtGgRQ2kpBbScnaGnpyfKP/+cyYYPh2r0aLS7cAHXrl1DVlYWzAIDqUzu3Dng0SMI164hzN6eM//qKxhIpUSwX7ygoNWECUBqKoybNeOsN20io7gBA2gOh4TQ+MjNpRKWo0dRdPMmks3N+eknT+KPxo3FCy1aqAQ7OybfvZuflpQEDYmEgkra2khPT4dUKsXAgQNZt27dcO3cObxdsQJnvb0xsqQERkZGEOzsEH/rFkwuXQJ69uTkcjm0ExKgvW8frFeu5D/kySGXyxERESFGR0eLCoVCnD9/PlfnnPr2WxqnVRQnauTk5AAA8vLy2IMHD9C2bdvqT7Czo/MeHFxLodasWTOYm5uLmZmZTENDQ6xovVofjh2juVxcTHNMLqc16+lTgOfh7Ows3L9/n5dIJDA2Noafnx9r3LhxZbvDwkIKFLi6ksHm/fukfHv6lFQt5fD392cPHz7E8ePHoVKpeC0tLWHTpk1KiUQCqVTKZDIZr6GhgbS0tDKVSrV46dKlye897gbUiwbG0YD/CiQSyYT27dtr1CnV/JsgPT0dKpUKkydPbiD7H8KKFUT+fv75T7/U1NQUAwcOBAAcPnyYKRSK6k/YvJmi592708ZFEIj014GioiI8e/YMGhoaiIyMRH5+Pjt69KiqR48evGmV2sqakMvlyMrKgpGREd6+fQt9ff3atcv/PyGR0I2XMcpw9O5NWYUPoKCgALm5udDX18eyZcsgkUigVCq5f/7zn+B5HtbW1iT19PevN0NRJ27eJKlny5ZAcDBaWFhwTQsLceXKFe7SpUu4c+eOsnv37pKWLVvWemlISIj45MkTpqmpKZibm7Pc3FyhuLiY79Onz58PypibkzRZqQT69iWCduwYSau1tCgTd+7cX07wa8LFxQUcxyEnJwfv3r1DSUkJAwA7OzuMGDECgiDg1atXSEpK4tPS0sSYmBhVSUkJ09LV5dpJpbC3t0fPnj1x//79avWvFVi3jjbKNTI8Hh4eiImJQXh4uODm5lbtjyYmJoiJiVHJ5XKJh4eH4O3tzVULnEgklKGMiiJCvnw5NAICcHrQIOSYmMA9OFhs1KgR09fXx+nTpwXd9HTOrk8fsLw8zJ07l0GlYp8cPgx5796Qnz6NnSdPQuPsWaFx48bcuHHjKpVQRUXUHq4cjRs3Ro8ePZCens5+/fVXfPXVVyQN79+ffgAiAcXFRMbGjqXNtLMzZdEjIoCAANzZtEm0USiY7pw5FAB0dKysATY2rjhX9vb2qtDQULi5uVU/r+HhFFCoAmtrazE3N5f+07cvkcWyMhrr9ZlMAjQf6zHJ0tXVRffu3XHs2DGR4zhWUlKCaZ06wUouB06dqihJAEDdF3r1ovMVHAyMHg0tLS0olUqIolhLxdC2bVu+rbU1zd/bt7F8+fIP36sCAiizfuAAtXD7yGC+TCYTZOvWcRg/nl4/ZQqZot2/Xxk0qFkeEBdH32/tWsr0P3hAnhrt2lUGmgYMoIBOv37kqK5SkaKidWsiLcuWgQsLg8PEiYLjiRPchbg4Vd/Nm/mn0dEICwvDrFmz+MuXLyMiJkallZLC8YaG7NrVq8KQ9HQOP/9MBBSAsYYGFsfHs+gHD8S0JUuYYf/+NAeGD6d7Sjmio6PFgoIC/uzZs+jVqxeZAy5cWDkOHz/G29JSpDPGz92yBddXrlT9kpPDu58+rRoQEsIPGTGCbUtM5JOTk2Fra4tW5e3Ryss4hD8ePeLbu7kh4csvxagOHUQmkYhKpZLrAjCj8nsfx3EY1aIFUkpKcODIETg6OqKgoICVu8MTmfbzo/NqaQlMm4aXgwah8PlzKoVR4/x5aqPq60tBpM2bAZDnSGlpKcvJyaF2nVIpUFoKKzMzQevWLf76pEkwzclB8r59ACjDjWbNSLnHccDYschbtQoWpaXkpSCRUND1++8pULVkCfLCw5Fz5gzyi4qgff06dEpKwHbupLEaHExj6MgR4PVr6Lx7JxZaWrLEe/fwiasrAyARBw1CdHw8+A0b6L5nbQ0cPIgLycmCvb29CIDX0dFB/8xMXpw5EyE5Ofj111+hqampsnv0iLc+fx4xa9eqvF1c+GaurhQQVpdcfADBwcGqN2/ecG3atOF8fX3rn1OmpvW+X8uWLeHk5ITVq1cjJiamkuwXF1PbvA4d6Pf69USylUoK5tvakgt+QQFTX6sPwsKC1ikzMwrC2dvTmlQewOrfvz8fHx+vatKkCRvUty/Hbt6ka75mTaUXxfHjFITZupVK4WbPrkb01WjTpg1CQkLKv0oxp1AoOHt7ezRq1AgqlQrXrl0Dz/NFgiBs//CBN6A+NDCOBvxXwBgrLS4uVgD4D/dI+58Ls3KjqIiICAwZMuT/89H8D4el5V9CqIqLi5VpaWmS7ORkmG7ZQhncV69oA2hqSrWg9aCsrAxr166Frq6uIJPJBIVCwdzc3HiFQsHt3LkTAQEBqMsbICMjA4GBgeB5XigtLeU0NDSEsrIyrlWrVio/P7//ObIW9Ub/hx+I+N2/T2qKelrvvH79Gvv374eGhoYgl8tZly5d0LhxY+jo6KCadO/77+nc1iVTrIlXryiw07s3Sayr1Fzq6upi0KBB8PLyQnx8vOTUqVNITU1F7969K+p88/Pz8eTJE+bq6ipaWlpymZmZqqZNm7IOHTpAJpN92EhREGjT9ttvlI0wN6cA05AhlHF79ozkh6NHkxxYFGmT26kTkYr6Mp7/Jk6fPi0KgsC0tLRgY2MDNzc3KJXKai7iLi4u6nZelT2fx42jzda0aXBwcEBYWBi/ceNG1dSpU/mKTNKRIyR1joio9bnnz59XOTg48EOHDq117u7evYvU1FRJuWlb7XNrbk7lDeqN5vnzYL6+6Dh1KlQqFc6dO8eePn2K8uAbV6alhbx162AMEFFu2xactTV0O3SAtpsbVCdOQCqVclpaWtVaRuWmpkIiCNAHBZ9+/fVXsbi4mCkUCk5PT09AFZdtAGSqeO0ayb0DA4lIPn1Km+TCQsDREcqmTfFWJmM+9vYwcnDg8fPPRAZEkQIE8+aR7FpXF/03bOBjVq9GmlwOK1dXkpn3709jZfhwKvsol757eHjwhw4dwqtXr6iOt107ki1v306Brfbt61bVTJtGG/d64OXlhY4dO7K7d+/ijwsXYL54MZGwwYNrP7lRI2odtmwZMGoUDA0NwXEc8vPz6w5AGhhUGEsyxvDzzz8LHMehV69enHt9ioQpU4jA7tr14Y4fYWHAxo3QHjiQlz58SBnuESOI6AP1qwMEgdaowYNpvZo5kwIMu3bRZ2/dSuT50SPK9q5cSWUjkydTGYBaHTB8OJCbCx+O4wqTkhB57x5/YcAAuMTEwKxjR9yMjka77t2ht2kTH/3iBcaPHImcP/5gePSIghlKJcmlO3YErK0RamTEPE1NiaACRD6PHwc6dYIgCMjPz2etWrVCenq6sG7dOrZowQImuXoVkZ6euBgaKkxev54F5eQwAwcHURw6lA0OCOBb5eXhwIEDfIeTJ2FqbIyplpbIjYoSERJSMVgYYxgwYADfpUsXpKWlwWDuXGZTUMBk48ZBFEU4PHxIwZ9p0wAAsqZNYd+hA5okJCApKQlNmzZFTk4OLC0twby8KGhjaEhrm6UlShUKFBQUVL9fZWYSSW/fnu6da9eidO5cbNq0CQ4ODioTExN6/ujRQGkp7HV1+d3TpiH72TMY+Pmhz6+/inf9/Ni9uXOhJZfjzfDhYguOY2ZmZihwcIDHgQMozMiAodrYtHt3MnlbtQoJAweizNAQQTY2yvz8fMkYX184jBlDXRu++472C999BzAGCz09NsDYGA9XroTDxo2QKRTI//FHhPz2G75QX6fDhxGpUiEzM5ObM2cOPfbsGZCeDjZ7NjQPHkRRURG6d+/OO/TsCcNJk+Dx0088Fi6ka+3jQ2vLBxAXF4eXL1/yU6ZMqdtDpSoCAshgEaDAipMTlavMnAnVwYNImDxZ/OTJEyY5coTW21WrKGjZvz/V+j98SAGxhw/JZ+DZM2D3bpTMno3u2tow6dEDTZ48Ybh3j9Z/DQ1aNxITKbhibFy5Hslk9JwWLWjN+uknejwlBczMDF2DgjibZs0Y4zi65//wA82tMWNo7azSzhVLltB65uNDZoblQYPS0lIcLPdDWLp0KdLS0nD79m28evVKFR8fzzdq1EjgeV6pUqk6LF26tDKC1oA/jQay34D/ChQKxYHo6Og5AwYM+NuSfTVBefnypZCfn8+911n774rYWJJAnjlTK+v4r2CSt7ckdPNm4ZcdO7ivT54Et2BBnQY2daGkpAQAMGbMGM7CwqLqwbD79+/jt99+w6effgonJycUFRXh/PnzqsLCQmRkZPCtWrWq6trP5efnY8uWLbyOjg5yc3NVHTp04NXOvP/f0aUL/f78c9pMh4VVIyBv375Feno6Tp06JQqCwABwPXv2FD08PGp7IYgiXcMPoaSE6t0vXaINwODBdfdFByk1TE1NYW1tjT179uD+/fto0qQJhg8fjlu3bkEqlWLIkCFqCWH9wRSFgjKcJ0/SpubJEzqGjRvpsQ4daONjaUmEeMAAUj1MmECbu759qXb08WOqyxVFyvKNGFE9m/qREEURgiAgPj4eKSkpkEgkcHR0xNmzZ/HmzRvWpEmTCnk1x3H4qNaSe/ZUZIbMzc3x2Wef4dixY+zAgQOq6dOn0x+ysynDXMf4c3R05BMTEwVtbe1ak8/Z2Rk3btwQrl69ik8++YSrs7Z9zhxyX37wgMiWuTk8XF2hKs8gNmvWDNnZ2Thz5gwcFArhSVQU6/rmDcOAATTuypU8UZGRACiY8+jRI8TFxYn29vYsPT1d0M7PZ2WFhcwhLAwxMTGirq6uOH36dHbjxg306tWrVrsmfPUVBWp++IGkpP36Afb2ONixo+ptQYHIcRwrfPSIK/b0ZD0XLyYFR2Bg7e/m7Q3k5kLbxATS3r1x680b1aeNGvF4/pxI5pIllGXu1o1+p6WhadOmsLGxES5evMhNmTKF7gEuLsDVqxSAGDeOsvw1x35yMklxMzPrLbHhOA720dHoFhZGhpvv84zw96efhw+B5cuh1bmzKjMzk6+T7GtrU9BGEDB37lzI5XIuLi4Oly9fVrm7u9c9v6RSKlHYvJmuY7dulX8rKyPi0LIl9VX39ARsbGBoaMhuLFyoGjJkyMcFQKOiSFljY0Nz784dIjbTpxO5OHaMvqONDc1Jf38iu1lZtMZNmVJZtlI+r3Q3bIBTVhYePXyIhPh4pCQkwDY8HAUhIbgQGip2unoV8e7usHBxYfjHPyiTO3MmcOUK7puZ4Q+JBEotreqGbGFhQJMmkMvl2L9/P4yMjMQhQ4YwURS5FcuWofjkSdxasQKPIiPRuXNnlvbzz2yotzes1DLowEDYu7nBxsZGOHL0qDhnzhw+99QpXD5wgJn/9BP0GaMynPJxoauri2bNmgGHDsG8Sxca7zo6FNiuuj4nJgImJhg5ciROnjyJzMxMYefOndzww4fxuHNn9N60CcYhIcCJE1BOm4bIyEhBpVJxCQkJMDU1BZebCyEnB8k5OWhuaUnr9rRpkHXqBG1tbdHOzq7ywzIygMJC2J8/D/bsmWjz22/MyNAQmlFRbEnHjhAjI5Hcvj0SS0vFq1evioIgoLi4mPOwskKbM2fomgJkKKhUAkeOIN/bG9bW1uLEiRMlP/74o2hgYMDw/DkFd+7dI/JrbEwEd/NmGMfFiQPCw5lszBjg4kVojBsHzswMP3/9tagyNhZcXFx4w7VrxYktW5I5qCCQksvVFbC0hCiKoqmpKWvbti2NtzFjSCHi7k5Bkc2bP5iQyM/Px6FDh9C5c+faRF/tDbRnD+11WrYkJY62Nn3Ot99SGc+oUUB6Ovbu2iVKeJ518veHk5sbrR9NmtDz372j9/LwoHGu9rMA8PjhQzF0wADWxcsLds2a0f3L1JTWmOxs+r4//kjlMykpFIBfu5aUfs7OZG765Zd0//P1peMNDobCyQmXZTIIRUWq7sHBvHkdXQCqwdUVGDYMkEhw7do1MSoqCjk5OYzjOKj9C6ysrOBPHU347OxsbN26leM47peGNnv/PhrIfgP+o1i2bBkHoBmAzh+sE/o/Dp7n8e233+LkyZM4cuRI5ea7AZVQKumm/e8S/dBQkggGBqJ7fDx3u2NHCNHR4P5E+cSdO3cES0tL0cLCotZ18vT0BMdxOHbsGGxtbVVZWVmcvr4+c3Bw4Fq0aAFPT89qzzcwMECbNm3EmJgYwdDQkD9w4AD++c9//nvf8a/G2rW0Adm7l7Jkd+9CXlKCrVu3QqlUok2bNmK/fv0Yz/Oody7b2FD97vtaTGZmEpFxd6f6xI90rre1tcWSJUuQnJyMwMBA/PTTTxAEAebm5iKryTzLymgzc+4ckYuffiJCdOUKlQz070+GRrNm0Xjr2pUI2qNH9NyePek5VcuOTEwoCKWWRqekULZ4717abA0dSnXr9YzdwsJCHDx4UCgoKGASiQQlJSWsrKzSa0hbW1u4du0aBwBNmjTBhAkTPuq8VIMgUB31vXuATAYdHR0EBARwGzZswIULF6Ahk8H65Us4l/9djcTERNy5c6eiLrQuGBkZYejQodzBgweRkJAgjhw5klVsYEWRZLQZGbQBbtUK6NMHYrNmuO7mpur4xRd84vjxQsGbN8zp0SMmfPGF0PrHH5lJZia1JEtJqVBJFBUV4dSpU3B2dgbP88jOzoampiZiYmKgVCo5v8xMwapFC3b4yROVra0tP2jQICaRSNCnLo8IpZI20eXZTXAcEcATJ2B98CDvNHMmOBsbCIIAU1PT90tcbWwqMt5pnTuLSU+fsoqe6N99Rxtza2v6PLmcSP2BA+jj4cEdDg7G2bNnK1uv6upS1jIoiIJOjo60QVdDHRB4H0QRRTt2wKBlS5GvYs72XshkgIkJdPX0WGZGBrXsqwsWFsBPP8Fw0iQYGhrC3Nwc4eHh/L59+9C2bVtUOL9Xhbk5KWJ27qQ5PnAgBU1WrKBx8e23RBCtrYGtW2F69Sri4+M/6rABUDtCNQlkjEwB37yh//v5EfmaMIEyztraNA6HDaOxqadHr589mwIzAQEVkmIzMzP0Lh87HeVyFBUVYdu2bWjl5MSajhyJprq6pJbZvp0Chhs3AiEhyLl4EcqEBEgkEuzatQtSqVSUSqXioDt3OIfFi7Hj1i1BKpWyUaNGMTpkhm4qlYrNns1HLlwojhwzhjVt2pRhzJjKkiqA1picHIybN49bs2YNdu7ciaysLCitrJCrpwf9S5eoPj0vr3qQ0cSEAh6ffEJZVX19mocJCRRMKioCzMygoaGBkSNHAgAnCALePHqETE1NbN68GUu/+gqYNw+pu3Yh4907ZmZmhuDgYFV+fj5vk5wM93fvcOHkSTg7O+N0eLiY4ujI+m/aBG8/P3YjPFzw9vamxS8vDygpAWvRAs94Hp7qdWLLFiAkBOzHH9G4WTNML4/Mbd26VVVcXIwXHh6w3bdPjIuKEnJatoS1tTXfxtcXOioVCq9cEUw7deLKysqgUCiYkZEReTrs2EGZZfpOFCDYvh1X9u6Fho2NOFKlYhBFaLm5YezGjdDPzWX5CxbwGWvWiHqamqKFqSmd+Nu3aS4uWAAAmD59OtuwYQPy8/PJ56WkhK6/XE7fY8uW9w7X/Px87N69W2zcuLHYrWtXDqWldKzu7rTeLV5M96M7d4hQjxhB9yN1ec/9+5Vvdu0aUpYtY5pubnD64gt6rKbR54wZ9FNSQnOhVy+AMegbGrISfX1ImjShLL167q5eXflaX1/6rVTS3NXTA+bPp/+ry5ASEsiPwt0dyM5Gm759mZa2NiKLi7lff/0VAwcORMuWLes3OJVKUfr113g+caJgfvcuhzlzMG3atHrVDllZWZBKpakKhWLxe090Az4KDWS/Af8xLF++fLRUKl0vk8l0zMzMVD4+Pn/emvv/GDiOg1QqFXV0dP739Gr/b0AQSAK2ejWRp3/1PaKj6WY/Zgy9z48/4kpoKAyePasw1lPXqioUCly/fl14+PAhMzc3F/z8/HjjKv3TS0pKIJPJ6g3IeHh4wMnJCZcuXeJtbW3RrVu39264+/fvzwDweXl52Lp1a501s/Xh3bt32LJlC3ieF0aOHMlVlTX/pWCMNosKBaBUomDfPkilUnz++eeQyWR1Z3OrYvfu6lm9qkhOBn75hTYNe/d+tPFi9cNjaNy4MebNm4dN5c7Dni1bMty5Q/LpYcMokCCTEWlPSCCyv3YtERg9vdrjq6yMshmjRxMZOXeubsK+ZUtFP2UAJI+eP5/G3eHDRGqmTSPi7+9fkT1UKpU4efKk6sWLF7xMJmPDhg1jhYWFMDAwgKmpKTQ1NdWqn39/TZDJ6LwWFlZ8vra2NoYOHYrg4GC4vn2rctyyhQ8vLVW127KFP336tBgdHc0YY2jevLlKQ0ODdezYsd6L7ODggK+//hoXL15kO3fuxDfffAN+/34iu69f00YTAC5dgshxCO7ZU/UiMZGZ3rqFZjzP8SkpKIqJgbe3N8d5ekJ88ICIWfn5zs3NRVBQkKitrY2BAwdWbcfHBEFAYGAgivPzmbmeHj777LP3N2w0/QAAIABJREFUB0tFkUwiV66sHrTR0qJrfeAA2i5dCv7u3WqBjw9BpVIhISGB2SUliejVixz4FyygANHMmZVPTE8HeB5W8+dj0smT2PPFFyiLjoZMvUnX0iKlyOnT9Pp9+8jlXI0zZ4gITJpU+yD27gUOH8bt2bMhkclEp+Jipqmp+eH1pEULZPzwA2yXLOE8vvySMnt1vebevWptAiUSCYYNG4aHDx8KwcHBnIuLS911xx4eFDDbsYMUVNOnV5KwGq0ELS0t8fDhw48f83J5JSlRH+PUqZTJZYxKU9q0oc4a335baabHGL3O15dKc7Zvp7kRFUUS/yoKF21tbVy6dEllZmaGISNHVo4vT09SbmzfTmvcsmXo06cPXFxcsHfvXkydOhUZGRksJyeHyXbvxsmNG8G1b8+mT59e4U4uz8uD4+TJ/HZBAJPJWBO1J4NEUn38nTgBqFRIun4djDFkZmaiW7dugo6ODjty4QLm7N/PdG/epHFx+zZld9XX0MWFyiLWr6fsf9euNA6bNKEgl7qUAQAOHwb39CkanToFbssWCtbJZMCcOdBYswZ61tZMLpGgY8eOfJs2bZB/4wYM+/XDuadPsXr1amhpaeGdkREiU1LQZulSlI0bx1UYx8lkQEYGZNeu4VXz5pUDrKyMSO6xY5SZLkdRURGbOHEi9PT0UNqiBbOMiOCvFBfj6dOnkGdnq9pcusT1ePWKy2jTBqmpqZAVFODl4MGq1M8+41u5u8PA2Bg1Z7CtrS2SAYYJE4CdOyGIInKOHgVvaChaLV7MrIyNGdq1Y0hLo8CPtTVd49RUwNYW78qz5aWlpfSGLVsC//gHBZiePHl/QiIvD9Fz54pm9vYYm5nJwdycCP7Jk/Q5vXvTdbKzo+CYGpMnV18DqqBr167C3bt3gbruE/HxFMRWm+6eOkX3AD092NvbQ1dXV0xJSWFmZmZ4r6JQIqn0KRk4kPZjZWUUWHNxoXOTng5wHLgnT+CWkgI3HR2WWViIi69fi3EAilq2FKTlgVMtLS1OS0uLaWhoQCaT4fbt26KWiQkbMX06Kkon6oBCocCZM2fkCoViTIP7/l+DBrLfgP8IVqxYMVZbW3t7QECA9n+MmPwvRWFhIQRBEEG1tg0AKiXW/0p/cnXbnWPHaCORmVnNKCs1NRUymYw9ffoUERERQmpqKqehoQGlUgldXV1x4MCB3IMHD9i2bdswdOhQyGQy8DyP169fcwqFonYNcBXo6upicF11su+BgYEBpFKpEBoaynr06MHq605RLgNVyeVycBzHFAoF5+vri0OHDokLFixg/07rxoyMDKhUKlhbW0MQBOTk5EBPTw+amppILS5GUH6+MCg4mHP85huI5fLjDxKJb76hDWjN4youps2/gQFtwJcurVey/16o6+vPn4dRRARmd+8ONmsWXp8+jdyhQ2FcWEibzJMnacMkk5H08H0ICyMS37s3SZff0zYJ+vokkd23r3pWheOIPI4eTZvA336jDVxWFjB5Mo5FRgpJSUnc0KFD4eTkVHd/478SgYF0zqvA1dUVrq6uQGYmf7OkRLyip8dfWrUKenp6GDlyJMzMzKCvr/9RSiOJRIJXr16pej97xri9ezkMG1aZYVSPkebN8VpTU4h9+ZKbMWoU01cTG3f3yrZyISFAXh7EBQvwYuJE3Hr4UJWWlsZbWVmJs2bNqiXHLy4uRkpKCvznz2d4jzlmBZLLjZvr8qBgDLd9fdFp+HBoDR5MRLG8pdqHkHfjBhqHhECjpIS7YGsrxEZECG/fvZO0KytD/23bSFmxbFmln8Mvv0C5aBG09u0Da9uWglLW1mR+pa1NwbWcHLpm4eFUMw3QulbD8A8AZWizsoApU9DdxwdBQUFYt24dJBIJevbsKbZt27aW0KUqzp07hyQLC+hOnSr4ANT/vWbgLT6ess3lRqcAYG9vD3t7e+6HH35AXl5ehQcNAFq7/fxIcjxvHs2BuXPJrLOe9dHa2hpFRUXso4KeRUVUN1yVrHp5EdlXKCrJsrc3ZUSHDyd1V833dXengOObN/Qdt22ja+DvX9E68MmTJ/w0tRKkKhgjVc+aNcCGDcDChbC1tYVUKkVZWRnUHRrE6Gjo5+ZCV1e3WhuylIEDRTE7mxWNGgU3Ozv6zoJA60kNOfjtoUPheu0atL/7Thw1ahQzNzfnACAhIUG1Z88ezJkzh+cePiTvGXd3mvNt29IxLlhA6oNbtyjwcfculbE0alStmwCUygopuYWFhSonJ4cPCgpCQUGB0KyggGv96JHYMTiY8eXnVufePcDMDPPnzwcA6OnpMZVKBaVSifxTp+C1cyfumZkR2bezA+7dg0ZKCtCiBZRKJSQcRwGkVq3o7126VJi3KZVKrsLENiAAePECXdPTsd/AQPxk5Upe09MTaN0a9i4uEDgOAxwcYH76NP/i+nUxsFkz5u/oiJoUOSUlBaryVnFlCgX27Nkj5AcEcOPHj2fQ1SUVyJo1NGbfvaPzN2ECBYRXr4bJkiVw9fKCVG222K0bEehJk8ivQY3UVPJomDyZlC2iCGzcCNOICGbSty+N02nT6J5XVa1Tdf6o0aMHmQ126FDrT506deKuXr2KI0eOCAEBAZXro1xO9f0PHlTeV11cKHCxYQMAoLS0lD169AiRkZHQ19dXiaKIGTNm8O/dQ2RlUeCpRw8K5u7ZQ+v8kyfkJaBuyZmRAfOHDzHKxITlff01dE6e5KPHjIEsNRVv7OyQamgovtXTExSiKMrlcong4KDSmDWLR//+tDbUMdeuX7+uUKlUl5YuXXq11h8b8C+hgew34C/HsmXLLCUSyY5x48ZpfbCO52+Izp0783v27KmUh/3dsW4dZVcuXPhzr1MoaJPUujXdZFetoox+DbRo0QIXLlxASEiI6OrqygUEBKCoqAhaWlowNDTkAcDV1ZU7ePCgcOLECU5LS0sAAKVSyby8vP5yBQbHcRg3bhwXFBSkSklJYZMmTarzM2JjY5GRkcGPGDECb9++RUFBgeDr68tdv34dcrkc/yrZf/78OU6cOAGe5yGVSoWysjIOIMVD48aNhdzcXBQXF3PBiYkomTcPHdzcVFIXFx6nT1dKAGtCFCkjrs7iqXHpEsnny8pI5v6xgT91r+2DB+nfhoa0MZw0iTbpEglMPT1xbv581fPiYjZr9mzuT5nlXb9OGd9Fi6jOvD41QlVIpSSzrOK0XQutWtFPcTEUO3ZAPngwpK1acVMGDICJo2Olidd/EjNnUvalqkGSGl5e6DByJGsydSoMDQ2r9eb+WLw4dgzZ6el8Yz09FKWnQ1dfv3rGFQCsrRHUqRM3xdYW+p6eVC9coxNLYWEhHkZGitahoex1crJoNnEiP2LECNTlFwBQ1lVXV1fMvnKFcdbWkLVpUzEHcnJyIJfLK7NWxcW0rpw7V+ucX7t2DSkpKRAEAVzjxqTIWLCAjMccHOpvQ5mWBrx9C9Np0+AxeDB26OjAyMiI69a1K/f777/j3r176D9mTJ1eCKb29rBt1044unEjN6Z9eyI0qalEyGJjaVzfvEldA7Zto83+smW04a6KzZspOBUdDXAcrAAsXLiQA4CoqCiEhIQwmUxW4dheFzw9PZGUlIT2y5dzOH2aPjsnp/r3DgkhYlOF7KshCAK2b98OnufR3shI7HnxIsPBg1T28umnlDHv3JnO+9atVDc+fnyt86qvrw8AWL58OSlE3uNqXnD/Pt4lJuLItm0wNjaGtbU1bG1t4dq6NdiuXZVBAMboHPr6EuHfs6fWuANAwZbFi4ksb9xI12PDBkAqhZ6urhgTE8Pq3LtoauKsjY2gf/IkiqKikN+vHweQekcN1qcPTLy9q3U3USgUCPf0ZB5dumBap06o6BX/22+0piQkAIaGEAQBW7duFXLd3Tmn9esx38Gh2knz8/Pjf/nlF7GipaYoUsBDIqGgQffuNP66dCFl09y5ZCbYrRspT3ieyOHMmeQVUR5k0NfXZxzHISMjQ3B1deW0Fy9G2x9+YPz9+0RWAVKZzJ9fbc9SrlTEvsxM0VMuZ+PVZUBNmgC2tpAePw6NAweQEhKCppMm0bp08SIUfn644eeHFmPGILFVK3CNGqGwsLDSMPKrr2Dl74+mLi7ivcePme+9e5QImDEDXHExWly7BkyfjkFNmjDR07N64Kkc6enprFWrVigrK8PevXsFjuPYrFmzoKf2ttizh34HBhJZNjQkEiuRAPfvQ+vtW/Q7fx4yOzsKJi1aRHO2c2cq+fLyokBdy5a0zvj7AytXQmlhgZ3nzonZ48ax+YMGUZD4YxEWVq//i0wmw7hx43D69Gl25swZcdCgQTQ2li+nwGbVTHmPHrSurV0L8Dx69+4tREdHo6CgAGZmZsjOzuZCQkIwbNiwuo9jxw5SXkRE0Bht3558IF69ooCNuiUfQIq5fv3AATAJDQUEAW0SE4E7d9Dc0BBYsoShrIzHTz9B+eQJziUksP27dgkT/Pw41GwfCFrLIyIiFEqlctbHn7gGfAgNZL8BfzkkEsnili1bcg1EvzZyc3MRGhoqAqjdEu7vilev/ryreXw8ZWLevaNNiLretQ5pnaenJzw8PCAIQkVWVb+OG/CYMWMqDPX+3MH8eVhZWeGzzz7jV69ejbdv39ZyxX7+/DmCg4Nhb28vNmvWjKll3qIoQiKR4OLFi+Knn376p7LEmZmZOH78uCorK4vv16+f2LJlSxYTE8M5OjpCT08Pubm5uHLliiiTyTB16lRoaWkhOzsbZmZmPJKSiKifP08bx5qBhpISMv9SQ6Gg2kO5nDad78uYy+WUGTx2jDYSERG0edq9mzY/nTtTNrhPH6oLroLo0lJeQ1NTrLcPeE3ExFCd5MuXVN/Yo8ef84cYOJBKBUJD30vc80pKsCk/Hxg9GiNMTWESHk7nKDubMkBqqeR/AmvWUNauJoqKgJwcSO3s3i/lfB8EAfaTJqFlQIDqeKtWKCws5NuHhorOzs6spoJLJpPhEseJIy5eZBwABAZCnDABSUlJCA8PV8XFxfFGRkaC0c6dfG+eJ+LynuvIGEO/fv3weNUqiFlZiF27FjY2Nqrx48fze/bsEeRyOefn5wcPDw8aO8nJdSpI7t69KzRt2pT5+PhAJpMxtG1LG9v+/SmY9f331WXVJSVEylesoMzu8+cw5zhgxQo4OzujVatWSE5OVmVlZXFwcmL1ucnHxsZyenp6RLhOnKBxHxdHmfz798k0a/du2kivXEmSYTs7IhgGBmQG6eJC0v86xmzLli1x9uxZUV9f/70BHHVG8MSJE0LPnj05s5QUIi+bN1e2IH1Py9PFixdDefUqYm/exKvYWAEWFjwYI/IMkORXEIh4q9eEnj0pCLZ+fbX3atasGWJjY/HTTz+hRYsW6NWrVy3fhJiYGCHvyy+5NDs7yGQyyOVy8d69eywiIgItkpIw9N49sKoZf8Yo69iuHRHpffvqD+DwPJ3nBQso2LxnD4Y7OrLwXbtEeHmxmnP8/PnziM7N5fxnzIDs6FExNiZG5TBgAOdQlZTPmlUr4FPavTvg6gqHvn1RsVapVDS2mjWjc+bhgdjEROTm5nLjJk6Eqb4+Eano6IqSHKlUilGjRrGdO3fi2bNnaN68ORF6UaTgUFgYBVjUHiSxsaS4ev2a3gcg5Vt8fKVBHABra2tOKpWKn332WWXG+PBhOodhYXQc7dqRcqIOGFlaikljxzJPc3Pg4kVaZ9etA1auRA8rK+FobCxbsHcve/T4MZKTk2HOGBQ3b+LCggUqr7AwbmJYGNPt04c8MRgDeB5sxw50b9eOe+DiQt8nNpbUUz/+WKFKyP3jDzw9fhyDaphTPn36FCUlJXj16hVWrVoFjuM4QRBw8eJF0d/fv/pgsLamNRkgwq7GkiU4uHYtOoSGwkNDgzL+6nVVU5PmqLc3XZty0qy0tMTRo0fFvLw8pqOjo3rw4AHfoUOHqqVa78eGDRScqQd2dnYICAhggYGBePfuHXo5OcFi0qTaHSxsbUnBcvcu0KkTPDw8OI/yTHxpaSmCg4PF4hrqrwoUFdH9d9kyuhapqZWlRJaWNL5WraKyhLrAcRQ0VZcj9O9PwcScHEji4tBXX59L3rABeU2awMjKiu6pDx4A1tYQRRFnzpwpEkVx5dKlS1M/fMIa8LFoIPsN+EuxbNkyH6lUOrNr165/W9f9ulBWVoZz586pnj17xltYWGDevHkwqmrI9HdEfDzdkDZtqn8zVhNjxxJhOn+e6i81ND5KEs5x3MfdbP+L4DgOgiDU6bKuvhG7urqyqsfNGMPo0aNx+PBhtnPnTtWsWbM+SnotCAKCgoIES0tLTldXV3B3d+c0NDQqpKcAYGxsjE8//bTa+1UE7BYupM3hP/5BsrtyEyMA9LiZGZlYdehA0t3t2+natm5d/foUFVFw5+xZyr599RVlAq9epc2onR191nffUUZOLWmuA6WlpSgqKkLnzp0/PHjS0uhn9Ggi+eXyxo9FWVkZpFIpmIkJhMJCFN24Ae3OncHzPLKysvDixQsxJSUFfn5+rLi4GEePHgVjDN98803luMvKomzap59SJtLBgc7Xx479j4WpKdVK//JL9YDEs2eksqhPnfE+REWR4VNiIiS5uRgilfIAGftdvnxZvHv3Lps8eTLMzMyQnp6OnJwcTJw4EUFBQTiTnIy+ALB4MQLT0sQ8jkPTpk252bNnw8jIiMbb778T0bx7972lPG5ubszN1xdQqVA4diwOHDjA1q1bJ5SWlnI+Pj64dOmS4GJmxml37FirRrwqOnXqxBo1alT5AGMkxd24kY6le3ca0/v2EWnZt49+yssR8vPywHEcOnfujJKSEjx+/JjvoZa7tm5N2bYaKCwshIWFReUD2trkdp2ZSXOke3ca8+vX0zF07UpzSSKh8frLL3Qd6lnvsrKyUFpayqr6jtSF5s2bQ09PDwcPHuR27NiBuXPnwkDdmeLbb+lc3LpFcvwHD6q/ODoaMgsLSDduRHFuLgpnzeIxdmz15whC7WDWqlX0PZ48oXnQowdev36NuLg4eHt7Iy0tDY8ePcKjR48wbtw46rUOWreOHjnCBXAcOqxaBY7OPwOAtLQ07NyxA5yPD4a8fVud8DBG68jt2zTfDhx4f0CZMSrj6NMHFikpcPrkE1bcpg20goJoTdLVhVKpxLNnzwQfHx/OrmNHQEeH2Vy7xsPQsPocdnGp/n+FApyhIdINDbFmzRp8/fXXkIweTcGekBCSjn/9NYQ9exDi4CBaWFiIdnZ2tGio18EqMDU1hZ+fH4KDg0VbW1umr69Pn3fyJAUQpk6lYGZISKUJnI4OBTZWrSL11c2b1d7TwcEBpaWl7M2bN6iYFzo6FPSZNYvKkp49qx3kLYdSqRR07ew4GBnRWDUyoucaGaHtyJHcxc8/x8YXL4SSJ084QRCQ6+uLnsHB6DN+PK8OoGH9egrcDxlC88LCAqVz58Jk2zbsmTxZOSk8XILhw2l9MzICPDyQOWECjIyNBcZYtZt7WVmZCIDl5OSgXbt2cHJywqFDh1DeTaZ+rFyJ5xyHG2/eYNKOHVAsXAibiRPpu8THk7+GiQkpVVasqAjCqJGTk4O4uDgWEBCAkpISPjw8XLhx4wbHGIOWlpbg5+fHOTs71//5Z8/WSfblcjnu3LmDtm3bwsrKCgMHDsSpkyfR8bvvkNGjB9y2bq1N5vLyiLRXuYeePn1a+fjxYwnP80ylUiEoKEjIzs5mLVq0YO3atYPehQvUteTBAyLtcjmtO7OqJNmnT6fgnUpVvdvD+2BiQj9OTpAByOzVSww/e1YY4+jI4907MgG0tsaDBw+QlJQkCIKw/oPv2YA/hQay34C/BOWu+wFSqXT38OHDNevKnP5doVQqsW7dOpSVlfFTpkyBjY1NQ60+QJuH6OgPkx2ViiL+169Tj3P1pu5fMHj7n4S8vDwIgoDnz59DQ0MDPM+jtLQUcXFxqufPn/MAUFdf60aNGqF79+44c+YMv379etW8efP4ujL8iYmJOHToEGxtbcX09HSYmJjA39+fSaXSf238MUbXDCAi5exMGx7GaHPw+jURosePKRijo0M1yKGh1PKqf3/KDHzzDW1ENDVpE25pSXLSrVv/1OHcuXNHJYoi37YOKWAFSkspY7drF8l6Hz2qd8NaFyIjI3Ht2jXk5eWBMQZRFKHTpQvM9u9H0s2b6Ny5s3j16lWmq6sryOVyfs2aNQAokNOoUaPqtchmZhTc+PJL+t7ff0/Bh6IiOp/va532Z8BxROrfvKleNjFsGGWsX/6JLkZXr1LWecECyqjVIOJ2dnaYMmUKd+jQIXH//v2sPCgiKpVKNnbsWHh5ebGLFy8iKioKOl99pfKxteXb/vwz2LlzFW7oAGiD7+hI46Vbt/evCQoFUFoKXV1dTJ06lYuLi4OBgQEsLCyQmJjIXk2eLLo5ODD88kutl+bk5EChUHB1KmJ0dKjGeelSGqMODkScAgPJ+K0K7t+/L5iZmYlaWlr8y5cvoVQqERUVpWq9Zg0vMzICByKqNQOM2dnZtT1A1OT9yhUqWVH3yk5Opo33hQs0bgIC3hvYvHfvHgBSj33o/tu4cWN8+eWXWLlyJX755Rd8+eWXNDfu3KFA1MmTZHSpRkEB9azv3BkICkL8xo0IPXQICz75pPab29jUJvtq34QVK6i8pEcPFBYUQEdHR9WzZ88KxrBs2TLs378f8+bNw4MHDxAdHS2aKZWic48eHFdDOWJlZQU9fX003bQJJeHh0KxqdAbQPPDyorVo/Xqadx9SQnEcWOPGeLN6tXD/8WNx/IEDPJ48QfqUKQh5/lwwsbVF+/bt6bndupEsfetWClSpg/c//ED3rEOHKHO/fj20f/8dk9++xakvv8TNwEB0/e67yn7qAPDPfyJt3DhopaayUbNmVQ7+mTOJsA8dWq1OvGXLloiLixP27duH2bNn8xXjjOeJLN6+TffWwkKaZ+npFORcu5YUFk2bIjExEfr6+tDR0UFoaKigp6cnNmrUqDp769WL1vz16+l19cxLAwMDLisrS8CAARzevaM5I5EAnTuDZWdDZ+dO5Ofnc76+voiJiRHA8yzOyopdmTYN9qNGoXv37iQdP3iQVC8GBsCUKbBduBDFERFoFBrKw86O7v1371JAqVcvvDAygjwjg8vNza1oU/r27VuUlJQwgOZgUVGRaG1tzTw8PISoqChuzZo1Qod27TiL06dxTVtb8FQqOY9du4CcHChevcKL7GxkuLvjRUQEpri6khJj+XIa/ydOkFljmzbUqvb48WrnxNzcHFpaWigsLES7du3Qpk0bDqDgfWRkJDt+/Dh0dHRUHTt25DtWrftXQ91dohxKpRKHDh0SsrOzucLCQly/fh0SiQS6uroqXY7jXrdqxV66uwvn161j3t7ezMfHp/LFAwaQwqK89WV2djYiIyMlo0aNgpGREZ48eYI3b95AEATx1q1brDApSTUoNpbHli2VyiGJhO5VVe+ZEgnd+9u2pQBl+T3vz8C2SRN23cCAg44OKZZsbKBUKnHx4kWlKIqTGkz5/nrw33333f/vY2jA/3IsW7bMWiaT3TExMRnz6aef6qij8g0gFBUV4ebNm1i0aFFlrd7fHYsWUUZj4sT6n7N7N22+x42jjZSPD20k/48EkrS1tZGdnS3GxsYKCQkJQnx8vJCcnCxqamryRUVFolKpZAUFBSoXF5dakgRzc3O4uLggPj6eRUREiC9fvmQpKSlQKBQwNTXF+fPncf78eYiiCFtbW9HDw4MbMGBAvWaAHw3G6EdLi7KcUikZc6lUtMnMzaVN5ZgxVIcqirTh7dSJVBnz51NdZM+eZBplYPDx2YEqkMvlOHToEKevrw8vdU1pTfz6K5G1kSOJ6KvriD8Sly5dEkNDQxnHcRg7dixMTU2RlZWFAT4+6H74MB67uQnxSUlc7969MWzYMM7X1xe6urro0qULmjVrhnv37okxMTGisbExq6biYYxMtUaOJPJ26RIpIQDKPn4gM/tRmDOnOpkGaA4tWlS3MVRNZGXRNb16lVzP/f0pY10PHB0dGc/zGDhwIHr27Mmys7PFP/74g7148QImJibi8OHDWe8+fThrBwewO3coi1paWp28GhvTelBcTDWi9UEioXWgUSNwHAdTU1Po6emBMYb/x953h0Vxd9+fz8zusrSloxQRQQSpiihYEMUWe48FazSmmbzmTWISTWJMMaYXE1vUxNjFErsiKgqiCCpFBUFAFKT3Drszvz8uy9Ih9f3+Es7z8KCwzM7OzKece8899/K5c7CzsGDmb77ZmEzVYfPmzSobGxvm7e3dsoldTQ3VqEZE1GebMGBAI2Oz9PR0nDlzhk2dOpUzNDSEiYkJ+vXrh9jYWJR9/jmLvHwZvyYkICwsDAYGBuha52rfs2dPXLt2jTk6OmrqhpuC58lIbfRo+v7++0T+09OJ7NW1NMT27ZSFX7SI6oYFAT08PNDl44/FXwsKWM+MDOhGRKDGzQ1VP/0EmakpXbc7d6gURqVCrVKJ0LAwuLm5CU5OTnQxtLRIOTVtGmBrS9dwyxb6/+rVlO3v3RtFRUWIjY3FgAEDmrcr3LaNgkwtle74+dE9PnoURkuWIKR3b86rf3+ojezkcjmSk5MRERGBrKwsUVtbG8vc3TlJbi6N3yZwcnLC2fv38bioCObDhkG36T1njBQS2dmUcR47FpBIUFlZiV27dolPnjwRLC0tuYSEBGhpadV7QJibm7Pga9e426amSDI1xYPISEy8eBHeXbpwvJeX5rl1cyOl0oULJOnmeQoCTJxIrzl3Dvj6axTMmYOtP/6IGUePwkoqhc6SJY3G55GTJ8WzjLFlly7BoLKysVx+1y4as00UOT179uRu3LjBcnJyUH//AAro2dvTs7x/PykTrlyhueXAAaBHD6Q9fIi927YhPjjawPo4AAAgAElEQVQYV6KjoZuUJMyaMIEM286fp8Dj/fvUEWLGDMrmJiXRM/jkCcneJ08mf4SDB1Hm7c2GLljAZD17klJl/Xp6ZufOBevSBT0dHODo6IirV6+qPDw8uLFjxzLdigrUxMWhsGdPKkfgOJpjbG0pwLBpE2BtjURHR/T+6Semt3Qpqflef52u86JFgIkJkpOThevXr7PMzEwxIiJCuHjxIvfgwQP07t0bubm5CJg7l+nHxsJx6FA2+MoVuJw4wS507Sr0/+EH9tDEhJX06QOXd98FunbFacYQDSBg3jw4ubrSc6nuHLN4MZWYOTqSus3Xl8bi8OH1c/aVK1fw4MED9O/fv9FeTyqVwtramnl6ekJPT487e/YsFAqF2qyXXpSRQfetrhympKQEx48fR25uLjiOYwqFQvzvf//L3NzcYFxRwY1fu5ZZHjqEgSNGMBMTE3bp0iXx/PnzzNzcnDwMZDLg9GlU37uHrbdvC6GhoUwURUybNg06Ojro0aMH3N3dmY+PD8s/eFA1YuNGvmrTJsjd3ACQh4/w0Ufg4uOp3K0pvLxoXZBKf7M67fr16wIrLITHCy8wBAQAxsaIjIwU09LSrqxevfrN33SwTnQInWS/E38IdUT/io+Pj92MGTPkTWuPO0ES4MjISPj6+rZpQvSvQWEhZVkCAlo2T5owgTbZDg5EKvv3pxrMJo7F/wQ4OzuzAQMGcN7e3pyPjw/n7e3Nubm5YciQIayoqAjl5eWiu7t7M7LPcRz09fXh7u7OlEoltLS0UFhYqIqKiuJCQkJQUVEhTp06lfn7+8PT05NZWlo2zjJXV9Pm/8EDIjXGxkTWe/WiSPu33xIhf/NNIu39+tFGZO5cyt5/+ille3r0oNe7uND9srGhjOCcOUQQ+venzba+PprJXX8noqKixNDQUBgbG7OsrCwMGjRIM65EkTJ5n31GZGn5cjr3Ds5L8fHxCAwMFO7evYt79+6xoUOHIiAgAAYGBujWrRsGDhwIUzs7sMpK+CxYwIaOHVsve2WMwcrKCgqFAqampvD29mZ5eXksODgYaWlpKmdn58YO84wRiRw1irK2J05Qtr9bN9po29v/Nj+Bhnj9dbqfc+fS/7/7jozd1DXZ7aFPH6r5VWcV24FUKkX37t3riV/v3r1ZbGys0Lt3bzZv3jxWn2mWSIgk5OTQszZtmoZI8zxlYi0tKXPXGiE+fJgyVk1NAQGYPf88M/D1hb6/f4t/GhcXx+no6AguLi6NL2x1NWXCQkPpHqxaRZ4TOTlUm6utDahUELt0we7duwUHBwfm3cAxW0tLC15eXsw2JAS9+/WD5/PPQ1dXVwgKCmLXr18XJBIJs7a2xvXr19G3b9+WM+83blCgISeHlAW2tjS+rKzI4HD5chqTLi4kZe7Zk3xLUlOBPn3AGRjAPDqa8RMnImP7dlSEhuLH3Fz0Xb8esUVFgqlUyqTTplEAbOJEVHzyCa67uWHZypWM9exJPbSnTaNzmDaNpLuxsVS68/zzNEfUlRwZGhri8uXLKC0tJaLWEJ98QsGK1sw4GUOJgQGux8eLGaambHBaGiR19cTW1tYYNmwY7O3tMW7cOObt7c34zz+ngEvT9wGgra2Nrh4eUB45gkvR0UgqKhJ79+7dOKjJcUTWzp0DamqgsrPD1u3bxdzcXJafn8+uXr3K6szLBJe6NnFaWlowNjZGbGwsYGQkjnz2WWb17LOMMzcngnP7Ns1turq0NoWGkirF15ek2MePU2DGwgIPp01Dsb8/5Do6Ks8LFzidyZPV7TjFI0eOsJs3b+Lx48ds0aJF6DpnDpVQ2Ntr5qypU+la3rtHAdI68DwPe3t7dvbsWWZqatrcpM7YmOTmdnb0DEdE0DmPHAmZnh7k585h9PnzMHr5ZYzcsIF7cuUK7pWXo9vOnWA9e1KQ6fhxIrl79hDZnzmTnr1Hjyirq68PuLmhoEsXXBUElctzz3Hw8qLz79aNFFX37kHH3h7GTk64fv262L17d87W1hYGTk7Q+/FHRJiaQq5Q1AfFYGBAQQUHB2D9epSHh4shvr7MfNMmlEdGinctLGC8fTvbWl2NyAcPwBhjNTU1UCqVoqWlJT968GD09fbGgMOHIUZHw7xfP+iMHg3MnAlmaQntPn0wYMECljV9OkKfPMGi559HtaEhOI7DuXPnVEOHDuXqFXU3b5IaYsECGofa2hSoNTCgz15RQX4fQ4agvLoae/fuhY2NDUa0RI5BPiYWFhYQBEF148YNdunSJXbjxg0hMzNTdHZ2ZqnJyThTUSHevHkToaGhLCsrCxMnThQnTpzI+vfvzziOo2c+IwO8QgHZ1KlgjMHMzAzp6elCXl4el5iYKObm5goODg5cFWOo/OILRLq4iK+//jrz8/Nr3vkiLQ1mublckL6+cDotjV2/fh1xcXHC5cuXoTp7lhn17Qt5SwF1S0tSpVlZ0TrTQbNplUqFI0eOsNGDBzOTPn2AYcNQW1uLffv2VVVXVz89bNiwrA4dqBO/CZ0y/k78bnzwwQdjpVLpgUGDBsmHDh0q6WjP8H8b9PX10aVLF2Hfvn1s/vz57P9a7fjfip9/pojwvXuNf37nDm2y9+2jxVRXl7ImdVHmfyNSUlJUY8aM0exaMzIoOCKX04Z8/nxohYXB7/Fj6iX83HOS2nnzIBgbQ2vRIoZXXqFMXF4esHcvZYe2b6eM7Zw5lHH/z39IKbFvH2W+/PzITCcmht7TyIjekzH6G7mcSJG67jAoiOo/G9bw/8U4deoUA6gFnIeHhyiTyWjiuXaNZKtffEHBpFGj2gwuKJVK8Dxfv/lJTk7GwYMHYWdnx9XW1mLRokVoVNfdEIMGEfk6eLDV48tkMowbNw7+/v7YvHkzO3DggDBnzpxmLeVAH4YI3sqVRCR+/pmyasOGUfbot/p7zJlDQTU1QkIaGXK1iPJyyh4GB9NG/w+WFVRUVHCGdQ7jzT5zt2707NjZkeR34UINKduzhxQg5861Lluvaa7yrMjOhlBTgwsSCQanpqKpwkypVKK8vFywtbXVPBTZ2ZqODAsXUqmJoSEZcdna0nWYN4/uxZYteAJAIpezp559tsXT4rZuBccYFDyPQYMGcT4+Prh37x53+vRphISEiBzHNVZ5pKTQ5x8wgIiRrS0R64kTaXyqM2cFBaRs+uILGoMN58ZVqzTH27cPPgBCFQoUcxyW2dlB8soriN6/H2Hx8bDdvFlwePyYszxwAKrqaojbt0MVEgKJgwMpKt5/nwj9nDlE7pydaTPfBIwxmJiYIDMzs/lF8PXVzA8tQBRF7Dp6VKz29MSrY8ZAa/hwChA2IKv1BpI1NRTMaKlcoMFru+nrw00qxeZHj7Bu3ToMq8vy5+Xlifn5+UJBQQGzGj1aHHTpEl+6d69Y4unJxowdiwsXLuCZZ57BxYsXxerqapaeng5zc3PIZDK4uLggJSVFyMzMFHv06EHzsKkpZXf376evmBh6bv77X6pv37mTAlVZWfXPNL9hA55YWaHAzAw5ubkwNzfH6dOnxfj4eDZw4EAkJiaKAJiZuhXjm2+SEmrdOk0pxccf03iIjm702c3MzDBu3Djx2LFj6NatG9NrKXhua0uKBpmMAkR79kDH1xe39fXF83l5TBodjeBFi0QLCwukp6ezkjffxLhx42gsqOf1mzdJvaAusfnyS/r5qFEAgOLwcDHbwYHmjMJCCuTNn0+B+5gY4NIlPHrvPSisrPge6o4tCgX03dzQJylJPHbsGGtWsubmBvz0E6SffopJBw6gtF8/dL1wgWH0aJT88gsWGRlBR0cHjDEIb70Fbtw4Drm5JLEvKQGsraEqKBCupaeLE4qKmmVZunXrBm1tbZw4cQIJCQnqMi3eSV0emJhIqqaNGynwANC8PHWqxoDxlVdonAwciKotWwAACxcubPVZVWP48OH88OHDkZycjMzMTC48PFy8efs2YuVyKLS0BD09PS4tLQ0vvvgizMzMGk+eJ07QvPTxx/U/ioyMFJOSkvhXX30VHMexn376CevXrwcTRfR1dRUGGhujxdKl27eBJUtg+ssvmPWf/3AlJSV48uQJ8vLyOD09PTy4e1fIGjOGa5XGGxmRKq21dbIFREVFiZbZ2YLD66/zCA0FAERERAiiKF5as2ZNdDt/3onfic7Mfid+Fz788MN5Mpls97x583Td3d35TqLfNrp3786io6PFyMhIYcCAAf9etv/aa0Qe1TWcGzcSiXVwIOI0dy5JxlrYYP5/hcpKIi/FxbRRsrGhLElODsnfFyygLF1wMNWxTptGm4jMTMqqGhvjtq+v4HX0KKf3+utEyt3diYS4udHmbeVKqhmMiKjPyPF9+0LSowdtQMaPp82XuzuRKn9/uu5ubiTJZYzUFTNm0DmvWEH18z160M8BIhjqNl4jRhD5MjTUSHQPHiRC0Eq7oL8CWlpaYnJyMlu0aBG8vb0ZUlNpI/zDD7TR+/jjZi3UCgsLkZGRAV1dXURFRSEqKkp16NAhLjY2VszMzISOjg775ZdfIJVKsXz58tazr2ooFFRHrTZvagMSiQR9+vRhp06dYh4eHs1lzw2hlnFPmEBEf/t22vx7epK0vqMu/hYWtJFzctIYKH76actKgYwMkswOH07katSoFiXwvxVyuVy8ePEiS05OFvr27dt8gbCyImIwezYRRPWYd3WlAJWaPDSFUkmkS70BB4DaWhTNm4f9Q4eiVk8PN2/eRFhYGNLT01Vubm4cAOzZs0cFgE2ePJmTFBaSPNrIiMjIzJlEuNX3kuPouvXuTe/VuzcwfDgi4uKEIUePcoZ37tB4amquOW4cjb06ZQFjDObm5vD09MTDhw9ZUWEhvPv0gdZ77xGx9vEhUuHvT67qY8dqZLErVhCRf/FFyigOHUqO+TY29By0seZ2794dNjY20NfXh7a2Nvr168dKSkqQm5vLYmNjxYiICCYAyMrKgsTKCt179aJ77uFBx3Vzo2dHHXRtAWFhYSguLkbfBi0QAdB1HTu21XFRUFCA0NBQ9tprrzGtrl01suyePel6NCQO0dHk0dBea8zx46E9cCBSsrLEkpISVlRUJKSnpwsFBQWsS5cunLOzM8vOzmbXBEG0i4hg/ceOZU6jRkEQRfHkyZOYNm0ai46OFiIjI1lsbCyMjY1ZQUEBHB0d2eXLlzkvLy+N3FoioTm6f3+6VzU1JGt3dyffEicnupfDhwNvvgmDPn2g/+abuF9UxC5fvsxSU1Nx//59NmnSJAwaNAj9+/dnYWFhsLe3p64sWlo0j2Vk0DxjZERz77PP0jPZZAx37dqVZWdnC6GhoWL//v25ZnuxM2foWZszR6Osqa1Fv5deYgMHDYKpqalYUVEhzJ49m3v8+DGSkpJEX1/fxgfheRqLS5bUO8+rUV1djcDAQObr68tZWVlR8Oqtt4gIT54MuLujuqgIFx89wkRjYxgHBdF8pq8PWd++sPz+exZqb4+q6mrRzs6O3b17F5s2bUJtbS2sbG1hPmoU0x4/Hob790NSUQG9Q4egt3AhZHv3gj3zDPDyy2DffUcBplGjKHinrQ0MHIholYpVVlaK6jmg8UfikZubq7pz5w4HAIMGDUKXLl1U7u7uHKupoc/p5VUf0ABAc7CnJ80JapiYAKII7dJSxOfni9pmZqyREWcbMDY2Rk1NDW7dusWUwcGYc+oU3Hbs4BwdHZmfn1/zshSAPDVGjNCsywD279/P3Nzc4OrqCplMBm9vb87d3R2+Q4fCJSODdSspYWhYzw/QPFVcTJ/Hzw8AKVpMTU1hY2MDZVYW7N99l/2sq4uYuDiVlpYWZ25u3lwZ4OJCpT4vv0xqqDYgCAIOHDiAMbq6nJFCAYwdi9LSUgQGBlbV1NRMHzZsWF6HLlwnfjM6M/ud+E1Yu3YtJ5VKP5LL5SsWLlyo3dler2MwMTHBggULuC+//BLbt28XFi9e3HKG75+KtDSSOl64QER4zRpq7XLvHmWwpkwh59j/JQoKyIiqe3fg119pEZTLKZv22We0oKlLEHx9iTypVJTBSUkhci2Tkau1QkGfNT2dXv/oEWUsHRzob+/fp0yqvj61NQKI7PfqRe/588/Qysvjk+bORRe1O+/Dh5pzLSqi7282KG/btUvzb7XZXcMF3svrT79kCAyk+/g3IikpiQHAjm3bMO7GDdEmMZFlvf8+XPfvB6erC4gisrOzcfPmTTx48EAUBAElJSVMbbAHkFx43rx5uHv3LktJSRFiYmIYAKxYsaJjJ6GnR9nye/c0fajbQEpKCuRyuWhoaNjxqKieHt3HsjJ6lg4cIDLm6Ehkqq0uFIxRu6TevYkwzZ9PktOG8mZBoOcoKYmOvXKlpn3anwAvLy9WUVEhxsbGtv4iExPK3FZWaoIb9vZEAD09Se3QsB0WQOebk0PXQI2zZ2FQUIBuHh6qEXWGbzdu3MCjR4/qX8JxHFNWVDBVaiplYbOyqO5X7ZfQFJMnk2pFrRDQ0YHU15c7KJGIKxwdGSZPpgz8lCmUPQVoI940IKNSQTs9HUNKSjB8504orKwoQDZjBpHbFsoRAFDpRV6Dva+rK7nzjx9PZPCTTzpc5sFxHGVrCezAgQO4ffs2JBIJ7t+/Dw8Pj0b90wFQMPKNN0iS35Dc1EFLSwulpaWIj49HvdmYKNIz1kagTE1gEhMT4ezsTM+qXE5zmYsLrQNDhtAx1IHg9iCXo9bWFqqnn+b+8/HHUCgUzS5Mv379GABWH6RLSYHfO+9wCQkJws2bN9lLL73E19TUIDAwUNy3bx8AYMyYMTA2NhZu377NDW7ado7nKSgniuSDcPgwkafVq+nZOXuWas+trGAKYN68eSwsLEysqqqCnp6e2NCLRS6XC2VlZZpzHjiQ1pL586kfvKMjzf99+tA1aRIE09XVRUFBAZ+UlIRGbu+xsXSMnBwKTBgY0M+qq8GPGQPe2xtu69YxNzc3HgAKCwtFHx+flucoQ0N675KS+vtbUlKC7777Dvr6+kK/fv3o/F98UePFo6cHODhAfOUVKExNoffBB3SdRoygNbVvX0hnzcJLtrbYFh3NIiIi6t/u+pUriD17FoMdHQWfK1c4vPceqZwAWqdnz9YQ8ePHNefZYF4cMmQINm/ezFdVVTUOSNVh7NixvJeXF0xNTaFFf8ejtpbK2D7/nLqlNERCQsvtB194ASwsDNM//BCna2uFloILrcHMzAzOzs7i4AULmHTduvqft5hA27eP9iHqtnYAbt26JVZXVzOrJgmSegXRlCm0VjV0z09JofXhrbdaLdO6c+8edKdOFV959VUWGRmJixcvikFBQeLYsWM5t6YBwAkTWi7JbIL79+/DJCNDtPP1Zeq1JigoqFoUxe1r1qxJaPcAnfjd6CT7negw1q5d20Umk+0xMTHxmTt3rnaLkrFOtApdXV2sWLEC33zzDZednQ2LBvV3/3gcPkyyRzMzylD98gttjL///vcdr6qKyIqODmUu/P2pNU54OEWXP/mEMlKjR9Nm+vJlIhInT9LrPTxInrtgAWVBa2tp4bt1i9zH33mHMrdqN+fPPqOMorrPrq+vpgWQug76hx80vgLV1ZqNuLpu+sABzfmrNzVdu2qMpxYs0Px++nSI27ZBpa3d4Xrzvx01NSQ97shm/E9AUVERnjx5gkeJiRgQFQW/7GykLlvGrnKcmPD4Mfu1TlrKGAPP89DT01P17NmTNzU1haGhIbp164ajR4/CyckJ/fr14wHAjhQK3P379xEYGIjMzEzYN9hItYm0NHouTp9u14tAKpWipqamZVO49qCnR+RhwgQiqG++SaR89256flqrjS4ooEyeSkWy26ab3alTKeCklu3/BdDS0mKFhYVtf2iepwyygwMRp/Jy+v/HH1NQTBQbX9/u3RuTnfJygOMgO3kScwwNeaVSiUuXLgnp6emstraWXiOKmDlpEldmb4+coCCxx8mTrF1jyMJCUt00aC1nb2+Py5cvs9NyOcYdO0ZELDCQzmHePKqT1tena37lCp3ruHGAQoHS1asRMWYMli5aBEl7/iNxceSJ8dNPjX8uldJcum8fkZHnn+9wrWxDzJo1CxUVFQgJCcGdO3fEb775hnl5eYnjx49vfK9SU2neatjHHkBQUBDy8vJgZ2cn+Pj4aIhNTg7NtW0EIeRyOSZNmoRDhw5hxYoVGgXNCy/Qd3WAZ/VqmnubtvZrAUqVCknz54PxvKhQKNofZJs2AcuXI//ECRQVFtbXaMtkMgQEBDBBEHD48GE8fvxYJQgC02ovsDZgAH0lJJDBHUBlUfv20TrFceB5Hn5+fupzqz/HXbt2qWpqavhm2eB+/Yg4Z2cTubazozW0yb6rqKgIt2/f5mfPnt2Y6IsirYEFBY3Hj0xGXx98QHPY5ctAeTmqR4xAbW2tZsw0hVxOfgJRUfWBY8YYVCoV5s2bR8kLQSDFw9mzms4dhoaQHT6Mx198IeRu2cJ1efVVUhl89RUFqB0dYVpRgQVz5yJu925hYHw8p//NN4C7O7JtbXFUpeJ8nJ2p1O/+fboGBw9SMKyuFWZrUPsY5OXltViSJZPJ0JQkY9UqCmi89lrzA8bF0e9awpAhUD3zDENiIkNSUofXRQMDA8ycOZPh6lWS6K9f3/ILU1JoTjxzpv5HFRUVOHHiBPPz82uxcw8ACgz85z+0TowaRfc8L48+3/jxzV7+5MkTBAUFiRanTkFpZARDQ0OMGjWKHzlyJK5evcqCgoJU6uBQPaytaf576ilSRCxZ0uKphIaGClNCQzkoFMC0aSgoKEBCQoJSqVS+06GL1YnfjU6y34l2sXbtWsYYmyuRSDZ5eXnJhw8fLm2x/qcT7UIt4e2ozOsfgZUraZF6+JCMgkJDabG+d48yIu++S9nx2lrK+B88SJk9iYQWPmtryrTfv0/S1txcynw4OtLC//TTJMW9fZtqJpcupQWtSxciEt2708bH21uzUfrhB8rYmZnRZorjqJewGnfuaP4dF0ffG254G0TgsWgRfVdn94Dfb6xW//Z3kJ2dzfz8/CCKIuLi4hAeHi4IgoCRI0dyvXr1+kPH/1Nw6RJtGK9e/Uvfpra2FtevX8el8+fhER8vDjYwYFaiCHlgIFx69oRL3cY5KSkJKpUKRUVFcHd3h46OTjM2F6AuT2gCR0dH+Pv748CBA3j55Zdbd0tvCD8/qulUKts1j4yIiKAWTn8EPE9S9927abN24ACVL8yZQ8/6sGGNn7tt2yizGBREwTWAxsHQoRSg2rbtdxHF3wKO4yCKImJiYlrfjAJERn78kYJ4VlY0jidMIOI8ZQqNfzVhefyYAnvqjNT69TS3jB+P8vJynD17VkxOTma9e/dmgwYN4hEfDyxdCtmqVUj8/HOEZGayNwC0a5Xq40Mb6wYZMXUteXJysohx48gXo7iYNumbNmnKWiZOJKO2lStpnFhYwEMQcDw6GpdCQjCqoTS4JeTnt+hLAEAjp/7gAwoCXbjwuzpa6OjoYNy4cXjqqafYhx9+iKioKDa+6eb/hx+anYf6fvbp0weTJ09uPNGVlDTPhrYCURSRk5PTvFzm5k36PnUqkcZPPmn06+TkZISEhAguLi6cqakpoqKixOTkZKbQ1xenNFQ/tQW5HMKWLch3ccFoV1f0baiQAj23dYogLi8vj6Wnp0NfXx9WVlZoM8lhb09kPyuLiH9UFI21FSvomWgyB2zZskVVWVnJLV++vOWyoYAAyuR++SWN4XHjKBCyciXg7Y2srCxs2bIFRkZGKgcHh8YPwXff0d829cdRY/Bg+tq3D3j3XeSdOQNlQUGbn6+qvBycnx9yt2+H1ezZKCkpgUwm08yXlZUUlGjSdYiztISBhQWTfP89VG5u4EeOpM+QlUXX64UXYJmVBcunnuJQVkbz2MOHeHznDqrCwgTo6HDYsoUC4i+8QOq5CxdadolvgLt1rWI7nJjat4/UAwMGtDymPvqI1FJNsHXrVrGgoIAplUpMcXCgINwPP/y29sA5OVTS0xJEkcbWgQP1fgFZWVnYs2ePaGRkJAwaNKjtCWDmTAoSenpS8GzWrGYBPACoqqrCjh070LdvX9H7yRNO1kDFwBiDkZERRFFsPZg2fnyjFpENERsbi+qkJM7wyBEKUgO4ePFiJYBv1qxZU9zm+XfiD6OTsXWiVaxdu5YBcJDJZF/q6OgMnzlzpq5lR2tGO9EiJBIJtLS0kJCQQBLGfzpycykDdegQmWBt3kwEJTCQMmfDhlFmYdQoWgAEgf7Oy0uz2K5bRxsIR0eNFP32bc17lJbSdzs7Ta15Q2mu2kTNy0vz9w3l7R1pRfY349GjR5BIJAgNDRV//fVXJgiCqKenx+Xn5+PmzZuqR48eITU1FWPGjOFtWsvs/tXgedo0/MVITUlB2ubNGCSTCcN4npO88AJlvZrA4Q8qDAYNGoTQ0FCxuLiYdYjscxxlS1aupCxeG+jWrRsePnyIb775RjQ1NRWmTJnCFxYWwtDQUN2jXXR1dWXGHW27Z2pKm7VFi4jovv8+kb9vvqFxoFBQACA1lTJCVlakolm+nNQu6kDXX4y+fftCqVTi119/hVQqbX/Ok8tpfujdm+aMp56i8oMHDzSZMlEkAg7Q2B8zpn4DfObMGVV6ejpbuHAh1+XxY8peffQRZZ3GjkX37GywX34R161bx4S6uaZ79+7iwoULm6suGKPMvoMDZZk1n0l4+PChCHW8wMCAjj91KikkdHQoI7t8eZPD0fETEhLaJ/vqLhatgec1ZVBjx2r6p/8OcBwHHR0dVFRUoLq6Go2y2Pr69Plv36bALKjutqKiAsNbqqPnOJL/twNnZ2eEhITgzJkzePnllxv/kjG6x4WFlB2OiUGJtTUiEhJwPzVVLCgoYK6uruzcuXOQyWTo3r27sHTpUr6LsTGDjQ1JzTvg+XLq9GlV8uzZ3Cu1tQznztFz1HLBXjAAACAASURBVOAZyM7OVhUWFvL6+vpIS0tTpqamsvLyct7GxkY1c+ZMvpn3Rm0tZdK3bqWAmpooGRlRJt3fn8blgQOAXI4jZ86Iubm5/KuvvtpybbYazz5LQbB794isWVrWB2CMjY0hl8sxcuRIvllZ4OLFLXYwaIa61qSWISFYvn07dhYX48qVK6K5ubnwzDPP8ACZWyYmJiI0NFQsWrGCVd+/j6lxcUhJSRHNzc1FmUxGb56fT4G6FoLdo559lh0oLhZco6IwqKiIYzNm0Jo/fz4F8hcsoDK2CRPq/0YikcDt6lWau55+WhOst7GhNX7AgDaNRHv37g0tLS0xLS2Ntdsp6uJFFP3wg3hhyhSBlZRg6NChvImJCRISEpCSkqIaNWoUL120CDhyBLV2dqitrcWTJ0+gVCphYGAgFhYWshkzZsDJyYmue26u5pnoCKZOpa+WsHUrBXvCwqBSqRAcHKy6fv067+HhgUmTJjW/900xdy6tBUFBlFxpZf5RB7nGjBnDSZydm5UkWVtbo6qqilMqlS0b/r38MgUtfHxQfPgwfg0Ohr6+PkpLS5GWmool+/bhwpMnQsW0aZyhoSHu379fo1QqP+3I5enEH0Mn2f8XYu3atV0ATJJIJG5KpTIVQCKAFAA5AHQB+Mvl8lkSiWSwVCrlPDw8JP7+/lrSf2Drs78bjDEYGxuLkZGR7F9B9k1NaZGeMYMkrp9+SqZ8Hh60EL76KhGPe/doo//WW5Rpnz1bc4yG8vY2XJ7/SXjqqaeQk5ODtLQ05u3tjaeeeop99NFHsLa2homJCR8eHg4HBwccO3ZMfPHFF+tbTQmCgJycHCiVSujp6aG0tBTp6elgjMHZ2blt07nfinv32nTJ/qNISUlBwYMH4N99F74qldB9zx4OvXr9Ke37WoNCoRBiY2OZtbV1x6QZbm6kRvnqqzbPy8/PD5aWlqiqqmKXLl1iX375JSQSCVQqFSQSCXR0dMRLly6xZcuW/bbyHl1d2lgePEj+EN99R0qU116jjbOBAUk4VSrKkM6bR5u9vwlFRUUICgoCAERGRnYswOnlRWqJ994jwhcURG7nM2YQgfL01NTRv/IKZc/efBOlpaV4+PAhN8zamnVJTKSSHgsLIql1EnELCwu88cYbLDc3Fzdu3MDt27eRkZHBLl26BP+W2vWNGkWeCXWorKzE/fv3ue7duwvNXqurS4EWJ6c2lT3NWtU1xZ07FMxq6rHQEpydac5csoSUBL/TQ2fOnDnYvn07cnJyNE74AAUuli6l+1B37JycHAB0LZrNJ48eUUa7HUgkEtjY2ODJkycCgOYXq7yc7vWpU/jp4EHlkGXLJM48L6a/8YYwd+5c3tjYmDk6OsLOzg7a2tqai5SQ0CFVlVKpRExMDP/Cyy+D09EhwnvrVqPOBkuXLuUfP36slsZL1J/9xx9/5B8/foxm6qqaGiKuTY3Q1AHm4GB6Jq9ehbB2LcTu3dmL778P3fYUPxxHY3jJEvr35s1E3C5ehHT4cFRXV+POnTtQqVTo0aMHLl26BOnPPwu6cjm6vv8+16EQKMeB+fuj7LvvUHv3LuYePcpODhnCV1VVQUtLCzt27BCKi4thZGSEl1evZrVeXrgSHY3oPn3YxIkTWXFxMTnjjxqFJ8OGIah/f2HkyJGchYVFffDI0NAQfSdN4qJ//BGemzZBu6EZY1ERKTqaXFPHggJUXL7MpaSkwK6hN8qwYTTfXbzY6hokCAKOHTsGURTbb3l87x6UxcU46O7OjG1t+YrycuGHH36AmZmZWFpaCp7nufj4eMysrMThHTtQrq8Pxhi0tbVVKpWK6erqMpVKpamznzSJEhpvvUVePQ1Vf61h9Woq7wsObvzz6moyr/z+e4AxXL16VYyIiOCnTZsGNze39hfDoiIKin77Laluzp5t9aUymQxaWlpizo0bzHLOnMY+QaDOUoIgQB0obRHGxoCTE8IjIvDw4UO4uLiozM3N2ehhwzgTMzNYDx7M3YmPV4WFhfGMsQ/XrFlT2u5n6MQfRifZ/5fhgw8+GCORSA7b29vD2tpat7i4uCY7O7uyqKiIq6yslPE8L9jY2KicnZ31evTo0dy0pxN/GN27dxfv378voANK0v/vwZimVr1bN5IzHjtG/6+uJmlaWBhlBNLT6d9hYZTZ69qVTKkyMmjz6+pK5OWPyqH/PwDHcZgxYwa2bNmC+Ph48amnnmLu7u5iSkqKkJaWxg0fPpwNHDgQ3333nbBhwwZOX19fKCkp4crLy5lUKhU5jhOVSiXH87ygUCjEqqoqdu3aNWZubi4UFxezQYMGsT59+vx+1iwIVK88Zcqf+Kk1eBATg8KlS2H9+DEyNmxA96lTOfwNpUMjR47k9+7di6eeeqp5u7iW4OJC0s/YWApgtQG18sDNzY3Ly8uDsbExkpKSUFZWhn79+nG7du0Sf/rpJ2ZmZiZMnjyZ+03mpxkZVJv7+edE9J88oYz2lStEEMrKSPaen0+y8+vXKQinrgf+k8eUUqlEVlYWtm/fDgAYPnw4hqq9KToCiYSuKccRybe2Jn+EY8eoZOfOHSrlUanIaApAXFgYqgsKmMO6dQjp0wdWW7a0qPbgOA5dunRBYWGh4O7uLpqbm/PBwcEYNmxY83s+dy612xIECADCw8OhUqnEp59+uuWH4913mzv010FtDqlU+360BldXUjJ0VJrv70+lND4+FNRYurTdgJggCFAqlbh69SoqKiogl8uho6PTvH4ZoOu7f3+9GWhVVVX9NWyGzEwK4nYA3t7e+PHHH7n8/HyYNJR937hBAd7YWEAmgyAIXNDy5aKfpydbWFPDcx4eAJGI5ge9do0IVnTrHbxEUcTZs2cFHR0d0cTEhC7yjz+SyduePfXqMB0dnUY18BUVFdixY4fo5OQk2NvbN745u3aRd0edsV+L0NMjVQ2AJKkUj8+eheH8+WQod+IEPetN5O+N8MMPVHoTGUnnmZwM5u+P8ePHi1FRUWJQUBArKytjBgYG4hxray4vK0sIDAyEqampcunSpZKOzGddZ83CipoaoKAAfWtqhH1vvokae3sup7iYe/vttzXZ3LffRm8jI8TFxoonTpyof9j0p08Hp6en0hVFfu/evVAqlVAoFGJAQAAzMzNDSkoKMq2t8f2sWRi7fj2cp00D5+9PcvymRp7ffAOd4cNxa9cuVejly9x8GxvWqO5+/Hgq/+vSpUXpeGBgoJCZmcnGjx/PXF1dW/3Mqrw8sBUrEO3kJJba2wvLZszgU1JSuJSUFFhaWrLRo0dDLpfj6tWrkFVWYvGzz2LfkSOqoqIinjEGT09P7vr161CpVNi/fz9Wr15N12nmTNrzhIfTvNuCGq0Rnn66ZbPOpUsBHx/kzZqFH8gMl+no6LRvAlhTQ3uvb7/V+CNs3UprQStlDSUlJVAqlUyL51ucRziOg4WFhXD06FFuVp2qb8OGDarS0lJeLperqqqquNraWqbl5ASHX3/F2ORkDFizhkdlZb3/kVvXrjAwNuZTU1Nza2trN7R9UTrxZ6GT7P+L8OGHH86XSqVbAgICtBtIf2V1X534m1BcXCw26536b0BYGGX6d+0iN2lXV5ISN5SuqetwCwooSyQIRFx27yaZ6u3btIiZm1NAwMODXmNrSwvrP6gFpJ6eHiZPnow9e/aw6upqTJo0iaFJgGjFihV8VFQUKioqeHNzc1hbW6POoEp9ITiANvdHjx4VeZ7nu3XrhtOnT8PCwuL3e0colVRH+meXEOTnQ9i0CSW3bolZlpasb3AwLP7GgKO9vT10dXWFs2fPYty4cR0bozdu0NeOHR1+H9M6d/OGZGL+/Pns4cOHOHH0KNv67bewtrJS9Y6Ph8Vzz/H60dEwjI4G++ILaun19NO0eRw1iojNhx9SVjM8nDJkI0ZQbe+VK3Twhw81rZYSEkj2P2sWvc7ZmTw1hgyh2vjoaCJ3V65Q7am/P73ntm30/4ICTcumhg7PdSgtLcXXX39dT24XLlwI245ktppCTSx69KDztLGhZ87amsb8woUkZTczA27ehPcrr8Dwuefw85tvoqSmBsvaULHU1NTg8ePH3LJlyxAfHy8aGRmB47jmkwdjwHffIba6Gpdra8WCggI2cODA1ieZTZtItv3WW81+xXEcOI5DTEyMOHr06NaPMXs2KTR+AwSJBHfXr4f0888Rf+2a8MjZWbSyteXc3NyYmZkZ4uLiEBMTo6qpqWFaWlpiSUkJr1Qq0bBDBUDmXM2MzPT1KZv8wguAQoG4uDjo6emJaGAyVw+JpEPdKQCga9eucHJyErZs2cJWrVqlOVZCAik26oImAQEB3Pnz53EqLEzMdnUVR6xfz4HnaQysXt04yDZ8OJURtPBcqhEaGirExMRw8xsa/5mZUU39ihUkQ1b3l2+AOkUDmzZtWvNWwxUVFHzqAGpqanAoKgrjFiwQuS++YLh3j3xs1q+nQJ1aBt40uCmXA889RwGDMWOoDSMFClm/fv2YIAi4f/8+egkC4x0d0UUi4eyrqrB9+3Z+//79wty5czs2n8lkwPffw1sQOFdvb+RfuICdM2YgMDBQmDNnDh1j/nz0PHoUb7m7s7KhQ6GjowPJiRPkUbBqVf2FFwQBe/fuFbdv384YY6iqqgIAqIyNkfjkCbrOng1ZfDyYpSW07t/XbESzsiiTPW4cXH18+AsREShroLABQOPs2Wcp8OfhAWhro6ysDPHx8bh165aQm5vLiaKIc+fOiaGhoaKenp6gr6/PDAwMeD09Pejq6kKsrkbSxx+jwtwcWTY24vx58/g6RYDo7u7OpjQIZvv6+gIrV+LxzJnIzc3lp0yZAsYYHxwcLGrTezMAKC4u1gSvfHwoibFwIe1/2iol0NJqbjhYXU3P1vTpKCwsrP9xTU0NV1BQgBbLvlQqIuqRkeRtMHiwplVuZSUFVVoZo7W1tRBFEcYZGfWBqabw9fXlAgMDsWHDBpVCoeAKCwv5OXPmgOM4fvfu3XWnXQ3IZOilft/kZJrH62r1g4ODy5VK5eo1a9a0YkzSiT8bnWT/X4C1a9cyqVT6vra29usLFizobJf3P0ZRUREcHR3/Oay0o1AvZEePkhFNG9F2GBvTF0CkQg2VimRp0dG0KSsoINnb2bOaWj9bW5Kt9etHRMbA4C83IvuroM4CNqulrQPHcRgwYEC7x+E4DtOnT69/5mJjY1Xnzp3jDQwMlJMmTZIUFxdDqVTWk9B2sWkTmb+1Y5AEaDKajDGUlpaiqqqq3iW5HpWVwMaNKDU3R8zZs7g+cCB7ce1aSP5mFQfHcVi4cCG3bds2UU9PTzV06ND206uzZxOxaOoa3xCVlURi+vYleae6hnfWLMpYR0UBH34I2+RkvPzdd6zW2xsRzs6847592COKMM/OxnhtbegAJMX38iJSEBNDJLhhoOH4cU1pwfz5lGmtraXXZmdTtlrdIaLOwApKJRle2dsTuVPXI+vr07kWFFD2cfZsKsO5cIHGoJ4eda3w86Ma4bAw1K5fj0k3boh9rl1jeP55CgxkZJARV0AA1bLK5Zrx3R6++IKubc+eVLv8/vu0aVZ3EZg+HQgOBn/wIJz79sWpzz+HVCoVT58+LU6bNo1rSZ325MkTSKVSmJmZITExkfE8r0IrSqvyr7/G6bNnAUNDGBoaNu9B3hB1pKM1TJgwAcePH2ePHj1Ci14blZVkLtrBDhy5ubk4duyYWFBQAJ7n4fTKK8KI7dt5VUgITs+YoTpx4gRXXl7OZDIZ/Pz8eFNTU5SUlMDS0hK6urowMDCAUqlEUFAQIiMj65UYkyZNQt++felNjI3JR0GlQm1tLe7cuQNvb++Wr0F+fodLCRhjmDlzJvfRRx+hpKSESgKef55M6BqUbsnlckycOBEODg7syJEjzHnxYlgIAj3ThoZElPX1qS2dlhYFj0+dIil1C7h8+TI3c+bM5tff3JyUMRERFNhq0jO87vViRkYGMzU1xc2bN6FQKOC2dSsFB9TEph2Ul5dDqVTC2dmZOkK4udHX8OG0vk2ZQuvX8eMU2G6oTpFKKasfHk5j/uWXqcRCJgPHcejduzeN4cWLgXfegVwux5gxY9ihQ4eQmZn5m0qEOI6D/o0bCP/lF8Fvxw6ux7lzDNOna5Qr58+Dk8mgUK+7hYVETJscY968eVxMTAyys7Pr28S9/vrryM7OxtZu3TBq/HgkODmh5/37COU4wev6dTATE1b19dfMgePQVSIBz/Mtts7DxImoffZZPElORpCdnSo7O5tXKBQqV1dXfsGCBaitrUV+fj7Lz89nhYWFXElJCdLT01FZWamqrq7G0MBAzlMuZ6kvvYS5w4dzHMchODhYUKlUmDhxYvNnfNw4dHNwQLdu3RAZGSnOnz+fubu7MwDIz89Hbm5uY5UKQMokb2+a5ydMaD0Ypm5hq1aHqDt8bN8OGBvDoWtXrFmzBiUlJQgMDBQ3bNjAAGDAgAEYM2YMuMRECtp6eZGPx7p1VMbUEB4eVBKyb1+Lc4yJiQkYY1Bu2gTpM8+0aLbp5OSEyZMno6ysjE9NTRVFUYQoirC3t8fq1avxxRdfiMOGDWP17TiXL6dxefgwACA1NRVZWVlloij+3PKF6MRfgU6y/w/H2rVrXbS0tDbo6+t7L1iwQKdDxlOd+EtRUFDwvzNV+7+AI0fo+7x5FJ3f8BuUXDxPUseGJFO9qSsroyh6bS1lKC9coIxmSAipBPz8aPFzdqZNlLMzqQF+h5P13wFBEHD69GnB29ubdaid1G+Arq4uS01NBQBJYmIiamtrUVtb2/EsbGlpu7J1lUqFXbt2iWlpaYznechkMlRWVgIA/P39oVQqxbjoaKafmIhBMTGw69cPKY6OuFBnHvSH3et/J8zMzDBnzhz2yy+/8K6uri1nT9RQqWjTdPAgtUm7cIGy7FlZRBiMjYkcS6WUhcrNJdJraEjmc9bWRJhHjtSQpKQkSCUSFJ08KRz/6isxLzWVH7NiBXR69qTfN2xr1NK9SksjAqRU0vjau5fkmydP0vP//PP0fjNmaP5GItEYSanJB0DkR43wcPpe1+IQAJXhCAJloL77DjA1RYpCIZT06AGoVAxZWfSa3FzyDHj6aY2J5qFDREx++YX+fu1a8ht4/XUiTgsWENF//nka0++/TwGOr76iQIN6E/nOO5SZrQsgLV++HJmZmSwqKkr4/vvvYWxsrPL39+cbqiji4uJgYmIiAODMzc1RVlbGWjOdKisqwpSjR2EVFcV27dolnD17Vpg6dSoPaAJZOTk5uHDhgoqdP88b6esLXXv04FJSUlSjR4/mGzqB9+3bF+fOncPOnTuxevXq5mUDokhS9A6ioKAAGRkZbMKECXB3d4dUKuUxdixw6hQCLl/m8eqrqOnSBTzPt1q3LJFIMG7cOAwdOhQbNmxATU0Nzpw5oyH7AN37w4dRvW8famtrcfPmTYxoKdBnYlJvltge7t27h8DAQAAUAFdUV1PQ66OPWny9k5MTFAqFuGfPHjZp0iQ4HDlCNdIffUQBpQMHKCj14AFlhVsg+2lpaeA4Tt1yszmsrIgsrVpFAal58+p/pf67wMBAUalUMolEIrDcXNbj+HEme/fdDssjjYyMIJFIUFZW1jiAq+6LHhZG80dYGD3/K1dSmc2gQVRyY2lJ5zh/Po3PpmUj8fGN1jQ7Ozu4ubkJP//8M/f222//tnWEMYwICOBu6eqKaZs2sS6PH0N+9SqNzY0baf7LyyPF3owZ9SU1TaHuxBEXFyf07duX4ziOWVlZYdUnnwDffov+585BEATYTJjAGe3cifvPPiveLS5W3Tl6lK+uroYoiti3b5+oPv+KigokJCTg9u3bqgJzc37+7t2w27CBDwgIaNSFRVtbGwqFAj3UHh8a8Dh+HHjjDWDECNjWjdEHDx7gxo0b3JIlS5rPBdXV5BHw7ruYMGECtm3bhsDAQGH27NmcRCKBiYlJc6KvRrduRJyXLaMAZUulPjt2aAyKAQqw1dRonos6KBQKBAQEsAcPHqCkpERM27CBVXzwAfQ2bqT3WLKk9YBjr160bt+712LQ4eLFi9CWy0Xx888Z2mhB615nBtqvXz+2fv167Nu3D++99x6SkpJQXV3N6sunSktp7fHzAxhT+yiUK5XKF9asWdOxep9O/CnoJPv/YHzwwQfjpFLpoaFDh2oNGDCA62yX938DFhYWqmvXrnG2trb/vux+QyxdSpm6OsOn32suVQ89PU2rm4YOuM89R2qAxEQqCVAHA1atInOfvDxaUI2MyADQ0ZGUAGZm/5OygIyMDISEhODRo0eoqanhBjdof/NnISAggLtz5w4qKyshk8nQr18/bN++HUFBQeLixYtZu2ac9vaakgsQ6cnLyyM5Z13HiQMHDqgyMzM5T09PeHh4ICMjAxKJBGlpaQgJCYG+SoWpu3ejhjEcfPppSBQKSBMTVXZ2dmz8+PH/0zIXqVRKGQ51fXVVFWUttbUpk71kCXWRWLNGYy6lrU2bs8GDUd8+6vJl2mBpa1MNJ9C4xWPDf9fJp+8lJuL27dt49OgRV1tbC4lEgp5qot8W8vIoy33yJJEmNYYOpWe/Xz8ikz160P/j44nQNN8I/5YLRd+1tOqVNdG2tjDs04c8FtT+HAA5bgPUig6gjW1UFAUgcnNJQs0YjTuFgjJbISH1mXts3EilCPv3099zXIvmXNra2rCzs4OdnR1fWFiImJgY7vDhwxg1ahT69+8PAEhNTVX6+flJACJD5ubm+Oyzz2BtbS1MmDCBaxjgORwZiWllZdDX08OcOXO4jRs3orq6WjAyMkJxcTGLj49nPM+je/fu3HgTE2SmpLBTQUFCZWUl7+np2azt12uvvYZ169bh5MmTmNSUkFpYUPCjg8aXDg4OkEgksLOzQ/2YlUjo7wsKgAkTILt+vVUfgYbQ09PD22+/ja1btyIzM7PxLydMAC5dgq6ODjiOQ2VlJVoMjuzcSRL8DkAd8F62bBksiovJvPXGjTYN9hYsWMDOnz+PwMBADBgwQBw5ciRjP/5IvwwKojkpL48k+dXV9Fw2QH5+PkRRRFVVFWStXRMbGwrYRURQAG/x4vpfzZgxg4WGhkJfXx99dHW5krAwbFuxQlW2dStvaGgo9OzZE+7u7lxbXYvKysqgVCpRVFTUOjns2pXI88SJNPfMnk1BrR07aFz4+FAgoLqaJP8//0zj286OgukN1HAcx2H06NF8XFwcvvjiC7FPnz7Mx8enw+3oRFGE17RpbGNWlmAYHs65r1tHx7e1pXt2+DDNOa6uRO7aCJ537dqVXb9+nV2/fh1vv/023YP//Afo0wfc2LGwqpPl92WM9a1T2uTn5+P777+Hk5MTu337NqKjo1UZGRm8vr6+snfv3pI5c+ZAZ948dF2+nDLaHcGJE1SasnVrff16SUkJDh06BH9//5bL2yoqaP8AwNzcHEuWLGF79uwRv/rqKwwdOhSOjo4wakLMG2HyZAqyTp1KQYam3TY+/ZRUHAEBJHsXBFJBtrAHkTMG16tXgcpKJlRViUEWFsyyogI+TTqAtIj336duH6GhzbL7N2/eFEZZWDDZ3Lmtt2xsAC0tLSxevBhRUVGiKIqse516M/PgQZhERNBz+fPP9YbLMTExqKqqShBF8df2T7QTfyY62d8/FGvXrvWRSqWB8+fP1+7WwUh7J/4eDB8+nN+1a9f/+jT+91Avds8/T5v+hgTlzwRjROQbStLUm4LqalrAS0qImMXEUPDh+HEicC++SBvlnj0pU+rhQVH6FiT1fwYqKiqwbds2uLi4CIMGDeJ69uzZsZ7vvxEymQyeDcsjQI7cX3/9NTt27Jg4ffr05q3IQDV94b/+Kri/8w6L69pVFBjDjRs3OCMjIzyp2wipwfM8v3jx4nrTL/Xmvr+BAWXAtbUZ9u5FlZsb3IODYWtrCzc3t/+tzEIUIVy9inNnzqhGd+3KzAMCOOzcSSRCIiF5cEUFkeSlS4n0y2SUiVMqKQPXsFd5O+qHpoiOjsapU6fQq1cvVUBAAK+rq9u+k7QacjmRxabPprU1yX3XrqXghLqn+Oefk3lTSgoRrD8pGNyrVy926dIl5OfnK5977rnWD8pxNK4AcrJXy6Yb1rtfvkzf3d3JkT8sjLKa48bRPamt1QQcWoCRkRGGDRvG9PX1xdOnT7PTp0/DxsZGqKys5NUbc57nsWjRIi43NxehoaHi5s2b4ebmhrFjx0KpVCJXJgN34ADw+DGMbGzg5eUlZGZm4tGjR2JeXh5zc3ODt7c3rKysGLy9YaxUMhdnZ/bhhx8iLS0NSqUSpaWlyMnJEY2MjJiaSNQpaxojLq5Zu6u2cPLkSVGhUMDAwKD5YF28mEj6yJF031upwW0KAwMDZGZmIjw8HBKJBM7OztAzNQVmzgS7fBkrV67E+vXrERoa2rz9npZWhzP7enp6MDQ0FDMzM5nFxo1ktNaOiZxCocCgQYOQnZ0t3Lhxg7OxsdH4XoweTSRJJiMS07Ur1XNLpfTFcejbty+Cg4ORnZ3ddmeSHj1oPP/3v0Rq6z4nx3Hw8/Oj1wQEwFBLCyt27OCLioqQlJTE3b17V7x16xZmzpzZaitQPT09uLm5iQcOHGBz586FjY1N62agWlr0deYMlXicPk1tPletonVLV5fmo+K6NuV1xLkppFIppk+fjvDwcCQlJQnXrl3jJBKJqKurK0yaNIlvTc1VWVmJr776CnK5HFVVVVyXmTOpBKioiIKYn31GJXRdutBYbW2uyskBoqMxePBgzunbb/HY0hLhX34p+n71FeN+/RVs/376fJGRtF5/+y2RY1tbXLx4UZRIJOzu3bt4+PChysnJiZ85cyb09PQ0c4va5+Cnnyh73hbu3KFr+sEH9QFWQRCwf/9+wdLSEj4+Pi3fDB0dOn4dunTpghUrVnCXL19GaGiocOHC0O8TZQAAIABJREFUBW78+PFim8a3urq0p/j0U/J4aDhXl5bSfgSggJmPT2P1FUD3eeNG2r+cOAG8/jqGrFjBLly4gMthYWJPR0fWbimeXE7lYxs21HdmUSqV2LlzpwoA725j06LhYWuwsbGBjY0NA4CaK1fQJTMTNV27UmBZFOtLxlQqFS5cuFBRXV39nzVr1ohtHrQTfzpYQ3OWTvwzsHbtWnOJRJL49NNPG/zR3tOd+PNRU1ODr7/+GkOGDMFfkbX9/xKlpSRvO3uW5L7/F1BSQvL/x49pE7pzJy22gwZRZlQmoxpsS0uKyOvpUVboD6gBlEolPv74YwwdOrTlPtZ/MeLi4nDy5ElRX18fs2bNYmZmZqisrIRcLkdISIhw8+ZNTr+6WuWUlsZfs7MTOY4Tu3btyuXk5Ag9e/ZkHMexgoICWFhYwMXFpbHZ16NHZEI1fjyVWzzzTJtE7S9HSQkZP06YQDL8X34BYmJQY2mJK56eGPb555AcO0abMz291jeyr7xC8uU1a/7wKa1fv14cMmQIhgwZ0vGHqLSUNrrBwc1aV9WjpIReExPTuFa+rIw22MuXUxa+IwqCdpCZmYmjR4+ioKAA77zzzh8+HgDaNA4cSN8/+YT8DgICNLXNHUB5eTlSU1Px66+/QldXV1yxYkWLAa3Hjx/jxIkTIgDBxcWFCw8Px9tPnlB99TfftP0mmzdT6dD69Th16hTu3bsn8DwvSqVS0cDAQJKbmytUVFRw6tZVaxo+M++9RyaJHSTlly5dwrVr17B06VK06cNz7x7d3w0bqHSpnfmppKQEu3fvhkqlUgJgZWVlvLOzs9A7OJj1yshgwqFD2LhxI/Lz8zFu3Lh6tQQAuj4LFqCI43D37l2UlZUhJSVFrKqqQklJCTMwMBBra2uZXC4XFAoFHj58yC0FYDVrFj27LZDeW7duITExEbq6ukhNTVWVlpbyLi4uqoSEBN7BwUE1ffp0zcCsqaEA3OnTRILLyshYMDQUiI+HOGcOdurowPe112CvUGhav7WGtDSqb+7Vq5GSCdevUwBKJmsWJLt16xbOnTuHl156qdWAgiAI2Lx5syo3N5cHgFWrVqHDrY0FgZ77F18kFcOwYaSaycykDHsHjlNdXY2MjAw8ePBAiIyM5J555hmUlZXh4sWLqjpPASaVSkWJRMKKioo4nufRy8EBM6ZNo+dHFKmUxsCA5r3z5+nZnzKFiLpEQv/280PpRx+hMiYGurt344tnn4X/hQtIt7aGctgwUTssDKNPnWLyy5ch43mam7p0IZXCJ58gR6lE4uefo/iNN+Dr69t2gKa4mOrU589v3Q8oO5vKqQICiPDW4c6dOzhz5ozw2muvca0GXh48oGegadeAOty+fRvHjx9Hr169VFOnTuVb9BhQo6qKPuO331IwDqDApURCiiulkgyI1fcyNZVUL8nJ9O933mlk5ldWVobTp08LycnJbNKkSaxhp4r8/HyEh4dj/PjxmqBSSQmwZQuVqVhY4Pz587hz5464bNkyphsdTcdub2w0RHExYGCAWl9fRIgiLowahfnz5zcql4mNjcXp06ej3nrrrf5tHKkTfxE6M/v/QGhpaf3s6emp3Un0/29CJpNh1qxZ2Lt3L9LT0+Hl5QX7Nuqj/hXQ16cFIyWF/t+Gm/LfBoWCNg3qjcOYMfRdpaJMbnY2ZQlSU2nx3LmTyNR779Em09KSMky9etHiqavb7ltKJBK4uLgIV65c4by9vf/2unU3Nzfo6uqyPXv2YP/+/RgxYgQCAwMhk8lQU1PDjR49GgMvXeLh7w+/2bObuf63iKIikiMmJFBQxNeXru3fAbU5XUoKta76+mvye9DRIZPBPXtI0jhmDG2uAOz95BNBX19flDg78+hIX3h3d6pZ/YNQE0CZTNZxol9bS4GIFSvaJuoKBQVb0tIak309PSILb7xB8vnnn6ca4Q6ajbUECwsLjBgxAqdOnWrV9O43QaUiEufkRNfa359+vmULbYBTUigT2w6J1dXVhaurK+zt7cEILb6uW7duWLx4Mdu4cSMfEhJCP3zpJSJW7aGmhogYgPHjx6OFchSuqqoKx44dQ0JCAi5evCj4+/vTa9LSfpMSJDw8HPPnz2+b6ANE8IODKYgwcCDNT20QQoVCgRdffBGo2x8mJSVh79693D09Pby1bh04lQqDBw8Wjx8/zpoRmrAw1CxciN27d4vV1dVgjIkymYx5eHgwAJBIJKxbt27IzMzknjx5AuuSEtH02DGGpUsbEf2amhqcOnUKDx8+VNXW1vK9e/cWSktLxQEDBnB9+vRBXFwcf/fuXXh6etLzVV7+/9i77rCoru27zr0zFOkdBAFBFEEFFRCxV+zd2JUYk5ioMZrkvcS8xJjiy9MkmmeLLRpLTCJ2xQ4qKkqxIIoNFKRIUWDozMw9vz82Q6+WF5Mf6/v40GHmzrn3nnvOLmuvTcKXGzZQxnbjRspgAvRa6T1h+vqwdnJS396wgTlt3Ciw/HwK1llZkbJ/cDCtT5rr4+BAVPoZM+jeODtTMGfECHL4a3hOOnXqhPDwcPXly5fZgAEDalwXBUHApEmTRA2T6/7du3B1dQUrLKQ9pFs3cty1tKgMZ84cGt+dO6RZcfIkzUd3dxr7okV04IkTab/Zu5eCAmPGUFY9Pp72Vzc3oGVLaAcFwSkpCU5Tpwptb9zgeVu3MsvMTAxr21aQubszg8hI6MbEIG3ECEgFBVA/fQrzGzdoj+vYkUoczp8nDY6YGCrDGTuW9BMCA+l69+uHQhsbhP/yC1Jat5ZsO3ZEO0EQkj084N+hA0xTUphq+XIcUqn4vaNH2cCBA9Hu5EmadFeugHOOG/Pmcee8PNZ96FBg0iRa52oQjQNAgQdvb5rfgYHVA0dFRRSgmDSpkqMPUIDLyMio7narcnntwVSQHodKpUJQUJB448aNykGwqtDRocDYiRO0pllaUmnE5MkUeN6wgb5Pw0IYMoR+Vq6scZ3T19fH+PHjhcuXL2P//v24ePGieuzYsaKWlhY2b97MCwsLWVxcHFxdXdG7d288fvoUyRcv8mZhYcx561akpaVxa2trSU9PT8RXX1GArKHOfmEhMcouXIA8NBQuaWk4/dNPiIiIkJycnASASkFCQkLyiouLX1D0twmNRZOz/zfDl19+OcbQ0LBX3759m9rpvcJwdHTE1KlTERkZqf7jjz/EZs2aqW1tbcU+ffrUXsf3d8eIEfSzcycZLw8e1Evr/FMgiiTkZGtbuVPA9OlkdKal0dhLSsjoUKvJKAsNJQNs3DhyNlu1ot8uLmWBjTt37iA2NlYwMzPjMpnsT9F0cHJywgcffICNGzdKu3fvFhhj6NOnDzw9PUkR+eOPid5aH4qLKYM/bBi1iPv++5eXyVerqS2jqytl6CMjKZNpaUnGf8eOFJApKiJHwNqanN4LF8qPUarzkJ6eXu5E1Idr1yh48Dx176DMzLp16yS5XM7qqvetBLWazuOPPxp2PzgnQ3nduspZSsaAgAC6NgUFVGJRUkL05bqyU7VAqVTC1NQUubm5YkFBwfMHrDTlPs7Olc9TX5/o1R07kiG8dGmDDqdbh1p+xfcMGTIEBw4cwFtvvUVlQP/6F+l5VO0kURHjx1Nwqw7o6OhgwoQJWL58OUJDQ4W+ffvStd+6tVGsIEEQoNeAAGLpm0mn5L//pdanY8Y0WPHfxcUFdnZ2SEpKAp8/H2ziRBxMTGQABQc1KM7NBY+NReDhw1ytVvMFCxYINbYzBEgw7elTHA4N5dHLljHv0lIfgBz9NWvWSAYGBujZs6dYKjxYaSM4f/68umfPnkJLR0eGo0cpUHLtGrFTLCwo2Dp8OFGdAQomA8DGjfBTKMQVK1Yg6bvv1G8DIjw86FpIEq1V9+/TtTp0iOjz9+5Rrfznn1PW2MeHRBQrOvqaWnXOgZMnMaRfP/H80qXIjYmB7rx5kKZORfbYsRDNzKD3zjv4de5cyWvzZkGvoACYPBlt2rfHo6++gr27OzGeMjNp7zAyovmfmkrPpI1NOcX6ww9pfXN3pwxxbi4FdK5dIyfS2prue8UuIZrfGuV3xtCilOHLBAFGnDMwVvY+69L37NixQy2Xy4UJEybUPEE/+4yc/4AAcvyHDQNsbJDSvTuUWVnS1HHjBHboEJ3L7t3AV1+Bp6QgrUcPjNy5k+3btw+nTp2SlCdPMvsWLZjl1Km4e/cuIuzs4B0cTOcAUNDy99+JbbG/hrLvMWPovfv3V17jOKfypfx8Ek6tgvz8fK6rq1u3saGlVd7xpxZ4e3sjJiYG8fHxam9v77r3kAEDaO3q0YOC0CtW0Dy0sSG74PBh0o5YtIjYOfXsnYwx+Pr6on379jhy5AjWrl0LANzNzU3y8PAQHz58iMjISFy+fBkA0LZfP1hHRPBNS5eyXF1dNmTIEBrv9OnV9QRqwv79xOq4do0C+aVlepoypdu3bwurV6+WWrZsydVqtVhYWJgA4ET9B27Cy0CTs/83wpIlSxzlcvmWsWPHNmsS43v1UVrrJBYXFyMmJkaMi4tTr1+/XhwzZgxcNUJz/x8xYQJlSpVKovU3UKzqlYCeHhmBGkNQow3AORlxDx5QrWVKCm3gK1eSATJnDpCeDsPCQrRJT8f4999nLD+fNvg/QSSwWbNmmD9/vhAWFob27duXizmVlJAwVEWl7qqQJDIAvv6anO8LFxreZq0hePSIMlszZ5Lx1aEDGU4zZ5IhaW5OWXo9PcpqaRwiTUa4FienpKQEGzduVIuiKFRUbq8Tn3xCxlnF1ncNRGldNH/69KmUnZ3NHBwcMH78+FozzpWQlETBpgMHiPrdEAgCBZxqC0zo6FCgBKDrmpMDnDtX7/zjnKOkpASFhYU4cuSIdP/+/TKjOTY2Fp07d27Y+KpC02P67bepHnjZsurvYYwcMoWCsmB1tfNsJAoKCqCvr682NTUlIzglhUqNNAyfmnDkCJVFrF9f7/HbtGmDq1evYsuWLZixdSsEKysK3DQQurq66tTUVLHBwWFNm8RPP6WA46FDdbYJrIikpCQAgDB1KlGMq0CSJASuX8/by+WsqLiYBwQE1E6H1uDtt+H85Ami/fx4Z0liUVFRyMrKQkxMjGRhYYHJkycLtelVKBQKUT8xkQJ60dHkZM6eXf6GZs1IULMGTYdr165JoigKZhYWNLErdrfQtI7z9S2/Nl9+SZT5116j9VxXl7QVFi2i+3X/Pq33b75JWeO5c2EfHg73oiL+4Jdf2P7cXAy/fx+xISHSU1NT1sHJiTd3cBBct26FlihiDIDlnKN9x47cfsgQBk1v961by8cVFFT+b01N/oABxNb58UdiuCxfTuvy48ekN/P0KV2XBgRY63rC8/LykJCQIM6fP7/2N33yCa3z58/TT+m+dsXLS4qNjRUunzlDAZeQEOjY2WFI796SGB0t7LtwAdaHD0Pl6ioBYCd69mTgHPrffYecwkJYW1vzsk40mpZ0OTkUtOScAh2rVpV35xEEugZffEH7gobtdP48sRoqtHSsiNzcXMpq14W4OHLAAwLqfJudnR3u3LnTsCyFuTmVPyQkEFPk9GlKIGiy/iEhNJcbAT09Pbz22mtiaVkBGzVqlCgIApydndGnTx+UlFBrex0dHYavvoJ3cTFCu3blLi4uDDdukCiqpjVrTVizhsbdqxetzYyVOfoazJw5EyYmJrh165Zw584dPHr0CEqlcnFTrf6fhyaP8G8EbW3t3T179tRrEuT7a0FbWxudO3dG586dxcDAQCkqKkr4f+3sy2RkUF++TKJdAwc22Ch9ZcEY1XVXNcynTiUHOiMDwT//LOU/egSb+HhB2rwZopMTGZOiSAJrSiXRSi0syLh8SSKBFdG1a9fKL4SFUYYzNLTmD5w7R8GAWbNozM+qO6BW0zXbt48yRaNGEZ110SJyAjduLKdjtm1Lom0awTMvr/LjNDDzWVJSgh9//FGysrJis2bNYtoNvbZBQTU6P7Xh1KlTiI2NVSuVShQWFooWFhZcJpOx5s2b81GjRokNcvQBqvdcurSyo9IQtG5N9aoeHkTXrw2HDhFDZfVqMnADA8uzoyh38FetWoX8/HwAJAKmp6fHP/roI9y+fRtHjx7lQUFB7PHjx+jbt69G90Gdn58PAwMDwc/Pr+6uD6NGUcZbqaRsdG1K1zY2tD54eFDm+gUEBznniI6OlqytrcsdgJAQcqTqgrt7g4Nzw4YNg0qlwo0bN/Btt254d9o0NCzXTpAkqeHijRowRvPm8mVyjhcsqFHQrSp0dXV5YWEhWxIXh+7nz0Pm6wtTW1uOUj/x5s2byEtKgmv37ugwa1b9js7168BHH8HU2lq4vWUL/v3vf0NfX5+bmJhIHTp0YH369KnV0YckoW9oKHcIDWX4/HNyxKsmNwShvFVkFeTk5MDBwQHjxo2rfZydOpWztq5cod/p6ZTd7d2bMurz55e3msvIKP9saWDEY9cuBgAdAODzz9GxvNSpbILEx8cj5PBhtczQUPDz82t8VPfgQQqIv/8+3dfDh8lpTE6mTLYmCGBk1OhDa5CamgpdXV21vr5+7ZOtWTMKusTFEasqPx+SqSkez5kjzFy4EM2bNy8rU7p79y5u29oKjnPn4hNnZ3BHR1xds0Yoad8eoaGhGLdpE9SM4fdp06CtrY3c3NzKIrW+vvTDOdHNPT0pA75/PwU5HB0pWBkdTfvkvn20ju3eXasdoVKpkJaWVjafa4SjIwV86kFycrJkoKfHkJ9Pc0appD0+O5vKMMzM6P9ZWRTEdHEhJse6dbSnBwVRucS9e1R2o1A8U9lb27ZtceTIkUqlCYIgoFLpzXvvQXfMGAxcvJhBLqdrlZZW8wHPnCEWwr17NH5ra3r2aoDGB/Hx8YEoikhOTr64ePHiPY0+iSa8MDQ5+38TLFmypKWWllY7X1/fV7NpeBMahOLiYl5YWFj3pvP/BV260MaTlkZO47FjDaae/qWgpYVNR4+q0wRB7B4QgBYODhA16shvvkligLm55Mzevw988AEZV+PGUS2mri5dH0PD8mDAy9I70NWt1Hu6DLGxZKx4eJSrgDekBENTT9+6NRluffvSuQUEkHEREUEOn7k5ZRS6daO/v/02fX7atOc+JUmSsGXLFrW5uTmbNm2a0GCHe+pUqpet2He+HiQnJ6tzc3PFoUOHwtnZGfr6+o2rU7l4kdgSMTF108nrwoABtTvOGjBGxtzUqZRJK+1zr/zHP5CYmopDhw7xnJwcBgD9+/eHQqHAYGKxiADVLXfq1IkFBwcjMjJSunLligAAgiCIzs7OiIqKwvnz56GtrY233367sjGvUNBcX72aMuUGBvWXSRgbE9vD3JwM/mdlE5QiNTUVaWlpbMqUKeUvRkbSHK1FoAsAZVFLM2f1QRAEjBkzBn0LChC5bRuOuLvzKW3bNnjdV6lUDQ9KVUWXLnSdp0yh56yeuTR16lS2bds2FBcXo3V6Op7evo1bcnnZWJOTkyVdQ0OmVSXDVyNu3KDvPXwYVvb2+Mc//gGlUonSDG7tC5ckAcePQ/r4Y6R17gw2fDi69+xZ+/d4eVHQ+JtvKr3s7u4u/P7771ySJFYv+0CD8HCizWuUzA0M6KemFm0NgCRJ2Lx5szojI0P09fVl3bp1a/y93L2b1sk5c+h5vXiRykwAYv1s20ZBCD8/EkX997+faV9ITU2Vam1TWBFvv01CkCoVrt+/j4tz5/J2w4Yxu1ImiTB8OADAzc0NbvPn0zP67bdAcjK89PSATz9F1y++wC8lJVJzDw9hXs+e2LJlC1+1ahWGDx8Od3f3yjX1jFFAGSCns2tXmiMmJnRtVq+mdcTRkdboiroqkkT7U+naNmTIEDFw0SJsXb0aUydOhCw8nEqDNEHtHj0ooBAfTyy1/Hw6dkYGPTuc01718CG6m5gITzIyqEWoQkECfGZmxDTJzaVx6uqSps/YsbSfXbhAAYyAACpXunWLgk2xsbSnqlRUKpGbS1n/X36he1qLVsyjR49w7do1LklS3euJkRGxMubNI4ZBv37VOwAolXS9Ro4k7Y86REpVKhVCQkKQn58vyeVyDlC7PaVSWUdkuQn/CzQ5+38f+Nrb2ysFQWh8kWUTXhkMHTpU3LRpEw8ODkZfDe34/zMEgTYkd3faIJ8+fbGU8FcAkiQhMzNTmDJlCqq1QDIwKHdcNHV0M2dS5vvpUzI+Hj4kAzozkzb/lSvJIZw5k2pXra3JgLCzq5SdfSYEB5OuggbJyWT0zJ9PgYnp02unjV69Sln55s0p8//ZZ2SU/fEH1aSKIo2vVy/KHpiYkDGowYABzzf2WhAUFASFQiHOnTsXNTn6+/fv5/r6+qy/RjVZg4kTG309p02bJi5fvpxraWmxhva5roR33iFjrLRl0jMhIIDKLP74o/5MVWmt+t7//pd7bdnCziUmQmFtLbn17i3079+/bkErAH379oVGgO7+/fvgnMPFxQWJiYlISUlBbGys+scffxTd3NzUGropPvqI5nPfvpRJbWDfdrRuTec1ahQ5sM8hepqSkgIDAwNJS0ur3Dvy9aU64LrEQx88IMrwO+80+LuM8/PhrqeHqykpjQrw6ujo8EePHpWJYDUaAwZQAMPfnwToZs6slZXQvHlzfKxpiThhAoIPHgQKC1FcXAxtbW0YGRkJSEuTkJLCyloo1oTCQrqny5eTEwbSR6hXRyEmhhyv06dx/I03kKmlBf+qz2NVrFtXYxtAJycnlJSUsEuXLsHPz6/uY2hw4gQ50B4eZUKez4ObN28iOztbXLhwIXR0dBp//7KzaY5duFDu4C9dSs7r2LHUfk4QKBhx5gwxc1asoEz36NGNKg3LzMzkJSUlQnBwMHr37l37M6+vT/Po3XeRNXkyl7dtSx1l9u6lPejBA9ob7Oxo/bK2ps8ZGZETe/Qo2IwZ6DJunPD4ww8lwydPhAULFoiRkZE4fPgwj4iI4DNnzqz5y83MyKkuKSFdj169KDjz4YeUOb97l5zyJUtIc6FLF3qOAwKAzEzoh4Zi+s6d+GPAAGTb2MB8zhxi8WzeTGPu0QP49Vf6Hs1epadH9HUbGzr3AQMAY2PcvnABj3NypC5vvVX/fX38mO7j4MF0jzTMocDA8vcUFdHvTp3Ky0w+/5z2+GPHyFl/9IjKTdq0ASZMwPXdu9WxJSWil5dX/YmjLl2o7OHePQrUf/FFeYeAwEAK4mRmEhOhnvU+KCgIV69ehbGxsWBlZYXk5GSoVKqsxYsXX6jzg0146Why9v8+yC4uLpb+7EE04flgbGyM8ePHsx07dqBnz55o0l4ARb43b6bNpkULyrJUaC3zV4amBZO+vr5g35CsmAaiSMaLhUV1deI5c0gwp6SEaIMPHpC6ryBQZvzmTTK4J0+m1xwcyAGvr7aTcxJPHDOGMhY3blD974gR5DRoWjIplfR9fn4UDFiwgAz1Dz8kQ+/HHylw4eRE//7vf+n4a9aUf9f/uAtB8+bN1bq6utU8uKCgIB4bG8tUKhUeP36McePGEQ3y9Gky8hqZQRYEAXZ2djh48CBMTU3LxIzqxZ49dK+vXn0xopUXL1LmrwG01HPnzuFGVha78frrMDYwkOavWkUDaGCLOA1aVegWUKpXAl9fX1GhUGD9+vXs3N69Uq/8fIH9979EB37//Qa31SuDpydln7S1aZ4/4zqhUChQrYZXFKkO+PTp2s+9d+9y56shkCTgjTcgjh6NgnXrkJiYiNrWgdTUVAAk8Kenp4fevXuLhw8fhoWFBeRyORhjmk4DDf9+XV0K+ixYQMGRbt3qXwdsbDDu66+xct48HDp0SD1u3DhRpVJxlpHB6u0mMH8+rT2rVzdsfJmZ5NBu2EAZ9cBAxK9Zw50cHCqzQWqClRWVK1Qp60grpSnb2NjU//2cU9b47bepVCApiajZzwmFQgEDAwPpmRz95GQKmqak0LXUQFubAihVz8vCorz94KJFtNZbWja448bAgQPFy5cv8+joaH7t2jWpX79+okdt97lTJ2D2bBiPHcuKiopUAGRYtYr+NnMmPddnz9L+UTGwbWBAjJm8PLh26YIiIyOWEBODlgC8vLzg5OTE1qxZw9RqdXnpikJBc2PwYAq8OjqSM79uHZU3WVnRPdNkojVtR7W0aI8CiLZeiqhjx3hiSAg3HT1awNix9GJF3YSDB2mPq0O87s6dO4iOi8OMGTPqv6/371PQ6733iJn3009UrnShil+ssQFHjy5/LSGBfrdtWx7UVCiIcaBUYsiHH4p2Z87AMzKSYf160nbZsIFK4aqWiBoYAGvX0rrm7U3Mg/nz6fV//YvuVwXRxpqgUChw/fp1XL16FW3btsVrr70GSZKwYsWKfM756Fo/2IT/GZo8ib8P7mZkZMg5543b7JvwysHBwQG6urr8wIEDfOzYsa+gHP2fBBMT2rCdnSmKPX/+c9Ui/tkoKirCH3/8wdVqtTBr1qyGU0rrg7Z2eQsvTfufefPIcNVQpGNiyGBITCTj59//LqfwZWSQUeTlRZkMc3Pa6IuLyfiJiKDgy+zZJJq2bRsdc/lyMogSE4lmaGND379yJR3v9OnyMWpaRb0CiIuLU/v5+VVz9E+fPo2oqCg2Y8YMqNVqHD16lG/evFmaNm2aqL9uHQmqNcLZLygoQGBgoJSSksLUajU2bNiAtm3bSmPGjKlfzGzPHqKy10Vbbgw0Dszjx+UZthpQVFSEkJAQWFpaon379vzSpUsU5MnKogx8cTEFbJ5jzzE0NMTUqVOFmLff5pkxMTDx8IAsIIDm2bN0b2jThubf559TRu8ZqO56enooLCys3jowNpbKBGpz9qOiKIN6/HjDvmjDBmDJElimpsLAwABbtmzBrFmzoKWlhfT0dLi7uyMnJwfbt2/nubm5jDHG1Wo1U6lUkMvlEEVROnz4MJPJZJJSqRT09fUxe/Y01bv8AAAgAElEQVRs1qhafmtrEj+bMQPYsYPuZ11aF0ZGyPD0hLO2NpKTkwXOOQwMDPCwWTNW6OODWnP0xcX0XXUJvWnAOdGgjx4l5sHOnRVLuCRjY+P6T/DECQoqVHH2c3JyoKenJ7Vs2bL+BTc2loLLS5fSnHdyeiH6Me3bt8fZs2eFe/fuodEtkl9/nZz1HTsqv75yJdG9ExJqZp/06EGaKkeO0LPxzjvEgqnn2dXX10e/fv1Yz549ERUVJRw/fhwhISHquXPnitWSEUZGwPHjMN21CwWiKKhUqvKExc8/l5ViYPRoctJ//pkcVEmi9U1PD3zECJzgnHl16oSWpf3bkZMD89RUKBQKmAwfTswAUaQAQmoq6bdYWtKznpJCAeT33qN95+JFctDr6XJy5swZ5ufnV/M+HB1Nc7IeDZqgoCB17969BVtb27ovanY2de5YurT8mJMmNVxsVQNDQ3LOAdLKAemNLP3yS7zbrh2VnWhKdLZupeuhUND1KCgoFz2dN4/YIJzT3OnYkfZ+HZ06RU8LCgqQnJyM/fv3o6CgAG5ubhhbGii5ceMGlErlncWLF59t3Ek14WWgydn/+yBerVaXZGdnNzOprx6zCa88Jk6cyLZplLGbUI5WrShjvXcvOafduv3ZI2oUEhMTceDAAbUkSUJhYSGaNWuGKVOmsIa0A3tuMEaGk6dndVGuhQupHKCwkFgBDx5QJqioiIIrYWFkRN24QSJQN2/SPfjmGzJcOKcswJIlZISFh5cf+xUWDD179qyUk5MjVjS4VSoV9u3bh/v37yMgIKBMbGjmzJls27ZtbMX330P09MTwYcNQNb8lSRKuX7+OmJgYqFQq3qVLF+bo6IidO3dKKSkpgoODA3x9fZlMJkNiYqJ09+5d4fDhw3zEiBE1G4cbN1Im8ddfX/zJR0ZSXWpycqUWeydPnuTXr1/nfn5+wpkzZ2BhYcEnTpzIUlNTGQCprF559GhyqB4+JBEzTTassUhJgc3XX8Ni9262es0a6bU332Q2y5YxVsXRb1Qge8YMMqLDw2n+NrSdYSkEQSgTFKuE998np7ViO7OK0NFpnDP45ptlxv7ChQvx9ddf486dO4iIiEBRURFiY2OlpKQkZmpqymfPns007TglSdLQqTWeiShJElauXCkdOHBAGjNmTOOLs3/+mQJ3a9ZQFt3Boda3Ou7cCYugIHz3+DGLjo7GkSNH2GAtLegWFtb8gXv3aK5FRtYfoI2MpPaeb71FIpJVnA1BEFh0dDTv2rVrpRugVqvBGCunmc+ahZpKCoKDgyVHR0eWkpKCOttchoaSkxceTutdZCSxqEoF+J4HhoaGGDBgAAIDA7FgwYLKoml1IT6eqNU1MZ+WLKH1+sABcuw0nWAqgjHSU2nXjtYVPz8K9Dag1ZpcLoevry/z9vbGxo0b2Y4dO/j06dOrO8cmJrA7cQKGnToJR44cwciKwRYNu8zBgYLCubnk8J4/TwFoKyvETpnCHQoLed8JEwTo6QGpqXg0cyafmJDATNauJSaZvT1ltUvZLpUCOp9+SuVr8+bRffvtN5pH9awdLVu25Ldv3+bdu3ev7u3v2kX3v47Syh07dkhKpVL0rE/w8tYtmtv79lVmNxgZUSBn1SoqGXlG5OXlgTEGU1NTKlnw8aE/aAQrNW1qAZpHmraGpS35cP48XdctW6h9pSYo1KMHXQdNNwJRRFxcHPbu3YvmzZurP/jgA1EzFyRJQnBwcH5xcXFTrf4rgiZn/2+CxYsX82XLliVkZ2cbNzn7f31YWlpCKm1H9Mytq/6u0NKi2lxN650vvqAo+V8Af/zxh9SqVStREATevn175ujo+GowceRyqm0EiKpcEYWFZGT27k0GU4sWlD3SGKhVM0wvGTk5ORBFEc9S867JNF24cAGXL19Wl5SUiKIoYt26ddzNzY25ubnh9OnTPC8vj02ZMgUVO5vo6OjgrbfeEqThw5Ehk2EjgOCQEDXnHKIogjHGFAqFoKWlBU9PT15cXMwPHz7MiouL4eLiwufPnw9jY+MyQ5JzLly/fh1Hjx5lffv2rfl8NHTTl4EuXShzWiXzfeXKFVZUVMROnjyJ9u3b8zFjxjAACAsLq9zv3M+Pfs6fJ9FIHx8yWBurHH33LnD3LmSiiHfDwoTdHh788Y0b3E2tZunp6WovLy/x7t27UkxMjKCtrQ1TU1O1k5MT+vbtKwJAdmlfe+Oq4p329sQ2uXat9u4RtcDGxgbZ2dni8uXLJVEUuaWlpdC2bVvWuXNncpR27Srvd14RHTpQ4Kwh0LQV/OWXspdsbW0RGhoKW1tb9ciRI8Vdu3ZxCwsLYdKkSayqqnZVCIIAR0dHoaCg4NnK+USRnI2NG6lUJzi4dsdcpYLOypUQxo3DkSNH0KFDB96Jc1brvY+NpWPX5ehnZJCGR0gIMX/69KnRQRs/frywZs0aXLt2DQAQGRmpVigUQn5+PmOMwc7OTt21a1fR0dER2r6+NMetrZGVlQW5XI78/HwhMzMTsbGx0NfXV7do0UIcNWpU5ZI5zoGFC8Fnz0bsnTtouWMHdCdOJCfyBQVmvb29ERYWpo6MjBS6d+9e/yYQHEz7XFJS9e4DABAQAJ6Tg9TZs3E/N5en/v67VFRUBH19fajVanTv3l0sC244OpLDvWgROXm3b1PwrgFlRaIoYvLkycLWrVv55s2bIZfLoVQqJVdXV8HS0hKWlpbIHj0aQnw8UlJSJJQHpAj6+nRvR4ygbP7GjfQ653i8bRtOhIaySePGMXbmDJCSgvS4OOzv3Zv985//pPfV1UVkxw5ikw0cSHuahwfR43Ny6hX3FQRBEmujxPz73+VOcQ1IT09HQkKC8N5776FZXSVo6elUcrB9e2VHX4MnT8rbqj4jnjx5Am1t7erXXQNRLC81mjuXAkQrVxKTj3MKEjk5ldsBnFOQJjWVAikzZhAD8NEjtI+KQnN/f5wbMYLle3vDYNUqYPNm3Lx5E8XFxfEAgp/5RJrwQtHk7P+90FSz/zeBTCbD0KFD+eHDh5lCoSChmyZUBmO08XfrRhnntm1rNoJeESQnJ6O4uFgYNmwYNBm6vwQYI4cwPZ2ymgC1dVq+vHLN6EtGXl4ejhw5wu/du8cYYzA3N5d69+4ttKmjRjosLAxJSUnIz8/nmZmZPD8/X9DW1uZKpZINHTpUlMlksLW1RUJCAjtz5gy/c+cOs7a2liZOnChWcx5LIXz+Oay0tfGeoyMSEhJEURSRm5sLtVoNe3t72NnZASSKxIYOHarp117NiGSMwcPDA+Hh4fz48eNsbMXM+OrV1IKpYn/tlwEPD2J5BAUBtrZITExEUVERPD09pZEjRwqoIO5kZ2eH6OhoVKLmAkQ9jYsjZ611a6KmVxRxrA0pKZRBDgqiOvvAQGhpa2PKunUsLDISoaGhEudcDCSxKqF///4wMzNDfHy8GBoaiszMTHWbNm3E/fv3QyaTQU9Pj7dv3565urqiefPmFET773+p7nvHDspSNbDsx87ODvPmzUNOTo4QHR2NyMhIPH36VOrcubNQY6s3DWJjgf/8p2HlFgkJxKCp4LhPmjQJ6enpsLOzEwVBwHvvvdeoDH1CQgKsrKyeb215800SG3vjDfqpKUPcsiXE9evxmY+PJujHsH8/KYRXxccfU51wbaU7JSW0fs+eTRnEP/6oMwtrbm4Ob29vHD9+nAuCwD09PcXmzZvDwMAAwcHB6oSEBPHx48fQ19fn7/r6MoFz3L17F7t37wZjDJ06dZLc3NwES0tLhIaGihdLM57jxo0D5xz3YmMhff89f/DeexKzsBAv796NKY8e8VbvvMMQG/tCS8c8PDzEmJgYqV5nPyeHROciIsqCDZxz5OXlITMzEwUFBSi4fx+5e/bwW05OGLN3L3K++040NjZGfn4+JEniW7duhYeHh7pHjx6ioaEhXePhw+meffopOeCnT5PDX09ZkaGhISZOnMiCgoLUdnZ2giAIQnAw+XWMMZjp6UmTtm8Xfn/99ZpLFebPr15mwBgOPHoktejcWbBu145KPvbsgfakSdAfP75+9sOBA1SisGxZecCRMWDTJsDNjXQp6oCTk5Nw7Nix6l0atm0jZ1jTgrGW66FWq+sWmgwNpSz5+fO1Bx5OnaKA0nPgyZMn0NXVbVg/+0ePqBTis8/onmzbRnv7smXltf0//VT+fo2A4N69ZWKBev/4B5hMhlMrV6pHHzok8g0bcPbs2bzi4uJPFi9e3LBxNOGl49W1jJvQaHDO9URRLMt0FBYWwszMDA1qm9KEVw4eHh7MzMwMW7ZsgbOzc63CTf+vMWMG/R4wgOiJ//nPnzueOnDp0iU4OTmpZTLZX6s95nffES30/n0y7LOzSeE5NbVOqu+LQFFRESIjIxEeHq7Oy8sTZTIZe+edd6BUKhETEyPs2bMHs2fPJspiKVQqFVJSUvDw4UOEhoaidevWanNzc9axY0fB1dUVOTk5TEdHB4YVspBmZmbo1KmTxuCu/f78/jsZkoMHwxBUe1sXBEGok4FQmolEZmZm+YucE2XyWduqNQba2vRdpUEcZSmTYNCgQdWs/fbt2+PEiRO4ceMGOnbsWPmPokjG+enTVBf6xhvkPNTUphGgc5Qkotjr6VE29+JFMizlcnTt2hVdu3YVioqKkJSUBC0trbL1z9XVFW5ubti9e7cQGxsLgJzkixcvspiYGHV4eLhgbW3NZ8yYQVoIZmaUSbt6tVFtEg0NDaGvr4/ff/8dHTt2xLBhw+iaTJtG5QteXtU/ZG9P5UUNgYsLGf4VoKOj81zrfGkm9/kDiRqxs4AAyr62aVPdAb9/n4S9fvuN/i+TVe9OUVBADsybb9b8PZcuUSDG2JictQaWWwwZMgRDhgxhKA1GlZSUYM2aNdzMzEx0cXHhDx48YAqFgm329OQlv/7KM/PyBH9/f1hZWeHYsWP8+vXrmD59Oi5dugRra2vcvXsXeXl5iI6OlnKXLWMd7t1j2b16iTkPH6r1CgtFZGezmwoFbMLCUGJigvAnT9TGxsZCx44dWb1CgXXAx8cH58+fF4KDg2FhYQGlUomsrCxkZmaqnzx5woqKipjIGA9YulS4M2yY9GDQICHn1Cnk5ubygoICJggCtLW1Jblczp0SE1n/CxeE3tu2QbhyBc3796/IQmBZWVnYuXMnrl27BlNTU2natGmCvr4+Ofb//jcFZRYtIm2Cb7+luVwL1Go1srOz4ePjI6rValy9elXS0dFhPXr0YD4+PpDJZIKUl4fOOTn8xIkTkouLS+U1dd8+opN/8UWll7Ozs4XevXtTXf+MGUD79igaNAjdLl6svXQGIHZCYSGdQ9WysbFjqUSgHnh4eLCDBw/i7NmzlZMr3bvX27JQR0cHRkZG6uXLl4u+vr7qPn36VP5AdDQFx/ftq5th8PXXpPtx+HC9460N6enpkpGRUf02xv37JL43YgQFJ7/8kgIaDQk2CAIxNADozJ+PbsuWCU/DwqC4exfZycnIzc1VADj6zCfRhBeOJmf/bwS1Wm3x6NEjnDp1CqIoQiaTcc45mzFjRt21aU14ZWFnZ4cePXqot2/fLrZp00YaN25ck2BfTdDUoH39NRmnFftjvwKQJAnx8fH1Z3BeNWRlUS3+Bx+Uv2ZsTEKJjx8TpfnUqTpF3hqDkpISnD59Gjk5OcjKykJ6ejr09PTQsWNH9OrVq1JG2draGklJSep9+/aJ3bp1Q3h4uJSWlobi4mJBJpPB2NhY8vf3h5eXVyXDx9LS8tkHePIkCUHVlO18BkiShIiICObm5kYv/PwzzeH4eNSrbP6isHo18NtvCDp+XB2ZkSE2b95c0tbWrrbOMMbg6+uLkJAQqWPHjjWvQ+7uZJR7eFDmPiaG6LQV2RcZGUS1DQmhIFJhIdXCb9hQZkBqoKOjU0nFXwNHR0d88MEHLCMjA7m5uXBycoITqYuLpSrQfOvWrbxXr16soKAAuitWoJWNDfDDD/RdDRTDlCQJ+fn5lVuOlZSQwNnkydUz/IyRBkJ9KCggwdGHD6urpz8fuKOj44tZY9zdy9XsvbzIEayoo+DnRw66Bq6ulft+JyZSwCAsrLrQ4sOH5Px06kSZ5UGDnkvk8datW1CpVHz69OkMACsqKsK5c+fQacECJpqbs5xffilra/rOO++IQUFB2L59OyRJQt++fbF3717s2LGDd8jO5k87dIDN5s1skpkZAIi3du5E9vXr/MKZM+ouFy6I2dra7LG+vpicnKwODQ0VPTw8JE9PTyEvLw/x8fHSrVu3mFKpZJIkQRRFyOVyrqenhzZt2jCFQoHMzEzu7OzMBEHAlStX1Nra2uKdO3fUMTExvDQ4KDM1NRW9vLxgZGSEhHv32J5hw/CoRQsBt2/DxMQEQ4cOZfb29hrKOE1MTS92bW0SSn38uFIw1sTEBHPnzhUlScK2bduwceNG/sYbb7CyoKeREdWLb91K++nGjZTlLX0mOed49OgRrl69qr5165Yok8kkxhhTq9VwcnIS5s2bV4nCLixejA5vvMHCHz6s7nj26kVCcaBnLCoqChkZGVCr1Th75gz0r1+HbWmASDlnDorefZfWqXnzyg6hVCoRFxeHjCtX0PmXX9Bs3rxKa6ZarQYAiP7+FJwrKKizy4tKpQKAyiyEoiIqn3jjjVo/p8H8+fPFa9eu4cCBA6KPjw/0NCKXv/1GQcy9e+tvGzx9Oj0Tz4G0tDRuW18ZQGgo7TOff16ue+TkROPr148CDg0pH+UcuWfOIGvzZgRPn443jYxw+PjxfJVK9e3ixYubmMavEJqc/b8JlixZ0gyAyblz5+Dt7Y3+/ftDS0uLHTlyBIGBgXz27NmsKcP/10Tv3r1FFxcXbNq0SfDy8qrei70J5XTy4mKimyuVZIi/CvXwAB4+fIiioiLBt6Y631cVBQWUabt2reZ2YpaWZKQbGJDD9py1rMHBwQgNDdWIC3GFQsEGDx4MHxIYqjFT4e3tzYKDg6WgoCBma2vLJ0yYIJqYmGjacr3YwFhhIRnAL3BOMcZga2uLW7duYe+mTXzUxIlM+B8zeIKCgnjbTz5hOi1bir0WL0avXr1qvW6+vr4sODiYRUREwFvT6aEqGCMlbIDor8uXU/BCECibZ2RE7SEdHOg5fe89EiBsZJs8QRBgZWVVrX2hIAiYNm2asHHjRuyooCdhJJNJk9asEc5fvcpvtW7NmjVrptbR0REUCgUEQQBjjDdr1oybm5uLJiYm8Pf3L2t3t3LlSnz++ed0IHt7YP/+mudBdjZlq+uDri4Jv71YRx+6urpSZmYmw4ua+4JAbJbPPgMOHSK2hkYTyNWVAifXrwPt25Og15w55Z9dv54cz4qOfnExaRRERlLG9LXXKolDPiuSkpK4mZlZ2Tnr6Ohg4MCB1MZMVxcmVVgyQ4YMgSAIkMvlcHR0RElJCYTsbN5p/XoxbdAgCeToAwDczp4Fpk1jXpMny+DgQPfO3x8AxLS0NBw8eJDfunVLksvl3NjYWOjatStLS0uDl5cX0tPTcebMGWRkZLCCggLY2tqqW7ZsKd6+fVsCgC5dugheXl6Qy+U1Z2KXLYPDli34z8SJGDhwILpqlNdrgihSKdu9e0THXrGC/l0FgiAgICBA+PXXX6XNmzfjvffeK+/eIAhE605PJyd3507AxQX5Xbpg+/btUnZ2NrO1tRWmTJkCe3t7ITs7G+vWrQNjjGtpaVV7ILQdHNDt1CmsWrUKgiCoBw0aJObl5aFZYiLEM2cQ+uQJkpKSoFarYWhoyF1cXLhhWhrPDA8X/2jVSq08eVJo06YNu+fmho4//YSdcXHIMDGBp6cnbt68Cb2SEsk5MlLYa2GB4rQ0derXX4ve3t7SvXv32JMnT5hMJsOnn35KJTPBwcT+qwUKhQIymUxThkUIC6OMdw1Cj1WRkZGBo0eP8i5dukjNmjWjCxoYSCUqGiX8+uDkRGUsQ4c+c0nikydPhDrnycGDNFc+/LCywLGfH/0+dQrYvRslR47g2rVrmv23OiQJqfPn87zjx9muyZMxYuhQ5OXl4cGDB0ySpK3PNPgmvDQwXofoRBP+OliyZMlAAMcdHBzUAQEBZRuHpo93RkaG2KVLF/WgQYP+WhTiJpRh1apVkre391/LYfyzMHEiZQ5eds1zA7F161aur6/P/zLMDJWKDIKkpPrV9JOTqSby+vWaRYfqQVFREY4ePYrY2Fi0aNEC48aNq7v28c/CwIFUz7p9+ws9rCRJuL9mDew/+gj/+ec/sXjJkhd6/LqgUqmwdOlSjBo2DMXFxfBwcYFWxexsFWRkZGDt2rWYO3cuzCo4RHWisJAc21mzSIDq0KFyI/PTT4nOv3TpcwdRSkpKIJPJsH//fsTExMDV1VU9ZMgQcfv27dzGxoYZGRlJLnZ2gpCeDsPgYCSOHYuMjAzOOedt27YVSkpKEBkZiejoaACArq4uCgsLoa+vDzs7Oz5hwoTyAX7zDWkBrFhR/Vxv36bWVXXho4/oetShN/EsuHLlCk6cOIE33ngDFpqWWy8Kn35a3XH5+uvyLL2rK1Dawx6//kprgpsbBWI5p3VizBgqG/nii+qU/2eEJElYtWoVb9++PetbVS394UMabxW6eEUkJSVh19atsEpIQJGeHqz79i3vjiFJVCK2ezed888/UwCjBuZYWloafiqtb7awsOBPnjxhoijC29tb6tatm1CncFtN4JzEK1NTcc3YGAcOHECvXr3Quy7l/FGjqEZdX5/KrFq2rPMrvv/+e8nPz49V7WwAAPn5+UgJD4fJRx8hQRRx46231NNff12sKg6ZlpaGvXv3clEUpbfeequyfZmVhayzZxGpUEjFpqYsKiqKmZiYSPa3bsHrwgV28bPPuCAIrG/fvqysFOvbb6FQq3F/8GCEhIQgr5RW3iwvD8MPHcLhoUMBGxupd/fugteaNVC1bImL/fsjJycH9+/fh56enpSTk4Pi4mKBMQZHR0c+pV07BiOjOventLQ0bNq0CZ988kllAcy6ygdADIMHDx4gJCQEenp60tSpU+nDy5ZRN4D//KdxzDdbW1ojnyHDf/PmTR4YGMj++c9/1qxxsHs3lc189VV1Id558+g8ly+HdO4cVsXE8GyFgnl6esLf37/y8VQq4OBBRP30E384eTIbGxCA9PR0BAYGSllZWWs//fTTeWjCK4WmzP7fBFpaWp9069aN9+zZs9JiKwgC3n33XfHgwYOIjY0V/P39Xw317yY0Gg4ODvzs2bP88uXLkpWVlTBu3DhWrc9tEwj//S/RiOPiyMh8Uf3JnxH5+flS27Zt/zqBtkGDyEBpiNK+rS0pXtvbUw1gr14N/prs7GysWbMGKpUKDg4O6lGjRomvpKMPEM38JUCIiEDruXOR7OUFnDiB3bt3o3nz5igsLISpqSk6depU1tLPysoKjDGEh4cjNTVVcnJyElJTU3nnzp1Zu9IWZYmJiQBIIbpTp041KrffunULcXFxuHHjBjjncG3XDlpz5pBg3KlTtY5Vs3c06h7p6tKcMDamzJrG0d+7lwxOf//ncvT379/P79+/z/Pz8wVDQ0OuUChY586dpWHDhokA8M4772gOThdCRwfYsgVu06cDbm4MAFMqlbh+/TpiY2Ph6OiIQYMGQaFQQE9PT1MCV3mAGop7VaSlUVYuJaXuQZ8/X97C6gXC09MTwcHBfO3atWzq1KlwdnaGWq3WMBee7+DffEN06O++I6fdy4sCFklJlLH/6CN6X0oKOdcHDpCjn5BADmh0NHUxcHZ+7vOsiKKiImRnZ7Mag+BZWZTJrMPZT0lJwZBjx7i9jg7L+vln2Nvbl18oTctAjSNqalq9JKEUp06d4tbW1ujbty9r1aoVy87Ohp6eHrS0tBof4M3Pp2fj2DGgd2+Ylj7T9eoDfPUVPUs6OiRWx1hltkUVjBw5Uvj999+RmZkpOTs7C9alTmlUVJQUEREh6Orqqk3efFPo5+TEAhYtEpGbSwruFewOKysrBAQEsDVr1ggnTpwgRoUGJiYwuXwZA0RRwNdfw9/fnzp65OUBDx/itXbtKk9KhQLYvh2GV6+ik5YW4uLi1AUFBeKkSZOQkJAAl86d4bpjB7B8uYD164HhwyEbOxY9K9fUC8eOHcOjR4+ksWPHCps3b2aXi4rQZdUqYqnVAnNzcxgYGPBff/2VT506VUBWFgmOJiRUov9LkoSkpCSEhIRIqampTKlUMsYYnJyc1P7+/jSQpUuJ+bZ8Of1uDGJjG93RJCcnB3v27FGnpKSIQ4cOre7oc05zo1MnYlvVFAR64w1AEKASRYRv28YH3L3LZNu349ixY3z58uVMV1dXGjlypODi5AQ+Zw6KsrNxomdPZlZSghUrVqgVCoUIWmPXNO6Em/C/QJOn8DfAl19+OVxXV7eLn59frbv5kCFD8N133yE+Ph7OL3izbcL/BsOGDRPbtGmD7OxsMSwsjK9YsUKysbERRo0a9UxtyP7WsLSkn6VLgT17qAbtT8KlS5eQmZkpvvBM28vE5s2Ne7+fHyn7jhhB2b96qOipqak4ePCg9PTpU+bs7MwHDRokGBsbv7rBkNWryQCbPv3FHvfmTaB/fyAtDc19fdGzqAgxMTH88ePH0NPTky5cuCAeOnQIQHnvd5lMBisrK6lVq1ZCVFQUbGxssGfPHhw5cgRFRUUAyCnnpSrkkydPxtOnT8tEDNevX88fP37MRFGEnp4e3n//fRJx/eorou/WAXNzc+jr6/MbN26wLl26NPw8i4uJovrpp/T/u3eJavzFF/W2xKoJkiQhNzcXZ86cQXR0NBs+fDhr3rw5Ll68KGlpaWHw4MG1z6UWLYA7d0gz4ORJZIwcicDAQJ6bm8s7dOhQJsRXtTygEkaNIoenah2wnl79opVqNdGDXwJKFfzZoUOHsGPHDnTr1g0XL16EmZmZ1KFDB53B0AsAACAASURBVNauXTv2XK15NY7c66+TiFrz5kT7HjiQAh0FBbTWatr2/fADUcOtrYHFi19KtxRN4Ck3N7d627OOHetUUQcARViYWjFsmOg+ezYMqs7FmzcrlyfFxpIDXUPXAc459PT0eKtWrRhjDM91nSWJhCCdnfHkyRPs2rULvr6+dbfhVShoLRk/ntarwkIKGtSBVq1aQSaT8du3b7O4uDhVYWGhjHMOExMTPnnyZDg6OpY/R46OJMi4dy8FeCtQwHV1dTF58mS2ZcsWeHh4VH52NCrvajXkmkBJTg4FlJOSKg/owAFSzS8tyysqKoK1tTW0tLSolr5VK2KE9OlDQaNVq8rE8xQKBW7evAmFQoGoqCgMGDBAMDU1xWuvvYad27aho1wOrZycWrspiKKIGTNmsFWrVrHr16/Dw9kZhR99hPtxcUhNTUVGRgays7PVCoVCLHXueUBAgJCUlIRTp07xyZMn00AWLaLM9zvvlJe8NAarVtFeWlEFvw5kZGRg69atsLGxYQsXLqz+DKjVVI4RG0tjqs0OuXMHOYxh08mTkoOTE7zz8pi8dWu0bt2aKZVKXL16le3buRN+YWE8zcCA3ffwgL6REczMzNTe3t5iZmYmoqKiDnz88ce3G3/STXjZaHL2/+JYsmSJu1wu/23SpEm6dWV5ZTIZfHx8WGBgIBYuXFi+6DbhLwNBEKBpM+bt7c2ioqJYcHAwfvjhB9ja2qreeOONpue5KhYtAj75hIyIn34iWv//kNmSkZGB4OBgTJw4USMg9mrj8mXqt5yY2HjDvEULMvjVaqrD/uGHWo8RGhqKvLw8oXv37rxbt25CTdnnVwovXkiN2Cdz5xK1XUsLDECfPn3Qp0+fsq4AGoG4nJwc2NjYlGXpGWMCAPTv3x8AWKkwFPT09ODj44MePXrgypUrOHz4MJaUlgWYm5tzlUrFs7OzhYCAADhUdUqtrSmTOWIEZUNrQHp6OgoLC1k1Nf66oFIBGoEtc3NSez55kvrRe3o24oIRHj58iF9Ke9M3b95cGj16tKDpijB69OiGBYzkcnISvv8eu/Pz+dPcXPbxxx83jim1fDk5t6+9Vv6akRHVsdeFNm0oi/bJJw3/rkZAS0sL5qWlGFFRUXzSpEksOTlZuHnzphQaGspGjhwJ90bqI1TCwIEk8DVrFglV+vmR6KKBAZ17Xh4Jm2nEGWfNemECnjWhVPdCioqKEoYMGVL9De3a0b2qSVQzJgY+y5aJEZ9/XnPQKTycHGgNrKxIZ6IG9OvXj23YsIGVlJRA+3k6aXzwAWBqirwPP0TkuXM8LCyMWVhYwJ90AmrH3Lnk8N+5Q///6CNiNpSU1Noi9cKFCxAEgX344YdgjFWc/NWfIxcXKlvZv58c8lWrIDk5Yc+ZM5K5ubmyT58+2p06dVLv2bMH7777bvnnra2prODjj+k+AORwWltXpshzTky80aPLPmpgYIDc3NzyMZSUANeuQXX9OsIcHHB53TpJqVQybW1tqaCgQDQzM5PkcjkfPny4qGE6OTg4wLdbN+m3lBTWZu1a1nr27FoDMenp6ZDL5Th69CgeRkTgjpsbtE6f5iYmJpKlpSVr3bq16OjoCHNzczDGRICED4OCglhedjb0P/uMylQGD372MpX27RusY5GQkIBdu3ahXbt2vKxbSEXk5RGzY9gwCuDXUkpSUFCAzFWrkCwIaPvxx9zf318Ur12joF3fvpDL5fDx9mZuixYhxcwMnTdtgm75+WlEUfOLi4uXP9tJN+Flo8k5+AtiyZIlDIAzY2yoXC7/dNCgQbqVREVqQd++fRETE6PetGkTGzlypNCk0P/XhSAI8Pb2hpeXF548eYKNGzfKbty4UW8rsP+XYIwMbE0NXGZmZdXol4jw8HBoaWmhrl7wrxQ6dqQaw2fNwOno0PU9d44cgBoc5JycHCQmJkpOTk68R48er242X4OnT4nC/CJb4WVkUE3nuHF1thsTBAEGBgb10ncLCgqgq6uLDz/8sOw1T09PyOVyWFhYICMjA8ePH2cWFhbo06dPdUdfA2dncgwkqZpifUlJCXbv3s1dXFxQkxhXrTh/njKkZmZk0P/rX2R01kEvrus8f/vtNy6TydicOXNgbGz87FGifv0Qsnq1qtW338pM/fy4TCZrXBRw2TLKcFZEYSHR3CdMqP1zJ0++sHr12tCtWzcYGxujffv2TBAEuLi4oHfv3kJMTAwOHDiAp0+fSt27dxeemdpvbEzBm1mzyInbupXmTEAAnX9ICAmA/Y8CnIIg4OnTpzX/ccGCmsUfc3OBZs1wddo0qdDWtvo8ys0lx/abb8pfc3au1dk/ceKE5O7ujpo6WTQKxsZItrbG9tWrYWRkxP39/VmnGuq3CwoK8Mcff6BlejrvtXo1w2efUVbYyIjo6p6eQJcuFATQCGZWQEZGBs6ePQsPDw9JEzxsEEaNooDP6dMoXLAAypYthXOtW2s7OjqiXbt2YlRUFAoKCipnmIcNo3KdpUspAKSlRRn/ggJiwwDE9nn6tKyWXKlUIj4+XtA47UhOBi5eRNGtW/hpxgy429nx6RkZAl+4EDk5OaKdnR2aNWtW43n06dNHSIqIQPGBA9IatVrQ0dGRrKysmKenJ3N3d0d4eDguXryoLikpEX18fLiLgwOz+/ZbYOVKsBYtGOpox6qtrQ1duRyFH38MfQsLYPjw5xOrHTqU9s86IEkSzpw5I126dEno0aMHevToUf1BzsigsjoTEwqg1LCnS5KEsLAwnDt3jtvOmiUN6N9f7GpnR+d67x5R/i9dIibGrFnQX7IErbt2ZVX3htjYWCiVyrjFixdfePYTb8LLRJOz/xfCkiVLnOVy+btaWlpTBUEwaNWqFTp27Kjbsh4RloqYO3euuHHjRmzcuBEffPABtLS00KTS/9cFYwzm5uYYPHgwP3jwIMvKykLPP7k+/ZWEqysZbUeOkLhSRkattZcvCk+ePEFkZCR8fHxU+CustT16ULZ12rRGfWzVqlWSq6urIIoievbsCZm5ORmbjx5RVu3sWVRUtw4MDOS6urrCqFGjXvQZvByMG0cZvV27nv9YkkQU6O+/r05hfUaEhYXh5MmT6FZRWRlES+1Qajjb2Nho/l23d9e8Oek0/PorMHVqpT8dP35cUiqVGD9+fMMdg/x8+gkJoeDB8eNkzE+a1KCPS5KEoqIihIaGIiIiAmq1Gq1ateJjxoxhz6vtoFAoEHb5smx8mzZwuXWr8V6vtTXRYkvLLABQEGPEiNo/s3UrOWMVspcvAzKZDB4V2pAVFRUhNzcXrq6uMDExwY4dO1hCQoL02muvCc+8/1tbUz/wN9+k9mJKJWX89+wh57qe3uQvEu7u7kJoaKgaNTllo0dThrsiOKfn0NkZKZ6eklFN1KLLl2ktrHgeDx/SfK6Y7S+FUqkUZDLZs7cbS0wE3n8fMZ99hoNHj8LZ2RkTJkyo8VmLiIjA8ePHIeTnw/ncOZajrQ3R3x/6RkZUMuPnR6yE/furBVwLCgqQnJyMvXv3cnt7e/j4+DQ+ONGsGTB8OBKePoXuyZNnZmzb1j4oLc0so5S+X40hY29PKvO//FKubL9lCwXgNYGY06cpKF8agMrMzERubi61BoyIANasAbp2hc7OnShYuhQtfXyY5fvvAxMmwKoeMTvGGFq8+SbQtq3w8eDBeJiQINy5c0d98uRJYd++fczAwID36tVL7NChA+RyOQ0gK6thLMD8fIw7eZJfMDVlRqNHo8/zas4wRutjdHSt9f4HDhxQ37t3j73++uuwqYlxFh9PDJGJE8lhrwGXL1/GuXPnJFEU2ejRo5nrZ5+JePyYgncAlYO4u1PQa+rUchZPDdckOjo6r7i4uOYvasIrgVffAG0ClixZIspksn/J5fJ/du7cWebh4SHXCDU1FoIgYMSIEdi+fTv//vvvmY6ODiZPnowW9SluN+GVhqenJ9PV1UVgYCAKCwvrp/z9f8XQobSJFhdTj9lvvmlwz+3GIj4+HjKZDIMHD34h62xJScnLDcwNHkyZoEYgJCQET58+FaKjo7lSqWQ3b96Ei4sLIiMjYdisGQK6dUNWZiaQno5m5ub4+eefeVFREWvRooX06nP3S7F3LznpLwJKJTkMCsULY5eEhIRwLy8v3q9fvxdzPSWJ6Nhdu5aJqSUkJODGjRvCu+++W6PgX6346isS/Rs6lJynDRsoI16PQaxSqXDp0iVcvHiRFxYWMj09Pd6tWzfWrl07mJubP3tGuhTx8fHYtWsX9PT0JNtlywRoaZFB+8EH9Svpa2BpSfoUFev2RbHu1ntXr1Lg6yU7+xqoVCp8++23ZT3HAQoCaWlp8bi4OCEwMFCaPHnys82buDhyKlauJAE+gFrq9elDzvA//kFBrYUL6fro6r6UtZZzjmvXrkmGhoY1t5ZasIDGev58+WsKBTkub78Naf/+MltKpVIhMjISMTExfERhIbOs2l4yL4+yzyCRy9u3b8PT0xNOTk7IysqSunbt+uwnmJSEp9nZOHj0KNq1a4ebN2/yw4cP8yFDhlRbKs+ePctdbtxg4w8dwqXXX1dvMjAQna9cwSh7e2IgZWdT9rygAHjrLeoioKWFO3fu4LfffoO2tjY6duzI+/XrJzyPyG+SjY36prPz+W4nThwfEBw887K3t0tCixY171NGRhTsGjWK1r4ZM8rrxwsKiBFy61bZ221sbGBlaYm8H37g6NOHYepUBGZnS/e//ZYplUpWaGpK9/T4cQoUaAQia4OpKbBxI2QyGVoNGYJWrVqJQ4cORXFxMbS0tFilNcXVlUoWair9qIicHGDjRrTs3p3d9fXFg+Rk3qe+gGp9EARq2VcL+ycjIwPR0dHimDFjanb0r1yhcrrBg2tlGF24cAFnz57F8OHDBXd3d1rTe/UiQUINRJHGsWYNBexrKf3Jzc3FgwcPRADHG3uqTfjfocnZf8WxZMkSPW1t7UPm5uZdxo8fr2tUi7hIY2BjY4MPP/yQpaam4tatW9i+fTu6du0q9erV6y9jfzehOlq3bo3x48dj9+7daNGiBdzc3P7sIb2asLcH7t+njNzHH5Pw2guu45ckCTExMdDX1+do4OYvSVKZI6VSqZCSkgI7OzsUFBRg69at6idPnoiffPLJi3f4Dx4E9u2jTEsjcffuXTg4OPCAgAD2+PFjnD9/Xh0bGyvo6OiwrNxcrHZw4Abr17O31q7Fmnnz4NGvn+Tj4yMaGhr+NRaaJUtofixY8HzH4ZyMqW++IcPpBWHFihVcqVQyf39/9sK6rDRrRpTZCnTl27dvQ1tbW90oEUWFggQNDQ2ptCMxkWrVaxGILSkpQXh4OJKTkxEfH8+1tbXRs2dPeHt7QxTFF/aASpKEU6dOSYIgCO+//375PDQzo3vTUGdfV5eypxkZ5aJ8gkABAKWyOnNIrSbH+H+oGRIYGAiZTIZZs2bB2NgYSqUSqampACBcu3aNN7odnEZ1/5tvgB9/pHV0wABig+jrk0NXUEBBgOxs0kiZNQv45z9JyT8piYIB8+dTYDEkhJgzz7Gmcc6RkZEh1Bq02Lq18jU/fpyo7bduAXI5OOd4+PAhVq9erc7JyRENDQ2lwoICQRkRQedWEU5OKNLRwU8rV6qLiopEGxsbafv27YKdnR2Ki4uFZ9Zl+eYbXHFwkI4PGCBMeO01ODs7o2fPnmzt2rWsNYmklb+3pAQzjY3Z+YICFPfpA79//Ussio2VIiIi2LFjx1jv3r2ho6ODvDFjoLh5E1qFhTi7YgWUDg6Ij4/H4MGDuY+PD4OmO8VzQF9fX5BEcf66OXMcZKLoP3jPHpe+p09jp7296qlSWTxx4kS9MmFae3sK/j1+TM7+vXv03FhaEpPoH/+oXKuelwfXCxd485QUhsGDAUdHJP7wA6ytrdmUKVPKdac6dKDA/YwZ9Svft29PrTEraDvUqK8wZ0553/nakJlJJUmdOgELF0Lr7FkpIyOD3bhxAxoH+s6dO7h37x78/f0hk8kanqC7f59+aujYoaOjA1EUoVAoqn/u4kV6NufNoyBPKUpKSrB27Vp1UVHR/7H35XFRle3713POzDDsoLIvboiAkrvkSrjve5pbalrZntVraeU0llmZZWZlai6vRmnkkuaG+4oLKuAOKgoo+yYMzHLO8/vjdthBUETf78/r8+GDMjNnzvY857nu+7qvWxBFkcuyLIwfP750OVdQUHlvjePHgcBA3HZ0hCE+Hg0bNix3DDExMVwQhM0ajeY+LUie4nHiKdl/gqHVatUWFhbhzZo1azNs2DC1WIuyOEEQ4OHhAQ8PD7Rs2RKhoaE4d+4c79ChA+/atev/xkL8KUqBMQZfX194enrK165dE6pL9lNTU5GVlfW/U1deG/DxIQOp5GTA35+yjrWobtm8eTNPSkpiw4cPvy/ZT0xMxLp167jBYGAODg7c39+fnTlzhkuSxMwBAKPRKAIUBKh1sq9WP5CB1tmzZ5GRkYGJEycyAHB1dcWoUaNEAAgPD8exY8fw3HPPsUaNGkE5ciTebN8eqogIsaiN1f8CVKoHcosvBbMJVceOtdZ2LDMzEytXrpTz8/OFSZMmlZfNPiwsLEhS+9lnSOjZEydOnMCAAQNq9gCaOhXo0IGy5TNnEhGcMwcAmext3LhR4pwzo9HIAJq/VCoVPDw85KFDh4p+fn41UxFUAwaDAT/88AN0Op3Qtm3b0mPzhx+oG0GfPiQ5rs51X7qUao1LtqjcuLFiCftrr9Gcc+zYwx9INZCbm4tr166hb9++MLdUU6vVRf4Pvr6+DNXNQi5ZQsGaL78Ejh6lzOHixfTaqlVAQAAR9+bNiUxJEkmvk5KozdegQZTh55wIdMOGRPY0GiJefftSsGDDBrpv5swhQpidTWOmCpIkCAJEUSylXiiFzEyS7P/zD5lF5uWRL8k9sli/fn1WWFgotWvXTmzevDns7e2FFfPmyfViYgSUfSbm5yP66FHuGBzMxo4dC5VKJZw7d046d+4cgoODYWlpWeNFGjcakbdiBc4NGMAmzpoFs/+Sg4MDXFxc5KtXrzIvL6+ispXzn36KRj/9BO8JE2TLjz8W4OaG51xcBCcnJ0RERMgLFy4UnJycYPDxgc/QobBu0oTXy85mqTqdNGHCBLFUa8GHhKOjI+Oc2wqC8AsH9m0fOTLAPjXVucPq1YqWhYXp/71503r8Bx8U3X9o1oxq2vfsoRaNly5REDQurqjTiSzLSD50CPj8c2Q6OLBjISHoeusW3IxGWFhYCHq9XlYqlcUTg48PEBVFgdl69ao2yPz0UwpsV4UtW+h+rSqxdudOcbvZl18GGEP37t0FpVIpb9y4kWVnZyMhIUGOjY0VAODMvY4QoihCqVRCqVRylUrFVSoVV6vVUKvVXK1WM0tLS8HCwoI1PnIEFnl5SA8KgoWFBVQqVanfXl5e/Pjx46xU6dbvv1MAcs6ccgq9qKgoABCmTJnC8vPzmZeXVymT7sjISN5g6lQ4TZzIrEooJAxbtuCHr7+GcfVqGI1GWFtb4/333y8i/JxznDx5Ml+v1z+avrRPUWt4SvafUGi1WqZSqf5s1KhR6+HDh6sfZcbdzc0NM2bMEE6dOoXw8HBWv359WFtbw8LCour2Q0/xREJFcj0+cOBAdr/75tChQ9i/fz8A4OOPP6590vCkw9WVFgDu7iS/rahXcw2RlpaGixcvsuHDh6NFixb3Hbjbt2+Xmjdvznr27Mk2btzIIyIimCzLbM6cOUhOTkZ6ejouX77Mk5OTWY0zcVVBlinrtnBhcUutaiI1NRXbt2/HqFGjKiwB6tmzJ44dO4bmzZujfv36gLs7VHFxwNChRI5q2nv4ceDmTeDVV/HQwYk2bWg7335bO/sFIsv5+fnChx9+WL6ncm3h998BHx9Enz4ti6IotK6Jc74kAZ6e0I0fj7jffweLioJy0SL43Xt5x44d3N3dXWjcuDHz8PBATEyM7OnpKQQEBECszah2CXDOER0dDcaY/O677wr29vblSY+TE13vCxdKtRarFC++WL6t58CBRHjLOn4vWECEuQ6Qk5ODpUuX8mbNmvG2bdvWfPHAOSkzWrcmqbS9PY1ZhaL88W7ZQqR8927A05Mk0KJIc2l6Or3np59I2u/pSU79rVsTgY+Npdd//51qg41G+qzBQB4Zc+YQWe/enQICr7wC/PordXewsQFUKphMJkiSBLvKepPb2NA2DAYKLMyaBfTsWfRyRW0aPaOiWP64cbAsE2TIVatxQ6djLVq0YOaga+vWrcUajY2Sp/nKFZxduVIOnz6dTZkyhTmXmRd79uwpbNiwQT579izzzcmRQ86dEyI9PFA/IIC3+s9/BHOAWhAEBAYGIjAwUEhJScGBAwfkJs8/z9p7ezPWujWD0Qikpz/0uDKZTIiOjkZ2djauX7+OpKQkOg7OnWRZtgfgnFm/Po706DH3/fnzTbGtWk1R/PxzY8yZQ/eOpyd5WsTHU9tNUSSFBeeAvz/Onj2LGz/+KFulpwuCuzs/7+PDPDw9cerUKV5YWMhUKhW6d+9eftyKIm33P/8Bpk+v3M1epaLAVbdulQf3P/+cxnUFpoYAaN+//Zb8aGbPLrELIrp27SrExsbK+/btE1xcXODl5SUbjUahSZMmkGUZHTp0QF5eHvLz81l+fj7T6XQoLCxEQUEBdDodsrKyYDAY+Pl27WQhP58X7NoFWZbZvcC/+TckSWIKhQKSJEEUBHLNX7OGlENlkjySJOHChQvcwcGBu7i4lDp3ycnJOHTokHzt2jXm278/MvLy+BSjkWVkZMC2c2eEBwdD16gRXps2DSdOnMCZM2dw6NAhHhwczAAgJSUFBQUFOgBVOwo+xWMH47ziMqeneLyYN2/eXEdHx/dffvllq7pskxceHo6oqCi5sLBQAIDGjRtLL7zwwqNafz1FLePMmTPSzp07RZPJBHt7e+nll18WKyOIy5cvl7OysoThw4fj8OHDssFgkKdPn/5QbL+wsBAqlarWM3KPHDodEf4dO6hW+QFx8OBBHD16FB07dpR79ux539rirKwsLFmyBO+++25Rxq2wsBD5+flEku/h+vXr+PPPPzF16tSHCsDdunUL27Ztk0NCQgR/T09agP/7b43rx9etWwdLS0tp5MiRlU4MS5cuNWVkZCimT59efCx6Pf18/DFlUp/k+6RHDzK3+v33B/t8YSEtLjdtInLxsAqBEkhJScHSpUvxySef4JHOzV9+CaOFBdY6Oso5OTl49dVXhfsGnGQZGDYMd+fNw6YffkC/3bsRuWgRP3PpElOpVLJerxckScILL7xQp2qiY8eO8f3797POnTsjJCSk6jcfP05Z7M2b7280N3MmZfeaNaP/P/ccfa7k9b50CVi/nghOHWDRokVcFEX2xhtvVH8uTk4mI8rJk0mGf+gQBSjMxLoiSFLp82MyVd3J4+hRktCfPQt88QWR+OoYyv7zD83PDg60f//9LxGtU6fw+9y5cufPPhMaLl4MoW1bKq3o37/8fty6RZ9ZvbrKfbx9+zaujhuHth9+CLsyNdumxYsRs349PzxmDMaNG8caPKDvRk5ODmJiYrjlJ5/ALi0NDY4cYZW1gwMAk16PiG+/hfvKlbjt6grnzz+Hb48e1fsyjYak5kOGPFQJSV5eHn744Qeo1Wru4OAgS5LE7ty5IwiCsFOW5X4l3rpco9G8otVqA11yc09OTU5WK9u0oVp9Hx8KuvTpQzL5wkIizfcCz9FTpoDHxKDlsmUQ72O6VykGD6bM/KuvVvz6f/9Lc3tVHaxKtgQsiStXKPglSaVk8iUhSRIyMjLg5OSE5ORkLFtGSW+FQoGPP/64eseQm0udPrKyKrxXjUYjFi9eLDdp1IgPO3dOZG5uZKhnLpko8b5ly5bxwsJCrtfrBR8fH6lp06ailZUVMjIycPDgQXh4ePBhw4Yxhx9/xB+ZmVJcvXqiIAjoev68fLVtW+G2TodZs2ZBoVDgq6++Qo8ePfizzz7LAGDt2rUFCQkJP8+ePfuDcjv5FE8U/j9L4/1vYO7cuWOtrKzef/HFF+uU6ANA79690bt3bwEgIrJ48WLRYDDgYZ2Pn+LR49q1a9ixY4fYpk0b9OrVC5s2bcKSJUvkKVOmCE4lHgK5ublYuXKlxDkXXn/9ddjY2MDNzU34/vvvhYsXLz5Qrf/58+dx5MgRpKSkICgoCP369bv/h54QpKam4syZM+h35w7Jl8eOpUXhvTaGsiwjNzcXhw8fhre3NwIDA5GZmQkbG5tSWdULFy7g6NGjGDNmDJo2bVpuhW0ymZCYmIicnJwip+y8vDzIslxKUndP1lfqs02aNEFQUJAcGhrKZ8yY8UDsztyf3NHRUTj/xRc47+Ym9Q0PFyvNiFWBzMxMU9euXat8fkyfPl2xdOlSOSYmRnjuuefojxYWlGU7coR+11ELxAfCrl2VttmqFjp3puzwjz/W3j7dw759+zgAZjQaHy3Zt7OD8u5dTJo0SQgLC5OWLFkiT5s2TahXldrh/HkgLQ3bDh6UO6SlMefQUNa/a1fWLC4OKSkpQsuWLWFpaVlnXWB0Oh22b98uX7hwQRgxYkT12pM+8wwtstPSiABXRZIuXiRZspnsT5lSvl7/ypWqjftqGZxzlpmZifz8/KrbNl6/Ttn3Jk1IWn/1KgXizD4mM2dW/UXdugHt2tE9nplJ20hPr7xNZZcuRPQB8jZo3pyy+598QsGQylCyw4HZaC80FFJmJuJ+/FHo16MHBLNh4htvkDJj+HDyYVi5kq5hs2bF310JCgsL8fvKlRjk6srt7hGaklC4uaFV//7shqcnX7ZsGQYPHlztdrd6vR4XL17E6dOn5dTUVKFVYiJXffml0LRDBwgVrPPS09OxceNGND9yhHc7coQlTpkiNy4oEKLbtcOUmgSktVqq4d68+YF8WQB6mXZ60AAAIABJREFUBq5atUry8vLCiy++KAIQz507h3///TfFZDJNYYxN45wv1mg0RYXkKpVqpv+QIUpl9+4k2R88mEo4vv6azN7S0uiazJsHHDgAjB8P7169sLxBA0gAb/ugRnf/+Q/dSwUFFRuBensDc+eSWWhZjBhBY6EiFdalS7TvPXpQqUklEEURZoWGm5sbNBoNMjIysHTpUqSnp6NaASI7OwoMGgwVkn2lUomXX3xR2DZrFs+4epU3+OcfVlEwOSEhAdnZ2WzWrFns7t272L59uxARESEZjUYuSRLr37+/2LZtWzrPu3ah/4QJ4t769TE8PBzCypVC8L3z99VXX3G9Xs8AoH379gygddOtW7cMJpPp0/sf0FM8bjwl+08YtFptfYVCsWz8+PFWNpVF0+sI1tbWEEURciVO1AaDAZmZmSjbGYBzDsYYjEYjcnJy4OjoWO0FKeccRqPxaTvAGsBgMCA+Ph4bNmxAp06d0POeRHH06NHinj175OXLl8PDw4Pn5+fLeXl5zGAwCAEBARgwYAAzk0obGxsMHz4cmzdvRnR0NPLz8+XevXsL3t7epb7L3Jc1ICAAjo6OyMjIQGpqKjZv3gwfHx8pJSVFzM7OrvNz8CAwGAzYs2cPTp06BQDw9vZGgJ8fZRkkCTAYEHXpEnbs2MENBgNzdHTkV69exdatW5kkSWCMgTEGhULBRVHkkiQJAwYMkJs2bSrcunULmzZtkqytrdk9iR6TJIlJkgRZlnHkyBHZ1taW3blzB56enlytVt83/dapUychIiICmZmZqJJslYAsy9DpdMjJycH69et5hw4d0L9/fyYdP44bV6+y77//Hvb29nIpo7JqnLf8/HyFyWS673vbtWsn7N69G56envDx8aE/urnRojsujrKgR49WXR/5OPDWW0QUHiQTm5ZGmaENG8r3Ya8lJCUl8bFjx7JHJuE34803geRkiEeOYPTo0eI///wjh4aGSm+++WbFE7pOB/nIEYTPnInAzz4TPGfMALp2BQD4+PgU3wN1iNOnT+PChQvCuHHj0MxMyO8Ha2tSZCxeTG0kV66s/L1//UUSdDNWrqRsdcmWuEOGUGazjjB16lSsWLGCL1q0iH36aZm1eH4+EcD584kYqVQkmc/MLO55Xl2sWQOJMYgAuKMjoiZPxsmlS9G9b18kJCTIzs7OQskWgKVgJvcnTxYrfMaNo3ZhVbUvNEMQEJueDoVKBdsffyw2+TOXSixdSoTPYCBSeft25Rnbezhw4IDkUVAAf1EUy5VhAEDDhhBUKowYOpRduHAB//zzD7927Zo8cOBAsarETGxsLDZt2gSFQiEFBgaKE7t2hbpLFwEaTbnA0I4dO3hMTAwvyM8XmhYUIMrTk+maNUOn9esF/bZtGN+0ac2SL2fOkJpBpwNGjqRgiKcn8MEHdO/27Ek16GlpJIHfsIEk7h07UiCrVSuc2r8fDW7eFEZ98gnDnTuAgwNiY2NNkiRd0Wg0yQC+KPmVWq12KoAJHTp0oPPt4UEBsXPnyJBx4EDKWp8+Tdf8k0+ALl3gMHEidPPmYevWraxFixYVm+fdD927U6D1mWeoRK9sm8/GjUnNJsvllWXTpxPRLovISFL9vfAC8ACJjPr168PDw0M6c+aM2Ke6JXOtW1PwraISkexs2H30Efq7uLBfGjfG82lpaFaC7HPOsXHjRuny5cuira0tFwSB2dvbY+zYsQwVtacEgP374aBQYGRSEqlu7t2XJpMJZqI/derUolLPkydP6gH8otFoCqp/Jp7iceEp2X/y8JyHh4dcYUuNOoZKpYKtra0UExMjPFsmyn3z5k2sX7/eUFBQoBo+fHhRP+fdu3cbjh8/rmKMcQCSUqnMkiTJ4cUXX1SWJI65ubnIzMyEs7MzLC0twRjD9evXsW7dOs45Zx4eHlJBQUE+5xyurq5ikyZNrP39/WFd08XI/zHcvn0b58+f53l5eXJqairLzs4W7rVk4yEhIaUMWxhj6N27t+Dn54czZ87IXl5eYr169dCkSRPY2tqKZSXm5ozb8ePHJScnJ2Ht2rXo06cP0tPTERsbazIajcxkMgmSJLGDBw+CMcaNRiMTBAF9+/aVOnToIH755Zd4thbq3h81TCYTFi9eLFtZWbFx48axmJgY/tdffzFbW1vJefBgUY6OxtAePZDWuTP6zJ2LNm3agDHGOOdISEhAvXr1YG1tDYPBAJ1Ox/Lz81loaCh27drFDh8+LOXn5wvt27cXZVmWGWPw8/NjSqUSrq6uSEtLw969e7m5t6+np2e1MhhWVlawsbHhSUlJrDpk/86dO/j999/l/Px8gTGG5s2byz2ee05kGzdC8ccfaAYI72RnY8mSJUJqairS09MhiiKaNWtWqfQ3NzcXa9askRo0aCDcM/iqEh06dEBqaip27NjBX3/9dVYq6OftTTW0lpal25c9CWjd+sFVBxMnUs3o5s21u0+ga/rf//6Xm0wmoZST8qPE7t3AnDlg8fHo06eP8P333+Off/4B5xx5eXkICAhAq1atkJycjJRXXoHFzZsoeO45uZGfn2AzaVLd7GMZ5OTk4ODBg3JWVhaPj48X/fz8eLNmzWqeKezTh1p1GgyVO8anp1N9ekICkYfx40v7PJw9SwQkN7fOnPjt7Ozg7e3NLly4UPzHb74hyf20acC2bUT0//67+PUqnq0ZGRmwtrZGbm4ujhw5Ijk7O4v1N2/mt/LyeISbm+Dp6SnrdDomKpXM+dQpbC4o4IwxVlhYCE9Pz1IlSeXQsSMFGwCS6ru6Ug3ynDml2+VVgLy8PKjValmlUpWfsEoGlk6dAg4frvL8Z2RkIDIyUnzHZAIqC1AkJ5Mfw9ChaNGiBby8vNiqVauwdOlSPm7cOFb2OCVJws6dO6WoqCgxKCgIPXv2FJGQQOfa/LsMzp8/z1u2bCl0O3QIths3gp84gcKgIBjXrYNdTaTtixdTIHX2bDLKVKno+44fp/vZ0hJwdESenR0iLl+GhyhCmZiIxiYTxKwsqk0/dAhnzp3jltu3syGiyJRDhpABXr16aG5tLXaIiurONZrJDBgHQA3gPQ68PrhNm4amnj0NVt99p8KQIRTQYYzk9V27AmvXUoAsKooMcv/+u+h6DRgwAPv3738wom+GQgH8/DNdq9TU0h4xDRtSJ57ERHoGmXH6NJ2TsuuXuDjyefjggxp725SEt7e3EB8fX+3uPEXlY2UDjbdvk3LFxQWOn3+OvufOISwsDFOnToWzszPu3r2L06dPIzY2VpBlGZMmTare97VvT/dKp050Xe5BEATUq1dPzs3NFTZv3iy3adOGNW/enEVHR3OTybS0Wtt+iseOp2T/CYNCoQhp2rRpFbq7ukXv3r3FLVu2IDAwsIhop6enY926dXqTybQHwMAzZ87orKysrKytrXHixAkGwIlzngNAnjVrlqTVakevWrVqvb29/V0fHx+L9PT0wqSkJKVCobhpNBobeXt78/Hjx1ueP3/ewBj7ThTFpPT09NZ6vf5XAFJWVlbr69evD9m7d2+/adOmWSiVysrNeP4PgnOOq1ev4vjx43JSUpLg4eHBGGNi06ZN0bx5cyiVSri5uVU6oXt5ecHLy6ta0oqmTZuiadOmIgC4urryw4cPw87Ojnfv3l1ha2sLlUoFV1dXpKenQ6fTscaNG5uJoWgymWA0GpGQkIBGjRrVyrGXxIULF8AYg4+Pz0MrP9atW8cdHBwwadIkplQq4ePjw5577jmcP3+eZWZmSjY2NkLysmWsW9eusDh9mqF+feBe25mSQSsLCwtYWFjA0dERM2bMQGZmJlu6dKkoCAJ69uwJxli5RaiTkxNeeOGFB9JeOzk5yefOnWOBgYFVZuIzMjKwevVq3rZtWwQHB6OwsBAODg4iDh6kzM6wYYAowsHBAe3bt5eWLVsmKpVKiKLICwsLmVKp5Gq1mrdo0ULw8/ODs7Mz1q9fz+Pj41mjRo0wZswYVt1r0L9/fyxcuJCHhYXxoUOHCkXZaJWKCMiFC5SJuX6dsumPG2fPUnuwmrbRunmTjmHz5qrrlh8QFy5cwNatW7mnpycGDx78cIvhmuDFFykjWFgIS0tLDBo0SD59+jS3tbWFo6Mj27t3L9u2bRuz0ung2a0b79OvHwvYuVPA1q112mbOjKysLKxevZrn5+cLgYGB6NSpE3r16vVgO+LnRz3kR42iuucShlxF8PKic5SXR1nBgweJFJjVKoGBwM6ddX4uEhMT5R7Nmwvw9aV7mjEKQtnbl+pnXhUKCgrw999/y9euXRP8/PwkJycnISYmRgSAUWfPwsfbW+jy/vs4ePCgYGVlhWBrawjffQesW8cAYPny5XzPnj18zJgx1VMOmeXTly4Vt0dr145a940eXe7tLi4uKCwsFJKSkuBRlYpGoSAVUWAgeYVUUO++bds2uXHjxszmwAGGN9+seDsmEykg7sHOzg5vvfWWuGnTJv7rr79iyJAhaNmyZdHrYWFhUkJCAps2bVqRtBuDB1M2feHCcpvX6XSwiY8X+hqNED//HBg2DCwkBJZnzsCyOmuenBzabseOpOAYNox6p//7L702bhz1j2/VCgaDARsSE+WbN28KzNERzs7OUk50tFBgYcHsVSpJf/kyM7i7C5xz9tKOHbA2J6DuOcs3TE9nSxcsQPMrV/YO27IlAkC9LUOGKArV6imFlpbo/cwzRLQZozk+PZ3q80+douDXzp2ktHByIuJ99CjQrRscHBwgCEL1SXFleO45yu537EiBjxLt9hAWRmPhXncQAFTLf+sWlaaYcfQoGUIuXkxzwUPA1dWVRUVFSagss14W339fvhzm2jUKOvTrR54iANq1a4ekpCS+cuVK5ubmJiUmJoqiKPIGDRqw/Px82d7evnpj74UXaJ6YOZOeZfcgCALeeustwWQyISIiQjh37py0f/9+UaFQxGo0mptVbPEpniA8Neh7gqDValsplcpjr776qlWVkfA6xrJlyyRra2s2atQoQaVSYeXKlabExMRbAIIFQZguy3KSKIoLBEEwiqK49MMPP5xVdhtardYTgBuA5wDEAzig0WjStFptRwAn7vUgTTcajQEajSatov346quvNur1+uGCIMgzZ84U6myxW8vgnCMjI6NczXfJ11NTU2FjY4Pbt28jPDycZ2dnM1dXV2n06NHi4y7vqAycc8ydOxcBAQF4/vnna3XbJpMJ8+bNAwBYW1vLr7zyivCgAZ/ExESsXLkSb775ZvXk8P36kcPtd99Va/t79uwxOTo6snbt2tV6MfWtW7ewdu1ajBo1qlJzM51Oh++//x4BAQGm4cOHF7PO6GhabDFWjnjcvXsXarUaSqUSeXl5uH37NpKSkhAXFyelp6eLJpMJzs7O8vPPP191vXYluKcIkPV6PVOr1ZwxhoCAADkkJMSsCaRF/eHDtEh7nBgwgLKLVUm3K8J771HNcHh4re+STqfDggUL4ObmJo8bN06o8zngxg26PomJ5RQYnHNcv34d7v/5D9SNG4MdOAD8+WdxDXsdIi0tDT///DNcXV35lClTqh2Qui/27iUJ8jvvVBzIOXKEZMmDB1MWdelSOl8ALc4//bRuSlVycuh7Bg/G5Vu3ePTMmRh9+TLDJ59UXkdfBa5du4Z169bB398fOTk5cocOHYRt27YBej2eHz8ezcsSIFkuNb/k5eXhxx9/5OPHj2dlS8KqjRUryIl/1y6ag83u7YwV+ZD07du3eoqyRYtIQl7m3oyNjUVYWBh/f8IEpvr2WyLMFV3nAweI7L73XrmXYmJisG3bNh4QECAPHDhQvH79Ov744w+8//77KBqvycn029m5QnNSWZaxY/Bg9FMoIK5aBYwZQ+UW7dtXfVxxcXTPvfoqSeI1mmJX9lmzaL+PHycFhVIJefBg/PDzz1K9evVY//79hZJdAHJzc3HhwgVua2vLvLy8YGFhUeE65ciRIzhw4EDUJ598UqQz12q1YwD8OXbsWPj6+la9z3TAFAiwtKR6+AsXcHfUKMT8/TdM/ftL3SZOFJm398MFyvbvJ0l6gwbFhD0ykrLXL71U+r0lyzzi46l7zNq1FDR4SGRkZGDZsmV81qxZ1TuYhAR6FsXE0P+PHqVWlkol+VGUgCzL+O233yRnZ2cxODgYDg4OWLZsGff09MSAAQOq933btlFW38KickPOe/jpp5/y0tPTX9JoNH9Va9tP8djxNLP/BECr1YqiKL6tVCrnDRkyRP0kEX0AGDdunLh48WL+1Vdfmf+kANBEo9EkAvgEALRa7a+SJPHZs2dXGD26995EAKfKvJTIGDsgy7K/LMvdKyP6AKDX68cDaGRhYfFnQkLCM4+j/rO64JwjMTERkiTh+PHjUlpaGsvPzxfq168v5+bmMoPBwACgS5cu4JzD2toaOTk5/OTJk8zKyorrdDomyzJUKpXcokULYfLkybCysnqiWyIwxtCoUSM5MzOz1i3WN27cCAB4++23sXnzZvb999+jS5cu6NWrV423ZWFhUXTOqwVzBuKNNwBbW6B4HFSIXr16PbJ51dvbG76+vnz//v28efPmFZ7no0ePwtnZWS5F9AEyR1qwoKifcUmUNPGysbGBr68vfH19ERISIsqyjLS0NDg7O9+3u0BlsLOzw2uvvSacOHECKpWKnTx5EocOHRKCg4NJGdKxIy36hg2j7PjDtrt7GPz7L3k2VBfnz5Ms9Lvv6D6pZeTm5mLt2rUAgDFjxtQ90QeozvWnnyp0pmeMoWnjxkRItm2jrFnJevU6gl6vx4oVK+Dn58fHjBlTu2n0nj2pH3iLFqRGGTq09OuxsVQXPXgwmaCZlU15eaT0+OKLslusPdy4QbJszkl+npYGaDRooFKxS5s24Wi/fujygIFxc1vNFi1aYO/evXzfvn1Sq1atxJAFC2ATHU1t90pCEChD6OsLzJ0LGxsbODo68suXL+OB+7tPm0a/R4ygIBxAhntLluCihQVcnJzkZ599tnrPnHffpdrxpUuLMuuSJGHbtm382WefZao7d+jerUyZYzRSdr8CBAYGQq1Ws9DQUNHT0xNXrlyRfX19mY2NDR332rWUNU1KqrgLyc8/I3/NGpweMAAdu3eHU8+eNK9U5Rp/4AB1Nzl8mO41N7fyRoevvAKMHYu0tDRc8vCA15w5SNi8GXKbNsKECRNYWT8lOzs7dOrU6b7X6uzZs0ZJknYDgFar7QsgGIADQEHpapF9QSgywsXy5QAA21u30MbeHqHHjoltuneHrUpF5y46mrLu/v73325JhIRQgOj558mUr1MnCsR98w2NVycnytyvX0+EGqDg3pw5dF5rSUXq6OgIo9HIUlJSqtdRx9WVrqfJRLX7H31EyqIyHSIAyr6//PLLRRcyOzsbd+7cYU2aNJFRlULC7C+jUNC4HTiwaqNMkDFfTk6OCcCm+x/EUzwpeEr2HzO0Wu0zKpXqjwYNGjQcMWKE5ZNG9AFa/Ldq1cp0+vTpQlEUVwuC0NtkMr1W8j0ajaZiF7/7QKPR3AZwnz5IRe8tAHDpq6++Cg0NDQ2wtbUt7Ny5s0VQUFDdtiyoBv766y9TXFycQqlUyi4uLiw4OFhwcnLClStXBBcXF/j5+eHy5cvYv3+/ZGFhIRoMBpMoimzYsGFifn4+a9WqlVmq/gT3JiuPevXqCVevXpVRy/udnp4uAxCysrIwatQodvz4cZw+fRo5OTno1asX7GuQNYuOjoZSqSwymqkWGCOyXFhItbeCcN/o96NCfHw8a9myZbkH+I0bN3Dnzh2cOXOG9+/fv/j8m0xUH3nzZuX9h6uAIAgP1e7PDIVCgS5dukCWZWzfvh0AShl7okULICWF5KdvvfV4WvONH09EopoqDgC0CD12jP79CKTav/32G8/NzWVDhw7lFfaGryuMGUNy9kWLSte6ck5k2N+f5OuPgegDQFhYmMwYY7VO9M1QKMjF29qa5oGSY8ls3CXL1KrO3FbO2pqyrrWNrCyqSf74Y7pnW7emYMydO0RO2rdHAwDYtAlXrlxBSS+X6kKWZWzatElWKpWsYcOG7O233y5mhd26kYqgIowYUSpYl52dzarrS1Il6tWjmm+AArDNm6PBuHFy8LFjAl5/nYhLmdZjFUKlIjn0PURFRUGWZTk4OFjEp5+WrvUviwYNKiXfq1evlhISEsTg4GC5adOmwo4dO4Q33niDXtTpaOx06FB+TpNlup7t2uHQwYNyFy8vocGWLRRUrui7OKcAUlAQtXz88MPKg0nR0ZTNnz8fq775hhuNRvbMCy/Izy5aJPjOn1+O6NcErq6uxszMzHgAEAThe1mWi1j4yZMnDXl5eaZhw4bV3IjF2xuWU6fi7t27fGe/fni+SxeG9HTKdP/zDyll3N0pcHP3LhH3+3WtCgigjhH165NUvU0bug7btwOTJpFyxFymcOECqSP+/rvWiD5Az9F7Jr+sWs9TpZLG+C+/0HGuWUOlZbJMaxBra+ryodORUmXzZgr2ZWXh+pdfyp0nT0av0FABW7bQMf7nP8CECaQU2LCBuoO0akUeCmbF0sSJ992tyMhIA+d8uUajub9D71M8MXhK9h8TtFqtUqlUzlWpVO/07dtX3aZNG/agWbNHjcLCQnTu3Fl5+vRpJeccs2fPrmFotXbx0Ucffa3Var/Nzc3tuXfv3q1BQUGP7Ls454iIiOBJSUnykCFDxKpkoSaTCRkZGYiNjcXVq1cVb7/9Nuzs7Eo92d3d3Yv+HRAQgICAAPPT9v/EWHRwcEBeXp7w66+/8gEDBjBzZuhhMX36dOHIkSNYv3493nzzTfTp0weBgYHYtGmTvGTJEmH8+PHV9glITU1Fw4YNZVEUa8YkzW7aL79MUs7IyBoeRe2gf//+2L59uxwUFCTs27cPt2/fNun1esFgMAj16tWTg4KCEBgYWDyZzJpF2epq1uk+SqSmpmL58uVwdXWVJ06cWF4pYGFBhP/oUVrg1LVL//jx1Q/iRETQInvrVqqFfUTo06cPCwsLQ0UBnjqFmaTculWa7MfHU7Zy5EgaG3UMk8mE06dPIy4uTphYjcXqQ2HMGDpWX1/K/pnl4JaWQK9ewIwZlKk0O7k3aEAL63sdUh4aWi19d1AQLf5nzKCxYh5HJUh2YWEhAMDX17eoQ051Icsytm7dKt+8eROvv/46K6UmWbuWyOnbb1f84eefpzEhSYAowtvbm2/cuJGdPHlSHjRokFC29VhhYSGuX7+OnJwcWFpaolGjRrC3t696f+8Z1dl++aWwatUqBJ08iQ49ewLr1lF7P4OBCGFF6N6dCM7ixcArr+D8+fOSv78/PQz+/rvqFok3btBcWma837lzB0lJSeL7778PKysrIScnB7Is49atW3C0sqIWg8uWVZiVxXvv0b0UE4OCZ54RWnz/Pdivv5KPSUnk51OG9+hRIvArV9L/qzpP589Df/YslixcKBkMBrFoTdK1KynVNm2qUK1THWRkZFgA+Emr1f6l0WiK+vVqtVqV0Wj0ioqKik1OTs4bOnSozQMaTnNJkpjk4gLR3b1YSj95MpXN6HQUELl7l+45g4GCQR4eFZesPPccSfrffZe6EHzzDZCdTUGr48dpu+vWUdDs0KH7BxAeAGq1WmaMFZ9wWabrajTSesLbm/wqjh+nTigdOtA+/vgjSfr796e5Ze1aUhJpNDTOVqygQIhaDdjYgDEGk8nE0aULvd/HhwKDLVvSPP3JJxT4yMqi/bh1i1QnAwdWuf8mkwnnzp2Tnxrz/e/h/wTB+F+DVqttrlKpNrm7uzccMWKEZZV9cB8zzDWQjo6OBQqFAiaTafHj3icA0Gg0klarbeDm5qYHUCuFmUajEdHR0UhISJALCwu5s7OzeOvWLTklJQUqlYqtWLGCDxw4kDVs2BC5ublIS0uDi4sLEhISEB4ezrOysphKpeJ2dnZy3759H6h/+f862rdvD1dXV5w8eRKrV6+Gra2tPGzYMOFhDfsEQUD37t1x7do1OSwsDJMmTRLc3Nzw+uuvC3v27OHr1q1jKpWKjxgxgjVo0AB2dnYVOspHRETgxo0bGDFixIOnjH/9lYyHzpwh1+gPPniYQ6sx/P39sXXrVmHJkiXw8vKSu3fvrnBwcICbmxssLCxKH5fRSLWQFdSYPg4kJibCZDLhpZdeEiptVeXtTef2wgXKIB47VjcqivBwqqW9X32sGQ4OlHl7xEHagwcPyg4ODkKNlCiPChs3Uq3rnTuUCcvPJxWEgwMttOvQRyU9PR2HDx+Wo6OjBZVKhR49eqBJTU0VHwQeHlSDr1IR0TA/v0eNIj+D7t2L79e//ipqPfjAuHCBMnKRkSTVLiykDN/Vq1V+TK1Wo1WrVnzv3r3M0dERLVq0qPZXnjt3DleuXMGUKVMEh7L9u5OTiYBUBsZIOv7HH0BICMaNGycYDAZs2LABy5Ytw/Tp03Ht2jXpxIkTLCcnR5AkCdbW1rKFhQXPzs4WpXslNP369eNBQUFVDi7/Fi1gfPFFbN++nbdJSGAKW1syLlu1isqBwsNJxl3R2PnlF8DHB3fv3mWNGjUikvXSS6ioX3kRbG1RUUu+lJQUWFtbcysrKwYA9vb2GDp0KN+2bRu7deMGBi9ZQtnjkrhxgwKwn35KROzGDbheuoTIZs2gatQIRaGKzEw6p127UnBpwwYi6veZd2RJwjFraxzq3h2Bvr6sV69exS37AgLoWDZuJKJcQxQWFiInJ0cWBGG7LMulbgaNRmMAcE2r1apTUlLG/fe///3l/fffV9d0/hoxYoSwdu1a7NixQxo0aFAxQXZxIcIKUDbbaCRyfOAABR67dqWA29df07nr0KF4jIaEULnA3bs0fubMoZ8vviBVyL59FKh6GKIvy2RGaGNDgaP0dCpT+/VXNE1PZ+5RUUTSFyyg0iAvL2DJEiL0zz9Pn1eraS4dO5aefwkJpB5ekhhRAAAgAElEQVTKy6OAqtlYcM+e4u/dVKyqP5OaCsgyw9Spxa+XKHnMzMyEISUFruaymKtX6Zjvc09dunQJgiBEazSa6w9+gp7iceAJWD38/wOtVuupVCo/VCqVU3v16mXRvn37B66BrSucO3fOpFAolmZlZZ0CcE2j0TwCTeKDQa1WT2nVqlWtRErS09MRGhrKjUYjd3FxYba2tsKNGze4nZ2dMGPGDCgUCmzatIn//vvv6NKlCz916hTjnMt6vV4AgJCQENa4cWO4u7tX3sf0/wNYWlqiWbNmaNasGTMYDNi1axfWrFkDf39/jK7ATbmmcHJyEiIjI5GcnFykkujVqxfz8/PD9evX8eeff0KWZYiiiPr168tubm6sY8eOzNraGosXL4ZSqUT//v158+bNH3zgCQLV0+3fT4vJDz64b//m2oQoinj//feRnJwMLy+vyueQ7GwiJhcvUruhx4hbt25h+/btPCUlhVlbW6OqntRFaNqUshlqNS1yHjXhX76cFnz3I/unT9Oi7OpVqv19xCgoKEC3kg7RjxszZ9ICdcUKWlBv3Uq1rbWk4qkOdDodfvrpJ6jVaubl5YXc3FzerVu3unuYvvwySYD/8x/KtDo40N82bybfAmtrygB37lx5y77KUFBASoHgYLoXP/2UyiMkiQhCDWBvb8/UajX8a1jnnJiYCEdHRziVlcXn55Pk937HdPVqKQm0SqXChAkThNDQUHnbtm38xo0bYsuWLTFmzBhwzhEbGyvs3bsXJQ2j7z1L74vAwEBs3bqVxd65A38HBzpfs2fTnDx2LHlINGhALcvMrdMEgYIo+fnolJ/PjkZFSd1dXMT7ttt0dy+fcQfg7OyMgoKCUvvbqlUrZqXRgK9ZU3FgZuFCIqcDB1Jmde5cdB4wAF/fvMmbZ2Yydyur4gDEF1/QGKuml8natWslce9ecVhYGDyio9G4SZPSQWBBoAz2d9+RDL6GQbJjx46ZJEn6W5blcRqNpjKfJgOA1fPnz/8mOztbXVbRcT94e3vDxsZGKigoEKpUpiiVFGDr3p3+f+UKtdxLSCACfO4cnbuWLYHp0ylgEh5O90nHjqQEmTSJMuVr1lTcApZzCnKZTBRcOHSIav///ZfMZb/4gq5Ty5aUMd++HZg3j4JORiO181OrobOzQ3bbtqQQat6cAgHmAGkFHSLwzTdUojNvHh3Xb78BGRnAkCH0fa+8Uk6ZERERgcTERGHy5Mml/p6eno5Dhw5JycnJLC0tTQCAcePGoVGjRhBPnIBQjYTMiRMn7hYWFpZvI/EUTzyekv06gFarDbCwsPhUoVAMa9OmjdC5c2dVTWqMHxdu3LiBU6dOGUwm0xKNRnPlce9PWZhMpv0RERGd4+LikJSUJAcFBVm1bt1asKphv269Xo9Vq1ahUaNGGDlypFAiI1zq6TJy5Eh269YthIaGwt7e3vTaa689HT9VQKVSYfDgwYK9vT3279+PyMhItLvnUJ2XlwcrK6tK+7lXhsTERAAoRfYBwNPTE56enqxTp04QBMFcTiFcunRJXrFiBVOpVNze3h5vvPEGEwShdkjB2LH0s2EDyeIuX66zGnOVSoUq3a05JwKyf/9jJ/oAmQampqaybt26oX79+tVrq6RWk0zz9GnKSty8+ehk/ZJE1/F+BntGIy3oZsyoMPvDOYckSTXzg6gEsixj5cqVKCgoECrrvPBYEBZGZDQpibLNr71Wp0Q/Ly8PCxcuhJWVlTxjxgzhwoULCA8PhyzLNZ5PHgr9+lF3As5JUiyKlHGbP58kxz/+SGOwOr3Rb96k++nqVZLq3r1L2/Lzo218/fUD7WJsbKzs5+cHoQYnJj4+HmfPnkWvXr3Kf+aNN4iAnjhR9Ubi4kgufehQqT8PGzZMWLRoEQDAx8enKJiwfv162cPDQxg9ejQYY6iJCSVjDJaWloiLi+P+/v40r5gJUHo6/Z4/H9ixg8j+/PnA1Kmk4lm4EK3/+INtnzhR1OXkwCrkPvZBmZkVlkPZ2dnBZDLhxIkTvEOHDkwQBMTHx+NEgwboXrK9G0DKsIsX6f5gjIIQR48CHTuicNgw8AULmNPXX9Pcff48sHt3jcaXTqfDzZs3xVc//hiWr7yCxpUReQcH2u5HH5EpWw2C1bGxsTqj0bimMqJvxrx58ybJslyvnDqkmhg+fLi4bt06HhERgU6dOlXvQ7a2lM0HyICPcwqaHTlC9frffUfjc+pUOsdubpRp79KFlA6+vkSq+/ShzPnevVTe0a8fBeBeeIHaazZuTPdQ1670+6uvKEDt7Ax8/jl9f79+xful0eDO8uXcoWHD6qt9bGyofPDsWTqm776jzP8XX1Dd/syZFARYuBBwcQG3t8euXbsAAGvWrIEoilAoFJBlGZIkwdvbW/D392evvPIKDh8+jNDQUDAALy1fjlMaDfoVFBSrP8ogMzMTKSkpALClwjc8xRONp2TlIaHVah0AdARQAOCy2U1eq9WqAQxQq9VvW1hYdOzUqZOqY8eOYmUD6UkD5xybNm3SGY3GaU8i0QcAk8n0VUZGRkZaWhoDEHPo0KHZ+/bt6+Hu7m4MDg62dXd3h8FguK952+bNmyUrKys8//zz983Ie3t746OPPmJ4Onaqjc6dO6OwsFDetWuXcPDgQUkQBOTm5opKpZIbDAY2bNgwtGrVqsptxMfHY/PmzTw/P5/1798fTZs2rfB95oyxs7MznJ2d0aVLFyE7OxvXr19nvr6+j4YMDBpEjsiyTLK9CjI/dQ5zu8Dvv3/cewKAvCri4uLQg7IXNQu2tG9PmRhra1qc3W9B/iAYPpzUGsuWVf6e+Hgi+gkJ5eqVdTodIiMjER0dLaenpwtvv/02HCuQ+9YEGzZsQFJSEiZNmlQjA8pHDltbWhx/+y3Vjs+YQUGQR1DjWhY6nQ4bNmyQAQgvvfSSoFAoUK9ePej1+rpvIywIlFmbNYuktvv3A7//TvL1evWoVVxVSE0lEvHaa2T+OXYsBQ3j40l2Xgt1/nfv3mUeHh41Gm+7d+/m9evXl7t06VL+ebh8eak+85WicWMiUWUUT1ZWVpg2bRr27NmDQLMLO0it5O7ujgctaVSr1Tw3N7fyN8yaRT+yTLXuo0dToKp+fQjHjsH/778l9tFHIj78sOovYqyUMaEsy4iJicHJkyd5/fr12c6dO5ler+ctXVyYTdeu8Fm9Gt4l66DN46RhQ9pWairw2WcU1JkwAVYDB6K/IODy0KGSy6JFomxnh3xRhJCfj8zMTOTn58OvGv3emdEIh08+AbvXxaNSvPQSzXu7d5cvM6gC+fn5AoDmWq02sqoOSoIgeJhMJvFBjQC9vb3RpEkTXLt2TerUqdODbYSx0pn/vn2pVn3LFgqyqVQUYPvqKwoCBAXRMycggFQPM2dSaVlSUvE2hwwp/z3VeO4LggBZrqGXdXBwcctG2kjxtRo6lJREFhZAYCDYsGH46J13sH7XLjldr8eLL74o6PV6qFQq2NraQq1WFw3GkJAQhISEADduIOv6dVzLzuY//fQTQkJC5IraBkdGRhoZY2s0Go2+ZgfwFE8CnhKWh8Dnn38+WqFQrHJycjJJksQzMzMtv/jiC0mhUGSLoujo6upqbNeunW3Lli2rJ1t9QmAymbB9+3aDXq+/CuDvx70/leFeB4BfS/xpoFartU9ISBiwfv36n2VZtpYkSTlr1ixUZKwnSRJSUlJw+fJlccaMGXW23/+/QaFQoE+fPkLXrl1x69YtUafTwcfHB1lZWezs2bM8MjKSt2rVqkoWnp2djZycHAYA4eHhRQqB6sDBwQFtq5Nde1BYWZGL7fHjJDu/c4cyn48Tn31W9+Z2lSA8PBwnT57EwIEDH7xLQ4cOtDgfMYIkr7XtczJnTtXS5IQEaqe2c2eFNbunTp3CgQMH0LlzZ0EURf7zzz8zT09PKSgoSPDz83sgJcm9UhTeqFGjx1frJcuUpXV3p+xRVhbJjhcsILl5dDRlmAIDKSP27bdkcjh/Pi2k162jcTF+PGWzBgygjOYbb9A4iY4mWfjGjbQNNzfKljdpQoS3RHCOc46oqCjcvn1bmDBhAurXrw+TyYQ//vhD7tKlC2psuFlbmDOH5LzJyeTyvnUrZQS7daMsbll8/DEpVRQKCsa9+ipl58ykuBY6X5jh6OjIkpOTq6ekuYc7d+6wihb7+OsvCmYurIaK19GR6pATEkqbOYICsePKGNz17dtXWL9+PWxsbHiXLl1YTYKyhw4dkjIzM8XhZXqPVwhBoDaJAEmto6KA8eMxYvp08bKfH5qLYtUTlFpdqgvDsmXLpIyMDDEgIAA5OTlSu3btmJOTk/DXH3/wkM6d8ezAgcXn/aWXaEzs3Uv/z8yk+0apJPn44MEwTp6MbbGx8HVxEXdHRiI2Npanp6czURRhDo6/9NJL8PDwqHQX09PTYZ+RAXb16v3LLUSR6tS3b6f5tZqKih49elju3LnzW71evwgV3FtarVYEMBZAzdu/lIG9vT07efKkuGLFCnnMmDGCUqkEYwwWD+oPolRS9v3ll0sbioaFFf/bbLxZyxAEAaZKWjdWCicnmlMGDy7/mkpFz0SAXPZv34ZFWBgmrlsn/DFgAL/z228IfOedqrvwJCXBMTgYH7z0Etu5cyf27Nkjll1fSZKEyMhIk9Fo/KlmO/8UTwqekv2HgCiKi21sbNSZmZl6WZYFV1fXQkEQlL6+vm5t2rSBlZXVQ090jwPnz59HTEzMbZPJFHKv7up/BhqNJgfAH1qtdj+AniqVaqVSqVSZZUxKpdIsj5Xv3LkjqFQq7uHhIdnZ2T0dC48YVlZWpbIS90z0WGho6H0/27p1a+h0OuzZswe+vr5cFMUnz+yiUyfK1Ny9S5nisLC6b8938iTJE6Oj68xDoCrcvn0bJ0+exJQpU+Du7v5wZKxdOyJUOTlEmH74oXaO8Y8/KDAyYEDFr9+9S0Q2Orqc/JJzjnPnziH2HoHo3bs3unXrxg4fPoyCggIxLCwMlpaW3NXVFePGjatRxxU7OztcvHiRnT17Fm3atHngw6s20tKoZKJjR5Jgt2hBZP+vv8ibQK2mzOSHHwJTplDZyoIFVA+dlET1rJxTttrbm7bn7k4L0q5dqUaVMSqZkCSqmd69m9osfvYZZVufeYbMJFeuJKnq2bPA9evgfn44/eyz/KZKxd65dAm2o0cDs2fj5pkz3K5HDxYcFsagUNB13LePiNXZsxR0a9WKsuVeXnQMtT0uLC3JnK9nT8qw+fnR8ZQ0aD18mNQQ+/ZRMCM9vdj34RHCy8sLMTExLDs7G9WVUnfr1g2HDx9Gfn4+Hzp0KFObiYLJVDP1xmefkeR/3777vrVp06YYMWIE1q9fzwIDA6u9rwBw5coV1qhRoyIljSRJuHnzJlJTU9G+ffvSJTV379IcnZdH98eIEeSszzlck5IQExWFVlWNNVkuItBnzpxBRkaG+NZbb8HOzo4BEE0mE6706sV9mjXjvlu20HyXmkrE/r33iknXnTtUo21tTV0BevUCfHygbNYMPY8dw549e8AYQ9u2bdmECRPAGIOdnR1bu3at9Pvvv4sjR46sUN1mMBiwdu1atG7fXlIsWXL/TDjnFDj19ydp+n3c2M1o3bq1GBkZaUhMTJQqectgAGsBQBRFOSwsrMDJycm6YcOGaFzD1px9+/ZFp06dsHHjRvbLL79Ar9dDFEW0a9dO7ty5s/AkG1wDQE5ODlJTU+Hq6gpRFLkkScjNzYVery/viVER2rShgOCcOVUboDo40E9AANi0aWh76RJTT56MnF27YK/VkrFnz57lSw3PnCF1B4AePXrg5MmT5Uqirl69CsbYFY1Gc/lBzsFTPH48JTgPh691Ol1bvV7/KYDCxMTEdgBcU1JSZp07d86lV69eNr6+vjVqefO4ERcXh61bt5pEUVyg0WiqsNx9sqHRaJK1Wu1GAB/u3r074MKFCyaj0Sj6+vqaEhISlDqdTnjvvfdgbW39VJL/GOHh4QHOObt06VKVJlJXrlxBeHg4evXqhS5dujy5A0qlomyJmVSYzbbqCk2bkhz4CZhzZFlGWFgYb9CgAX9oom+GhQVlko8fpzppa+uH3+a+fZRNrYjs79pFC/GEBJQ179Lr9fjtt9+QlpYGpVKJxo0bcwBMrVajd+/eAIDu3bvj8uXLbNeuXZg7dy5sbGwwYcIEVKfPckhICCIiIvDPP//A398f6qqyMzUB53TMJhMtDufOpcz79u2Uxd++nbLsvXsTUZ49m8hpeDjd23l5xfXGly7RNgWhOItolmfb2xf3LH/33eLv//ln+t2iBbWXAiiQYoZZIrtzJ1BYiGtJSTg4ejSMjo78xXHjmOWpU4CLC+TAQMRduoS+vXsztnQpLWazs+lzY8ZQfasgkMqgXz8KUty8SS7ssbF0XQMCKHD0+utk2JWSQqZef/5Jf2/fvriWd/hwOvbERPpsXBwtks0BvQ0baLuvv06BqNBQClBNnkylPq1b07lfs6Z2rmM1EBwcjPj4ePmnn34SJk2aBM9KesSXROfOnWFpaYkTJ06wbdu2YdSoUUSS+/aluaW6mDeP7rFqwuxBUpN6fVmWkZ6eLnDOsWDBAoiiCM45VCqVLBgMOBcezno4OcH3xAmGjz+ma9m2LbBoERAYCN6iBZJXroS0ZAkuSRKavfgix+nTrFJS5eiI25aW2LBokVRYWCiOGDEC5q4790ofZf+CAhYyYULxfDdtGo2VLVvo+m/ZQmVASUlUAlNG/t25c2fEx8dzQRDkgQMHliLsEydOFA8ePIjQ0FCUzPCnpKTg5MmTSExM5J729nzAW2+JGDCAMtiV4dVXaVz//TfNB2bFQzWg1+uRmJioAoqbBpTBFgDDALhLknTl4sWLjRljTURRfH3gwIH2rVu3rvYDShAEODg4YPLkySwqKgqurq7Q6/XYuXMnj4iIgL+/vzx69OjHo+q5Dw4ePGg4dOgQFArFTZPJ1FCWZVVqaio/duwYA4B33nmnXGBLlmXcvXu3uHTLwoLmnh07cP2ZZ2BtbQ17e3ts3LgRTk5ORc+aUmjQAH7duuHi1q1Y+8cfaP3rr7x7VBRTLVkCy23bKMBlDmqtWEH3JMgLSKFQIC8vDyW7SZ04cSKvsLDwu0dwip6ijlD3dW7/H0Cr1QqMsaFKpXKhjY2NU48ePWxq0vbmcSIiIgL79u3bPXv27OoXcD3B0Gq1LQHEKJXKbyVJypdlOV0UxbGSJHVu2bJl4ciRI/8n1Rf/l3Do0CF+5swZ/u6771b6wE5ISMCqVatgb2/Pg4ODWdOmTR+4vrPOkJ1N2cSICCI2jxrDhlFngIdt9VVLSE1NxS+//II33ngDNXVirhYiIymDGxHx4AEVnY4+W1FwxGQiMrdxY3G9J6ikJDExEX///TcYY2jZsiVGmKWUlSA7OxtbtmxBUlISNxqNbODAgbxt27aMMVZlMDgxMRG//fYbVCoVmjdvjoKCAv7888+zisqSysHcw3nDBipBiI0lWflvvxH5DgwkIh8RQXWhlV2jtDQyqxo0iM7DpUtEVnQ6kphevlyrBn2cc8TFxcFgMMDBwQFr166FlZUV3nzzzVLZpjVr1kgGg4FNmzat+l1tOKdzYm1N+61U0nFv306y+1u3KFig1VIgol07+vn4YwoGbNtGwYCYGDr2sWOJrM2cSfX6v/xCZmcAnf+NG8mJuwrZ9aOGLMv4+uuvub+/PxsyZEi1fUvWrFkjiaIoTpgwgY79zz9rRAgBkEx64sRS46cyhIWFIS0tjb/22mvVJoJmkt/A3p4P6tOHWezbB4vwcKjnzwfv2hXJwcE4oFJhuI8Pkvv0wYHoaCkzN1fw9PSUXVxcxKioKP7M1q2I695dKrC3R+/ISNHPxYXh66/LzQkZGRnYpdHI7ffvFzJWrOBt2rRhJQNwSXv3Inn2bPjv2wcra2u6H/R6ukfUasrmf/01qVry8qjUoV07InMhIaXG3969e3Hp0iX5zTffrPBirV69mptMJnTq1InZ29tj7dq13N3dnWdlZbGxI0cyl2vXqK98RZAkejZFRtI+dOhA46JlSwpuViMgdOrUKezdu/ffjz76aFA1LlMR5s6duyEwMHD4oEGDFA9b2hobG4vQ0FAEBQXxfv36Pf7odhno9Xp88803BlmWG2k0mjtardYVwBsAlAA2qlSqWe3btx/Yu3fvUidi8eLFUlZWlmj2MpJlGTeXLkXSrl3yvnbtBDNns7CwAOccsiyjTZs2EEURvr6+8PLywtmzZ5GVlYXLly9Lubm5Yvv27XH9+nX5blKSEHz0KFeLIrifH/PKzkY9UYSwZk3R/b5gwQJ57NixgjkwmJOTgyVLluhMJlMDjUZTUJfn8ClqD08zmo8A92rJN2m12i2ZmZm9t2zZEmppaVmvTnoAPySsra1hNBr7aLVaG41Gk/e49+dhodFozmu1WvXs2bP1ADB//vzZBoOhMwC0aNHiKdF/AtC6dWu2f/9+VpWbtpubG9577z3s3bsX+/fvl7Zs2SJWFBV/ouDgQBmTgACSQU+eXHXt3MOAc2r58xhJRVnY2dmBMYb09HTUr1+/9hVO/v7Fvd1L9juvCYYNo+zXunWl/75wIS3SU1MBQUBhYSHCwsL4tWvXig7CLD2uTvcPBwcHTJo0CQBYVFQUdu7ciX///RcAoNFoyr1flmVcvHgRF+85fxsMBly5cgUqlYotWrRInj59ulCUeZHlYnlyaCjVdn7zDZHWmBhqBzd+PGXqg4KI5Jd0STf3rC6L7GwiefHxJOXv37/YTA4gr4qrV0mqX4uIi4vDX3/9BQsLC8lgMAiiKPIyXVIAAOnp6axHjx41a1/LWHEmvqSSyFxD7uVF2V+gWIEAUG01QMT9iy/o3xkZ9Jtzug/z8+m1Awco889Y5ee2DrF161ZIksSioqKgUCjkQYMGVYvtBwYGivv37yefjblzKZBYU3BePUM/ALdv35b9/Pzuv2/mcpFffgEz/j/2zjssinNt4/c7s4WyYAFBFBHBAogiFoq992gSSyxJNMaSpuknTd2zmh5PTDyJ0WhiTTT2WFBjR8FOURRFpUiV3tk2M98fD0tnAUui5+N3XXuhu9N33tn3afdjwKvt2kF4800WEhQElaWlOMDbm0PLlmAxMXCytkbBzz8bv83MlElHjsDX15f379MH165d42NiYqSePj4s8NtvMXDNGhlcXQG9Hti4kUoQNJpKuz1//jx4pZJ1cHdHx8DAajed4sYNqEpKJCtrawZJoo4F9vY0Po8dI4fQO+/Qc+XWLSoNYozG1LJllK1Ueo9HRESIHh4eXH5+fqUIq4lnn32W7dy5Uzx8+LBYUFDAN23alM2YMYOO6ZVXaF+18fzzlJ1y+nT5e4yRc2vlSuDzz6utUvG3WRAEBAUFQSaTNbjXOsdxva9cuSKLjo7Wz507V3E/TuDc3FwcP34cN27cwOjRo6VevXo9doY+ABQUFIDn+cJFixalApRtCmCR6XONRvNVRETE8P79+8sr6g8UFxdznTt3xqFDh6QLFy6I9+7d4+1LSqQhDg54/733IJPLIZPJwBhDcXExTp8+LWVlZQm3bt2SnTt3DgqFAlZWVpKNjY0YGBjIt2/f3lTiwhmNRqSlpbHk5GTknjghtP3jD/6yuzsurVol9O3bl+/SpQsUCoWYn59fNg4vX74scBy3pdHQf7JpNPYfIaVG/+EvvvhiZ3p6+pwnwdi3s7Mz/dMVQNQ/dyQPj4rqoRzHdQcAmUyWlZCQYO3h4dFo8P/DmARrIiMjIZfL4eXlhZiYGKSlpcFoNOLatWtCQUEBLwgClEolVCoVr1KpYP0wUrgfNb160QRy2TIS/XkICtvVOHqU1MB/+eXhb/sBsLCwQEBAAHbu3Al/f39h6NCh96emXBtWVpQqfOoUpTkmJdXcI9kca9ZUf0+SgK1bIbZvj+1arXjjxg3TxId5eHigX79+ldo+NhQfHx906dKFrV69Gunp6Vi3bp3Qq1cvvlOnTmVCrj/++KNQUlLCt2vXTuzQoQMmTpzIKRQKCCkpCNq/H0Hz56NXbKzkvm0bg7c3pZsvXkxpuTxPytI//USRu337GnaAkkTZADodqap/+SUZ/lOnVjfsCwupzjco6L6vR1XOnTsndOzYkZs4caLpfqk2mT9w4AC0Wi3X3lQm8E/CGI1xDw9yiri70zULCKCx+XfrdlQgPz8fMTEx0qBBg1BUVMSuXLnCjR1bv2CshYUF9b0/fJhSfbdvb/gBrF1LEe16oFAo2Llz5zB48ODyOntRpAySjRvp3ktIoP7w69dTZoa7O2zGjAFGjEC3ggJs2LCBG/Dxx5W2O3v2bFl4eDg6depUViJQWjLGkJNDzqzygyD9hTlzqFXfqFEAyMCMiIjA0IAAsI4dqx/8smUQhw3Dn0VF0r9mzKAygNWrqd2bWk1j8uRJ0nFISaFIflISGferVpHjaM4cKidauhRjxozhduzYgbt374qvvvpqNQeIra0tXnrpJQ4AUlNT8fPPP5NBLoq0zyVLqh9jRgYJQS5bVvM9+dxzwNKlyMvIQIkgQJIkWFhYIC0tDdu2bUPz5s3Fdu3aSampqbxcLs8wGAyf1PWdVkUQBBcACsbY0cTExD4NNfZTU1Oxbt06ycnJSZo8eTLXvn37x9LQB4C7d++C47iLtX2uVqvPffbZZ/EHDx5s//TTT5elahmNRjZq1Cj8+OOPzNbWFpMnT4atjQ1jTz/NkJ1dKfPCysoKI0aMYABkly9flmJiYjB06FBmb2/PGGPVfm9lMhm1Kba0BHbu5HHuHGTNm6PoyhVuz549+Ouvv0SVSsXi4+Ph4eEBURRx4cIFvV6vr4cqZyOPM43G/t8Az/PeNXlnH0ecnJzQvXt3fWRk5BmNRtO81GHxP8MHH3wwEQA0Go3r5cuXo7t27QonJ4Ezkc8AACAASURBVKd/+rD+X9O8eXOMGzdO2rt3L7OwsMCff/4JmUyGpk2bigaDgfXs2ZMPDw8XfXx8uFatWrF9+/ZJEyZMYE9MhwuFojz9NSCAUqdrat1zv9y9SxPHx5Dhw4cjLCxMcnR0fLiGfkUGDKB6cpmsYa35fviBsgEo4k4sWED13RcvIjI8HHcOHuRGjx6N2NhY+Pv7w9XV9aEcMsdxmD59Onbs2AELCwsuKChIPH36NJs5cyaztLSENjeXm9iuHdwGDeLw3/9Sb+eFC8FPmoSnXnmFSw0MxM20NLZ/1SrJYckSacKcOZxCoSiPSt8vycmkUL5xI/WK7tqVtvnRRzUbEE5O5YJ799ley0RxcTFOnjwpxMfH81OmTKl1uePHjyMiIgIvvvjiP1/KI4oUCX3/feDiRcoAmDePMmzc3ankwdTz+x/g5MmTaNasmRQQEMBlZWXhwoULiI6OLu9Hb4aoqCjB2tqawcKiXHuhoeTn07qpqZUFC2tg5syZbPWnn0qZX3/NWo4cSSKNW7eSkN6RIzQGpk6lLBV7+0q17qIo4siuXWJpWn0l45jjuJq7t9y7R86sxETKijLRtCmwejVy5s1D9IULOFpaauPu7i74uLnxOHu28nZKNSzkAQFQFBYyPP00OYDef5+M97FjK6fUK5WUeVNxvNjZkabE998D167Bo0kTDB06FKdOnaoz08HR0REymQypqaloLZOR/kVNGXIffUSOjaNHa95Q8+YQrayw/4MPkOzhIQKAwWDgeJ6XevTowZo0acJFRkYK2dnZkCSpBYB8jUYzCsBBxtjNxYsX190TELABkKvX66FQKJCamgpHR8d6l5b88ccfgp+fHxs6dOhjWaNfkfT0dIMoimbbVhuNximRkZFXvLy80LFjRxiNRoiiCCsrK/yLsjPKb5J27WgcvPRSjdvq0aMHq3eXoq+/Lrv/bXkeAwcOZEVFRbh06RLXv39/nDhxQoyMjORUKpUEIEytVkfX87QbeUxpNPYfMRqNpptSqexWW1/wx42bN28iIiJCJpPJghYuXPg/ZehXRK1Wxy9dunT2unXrVgYEBFgNHjy4cSz8g/j6+rJu3boBoPQ3KysryGSysshFbm4uTp48CVtbW2nixImsPkJTjxWmVOOJE6l+PyGBUoYb0GKqRjQach7MmvXgx/gI0Ov10Ol07JE//3r0oIjWhAlksNanhj8hoUyFuAyDAWAMoiiW9QLv1asXej0Cg83W1hazZs0C4uOZoNez72JjpfRevdCkRw945uayNgcO0D3SsSNlhfj4kNOI4+AEoOW8eXC+c4cdP34c33//vdivXz/Oz8+v0sQ5PDwcBQUFsLGxgYODQ5mgV3x8PI4cOSJ16dKFBQQE0MI7d1KU8YMPKPVfJiPRu+HD6VXzSVDmgKk14X2SmpqKTZs2wcbGBrNnz67VASuKIs6ePYuAgAC0eYg6AfdNQgI5RubMoe/pP/+htoKMUc32+vXUIeP11/+RwyssLIRWq2U8z8PBwQEBAQHYvXs3s7a2LhPEqw3GGGfD8wwtW5LI4f1ga0sdF2oqX0pJoc9GjQKmTYNFXh4cAgIk6dQpICCAYcEC0kpwciKdhFoQBAEbNmwQ09PT2YIFC+of6XVwAEJCKhv6oHvx4sWLuOvggOdWrwZbvVrwHzOG5ziOx82bZNybiIoih0Z8PGz9/TFEp2No1oxaMPbtS2r/VfU1jh2rudyqY0fKWvj1VxRqNDj77LPwGDiwzraJhYWFEASBUrW9vOi7qiikePEi7XPlShrT5ujbF5a//IIFCxZwFfQIyvbfr18/XhRFREVFISgoSFQqlTvy8/MB4FeNRsMA8Gq12pwqYycA4DguZN++fS6SJMl4nm/+6quvKm1sbJCdnY2MjAxkZmZKJ06cYAqFotjKysro7e1tJZfLZVqtlu/7mGjS1MWtW7dKDAaD2VZDarX66meffbZty5Ytk//1r39BEATUquMyZw49Tx6E7GxyFnz/PXVM4Tjcu3cPW7ZskUytjUt/77j4+Hhs2LCBAfj5wXbayONAo4HziFEqlcv69++vvO+eoA3E9LBoSJ9a03rBwcHG0NBQADin1+tn1LXOk44oismiKG4ODQ2dN2DAAPAPGJlq5MEw/cBVzILJyMjAzz//DLlczomiiNzcXCara8LyOGOqe/XwAMaPJ8Gm+yUriwyNV155qL25Hya7d+9G8+bNJSsrq0efbtm3L7XmS0+nlnDffVd7V4KsLKqvNj2XX3wRaNuWUt8BFOTlobi4GP369Xs4xyZJ9Nq3jyZc3bqRSN64cUBmJvjISPjPns0iIyNxV6VC8xEjBPm0aWYfSIwxtG/fHm5ubiw4OFgKCQmRjhw5wtq0aSMOGzaMA4D9+/fD3t5eNBqNKCgo4Jo1ayY4OzvzV69ehcFgYEqlEgEtW1LU76WXyFjt2pV28PzzFOX84Qfz57Z+PV3Lu3fv69LcuXMHf/zxB3r27Inhw4ebPedbt27BaDSidxUF87+d6GjSRrh0qbx9Xno6OTy8vMqXc3Ki8orXXvtHOmTk5eWJ7dq1K5sMDB06FPn5+QgODhaef/55s9faxsZGarpzpwS1mqtvKn6NyOX03OvRgwz76dOpDWOXLhSp9POjrBFXV9zdvJklz5zJnHr2rLSJjIwMNG3aFFWzufLy8rB582bk5uZyc+fOrZd+BgD6riZNKu95X8qxY8dw5swZAEDXoUOlFgsXshaTJ/Po1Yscg4yRNoMJtZqM/U8/hfHbb9F06lT6XK0mAceaWLWKnv2DB9f8+axZ0HXuDKcVK+C3di3D0KFmu44cOnQI7du3F62srDhs3FhN3R/Hj1PJg0IBg8EAo06HiIgIJCYmGnU6HdeiRQvWsmVLxhiDu78/BsyYgexbt9DK1FWjChzHoWvXrujatSsHwPro0aPGkJCQrwB8BSAVtSv0A8AlAK6LFi1KAACNRiMHoC8oKEBSUhK2b99ulMvlt/V6vQcAlJSU+JSUlDiGhIR8ZzQaez777LMPryvJIyY3N1cFILmu5YxG4yye513++9//+pSUlFgCNB+vNh91cSFH0/12+BFFagfcqlWZoQ+Qc8tk6Mvl8jLnkr29PXie1wqCsK3hO2vkceMJnjU/GTDGLBITEw25ubnK2sTEjEYjdDodioqKIJfLy/rFNhRRFPHdd99p5XK5OGfOHCvLCg8Ek4JnTR7DnJwc7NixozgzM/OG0Wh8GcBVtVpdW//U/xmUSuX7Op1u9KhRo3Do0CHj4MGDZZZ/Z5u0RuqE4zjIZDL07t0bAQEBT8wPfZ1cukRpnCtXkpFZz/7GZZw8SWnCd+48ksMzGo0wGo0PdL0vX76MO3fuYPbs2X+flaNQAHl5JI6l09UuiDhpEkX2tm4lI3zkSPoeSjEZFTqdrub1zVFQUF6L6+xM/1++nKIp27eTAf3MM2QQ9OoF2NigsLAQwStWwODrixEjRoj+/v719jxyHIeBAwdyAwYMQEZGBk6fPi1t2LABBoMBAwYMkAYOHMgBQElJCY4dO4acnBzh2Wef5S+ePy+0zczk8dFH5CgZPLg88mc0UnlEfaJoL73U8PsX9Jt04sQJMTQ0lBs6dCjKMgzM0KFDB1haWorXr19nPXr0+GfqdW/dIsPv5ZfpuzRx/jxNxis6I0eMICX6RYtINO1vLOc7d+4csrKyuAEDBlR6v02bNjh8+DBfWFhots1d+/btuT+6dMGwB40mbthAzzkPD3JKhoRQ1sOXX5Lh4eUFTJsGceFCKFJTmfOePUDPnkg7dw7RCQlSkl7PEhISIEkSPD09hQkTJvCmeczNmzeRmZmJ559/vn49y03k5FDWTBXHcUxMDFq1agV7e3tp2LBhDCoV8OGHVEJw/DiNa9N3HhwMbNlC42bxYihzc7H76afxxscfmw+2HDxYp+OnWa9eSPPwkPizZxmioui+qaU1rUqlwsWLF7mEmTPRavJkyE3n9Mcf5IgLCsLeffuMVz/7TGY0GiGTyWBrayu0adNGJggCrl27JoaHh0Ov17NmzZpJXb28WM89e8pbaJpBFEVcvXrVAEDGcVyqKIpmB3FpWajJ0O8F4DcA0Gq1OHjwYLEkSU999NFHx5csWfK9JEkLABjUanWIRqPpyxgrat269RMTkRFFkQMwBIDZXptqtbpIo9H0Likp6QmgrUKhWBkXF9eimh6JrS39Rt29S86yhpCRQY7ln3+mDIEK919kZKQIgBs6dChQIYsjLCxMkMlkexYuXKht2M4aeRxpNPYfMVqt9qlbt279OzMz8+U5c+ZYV22ZlJGRgTVr1uglSTLwPJ8nimKzqVOnWrZo0QKmB3PVH2RJkhAdHY24uDh93759Fba2tkhOTsa1a9eg1+sz9Hr9kWPHjk0bO3asBUCRk61btxpcXFwM06dPt6r6Q3To0KGitLS01aIoflBHCtb/FDqdbrpSqfz9r7/+6mU0GvN4nnceOXLk35OC0Ui9sLOzwzPPPIM9e/agoKBAGDt2LP/QVd3/CUxj+uZNqp0bPbphkb9PP6VWSd9999AOKSoqCvv27QPP86LBYOBKBRElnuclURShVColDw8P3tTeh+O4Wie1+fn5OHbsmBQYGMgczPV6fhR07kzt5EJCSGH63DlU65u9ezdFOmbOpChfFYE5xhgUCgWCg4OlCRMmsBrPs6iIBPH0ejLsR42iyfXBg8D165S+7eJCEeBhw+jfNKEiKkT2rl+/DoPBgNJ2S/dV28EYg4ODAyZMmMALgoA7d+6gooCVpaUlxo4dS5NlgwGWU6ZwcsYozbei0fPjjySsFhZWv3tSLqd07Nu3STCxnhw7dkwKCQnhhg8fXi9DHyDHhoODA5eVlfXP9AzevZsmy8nJlA1R9bNnnqm+joUFOfc2bqT78W/g5s2bOH78OKZNm4aqwsC9evXCwYMHkZuba9bYly5exIxVqyB8+CHu28K6cYPO2d2dshsEgQT/HBxIW8NgoOUKC8FxHLpbW0tYu5Yta9oUE3/4AW1atMCZMWOw8LPPkHfqFE588w1f9O9/QxUVBfGNN6BUKmHr4CC6//QTB42GxmN6OjnRRLHmMqmSEjJ+qnTgKHWOoGfPnqjUym3MGDLwJ0wgh13nziSIOnw4vdevH2BjA/bBB8j7/HNkZmai1mfejRvkRLt3z+xlu3TpEvJEkeUsXw4HU/s+tbrG+2v06NFo0aIFdDNnYrtOB5aXh14+PnCxtYWxTx9s+fVXMSkpSTZlyhQYDAbY2trCxcWl4lfKiaKIwsJCbN68Wbzg58cPTEyslw5HVlYWtFptPgDVokWLGlT2KZfLuxkMhg6MsZBt27a11Ol0ZbVekiR9AuBbtVqdUPrWi5Ik8UFBQSVJSUlo27atNGjQIKuWVcuwHiMCAwMNFy9e7IU6jH0AUKvVEoCLAC5++umn/VNSUubXKD7KcZQN0xBjPz+furL0709zhirP9Pbt23M5OTlCnz59yr5sg8GA0NBQvU6nq/8DvZHHmkZj/xGjVqtzNBrNWwUFBQ7Lli172tfXl+vbt69CpVKBMYYjR44UiaL4+cKFCz8HgCVLloz5/ffftwIAY8wgiqKFSqVir776qoWpr+auXbtKYmJiUg0GQ3JeXl6/rKysosLCwnxRFLcZjcZNANKvXLkytV+/fmjSpAlOnz6dbzQav4qNjf20uLi40g98dnY2YmNjeVEU//P/ydAHALVanQtgNABoNJqAmJiYw43G/uOHl5cXkpOTce7cOT4sLAzt27cXpk+f/sR4+M3y/ff098UXKSq4a5f55UWxXLDqITs99u/fL+n1evbUU09x9vb2EEUROTk5TKlUMgsLCyQnJ0s3btwQw8PDOZ1OB7lcjhYtWkgGg0Hw8fGR9SkVh9u0aZNw9+5d3s3NTaw4gfjb8fEhQ1sur9ya79//pijJzJnAwoVUl14FS0tLzJ49Gxs3bkTwyZMY6OhIWQM3b5LR9umnNMn39qY0d6WSDJgVK2jbMll5v/V64Ofnh5MnT0onTpxgnp6eqOoUbiimnsvVEATgl18Qs2MHzvn4MPuJE9GqoqGv1wPdu6OmPuNmsbCgdetJXl4e4uPj4ejoiMDAwPrvByQim5iYKAL3b4M2mFu3KCr2xRd0D1R1HmVnU0ZJTRkOjJEjIDmZxq2pdeEj5Ny5c3BxcRHc3NyqXSOj0QhJkmpthWnKAiwEkOLmhj9XrZKef/551qRJk4YdRHIyGanffgvMnUup67t307gBaGya2LsXADDgs89Y1jvvoMeVKyg5eBCenp5skSQB06ejqasrDD17CqE2NlyvnByWmZMjRQsCa9ulC43JhQvJ2bZnDz0jW7aktnazZwO+viRiunIl7evuXdJPmTqVHBF79uCv+HioBAH9/fyqn0tgIG3j66+BiAgSHfT3p/E0axZpagBo2rSpFBYWxkaOHFnzNZHJ6JjMoNfrcfToUalp06akdSKT0e+CTkelNV99Va3mv1e7dsDly5ASEpCxdKlk/9pr7Is33wTjOHCpqdzkyZPRyYyByHEcbG1t8dprr/FarZYcC2fP1pnZo9frwRgz3I+Q88cff7wGwBoA0Gg0PIAeAK4DQGnb54qtny8BEO/evRtlMBim3Lp165m4uLhPZ82aZfF3GPxGoxE8zzeofWxgYKA8PDx81pIlS3YsXrz4ZH3W0Wg0vFwuHyGXy6nlZVXGj6dMqvo6DVNSyCH16ae1lgxGR0eL7dq1q/ScuHLlChhjF9Rq9f9ER65GGo39v4VSr91UjUbTLiws7J1Lly69IkkSb21tXVJcXCwXRfFH07KLFy8+AFIsBQB8+umnbwH4whRZioqKQkxMTKper/dmjA2Li4vzMhqN8wFsLd0PAOCzzz77atu2bf8aMGCA1d27d60BRPI8rzt58iQniqIAAMXFxeLNmzetlUrlgU8++STl77kajx8ajcZGJpNNEwRBKYoibt++jTt37hi6du0qb/0Y9S3//0p4eDhKtSTg5OSE27dv8//5z3/EefPmceYiU08UGg1NQFNSKDplqpuuSlAQqcdnZj70Q/D19UVkZKSUl5cnde/enQNQSX3ezc2N9evXj0mSBFEUkZGRgRs3bjCDwSALDg6Gk5MTjh07JhYUFHDz5s2Dvb39P+uQUamoFvjgQeCFF8j4UCqp3vHwYVL7jqoyl8nLo/TcLl3QYv16vLJ9O9s6bpwwcOdOHrNmkTL94MGkBp6cXB4Rr6E3dUN544032DfffIN169ZJ8+bNe/jpK9HRQFoahP37ccjDA0VOThhWsTY6MpLKGaKjK6en14epUymzISeH2v2ZQZIkfEcZKcyvJsOqDuzs7BATE/P3pfeIIimcR0dTZK2KoBsAivT6+9cuuGlpSffLyy8D166VO54eEbm5uUY/P78a53cymQz29vZCQkIC17p160rXsbi4GN988w2UPA+X+HjJ7qOPmPbaNVy4cKFMB6JeaLUUQf/3v8u7YwgCEBdHkXEz2NnZYVDFjhqMlRnTz37wAb9mzRopbPVqDHvnHXZz/34sevFFDjNn0rJqNb0AMu5NWhnff09j392dSnheeon+5uSgJCoK0ptvQnrrLbwQFASrY8dI7NPOjhx2cjkp6wcH0/gICaHv8fffyRiuYADKZDIWFhaG4cOH15z1lJJCBrsZYmJiYDAYWH5+PoqLi0nDxs2NsiBataKWfq++SnoQJqZMAdzd0endd9Hpq68YXnsNb3t7w8rKCt9++y0uXrxYrw4MALVcxIABpH9SB9bW1jAajQ3rn1cDpWWjF8x8Hq7RaOQGg8FUCvCfJUuW+Pz555+T582b90gDNIWFhVi+fLloZ2enDwwMtLC3t0fr1q3r1MVKS0uDXC7nDAZDbwAn67k7pdFo7ODn51fzd2Vq35uSUr0NalWSk6ll6uTJtbb8NRgMSE5O5nx8fMrekyQJwcHBRVqt9t/1POZGngAajf2/EbVaHQdgvkajeQ+AWFhY2AuAqFar82pbRyaT+bm5uVncunULzs7OOHDggFav109Tq9UlAPYCqPFBazQaP83Kymq1bdu2FwDMVKvVBzQaTeDly5cHATAVomoB7Pnwww+zH+qJPmHIZLJlRqNxbn5+Pr744gsDz/OJOp0uQ5Ik39atWz9YiK2RB8aUEunk5IRJkybh3r17+OOPP7js7GyzaahPFO3a0UujobruqkYoQJOvsWOpjdUjKGUYMWIEc3Fxwc6dO1nLli1NvairwRgDz/No2bIlWrZsCUmSkJ6eLm7atIlr1aoV5s6dyx6r72XUKDLuRZFSd7t3B958k9LsV6wgR8DYsSSo9fLLFKl//32gTx/o2rdHVmIiVybCBpRHJh8yVlZWCAgIwKVLl9jq1aull156iT1ohB8Anffhw8CKFZDmzEHIe+8h58QJqCumoWu1FAn95puGG/omTDoIv/1mdjFJksBxHERRRFhYGAIDA1Gbnk1NWFpaoqSkhKur5rwqWq0WO3fulABIU6ZM4eolyPrdd+QUunKFImS1UVBAxr45Bgwgp8CVKyRK18DWocXFxfUWoNPr9Zw5UeA2bdrwV65ckfz9/SsJgVlaWoLjODzdrBk6LV/O2Jo1EESRJSQkSOayASohSRTJ53lg3bry948coXKPTp3qVoWvBZlMhldffZV9++23QklJCV96rjVri1QcO9On09/r1+k4Xn+d2iQCOBEUhItvvYUhQ4bA9sMPy7M29uwhIc2MDPruOa687GDTphqfA87OzlJWVhb76aefhNdff736DfbJJ/SMqSFFOz8/H9HR0Th06BAAes4uX74cLi4ukr+/v+Tl5cXh668pg8aUtfT117Tyjz9S1sTgweQ0bt0aJnUIxhgyMzMb9oPRpw+VHI0YYdYxVSqmy2k0mhZqtTqjpmU0Gg0HYCTHcW0WLVq0ukHHUYGq2QOSJH2QmZn53P1ur75ER0dDLpcfyszM9Nq7d6+rQqFIFQShhaWlZUnTpk3h5uZmo9frhezsbK1WqzXa2trKi4qKhMTERFEQhPmSJJl/IFamhDFmMBqNihqfTzxPztSrV80b+0lJdM+++y7w9tu1LiaXy9GrVy8hKCiIP3v2rNClSxfexcUFOp0uB8CpBhx3I485jcb+P4BarTYZ26F1LSuKYvD169f7RkdHxxkMhgAAOrVafb4e+xAAzCt9md6LABBxn4f9P4vRaNykVCq76/X6941G422j0Zgsl8tXZ2Rk+Obn58PGxgYlJSX1V/pt5KHi5OQEFxcXpKWlYcWKFViwYAHs7e2xbt06yOVyPPfcc3hSWlvWiVpNE8Jjx4A1a0gAijGaQHt6Ar/8Qu2cHhGenp546qmnsHv3bmRmZor9+vWrM5rHGMO0adM4QRDK2iU2CL2ezk+hoMm4hwfV3d69SwbUwYPlzpCvv6Za6eBgWvaNN0j4bOxYihhOmUKT+RUrqIZ8xQqqVfzoI6qbfuUV2ucbb9CEKDGRrqe/P5VSeHpSFKR0rMvy81GyfDkz6ac8avr06YO4uDikpaUxnU73wOn8uHKFWum9+y7w00/4MyJCiA4J4QYOHFg++c/PpxTlX36pM+pols2by66bOTiOw9tvv407d+5gz549OHz4MJ57rv5zdk9PTwQFBUm7du0SX3zxxXpnj1y7dg2xsbFMkiR25swZBAQEoFaDOD8fiI2lSK63t/kN6/UUbd2xo+6DcHamtG9Pz/ISnnpw9OhRhISEmDQd6lye4ziz4pIDBw7EihUrWHBwsDRo0KCye4ExBpVKJQkDBzKWng4whqFDh2L58uXs0KFDxlGjRtU9CNLSKJo/aVL1z957jwxt0zi8T7p168abVPMPHDggTpgwoX7PndGjq9U7+/n54eLFi+jYsWPl+8FkzNvYkPPv00+pTn/RIurmsXYtlQiUEhkZicTERNakSRMpKyuLP3PmDKq1iVu9moQBqyCKIlasWAFBENCtWzdx5MiRnCAIOH/+PC5dusTOnj0reXp6krNFoQBOnaKx/Z//0LHExpa3gKwScZbL5WLp72P9n81NmpDuwb59wLRptS7GcRw6d+4sXLlyJX3p0qW3RVFcz3HcaxzHHTMajW8AaK9QKLbp9Xp3URRFAPdt7NdAcwsLCz2ARxqQiYqKKtDpdOsBHAag0Ov1WQC8CgsLDYWFhT4pKSndRFHUMcbSJUm6C8AZQDaA02q12rw4QxV4nn+lWbNmBoW5B3+nTvT7WBu3b1NWzYcf1qwhUoXRo0fzgwYNwtWrV/nw8HAxODiY43n+j4qZwo08+TQa+485H3/88SoAqwBAo9E4AKh/YWQj9UKtVp8BUKmRtkajeTs5Oblg5cqVr7Vu3ZqPjY2Vz507t9b+z408OjiOw5AhQ7Bp0yZ4eXmJKpWKe/3116HRaGAwGEBziP8hZDKKrppqZAsKqCY6Orp6X/iGUlRE25fJKDrg40MTxexsmtxt2wYfPz/YP/UUYt58k9syZ44wRaHgpZwccLNn02Ry/nxa/8MPqf514UIwxiBbupTKDzZupOyD996jlOWnnipPP7WyIkG4o0dp8pyRQesEBNDnvr7Uu3zTJnpdvUqib+PHA/PmkQPk3XepbvrsWTLaU1Io/Z7jaCIsSVTTWlp7jNGjScU4IICi9rGxFMHu3JnWad2aDN1nnqFjf+892t7QobD18YGyRQsI3bpBduoU1W6HhNAxXL5M6z7EmlGVSoX+/ftj+/btWLVqFd5///3725BOR9evqIiimkOGAIyhODQUoigyf1MUWqeja/bJJ+QUeRAcHen+mDq19rZipahUqrKuM5Ik1VyfWgulBgaLjY1tkGMpMzMTjo6Okp2dHTt58iROnjwJJycnzJ07t/rC8+dTynlwMDmfzHH+PLVGs69nNvNvv9H9FRtL6dn14Nq1axIAVlxcXK/l27Zty8XExAiBgYE1KvnZAAAAIABJREFUOkNsbW3Rs2dPnD17lg0cOLBSxF6WmMg6jh5N5w9AoVDA09OTRUVFyUaNGmV+x/v2USTx6tXq7cEYAw4doutUm3hePRk8eDCuXr0q6HQ6PioqivP29jZbkw6ASqAMhmrO0vT0dPA8j1o1CSSJMmOuXaPOAm+8QU6bLVuAF15AiSjizJkzZaVm1tbWkqOjIzt+/HhlYz8yEvj447KMAhP37t3D+vXrJSsrKzZv3jxYW1uXXZhBgwbB19cXK1as4FJTU9HKFM11cKDI+6lT5ACVy6nkoIrT7JdffjHm5eXJHBwcIIpiw1oyL1xITtKpU81mko0fP95ywIABiI6Odi8oKFBbWVnJr127NiUrK6sHY6ztmDFjrO3s7LB58+b4+u+8XvRxdnZ+aBszGAzgeb7aNUpMTLQCcFitVudXePta6d8YANsfxv41Go2HXC5f9txzz1mZzaDx86P2is8/X/17ycqi+/vtt6lUpZ5YWlrCz88P3t7e3LJly0RBEB6gJ3AjjyONxv4ThFqtNuPOa+RholariwC8+/nnnyelpKQ8rVQqm+Tl5fk0Gvv/DHv37hVdXV3ZpEmTOIAmSEqlEk2bNkWH0nrO/yl69CDj98ABMkJVKjLI580jz/6bb1L93rlzlG76yy9kdAQEkADY++9TWnpaGrB0KaV4xsXROnPm0Hb8/UkU8IcfSHn91CkyrD/4AK39/dEyPh7/SUxk54KDwTIzEZKXJ82Lj2eqkhKqZzWlUFcUgps4kfZrb09GM0B9xk0R3xMnKIXV3b08inzjRvn6JpG3f/2LXgDVz5ow9XJ/9dVyoauKqtqmiXTFlOsPPyz/d2QkGRmSRPvNzCRnSps2dE7FxXQNAWDBAsDdHfodO5Dp4IDW1tYUNTl9moz9WbNoYrVgAZ2vXk/txC5dous9bx6dY7duJBw2fz7VUFpY1N4SECRI+corr2DVqlVITU1tuINRqyXnSJs2JI5Wod3btGnT+FWrVolr1qzhbFQqDFm6VIpv3ZrFzJyJlx/A+CpDLqeoeD2wLzWOG2rsA+QsyMnJYQcPHoSHhwdcXV3NCs7du3cPGRkZklwux4QJEzB+/HisW7cOKSlVpGpWraLjX7WqughfbZw5Q86S+tKiBdXTTpxIzoQ6am9Pnjwpmfpg9+rVy+yyJpydnXHmzBmzWQ++vr44f/48CgoKTOnYAADOxkbKfvZZ5ljhfsjOzhadnZ0lmBNFzM2lZ8LPP9feB7x1a4qODx1aPr7vE09PT/7s2bMAyGCvl7EvijQ2KlAa1ReVSmXN9+DWrWRI79pFz47Bg2lMLVwILF+OXGdnhMbEoG3btuLMmTM5AFxQUJCUlpbGli1bJg4YMIDz9fWFLCOjWkp8cXEx1q1bJ3l6ekrjxo1jNd3DGRkZUCqVcHR0LH/z9GkqL/H3J8P/s8/IiRoURPdXv34oMBqRGhcng1yOQ4cOged59Kyo0VEXTk6UMh4WRr9HtcBxHJo3b44+ffowAHIAyM3N5dPT0738/PyMXbt2xV16bj8Ur7xGo3ECkAiA71yH/kNFcnJycPz48ZI7d+6IBoNBbmtrq9Xr9Zxer5dJksSMRqPMyspKHxAQoPTy8uKaN28OAJDJZILRaDyv0Wi+B7D6fiPeGo2mGYAWarU6ppZFelpZWXHW1tbmN+TgQL9Rly6Rg95EeDj9Pm7YQE7z+yA6OhpKpfLwBx98UGNJRiNPLo3GfiONmOHjjz9ertFoVnAct+/atWudPDw8/kcavT9ZCIKAli1bls2E9u7dK+p0Ou7evXs4dOgQalU/ftIZM4aEoPbsof/7+JARx3EUsbWyopRZk2jY8uU0SVOpqD7Y1pYmghoNfV7RuDGl+S5fXv5eZGTZP/nYWHTYvZv7q6QECoVCgl7Pzrz7rjjS358mxb//Tgu++GL5+osXl//bFFmoOCGpWNdsxuB9ZHAcGeR799L1MRnSJo0EvZ6unSSRWv/SpXDR6ZDHGForFGS8m5wUpmslipRpwPNkxJicH1otfZaYSJkE8+fTNbl3j/bdqhU5AZo1I8fIqVP0fxsbOE6YgF45OeLmn3/mZi9YUBYFN4tOR9/lvn0UdWzTpsaI3ODBg1l4WJhgp1Qy9vbb3G2jEcnJyQ9yVctZuZLOV5Lq1JVISkoCYwzPPPNMg+ch/fv3h5OTE44ePSpERkZyzZo1k0aMGMFVFJQ01UBHRESI6enpnL29vWRyFoqiiNTUVLRo0UICwCBJFPVNSaHvozZjtSqCQBH6imOgPnTrRinYPF+txVlsbCzCwsKQlZUl5ubmckajkXXv3h0RERHgOA5arbbmGvUK3L59Wyo9t1qdKKmpqQBQrTzNMyVFujJhAqvYMyA/P1/q27dv7YZ+YSGVPCxZQsa8OV5/vdLYj42NRV5enuTr69ugunJfX18UFxcjPT0doaGhUr9+/WpfPy+PSnqqOLS+++47MS8vjys10qtz9Wq509W0bo8elMI/diwginD64w+0ffppISkpiT906BCGDx+OESNGMA8PD+zatYsLCgpCUFAQ3ARBVAwbxo0pLMTRo0fF27dvo6ioiOM4jo0ZM6ZGQ9+EVqsFkyTSPPjhB4rgjx1LOhCSRM+Vl16ieykqCigqguXq1Xhz925cnzJFsrOzYyEbN8K3a1fw9S0NYoyeZ8nJZo39mnBzc+MyMzOLAgICrAESXTQYDK01Gg13P8r9VSgEkAGgZX2N/Xv37mHdunUlRqPxG0EQNgLIyc7O7gBKty8E9ZdPLyoqGnzmzJmXg4ODRzg4OMh69+5tzRiTS5LkAeAnUCT/eEMPuLTbQDZjrARAbbVOW4qKikacPHly0qhRo8x7Gp97rvJvuVZL7334YTVnVkMIDw8v0Gq1a+97A408tjQa+400UgdKpfI8z/NeXl5ejW35/iEEQZAqinhNmjSJS0pKgl6vx759+1BYWChOnDjxIYQmH0MmTqQXQL2qTSxdSn87dChTq0bFNmamCVp9DZcaeOaZZ9C+fXtYWVmxzZs348KFC5yXlxdcXFzue5v/OJMmkUhfTXTrRi+Aov6iCJcvvxSaZ2by4Di6vkOGUN1uaCgwcCAZASbBLX//cofGhgrtlU0ZCbt3l7+3YQM5Qu7do9RMgNp6NW8OTJiAUevWcXdnzEDs66+LPY4f55CWRiURgYGUXjtsGPDnn+R0+PVXMrIyM4GdO82WFnTs2JF1XL2aR2golUKsWydJ+fksJyenfk4Fc0gSOaT++MNsi7nQ0FDhxIkT/LBhw+o0XGujQ4cO6NChA280GnHw4EG2ZcsWycHBQXJ2dmY2NjYsODgYKpVKaNu2Lf/SSy9BoVCUPR9M7eeaNGmCuLg4tHv5ZdKE+OWXhh3E3bu03v10bRk/Hpg6FRmShF+6dZPkcrnUvn17KSIiggeAtm3bwtXVFc7OzpKfnx+LiIjAV199JRkMBmZlZSW+8MILXKVobynx8fG4c+cOGzx4sFnj+cKFCxLHcezixYtiYGAgXZubN9H7t9+40MmTKy3bvHlz/s6dO0L37t2rG/yiSOU4o0eTcVif8967F/otW3CudWvpxIkTDABzd3evlGFQFy1atMD48ePx5ZdfAmSs1c6wYTRuKugk3Lp1CwUFBdxrr72GFi1aVF/n+HHKkAoNrZzlYWtLjjlJIj2MkhLMfPtt/u706Vh3/Dh8fX3h6OgINzc3vPPOO9Dr9bh9+zbaTJzIne3XT/o+LY0ZjUZuxIgRaNeuHZo1a1arHkhUVBR2bd+OjjEx5Ag8eJAymkaMoOfOwoUkpmeC52n8AZD17g2btWvhf/UqEy9dwq19+yC1aUPq7FOnUpaBqZSpNnr0ICfC0KH10uMw4e3tDW9v77IQtbW1NRQKhVRSUtIRwA0zq5pFo9HYKhSKb/V6fctJkybVSzBSkiTs3LmzUK/XL1i8eHEFxUjUpH31F4C/NBqNLDk5+YX9+/fPlSTJlef5PEEQVgI4a+bY2gAwqtXq1Bo+DgQACwuLWlvZqdVqQaPR7I+Pj38agPm5pr09lcKNH0/ZcqdPU3lZTfdxPcnPz0daWpoMQNB9b6SRx5ZGY7+RRuomr23btvVuXdPIw+XevXsoKCjgr1+/Lvbo0YMDgKZNm5YpeBcXF8OUztnIw6dLly4AgEWLFmHnzp3S+vXr2bBhw8oNhCcNd3eKhCxbVl5qUBMch5jbt3FGFPmMjz/Gc0B5Wnx8PKXw37xJdf4lJeQAqEdEuwyTMdy0KUX+AVJ/LyU6JASZW7ei5axZHDp1onKDli1pUicIlAL+ww90DOvWkbG/bFnd+83JoayQUpE0k4F1+fJlDK2PsWYOxqjLQYUIe1Vyc3Nx6tQpfuzYsfUSm6sLmUyGp556CiNGjGD79+9nt2/fFkVRFIcMGcL36tWrxmi0lZUVJk2ahIv//S/be+ECFixdClZL9wmzHDz4YAf/+ecIe+st6EtKmE6nY1euXAHHcXjuuefQsWNH0/hiADBr1iwwxpitrS0OHDiA3bt3i6+88kqlMbhz504pKiqKDRgwQKq1fVcp06ZNY7/88guOHz/OBQQEkOHUqRMObt5sjDp3TnYpPFyaMWMGc3R0hFarlZydnWuO7H/8MTmsKirv18WNG8jatk26MGWK5OTkJOn1erZ582bptddea9AzJSMjA3q9Hk8//bT5BbduLddAKeXMmTPw9PQUW7RoUX2fMTGUCbBzZ/VyDicn0hspLiatBgsLID8fLuHh4DgOZ8+eLTsejuNgYWEBb29vYPFijBw7lvkZjcjLy0O7du3MHrKxuBi3Fi1CZ47DCIMBXLt2dDwV2b4dMHfucjnQvTvErl1xITUVyUOGoGlYGKx++UWyu3qVNS0sRGGbNhD8/CTPF19kNu3bV35+OTmR8zE0tH6OHDN4e3vLwsPDZwD4qK5lNRqNDABvErPWaDSOHMf9IJfLA21sbFqOHj0abvXUu0hKSkJeXl6hJEkb6l6aUKvVRgDrSl91Has/z/MfARgPQNJoNN1LxbArIrexsdGWlJR4azQa2yr1/xW5VlJSUneZQLdulLFnMJBD6u23H8jQB4DLly8beZ7ftnDhQu0DbaiRx5JGY7+RRupAp9Mti46ODlq1alUez/NwcXFRDh8+3KJebYgaeWDWr18vKRQKVpNxKUkS7ty5Izo4ODR+GY8YjuMwadIkdvjwYRw9erTcQHgSSUigKLsZY99gMGDLli1o3bo1JpmUxStmTuTk0F9bWzLyCwupnvLECSoFuHHDfLu2lBQqG7Czoy4Mb71FXRhWrQLOn0enIUMw0sUFCR06wGnXLnAzZ9LE/vZtEkiMjCSjWqkE3nmnbtV4ANi/n1p/JSSUpVI7OzuzqKgo1BQlvh+kFi2gHzkSt779Ft5du1b7/LfffpOcnZ0lHx+fh+osUigUeJbE1+q1XS9PT7TcuROJo0ZJjOqNG87atcC2bfe1KgCkWlgg0sMD7//6K1ZOmoROgweLY8aM4WoaV60q1PaPGTOGW7VqlbRq1SpwHCeKoijZ2dnxN27cYOPGjUN9UuJVKhVefvllfPvtt1i/fr04fdQoDp6eKP7qK5mPjw/Cw8PZtWvX4OjoiM6dO7Pg4GAoFApwHAfGGL2MRrRJTETGhAkwhIWBMYaaIvQpKSmIj49HcHAwZDIZZHK5pHvqKTZ36FDWrFs3FBYW4rvvvmPXrl1DQ+qww8PDYWdnJ/j4+NReYjBzJkWyR4yo9HZmZqZYo8F4+TJpcqxfX7vTauVKGu/PPkvG8ebNCFq9Whi7ezffYcGC6stfv07lLba2aA7AVA9eIyUlQFgY8j7+GC56PTquXAlVt27VnYhpafQMq4eTSiaTwcPDQ0hMTOR6vfsuS05OZm2WLkVxVhb0q1fDcPIkyyouhk1cHImZvvAC/bWzowwytfqBjf2ePXsqwsPDX9doNN9WbdOn0WisOI6bp1Qqx0uS1Iwx1lmSJH7JkiUzFi9evBHAS6IoThRFEUajUVur46kGIiMjdUaj8YeHUD5QDY1GI5PL5WudnJw6+/v7i8XFxdyhQ4fOajQab7VafafCotdKSkrg7OzMEhMTPwBQTeRDo9Ewxtisli1b1v38srSk347+/ckR84BdWwRBwIULF/R6vb4e3uJGnkQajf1GGqmbYABz7927lwBAmZWV9emtW7fcZ8yYYW1jpgdtIw8HQRAwefJktK+hN7EgCEhISOAAYMWKFcKwYcP42vrDN/LgxMfH4+7du2WT/SeW0aPplZ9fScCuImvXrpUsLCwwZcoUZlbFuqKa+6VL5engmzeTsT94MKXMLl5MBv7s2fT3mWfImFizhtL3i4oq6Rvwd+8i5fBhKTw8nKVrNBjv4gLWtm35vjw9Kap65QoZ8XWRmUnOit27K9VMHzp0CJaWlmUZHA1Fp9MhKSkJiYmJUmxsrJiWksJPv3ULQZs3o/NXX1W6T86ePSvk5OTw8+bN++duHlGk+taZM7H5ww8l906dcF/5BTdu0Hf4AG0/MzMzUWJlhdT+/TH/2Wch79OnRkO/KtbW1pg5cya7fPmypFKpOK1Wi9OnT6NLly6Cr69vvQ0hlUqFt956CytXrmSrNmyAe+/eSMrJgR3HSYGBgWxwaVeFwMBAZGdnS1FRUaIkSZAkCXbx8Ri6bh2/7aOPjMbUVIbUVKmwsJBv1aqV+MILL/AAlUscPnxYCAsL45s3by7o9XpepVJJvXv3Zj4hIeBfeAG4cgUqlQr+/v7YsWMHDh48iOeffx4t6+hyYTQace7cOUybNs38+QoCdYqogkwmk1QqVeV1Y2LIebNkidnsFAQGkvJ5KXeTkhCeksL3F0Wobt+uXuN+/Di9Pvig9m0WFFBZyMsvAx06YMPgwVK7rl2lHr6+NT98Vq+mMf3f/9a+zQo899xzZedallHTqhXa//ADvv/+e6PdkCEy2NiQTsFvv1Fr0r59KWsjPZ20AOrjUKwFBwcHtG7dWpaQkDAdQFkKk0aj6SyXy/9q27ZtUw8PDytbW1u0a9cOUVFR+Ouvv54DsBHAVwCWA+Dz8/MTT548yQ0fPrxeFu7du3e1oiievu8DN4NSqVxraWnZYdq0aUypVDIAKCoqkoWGhu7UaDTDTaLaarU6/euvv47t3r271717997SaDTH1Gp11dr/LpIkvT1o0KC6d6zXlwv2Pmh7VpAwH4AbarW61jKDRp5sGo39Rhqpg1Jl/jWm/2s0mv2iKCZmZGQ0Gvt/DywiIkJ0d3evNhGWyWRYtGgRiouLsXPnTv7YsWOCp6cnn5+fj8TERCiVSri5uTWs5VAjtbJ7924xPz+fa9mypShJUr0Mk8eWoCDqIZ2TUy1qJkkS8vLy2KhRo6AydR2oD15e9PeNN+gFUOu2HTuonjYggJwAjFH3BBPHK8z7TBNqpRLjxo1jbm5u2LNnD9q2bQvfqirL48bVr2WeSWTryBFq21ThPAHcVzr9nTt3sH//fik/P59ZWlqKTZs2haurKz9mzBgoXnsNsi++gCiK4EvF54xGIy5evMj5+/vXWqP8yMnLI8eLnR3Etm1RdOUKi4uLu79+0pcuUSbHA4yBgoICAEDSvHlwu3mTNBhMJR11YGdnh+HDh5ft3N/fH1ZWVvU29E3Y2trCzc1NtN+6lXX47jtuDOl/VDupMWPGMJjU+CWJBDoXL8a8118v+zLj4+OxefNmfseOHWJ6ejpyc3M5S0tLNnPmTGRlZfFBQUHS3LlzmUKhoJabFTI/hg0bBnd3dxw8eBDbt2+X5s+fb/bC/vXXX4KlpSXn7u5e+3KhoeRMq0EXwsbGhk9OTi4rDcOdO5QaPX163WPq+eepHR/KxN/Qd+BAqJYsoVrqRYvKNVUAcgjW1OIRoJKiP/8kUc1x44CNGxErk6Fg0ybm6urK8vPzYWFhgWqt1zt2JAHXB0QURWi1Ws7G1hZwcaGI/tix9Fz89VcaL0eOkL7HAxj7ANCnTx/LlJSUjzQaze8A7OVy+Xy5XD5j+PDhyp49e5b9SB85csQQGhoq5zguFwBKFfB1Go3GQ5Kk5g4ODvUes9nZ2dYAqqbVPxQYY8179+6tVFYo9ejXr5/MYDB4nT9//qZGoxmiVqvDlixZMkqSJK927drh2Weftdq2bdsfGo2mvVqtzjOtp1Qqf/Dx8dE5OTnVrQ0VGkpOxjlzHsp5XLlypVCr1dbPa9TIE0mjsd9IIw1ErVZLX3755e1du3Y1nzFjhqVWq8WpU6eKEhISFC+88IL8iRYve8wQRREuLi64du0a17t370qprCYYY1AqlYiLiwNjjP/yyy8lURSZhYWFpNPpGM/zYps2bbiioiJRkiRxzpw5jc+9+8Q04WzTpg2n1+uhrG97sseRkSOpdWENxlpSUhKMRiMeSpbIG2+QKJZJ+M+McF1NeHt7IyIiQrpw4YLkWzHKN2kSpdeaWgXWRnY2Kcz//jvQpQskSUJMTAwOHDgAQRAAoEHnKYoidu7cKVy/fp3v378/69OnTyXxOwC4tWEDXv3vfyF99hnA8xBFET/99JMkCILo7+/fYIP0oaDVkpDi2rVUKiGK0O/ciaeffvr+rPWCgnJhxfukZ8+eOHLkCBITEyX06MGwdStgNFKZRgOps2WXGSYPH87jjTfKu1OYQxBIGOydd8gwroCrqyvmzJmD/fv3w9XVlevUqRPatWvHcRyH9PR0GAwGVubokcnovhwwgPQnALi5uaFz5844depUnd/J9evXuYEDB9aedSMIwKhRZJTXMEYKCwsFPz8/uhdTU0npvn//OrsJ3Lt3D7dOnIDbt99iY3o6dKVdTQIDA+lZ4uJCHTE++KC8PWmXLuR0qOhEEEXqkvL776T78fXXZZ08jq2h2MLevXsBUAnVokWLytdNTSUDfOrUui5TNYxGIzZt2iRkZmYyo9HI9Ho9a9GiBWvVqhVFjLdsoVKCzExqu5ecTPXgFTup3Cft27dHYGBgs5CQkHiO47iePXvy/v7+siYV9BQiIyNx/vx5HcdxoYyxMNP7Go1mEEqV8ENDQ4vPnz9vdHJyUrq5uVl06tQJcrm82v5EUYQgCDyAggc++BrQarXfnDx5ckiXLl2sTEKjHMdh6NChcicnp6Z79+49s2TJkh8lSXoPACIiItC3b194e3urrl+//jNAUjBLlix5RqVS9RgyZEjdP6iZmdTe8rffHso5iKKIuLg4OYBDD2WDjTyWNE56G2nkPvjwww8HLl269MPffvttaVFRkWA0Gt8BYHno0KGlc+fObQz315Pjx4/j6tWrAsdxko2NDTd8+HAuOTkZ9vb2cHR0xMqVK6Xi4mI2ePDgsr7cNSGTyTB//nxkZ2cjNzeXNWvWDO7u7kwURZw5c0ZKT08XXV1d2blz52QhISHoU1HBuJF688ILL3AXLlxASEgIXF1d4WWKZD+JcBylQI4aVU1oLSsrCzY2NoJCoXhwwzQ4mCLKAwfe9ybGjRvHli9fzkJDQ9G7d2+alOfnU2TZHIJAat2zZwPvvousrCz8+uuv0Ov1EEURw4YNQ9u2beFUauRdvHhRuHnzJiZNmsTX5sg5fvy4GBcXx959991asx46vPgi1ly+LKV8/jmbMHEikpKSoNVqpffff/+fMfRXrqT2eH/9BdHHBxvXrxeyKA2bt7yfbhU5OdTm8MZ9C4sDIMNALpdLbdq0kdCtG8PBgxQBXrzYfBr5w6ZJE0rVrg9xcST81rdvjR87Ojri5ZdfrmaBBwcHS5aWluA4rtyQ79iRDP6iIhK7A6BUKsHzPPR6ffVodgWKioqYwWCo/Tg5jsplSrebn5+PpKQkpKWlISMjA4WFhby7u3v5d9mqFSndm+H69evS9u3bGccYhA4dpDatWjEHJycMq+jA69SJep5/9hkZ/i++SHoBpqyc1FQy7u/coWyb48epTWYFAgICsGvXLowcORKenp5YsWIF9u7dC8YYeJ6Hy8GDsLt9G1FHjoDjuDIdBY7jwPM8GGPo0KFDtS4D4eHhOHbsmGhtbc099dRTLDk5WSopKZFG29oybsYMat22ZQtlLrz4IpUhvfMOlS08hCAGYwyDBg2Sd+3aVW5tbV2tE0dSUhIOHDiQJwhCf7VafaXK6hE8z6fzPB+XmZn5gyRJKWlpaV2io6Mn/fnnnz27d+/O+vXrp6j4TBJFEYwx0ZTB9LBRq9Wnv/jiiy1//vnntMmTJ1tWzHTr3LkzHB0dLX/88ccyYZhjx46hb9++6NKli0VERMQkjUazVa1W71YqlTP8/f2tzN3vZXzxBWWQPaTsqMTERMhksqRPPvkk7aFssJHHkkZjv5FG7hNRFH8qLi52YYyFq9XqNRqNpllGRsbnsbGx9VaK/f+MXq9HSEgIhg0bxltYWOD69evimjVrIJfLIUkSRFGElZUVe+edd+qVSt28efNqwkccx6F///58xWUOHTqE6Oho2NjYoEOHDnB1dTUvmNRIGba2thg6dCji4uKkGzduME9Pzye7dr9lSzIK9PpKtY9t2rRBcXExf/DgQYwaNerB9qFSUWrsA2BrawsLCwtkZmaSsXDgQFkaca0YDFRXvGYN0Ls3MjIysHbtWrRq1UqaOnUqq2lief78eT4rKwtBQUF45plnqn2u0+lw8+ZN5u3tzcyOScbw/OjRLHzJEuxkDNbW1uKECRP+mVqanBzgyy8pguzri4iwMCQkJPD9+/eHl5cX7OzsGr7NP/6gzIoHLA/Kz8+HKIqsrEe8TEaR/d27SWH770CvJ6dRZGTd9+lPP5FAZMUWkvVAkiQYjUZWUlKCsLAwdDe1vrSwIKX8rVupxRuoHOHUqVPS+fPnWb9+/WrdpoODg5SYmFjzw6ekBGLbtvj9/feFVIDp9XpOFEWoVCqpadOmor29PRs/fjxnzRhF4W1tSSDTDAkJCdi3bx9TqVR49dVXYTV/PkOLFjVn6jAmrvMhAAAgAElEQVRGzprdu4F+/Ugf5N49ysTp3ZuU/DWaWjMpzp49Kzo5OXE+Pj6QyWTo2rWrqNVqRUmSmCiKUqyLC657eDBtaqpU+l7Zb6YoiigsLOSioqKkuXPnlt2g+fn52Lt3L3r06MFGDhnCZDodPD7/nIHjKFOjVy/A2Rk4dIickzNmkOPpwgVySKxebfb61IWpBaFWq4VMJkPTpk3h6OhYKTssIyMDAOJqMPShVqtzAFQVXzgO4HuNRuMcERHxSVhY2Mzu3btzgwYNUlhYWEAmk4HneaPRaLQHkFF1mw8DvV4/PzY2dsTNmzedPTw8Kn1mb2+PN998E3fu3EFeXp7UrFkztnbt2sLk5GSVTCbLNxqNJQCg1WojcnJyxqAum+zGDXqOmRkXDeXChQslBoOhgT1HG3nSaDT2G2nkPimtt3qtwv9zNBrNK5s2bdq4cOHCslrVRsq5efMmbt68aYqySK6urmJAQAAPAN26deN0Oh2USiWys7ORkJAAHx+fh1pv7+vrC5VKhdjYWCkzM1MKDg5mQUFBTC6XSxzHSTKZDAMGDOC619aHvREAwMCBA9nvv/+OjIwM2NnZCUOGDOEfuEf7P4GVFYnbXbxYKSXbzs4Os2bNwq+//goAD2bwBwcDb775oEcKmUwm2Nvb89i1i1I4Z882v8LUqWRUBAVBkiT8+eefkqOjI2bMmFGrd4bneQkAu3LlCvz8/NC6Sv/4oKAgQRRFVrFWvDYslUr0btkSXd99F1ZWVtzfrpuRkUHiiPv3U/eBUqeUt7c39u3bh/DwcNRLDKsmcv6PvfMOi+Ls2vj9zC5LE1CRIihgAUXFihVFsBuxRI0mtmiiiT0xxcS670aTGH01xdfEJLYottgNWCMgBFHUKKCAIk060svClpnn++MBRGkLrPXb33VxKey0nZ3dnXPOfe6Ty6qfjaQ84bJ161Y6Y8YM0rx5czbCLjqa/VsWAD9TRCKmfKgr0KeUBca1jausAUII5syZg23btsGpTKr+xP5XrgRcXQEXF3Ach86dO1M/Pz/St2/fGqv7Xbp0IeHh4TzKfQTKEAQBZ318oN+rF0ycnDC4Z0+uWbNmMDY2BmGZSba8SsX66gsLWWW/Dq5fv055nieff/45+06ysmK+DTV9NsyYwd6DnTqx4Hn6dGbe6ekJTJ5c677kcjnc3NwqKt/jxo3jUD5loqSEeR2EhLB569Xg6+uLsLAwnDlzBoWFhcjJyeELcnO5ri1a0DeSkjjO1ZWpC3r2ZBMFKlfts7NZhX/CBPaTk9OoXn2e53Hr1i38888/coVCEQEgmRBiTCltq1QqHSwsLBQTJkwwsba2xp07dxSCIJjVudGnkEqlyQAWyGSydbdv3/72zp07b02aNMmwbdu2aN26tSo+Pn40mNGf1pFKpSUymWzeuXPnjnbo0MG4cvJboVDg2LFjxenp6bwgCGcFQZgK4ACAr1atWpVSaTMRmZmZcgDVu8UC7P33/fdMIaKl71pBEHDv3j0xz/O/aWWDOl5adMG+Dh1aQiaTEQB/tGjRgj4hVXzFEQQBubm5UCqVuHz5Mi0uLqbDhw/n8vPzERMTA2dnZzg6OtZouqVUKhEZGYmkpCSEh4ejVatWvLGxMZk0aRLXvn37J27UyrP81VXptQEhBE5OTnByciIoM6EqKChAXFwcMTc3J3fv3sX58+dx+fJlfsqUKaKngx0dDEdHR/Ts2VNISkqiCQkJop9++glr1qx5NY0Qc3JYteThwydmFVtZWWHWrFnw9vaGtbV1VXM8TYmNZSZXjUCpVEIsFnOld+/ymDdPhIULa18hIYHNAi/zuNi1a5eQlZVFpk6dWuPnUkZGBjIzMwkAtGjRgu7YsYMMGjSItm/fntja2oLnedy/f180btw4zQz2PD2BgQPRpKio0RXwepOUxMaGjR4N2NpW68swduzYhm07L4+dXy3ImhUKBXieR25u7mNJukjEzteaNcywrSHKg/qwYQMwf37ty8THA4sWsTnvDWl7ACqS30ZGRk8+IJGw5Eal5PiYMWO4+/fvC1u2bOGGDRtGe/XqRZ5WEFlbWyMoKEiUlpZW0YZy9+5dnDl9WvAICCA2v/5KbB0cqs+4CwKTq1OqsSHi3bt3Sfv27R9/ty9ZwlQOtT9pdr1kZgLffce8Inx9mUS+Bo4cOULz8/O5Dh06VL9ATg5TldTS1iaXy6FSqUhqcjLfMSsL7bt2FXX97juIPTwIWb6cJcE6dKg6NSA7m31u9OnDzEtzcoC4ODYhoAHk5ORg79698tLS0iiFQvENgBNlZnsAAJlMpp+RkbFg165dGxctWqSXkJAgEgRhSIN2BkAqlaYCePerr746cOjQoQPdunUzdnR0bJKWlvYmnlGwX8b50tLS5Hv37nWoXN2/desWMjMz/1Gr1ROlUqlcJpPNlUqlRdWs39Lc3Lx2DX9qKjPla+BrUR1hYWEQi8W3V69enV330jpeZXTBvg4dWkIqlVKZTDYyPz//4IkTJ0wMDAy49PR05cSJE42aNm36og+vCvn5+YiKikLXrl2r3IDl5+fj4sWLyMrK4vPz8zmFQkEAwNHRUbCxsSF79uwpD5z5U6dOiRQKBQwMDKiJiYlgYGDAFRUVCQqFggiCQHieJwYGBtTIyIjOnDmTs7Oze6kkD6ampuheZp7WunVrDBs2DKdOncLOnTsxY8YMXUtGDYwdO5YDgFOnTuH27dvYunUrPtJCBfu5Y27OKrXVOHbb2trC3d2d+vv7C/UZaVaBSsUq8I1IGpVV6KiVpSX1WLNGBEFgI5dq4pdfWAAXF4dSlQo3g4ORlpbGffnll7UG6eW9602aNMGiRYvItWvXcOfOHXrjxg2qUqk4fX19amxsLDg7O2t+HhYsYMkOf3+NV2k0N2+yYCYujpmePfHQTfz999/U2tqaOjo6NiwDkZzMeqwbYYhXTmpqKgBgxIgR1MrK6nE06+zMZrMHBLBElFm9i52aoVazNo+6FASnTgGOjg0O9AEWgAJAaGgo+j1tmGdqys7prl3AiBHgOA6ffvopFxYWhpMnTxIbG5sq5qzt27dH7969hb1795L58+eTQ4cO8Tk5OaKx9vakc3w8ITUpFShl10VMDFM0aNj7bG9vTx88eEB8fHwwatQoiAsK2Ii+ixdrX/HSJbYPsZi14JSWstaJdu3YODsjI+aBUIajoyO5f/8+BKGGsfDHj7ORjzVBKSyiozFcrRYG3LsnQmgoUxL4+QG1fZdlZwM//sjUB3PnsgTZiRNsFF8DUKvVOHnyZGlRUdEvPM9/XjnIL0cqlSoA/PDNN98s9vX1bScIghiABYCEBu20jLVr156XyWTtIyIiflUoFJMBTJDJZAsB7JNKpVo36yu79/tfdHT0xo4dO1a8STIzM0uVSuXfUqlUXrZcdYE+JBJJP0tLy6pfQOWoVMB77wGrVz9xrTQGSimCg4MLFQqFVCsb1PFSowv2dejQIlKp9KJMJusRERExWU9PryfP8wPCw8Md3N3dX5qSpyAI+Pvvv3H9+nUYGxvTS5cuEUNDQ97Q0BAlJSUoLS0VqdVqODk58Z07d+bs7OxI+YQBQogIADw9PaFSqWBiYiKilEKhUCA3N5c8fPhQVFJSQps0aSKytLSERCKBWq2Gra0tqVKaeUkRi8WYNGmSKDExETdv3nzhwb4gCPD390diYqKgVCpJUVER5TiONG3alMyYMaNGmasgCIiIiECHDh2qGCFpk/Hjx+P27dsoKqr2PubVgONYpfaff6pUbF1dXYmfn58oISEBDvU1TSsPKBrgmp2RkYGTJ0/S7OxsMm7cONLZ0ZGQMWNqN+W7f5/ta/RoQCTCYW9vmpiYSMaPH19nNd7U1BQdO3YU1Go1AUD69u2Lvn37cgCQmZmJ+Ph40rt37/olPL79lgU3z4PcXFY9/fpr4O7dKhVxQRBw4cIF2qFDB9JgB34A+OknYOjQxh4t8vLycPz4cZiZmaFfv35Vj8fUlHkDHD6sNeftKhDCVAq18emnbJpEIxJ5CoUCR44cAcBUQdUexy+/VAlGXVxccOnSJX737t2iWbNmwczMDIIgoKSkpFwFRkpLS8kPP/wAFxcXzJg+HcZqNcG0aTUfzP79LODfvBmoxzSR2bNnk4cPH2L37t0QBAHjvLxYz71KVXsAduUKSwpERrJrE2BS/HnzWBJnwgQIeXm4uWkTsn7/nb9rZ8epeZ7cvn0bHk+belLK1AHV9WxHRrLWj7lz0eP33xE/bBj77NHksz8nhyV9jI2ZYqH8q3rCBOY3UE8EQcCJEycUGRkZoTzPr6wu0K8Mz/OfxMTEnOI47qQgCDfqvcNqKOvxnyKTydwA/ANgG4BtMpkMAHpIpVJtj+MLio2NfSJD06ZNG4OwsLAvAfy3thWVSmVkXl6eGjXFZJGR7POsBlPMhpCamorCwsISAHWYv+h4HdAF+zp0aBmpVJoE4HsAkMlkbYOCgkL9/f3Na3OvftYIgoCwsDAYGRnBx8eHF4vF3MyZM0nr1q1Jfn4+MjMzRXl5eZBIJGjTpg2aNGkCUS2mAwYGBhUBJCEEBgYGaNmyZbmc8pUI6uuib9++CAwMpEqlslozs2eJIAhITU3FtWvXEB8fLxQXF3MdOnRAq1atUFhYyDVr1gxRUVF0y5YtcHJywoQJE6qMoPr111+FzMxMztPTE+6azGJvIEqlEgCr5BQXFzdqBNgLQyJhI/Kqkdvr6elh8ODB9OjRo/STTz6pX+95RkaD5d6JiYlIT08nQ4cORZfsbCaLT0urWRIfGcmqwDdvAg4OePToERISEsjcuXOr9N5Xh1KpRHR0NKenp1flxtzS0hKWdTn/V4eFBfDf/7J+8Lfeqv/6mkIpq0AGBLDgq1WrKoukpKRAqVSSzp07N7zdpLSUjWvUoMe7LsrVVOPHj6/Z5HLHDjZq68YN1tOuTShlUnBfX2YaVx3377PK9OrV1bZCaEJsbCz8/f1RWFiIzz//vKqMv5yxY1nv/pAhwLBhAJjB6ieffCI6e/Ys3bNnDxEEocJ5nud5WFpawsTERCgsLOQcHBxExj4+LCmRnl798e7cyV6/9euBBqjt7OzsMH78eJw6dQpeXl7gnJ3Z+6228ZdJSSzgzspiCRyAKSTWrmX/P3oUJ3/5hd67cIF8duCAqOfFizCKj4fJ5ctVJ3gUFLDkT+fO7Pf8fNaGYGjIAnVKgaZNEbhtG7KysuDI86jz0zgnhyUJ1Gr2OpejVrNxoaGh9ThDjJiYGERFRYkppeOlUqmyruUFQYgt+3dtXYmB+iKVSoMBEJlM1g7AMgCLAJRocx9lhJeUlIjkcnnFNW5jYwNBEMxlMlkPqVR6q6YV9fT0OpmZmVUfj+XkMPPIc+ca/B6sjqtXr5ao1ervpVJpDRISHa8TumBfh45niFQqjduwYcM2tVq9tro5sM8KQRDg4+ODiIgIiEQiqlarSVklhLq4uGDEiBEVwWHTpk3xMrYZvGj69euH6Oho+r///Y8OGjSI692793PZ78WLF4V///2XKJVK0qpVK6Fjx4505MiR0NPTeyJC8fT0JAkJCTh27BgOHDiAGZUMw+7cuYOcnByuRYsWiIuL4ytPJNA2EokEgwYNQlBQEP773/+iZcuWwvTp07lXLuj//HNg61YmYX0qIBkwYACJjo6m33//vTB79mxOYwd3ngfmzYNcLsfvv/9O+/TpQ/r376/Rqn369EFubi4uXbqE3gsXQn/v3polx7GxzP07KKgiuXDt2jXBwsKC2NraanSHWK7MMDAw0G6yLiNDqzepVTh5kr120dEskKuBvLw8AMDx48fpihUrGnZAYWHsxlsL13a50qKwsBZVsaEhk3xPncrM8bQ96vLIkZoD1UuXWALlxo1Gjfm6dOkS0tLSMG3atJoD/XIKCtjYurJgv5zRo0eT4cOHVyRpioqKoFKpYG5uTgCQffv2wcfHB90+/RSiTp2qv95OnGDJmpUrmbleAzE1NX2cnCkuZpX72oL9r75iCYiy668KYjG41q2JVU4Or1dUJLICWJLlUZl5fJcuwP/+x0ZobtrE5PZubuyzaudOpmgpd9Mvw83NDVu3buV+/PFHrFy5suZjy81l2ygpeZx8KCcnBxgxosL3Q1Mopbh27ZpAKT0jlUpreNJVmF3275167aweSKXSWACLy36exfbpxo0b4x89euRsX9ZCYm5uDicnp9K4uLjNMplsWHWBtUwmsxKJRBNaPzV+sYItW5iSox4qlLooKChAdHQ0BEHYobWN6nipEf3nP/950cegQ8drTXBw8C+tWrVq0bVr12fm0C8IAn7++Wf+4sWL3L///ssHBASQ0tJSvP3228TV1ZUMGjQInp6ecHNzI+3bt+deEUX9C6XMFZqUjQgkMTEx1NHR8ZlW+a9fv46goCAyfvx4MmnSJPTo0YM4OTlx1V03hBA0a9YMZmZmQkhICAkPD+e7devGXbt2DefOnYOnp6eQk5NDDQ0NiYuLyzN9wdu0aYMOHTqgtLQUcXFxxMTEBK2qqa6+1BACzJwJuLiwftonHiLo3r07KSwsFHx9fYmlpSVpUYtBVgXe3gCAHTdu0OzsbJKYmIiBAwdqPK6wbdu2MP3sMxjm5MDogw+qX6i0lFXg2rSpqATyPI8zZ86gZ8+eFS04dWFoaIjExETB3NycdC6vHGqDESNYJVIkesKErdGo1SwYbduWvV7dutW46J9//skHBQVxAEAIIUqlsmHtOadPM+l1I9zJyyGEIDg4GBzHoVNtQXzz5iyYLB8Tqa3Pn9WrmVqkusQVpUyJMXx4ree1NlQqFXbt2kXT0tLIjBkz0L59+7pXeuMNpsooKKjiU1Be0SeEQF9f/4nEQbNmzcCfOCGoNm4kqtmzYfa0x8G5c8CZM+w51WR8pwHh4eE4fPgw2rZtq+7evTsHe3vmx2FtXfNKS5awgP/vvxHs6IgDBw7Qfv36VSTbCwoKkJCQgIcPH3IDy2Xa3bs/ls/L5awtZ80aFuybmLDH3N2Bvn0BL68qniAikQjBwcH44osvar7nyM1lMn+eZ9t+mosXgVGjan9uZaSlpeH69evlZrzqu3fv3ud5fpaHh0duXevKZDIOZVJyqVT6nzp39hITFBQ00Nrauktlf4mOHTuKY2NjrUpLS9/28/M76eHh8US/2+XLl+e2atVqlIeHR9UXKjqaJftmz9asHUNDfH19S7Kzs7etWbPmlNY2quOlRlfZ16HjGaNUKrcmJCRse/DgAZydnZ/JPrZu3crn5+eLpk+fjqKiIpGFhUUVQyMd9UdfXx9Dhw4lPXv2xMmTJ+nWrVtJhw4daHWy+cayd+9eISkpiZs6dapmN8ZldO7cmbO3t8fhw4e5jRs3glIKFxcXdO/enfPz83tupnktW7Zkc+CBZzJJ4blw/z4LIimtUh3kOA6jRo0SWVlZ0WPHjqFfv34YMqR242ihfXucjo3FI0rJO++8gzNnztDDhw/Td955R+OLp6BpU+jVJOHOyWGB0eXLSDIwQNCBA7yBgQEKCgqIWq3GgAED6pXk6dOnD3f27Nkq48waTY8ebG78kiXa2+ZXXzFJc3Q0au3RBhAXF8cNGzYMPXv2RHZ2Nvbu3QsnJydomggBwBzcY2JqHrXWAAghyMjIqHvBvn2Z4qSgAPjzT+3s/Pz56r0kCgqYwePffzdqxFdwcDBNTU0ls2bNQps2bTRfccMG5v5/7pzGq9jZ2cHOy4uLl8uxd+9eGBkZoaCgAAsWLIDlgwfsdXv33UYnaSIjI/nWrVuLZs6cye6di4tZ7/316zWvNHMmBHd3XL5zh14NDCRKpZLcvXsXHMfh2rVrNCUlhQCoWV1XPurw44/ZBIH58+v0jJBIJNDX16dZWVmkfFLBE+TlscSBmRmwfDkAVBgCVnyv/fe/TAXxVLInKysLkZGRSEhIoDk5ObxcLhcDgJWVFX/16lWRSqUSA5gulUrjaj3Ix0wp+3ephsu/tCgUiusZGRkTAVRk5PT09PDee+8ZBQQEOF25cuX+V199NXPt2rUnK62m1tPTU1Zep4LNm9l4RC0adGZkZCAqKkqtVqvXa22jOl56dMG+Dh3PmDVr1vz8zTff9Dxz5swsMzMzPRsbG/A8DwCNqvSXlpbizJkzSExM5IuLi0Uff/wxTE1rHtOqo+E0a9YMs2fP5pKTk3Hq1Cls2bJFWLx4Mact47vAwECkp6dz8+fPh8YS8Uo0adIE77//PlEoFCCEQCKRYNOmTTAxMRFMTU2fmznk8OHD4e3tDX9//6rztF8V2rcHVqyo0fG+R48exNLSEnv37oWenh4GVWeWVUbJN98gbsQIzFq6FA4ODrCwsCDbt28nwcHBcHNzq/04BAHcp5/i1uDBNDo1lfa/fZtr0qQJDA0NYW1tjfT0dFhOnAi9Ll1wc+FCev7IEdKmTRsuIyNDePToEefu7i7UJyF18+ZN4fLly4RSqn0ViI9PtX30DeLsWSbXX7mS/WigkrCyskJ0dLTg5ubGtWrVCl27dqVHjhzBRx99RDQaIwgweXlYGFNQaAkzMzOqVCo1O99btrDnXlzc+DYChYLJ86vjp59YcNyI1q7ffvtNSEtL49q2bUvbtGlTv+vpu+9YwqGahFuNxMcDPXqgzaRJmHzvHg4fPgwAOPHNN5iXkwNuxozapfYaUlBQQMzMzCjKfWmcnR+769eguFAYG+P0tWt8m7Aw0cL16/Gzvz/i4+MRFhYGW1tb9OnTB/3796+qRijn2jVg4kQgMZFdAxqahBoaGvIZGRniKsF+QQEglTI1zJIlEChFyJUrCAwMpJRS0qRJE15MCPH6+GPOrE8fRIaEIC4uDllZWWq5XC4SBIFYWFjw9vb2pFevXmIbGxs0bdoUhBDR5cuXERIScufLL7+ssT/9aUQi0ddl90Ovw6z3u2lpaSV4KnAnhMDT01Pi6Ogo8fb2PvjNN9/8oVKpjoIF+p+5uLhUNXOKjWVeGtOna/UAz549WywIwhqpVJqv1Q3reKnRBfs6dDwHVCrVpyqV6v3ff/8dy5Ytw/dlBk8LFixokPHV3r17+ZSUFM7Y2BgeHh4iR0fHF2b+9/8FQghat26NRYsWkR07dtBz585hwoQJjdpmZGQkAgIChOzsbO6tt96qd6CvVquRnZ0NY2NjyOVyWFhYQKFQ4OzZs4JcLuc8PT2f6xSI8or+gJoMv14FDh4EunatdRFbW1tMnz4d+/fvR25uLkaNGlVlKkJaYiIkaWmw79NHcHBw4ACWNHJ1daVRUVFwc3OrPZKJiwPOn8fSmzfJpcBAEhgYqFar1USlUnHK4mJil5ND893diYObGyLOnSOTJk1Cx44dCQDR5s2b6fXr1zl3d3eNzOgyMzNx5swZrkePHvDw8NB+sO/sDMyYAWzb1qggEmo1EBXFjMnqkWibNGkS+f7778mjR49gYWGBvn37kps3byI5OVnzCQtnzrDxV1rExMSEKpVKCqDuF8nUlMm3O3ZkyZMGyusBsDF3P/5YtbK/dy8b6/bJJ43yWcjJyeEsLS2FmTNn1v/zx9QUOHqUqTbOa2gUvnIlUFgI+PigQ4cOWLt2LTKuXkX08uW40Lu3MGrEiEZ/Dj58+BBpaWnc22+//fiPenoscI6LY6/LUyQnJyNx6VI6MCuLs7SwgCg2FjzPQ09PDwYGBpg7d27tJzk3F+jVixkKisXMUDE4GOjTp87jbd68uTgtLU3o3r17xXNPjolBszVrUNqtG/xbtkTmL7/whYWFnFgsxptvvkmsra0RExMjyl69GjkZGdgbHQ1zc3PBzs6Ouri4iG1sbGBubl4xlacyPM8jNDRUrlAoFtZ5cGXIZDIHAG0lEslfK1asUGi63ktMZFZWlkShqP6pWFhY4P333ze4cePG3Pv378/kOE5wcnKSODs7VxjdAgDUaog+/xzCrFmgAEsmaQilNfsbJiYmIi0trUAQhF803qCO1wJdsK9Dx3NAKpXmy2QyV5FI9PcPP/xgCnZzl3zx4kXrN998U1yXcVFpaSm2bdsmNGvWjMvJyREUCoVo2LBh6NChg85c7zlDCEGnTp04Pz8/qFQquLu7w8LCQqOgShAEXLp0CREREbxSqeQopaRVq1aYOHEirDXojaxMUlISvFlPeEV10MLCghoYGODRo0dk2rRpaPdU7/mz4t9//8Vff/1V8XtYWBh91j4Bz4z+/Vk/s4dHFaOwytjZ2WHOnDk4cuQI3bRpE2nTpg2dMGECMTIyglKpxOFdu6jV8OFk5FOBRs+ePUlISEjtxxAfz3ppIyMhBjBy5EiMHDmy4vta8dln0A8OJmG7d+MvHx9IJBJaFugDYIZmvr6+wu7duzF79uxqPR/KUSqV2LdvH+3WrRu8vLyezWtGCJtPHxfHZKkNYfZsZvZ39my9VzU1NYWenh6ioqJgYWGBzMzMir9rBKUs2Bo8uN77ron4+HjEx8dzdbWCPIGJCSCTsWtDEGqezFAXAQFVfCkQEwN88w07v3UZ6dV5mCYoKChoeIA9ZAhw755my1LKxulVDrDy8mC1YQOaz52Lb+LjOatbtyAWi0EphaOjIwwNDWveXg2kp6dTAKRc7l7Bv/8yM72ngv2rV6/Cz88Pnl98Qa179uRIixZAURGGR0bSc+fOEVtb28cKgafgeR6FQUEwe+MNkNxcYM4c9kBJCXvtli2r9VhLSkogFouRlJRU8TffU6dom1WryL/OzghXq+HMcXyPHj1Etra2sLGxqTCM7N27Nx517w6xlRVWfvwxNB0/EhYWBkEQbkul0iBNli+DiESidKVSubke67zMJPM8r79p06YqDzwVhIsAGAFAaGgoQp+aeNA0JwduDx/CNzyc+ZI0ksoeMTzPL9JkQoKO1wtdsK9Dx3NCKpXelMlkzQGYAxAA0MTExO1btmyZuGjRInGzWvojT506RUUiEbxCHNMAACAASURBVPfo0SP07t2b69+/f4NuWHRoh/79+8PExAR37tzhf/31V5FIJIK5ubnQqVMnbsCAAVAqlVWcpwVBwPbt2wWlUkkGDRokEgQBLi4uMDIyatBNsVqthlqtxttvv01u3ryJXr16ISgoSJDL5Zg3b57oefXNR0REVAT6Xl5esLe3176j+/MmMxNITa1zMWtrayxZsoQ8evQIJ0+exO+//84vWbJEtH37dmqTkUHGCAKMn3od4uLiaNlkjprP0fLlrIp94kTVxwICoC+VAmvWoJuZGVra2GDnzp1PbKtTp05wcnLiNm3aROPi4uDo6AhKKQoKCkApLR+tidjYWAQEBFA9PT1h3Lhxz2xiAwDg8uWaHclrIyaGnYuFCxulCmjdurXw4MED6u7uLiotLYWJiYnQvHlzzd57CQnsOLRoOnns2DHatGlTUm8VzHvvAbt2sZ7rgwfrv+Ply1n1vrK7d2wsC64DAjQyZKsNhUKBrKwsaNweUR0ODsCiRcxxvi6fhzffZAaQ5TPsCwuBL74AFiyA3siR6H/hAk6fPl2xuFgsxgcffAALC4t6HVLv3r3J3bt3qbe3N128ePHj62bsWJZ4KUMQBBw9epTGxsaSqVOnot2dOxw2bGBS/Bkz0C0qipw7dw6DBw+u9v1fVFSEwE8+oddtbYnlsmWwv3RJGD16NDPV9fSs9hpMSEiAv78/LxaLMWXKFNGFCxdwjyVLuO+++w6CWo1J+/cT/TlzMGrpUriXlKBp06bVv9/Valg4ObHrTEN1B6UUAQEBxaWlpV9qtEIZUqk0HkA1pgKvJlKplG7YsOHRvHnzrBrSjgeAfUZ6eACBgeipxbbMK1euCIGBgX6rV6+u5ktFx+uOLtjXoeM5UjZDNqv8d5lMNh2AKjc3F82aNQOlFMHBwbh27Zr6ww8/FAOAn58fYmJiyLx582DViJFBOrQHx3Ho2rUrunbtKqKUIicnB5GRkdz169dpQEAAKeubp2KxmFpZWcHY2JiLiYkRDA0Nybx584g2xtK1adMGXl5e9MiRI2TmzJlo3bo1HB0dn23AVg3Z2dkAmHS/V69ez3v3z4bffmNBQ26uRiZlFhYWaNGiBc3KyuK+++47amRkhDFDhsA4NrbKsvfv3yf6+voCagr28/JYEFfm6/EEgYHMjO7OHaB5czx8+BAHDhyAmZmZGk99n4vFYvTv358cOnQIhoaGFeoPQghUKhUAQF9fn5aWlhJPT89nf91kZbGxgBkZrEKtKbNmMYO/n39u0G4fPnyIo0eP8mBVRA5gBmYqlUrzhFRMDPNy0NIUk4iICBQXF5M33nijYb4tw4czAz2Fov4jue7de7IKTinrC37zTebs3gjUajV2794t6Ovrk3HjxjXuZFEKrFvHjAlrS2zPmlUxbhKUsir4kCFsCgSAESNGwMPDoyL5cPjwYezZswezZ8+uV8BPCIFIJKI8zz/5vFq0YCZ9AQGQy+XYuXMnD4CbP38+mjVrxrwR8vOZ9P6992Cgr1/xvuN5HjzPIyEhASKRCGq1GrG+vsIQb2/OPSEBe/78k79+/bpIrVYLY8eO5Yi+PjBqFFKvXUNOcTE6deqE+/fv49ixY+jQoYMoIyOD37BhA/T19enw4cNJnz59kJacDON338XlHj0wbtkyiMRiSGq7Zvz8gH37gPff1/jcxMfHQ6lUZgL4R+OVXlM4jsspLi5ueLC/ezdTlGkx0M/KykJAQECpSqXSokOqjlcJUlt/hw4dOp4969ev/4nn+SWWlpbFlFKalZUloZRKCCGglMLCwkLo0KGDMHToUF1y7iWHUgq1Wg1KKXJzc5GXl4dDhw7B0tKSDhgwgLi4uGgk968Pu3btQmlpqbBw4cLn2p9fmZMnT9KwsDCyfPny10dxMnAgYG/PJMJ1kJeXh61bt6JTp064c+cOli9fDkNvb8DRsWIcHsDkuevXr8fo0aPRp7q+26IiVrkLDKzqG/DPP6xPu6QEsLREWloa9uzZAzc3N7i7u9d4bKWlpUhMTISJiUnFhA5BEKBWq1FSUoIffvgBw4cPfz4+CyEhbB64JlXfjz4CXF3ZjPkGjptTq9XYtGkT7dixI2xsbIi9vT2sra2RkZGB7du3AwC6d+9Ox48fX3tgOmQI8MMPdXo5aMrmzZt5Z2dn0dChQ6Hf0PnZgsAC9NWrn5ixXiv5+SyIKE9aUMrc/Xv1YrL+RiYz9u3bJ8TFxXGrVq1qXGW/HJWKJYdqUlT8+iubOd+lCzsf8+ezhIWXV60tDidPnqRRUVFk6tSpcHBw0PgzOS4uDgcPHsSKFSser1NSAtjbIyk4GAeOH6f29vbCxIkTRRUeHioVS640acJaJFq2xM9XruDRo0dPbFusUGDMmTM4O2kSFi1dClMzMwiCgHXr1kFPTw/Tpk2Dg4MDSjw8sM3VFXJTU4hEIlBK0adPHzpixAgCALGxsbCwsGAtKgoFMGsWbtjb417XrurpM2bU/aKkpbE2onp8Hhw6dEgeExPz5Zo1a7ZqvNJrysaNGwPHjRs3qGM1Hg51EhMDnDrFVEyNbKUph1KKP/74ozg5OVm6evXq16VdQkc90QUPOnS8YHieXwbgQGZmZisAxQACxGJxslqtbv7WW2/RTp06cdDEwEnHC4cQgjKJNqysrGBlZQWpVArUJtluJCqVijZp0uSFXh9eXl4kLCwM2dnZaKVFqfMLxceH3aBrgImJCTiOw507d9C3b19qaGhIcPv244pjGQ8fPgQAnDt3DpcvXxbs7Oy4jIwMtaGhIde7d2+ue7duzJTs6aAyP58FdidOAAMH4v79+zh9+jTs7OxqDfQBwMDAAB2emi3OcRwkEgny85khc1ZWVo39w1rF3JzJyLdsqXkZhQIQiZiyoWXLRs2V5zgOYrGYyuVyuLq6kvIquoWFBYYOHUpDQ0PJ7du3yd27d+nKlSurf/7JyWzWfadODT6OyhQVFaGkpETk6ura8EAfYMFsp07MsE3TYL9bN+CDD5ihHcBaAc6eZWPuGhnoKxQKxMXFcdOmTdNOoA8w5/hu3dgUhOo+V3btYq0dXboAn3/OJiWMHl2nl8GECROItbU1Dh48CEIIZsyYodEYxlatWkGtVmPfvn3Cu+++y3ZiaIg769fj0s6dcPPyom5ubqLKPdLYvZslJW7eZMaDACasW4fDhw8Lo0aN4tq1aweJRAIhLQ3E3x9dly4FV8mZnxCCFi1a4NChQxg0aBBS7e1hZ2KCiStXIjY2tkrbVIVPS3ExsGQJEjp1wgWRCBNdXTV7Ud56C9izR6NF2W6KERsbywmC4K3xSq83yiq+Dpry7bcswamlQB8AwsPDaVpaWibP8z9pbaM6Xjl0wb4OHS8YqVTKA7ha+W8ymWyhgYHBH3Z2dvpqtVp7N086XiuSk5ORnp5OPD09X+hxqNVqAEC1M51fVZo2ZU7bhYW1B6dgIzSXL1+OkpISmJiYsBvvYcOA7t2fWK5Vq1Z4//33YW1tjSNHjtDCwkKhb9++YrlcTh/JZPRhWBjUf/9NHAThceUwKooFL9HRgLk5wsPD4ePjgwEDBtQZ6NeFhYUFxo8fj1OnThEvLy+tq06qIBIxmXBNY9UEgTn3L1kC/O9/jd4dx3FYsmQJt2nTJkRFRaFL2Zx1juMwcOBAYmdnh3379kGlUpHt27er58+fX/WDNiYGmDJFMzWCBoSHh8PAwKDePePV8u23zMBrzRomea+LGzceTzEICWF95DNn1r8VoBJqtRq5ubmQy+UA2PNzdHRs8PaewNyctbRU59WQn8/G0lHK3qcuLux1Kku21kW/fv3Qr18/nDlzBsePH6cfffQRIXUkPM6fP8/r6+tzbm5uHMAUMkeOHKFt9+whb48dC6uBA6u+gUaMAMrb777/HjAwgI1EgmXLlrFlU1OBwYPBhYQAISFPZNw4jgMhBGPGjMGtW7dw+/Zt3j01levYowcRi8VVkngVFBUBq1dDcHXFnwUFwpjRozmNKs0FBcxssHXrupctIywsjIpEIt9Vq1blarzS601p+fdhvbh7Fxg3Dhg1SmsHUlBQAF9f31KVSvWmVCpVaW3DOl45dBGEDh0vIVKp9PDXX3/93ebNm+0BYPbs2bC3t3/Rh6XjJePqVZYjqlYS/hwxMDCAWCxGXl5evccHvtS4uLAbZw3Q09OrUHWA51nvcEZGlWXKlQ/vvPNO5WZtIhgb4/6pU8LxQ4cIpRRGRkY8RwidsXGj+H7XrkLMtGmkR48exNfXF2+88Qa6P5VIaCjlY6KeeaAPMKn4rVvsnD7dt3/kCJPL798P9O2rtV3m5uaC47hqA1A7Ozt8/vnnyM7Oxq5du8QJCQlVR/EFBWllRns5PXv2hJ+fH3Jzc6EVE00rK+DQIWDBAqCsTaNaPvuMSbMnTmRTET78EPj9d+ZF0EAKCwuxdevWitYlKysrOmjQIO0qRIYNY9fFr78C5cGtILBrydubvccePWIO9Q2oiA4bNgy3bt0ihw8fFiZPnszVllhPT08nDg4OaN++/RP9+WPmz0eTmhQoEglLSAAsqeLgADx4wI5VqWSGiO+8w9Qj1UAIgaGhIbyYn4IIPXrUrnYpKgI2bABatYJf+/YwvHePdNW0/SQ+nimLNEz+UEpx7dq1YoVC8aNmO3j94Xk+s7S0tL4rsUkYEyfWa6RobVBK4ePjUwLgf1KpNEwrG9XxyqKTBuvQ8ZJCCNkqFotlAL7566+/NIs4dPy/QRAE5OXlUUNDQ2qgpRuExqCnpyeEh4ejwRLGl5HJk5kZWmBg/dZLSQEsLDSvmC5cCE4sRsevv+ZWrFiBxYsXY3Tv3qIxenria5s28Rf69+cePXpEfHx8YGZmxmsr0AfY6L0GmcQ1lP/+t2rwrFCwYO3WLTb6UEuJh6ysLDx48ABqtRrJycnVLiORSNCyZUsMHjyY7t+/Hzk5OY8f5Hng0qV69S/XhYGBAfT19YWajqfeWFoy9cfFiyyIrwmFgqkT8vKYWuXXXxudVMnPz4dKpcInn3yCZcuWYf78+cTS0rJR26wCxwFt2wLp6U/+7cwZZvoYEwP85z8NntQgkUgwa9YsxMbGcl9//TUePHhQ47I9e/bkkpOT6YMHD7B161ZqaWmJDz/8kDTx9GTtFNURHAysWMH+r6/PKv3lFfSmTVmy4quvqr3mr1y5UmHg9wRlfhNVKCpiEwwkEuCTTxAWEcF7enrWqVioYN06dh1pSE5ODkpKSpTQGfNVoFar00tKSuq3Umoqa1maOFFrxxEQEKBKTEyMValUUq1tVMcriy7Y16HjJWXlypWbV61a9R99ff3eFhYWTb7//nv5+vXr1SdOnFAWFxe/6MPT8YIJDw9HSkoKmTx58ksx5s7Dw4MLDAysMjP4leennx73OGuKWs1uujVBEJhEvywxQAiBmZkZOu7di/Y+Pnhj+nTRihUr0LVrV0GpVGLixIlai8wDAwMFf39/WFpaVmP9/4yYOxfYu5f9Xy5nBmvR0cDDh6yKq0W8vb35gICAx4qLWhg4cCARiUTYsWMHrajMHT3KAn0NvRs0QalUQqFQcFo1shSLmZz/o4+qfzw9nUnIx45l7vU7drCkSiNRKtm47q1bt9Jt27bRIg1VMPVm1y6gtBTIzmbvlxEjWKD/xx/MCb+RCYbWrVtj1apVcHZ2xsFaxhk6OzujuLiY279/PwghZMqUKcyIr2lT4MoVZsb3NBMmAFcrdenJZGySgoUFU43U0vr077//8gCeVKUYGrJ9PU1xMXtdCwqA1asRn5gIhUIhqlHqXx2TJ9cr4MzIyIBYLA4vmzKkA4AgCNlyuVxzyXx+PjByJPOc0NK0jwcPHiAkJKRQqVQOk0ql9cw86Hgd0QX7OnS85PA8rx8dHY2ioqItgiC8Ex4eLrl586buy/X/OeU3gPv27cPRMuOnF0m5VDQqKur1uja//ZbdlNdnck1ICHPPrwu5nI25unSJzQoHWDDzxx8sOPvrL+Tm5iI5ORmhoaGch4cHrBs5B72cq1evwt/fn+vXrx8++OCD51fab9YMSEwEfvyR9Vd3786mHjyDNgKJREKsrKzoypUrHxuX1cLcuXNBCCF+fn7sD7dvMwm5Fjl48CBvbm5ONTmeerFxIwv2fHyqPjZqFLB4MRAZyZy+6/Cg0BRbW1uMGTMG06dPJ6ampti8eTO+/vrrivYirbJlC/D11yyoLSxkoxj372fXjhaIi4tDfHw8bdeuXbWJL0EQEBwcLAAs6BcEARUVcxMT4Lvv2Pv5aSIi2GjDcn78kSVcFi9m1351IzbLGDRokAh47IkCgJl3/v77k+sVFzMjwJQU4JtvkJWTg0OHDtEhQ4YImiS6ADCTxps3mU+ChuTl5UGtVkdqvML/D3LlcrlS46V9fABPz8e+Do2kuLgYx44dK1GpVJOlUmlG3Wvo+P+ALtjXoeMlR61WzxeJRJsFQdgskUjeBgA7O7uXopqr48VhbGyMlWUVZ62YfTWSwDKpe5cuXUhUVFStcthXCo5jkuf6SOeNjZmLeF2cPs36aytz/DhLMHAcbt+5Q7dt24b9+/fDw8MDgwcPrt+x10B4eDjOnz+Prl27CiPK5pE/F8qDoS++YLL90FBg27YGS7DrwsvLi0tLSyMxMTEaLd+iRQuMGzcO169fx92bN1kfda9eWjueK1euICUlRTRt2jSidY8EjmOVwU8+Ycmmyly79niM4eDBGpvY1YW+vj5cXV1hZ2eHRYsWkTfffJN26tQJ58+fx4YNG3Dy5EnttfUcOsT6mv/+mwX7Gzc2uqJfjiAIOHr0KLWyssLUqVOrJL5UKhW8vb2FsLAwzJ8/H5MnT4ZCoYBMJkOFyu6PP9h792n09J5s5xkwgI3j7NiRJQQ7dGCfA6GhbOpAJcqvW9PKM9dFIqbgiI9nvxcXAzt3st83bQIIwZ9//sl37dqV9uvXT/OLLDi41sRDdZSUlFCVSpVWr5Vef3LlcrlmJzI2Frh+nanHtAClFMeOHZPzPP+zVCr118pGdbwW6Az6dOh4yZFKpVEAPgMAmUz2OcdxioCAgDeHDRtmmJCQgNzcXIWzs7N++0YYLel4NSmv2rwMwX6fPn0QGhqKM2fOQCKRUKVSSb788ksoFArExsaiZcuWsLCweL794dpi3Ljazc+eJiiISWJrIy2NjdN7663H8k1vb2DMGOCNN6DgOPj7+8PNzQ2DBw/WioFeYWEh7t69i/Pnz2PQoEEYMmTIs0/4//wze07XrgHvvcf6iqdOZYqGRYtYkNOI8Xq1YWdnB7FYjAMHDmDt2rXQpHfZyckJenp6eHDyJJwzMsA1wEQvIyMDR44c4QVBoIIgQKVScU5OTlxkZCQmT54Ms0qj1bSKpSXrZdfXZ73gVlZs1KGxMZPwe3szGfgzomvXrqRr167o3r07Ll++TMPCwkhYWBjEYjEGDBiAWqeG8DwL4kUiNu5QqWTtCfHxzB0+JATYvJmZ28XFsTF7WkIQBCgUCpKfn09v3Lgh9O3bt+J9oVAosG/fPkEul9OlS5cy2T6YsZ+fnx8q2jH69WNtBk/j7PzkZImJE5/8bLhwATA1ZcmLo0fZ+2HZMmDJErgNGIDIyEgolUo80fYxbBhTAMnl7P316BHzwiijqKiIdOvWrX7v7XHjNEtQVkJgmZwGWM+/1uTK5XLNZGDr1gF9+rBrXgsEBQWpU1JS4lUq1QqtbFDHa4Mu2Neh4xVCKpXGy2Syxenp6R29vb3NBUE4q1KpHkRERKzo2LGjydChQyXP7EZSx0tHudxYo7FKz5imTZuid+/eNDMzk0yfPp2sW7cO27Ztg1gsRm5uLgwMDKhKpSLm5uaCvb09OnbsyNnY2KDcXDA5ORnnzp2DlZWVoK+vz+np6aFfv36Qy+V4+PAhHB0d0USLvdP1wsaG3bSvXw+sXl338g8e1N3nPWQIC/S/+or9np7OHNP79UOasTEOHz5MxWKxMHjwYJG2qsARERH04sWLRCKR0CFDhmhfHcTzLHHh7c2qlUePsn7rli2B8eOZERXA+panTGHB6Jw5TJr82Wdau+mtjLGxMZ+fny86dOgQtbKyIl27dkWLFi3qXM/g+nUEGBjQHrm5pFmzZvXa540bN5CbmysaP348xGIxFAoFrl69Knh4eMDJyenZJljatwe+/JIlV/z8mOv77t3AwIHA0KHa3RelrJderWa9x9nZgIUF2kRFoY2BAckZNAgxBw4gvqgI6suXke3tDfNp05gMPS8P8PIC/P0BR0cmZ27SBPj0U1apNjJij9+7xwKi9HQWFIvFrMq/dClLYmgBsViMjz76CD4+PuTChQukT58+IISgpKQEe/bsoZRSunDhQlFlp/6OHTvC398f69atg5WVlTDO3Z1r5ueHKqmUsDAWSKeksN/HjGGfJzt3st/btmX/btzIfnJygFatgKwsWHt7Y/6pU/gNwNJhw0BcXVlirG9fdl4OHGDvuQ0bKhKGSqUSKpWKq9d9QFQUay24e7dB50/HExQqlcq6P1tv3WJJTw8Prew0MjIS//zzT75KpRqhG7On42l0wb4OHa8YUqk0F8AT2tJ169apIiIifmzXrh261TM7r+PVRBAEBAUFwczM7PmMTauDoqIiREREoH///uA4DiKRCIWFhQCARYsWoUWLFqSgoAB3797lIiMjERYWRgVBIF26dKHZ2dk0KSmJ09PTg1gs5hITEwE8bg2QSCQ0ODgYY8aMIW3atAGlFLdu3UJ+fj4A0JSUFMHDw0OUmpoKV1fXZ3M+cnKYTLeuYJ9SYNo0FsDUBM+zil65OZevL2Bnx3rZ9fVxfs8egVLKLViwQGuBfk5ODlq0aEHY7nntBfrXrzOztBEjWPB1+TILOMsN4G7ceLxsuZyZ51myIyODSbPXrGHL2duzUWRaZOnSpaLt27fj/v375P79+6CU0qFDh9b4/AkhWPHFF6AXL+K3IUNI+B9/0MWLF5PaRrI9jSAIMDIyQuWRZz169Hh+b9L169kEiatXmUGcvf2Tgb4gsCo6x7EgVK1m1+3Dhyz4vHSJVY3d3YGzZ1mASQirso8axdowSktZ0ubAAXYd6+uzv739NlNtSCRo/sEH6NuxI/q2a4cb164JIamp3KjWrSH+8EPW596uHat0N23KWlfKlRdvvVX1OZV7PQQFsWPYt4/1mdvZaeWUmZqaglIKU1NTEEJQVFSEXbt2USMjI+G9996r8j40NzfH8uXLkZGRgVOnTtG9+/djzqlT1HDxYvJE0qpDB+CHHx7//u23tasrmjdnywAg7u542KwZeEqZKsbDg43p276dvW7TprHXotKxXb16Fc2aNRNMTEw0v94kEqYAqednjUQiERFCXlAG9qXFRCKR1F7Z53mmUhk3TitKm4yMDJw8eVJeFuinNnqDOl47dMG+Dh2vAYQQWYcOHaDxPF0drzzBZaOeplc2f3pBlJSU4M8//xTMzMzg5uZGAODDDz/Ezz//DAAVlVRTU1P0798f/VkgSBISEhAQEEAsLCzIlClTnqjcl5aWIigoCI6OjrC2tiYHDx7E3r174ezsLGRlZeHRo0dcq1atqEqlEoqLi8mePXvAcRwePnwojBkzRrtu5wCrpv37L3O7rtxD+zTp6exmferU6h+PjmZV1ocPWZVSEFgP7ldfAS4uAIChQ4dye/fuRWlpqVbUDElJSdi1a1fF741q+6CUJT5GjmR9vnv3soru6NGs2lhumFbbuDqJhBmuUcqW37uX9a1+8gkL4sqrnVqA4zgsXLgQf/zxh5CQkMBlZGQIWVlZotqq++TWLZCePTFl7lx4e3tj3759mDlzJjQN+B0dHREZ+QJ9y8Ridp0OHcrUEl5eLCFz7RrzntixgwXYq1axXnNTU/Z6PXzIXpPkZPY3IyOWuLGyYj9yOQvQy6XnzZsD779fdf9jxz7+v7s7AMDQyYm7efQo7p44Qb/44ovHyRZNVBOCwAzw1q9nx3TwIJvqMH06C6S15KswatQobN++HSEhIQgJCaEtWrSgM2bMqDHhJpFI0Lp1ayxevFh0584d/BseTkYpFCBGRgCYkubymTMYkZoK+3HjiL6+Pju3vXtrdkBNmiDQzIx3dXUVEamUJWWuXmUtDUVFTB2zZAng5MRaYijFzZs3+XJjP435/Xdg9uxqHyooKEB8fDwKCgrAcRxatmyJNm3agBACfX19iMVizR39/n/Q3MjIqPZkakoK0KlT9UmteqJUKnHw4EE5z/PzpVLpv43eoI7XEl2wr0PH68G8Bw8e7Dh8+LDe1KlTjTSeq6vjlcXGxgaEEGRmZsLMzAySZ9T3XBfh4eHUx8eHmJub0zlz5lTcZFpYWMDY2FgoLi7mAgMDqbu7e5WL0sHBAbNruMk0MDDA8OHDK36fM2cOkpKSEBwczLVr1w5vvvkmWrZsSQBU7LOgoAB//PEH3bJlC8aMGUO7d++u3TfCjRvM4Cw/nwVU1ZGezmS4NWFrywJbIyMm8Y2OZi7pZa8fpRRJSUkCz/Octl7Typ8HNjY2ePfddzVfOS+PSaxnzGBJCltb5oLu4sJGjVUeMVgfZ/SMDCAz87EXwtKlLOAMCWEB/6pVNZ/jBjBz5kwuKioKJ06cEP38889444034OrqWv3CmZnA4MFo3rw5pk+fTnbu3Imvv/4a3bt3x5gxY+oM+lUqlfaM6epDbi6r9M6Z89jszdaWVd5dXIBJk5hyYtWq2qvoXl6P/19dArkBxnidO3dGcXExzp49S/Ly8tC0PqaMx46xwL789bK1ZYqDuXOB4cNZT/yUKY2+XszNzeHu7o4LFy7AwsICs2bN0rjU3aVLFxTk5eHorFnI8PDAggULcObMGeJsZASH7dux2doagwcPpv0XLSLkv//VKNALDAxEUVGRKCsriwcggljMFDPdurHkWrt2TDlgbAxcu4aSsWNhPWmSqJu9PZsCf0G5vQAAIABJREFUMGdO3QeuVLJWm48/fuLPlFKEhITw/v7+SrFY7KdSqaI5jjPiOG6UjY2N1dtvv21kaGgIkUhkq+k5+n9Cc2Nj45qTLYWFzKvl8OFGj9qjlOL06dOlJSUlp9asWbOvURvT8Vrz4rWfOnToaDSrV68+yvN8j/v37xsoFIoXfTg6ngPt2rVD//79+RMnTmDLli00pbwn9DlSVFSE06dPk969e+PDDz8UPR2cfvDBBxwA+Pv7ayXobt26Nd5++22MHDkSLauZT21qaoolS5aI+vfvjzNnzpCkpCRt7PYxrq6sul9bUCGXAwsWVP+YVMqC42nT2O8bNrCe5bLzdvPmTWHr1q00KCiIjB07VmsJHJuygJoQgpEjR9a+3fIRg9Ons777Bw9YAFk+EvCPP9jz3727cfPnd+xg57Iyrq7MfCwsjMnQU7WnSOU4Dp07d8aQIUNAKYWvr2/1C1IKnDjBTOHAAsBPP/0UI0aMQFxcHN24cSN27txZqylZWFgYlEolaH3GNTaG3btZIC8SsUSUuTlrNzlwgBn2bd3KAuJJk1iCpp6u69rC1pbFhfVqTcnLY60hPXpUDY62b2fP6+BB5kSf1nhjeCMjI+jp6dH58+fX+zOrs4cHeqrVyM7OxsaNG8HzPMYtXgxJYSHGjx+P0NBQYdOiRbjh4ED5Ol6DtLQ0+Pv7w9nZmbq6urLgUa1mpm5nz7L3JyFMFTR3LnI7d8bPCxZg5H/+A724OODUKabmcHRkyZKEBDZK8ulrMj+fvd+eap+5d+8eLl++nKlWqzt+8cUXXqtXr/5s5cqVCxUKhVNKSoqPt7d3sTkb0+dc3/P0mtPMyMhIv8ZHQ0KYB4UWDJXDwsJoTExMhlKpnNfojel4rdEF+zp0vD6MdXR0VJYbnul4/Rk+fLjos88+g0KhIPfu3Xuu+w4NDaU//vgjLC0t1ZUr8JUxNTWFWCyu6Id9XgwZMgQSiUSILx9PpU1MTVm/eU2V29BQdmNdHUZGrPqdl8dmhu/ZA/zyCwDWU3/u3DnOxcWFLFu2jPTo0UNrh6xUsrHPS5cuhd3TPc6UssCgoAD47TdWNQVYL3STJiwAT0lh/bzt2gHa+nyJiHiyglyOlRULTgSB9X8HBGhnf2UMGDCgYoRhtdX39PTHcvcyRCIR+vfvj48//pjMmDEDKSkptZaQhwwZUvP2tUVWFqtqHz/OrslBg1gf/OHDwP37TDGhVrMfsZipM3x8mGR7yBBmxqaF96Svry+VyWTYvn07/+2332LDhg0IDAwU5HJ5leffsmVLmJiY4ObNm5rvICSEVa/LWlyeQCxmibP+/YHvv2etIaGhjXo+5aqDhnhlmC1bhnbLluGtt96Cra0tZs6cyZJ/XbqgU6dO+HjpUtHiHTsQ9Pff9Ntvv0Vubm6128nPz8fOnTvRq1cvftKkSaTiPevnx17vkhLW6lLp/IaEhMDcyYlv3qoVM7s8eZK1avz0E1MCXLjAfDWKih77KigUwIoVbPzlUwQEBBQolcrFUqn0YeW/S6VStVKp/CItLU3P3NwcSqWydb1P1GuMSCSyMDY2rv7zITGRJaiqOd/15dGjRzhz5kyJUqkcI5VKixu9QR2vNToZvw4drw9n4+PjvyssLISJicmLPhYdz4nIyEjo6elRDw+P59a7UVBQgAsXLpAZM2bAwcGhxu8RpVIJe3t7xMbGQqVSPddWg7Zt23L+/v5o3rw5unTpor0NW1gw2WxRUfW9++U9zk+zbh2TqpuZMdnsuXPsRrusWvnXX3/xbdu25Tw9PbX+OuqXGeNlZGQ8lk/v3csqeps3AwsXsmOaPJm1KQAVJmHPjLlzWQD3+edVHyOEVfglElatlkqZ9FxL1w+lFPr6+tUHdKdPAytXViuxJYTAxsYG+vr6+OWXX/gWLVqIkpKSeBMTE04sFhOVSiUMHz6cu3HjxrMxzhQEFrz99htz8x44kAX5T3swDBvGqt0//MCCzXLTVltbFgh2786eX+/e7NxW7rGvJz179iQ3btyAi4uLSCKRwMDAAH5+ftTf3x/dunWjEyZMqDiRhBCIxWLapEkTza7x1FQWxO+rQ6G8ciVrM/nxRxbwe3k9rnxrSFhYGL1y5QqysrIIIYTEx8ejTX3H+1EKrFyJTv/8g06dOrG/KRSPxwTyPIzat8eyFSu49evXoyYVnq+vL23dujX18vJ6LAfPzmbbCQ1lCbenlAGRkZHC6NGjn5SPi8VM7g+wz6UPPmDH2KULSzyePMnUH9euPbFacXExMjIyTAHUJI1qa2pqqjAwMJBQSiUymUwilUqVGp2j1xyxWGxbo1/MunXs87WRnwsqlQoHDx4s5nn+I6lUqhuhoKNOdJV9HTpeE6RSaQyA73bv3i1PSUmp8UZCx+uFSqWCSqUiZ8+efW6lc7lcDoD13NfEv//+i2+//RaxsbFo37698Lw9BSZOnIi2bdvi2LFjWLduHf78809epdLCRCKxmAWEUVHVP17ej1+ZrCwmW1ergbVr2Ri6gICKmz6e55GUlCR64403nknChiQmwiI9HeeOH2fV37g4FjCUH2dKCjPca96cVVGfB3371i1ldXcHOnZkxnHr17OKZiMpKipCaGgomjdvXv37JTqaGZ7VgFgsxqJFi+Do6EjS09PpwIEDRampqSQnJweUUm7//v2IjIyEsbExtOKdUlrKDBGdnVlV0M2NXWP6+ixQfzrQ37mTjXAbMoSpRt55p+o2hw1j21u7lsn6v/yStWc0QInQsmVLNG/eXCCEoHfv3nBxccFHH30kevfddxEZGUnu3LlTsWxeXh5yc3OJY22TKipz/DirRleXPHsaOzsm9Q8LA27eZEksNq1DI86fP08KCwvJwoUL4ebmxu/fvx/79++v3wmxtGTvn7IpJADY6/T9949VFIcOITMzE5RSlMngoVQqK9Q3WVlZiI2NJf369Xvy/vzDD5mJZ7myZtkypo4BEBERAUEQOI1GsBLCWjwmTWLKkC+/rKKaSE5OhqGhYahUKr1ew1ayS0pKxIQQGBoaygHo+vbL4DiuU/Pmzas+cP06S6rNa7zi3tfXt7S4uPicIAi76l5ahw5dZV+HjtcKlUolKyws1NuxY8dKjuOEzz77TPuu5DpeKnr27AlDQ0P89ddfJDIyks6ZM4doMke8Mfj6+gptmWN6jQnjkJAQAMDatWtBCHkhieWZM2ciKysL+fn58Pb2Fjk6OkIr8vjSUhZMhYczaXs5lLLAubKfQE4Oq8olJAAxMaCHDiHGywsO3btDUjaiKzs7G2KxmJqZmWkv2E9NZd4BJ0+i9MMPMTA1FdeWLqU4eZLA3p7JgKdM0dru6s2bb2oWjJmbswA2JYUFc19/zQKVBhIQEIDS0tLqR5Tm5jJ3+Ook45Vo0qQJhg0bxg0bNgwA0KtXL4hEIvz9999IT0+HsbExppX7MjQEhYL9bN3KqvOpqczf4Y03AD292tdVqR5XDr/4giVxZs6suhwhbPQXwK7bvXuBzp3ZeL3Jk+tVFe/VqxcJDQ0VBgwYUPE+d3BwwJAhQ3D8+HEkJyejY8eOKG8x++2337B8+fLaNxoRwYL9S5c0Pg7MmMEk6h99xCZFJCczkzoNxtGOGTNGOH36NJeQkABPT0+Ri4sLtm3bxtXbTLBXL2bkWdbKAYC1GWRkAH/9BXz8MZonJqJJkyb8hg0bRKamprSwsJDwPI9WrVoJ5ubmnCAIcKqccCopYdd95b76uDiWRAQQEhIiuLq6EpFIpPmLlpbGTPn276/yUEZGBpRKZW39ECZKpVLC8zxMTU3VcrncAcAz6Jl6tZDJZEQsFrer8v0rCCzhM3581URwPQkPD0dUVFSWUqmcI5VKn19vnI5XGl1lX4eO1wipVErVavWvenp66dbW1qX1mQ2t49VET0/v/9g777AorraN32dmCyBSBJQmKhbArsSKokLsGjWxxmjsMSZq8hlfNWr23dcUjWmaGJNYYo8VK/YCCqhYsSJNQASV3pZld2fO98cBFKUuWDO/6/IS2N0zZ2d3YZ5232jZsiUmTJgAjUZDnrflV05ODhISErhOnTqV+fejY8eOAIDFixcjN/fljRTa2tqiYcOG6N69O/z9/ZFYHaJvpqYsiH8y0AeA3Fzgv/9lFfJC5s2DOGECDD/8gJvnz2PpxInYfvQoVq9eTe/du4eTJ0+KW7ZsoYQQ4y/cdDo22wywtu7Zs9lFZUHQmLd1K3YPHQonJydSZMf2slm/nnl7VwSOY4J5a9cCycms9VirNeqw/fr1g0KhwOHDh0lYWFjxc37uHEvMlBdQPwVfcD4LL/KVSqVYo0aNym1MFFlXQXY2c3PYsAEYOxa4cYPtZ9Cg8vcVEsLa1xcsYN/b2VVMRPG995hug04H/P474O/PguUKVvo9PT1JZmYmV9jxU0jHjh3RsmVL4cqVK3T9+vX4888/C56qWP57/T//YZXsynZHyGQs4Le0ZN0ju3cDmzaV+7BmzZpxXl5e9Ny5cwLAXktnZ2dx165dlftc5uQwccknWb+evXa9egEHDkAmk2HmzJn81KlT0bVrV/LZZ59h3rx5EASBhIWFYeDAgbSoK8RgANq2ZckCS8vHa+7dC/ToAQBIS0sj7u7ulTtRoaFsryVcIyQmJuYIglBaVR8AQgRBIImJibCxsZEBqF+pY7+5OHEcJ39mjDIqirXvV9FqLyUlBQcOHMjT6XQDVCpVdvmPkJBgSMG+hMSbh6tMJqs1ceJEM3klL1olXl+sC/yqy2qtrwr37t3DypUrxWXLlkGpVNISWxUBaLVa7N27F3FxceA47sWqkpdBt27dYGlpKRw6dAjlKWFXCIWCVcefaFNGeDiwfTsyMjNx+/ZtXAkKwsrmzcWlXbsi/fvvEXbhgujVpQu+/PJLODo6knXr1uHixYto2bIl6devX+X/Hn/8MVO037ePBYMAqwB+/jkT5zp8GDAxQWF3T2mv2UthzBhAra7cYzp3BiZMYGrkgwYZJTBX+J4s+Lr4Ahs3stZmIzEvCKwFQeAKj1Eud+4w4a7//pe11yuVbB7/009ZgqMiLeyFTJhQJPgIgLV+d+5c8cd37swq6R07ArNmMV2F9PRyz3NhUvnRo0fP3DZ48GB+3rx5RKVSoXPnzuA4Du7u7mUv6OfHOj8qs/cn6dqViV9u387a+qOimOZDOZ97JycnkpaWxj/xPZeQkFA58dMRI54Vnrx6lSXerl1jHSpg70M7Ozu0bdsW5ubmUCgU6Nq1K1EqlWjbtu3jwF2rfWx7+SSjRwMffojo6GgAICW5k5TKo0csEXTgQIk3P3z4UARwo8QbAahUKhEAJ5fLYWNjY0YIqaS4wRtLWwcHh/xi4zu5ucDUqUyBvwqz+oIgYOvWrbmiKH6hUqnCqmGvEv8ipGBfQuLN475er0/59ttvxYiIiJe9F4kXxPnz50We559VW68GHj16hC1btsDJyYkbO3Ys5s6dSyyfrDIVsG/fPixZsgRXr14tnCPFpEmTioKgl83IkSP5hIQEPHjwoOqLEQJMn158ZjovDynW1lixYgWO+vsLbn37okdQEDe7YUMYwsIw8pdfOC8vL3Ach8GDB2POnDn44osvOB8fH7Qop3UcN2+yyuuyZazSB7A2+PR01nZdGGh5ez/2rgcQERGBH374AcBj67NXAoMB2LGj8o9TKFjVe+VKNgP7zz+VXmJYQYWt2HhJZiZbu0+fyu+pgEaNGuGDDz5AZmYmli5dWvods7KArVuZeJ6XF1NKnzOHaRMoFKyyX1lEkSWenhQ8/Oqryp9jjgNsbVll/+uvmXhjz57sfVYKp0+fFmrUqCGWl2js2bMnCCGwtrbm4uPjS76TRsOSOZ6eVRYyw4oVLPDu04d14QwdWqqdY2pqKtLT02FmZlaUEfD19YWVlRV27NhRcWcFnmc6CU8mSH76iXUC7d1bpthgbm4uFArF4wdev866FObNe/ZczJiBhPfeg5+fn9iuXTuxUvoQX3zBPj8lPEaj0SAzM9MMQHhZSygUisCgoKB8CwsLolQqq+4j9wYgk8na29raFrcruXWLCSJWcXzs3LlzQk5OzlVBEFaWf28JieJIPb4SEm8YKpUqUq1WOwOY9M8///w1Z84cSHZ8bz4ajYYIgoCsrCxYPKUSX1hZT05ORmxsLC5fvixaWVlRd3d3vkGDBigpcC983LVr13DgwAG4ubmJ77zzTplX37GxsRQAmTx5MgorTdUiUlZN2NnZwcbGhh49epSOHz+e02q12LRpE+3Xrx9xfCJArjCff85E04YOBWxtIcbF4ZROh379+qFNmzY8WrWC+59/AllZcChh/XJFC7duZUH8J58w5fRTp1jw0qwZu33LlnK3GB8fD0EQMHnyZBj1HJ8XKSns+Rmj+k8I66pYsICJ0Xl4MGG0CuiThIeHY+fOnQBQfBb73Dm2RhVHnxo2bAgTExNonx4zoJQF3q6uwPHjrOo8aBCz+qvquFVeHtOJuHCB+aoX8uGHgLGdPjzPkkbr1wNHjgBnzjCRSbX6mcAlLi4OjRs3rlBk7u3tjevXrwvBwcG8t7e32KVLl+KPCwxk63t6GrfvJ3F0BCZOZNX29HTg//6PdcPMnl1UKb9//z5OnTpVWCGH8xOJFrlcjpEjR2L16tUVP6aTExudyMhg+g8AS+4AQEHSrTQaN26MgwcPkjt37sDNzY2JgDo4PBPoBwcH48KRI7RWcjLxHDYM3bt3r3hWRKMBlixhHSQlEBERAYVCcWHu3LmaEu9QgE6n6x8ZGXkrPz/fhVIqKfED4Hl+fNu2bR+f2IQElhAOCqrSuhkZGQgMDNTp9foPpTl9CWOQgn0JiTcQlUpF1Wr1TZlMZsjPz5fFxsbC3t6+ckJDEq8V3t7eJDQ0FD///DPq1KkjNmvWjLOwsIDBYEBQUBDNyMggAGBqaiq2bt2aS0lJwalTp4QDBw7whBA0atRIkMlkqFWrFtemTRtCCMHGjRtpbm4u3nnnHdKiRYtyLyjff/99smLFCuzYsQMzZ858/k/aCCwsLEjhyENkZCTu379PNmzYgMaNGwuxsbFcgwYNqLOzM2nVqhVRlnJBXIyVK1kldOhQZAUFQSEIYpt79ziMH8/mNLdvr1iFMieHzWsrFEDTpkBkJGv5TUpigVdu7uNK3NNaAWXQtWtXXLp0CWfPnsV7VRC2q3beeouJjFWFjh1Zy/f06awdftu2xwFWCaxfv94QGxsrA4AhQ4aIzs7OxSv7b71Vtf0U0KxZM3rp0iWyatUqcUirVpztrl0sSP7f/5hN3Jw5TAW9ujAxYUH50yr3KSnF9SOMQaFgHRQGA0tM5OUx0bsPPgB8fQEAubm5XEW7Rry9veHt7c2fPXsWR48e5by8vB4nBB89YpXvr7+u2p6fZssW1vVw/TpL0K1YAUNQEG717YtDhw+DEELHjBlDCkRHiwlapKWlQSaTUY7jKpa15Dg2ShMf//i96OHBqvrz5jErvEmTSnxozZo1IZfLKQCCU6dY4mDVqmL3CQsLQ2BgICYoFKTOkSMgK1dWrv1h8GCgf38mYlgC2dnZEAShLHE+AIBKpcpVq9XfRkVF/UEIqeIH+fVHrVZ3kclkdvZPiij+9BNLBFchmUcpxd69ezWU0qUqlSq6GrYq8S9ECvYlJN5cHhkMBtnq1avz8/LyHllZWdX65JNParxKlVaJ6iM4OFgEwE2aNAlXrlzhbt68KWo0GgoATZo04evVq4eaNWuifv36T14c8qIoIjIyEuHh4bzBYMCdO3fEkJAQQilFvXr1xGnTpvEV9Qu/evUqgOenG1AdvPXWW9i9ezeJjY0V09PTuR49ekCj0dDMzEy+R48euHnzJjlz5oxw6tQpfvz48ahduzYAwGAwoETBy7AwNgssikht3hyPkpIo6tZlAXlqatmBfnw8U2n++Wege3cW5K9fzyzVTEzY3HQhRn5ud+3aJRoMBq5aXAiqE0pZJT45mdkBVoXly4Fjx1iwb2bGhO1K4OHDh3yjRo3okCFDiJmZ2eMXxmBgHQL+/lXbRwH9evcmHfz9cSkpiQQePgyftDRYGwzF9R2qi4QEFrgVdCsUY/9+NibQqVPVjyOTMZ92g4F1EOzYwb6uUQMajYYUC3IqQIsWLRAQEEAPHDhABwwYwBFCmLCdmxvrfqhOeB60ZUvEfPWVaBkdzV2eN0/k16/n7Hftoh6zZ5MBQ4eS0n7HpaenIz8/n6SmphZZ5ZXLlSts7KbQBaBrV1bt9/Iq09pSo9FAp9ORevXqMTG3Tz9ljykgNjYW/v7+GDJkCOw9PB4LMVYUSllHwwcflHqX2NjYLIPBEFLBFbcA+INS+goofr5cOI4ba2NjwxW9j0JDgdatqyzKd+bMGX1iYmKcwWD4thq2KfEvRQr2JSTeUFQqVdTXX3/9UW5urkApXZ+WlpYTHBxsaNasmWzXrl25tra23IABA0wlxf43g7Nnz3KmpqZwcnIqnM2uUITOcRzc3NxY22jBj0RRhCiKkMlklbqI8/HxQXBwMAqSDESv14PneVQ0WfAiaNq0KWrWrInExESuVatWhSMuRZF0WzYPz69atYr+/fffpHXr1vTRo0c0JiaGq1u3rtivXz/umcCmZUtg1Ci4/vUX0l1cuIwTJ2B18OCzVdUHD5h9VvfurLW4d2/W4ikIrI288LM4bVq1PNekpCRERkZyY8aMgWt1B1BVhRDWUl0dyUdCmNL5tWtMlK5lS1blfkIRPyMjA3q9ngwePBhmT9tfBQezdunKiOGVxMWLgEoFbudO2KWkoMvQoeTH8HBYdekC3+elW5GUxBJKJZ3Hv/4qtV3baGSyx1XhLVtAZ86EsmdPNMjIqNQy5ubmmDp1KlmxYgUhhIj9WrbkOLWaidk9B2JiYrDZ05Nz7NFD7PTnn0T57rto5OhImi1ZwnQuSklWNG/eHMHBwVixYgUmTpxYMd2LPn3YjH4hn37KBDMHD2aii6Vw+fJl2NnZicroaE4ICEAOzyMlOhoGgwGpqak4ceIERFFkHXoGA7P3CwiouLbBhAkskVhG0iKDvY4VstFTqVTZaiay2bJiG3hzUSgUjTp37sz+XlIKLF0KvPtuhUaLSuPhw4c4c+aMwWAw9FKpVNKohITRvDpXYBISEtXOggUL/vrqq6/WqFQqA6W0X1BQkH7NmjV5SUlJS2/dupVw43lUmiReOLdv3wYATJgwoVrW4ziu5Cp2BR5nbW2NiIgIsnPnTvrtt9/i+++/fyXU+J+kbt266NChQ5laFhMnTiQ+Pj64d+8eVSqV3KRJkyCXy8mff/6JM2fO4OTJk4UXxkz5e/x4EI0GLgkJIA8fAoW6CfPns3b8335jQk1scRbwu7qyKinPV31uuwQKFeGzCmeGXzUGDDDaQq9EWrZkyZPLl4Hhw9nMcwGJiYlQKpW0REu8a9dYi7UxiCLw/vvAjz+yeeimTYvm8/3y80UnJyfRt6DdvdqJjWWBW2kifNOnA2vWPJ9jA8D77yN6zx6YGAwwLWiPRyWCfmtra4wfPx43btwgOR99BCxeXMwW8sKFC+K2bduElStX0uXLl4uBgYEGY7d6+fJl0cnJiU767DOu2fvvk0ZXr7JgbNs25oJw7FiJrgMWFhaYPHkyGjduTFevXo2UAm/7MnFyYuMahbz7LnD+PNMhuH691Ic5OztDiI7m8rp2xR9Ll+KXX37B9u3b6d69e+mpU6dgZmYmOjs70/Xr12PT1q1Chk6HvIqe74QEllAsR7U/Ly+PB1CBJ1mM9pW8/xuFWq0eQAjpUJQwv36d/f4ZMcLoNQ0GA7Zs2aIRBOEjlUqVUE1blfiXIgX7EhL/ElQq1cn8/PxBubm5YxYuXKjW6/WNXykrLgmjOXnyJLWzsyvy+X6ZDB48GABrOfXx8YFOp8O6devEwMDAVzfoLAGO49CuXTtMmjSJGz58OJycnDBq1Cji5OQkXrlyhQYHB2PZsmXYu3evKHp6Qly2DDmU0gN9+xLTKVOYdznARPWioljFuVAxf8wYNsf7nKlXrx7efvttYe/evTh48OBzP16l+fJLZvVWDWRkZODIkSMsWJwwgV1op6UxUTlK4eTkhNzcXPKM7aIosqRAZcQLKWUV1WbN2DHc3Vmrtrc3q+iZmYFSirt373KNGjV6ftdZixcD48aVfruHR5mV5Org8PHjVN+8ucCfPs1alr28mBp9BdXrnZyc0F2jITdNTKjhiaTI3bt3cfDgQc5gMPB16tQhtWrV4i5evMhv2bJF/OOPP8SMSiQVcnJycPv2bc7X15e1P0ydCvz9N3vNDh4Ezp5lybg//2S6GU9hZWWFnj17EgDPdoWURO3a7LOemsq+37iR6UGcPcsSUqXg6uoKWzc3unfECOo1YgQWLlyIuXPnknr16ok1atQQP//8c27ixInE29sbNWrU4NePGiX88uefuHu3nEK8KLLRghs3yu30MDU1FQBUwscPxwG8QsqfLxa1Wt0AwP6BAweaKZVKlvBbsKBEYcXKEBAQoM/Pzw/+6quvSrdvkJCoIFL/roTEvwiVSnWs8GulUnnb39/f1drampibm9OePXsqKyRIJvHK0axZMxISUtExy+eLi4sLVCoVUNAa37RpU6xYsYKLj49HQEAABg8eDBcXF1hbW4NSClEUwfOvx8inTCbDpEmTiq7gHj58iHXr1pHY2Fj6zqFDpH5aGhny9ttQODoChRaIL/l18fLy4iMjI8Xs7OxiV55nzpxBVFQUHj58SDt16kS6dev24je3di2rgpaBKIq4efMmkpKSkJmZCV9fXxgMBhw5cgRyuRxeXl549OgRDh06BEEQoNVqMXDgQHBjxwKRkRC+/RanAwLEM66uXIvWrQX+6Tfb/fusxbo8nQmDgSUSCrUVZs5kFmZWVszi7ikIIbCxscGZM2fQvXv3yp2XikApc4INO2r6AAAgAElEQVTQ60u/zzvvsP09JwwGAzIyMki7du14mJkxvYTgYNatsngxEB3NRAnLeo31erS/exdbnZxoxLZtdOTIkZxSqcSOHTtgYWFBR48eTQBgyZIlVKvVkqioKOLo6EiXLVuGGTNmwLoMQcZCwsPDYWpqKhbTKyGE6TRcu8YSNrt3syBt1iz2/1MWpvv37xflcjkxMzMrf+6E45iGQl4e+/7kyceWkcuWlf6433/HqG3bCAIDi3509OhRMS4ujsyYMaNoHrxz587sRldX/lqPHti7dy+dNGkSKdXidP16dtz+/cvdurm5OdLS0krNGqvVaisAnEqlSgMAuVyu1ev1UKvV1iqVqnR/xjeXUaamptTd3Z29L+LiWAdXgduDMcTFxSE0NFSj1+tLF1eQkKgEUrAvIfEvJT8/f/CjR4/eTk1NdQMwIjU11a5r167cKzfbK1Emubm5CA4OBs/zTMX5FcPGxgZfffUVfv75ZzErK4s7deqUkJOTwzdu3BiJiYk0JyeHuLm5CX369OGftgx81alTpw5mzpxJLl68iD2iKA7s2ZNrVNiqXx2iaNWEUqks1p+s1Wpx+vRpuLi4UDc3NxIQEIC4uDj07NmzyDLxhXDyJFMsL0UwbM+ePQgLCyv2s1u3bhX7/s6dOwCAAQMGwMHBAVu2bMGPP/5InZ2dSUZGhpDbsSNnl57Ozd2/H4pBg57NKu3ezQKxkqCUuSCcOcMq6BcvMjX3Dh1Y5c7dvcyn17x5cwQGBuL27dvwqO5OjjZt2Hn74ovS77N0Kaskz55dvccuoHB8qO6T3QNWVkDPnuwc/fQTs7xbsID9K8lF4vhxcF5eGDx2LLdixQrxypUrqF+/PvLy8jB16tSi32cWFhZUoVDQMWPGcP7+/nBwcKA1a9Ys9/ddTk4O/P39IZfLny2zdu3KgjJPT6BtW1bdP3aMBfwzZgBduyIzMxN+fn5ifHw8N7YU4ccS2b2bVfg/+4wF/nZ2wNGjZT+mTh1mD1jAxYsX6aVLl8jkyZNJiSNHu3fD3dERF/bto7/++isZNmwYGjV6yvLeYGBjBN26VabSXKpiJiFkHKX0Z7VaLcrlcn9TU1Mfe3t7zb179wYA+FdVodVqdS25XD5zyJAhhBACJCayc335stFrarVa7NixQ2MwGD5QqVSPqnG7Ev9iyKs2SykhIfHiUavVngAmA/joyy+/hFwuf9lbkqgg27dvF5KTk7kxY8aQVzlYNhgM0Ol0MDMzw+XLlxEQECB27tyZs7S0xKFDh+Dg4EBHjBhRqiq2hPEEBQWJJ06c4Bo0aCAMHz6c37p1KwVAx44dyxFCcOzYMdy+fZtmZGSQWbNmodQKYXUzaxZT4v/vf5+5KTw8HNu2bYO7uzt97733iF6vh4mJCW7cuIEmTZqgsAtJFEXodLoi/YXc3FyEh4cjOjpasLGx4Ro0aECcnZ2h8PNj9ob29qzCWSho16EDsGlTcdu6xEQWzLdowap0y5YxIbzWrSv19FJTU/Hbb7/BwcGBTpkypXoTcadOsWRDWcmZwEAWZDZtWq2HLuTs2bP0woUL4owZM0pvzcnKYv7y5uZspKBNm8dJkvR0NsoxbRrQogVOnDiBoKAguLm5ITk5mU6fPr3Ec3bgwAFkZmYKo0ePLrclaM2aNWJaWhoZO3YsqVOaAGNGBrPQ3LGDtfVnZQGffYb8MWOwMj6emllbUx8fH+6ZQLosDh8G7t0DJk+u2P3/8x/2vizosAkPD4efnx9GjhxZurjmhQssGdW9O0JDQ3Hs2DHUqFGDjhw58rE7woIFrH1/z54KbSMgIIAGBwevmD9//vTS7qNWqz8B8BsA2NjY5NnY2JjGx8f7z5kzZ0DFnuzrj1qt5pVK5anWrVt36NOnD8sWLl7MOm0WLjR63Z07d+ZFRkZumzdv3vjq2quEhHRVJSEhAZVKdQnAUUKIGBERIWUAXyPu37/P2dravtKBPsBa4AvnXdu2bYv/+7//4zp27AgPDw+MHz8ed+/eJYsWLcKlS5de8k7fPLp06cJ9/PHHyMzM5JYsWYK4uDjSunVrjuM4EELQq1cvzJgxg7Ro0UL49ddfaWxs7IvZ2Pffl1h13r17N7Zt2wYA6N27N5HJZDA1NQUhBC1atMCT40YcxxUTWqxRowY8PT0xfPhw3tfXl7i6ukKhUAAjRzIdhd9/f+x2EB0NDBnCKs7p6UxbYf9+FtTHxLCK7KZNrOJayUAfYJ7lADBw4MDqDfTffx9o1KhcsTVER7PExXMiJiZGzM7O5iMjI0u/k4UFa+X/z39Y0PnOO6zV+d491ilhZ8eSKgB8fX2hUCjonTt3ULdu3VLPmVwuR15hi3wZpKSkICEhgfvoo49KD/QB1o0wbx5w4AB7j+zeDaxZg4y9e+EZGEin9O5duUAfANq3Z88PYDoGEyYAPXqUfF+9HjhypEgl/9atW/Dz80P//v3LdtFYu5Y5LgBo37495syZgwYNGmDt2rUIDAxk4hTNm7NzX0GaNGlCOI57T61Wl3r+VSrVCpVKRQDYpKamfhgREUG1Wm35MwJvEDzPL7C1tfXs1asXC/QvXmQJxLlzjV7zzp07iIyMTNfpdJ9W1z4lJAAp2JeQkHjMHkrpgp07d75y6ukSpePs7EzCw8Nf9jaqhLW1Nb4oaEcODg6mV69efa3E/F4HateujalTp5LZs2dj1qxZaP1U8EoIwZAhQ3g3Nzd69OhR8fTp0wgODn6+m1q+nCnyP0FqaiquXbuGbt26Yfr06cxmrLqwtmaB3LRp7LgbNgDx8SzY6tgR+PprwNcXuHuXJQDc3Y12SRBFEceOHQPHcdU7GqHVskDZ0rL8+x47xhTYnxO+vr68wWBAQEBAxf5gfPMNcOsW8yDv2ZMlWmQy9pwKhBNnzpxJxowZUyT0WRK1a9dGUlISX17Af/v2bVEmk1W8U8XRkQkvajTApk3gBw5ENsBd/PxzEadOVWyNQiwtmY1gZiZr7e7dmwX8TyOKLKEUGgrarBmuXLmCPXv2YODAgWjVqlXZx1i5EtiypehbmUyGQYMGkfHjxyMgIIAX1WqWQCic8a8ADg4O4HneEkC52Y2Cuf0zhJD7FT7AG4BarR5GKV04dOhQM47j2LjP11+zzhUjuyJ1Oh3279+v0el0Y1UqVW41b1niX44U7EtISAAAVCqVCEAHgCQ+x2qQRPXi6uoKS0tLofx7vtooFArMmzcP9erVI0eOHKF79ux57Z/Tq4ZcLoeZmVmpwQ8hBL6+vtyjR4+4U6dOITQ0tGKS6sbSty+zIXyCNWvWUABo3LgxnotbiFLJKsnjxrGZ9u3bWcB/9SqzUDQzA0qy56skWq0WiYmJkMlk1Zc5FUU2D3zmzGNrx7JYu7ZSVd3KYm9vjxkzZiAxMZFU2MZVJmNBfk4OUKsW67SIjGRjFGo1zEJD4RoSwlrpS6FNmzYwMzMTExLKdiSLiooidnZ2qNRokFwOqNVAly6w3b8fPYYMQZRCwWVv2sTeH0+7OZQGz7O2boOBJTYaNAB8fJ693759oEuXIjo2Fr///rt49OhROnjwYLQo6HYokzNn2NpPYWZmBlAK3T//VPq9TAiBqampHkCFsmyEkNuUUmelUvlDpQ70GqJWq12/++67P5RK5fqhQ4dyRYnI0FBgypQqWe0dPHhQq9frD6hUquqxJ5GQeAIp2JeQkHiS1QCWHDx4MOdlb8RY8vPz/1WdCR4eHsjMzOQLPdVfZxQKBQYNGoRu3bqR2NhYvjL2WhLVg6WlJebPnw8AMBgMz1fw0d6+mK86ABSqWsfHxz/XQ6NRIyZYtmsXCzRNTat1eTMzM/Tv3x86nY6cPHmyehY9cQIYOLBEP/gSmTgR+O676jl2KVhbW8Pc3BxBQUEVSwzl5DCrw+BglmS5eZMJ4/n4MMHB5GSWgElIYAHy1Kms0+LAgWK2eIXOC6UhiiKSkpJIzZqlas2VTadOwPr1SNVo4HH7NuLNzdlIxIIFQEoFbeh37mS2e598Aowd++wsd3Y2El1dsXnyZHG7nx9t1KgRN3v2bNK0ohoLpYyXWFpaoo9cjn8+/VSsTFW/EBsbGx5AhRQlKaXtADSeO3fu81GBfImo1Wruf//739AlS5ZsWbJkyQ2FQnGzYcOGH06dOtXUw8OD/W7Uatk4kpnZM7/LKkp4eDhu3bqVodPpKijwICFROaRgX0JCogiVSpUJYEViYqL5M37UryB6vR7p6cztRxRFHD58mC5evBgXC2cl/wU8fPgQSqWSKkpTFH8NcXNzA6UUq1atgkajednb+ddBCMHcuXPB8zxWrlwpxsXF4fz586j2hFJSUrHKs0ajKarCujxlfVbtuLsDd+4wJfbnRNu2bQEAMTExVV+MUlbFTUp6LC5YHl5eTBDvOdOvXz88fPiQK9fvHQDGjGFBb7167HsbG6ZYb2MD6HRMTHDfPsDDA/D3Z0FyTAzrADh0iCUEhg+HXKMh2pMnQfPzSzxMamoq9Ho9HB0d8ehRxUXNtVot8vPzodPpkJWfD6cZMxA+YACSsrIorl1j7flLlwLnz5e/WIcOLDGwZg2byV++vOim7OxsxPTuLaaPGYMa9etzs2fPJr17965cF0KTJizQfDr5Ex+P9itXIvXuXe7KlSsVX6+Axo0bmyuVygqJ7alUqiiVShVV6YO8wqjVatdFixZ9oVAo7tva2v7t6+s7atiwYc1mz55tMnz4cJNio0UJCUC7dsyS0wiysrKwZ8+ePL1e/65KpZJm1ySeC5Iav4SERDHUarVMqVSeMDExaTdp0iTTF6bMXQnu3r2L06dPZ6ekpJjk5OTIGzRoQDMzM/MzMzNzBEEwAWA+ePBgsVWrVm98QrNQwbrA2/6NwGAwYOfOnfTOnTvE09NTHDBgwBv/Or5qiKKInJwc/Pbbb9Dr9SCEoG/fvmjXrl31HUQQWNW2QPxs165dKGwHnzJlyvOzAUxPZ4FS377A/fusYv4ciIuLw7p16zBmzJiyhdYqwsyZrCJenn3bk1y+zNq43dyqduxyEEURy5cvh16vp7NmzSrdUeP8eTbXbGPDximeZscOJtgYEsLEB0tKaly8CISF4aqZGWrNnQvzHj1Qy9OTJW4WLADy8hCckCAGnz3L5eXlwcrKSsjOzuabNGlCBw0aRJQlHbeAv//+W4yPj+c4joMoiiCEoF69emJsbCxXx8aGTrWzI1i7FujViwV5Hh6sfbs0srNZZV+nY1oACxcWJZeOHz1KU3fvJgPnzoVZYeLDGHieJUOeXCM3F4iNRXBGBk6fPk07depEu3XrxpEKJokyMjKwYsWKXIPBUOffNj+uVqvNAOR6eHhoOnXqZObs7IxSz9uDB8w94dw5pgdSSfLz87Fq1arczMzMb+bPn/98W3Ak/tVIF1ASEhLFUKlUhvz8/O4ajSbmVRR+S0tLw8aNG4W4uLivc3JypgNwS0hIOJWenv6dIAj2KpWqJoBZe/bs4f4NyczC6mFISMhL3kn1IZPJMHLkSNKuXTtcu3ZN+jv1AqGUYunSpVi0aBF+++03CIIAhUJBa9euLT5d2Y+MjKQBAQGiKBo52s/zrHKbmgqABY0A0L179+cX6ANMgO3zz4ElS4DVq6t16aCgIHH16tViREQEtmzZAnd396oH+gCrfheMV1SYP/4AClwNniccx2HixIngOI4cPny45DutWweMGlV6oA8Aw4axYD4iggna3S9B9+2tt4CJE9F61ChcW7ECm9u2pfr27ZmqvygCPXrAftw4ziE8HB8nJGBmv378lA8+wO3bt8nixYuRmZkJgAW0hw4dElevXi0GBgbip59+ovHx8dzw4cMxc+ZM+Pr6YubMmSCEkEaNGuH9sWMJRoxgFnbnzzPnhrQ0YPp0FsyXhFIJbN0KBAUxXYKcguk4UUTnGTNIHsdRfVUFKJOTiwf6AQGsO8LDA15eXhg3bhw5f/48OXv2bIX/GFpZWcHFxYUSQj6o2uZeH9RqtduiRYu+4jgu1dLSUjt8+HCzunXrlh7oUwrMmMHEF40I9EVRxNatWzXZ2dm7DAbD4ipuX0KiTIyTmZWQkHijUalUVK1W+6WmproDMG4Q7Tlw/fp1wc/Pj1cqlZfmzp37/RM3+T5112MASv9D/QZR2DpbaWuo14Do6GhBr9fz4eHhuH//PrW1tUWrVq1KfFE1Gk2RtZ9ExaGUwt/fX/Dw8OCdnJxw7tw5qtFoSK1atWi7du2IUqmEnZ0d2bRpE3JzcxEXF4fU1FScPXtWzMzM5PR6PWnYsCHq1q1r3AYIYUGQjQ0cHR1x69YtODs7V++TfJo1a1jwnJ/PZvYLnCCqgxMnTnAA4OfnRwVBIJ06dar6oioVU1Tv3btyj5syhfnbvwDMzc1Ru3Zt+ujRo2c/n1eusEC+V6/SA/1CbG2BLl1YUJ+ZyYQT+/Urscrfp08frFy5Ulx5/jzXoG1b6glwjrGxuLJhA/SXL9PaSiVBZiZqT5qEzx48wJpRo1Dj118R3bIltt+4AetatWBjY8OFhYUJzZs3599+++2iNvouXboAAMaOHVv8wKamLIA/eBD4+2+233ffZRZ4jo7FN6hQsATHqFHM3q+QjAyYennBqkcPumHDBjp9+nTjE5o7dgBt27JWcoB1cixaxPQowNT1e/fuTY4fP07bt28PWQXdJbp27Wp+7969/6nV6u0qlSrd6P294qjVarlCofhRoVBMatmyJd+mTRtF7dq1y39gTg6b1/+//zPquCdOnNAlJiZe1el0k1Qq1ZtflZB4qUjBvoSExDOo1WoPuVw+o1GjRq9MoK/VauHn58cD8MvPz/+qnLtHA8DKlSvzJ0+erKzoBc7ryLlz52i9evVIhS5QXjN0Oh0BgH379ok2Njbk7NmzpHbt2qhduzYopRAEAbdu3cL9+/dx6dIl1KxZEyNGjICTk9PL3vorD6UUd+7cwblz58S4uDi+cLbXwsJCHD9+PO/i4lIU5GzevBn5+fnk7NmzCAsLE01MTEQHBwdZ06ZNcfr0aTg+HeRUBj8/oEBErXBO3+jEQUUID2eB2fz5rA132bJqC/bvF1Sia9WqRadPn159mca7d4GWLSv/uLAwVkl3d6+2rZRGXFwcEhISMOXptvb794E+fdj4QXlWcoXIZMC33zJ9gjFj2PP/5JNnAn6ZTIaPP/6YDwkJQXh4OFmzZg0GDRpELR0cyE1ra4LC0aaLF6G7cgU1/fzEm0eOcHcvXcKY7Gw4azQctm0D9u/nUbduUYBcLhzHrBtbtQK+/BJo354JJ3777bMJmdRUNs994wZzGEhKAn78EWT1avTWarkff/wRYWFh5dvslca+faxDpl07ZisZHf3M+7lly5Y4duwY/eabb8icOXNw+fJl8fTp0xylFKIo6hs3bizWr19faWpqCkdHR8jlctSrVw/16tWrFR0dfU+tVtupVKqyfQ5fQ9RqtYlCofinTp06vUaMGGFao6LOBZs3syTUvn1GHTcqKgoXLlzI0ev1g1Uqld6oRSQkKsGbewUsISFhNHK5fFb79u1rNmzY8GVvpQiFQgFXV1d9fHy82/z582+WdV+VSqVRq9WmqampD+7evats3Ljxi9rmC0Ov1+PChQtIT08no0ePftnbeS7MmjWLS0tLg5WVFcdxHI4dO4Y1a9ZAEATUrVtXNDU15aKiomBlZSUC4LKzs0EphU6nAyEEjx49gpOTE3JycvDrr7+ie/futFOnTm9+u0c55OfnIygoCKGhodTV1ZW0aNGCpqSkUHt7e+6dd955JsE3ZMgQXLlyBc2aNYOVlRWHJ0YAz549i4SEBNQzdu548GBg0iRoR4/Gli1bKACSmZkJOzs7Y59e2dSuzdrEeZ7N7d+7V21LHzp0SLSwsODGjx9ffe+xS5eA9esrLsr3JKdPs2pzGZ711YXBYIBcLqc2NjaPNxofzyr5584xZf0SHvNkIjYyMhLnzp2DKIrUxMSEPHjwwOC2YAHfx9uboGNHFsQOG1ZsDZlMBm9vb3h7e+PkyZPYvXv3sydKJoNdu3YY3awZd/z4cXRo1w4O1tbMMq1GDdb6fvs20KwZU/3/6isgL4+du7L+dtSty2by9+wBrl1jzgeXLzPdgcLnZWvL/n3+OVNsP3IEePQIYBZ38Pb2xpEjR6iFhQVpUMI5Khd//+Jfl7AGx3H4/PPPue+++w6rVq2i2dnZXIEOx1FKqSo8PLxLTExMM0JIfVEUW4qiKBcEoYZMJsvlOO6K8Dqo9VYStVqtVCgUx+vXr9926NChpnK5vOIPvnCB/e4wguzsbOzcubNQkC/ZqEUkJCqJJNAnISFRDLVa3Vomk52bMWOG0mjboudEoeAVAK4irW/ffPPN5+bm5l8PGzbMrErVx1cESikiIyORlZUFf39/KBQK2q9fP2J0Veg1RKvV4tGjR9iwYQNkMhkdNGgQ8fDwwKFDh2hoaOgzF/o9e/ZEREQEjY+PJ5RS9O3bF5cvX6YffvghMa1mu7VXndzcXGzevFlMS0vj8vPz4e3tjR49ehi9XmxsLDZt2oRevXrB09MTvDHWUwcOAG5uSDI3x19//YVGjRrR0aNHP5+ETEYGC97Cw1nFG2At0MuWAV27Gr1samoqjhw5IkRGRvJjx46FUUFbSeh0bB743DngKd91Siny8vIgl8uh0WhgYWEBSmlxNfdCpfryWuerSF5eHoKCgmhERAT95JNPuIINMgG7sWNZ9fspDh8+jAsXLsDc3FwYP348b2VlhZ9++kmoXbs2b29vT0NDQ4m7uzsiIyNRq1YtdL5/H+42NuDbtGFdDhYWJe5l48aNNCYmhsyePbvyYz0ZGUBgIKuST5/O5vJXrWKK9xMnsgDPwoLpAzzNgwfA4cNMB8LenjkHmJgwMciNG5mKf+vWbAyg0Pax4NydOnVKCAsL4wkhtGbNmqIgCBQAzM3NZQqFAgMGDIBVabP9ajV7P3/xBTuuo2OpiaH09HQsX74cMpksxmAwvKNSqUpMmqvVagLAVKVSvZZWKGq12lylUpVqH6xWq814ng9wcHBoMX78eJMKOyBkZbEOkxUrSn3/lYUoivj77781Dx48+HH+/PnldSdKSFQbUmVfQkLiaXwbNmwovmqBPgDYFF6gA0MB7Cjv/gaD4ZesrCzdqlWrfuM4jlpYWOS0b9/erGPHjvzrNs+fl5eHo0eP4urVqwAABwcHOmXKlNfrSVQDJiYmcHFxwZcsgChS/u7bty9xdnaGXC5ntlYxMZDJZDh2jMk32NraIiUlBYcOHQIAcvHiRbRv3x5lqXO/7mi1WmYhlpUFZ2dn5ObmIikpievfvz8cHByqLIK3efNmCIKAQ4cOQRRFdOzYsfKLmJsDDx6gRkHC6sGDB8/vPa3XA9988zjQB4D33mNBUhXYtm0bkpOT+ZEjR1ZLoE8pRWZmJmqam4NPS4OOEHAGAx4+fIjExESkpKSIERERJDMzkxBCQAiBQqEAz/OYNm0aTExMmF7JJ5+wqvLi56f/9fDhQ6xatQqCIBQp3eekpcEsPh6P1q6FVZs2MAHrAAkMDKTm5uaiVqslhBAyYcIEcunSJfLXX3+JU6dO5QRBIC1atECrVq1IRESEUKNGDUycOJG/cuUKPZGXh1Bzczpy+XIu79IlXFu9Gp29vHDnzh3UrVsXAQEBiIuLExo1akTu3btHAgMD0atXL5w+fRp6vR5PzuOXipUVMGgQ+3rXLvZ/Whpr0a9Vi1nnbd3Kki9ffsneOz17sqDe3h4YNw5wcmKdGA0bstGFBg3YfQWBBfmTJzNhtwJMTU3Rr18/vm/fvrh//z5JTEzkFQoFOI5Deno67t+/T//66y86depUzqKkALNbNzamMXo003YYNarEpyYIAnbv3q1RKBRby5sTL7jtdQ30mwG4sWTJkmCtVrsDwHkA9wA8AGABYJBCoVhsaWlZa9SoUfJKWR1euMCSOkZcG1FKcfDgwfzk5ORrBoNBXekFJCSqgFTZl5CQKMa33377Z4cOHSb5+vq+kiromzdvplFRUYWVB21FHrNo0aJ3RFGsAyAFgN+XX36JSrXtvUQMBgM2btxI4+PjCQB06tRJ7NWr1yv52ryKhIaG4sSJE3TgwIHE1dUVJiYmWLRoEQCgTp06dMKECUShULzkXRqPIAi4evUqkpKSxDt37nDe3t6QyWS4ePGimJiYyAGs1dnW1lZMTU3lnJ2dhbFjx1aLFkd8fDxCQkLonTt3yNtvv43IyEixV69eXKW6aD79lFXMNmxAcnIy/vzzT/Tt2xeeBRZl1YYosmrtokUscCskOZndVqeOUcvqdDp89913cHBweHZe3QgopQgMDBSjNm/mRm3dimPr19Ow69cJIQQmJiaimZkZrVWrFu/q6oq33noLOp0OWq0WUVFRCAkJEbKzs3m5XA6FQkGbXr6Mzn36EIsPqk9UXRRFhIaGwsnJCZmZmdi7dy9at26NsLAw6PV6DBs2DPkffADrtDT889FHEEURNWvWFHNzc7mBAwciNzcX5ubmcHd3B8/zoJRi7dq1YmJiItegQQNxxIgRnFwux549e5CXlyeMGjWKBx4nFQghaFKzplh71y7OTKejIe++iwyNhjg5OYkODg7crVu3xF69enF79uyBTCaDKIqwtramer1e/OSTT/gqf9YNBkCrhbhqFe5rtXCUycD//TdzPjh1irX2Dx7M3md//MGq+vv3s0SAqyvg4lKpkQxKKfbt2ydERESQjz/+mHvGClcQgLg4ZrfXvHmpawcGBhpCQkJCdDqdj0qleuPa8gtRq9X1ZDJZ5KBBg+TR0dHae/fu5efk5Cjy8/NNeJ431K1bN9/b29u80km5ZcuATp1Y14cRhYLLly/TI0eOxOl0ujYqlSqj0gtISFQBqbIvISFRDI7jTLOzs3UATF72XkqiU6dOJCoqCgDsAcRW5DELFy7cBwBqtfp8iqQAACAASURBVLoGx3G67OxsRa0nL/hfYW7duoX4+Hgybdo02NjYgKtUKUKiffv2aN++fbGrs8GDB0Or1SIwMJD+8MMPpGHDhkLv3r15QRBgaWkJnudfGyeHAwcOCFevXuVRMEd/8uRJmp+fTywtLemcOXMQExMDV1dXBAUFcd27d4ebm1u1iW66uLhgy5Yt8PT0xIMHD2hiYiK3YcMGzJgxo+It1EuWFLU029nZQRAEHDhwAK1btzZuLKA04uLYyMDy5cV/Pm0aq/jv2WPUsvHx8QCYqGBCQkKFnASysrJgZmYGmUyGpKQkZGRkQKvV4u7du8Ldu3c5vV5PxsyahSgbG9yNixOnTJnC29jYQKFQPPPZl8lkMDMzK3yf86IoIiEhARqNhsTm5FC/ixdR09RU6NWrF1+Vbq3MzExwHIcTJ04I169f50VRhEKhoAMGDCCtWrVCbGwsTU9PJ+d//522+e472LVuTebWro20tDRERUVx7u7usLS0fGZdQgiGDRvG3bx5E+3bt+cKX/MWLVpg586dRW+AOnXq4LPPPoNMJoNMJuOOAIL7iRNcu6FDiZCVBb5VKy4rKwtRUVHE398fHh4eiImJwbx580ApJcuWLeNOnTqF3r17IyEhAX5+foLBYEB+fj7Xvn170rJlS3AcB0op8vPzSxf5lMlw7sYNnNbrxTydjvPu2BE9pk5lM/onTwI3b7LOkVOnWIv9uHFsHGPzZuDECaYVkZLCkgZKJVN1r1ULuHOHqfc7OTFRQ0EAeB5Eo8E7jo781YMHxXNjx1KvadOIaUIC24tOx4TiVq4EYmNLDUJ1Oh2CgoIEg8Ew8U0O9AuI5zguzcbGpk7z5s1NUHAdI4oiOI6TA6h8lj8vj/3e8PY2KtBPS0vD4cOHtXq9fqAU6Eu8DKTKvoSERDG+++675S4uLhNGjx5dQWnaF8fFixfh7+8PmUz29fz58xcas8bixYvXEEJGi6KIkSNHKqttvvY5ERISgpCQEPGLL76QgvznQHx8PPbv30/T09NJoQ5V165dBR8fHx5glbXo6GjY2dmVGKy8bK5evYqDBw9Cr9dj5MiRcHNze6HHX79+vRAfH88rFAo6atQosmHDBtSsWROEENqzZ094eHiUfXW8dy9re/bzAwD8/vvvYnJyMjdw4EC0bdu2+jZ69y6ruj7tzJGRwZINRszgAsDSpUuh1WohiiIAoHHjxqKDgwPn6OgIe3t7REdHIzw8HFZWVrhx44bYqFEj7vr166hRo4bo5ubGXb9+HUqlkubk5BClUolevXqh9f374G7eBObOrdpznj4dCVlZ2N+xIzU3NxfHjBlTZvbkwYMH2LdvH9Xr9bRz586wt7fnOI7DtWvXhHPnzhUF+J988gmJioqCu7t7UVInKysLV7/5Ruy0bh0ni4gAqeJn5c6dO9i2bRsWLlxYduLt0CHWFr93L/OXBxAREYF//vkHjRs3Ft9//30OAM6fPy8eP36cI4RQSil56623REdHR06v1+Pw4cMA2GfdYDCAEIIePXqg61M6DmFhYTh+/LgIgPTq1YtkZ2fTCxcuiDNnznz2vEZHM2u2ceOAixfZ++7dd4H+/YGQENbN4uEBaDTsfz8/9v708WFif4LAkgYGA+DuDnr6NG7GxNDbtWrRwS1bcnIzM5Y4AFiCwPdp99kntxKNXbt2Xf/Pf/5jhKXD68c333zzQ8eOHT/z9fWterYwPBwICgLGj398viuBKIpYtWqVJjk5WbVgwYIfqrwfCQkjkCr7EhISxSCE9OrUqdNLC/Qppc8KTYGp2Poz5eG358+ff8LY9fPz8ycDWCOTybbk5OQYKSH+/NFqtdixY4cQGxvL+/j4SIH+c8LFxQUff/wxKQjAcOXKFZw5c4YPCQmBtbU1zcjIIAaDARzHoXfv3mL79u1f6muRmpqKK1euiFZWVvD09OSOHz8OmUwmtm7dmnsZrhMffvghr9PpIJPJCMDGCjIyMgCABAYGwt7eHhs3bqQdO3Yktra2cHV1Lb6AnV2xFvqpU6dyixYtgrW1dfVtMiODteCGhT3brv/wIbPi+/HHSi+bm5sLjUYDW1tbMSUlhfPx8cGDBw9oTEyMcOnSJS4vL4/UrFmT1qtXj0ZGRhITExMuNjaWAiAODg5IT08XRo4cyfM8T9atW4e+ffsyC7Zz55iSfVX5+GM4y2R4v04d8uuvv/J5eXkoSZQyLy8PWq0W169fF5OSkji5XE78/f1BCIEoijA1NSWtW7eGo6MjGjZsSCwsLJ5JxFjcuwfvhQs5TJvGxOiMJD09HadPn8bNmzfh4+MjEkLK/rz17cvU9FNTgbffBtauRZMmTTBq1Cg4OjoWPbZDhw5c27ZtkZSUROzs7GBqalp0W+FzoZQiNTUVSUlJ8PPzw9WrV8Xu3btzJiYmOHjwoKDVankfHx/Stm1bwvM8dDodOXHiBJ+amsr0ZESRVdoTE9l7qrCl/7ffmD1fYdJi7Nhnn8eTPxsy5JmbSf/+aCqK5Pq2beKvSUnCp5MnV3gk4dGjRxAE4XKF7vwGYDAYDkZEREz29fU1LoP3JF9/zWb0J00y6uGBgYGG9PT0G4Ig/FTlvUhIGIkU7EtISBShVqs9Abi9TNGyX375RcjKyuL/85//4ODBg3nZ2dkYN26c6RPBf5V+b6lUKhFAyOLFixOys7PrAcyKTKFQvFKt27/++is0Gg3/+eefo0RhJolqg+O4Ip9rV1dXdO/eHampqbh8+TJp3rw5lEolHjx4gEOHDnGHDh1Cz549hTp16vC1a9fGixSyFEURf/31F+RyOcnPzydHjx4Fx3F0xowZXKWVx6uRJ4OOAQMG4MCBAwDYnPVy1jZPCoQRMWvWLJibmyM1NRVnzpwRtFlZ5L2JE7m8rCzIZDKEhIRQAKRu3brVt0FCWMBV0lx+Tg5w9qxRy5qamsLU1BQdO3bk2rRpU5igLCr/UUpB2C8VAgAZGRlYt24d7O3txaFDh3KFv2f37NlDnZ2d0apVK4LwcGDCBCb6VlXOnAGUSliOG4caNWoIERERfHJyMnV1dSWFSZeUlBT89ddfAAB7e3tYWVnRBg0akD59+oDjuMJ/ZQfc6emssrxtGxOMM5LQ0FAcP34cNjY2dNiwYaRx48YVS6w5ObHXtkMHliSJjkaTbt2KxkMKkcvlcHFxKXUZQghsbW1ha2uL+vXr4+jRo9Tf3x+iKKJLly6kY8eOUCgURX8kFAoFGjRoIIRs2MAN7NaN4OOPWWv+ypXAzz8DH3zA7PY6dDDyjBSH4zgMHz6cX79+vbh27VpxypQpFZrqysvLg8FgeD3m1qqHsykpKSb5+fnGC7CKIrB2LfD770YJ8gGsw+Ts2bNZer1+cMF1h4TES0EK9iUkJJ7kFgBoNC9PiDc7O5sDgO+//x4cx2lEUbT5559/8mJiYkzALppDquM4Op1OdezYsePnzp3Ly87ONrWxsckbNmyYqZ2dXfmqzc+ZvLw8aDQafPjhh1Kg/4LhOA52dnaws7ODu7t70c9FUUTXrl1x6NAhHDt2jOc4DgqFAk2bNkVcXBx99913SVnCdNu3bxcIIdzAgQOJiZGBXGxsLHQ6Hdzc3Ei/fv1w5swZNG/enLzMQP9pPD094enpiR9//FHMycnhAFY5rV+/Pvz8/KDRaBAdHY09bEaeN8/MBD9nDn6eOhU8z0MQBFK3bt1i/utVQhSZbdqKFaVtmLVVGwHHcXjrrbdw6dIl0dPT85lfGk8nD62srPDZZ58VBf8Am6cOCwsj7777LvvBsGGsWv3990btqRi3bxfZ7pmZmeHChQu4f/8+OX/+PORyOSwtLcXU1FSuadOm4oABA7jt27dDr9eLPj4+FReyS05mFn9BQUxtvgocP34czZs3R9++fUmlrd1lMua0kJHBWuEHDWLq9EZSs2ZNvPfee7xerwel9Fm9hIcPgV27MIBSPnXlSghKJfgdO1g139+fteKfOMGC/WqE53mMGjWKW716NT18+DD69etXoecil8tzq3UjrzAqlSpvyZIlQbdu3fJp06aNcYsEBABLlwIjRhg1p5+eno5du3blFczpJxm3CQmJ6kEK9iUkJIpQqVR53333XbxSqSy9/PEcEUURlFICoCWAdqIoHgZAIiMj3yWE2ABYpVKpsqvjWF999dUJtVrtmp2d7QEgJisra90ff/zRoXPnzoaePXu+1N+Nf/75J2rUqEHr16//6rQa/MvhOA42NjYYOXIkAgMD4eHhgZs3byI8PFzQ6XT87t276fvvv0+ebj8vCOZw+/ZtHmCCi3K5HDVr1qQ8z1NLS0s6cOBAvrykjl6vx8aNGwEAhSMHvXv3fk7PtupMnDiRu3nzJhQKBVq1agWFQoELFy6IK1euLAqalEol8iwtcaxnTwBsBAAA7t27V1gVr/pGkpKAW7eYBV1p1KnDPNJLCQzK2ktqaqpgY2Nj1GwwpRTr168XAXCWlpbMm/7SpWcq0kbz9ddFX7q7u/NnCzoYPvroI2g0GkRFRXG9e/dG/fr1OQAonG+vFP36AV5ewC+/VHm73bp1w5kzZ+jVq1cJpRQ9e/YUO3fuXLk9WVmx5E1mJtvbyJElt81XkGKuLbm5wJEjLIH0zTeAtzcsZs/G8ocPMXfSJPCFCZIdO5h+wHNKwpmamqJVq1aFQrXlUpCwqJBzzZuCVqv1T0xM7NKmTZvK2y+cPw80bsys9oyo6guCgG3btuWKovg/lUpVLcUJCYmqIAX7EhISxSCEJMXExNi7uLi8cD+ykJAQAwAK4JZKpbr+xE2/Po/jqVSquwDuAoBare4MoH1ISMhZd3d3VGsbcSW4d+8eMjMzMW/ePCnQfwWRyWTwLRDDcnR0RM+ePXlRFLF9+3a6cuVKMnDgQLRo0QIAa5HeuHEjNRgM9O233+a8vLwQHx+PgIAAGAwGUrduXXL37l3x559/ho2NDSZNmoSnq/6F6uBPBpvm5uZiu3btXmkdBysrK3h5eRX72bhx47jU1FTs27fPkJqayk2bNo3bv3+/YBYQwJs4OEBrZgYXFxfk5+cjOTkZtWvXrvpGHj5ks/pliWstXgzUe1a+QxRFXL9+HYcPHy7SEunSpQtsbGxQq1Yt2Nvbw9LSkiQkJIgocEOoDKIoIjExkevfvz9cHB1ZO/qBA0B1CRN++SV73j//jK5du0Kr1cLU1BS2BYmPslray0UQWBLln3+YpVw14OXlBS8vL2IwGLB+/XoaExODTp06VT7pY2LC/o0fz9Txw8LYHo1px6aUBfg7drCOgcBAJrRXkJThAJiYmyMxMRH1jx1jVX0jnR0qg7W1NdLS0kRRFMtt5VcqleA47sXNG70CEEJszM3NK38No9MBQ4cCP/zAqvpGcOrUKX1GRsYlg8EgCfJJvBJIwb6EhEQxBEHQFvpzvyiio6OxadMmCkDGcdzyhQsXvnB7IJVKJarV6vMAftu8efPUGTNmyF5Ge/SZM2eEJk2aVN0PWuKFwXEcRo4cyZ07dw779u3DyZMnqVKppFlZWVzNmjXJxx9/XBStuLi4YGzxSiO3bt06xMXFYcmSJejRowdatmxZ6JuO9PR0AGw+2MrKShw/fjxnYWHxSgf6pVE4IjFx4sSia4+BAwfywkcfIbxRI9Tu3NnQqlUr2e7du4VVq1bxY8aMgZ2dHUJDQ8Xr16+D53mMGzeOKxSZMxgMZbf7p6cDAwYAV66UPK9fSKdOrP27wI4zJSUFd+7cwdmzZymllHbp0oWzt7dHWFgYDQwMJAWq9JgwYQIopeB53qjEXG4u66y+cuWK8Fbbtjz++1+gdWtjlioZX9+iFuQCgcnqW3v+fBYEX75sVJtzWchkMvTu3ZusWbOGbNq0CTY2Nnjrrbcqn/wZNoz9+/RTZoUXFvasG0NpREYC27ezLovoaKBLFzYaMHr0M3dVKBQ0JzmZQKsFhg+v3B6NpGnTpjh16hQJCAiAj49PmfctOG/VaG3x6kMI4SudJNJq2XvkwgXA3t6o48bHxyM0NDRXr9cPk+b0JV4VJOs9CQmJItRqNc9xXMrbb79t3qlTpxeWDNy9e7f+1q1bZw0Gw/cAglQqVeaLOvbTqNXq9wFsnjhxYoU8s6ubc+fOiSdPnuQaNGggjhgxokICTBKvDsnJyUhMTEROTg4IIejYsWOFNSCOHz+O4ODgYj9r2rQpNBoNYmNjYWpqSvV6PZk/f/7z2PpL4fbt29jxzz+gPF/MOvDYsWO4cOECBEGAtbW10K5dOz44OFjMzs7mPv30U8TExNCDBw+S/v37U09PT0IIwcOHD0EphX3hhXpeHhASgvwuXRAcHIxWrVox1fSn6d0bcHQE/v4bl/+fvfMOi+Jq2/g9M7sLLCsdEZRiR0VRsGBvYOw9XaNv1JiY3otls1FjEt98Mc0Y9RUVjSWiRsXYQkTFBiqGIgooSlVgYSnbZ873xwFsoJRdW+Z3XV7C7sw5zw7Dsvc5z3M/Z88K+/btYx0dHfmgoCCud+/etx1qNBoBAH/++SdJSkpizGYz+vXrV53tUVd4nsfSpUthMBjgwDDCu1eusFi9ukHtvWrlxAm6M92nj+XGBKggat6civyarmcjOXPmDPbt24cmTZrAycmJZxgG165d4zp06ED69evHNCjjIzMT2LuX+hh8+y3taX8nJhPd0d2+Hfj8c5q5MGHCfb0IkqZPF1ocPMg6ZWdbfOHjXoSHh/NNmzblRo0adc/jTCYTvvrqK7MgCPZKpdL4gMJ7qHzzzTeHR44cOTAgIKDuJ82YAWRlAQcONGhOs9mMn376qaK0tHT6ggULtjVoEBERKyDu7IuIiNxKZ4lEYhcSEmL194aqXshubm6GwsJCGwBvK5XKBGvPey9UKhUDYOPAgQOFFi1aPBSVHRISwvr6+mLTpk3MiRMn7kqFFnm0qTL3awihoaEYMmQIrl27hhYtWlTvWhcVFeGnn36CTqdjZDIZwS0Gb48zWq0WW7duxXNbtsAwdKjg6+tb/TsXFhaGoUOHori4GFU18cHBweyqVav45cuXc4IgMM2aNcOhQ4eQkZEhdO/end2wYQMcHBzw7rvvIiUpCW5PP00qVq5kzkVF8RcvXmTj4+OZt99++26H7j17qnd8L126ROzs7ITXXnuNq2mRpirjZty4ccyIESNQUlJSrx1no9GI+Ph4nDp1ikilUjJnzhyWj49nceiQZYU+QEUrz1tW7J88SQXw+fOAJcosaiA6OloYMGAA079/fwaV3Q0yMzNx4MABsmrVKoZlWWJrays4OztzHTt2hKenJ+zs7JCeno6zZ88KOp2OVHYRYNq2bcuOHDkS8POjbfCOHgXy82mf+4AA2rIvLY22yrOxAQIDgRUraCnFfUQ0ACA9HW6jR7PbFQoynRCGfUBiX6PRIDc3l3u2DqnmUqkUDg4OupKSkm4ATlk/uoeP2WwObFaf3fmkJOpxoVA0eM5Dhw4Z9Xr9UUJIZIMHERGxAqLYFxERqYZhmGc6duwoeRAt6JycnAAAhYWFGwH8oFQqz1t90vugVCqJSqUy3bhxgzGbzazFHMHriaenJ/r164e//vqLCILA9O/f/6HEIfLgYVkWfn5+tz12q0lYm0Y6nj9KFBYWAgAKOnVCv0mT2DvbzVWZIlYhkUgwa9YsLjs7Gy4uLlAoFCgvL2e2bt0q7NixQ5DJZGxpaSnWrVtHbiQmMtMIYTb+/Td4Qrh33nkHERER/KpVq1hXV1dh2LBhXPXYx48D4eHA2rWYMGEC9/XXX+PKlSto3br1PeOXyWT1Ti3XaDQ4ePAgvL298fLLL7MoKgL8/YEjR+o1Tp2YM4fu7FuKtDQqkI8etZrQ12q1MJlMbLt27W573M/PD6+88gorCALy8/OZzMxM7p9//iEnTpxARUUFw/M8BEFAz549GUEQ2Pj4eABAXFwcqtoIwsuLegwcPQqMHQt06EBLPcLDaX32kCHArYZ892PJEiA8HB7JyTAUFGD16tX8lClTuAdR/pWbmwu5XM7L5fI6rRD5+/vbxsXFjcG/QOyrVCqpRCIhde7oEB9PSzQaaMgHoGqhqdxkMk1RKpViyrTII4Uo9kVERG7FBEDALb2iLcVvv/1WkZ+fz3AcJ7Asy6jVanupVJprMpm+UiqVaZaerxG0vXDhQubixYvRqlUr3fDhw+3kcjkMBgMKCwvRtm1by7iE34cePXow+fn5iI2NJZU7XCL/QtRqNdLS0vD8889j8+bNSElJYYxGIx53TweNRoPw8HAAQLyPD9rJZKiLfJRIJLcthjg4OGDmzJnV71dXrlzBsWPH0EMuF5qeOcOGJiZCr9fD0dER06dP56Kjo1FSUsKsWLECvr6+/NChQzlPmQzgeRBCcO7cOdjZ2QktW7a0SmaPu7s7nJyckJWVxSQlJSFg9Wra5ivBCklNe/dSw7F33238WFotMGgQ8OOP1KDOSqxatYqXSqVc1WLwnbAsCy8vL3h5eaFPnz63tTAUBAFGo5FZvXo1CQoKYkaMGHHT04EQmo0wYwZN027Rgl6buLj67+aazTRr4qWXgJdfBiOVYvr06cz27duxbNky+Pr6CsOGDWMbmuFTF9LS0ngPD486/51u27atNCEhYQKAeVYL6hFApVJJbWxsYpo3b25Tp4W4GzdomcbevXQxqAHo9fqqNntPK5XKogYNIiJiRUSxLyIiUg0h5Ep2drYRQD22N+6PRqNBWlqaPYD3ASSAOu7bmUym/Uql8oGb8d0LpVJ5VaVSdQTQ6sqVK8uWL1/eRi6X67RarS0AZubMmWjevLnV42AYBsOHD8e5c+cYtVoNl0rzMJF/F3v27BGuXLnC2tvbIzg4GMnJycJdPb8fM/78809y+vTpaqH2vEYD9+XLAQtksLRs2RItHR0ZBAQwmDMHISEh1c8pFAqMHTsWANjS0lLs3buXXbNmDRQKBRk9dy5zevNm/sqVK1zv3r2t6pVRWloKFxcXdOzYEfjuOyqkrUFhIfUtaCylpYBaDURHA5WeCtagtLQUZWVl3KRJk+4utbgPly9fJsePHxdycnK4Fi1akFGjRjFsQQE1Zuzdm2ZPfP45NdBjWbqbK5U2rM3hjz8CERE0I6QyG8XOzg4vvvgid+PGDcTExJCVK1fCx8dHePHFF61yLxUVFcG3hg4SteHj4wOe51upVKpWSqXyssUDenR4zsXFpfOUKVPk912U53lg2DBquvjhhw2e8ODBgwZBELYolcroBg8iImJFRLEvIiJSDcuy7X19fW3vf2TdqewPruU47vt58+b9nyXHthZKpfICgAsqleoCwzAfa7XaSAB/2djYnDxy5EjnHj162Dg7O9ds9mVBZDIZWrduLezcuZOm/Ir86ygpKWHc3d3B8zzi4+PRoUOHxzpF9MiRI7hN6D//PDxsbIDycstN4uBA6/DvUbPr4OAAQRDg5OREPJo2hV9AAI6qVOS999+/q/2hJcnNzYUgCPD39xfY0FAWoaG0RZ41ePNN2hO+sUyYAHh6Ahs2NH6se3DixAk0a9aM79ChQ513rAkhOHnypHDkyBHWw8ODe3fQICjc3Vns3Elb72VkAF9/DXTqRM0EP/4Y+OAD2kUgup7aTKMBmT8fWwMChPLp04ltZCQ3ePBgeN2yI9y0aVM8/fTTXH5+PlauXMlqtVooGlEHXhs6nY6pT7mARCJBSEiI5PTp018CeM7iAT0CqFSqFhzH/dS7d29FnbLviouBpUtp+UYDyc7ORmJiot5kMr3X4EFERKyMKPZFRESqYVnW38nJqdEp/NeuXcOBAwe0xcXFrFarteU47hrP849d+mDlDsjsqu9VKtXwy5cvr7x06dLEpk2bal977TWrF2c6OzujoKBAFPr/Mvbv328+e/asxGg0MhKJBHPnzkVl+r7FS2weJLm5uQIAdvjw4ejZsyctiUlKArZsARYubPwEhFBztR077nvo1atXMWbMGCYgIABwdcX0Pn0kd/oGWJotW7agSZMmQlhYGAu93mI96mvkm2/orvzy5Q07XxCoI/2vvwL12EVuKGfOnMGoUaPqdX8XFhbi1Nat7Kj0dMiXLYNi+HBg2jTg/feBvDxALgcGDLj9pOnTa2yhdy82b95MZLt3IyguDpccHdkhw4fj0KFDyMnJIR999NFdyvLSpUvExcVFUCgUFv99JYSgrKyMrZcBHYDevXtLTp48OU6lUrVTKpWXLB3Xw0ClUrkCaMtx3CAAS9q2bWvu3Lnz/U9cvJi2VkxIaHAHBZPJhG3btmnNZvNrSqWyuEGDiIg8AESxLyIiUo0gCGXnz5839+vXr8HvDSaTCZs2bdLr9fqvARwDwPE8f+JJ6DlbWY836csvv/yuefPmrz6IOT08PNh//vnniXFgF6kdnU6H06dPE0EQmLi4OElYWBjatWsHZ2dnAHjs6/QBYPDgwezFixeRkJBAunfvznAcB+TmArt3W0bsl5TQGtyWLWs9RKPR4Ndff4XRaGQ6duxIHzQagYsXqRu7FeE4TujXrx+L996jtfTe3tabLCyscWn8331Hhf6FC5bvFFADMplMqHPOOyHAjBlwCwtD7yZNBLuUFHbz//6HEVu2oFvQPVrKR0UB6enA22/XOa4TO3ei7yefMBcWLkT5J5/glaZN4eHhgezsbCE1NZU9fvw4+tzR8aC8vFxQKBRWWaRNSUkBIYT4+PjU62+CnZ0d+vXrJz1+/PhXAKxnvGBlVCqVv1Qq/ZQQMlEikcicnJz0jo6O7MiRI+Hi4nL/zy4VFcDw4dSUrxH+O/v27TPodLo/FyxYsKnBg4iIPABEsS8iIlKNIAhLCgsLp+p0OtjZ2dXpHJ7nYTKZqlNft23bZhIE4YBSqfzCmrE+LFQqlS/HcTO7dOli3S3ASry8vGA0Ghmz2YyH1R1AxHqYzWZoNBqcOnVKSEhIYCUSCRwdHQVXV1fSo0ePGtu/Pc6krA+1WgAAIABJREFUpqYCAPLz8xmj0UjfZ4YNA0JDLTNBdDSwenWttdiZmZlYv349CCEYMWIEqq/vf/8L9O1rFbGflpYGNzc3pKamCiUlJaxgNAJ//w28847F57oNW9uGp/EnJ1Mzu+eeeyBCHwB8fX3ZtLQ0vnPnzndPSAg1xvvzT7prn5wMODiA8fREr+efZ4lKhVH//CNERUWxDMuia9euNU8SHw8UFNQ9KKMRmUeOCN6dOzPDpkxhbhWHoaGhbGpqKg4ePIiQkBDc+rsaGBjIRUREEEEQYMnfYaPRiJ07d2Lo0KFMQ8bt2bMnFxsbO1ylUgU+zA44X3zxRR+JRDL6s8/qXsOiUql62djYrJfJZL69evWSBgcHsw4ODmAYpu6roLm5QM+ewLFjtB1jA7l27RoSExN1JpNpZoMHERF5QIifHEVERKpRKpUXFi1adPns2bMt+/btyxQUFCA/Px/u7u64NWWQEILs7GyUlZXhzz//1JeXl9vOnj0bZ86cwaVLl6QAnuQ/gN15nlccOnTIPGPGDKu3KfTw8ABAW1I5ODhYdS6RB0tOTg6ioqJIXl4eA4B1dXXFzJkzGVtb2yc2i6Pqfg4ODiZ2dnb0dZaXA25ugF7fuMFLSmi7uX/+qfWQw4cPw8HBgXoFVMYCADh0qHFz1wIhBL/99hsAwMbGhpk8eTI6chxw7pxV5ruNP/+kfeTDwup3XmoqrWM+ccK6ZQZ3UFxcDE9Pz5v3viDQrAJ/f1pG8MordPHhiy8AiQRYtqz6UIZhEBgYyOp0OrJ//354enoyt/18AaCsDHjrLaAyU+a+ZGSgok8fqKdMYaWrV9+1C+zq6orZs2dj5cqVOHDggDB8+PBq9e3l5QUbGxucOXMGPXr0aMDVqBm9Xg+ZTIbo6GgkJCTwgYGBXI8ePeq8EGxra4tBgwbZxMTE/AhgwH1PsAIqlYoDEGsymaBSqeber1WdSqWSS6XSJTKZbNaoUaPsOnXq1LAFFLOZ3jcqVaOEvtlsxvbt2yvMZvMspVJZ0uCBREQeEE/WloGIiEijIYRkHj16lElKSsKqVat0e/fuPfy///2vdMmSJYZ9+/aZU1NTce7cOURERBTv3r07RavVvslxXMSvv/6Kc+fOpQIYqlQq67F18nihVCojAXTPz88vS0hIALFkH+sa4DgOTk5O5NKlJ6LEUqSSsrIyRERE4MaNG0yXLl0Iy7Lo06ePVc3hHgWSkpIAAO3atbupnOztqZCra1/s2mjSBDh1ijqw14KPjw80Gg3UavXtT/z2GzB5cuPmrwGGYTBy5EgCAGFhYUzHsjIgOJgKD2vz+uv1N/+7epW2IDt8+IEKfbVajevXryOwSxcWkZHApUvUWC80lO7qR0UB8+YB7doBzz9fa+ZGz549GRsbG+bs2bN3P/nxx3X/GWdn4+i5czjcqxcmf/QR7lo4qCQxMVEghEAqld4WEMMw6N69O+Li4izabcbBwQEffvghXnnlFXTs2JGNj48nS5cuJbGxsXUeo2fPnqxcLg/+8ssvF6tUqoexsPiMh4dHhYODg14qlS5RqVS1ahGVStVOJpPFt2rV6pW33nrLrnPnzg3PlJg8mWb9zJjR0LgBAMeOHTPr9fqThJDIRg0kIvKAEMW+iIjIbRBCfiWE7ImKisoUBGH2xx9/PNhsNrsajcYBp06dmr9jx46s3bt3w2QyTfr44487zZ8/f/W8efNeAsDOmzevw7+h/YxSqTzD8/xTUVFRmi+++AIVFRVWnc/DwwMHDx4kgiWctUUeGhcuXEB8fDxOnTqFH374AXK5XJgyZQomTJjAzJ8/H0H3qjV+QqhqF7Zp0yaUlZXRBxmGpvI3xpGfENoW7j6/i8HBwZBIJCgsLLz9CT8/oEuXhs9fCzzPIzo6mgGAixcvAr160VTiB1GSExkJrFxZ9+NNJmDQILrw0aGD1cK6lX379pEvv/wSOz/4AFPPnhV8PD2pKE9MpOn6VdcqMLBObfIEQYBGo6lZnH/yCbBq1f2DunQJCAlBxrFjgtvcuaQ2oQ8A5ZX3bE0ZXl26dGGKi4s5rRVaK7q5uWHAgAHMm2++yTzzzDPM0aNHsX79esFch0UkjuPw/PPPy00m02cABJVK5WPxAO+BjY3NiKCgIPtZs2bZurq6vmFjY3NMpVL1vnPh4YsvvpgglUrPDRkypP2zzz5ra29v3/BJeZ4usk2b1qjYc3NzERsbazAYDP+5X0aCiMijAmPtXSkREZEni8oUvCZi+hqgUqlGAdjz6aefWtU8TavVYunSpejatSvGjRtntXlErIPRaERkZCSflpbGKRQKQSKRkKCgIK5fv34PO7QHTmpqKrZs2YK+fftiyJAhN3fpOncG/u//6p9yXkVZGRWJP/10T1G4YsUKwdHREZMnT2alUunNJwQByMmxuGEeIQQxMTHCiRMn2L5HjggDTCbWWiUDd/HDD0B+PvDll/c/1mCgr1+rBQICrBrW+fPnkZ6ejpxLl/hR4eFc2fTpaO7gAPdTp4B16+ok6mtjzZo1Qn5+PjN+/Pib5osAHTctDVi06K5zNBoNzpw5g7y8PASo1fAZPRrSy5ex7MQJeHh4CE899RTbokWLGneUz507Jxw+fJgpLS1lFAqFIJfLhdmzZ0uqjl29erXQvHlzdsSIEQ1+TXWhtLQUW7duFYqKiphJkyYxbdq0qX6OEAKtVovc3FwUFBTg2rVr5VeuXOFYlo0xGAxxhJCFSqXSZNUAb+Gbb76JmzhxYvc2bdpUtRQlsbGxWqPRWEQIOWA0GjNtbW1HsSzb9cUXX7S7tbVhg4iMpC32TpxolCFfRUUFli9frtXpdC8tWLBA3NUXeWwQa/ZFRETqhVKp5AH864V+JQGOjo5mmUxm1fdSuVwOe3t7sWb/McRsNmPFihVEEATmvffeg7Ucuh8HUlJS8PvvvwMAgoKCbhdPmzc3rr3bli3A/Pm1CsW///4bZ8+eFQwGAzt+/HjcJvQBuqvdpg2g0cCS7fcYhsGgQYPYDh06YMf162xQ166wfNf1WnjuOSri68KLL1Ln/qgoq4SSk5ODbRs38hVlZVyPkycRdv48Mg8c4HwLCyF59lmgdWvgjTcaNYfZbEZWVhbbo0cPFBcX4zZTU7UaqGFBNi4uDgcOHICLi4vgL5ejzbx57OaUFOR6eUEul/O5ublceHg4unfvTkaNGnWXUuzWrRvbpUsXLFmyBC1atEBqaqpk4cKFaNmyJXnppZeYkJAQdt++fcKIESOs+nvv4OCAGTNmsEeOHCEbN27EuHHjUFZWxicmJpaXlJTYCoIgyGSyZLPZfM5kMh0DcFypVKZbM6baIIQ0VSjobwHHcejVqxfTs2dP+2vXrtnn5eXNLC8vF9zd3dmAgABwljKHnDWrUUKf53ls2rRJazKZfhaFvsjjhij2RURERBpOoUajkRBCakzjtDDkNvMqkceCwsJClJeXM5988kmD3LOfJPz8/CCTyYjRaGSys7Ph4uJy88nt24GOHYFJk+o/cHk53dUfPbrWQ2JjY+Hr68tOmjQJcrn87gNsbKhp3p2LABbCIzISTXleSGjThn1g+RwrVgDXrtE65XuRmkrr4+vZt71OaDRAUhKOJSbiNZWK0373HcioUXBgGHTp2hWozTW/AUgkEowfPx4nT54UkpOT2cLCQpoJVVBA26zV4EEQHR1NBg0axPQ9e5ZFr15ARgZmuLlBp9MhOzub43ke27ZtQ3l5ea3vvRzHYe7cuSCEsKdPn8b+/ftx5coVpry8HB06dEBUVBSbmpoKf39/i73Wmjhy5Ijp6NGjPMuytn/88QdsbGwiDQbDLwAuKJXK61advB4IgmBz52IbwzDw9fWtKvOxzBulwUCNJsPDqddDI9i3b5+hoKDgtMlk+tQisYmIPEBEsS8iIiLSAFQqlR2A1aNHjybMA1D6dnZ2JCUlhbH2B0YRyyKRSGAymZCSkoIAK6dHP+rI5XK8//77zJIlS2C4c8c5NxdwdGzYwAxDe6fX4rJ+5MgREEIwefLke7cUPXSI1vxb0D29CuHYMSjKy1kfnwdYHj1sGN3RvhcREcDcuTTF3cbGMvPq9cDy5cDEicCiRbi+fz9SZ85E3qFD8O3d2zJz1EJgYCACAwPZ7OxsrF+/HmFhYZB/9BFw40aNWQuCIMBPoaDO/oMG0a4QoD3p27ZtCwCYN2/efedlGAYMwyAkJAQhISFYu3atsGzZMtbOzk4wGAzsyZMnLS72BUGAWq2G0WjE1atXSWxsbBHP810B3ACATz755JGs0yWEyCQSCQoKCpCQkIArV64IGo0GhBBMnTqV9fT0tMxEeXk0W6h160YNk5CQQM6fP19oMpkmVGY2iog8VohiX0RERKRhNAeAzMxME8Mwsm7dull1d3/ChAns6tWr0bdv31qdoUUeLTQaDc6dO8fb2NiwTZs2/ddnZURGRpKkpCTG1dWVdOnS5fbr8f33gNFY/0EJoTXm27YBwcEoLS3FsmXLoFAohB49erD9+/fH8ePHSVhYGHNPoQ8A+/cDCoXlxf7lyyhatgxxq1ZhkDV2z2uD5++dxn/pEjB+PNCnj2WE/rp1wPnz1DV//Xr8oVabMzp04Mq8vZlBgwZZXejfSosWLeDr68tHRERg9nffcTVeB0IwYudOmJs0oYsdFsy8mT59Opufn4+SkhJ29+7dcKtcRGgsgiAgKSkJhw8fLi8pKZFLJBINy7LlDMPkm0ymqY/SDn5tMAwj/eWXXwjP84ynpyfv7+/P+vr6MtHR0cLff/+NF154ofGTLFhAu0pUtr1sKFlZWdi7d6/WZDINE32KRB5XRLEvIiIi0gCUSmW6SqUKS0tL+09SUtILZ86cgUQiKZPL5bZhYWHS21KULYCXlxe6desmbNq0iXnrrbf+9SnhDxNCCHJycpCWlkZu3LghODg4YMSIEdXFpTqdDpGRkSQjI4MBwE2cOBFNmzZ9iBE/Gjg5OTEAMGPGDMbmTnG5aBEVin/8Ub9BdTpg+nSgWzcAAMuyIISgrKyMjY6OhkKhgNFoZNzd3e8/ljXq1QUB6NIFLlFR8PX15f/73/9y/v7+wsSJE63/C/z33zTjYcKEu5/LyQEGDKALHIGBDRuf56kB4IQJdGfcaAQcHVEoCDj+xRdIOHdOMqh7d1JYWEj8/f0f+GLXxIkTuWMTJqD82DEoIiJuf1IQkJeWBkVJCWPy97eo0K+C4zjk5+cTvV7PtLJAG0NBEBAREaHNy8vLMBgMHwCI/uyzzx5AD0fLwrLs9bCwsNZdu3YFy7LV75s+Pj5McnKygMam8RMCJCUBAwc2apj8/Hxs2LBBZzabJyuVypRGDSYi8hARxb6IiIhIA1EqlYcAHFqyZEnS9evXn+Z5fguArzw8PIRBgwZZ/NPj0KFD2UuXLmHDhg3CSy+9JKp9C2M0GmEymWBjY1Nt7CUIAnJycpCdnY2UlBQ+Pz+f43keMpmMuLm5kaZNm3JxcXF46qmnwDAMUlJSsGfPHhiNRqZTp04IDg5Gy5YtH/IrezSoykg5e/Ys6du37+3ib9KkasFeL378EZg2DXqjEevXrzeXlJRI7Ozs4ObmRvLz87Fr1y7G0dERfn5+9x/r66+BI0csK/pZFsjOBufkBO+YGJKZmYnLly9bbvx7MWdOzdkS168Dcjlw4ED92w3m5NBU91mzaHu8kydpun5AANCnDxISEvDHzz/Dzc1N6NWrlzBw4MCH9jnTzs4OTfz8hKP5+YyamtYxLMsi7sQJeM+ZQ9L8/JjM997DK0OHWnzu1NRUbN++Ha6ursKkSZO42zoDNJBTp07xeXl5aQaDobtSqXzsRP4tnCWEtL5zwbpv377M8ePHmW+//VZwdnZmnJ2dmfbt26Ne1y4xEfj2W5rp04gFnIKCAqxdu1ZnNptfWrBgwb4GDyQi8gggin0RERGRRvLpp58uAbAEABYuXDgmJiam76BBgyw+j1wux9NPP43w8HBWEIQaW0GJ1J8//vhDKCwsJHl5eRzDMOB5Hi4uLoJcLic3btzgGIYhDg4OQuvWrbnx48fD3t4etra2DAAGABISErB06VI0a9ZMyMzMZAMDA4Xx48eLP5xKzGYzkpOTsXPnTvj4+Ag+Pj53X5tmzahRXH3Q6cB//TV2yOXkUlkZ4+joKNHpdHj66afRunVrJi0tDZGRkejfv3/dXL2HDGlcR4A7ycgABg+m/wNQq9UMwzCYOnXqg7k3Nm6k1/Tnn28+Rgh9nc8+S1Od60JyMl0gaNYM6NcP2LcP+OwzwMmJpv9/8skthyYLEomEff3111lYymitoWRmImTWLPaauzuOHz/Of/vttxxnMsGe4+DStSuT4OsLfX6+xcuvCCHYsWMHhg8fjqCgIIvYyfM8j5iYGKPBYHj2MRf60Ov1h9LS0kYGBwfb3/q4ra0tXn31VeTl5bFqtZrExMTgn3/+gZeXF5HL5YyDgwNCQkJwzyydY8eoyWYj/jaq1WqEh4drTSbTa/Pnz9/W4IFERB4RRLEvIiIiYkFYlo0WBKHv5s2bTWPGjJHa29vf/6R6YDabIZPJCMuy//oacEtQVFSEhIQEtl+/fhg/fjxcXV0hCAKOHDnCEkIQGhoKHx8fBkCtH9rfeecd5OXlIT09ne3Xrx9at24tCv1bCA8PR25uLgBg6tSpbHU7tFu5dIkaxT377H3HMxqNMBqNuHziBHbNmQNfJycybeJEpnnz5rcdFxAQUD9TxMDARrXnugs3N+Ddd6sd/v38/LirV6/yHh4eFuondh+cnIBby4l4HsjMBDZtojvx96KoCFi8mIr6zz6jXgYREUB2Ns0KqIHy8nJcuXKF7dmzp+VeQ2OYPx/Q6eCzbRt8fHy4jLQ0uI8ZQ5qMHctkLV0KfXg4xowZY/FpBUGA2WzGX3/9JezZs4f18PDgZ82axTVmcfbixYtgGOaCUqm8aMFQHxbbMzIyfjAajZDd0Q7R3d29SswzQUFBuHLlCsrKypjy8nKhsLCQrFy5kmvfvj0ZP348c9f7yMcfA6++Crz2WoMDKy8vR3h4uNZoNH4wf/789Q0eSETkEUIU+yIiIiIWZO7cuQtUKlXixYsXt7Zp0wbdu3e36PgpKSmCh4eHKPQtxNmzZwUXFxcydOjQagHGsizqk5nh4OAABwcHtG/f3hohPtZotdpqoS+RSFCj0AeAXr2A6Oj7jmc0GrF06VKYjUa8+eOPaP3ii3jeUjvlajXQty91k2+s6I+LA44fp2K/Ep7nodfrH9xC0NCh9LpWMWcOrWWOja39nE8rO4vNmEFTorXa230UahH6xcXF+OGHH2BjY4PQ0FALBN9ICAHWrKGeDgBw4wZam83Azz8z6N8fVTaJRUVFFp+a4ziMGjVKyMrKIkOGDMGKFSu4v/76C2FhYQ0e8/Tp02V6vX6ZBcN8aCiVysKvv/76TFpaWp9OnTrVepyDgwMCb/pJsABw48YNrFu3jlmyZAlmzJgBLy8v+uzVq/Q+/eQT5OXlobi4GF5eXnBwcKhzBpzJZEJERESFXq//bt68eb805jWKiDxKiGJfRERExIKoVCpnAFtDQ0Nv/aBiMbKzs9GuXTtR7FuAkpISnD9/nu3Tp8/DDuWJRS6Xo3fv3jhx4gRCQkJqN9+SSIDRo4GzZ+nXNRATE4PDhw9DoVDAv0MHnB08GD3festywTZrRtPVLcGZM7T+/+23qx/iOA4Gg4HJzc29KVKsycaNVLCvX0+N+j77DGjS5PZjdDqaVTFxIk3Pb94ccHcH2rQBDh6s81QJCQkAgGeeeebRKC+aOxe4dg3YsIEK/2HDaEnFd98BAGQAxo4di3aN7L9eG0FBQWxQUBAMBgO0Wi2ca2kLWRdMJhOys7NtAWy3XIQPF71e/3t6enpQp06dbOtzXtOmTTFjxgycOXOGrF27lunYsSMZa2vLsCYTkJKC9MuXsWXLFtja2hKdTscQQiCTyYhUKhVsbGxgb2/POjs7M66urvDw8ICnpycUCgUMBgM2b96sKykp2W82m+tY3yIi8nggin0RERERC6JUKosXLVqUdejQIe9jx47p27dvj3Hjxtlaoi7UZDLh+vXr7KRJkywQ6b+P5ORkXL9+HSUlJXxWVhZbVlbG+Pn5CSEhIY+AOnlyMRqNaN68uTB48ODarzPLAra2tM+9o2ONh5SXlwOgvdRD9+2jaeaVvdAtxrx5wEsvAY1JRc/Lozvjr75628Pe3t4AgN9++w0ffPBBY6KsG8OGUQO+ffuA//yHinqFAjhxgu74h4QAHh50MWDxYqBVK+CNN+o9TXl5OU6ePElcXV3vKqV4aPTuTVsoxsVR0R8VRRcybqFbQwwh64mNjQ169+6NuLg4vnv37g0q39BqtWBZtnzevHkVlo7vIXLkypUrJgD1EvsA4OLigrCwMKZz587Yvn07uf7llwxmzEBx69bYuXMnRowYQYKCghhCCAwGAzQaDVNaWsppNBpoNBqiVqvNKSkpzKlTp1itVssIggCO4wjHcb8bjcaZSqWSWOH1iog8NESxLyIiImJheJ73BeCt1+tbJCUlRdra2joNHz683h9q7uTy5cuQy+WCu7u7KE7rSXZ2Nnbu3InmzZvD3t6eGzhwIFq2bAlHR0fxWlqRQ4cOkcTERPTv3//+O76RkcAdNby30r9/f8THx+NkTAxCt2wB3nvPwtECuHEDKGlkO+0xY4CgIGDlytsednNzw4QJE7Bnzx48EIPNsjJqrjd7Nt3pPnOG7uS//DJw+jSwZQvg7U0zKZ57rkFTxMfHY+/evfD39xeeeeaZB+NFcD/OnQPs7IDQULqb37cv7fbwkOjYsSPi4uK4mmrU60JRUREkEkmm5SN7qJwvLy+XarVayGspDbkfzRQKvAqwZzdvJgeOHGFMv/+OiRMnonPnzgwAMAwDW1tb2NraVncCATVVrdY+Op0Oy5cvN+p0ugNGo3G6KPRFnkREsS8iIiJiYSo/MFwDcG3hwoU7Tp069VpVa7bGYGdnB5PJxOr1etjaNnrt4F9DaWkpIiMjSWBgIDN69OiHHY7VMBqNkEgkj0YadSVpaWmC0WjkQkJC7n/zjxkDfP45MH58jU87ODjA3t6e2Fy7xiAj454LAw1m61aa9t0Yjhyp9anOnTtj165dKC0thZOTU+PmuR//+x+wdi3g4EDr17t3p3X7e/ZQgV9eTg33XF0Bs5kKZBubOvkVJCcnY9s2alTet29fPjQ09NEQ+gDwww+0bOHAAfqv0iDxYVFcXAyz2YzExEQEBwfX+3y9Xg8AxRYP7CGiVCr5b7755kJeXl631q1bN2yQX38Fu3Mnur/6KtMxKAgFBQXwrUc3Db1ej7Vr12oNBsM6nudfF4W+yJOKKPZFRERErIggCEoArxkMhkYLdB8fH7Ro0YLftm0bM2XKlEdH0T2iVLV8i4qKgpeXlzBy5MhHR5A0khs3biAtLQ1yuRylpaVITEzk1Wo1J5FI0KZNG4wcORIKheKhxFblRi6TyeDo6MhqNJq6LUB8/jlwHzFkMhiY/2zYAOOYMZA1wvCsVubMuSkU6wshQKdOdEe/X78aD6moqADP8yCNXVC4F3o9FfMREfT7ggKa0i8IwObNQGkpTXP/4QfAaKSv+cABGr9aTcspxo0Dli+nx86fD5w8SWv5Cwqg1uvxD89jzNWr8Pfzg13Xrhz++1/AxwfIzaXnBwcDFy7Q8oyOHYHCQsDLi45vZwe0aAFoNPRYJyfaKcDensZdm4ljXTCZgNWrgTffpFkLD1noA6gWoFqttkHnV/7dsPLK0IOHEHKxpKSkYbUUe/fS0pTXXgNYFnK5vF5C32AwYN26dRUlJSWbTSaTKPRFnmhEsS8iIiJiXUoBCEajkbXEbvyYMWO4X375BdeuXYOPj0/jo3tCyc3NRXh4OGQymTB27Fg2ICDgiRD6RqMRu3btIhcvXmTc3NwEo9EIOzs7EhgYyAYHB0OtViMmJob/6aef2Dlz5jAODg7V5yUlJeHcuXNCcTHdJJRKpUShULDu7u7M6NGjLZYR8O233wparZZVKpXQaDQkODgYdWoVKZMBOTlUpNUCC5C/QkOZQV26oKlFor2DN96gDvQNgRDghRfoDnotnDp1SpBIJKxjLb4EjWbtWuDDD6nA37oV+Pln+ppMptvb8AHA1Kk3v549m/5PCD0WAJ5+ml4Le3u6eCGTAcXFOLFtGzgHBxI0ZQqD0lLA05Me5+wM5OfTUgGdjrb5Ky2lQj49HWjZkmYV2NoCY8cCO3YAxcV0gSQvD+jaFVi4kNbWv/8+sHs3XaBo04aO378/zVDw8KDX+eRJajhob09j7t6dliiUl9PX/4hgZ2cHjuOgq+oMUE+cnJxgNpv9LBvVw0ev118sLS0loKn1dafKE+PQIXrv1BOj0Yj169dXqNXq7Uaj8RVR6Is86YhiX0RERMTKsCwryGQyiygpZ2dn9O7dW4iMjCTvvvvuEyFgrUF6ejrc3NyE2bNnPzEZEDk5OYiIiCAuLi5k9uzZjJub212vTS6X48UXX+R27drFr1ixgnF2doZGoyE6nY5r0qQJ6dSpE4YMGcKyLIvS0lLk5+eT48ePo2nTpggJCWl0jGvWrBG0Wi0LAF988QUIIezEiRPrdvKmTVQw1hJHaWkpnvr9d6bpokVoerMG17J4e9MWgPVtmWk207Z1X35Z626yyWRCfHw8GxoaavlSizFjqPBRqWidekUFFUQ7dgDx8cCUKbR+/36lAwxzszzCze3m466u1V9mnjwJjuOAUaNuPl9laHhrtsWAAXeP//LLN7+uySfgk0/oteR5YPJkKvZNJuo/4OREhb/ZTLME7OxoFoDBQLME7O1pWcLAgfd+jQ+Y7Oxs8DyPNm3aNOj8Sid/e5VK1VypVOZYNLiHi0an05lAmyPUjbw8mh3yzz8006Se6HS6KqG/s7JGX6iDK7TYAAAgAElEQVT3ICIijxmi2BcRERGxLkZBECTp6ekICAiwyID9+/dnz507R2JiYjDwEftg+6hw8eJFwdXV9bEW+qmpqYiNjeU1Gg0AMGVlZWyfPn0QFhZ239c1ZswYztfXF6WlpfDy8kLz5s1ha2vL4I5dNEIIY2NjQ7p3726Rdo5qtZpp2bKlMGDAAHbbtm2oqKioe236ihX3TLs+Hx+Ptnl5cPD3t0SoNXPlCnXjp9e87ly6RFOLv/661kOuXr0Ko9GIzp07NzLISsrKqL/Bnj1U2HfoQGvufX1pOv1TTwHvvAMkJADh4fTalpXd3X6vntjb25uzsrIkGo0GVslQqErlt7G5+7lbF3nu7MRw/Dhd5OAenTVQrVaL9evXAwBatWrVoDEYhkHbtm35CxcuTATwowXDe9iU6fX6+on9yZNpicgPP9R/srIyhIeHa8vLy8NNJtNb4o6+yL+Fx/qDkIiIiMijTuUHilcjIyOxdu3a0r///pvEx8fj5MmTyMjIgMFgqPeYEokEY8eOZY4fP04qzZtE7oAQQjystftrZRISErB06VJh165daNKkCYYPH84NHDiQ/fTTTxEWFlYnUc4wDAIDA9G/f3+0bt26Rr8InuexZ88ejB49mpE0pk66ksuXL0Ov1zPjxo1j/fz88Nxzz2HmzJmwqUm01cTvv9M63FroynEIf/llXLemmOvcuf5u/Ho90KwZ3Tm/x469l5cXBEHA6dOnGxdjaiqtS7e3p20KS0up6G/f/uYxaWl0l3zaNPr9sGE0RX7gwEYbEE6fPl3i4eHBr169ulHjWJSYGFp20LIlvR6PCJs3bxYAoP2tP5sa4HkeglD7JnNQUJBcJpO9p1KpHr4JgeUo1+v1dd9ZP3cO+O03YNmyek+kVquxcuVKbXl5+Tei0Bf5tyHu7IuIiIhYn9UAHK9evZqflZXlL5PJ2vM872gymYYCgEwmEwYPHsyHhITU+YNcmzZt4OPjI2zZsoXx8vIyZWRk8AUFBXZyudz88ssvSytTP/+1ODs7M1lZWQ87jHpTZSg4ZswYNiAgACzLWk3ZlpSUgGVZEhAQ0KhdfbPZjLi4OBw4cAAsy1bv9rZo0aJ+A7VoUXu9viCAefZZdJ4yRfDz87PeRgXD0B3xr74C6tqHffFianyXlnbPw+RyOeRyecN3wzMyaN19TAytx585E9i+veZjP/+cLpykpdE0dxsb4Isv6KJAXh5dnGhEKcHw4cO5devW4Z9//kHlfdrgsRqNwQD06gX89Rd9jdbyQ6gnVX3eu3XrhsGDB4MQcldHloqKCkRFRekuXrwoA0CcnJy0zZs3l7i6usqlUikYhgHP8+B5HgaDwQ+AceHChR/Pnz//m4fxmiyMTCqV1u29Z80aWiKTklLv+zYzMxObN2/Wmc3mD+fNm7e8IYGKiDzOiGJfRERExMoolUoeQI0fzlQqVZDRaBy/f//++S4uLmjXrl2dxx09ejT3888/IzMz0wbATADSioqKeUlJSc379+9vmeAfQ8xmMy5evMhOmTLlYYdSb/7880/hqaeeYrt06WL1uTQaDTiOq79B1i2cPHkSJ06cQGnlbmpoaCgPoGELFH371lqHGxsbi6tjx2LQe++xjW1heV/8/OonKFQq4K236nSoQqEgly9fZrrVdSEBoDXrUimth3/1VeCjj24a6tXGd9/R+naVipoetmpFa/FDQqjZXrt2VEA1kGbNmsHZ2Zn/448/uLi4OPKf//yHeWiCf+ZMWuP/ww/UN+ERaT0ZGxsrFBcXs4WFhRWJiYkCy7LSHj16cB06dJCuXr0affr0QUpKira8vHyTIAjvAeDVanWAWq3uxjCMt0QicQQAQRAMhBADgCIAEkEQ1j/UF2Y5mtjY2Nxfh2RmAhMmAIMG1avdJiEEp0+fFv76668Ks9k8acGCBQcbHqqIyOOLKPZFREREHiJKpfIsgLOLFi16etOmTf4vvfQSWrZsWadzHR0d0aNHDxIXF6f/7LPP/gcAixcvlkVHR3/fokWLOo/zJJGbm4s1a9bAzs6O9/HxeXSKd+uIyWRimjSyprquxMbG8t7e3g1WRn/++Wd1SrqnpydefvllSCSShl/zixdpTW56+l1PNZs9mzi//Tbj5eXV4OHrzI8/3nSkvx/PP09r5RcsqNPhbm5uJDU1te6rFVeu0PELCqgvQF3KLfbto0J+61bgyBGg6R19C3btop4EGRlAA3ucy2QyvPHGG5xWq8XSpUuZa9euwc/Pr0FjNZoXXqD1++HhQFQUcPjww4njFoqKinDkyBGW5/kYQRCemj9/vkGlUnU7fvz4idjYWADAyZMnrwqCMB/AhlvSyk9V/nvikUqlHV1cXO5d45OURN8TfvmFGk/WEbPZjF27dukvXryYazKZhimVyozGxisi8rgiin0RERGRRwCe53sBmLJ+/fqf+/btS/r378/Upda5pKTEbDabqwv3586d+8OiRYu6r1+/furIkSNJjx49rLwN+vDR6XSoqKiAg4MDCgsLoVAo+HfeeeexE/pFRUXgeZ55EF4DmZmZyM7OZt99990G3x86nQ4eHh7C7NmzLbPb7u8PLF1618OpycmQGQyMRy296y3Oc8/RdP7IyPsfO24cbRVXR3r27MmmpKTc/8CFC4HTp2n7ubi4+pnqFRfTdngA8OyztI3dhAk3n3dxARQKWt++dCkVyw1ELpfD2dmZP3ToEDtz5swH+17D8zRLYe1amsUwbRpt6feAMJvNWLx4Mdq2bWt64YUXqkuwrl+/jvDwcB3P8wvmz5//36rHlUrlOQC2KpWqtSg+AY7jhnp7e9d+z8TEAOvXA/Pn10voazQabNy4sUKj0UQbjcbnlUplhSXiFRF5XBHFvoiIiMgjgFKpLFWpVL8AuBwfH/9BbGzsUD8/v4pRo0bZsywLlzt7ZANISUlBSkqKFMCQWx/neX4agP3nz59f3qNHD4cH8wqsj16vR3p6OvLz86FWq3m5XM5kZWWhqKiIlUgkxGw2MzzPw+3WlmGPCYmJidixYwe8vLwER0dHq+Yh8zyPLVu2ICgoiKnJuK+umM1mcv36dcul1dva0p3oESPo16CLEvHLlpGAn39Gq06dHoyY/P77uh339de0V309sg04joNMJiN6vb7ma//CC8DHH1NDvcBA+lh93ftbtrwp7nv3vq1tXjUyGXDsGHW3v3CBZg80kEmTJnGrV6/GoUOHSGho6IMT/MXF1OOhyuX+11+pKLyPGV5DMZvNIIRAWtkxoqioCACg0WgkVfX4WVlZ2Lhxo8FoNL6zYMGClTWNIwp9QKVSyVmWbVVjpg7P0538khLg9deBoKA6j1tVn8/z/Jdms3mJaMQnIiKKfREREZFHhsoPJvsA7FOpVHaZmZnan3/+GQAwYMAA9O3bFzKZDIIgIDw83JydnS2RyWTff/rppwl3jqNSqRQFBQUKtVpd40LB48b58+cRFRUFGxsb3t7ennV2duZKSkrQpUsXBAYGQqFQMOXl5TAajXBycnrsdvX37dtH5HI5M3XqVKvWpJvNZkRHR0MQBJhMJhiNRsjqUQcL0FKJDRs2EJ1Ox7Rt27bhNfo1sW4d8MYbQOvWMJvNiFi3Du/v3s3IG7H7XG8IAf74A3jzzXsfs3YtraOvh9hv3rw5jEYjc/78efTq1Ys+WFZGU9DfeouK8LIyumPdEEwmWlpw6hRdMHnppdrrnFu2pCUT/fvTLIIGtoZr3rw5pFIpYmNjmdDQ0IbFXV9SUmjWw9atNx+LiQE6drT4VIQQnDlzhuzfv9/EMIzg7e1t8vHxsU9PTzezLFtWUlKi3rNnj/fw4cNtf//9d63BYJgNYKPFA3my6OHm5qaTSu/otVlSAmzaRH++n39+dwnKPUhNTcX27dvLK+vzD1g4XhGRxxZR7IuIiIg8giiVSp1KpWoDIB/AlNjY2I+PHDnScsqUKfD09ER2drYEwNhPP/10dy1DbAQwZvny5YO9vLzIM888Y69QKB5Y/JYiOzsbO3bsIGVlZQgLC2N69OhRq7B8HF9fFSNHjmT2798vfPvtt2zXrl35gQMHcvb29hafJz09HXFxcejduzdSUlLI999/j2nTpjFFRUUwGAzw8PCAs7Nzja36qoiOjiY6nY55++234ejoaNmFlcLCaoM1lmXBsCz2vvYamTx48IPbMc7MBH766d5i/8YNuiNeTwoKCsBxHO25rtUC+fn0/+++A+bMoQsIjcFspq7lVSJpzRrAzo4+VhNt2gAnTwJubtS5/87e9ZUYjUYkJycjPj6e3Lhxg/H19RUGDBjAtmjRAizLomvXroiLi2tc7PUhMpK2OryVP/+kRoYWJi0tDfv371ebzeYxAAouX74cnJWVNdFkMj3DMMxso9GYf/bs2WOEELPBYPhbqVRusHgQTxgsy/Zv2bKl3W0PXrhAs2qCguj/dfxZCoKAmJgY84kTJ8oq6/PjrRGziMjjiij2RURERB5Rbkn3/FWlUq0E8NWGDRs+kEgkBHQ39cw9zi0HMFqlUtnm5eX9euDAgacnTpxoV9vxjyIFBQVYv349goKCmGHDhj3c9l5WplOnTujUqRObnZ2NqKgofP/99xg5ciQJDAxkLLnTr1ar4ebmxg8ZMoTr168fs2XLFmHFihWMvb09IYRAp9MxLMuiVatWglQqZS5fvkwUCgVp3749Z2dnh8OHDxOTycQAgFarhZOTk8ViAwAMGEBF7wsvgGVZvLplC4737WvZOeoSw8WLtT+fmkrb8qnVVEjXg6ioKMHb05Nxd3dnMHo0zRCIiqJGfJYgIgK4te3mlCnAPfq3A6CCf9064LPP6ELHHSLLbDZj2bJlAgDWw8ODeHt7w9bWFhEREQAABwcH3t7engPQoEyRenPmDE3vvvXeKygAfH2Bigrqt2AhzGYzsrOzYTabXTmOWzZv3rxeANJVKtVWAMmEkBQAIwEgJSUl3mg0zrTY5E8wNjY2T/n6+t680XbtAq5eBQYOpJkpdUSj0WDr1q0VRUVFSSaTaaJSqcy1RrwiIo8zotgXEREReQyoTPH/WKVSRZjNZk8ADgBu1OE8/eLFi4OuXr36WCnlvXv38gkJCZy/v78wfPjwxyr2xtCiRQvMnj2bS05Oxu7du/HPP//wY8eO5SwhqpOSknD8+HEEBARwAHVUnzp1KltZb8wQQstb1Wo1du/eTcrLyzF58mQ2NzeXnD17ViguLmY7deoEb29vuLq6wrPKBM6SjBlDxSeA63l5uM6y8J48WYAlSwXqQvv2NE28plaY/v7Uyb6eQt9sNuNaZiY7f9kyKkwjI4E6mHDWiz17gKeeuvm9VktT+nv0uPd506YBQ4YAly9TA79bWiBu376dODk5YdasWWAYpup3kSGEoKioCBkZGVxaWhrPsiy3cuVK8swzzzBN65F+XS94npoiLltGXdqrkEqBxYstKvSTkpLInj17DAzDXJJKpUdMJtOyqucq34+/AACVSlXEMMwMg8EwXKlUaiwWwBOKSqViOY4L8vb2potdv/xCd/WnTQO6d6/zOMnJydi1a5dOEIQvzWbzV0ql8j6rWiIi/06q/7iLiIiIiDx5qFQqKQBjhw4d0KtXL3h5eeHOMslHDYPBgK+++gpjxoxBUD3MmZ40zpw5gz179sDb21t4+eWXG7XgkZWVhTVr1jR4LEEQsGnTJmg0GuG1116znq/AxYs0jb9tW+gjI7Hy6FG8/u234LgHbMMwbx7NMLizHn/dOrp7fuhQ/cY7eBDm99/HN88+i8/CwqiosXSmCs/THe6mTW+O/dtvwIoV1PiwLkyfTnf3K9vX5eTkYO3atXjllVfgfssCQE2Ul5fj//7v/+Di4oI5c+YgJSUFTZo0gY2NDRQKBezt7dHo+6a4GCgvp8Z8t5KaSjMt+vRp3PiVFBQUYNWqVVqTyRQK4KRo9GY5VCpVgL29/YkPZs9W4MMPgZAQYPhwoFmzOp0vCAL27NmjT05OLjIajePFtH0RkXsj7uyLiIiIPMEolUrTwoUL/7hw4cK4CxcuoEWLFvoZM2Y03ILdAuzatct8/fp1pnXr1pyPjw+aNWsGGxub6kWIpKQk2NrakoCAgCe+bWBt/Pbbb0hLS4OXl5cwePDgRqvCzMxMIpPJ0NBFA5ZlMW7cOPz000/Mxo0b+eeee46T1KXne31Ztoymna9YAZt33oHD0KE4deoU+lhIxNWZN96ouad9165UbNaVr76iCwajRyN/4ECYzWagZ0/LxXkrhw/T9PbU1JuPTZ5MuxvUlTVrqG/C4cNA797YunUr37t3b8bd3f2+941CocDIkSNx8OBBsmjRIkYmkxGDwcDY2tpWdx9wd3fn5XI5WrVqxXIcx7Rv3x62trao070UHU27FWRl3f3cTz9RHwUL3Sd//fVXhdlsXqhUKk9YZECRajiOmxTk4iLF3Lm0C8QLL9RuInkHJpMJW7Zs0WVlZcUbjcZRSqWyzMrhiog89ohiX0REROQJZ/78+eMBQKVSvZKdnf3rw4wlKSmJJCQkSPr06YPk5GScOnWKEEIYnufRvXt3uLm54cSJEyQgIICxeu3vI8rZs2eRnp4OT09PYdasWY0W+oQQJCUlwdvbu1Hp8AqFAu+88w6zdOlSLjc3Fz4+Po0N7W4+/JCKfZMJ137/HVf370dbQmA2m+smCC3FlCmAjw8Vv1Vs20b717/++r3PFQSamvzaa9RZv6ICuXo9/ufmhrHW7APfrBkwd+7tj6WlAaNG0d36usCyNIX/3XeR0akTEBzMDhgwoM6Lbt27d0fXrl0ZvV4PhULBCIIAlmWZuLg4cvHiRbi7u3MVFRU4fvw4r9Pp2KioKEYmk+GZZ56hpoX3okMHmlVRU2bS118DBkNdw7wvOTk5hBBSz/QNkfuhUqm4jhkZb4XExNhAqaxX1wmdToeIiAhtUVHRfqPR+JxSqTRaMVQRkScGUeyLiIiI/EtgWfYNT09PcvXqVeb69etwdXXFzp079WazWTp79myL1IXfi7y8PPzxxx/MpEmT0KlTJ1S26WIA4PTp00hISBAyMjKIq6sr+9Stdcf/EsxmM1asWCGUlpayXbt2JWPHjrVInrdWq8WNGzeYqVOnNjoX3tbWFlKplBQWFsLHx8fymRc3bgAHDwJ798L77bfh6enJHzp0iLt69arwwgsvPDjvhi1baOu6W9m+ndba12YYKAjUaK95c+p+P3QorSMHUJSYCI7j0K1bN+vF/Pff1PPgVry9aWu9+sAw0OzZg22rVmF6kyZMXRdZ4uLiBLVaTYYNG8ZVdcZgWRY5OTnYu3cvAwBNmjQhEydOZFC56CQIAn799VdkZGTUKvavX78O0yuvIJ9hSMbzzzPB6enw8fG53QjwpZeAjz4CqtoZNhCj0YiUlBSUl5crAMSrVKpTSqUypFGDilAYhnm+XbsVxe3a2dstWVKv+ny1Wo2IiAhtRUXFOpPJ9IZYny8iUndEsS8iIiLyL0EikaTn5OR0joiI0DIMk2k2mzuyLFssCILnuXPnMHjwYKvOf+rUKd7b25vp1KnTXaKtZ8+e6Nmz57/GiK8m9Ho91Go1SwhBaGioxYS0vb09vLy8hMjISEybNq3R13jChAlMZGQk4uPj+SZNmiAnJ4dzcHAgQ4cOZVq1atW4uuysLFoP37cv2KeewivOzlx2djbCw8PZ5ORkdOjQ4cF0ZcjMBHbsABYtot8XFdH699oghLbP++47IDsbyMm57emTJ08Se3t765WlCAKwcOHdKfsODsCgQbQlXz0yI37btYvv1KoVPD77jIO/f512YI8ePcqUlZWxhBAEBgZCLpdDo9Fg8+bNaNOmDZo2bYr4+HhmxIgR1UKdZVl0794d+/fvR25urjB8+HDW3t4e165dw7Vr12BjY4PY2FgMKSuDbOxYcBwnbNmyhQWA119//WY3CIMBaGTrTZ7nsXLlSm15eXkiy7LxgiCcAnC8UYOKUBiGIcDyUlfXic4ffGDD1EPo5+XlYd26dTqz2fzhvHnzllsxShGRJxLu888/f9gxiIiIiIg8AKKjo7cC+J0QMn/+/PnfxcTEfEUIWQrgsk6nGxYYGCizlhGayWTC9u3bWT8/P6Z9+/ZWmeNxRyaTITg4GOfPnxdyc3OJj48Pc69+9/VBoVAwcXFx6NevX6MFp5ubG/z9/cGyLCsIAuvj44P8/HwhISGBiY6OZqRSacNT/Dt1AjiOGnb5+gIAHBwckJSUROLj4xmGYYifn5/1vRwSE6lb/tSpVMh7eQEdO1KX/jsJDqbp8vPmAW++WZuoZhITEyGRSKxT/iAIdHe7prGnTQPGjgUcHes01JkzZ5CSksI+//LLrPTVV2laf3R0zZ0JANy48f/s3XdYVMf6B/DvnLO79I4gIIgVAUVFRUUx2LuxxB5LjLEkatpNu0Y3mx5z0+xdf9FgwRZbsGEDgwKKDQugFKVI71vP+f0xoKKUBRZLMp/n8cl195zZORvN5Z15530fYNu2bUJubi7n4eGBK1eu4OrVq2JERAS5ePEivL29xXHjxhEXFxeEhYWhU6dOePzPtYuLC7KzsxEfH09iYmJw7tw5JCUliRzHCTEXL3KjzpxBmw0b4D54MPHy8iK9evVCQUGBLiQkBC1btiTmxsa0ZVtZF4e6io6OFm/dunVepVL1XLx48eHAwMArgYGBufUalAEIcQCw/3y3bjejx43rOXD8eJm+C4Lp6enYvHlzqVarnbJo0aLfG3aiDPPPxKrxMwzD/MspFArOyMgoWKVSjfb399cEBgZKDVmxv7CwEFu2bBFLS0vFUaNGcTWezf2XKykpQVBQkC4jI4Nv3769btiwYfVegcnPz8fSpUuxaNEiQ0yxUoIgYO3atXBxcRGGDx9et+33bdtowa5Vq2ixteJioHNnZOXlYfeePUJ6ejrXoUMHXZ8+fXgLCwsDP0E1UlIqVoDPzKS73VFRtG1Y27aAqWmVt5eWlmLJkiUghGDx4sWGn99//0vntG7d0+8dPkyDYTOzGodRq9X4+eefxWHDhpG2bdvSFy9cAIYNowsalSwYbNy4UcdxHD9gwAA4P9m94DE5OTlYtmwZBg4ciG7dKmbGL1++XFAqldz7778PAA+7L4jx8cCwYSCXL1doUyiKIg4ePChevHiRLAwMhGTKFCA5ucbnq87atWsL0tLSJsrl8sP1Goh5hJBWAFbrOO5/S776asXoMWOa6bvYWx7oq9XqaYsXLw5u2IkyzD/XvzplkmEYhgHkcrnw6aefjgHgc+7cOendu3cNNnZSUhJWrVoFc3Nz8f3332eBvh5MTU0xc+ZMfv78+bh06RKvVte/DpUoihAEAffu3TPADKtWWFgoODk51e5nC1EENmygweqdO0CvXnSHf8cO4K23gPR02Ldujdl//8196OEBz2++ITs/+gg7xo/H3pEj8cemTVi/eLEYcuiQoNFoDPMgokhT4G/coLv5dnb09b/+AhQKwN4eGDmSZiH4+VUb6AP03DkATJ8+3TDze5K7e9VV90NCgGvX9Bpm586dQuPGjUVvb+9HL/r50VoEiYlAePjDl0VRxN9//42UlBR+3Lhx1Qb6AHDkyBERAK5evfrULlPPnj254uJiEEIetVnMygJJTwe5caNCoA8AhJCHBRvP5+VBWLVKr+erSl5eHjIzM3kAJ+s1EEMRQkDIDACbAUz6Ri53sLaxadS6iuyQJ2VkZJQH+tNZoM8w9cPO7DMMwzDlrgFATEyMrmXLlnx1Z6MLCwuRkZGB/Px8ODg4wNraGk/utEZERAihoaFct27d0KdPH7a4XEuWlpaQSqViUlISadWqVb3GKj/bfPz48QYLOPPy8qBSqThfX1/9bigtpUXlBg4EvvuOpu0vXPioonxAwMMCd0hMBFQqmBcVofWbb3Iu3btDuX49Ck+exOm7d8UJmzaRO0eOIDY4WGifksLh559pQT1zc2DmTCAykrbNa9QI0CeFmBDgxx8BCwsa1B87RvuBZ2fTM/mE0Arwerp+/brO0dERbm5uhj8nIwi0Qv3IkZW/HxtLF1FqKF6XkJCA5ORk7u2333667oKZGRAaCnHDBhSdO4f8ggJEREQI169f5zw9PWFaw2JHSUkJbt++TaZOnYrKjmFERkaKLi4u4Dju0Xv/+Q+Qm1tlvQB/f39ibGyM9O3bxb0SidjJ25tr3Lgx6nL05fbt25BIJMcWLlxYWuubmYoIMQHwLgALAKMVX3zRWiqRrBw5cqSpPun7CQkJ2LlzZ6lGo5mxePHinQ09XYb5p2PBPsMwDAMAkMvlokKhcI6Pjz8VGhrarF+/ftLi4mLExcXh6NGjGmNjY7Rs2VKalJRU8uDBg4c/3UskkmytVmtnZWVVPHHiRDMHBwdERkbi+PHj3MSJE9GiRYvn+VjPRX5+Pvbu3Su0aNGC8/Pzg9ETO5P66t69OwkODkafPn1EPz8/Up/idM7Oznjw4IGIsg4Ihnbp0iU4ODjoOI6rPqBNSaF9tQ8dogXwEhKA+PjqBy9PH3dwAGbPhhkAs6VLYQfAHSD48kuYxsWR/Rs3kvavv04XDszN6YJCUhKwZAk9t37lCnDmDN2hnzePBvCTJ9OigAMG0B16IyPAxoaef1+xggb13t40+HzjDdqWrxYyMzMRFRXFT5gwoVb36S0qCvj5Zzq3yuzaVeMChyAI2Lt3r/DKK68Qa2vryi9+/30cbd5cKHjzTS7N2RlCs2ZYsGABbGxsapzi+fPnAQBSqRSCIDzcvU9NTUVwcLAuLy+PB2i2ACGEdmVYsYIuZFTBysoKvXv3hm7FCpKkUolBQUHQ6XQIDAxEQC07ECQkJBSpVKojtbqJeRohUgC7AEQA+ErxxRemUql0/7hx40ydnJyqvbUsU0R36tSpIo1GM0Iul595FlNmmH86dmafYRiGqUChULhJpdJoqVRqq1QqNRKJJGMaVPsAACAASURBVEej0ewXRbFQIpH4abXaNQD2yeXyksfuacrz/Ic6nW4+QLM4XV1dxYkTJxqsyNzLZNeuXbqUlBReEAShqKiImzRpEuq6Ox8fH499+/YJRkZGZOrUqcRKz0JrT7p16xa2b9+ORYsWNUhF+6VLl+q6devG+/n5VX5BWhrtU9+yJT2Xr1Dot8uuB61Wi19++UVo3769OGDAgKoXGwSBVsp3dAS2b6eLCE5OwPLlwMSJ9OjA3r007b15c1rFvrT06TZ8ehBFEUePHtWlpKTwqampDXNWHwAKC+liSVVt/d55hz7nt99WOcT+/fuRnJwsvv3221UuKKlUKixbtgyvHzwIx5YtQdavr3pOFy8Cj2V4JCcnIzg4WCgqKuJatWolTJo0ibt//z7Wr1+PLl266Pr168dLpVIa6KvVgIcHdL/9BnHIEOjV+k+nA3ge4eHhuHDhgu7999/XO4NCp9Phxx9/LFWpVG3lcvkdfe9jnkCIF4ANAN4DcAGiKH7//fe7fXx8hg0ZMkRW3a0lJSXYu3dvaXJycrJarR4ol8uTnsmcGeZfgO3sMwzDMBXI5fJkhULRTaPRTAXw02effVagxz1JCoXiXQDrAThyHNc2OTn55//973+arl278j169OAkEgl4ngfHcfVrz/aCKykpwfXr1/levXqhd+/e3JIlS4TIyEhiYmJCXFxcav3sLVu2xAcffMBt27ZN2Lx5M+bOnUse9hjftQtQKmvcbdZoNNi+fTucnZ3FCqnS9SQIAi5duoTIyEhBo9FwFc56lystBW7fBrp3B1JTaVq5rNqf/Wvt2rVr4DiO9OvXr/pVDI57VGhv6tRHr/9eVuh78GBg0yYaPC5eDGzdCmzZQmsH1NLBgwd1V65c4Z2cnDBkyJBa36+32bOBGTOqfn/QIKCaWgaZmZm4du0a3njjjWozR65du4bi4mIY7dmDa3fugJs2DTE9e4rmDg5k+PDhjxaQCgpo6v39+zRDAjTYLyoq4uzt7UVfX18OwMP2ewMHDuQf7wKiEQTcfPNNcU90NDG+cQONGzcWRo0axVlaWlY+sdatgYMHgdat4eXlhZMnT/I7d+4UX3vtNb0yYcrqKTxggX4d0f+gdQCwCcBkiOJ1APjqq6+mmZubD+rfv3+1f9nv3r2L4ODgEq1Wu16j0Xwsl8tVz2DWDPOvwYJ9hmEY5ilyuTwBgLyW94gArpT99phCofhVp9P5REVF7Y6IiHADAEEQJADAcZyO5/nyX0JxcbF5hw4d8Oqrrxr0OZ41URSxZ88e0djYGJ06dSIAMG3aNO7YsWPili1bRBcXF2Hq1Km1PrfNcRwmTpzI/fLLL0JsbCzp0KEDfePuXeDyZborzXGV7pQnJSUhKCgI1tbWumnTphn0zPjKlSvFgoIC4uvri4CAAGJWXvFdEOh8Ro4E8vLo2fzUVKC8L7qBFRcXw8TExDALGYTQ9nmLFtEgkhDaw/7zz2uViXDnzh1eJpOJM2bMaNiVrdRUmqlQlRYt6GJLFbZv367r2LEjnJycqv2zkZ6eLgIgy5Yvh4lEgqknT8LTyUk8kJpKtFotxowZQy+0tKRdFB77ruzKChy6ubmJbdq0IQBgYmICALhx4wbKK//fDwqC9MMPceKjj8ThgYHk7t27yMrKIitWrMCgQYPEjh07Pv1ddu0KuLgAAGxsbDB9+nRs2LCBXLhw4amq/5V58OABCCExNV7IPI2ez58HoB+AzhBFLQAoFIqRHMdtGDNmDF9VZxedTocTJ06oo6KiirVa7fjFixcfe3YTZ5h/DxbsMwzDMA2iLPi/DKBCA2yFQiERBMFYEAQjjUZjBMAYwJKYmJgxgwcPfrjj9zJKS0tDQkICmTVrFsp3Ih0dHfH666+TrKwsrF69us7B9urVq7VFRUWSCoUQP/qI/vObb+gu/8WLACFIT0/HhQsXhJSUFOTk5HDdu3dHv379DBroJyYmorCwkLz33nswNTV9tIVaVETPu4eEAEuX0nP2hDRYoA/QBY3GjRsbfuAvvgDWr6fz37oVmDJFr9uuXbsm5uXlkTFjxjRsoJ+ZSdsUenpWfc2lS/TIQiUF/M6ePQuVSsX17du3xnn6+/sTT09PNGnShP4d/eQTOObmckbz54t/0UWeR2Pk5NBjBbdvA8bG8PT0hIeHh5iWlvbwksuXLwMA3N3dUVJSgsOHD+tKzpzh/V99Fe998AEHAGXFHslvv/2Gy5cvPx3s5+cD771Xoa1gkyZNYGFhgVu3bondunWr8bny8vJEtVodW9N1zBMIcQEwGYAVgGHlgf6XX345UCqV/uHi4kKCgoLEwYMHk/bt21e4NS0tDXv37i0uKCg4r9FoJsjl8sxn/wAM8+/Agn2GYRjmmZLL5VoARWW/yr32/fffR8bFxXWuNBX8JXHq1ClYW1uLTk5OTwUZtra2IITgwoULop+fX62CwMzMTOTk5EhmzpxZeYuzd9+l1eZzc4HTp3G0sFBMTEzk/P390bNnzzpVKK9Jeno6JBIJ1Go1rca+dCltoXf5MrB7N9C5M93dfwYcHBxw504DZGH37k0r+Q8fTgv9vf02fc4azpHfvHkTlpaWYtu2bRs22F+/HoiOpgs9VRk0CCjbOX9cSUkJwsLCxNdee43os8BmY2NTsRgfzwOCAI+//yZHGzdGbm7uo/ft7OjRh8fqQj148EDw8/N7uODk6emJ0NBQ7NixQ0xPTyd9YmJIhwkTYFKeIfAYQojO3d396cWq//6XFl08e7bCyxMmTMDmzZvJ/v37MWLEiGqfKycnp1QQBMP1G33JKBQKS5lMtlsQhDYLFy501esmQtwArAHwJ4AfIYqiQqEgPM+/J5PJvpk0aZKJm5sbrl27hgMHDuDixYvC5MmTOZlMhsjISOHYsWPFOp3uPUEQNpUtCjMM00BYKySGYRjmhaDRaDbs3r1bOHDgAHJzc5/3dGoUEREh/PHHH0JmZiYuX76MX3/9VUxISMDw4cMrDfA4jsPkyZNx/PhxEhoaKqrVar0+Z/fu3eKGDRvETp066ao8829uDgwdSnf233kHXi1aEHNzc12/fv0aJNAHAD8/P5iZmoqqzp3pzvGQIbRdHUCD5GcU6AOAt7c30tLSuNTUVGiqOZ9ea8bGQJMmNJgcMIC23jtyhBaRq8KWLVvE69evk1GjRjV8YYrBg4FPP63+msJC4P33n3o5KChI17x5c6FebR0dHIDbt+Eqk4kXpkzB/fv3H7336ae04GEZjuO4tLQ0XfnvbW1tIZVKxXv37hFPT090f/CAM6liEcXGxganT5/GL7/8Ii5ftky8uHKlFoMH0wWl8noLj3F2dsYbb7yBu3fvit9++y22bt2qE6qo7J+Tk6MB8K8sCFcW6P/t6ekZoNVqmygUiuqzfwghIGQ4gJ8AfAZRXK344gupQqEYbWRkFGVjY/PV7NmzTdzc3AAAbdu2xbx58yAIAlavXq27e/cujh07lq/RaDosWrRoIwv0GabhsWCfYRiGeSEsWrRotSiK3S5dupS2dOlSnD17VnwRO8ZoNBocOXIEx44d4+Lj47mVK1fixIkTuvbt25MFCxagefPmVd7r7u6O119/HRcuXMDu3bt1VV4Ieg59zZo1YmxsLBk1ahQZNGhQzWn4/foB9+7BLCsLk3/4gVemptb+AfURFQXulVcwbOhQEt2qFa6bm4to2ZIGxM9B+fnvdevW4dtvv8WBAweQnp5umMEHD6bp4lotsG0bbR04axZQUlLp5VZWVgSg6eQNShBoW8A2baq/zsgIuHevwkvXrl1DZmYmP3To0Hof7ZDIZBjepw/pGBmJDWvWYPXq1cKxY8cg5OcDH3wA5OdDEARkZ2cTDw+PCp/XqlUrEEIwXKUCjh4FqqjZMWXKFH7hwoXo7+ZGPK5eJfZLlkhiR48WxenTgWbNKr3HyckJCxYsILNmzcLdu3f5NWvWVPofk4KCAg7Avcre+ydTKBQSmUx2zNvbu8WAAQOMOI6rfvWREGMAgwDMB/A+RDHm66+/ni6VSjOcnZ03Dx482Hfu3LlmT7ZitLCwwNSpUzmZTEaCgoJErVY7kxVDZJhnh6XxMwzDMC8MuVweqVAo2gJ4KzQ09PuzZ8+qPDw8JH369OH16efdkERRxP79+xETQ2t5denSBf369UNhYSHs7Oz0Dprc3NywYMEC8uuvv/LLly8Xhw4dSpo9EbCUlpZixYoVkEql5J133oGtra3+E+U4tBk4EBFeXjBKToZvTk6ladx1smgRrWY/ZAjQqRPcmjTBqYkTUaJUCt6AQWsC1Ia1tTXkclpPMjQ0FBEREeLFixeJs7OzmJmZSebOnQtra+u6dYFwcgLS04Fjx4AxY4CZM2lrvshIei79iSrxtra2sLe3FyQSScNuqKSk0IyDx86rV8rJCQgOflg0UavV4uDBg2KfPn1gbm5ukOwDo4EDoYmORsc5c1By6xZ3U6MRY2JixB4HD3JmiYnQarUAaOD3uDFjxpAxTZvSIH/ECLowUZnsbEjCwtB261a0HTYMETNm4MiRI2RmaipcyorzVYYQAnt7e4wdOxY7duwg4eHh6NGjB+Lj4xEWFibm5eUJSqXSAsC/sQL8RDs7O+9hw4YZ6XQ6gNZcMEHF41UUPZ8/B/R8/iDFF19w0m+//cXU1HTWhAkTTCs9WvQYqVSKpk2b6nJzc29ptdq9Bn8ShmGqxH/xxRfPew4MwzAM81BgYGBpYGBgeGBgoCI0NPTPBw8eTDl//ryRra2t6Ojo2KCp0aIoYuvWrUJkZKRYVFQEiURCiouLkZubi99++w3p6eno3r07pkyZgjZt2oDneXpevZakUik6deqE48ePk8aNG4tNmjR5+FwZGRlYt24dSktL8dprr1UbzFSFSCQ4rFIJ5lotaTZyJNC/P1DDD+RVKigA5syhZ7/Dw2nqdkAA/T3H4cKFCyLHccTHx+eF6KfYrFkzBAQEEGNjYxQVFZGsrCxERkbizp07gqurKzE1NYUoirUL/Fu3Bj78kJ5D5zi62BEcDKxbR48slI2ZmJiIM2fOiM2bN+fqlR6vD50O+M9/gCqqnVfQsyfw2muApSWCg4PFnJwckpqaCm9vb2KoYx6WlpawjIxEh9xcdFuyhBBCcOXIEfR9802yz9VVdGzSROzatSuRPJ6qX1ICWFjQWghWVpUPvHkz8NNPgLc3MH8+0LMnDhw4oBMEgRs0aJBe/x7t7e2hVCpx9uxZxMbG4saNGzpRFLlWrVpxKSkpKrlc/qFBvoSXhEKh4GUy2aFXX33VztbWFjzP4969e8r8/HyzkydPhgYGBj7KgiDED8AAAErFF18oTgcG9jMyMtrl6OjYf/r06ab6LEReunRJPHv2bJZGo+kml8uLG+7JGIZ5Egv2GYZhmBdWYGDgg9OnTy8DkJ6cnNzby8tLWp6y3RB+/fVXZGRkEC8vLxIfHy9ERkYiMjKSXLt2DYIgYO7cufDx8cHjfcHraufOnUJOTg6ZNGkSIYRAqVQiNzcXq1evhiAI+OSTT+Dg4FDn8a9fv04KtFq0X7UKaNoUmDAB8PKiwbo+wsKAEyfoPUuXAqNGAcOGAU9U1r5x4wbJzMwk3bt3r/NcG0KTJk3g4+ODjh07olevXrh+/bp4/PhxcvfuXWH//v2kQ4cO+tczsLOjLQTT0uj3AQDduwPJybRSv7ExspRKrF+/HkZGRsKYMWO4qlqOGcyECXQ+PXrUfG1REdC9O1KysnDy5EkyZ84cZGZmimfOnEGHDh2IoeZqMWgQJOPGgZs3D24BAaTL+PFE2qQJus6ZQzr4+lYM9AHgjTfouf4ZM54e7O+/gddfp883cSLQqxdQtrB2/fp1kpWVRRISEgRfX1+9Vm1atmyJCxcuID8/HyqViuvfvz8AiPfu3dsYEBBwsJ6P/lI5ffr0uEaNGo3t27evrHyxxN3dXXb37t32arX6nVOnTilPnToVG9i79ysA5mQ4Ol7+9dNPHaRS6U4rK6vJvXv3dhs8eLBUn8KO9+7dw+7du4s0Gk13uVye0sCPxjDME1gaP8MwDPNCK9sJWvbVV1/Zbdq06dMPPvigilzf+jl37pxQUFDA+fv7oywQaNC0dJ1OJwDgTp06JTRp0oTbtm0bCCGQSCSiRqPRq0J6VVQqFRITE+lzWFvTXWCplAZ9BQVPpZ4/JIq0xdzQoTRtPSGBBmTh4VV+lkQiQUFBAYqKimBubl7nOTcUq7Id4+nTp3MXLlxARkYGl5ycjN9++w09e/YUevfuzXH6FBPs2ZPuMo8ZQwN8jqO7/T//DCxZAvvNm2FqaoqBAwfydcn2qLUBA+jiiz5sbSFkZSH44EGhR48esLOz4yZMmMCtXbtWt2HDBm7UqFGkLhkklSKEFgU8f54eHxk9Gvj+e+DzzyteJwjAxx8DjRpVfP3OHeDUKWDPHuC77+iiyhO791OnTiX79u3DjRs3uLS0NDRu3FivHf558+YhNjYWDg4OcHJyQlBQUKFarT5azyd+6chksu/S09PN4+Li0Lp1awA0M+Ott94yS0lJMQsPDf3BISjo12h//wcx3boVptvavubt5SX4+fkZOzs7650Vo9PpsHv37mKNRvOWXC6/3ZDPxDBM5ViBPoZhGOalIAjCL4WFhUbJyckGH1ur1eLYsWNcx44dywP9Bjd16lTJtGnTcP36dXHbtm1o1aqVbvTo0dBoNOTVV1+t2/nyMidOnNACgKtrWSctngf++APw86M7819/XfEGpRI4fpwWofv8c9o+T6GggX8NSktLAQBbtmyp83yfFT8/P0ilUoiiCI7jEBYWxiUmJup3c9euNJ3/xo2Kr3/wAbBgAQqCg2GSlGSQrI8apZRtkLq763f9gQO4un49eJ4nAQEBD3/2mzlzJt+0aVPyf//3fwgPD6+8XH1dbNlCM0HGjaOB/9q1dKGpnE4HtGtHuxo4OdHXcnPpn8GZM2l6/8GDgL//U4E+QDtbjB49GlZWVrq1a9fil19+QU5OTo3TMjU1RefOneHm5gapVIoHDx7wAK4Y6KlfCgqFwkOtVjcD8LCWQjlCCNxkMkxUKs16tW4tsV6+3Ln3O+94fPzxx7JRo0YZV9kNpBKiKOLQoUPq0tLSCAA7Df4gDMPohQX7DMMwzEtBLpfnA3hzx44dpfq2rdNHUVERIiMjRYAW3XuW3N3dMX/+fH7OnDmYMGECr1KpwPM82j+RKl8bKpUKOTk5EgBPn/cnBDh9mlaT/+MP4M8/gawsYNMm+ppEQvvJ9+6t9+eNHz8eAGpXRPAZCwkJwerVq0WFQoHIyEgMGDAA7u7uOn9/f527vgEzxwH29sDhw0+/N2QIrMzNMXbPHkiqqNJvULt2ASEhel+e/803OG5sjNGjR5PHFyM4jsPw4cMxZcoUnD17lpw8edJwAb+VFQ3gs7LocYfHCwkWF9MuB76+NJtk1y5gwQK6iLFzJzBvnl4fMW/ePN7Pzw+FhYVYtmwZlEolABpopqenIzo6GteuXUNeXl6l96tUKiMABmrb8HIghCwAAFtbW5WHh0fFNy9cAL78EjAygnTpUrTo2BHNmzdHXY55hISEqK9fv35TpVKNYS32GOb5IS9iWyOGYRiGqYxCobAEkD9v3jzY2dnVe7ykpCRs3boVlpaWum7duvHPOth/UkZGBjZu3Ci2bNlSGDt2bJ22iMPDw3H8+HH06dMHAQEBVV84ezZw4AAN8uXySndQaxIbG4t9+/aJgiCQd99996lq6y+CXbt2CQkJCVy7du1ECwsL0qJFC9RUPbxKxcW0OF9ICPBE7QiVSoU1H3+MuYIA6eTJQLduBph9FZRKumP+ZAp8FaIHDBBMGzWC5x9/VLnJk5GRgQ0bNsDFxUWcMmUK0etogz6iooBvvwX++gvIzgZiY4H164HVq+nCk1wOvPsu0KIF4ONTp4+Ii4tDUFAQGjVqBHd3d0RGRkIikcDMzEwniiJKSkp4GxsboVmzZsTc3Jx4enrC3t4eP/zwQ4lSqWzzbzhLrlAoCAA/ABEAsGDBAlTocLJlC/0z5eam//GQKpw7d053+vTpFLVa7SuXy3PrNRjDMPXCzuwzDMMwL5NimUx24+jRo8169eplXN9zxrGxsaKLiwuZPn36c2sb9zhHR0f06dOHHDlyhK91xfgyOp0O9vb2uoCAgOqfac0aYNUqumNdRyEhIbq2bdvygwYNQn1qDDQUQRCQkJBAxo8fD3d39/p3CzAzA6ZPp7uf331X4S2e51Hq7Iwjycm6YTNm8IiKelhQzuA8PICTJ/UK9s+fP48iIyPOp127aq+zsrKCTCYTEhMTuYKCAlhbWxtmrs7OQH4+sHcv/T5iYmjQv2QJcOsW/S4DAuq02FTOqKxlX2ZmJjIzMwHQLJ0BAwbwAKBWqxEZGclFRESgqKgIf//9Nz7++GOYm5trlEplEwD/6GBfoVDYGRkZbVWpVIMAwNraWrCxsaF/8bVaYNkyIDGRdt3w9Kzz54iiiKioKPHUqVN5Go2mFwv0Geb5Y2n8DMMwzEtDLpfr1Gp1z8TExP3r169HWlpancbRaDQoS+km1e5+PwflZ8pv3bpVp/szMzN1jo6O+i1e1HP3VqfTkaysLPFFzRI8e/YsCCGkadOmhht0xAhafC4/v8LLEokEM2fOxDVXV37PZ5+J4ogRwKFDhvvcciUlQJcuep3XVyqVCA0NFV0/+QTSoUOrvO7y5cv48ccfYWFhQRYuXGi4QB+gwf6JE8CVK0CzZrTV3u3bgLEx3eHv1ategT4AuLm5YdasWZg2bRpmzJiB999/H3369Hn4vkwmQ48ePTB48GAAj+pMlAW8zer14S84hULhJJPJonx8fPqMGzcOAODg4EC/gAcPaDtJGxu66FKPQF+pVGLbtm0lx48fj9NoND3+DdkSDPMyYK33GIZhmJdKYGBgaUBAwK7w8HCzkpKSbp6enpw+O+CiKCI+Ph7379+HTCZDZGQk/Pz84Ofn9wxmrT8nJyfk5eWJJ06cID169Kh1wbdLly6RnJwc8iyOJLRr146cOHGC6HQ6sXnz5vXfOTew4OBgoXPnzoadm6kpTeG/dw9o0+aJt0zh5eWFs+fPI83CQmizZw9Hhg417A7/tWvAK688KmxXiQsXLuD3338Xz507R5o0aSL0ycnhsHIlbdf3hIKCAmzfvl0UBIFMnz6dmD1+tr6+Ll8GgoPpwsScOXT3mOPoLr8BgvzHWVhYwNraGlZWVjAyMkJlxxDs7OxQXFyMkpIS0dXVlajVallqampOQEDAAYNN5AWiUCiayGSy8/7+/s79+/eXWlhYIDw8HNnZ2TJfiQRGGzfSoxMzZjx1LKU2MjIysGnTppLs7OwdarV6mFwuzzDgYzAMUw8sjZ9hGIZ5KWm12vTr16/z9vb2usDAwCojYpVKhZCQEN2dO3c4tVoNIyMjoaioiLe1ta051f05GTlyJLl586Z46NAhceTIkbXafm/atCm5cOGCDvVoHZiWloYdO3botFotEQSB9O3bl3Tq1KnCNYcPHxYvXrxIdDodrK2tX7hAPy4uDqWlpVzPnj0NP3jLlvSM89ChtKjhY2xtbfHWW2+RrVu3ku/MzDCzXTtIP/4YNu+9V+VwSqUSYWFh8Pf3h0wmw1P96B/3/fe0pV2HDpWOc+zYMVy5cgWvvPIKcXJyQpMmTXjcvw8YVd6xcuPGjbrGjRuTsWPHknq1DNy3D9Bo6CLEJ58A06bRHfw7d2j7xnffBTZsAP7v/+iu/nPAcRzMzc2Rn59P1q9fDwcHB8LzfK/nMpkGplAojGUy2ZmAgACnnj178gAeLhy2vXoV+ceO6Sx/+olH1671+pwrV66IBw8eLNXpdHMXLVr0e/1nzjCMIbFgn2EYhnlZbQLQ7PTp0/Osra3RoZLgB6BBaWxsLN+/f3907twZHMeVB8EvZKBfzsPDg+Tn59c6P/7WrVu6pk2b1is///bt28jPz+fLWgPqDh06xB89elRs1qwZ0Wg0okajIampqWTMmDHIzMyEl5dXfT7O4OLi4rBjxw707dtXlMlkhl+I8PUFNm8G4uOf2t0H6A7/W2+9xRUUFOAvURQ6nznD2QQGPhWga7VaCIKAAwcOIDY2FuHh4QAAIyMjsX///sTT0xOCIMDU1BQJCQmwtLRE8euvIz4/H0nr1gnFxcWira0t6du3L+fk5IQNGzaIGo2GvP7666hwdMHMjJ6Vf2JnPyMjA0VFRfzIkSOhV6AvikBpKbB7N+DiQp9/+XKajr9uHU0D//RTeh6/c+dHCwxz5wJvv03rHDynQL9cx44dkZKSAjs7O1y9elXUaDStn+uEGohUKl3k7u7euEePHg//OyeVSPBeXh7OKZXi/vbt+W4SidCpjkd6lUolDh06pLx161a2RqMZIpfL/1UtDBnmZcGCfYZhGOZlpQQwD6At7Cpz+vRpXWxsLD9ixAi0q6FA2YumY8eO+OOPP7i0tDQ4VZOy/bjS0lKUlJRw9vb29Qpw79+/L/r4+Aju7u68u7s7HxAQgAsXLohXr16FkZERMjMz4ePjA09PT3jW45xvQ9Bqtdi3b5/Qp08f4u/v33AZB8OG0UryO3ZU+jYhBFZWVmg5dCjZrtHgzTFjRKeZMwk++wwAkJeXh9WrV4sajYYIgoCuXbvqevbsyUdGRorJyckICwsTDx48SMrHIoTALisLww8dQtaXX+ratGnDWVhYcHfu3NGtX78eEokEWq2WDBs2DE/VKFAqgW3baFbAYyIjI2Fvby+6ubk9/T2JIpCeTlPuAwJoMcfgYODSJeD33+nO/YABgL8/4OVVsT6Bvf2j/63V0vP6qalA9+51+aYNysrKClOmTAEAdOnShWzYsKFuhT9eYAqFwlIikbw7cOBAk4dHnDQa4M03YeXhgcCPPiKXf/9dOHjwINeqVStYWlrWavzk5GTs2LGj8qYP4gAAIABJREFURKvV7tBoNAvkcnlRAzwGwzAGwIJ9hmEY5mUlAsDo0aMrLShWUlKC8PBwfuTIkfD29n7mk6svNzc38DwvZmVlEX2D/UuXLiE/P5/079+/zp8bERGB5ORk+Pv7P9wRtLS0RL9+/bh+/foBAM6cOYOTJ0/i1VdfrfRs9LMmCAL27NkjJiUlCaIoEjMzM9K1a9eGPVrQty/wzTf0DH3btlVe1rlzZ5KRkSEct7IiU5o0Af74A5g0CcuXL4e1tTWZPn06JBIJjI2NeQDo3bv3w3lrNBo8ePCgvFI+ZGFhQGoqJk2a9PDfTYcOHXhLS0uEh4ejQ4cO8PX1fXoSrq5AeDgN4B87J9+rVy+sWbNG/EqhILMCAuAUFQW8+SYN4o2MgP/9Dzh7FmjfHpg/n6bnN2kCHDum33cUEgLodPSzb90CXntNv/uekbLK/TnPex6GJpPJvvPw8OBsbW3pC3FxwJQpNOOiRw+Y8DzefPNNbuXKlfjll18gl8v1GlcURZw/f14IDQ0t1mq1ExcvXtwAFSgZhjEkFuwzDMMwLyW5XK5UKBRb9u3b97qrqyt5PODPzs7Gxo0bYWtrq/P09Hyh0/WrcvHiRchkMr13zs+dOyeePXuWtG7dWr+U7EoEBQVpk5KSJB07dhQ7d+5cZbDs5+eHU6dOISMjA05OTlCpVFCpVLXeITSEAwcO4NKlS7CyskLfvn15tVqNjh071rqwYa3xPA2e9uypNtgHgPT0dLFpx44c/PxoMH3lCpw9PISUlBSutLQUjapooSeVSlGhvaSdHbBp01PX9enTB+fPn8eVK1cwYsSIpwfiOFqI7fp1wMGBVsePiIDltGmY8dtvJMnNDTZOTjQoVCqBjRtp33tLS6A+NQ/++gtQqWhtg7t3gaSkuo/VAG7fvl2qUqlWPe95GJJCoegok8neGDhwIK24d+4cXbT54QdaFLFMo0aN8NprryEqKkoLPeIBtVqNP//8UxkfH39Po9EMlMvldxrsIRiGMRgW7DMMwzAvs9mCIEyJiIjAoEGDAAD37t3Dhg0bYGJiIs6aNYt/EXae6yI5ORkuLi6CRCKpMWpNSUnBsWPHiK+vL4ZW02KtJoIgcM7OzsKgQYOq/dKMjY3RtGlTce3ataRx48ZCTk4Op1arYWtrK/r4+KBLly71K/amp5s3b+LixYuYPn06XF1dyTP/d+3pSQvOJScDbm6VXpKYmIj09HR+xIgRNHjeuBG4eBGvBgVxqxo3hlKp1P/zpk6l6fT+/hVe5jgOM2bMwIYNG5CQkICWLVtWvC8yku7U+/sDixfTqvhpaYCDA/6aNEkw9vUlvhMmcJgzh17v6lqLL6ESgkBrGvz226PXsrOf+3n9J6WkpGgARD/veRiKQqEwkslkWwcOHGhsZmpKj22Eh9OaCo6OT13v7e0Nb2/vGmOBnJwc/PHHHyVFRUWH1Gr1dLlcXtIgD8AwjMGxYJ9hGIZ5acnl8lKFQoGoqCi0bt0aJ06cEFJTUzkHBwdh9uzZ3Msa6ANARkaG2KpVqxoD/Tt37mDnzp1o0aIFhg8fXuO4R44cQXR0NGQyGVxdXWFpaYn09HSkpqaCEMJpNBoUFRXB3Ny82nGmTJlCLl++jIyMDK558+bo2rUrDh8+TGJiYoRTp04RiUQCDw8PoWfPnlzjxo31f/BauHXrFhwcHIT6FiSsM0tLoGtXIDa2ymA/JycHEolEtLGxoZkSFha4bW2N4osXMdPbW2zs6qrfcQNRpKn03bpV+radnR1EUcTD1G0AyM0FiouByZNp+v0bbwDTp1dI5X9l/nx+06ZNEEUR+rSw1Et0NLBoEfD664BMRl978ABo/eLUwtNqtcjLyzMFcPl5z8VQeJ7/wNnZuVlHDw+C994DmjWjiy52dnUaTxAEXLhwQQgNDVUJgvCJTqdbIZfLa100lGGY54cF+wzDMMxLTxAEbNmyBS4uLtzIkSPRrl27lzrQB4DCwkLR0tKyxuhr+/btMDY2xqRJk/QaNyIiAt27d0dmZqaQnZ1NEhMTSadOncRWrVqRjIwMqFQqnVQqrXGRgeM4dOzYscJrE2i1d+7OnTtQKpWIiooia9aswZQpU9C8eXO95qcvpVKJq1evYtq0ac/3X/Qrr9Bq8716AZVkM/j4+CA6OlpcsmQJcXd3F8eNG0dOnDuna/P113xHGxuC8eNpS7oaFldw4ADdMa/iz3Vubi4kEgkN9kWRBtxvvw0sWEAXIyQS2gYvORl4rICfq6srpFKpGBcXR1obIhg/cwbw8wPu3auwqIDCwkq/n+clKysLMpks7ZNPPil93nMxBIVC4S6VSv87+JVXTEj//vSM/ltvPdUaUl/5+fnYvn17cW5u7k2NRjNZLpffMvCUGYZ5BliwzzAMw7zsGkml0t3GxsZdx40bZ/Q8zo03hC5dunDHjx9Hs2bNKj3TLYoiQkNDBUEQuJkzZ+pVKE8QBBBC4OfnB2tr68dveHxRod6H3csDey8vL7Jp0ybx4sWLYvPmzQ0alJ87dw42NjaCq6vr8w323d1pivTJk/Rs+hMkEgneeust7v79+9i8eTPZsmUL8vLyuEYuLvQYQJMmwMqVwHvvPdoFr8yhQ4CVVZVv//7774JareZw7hzw0Ue0Fd7q1bRNYLlPP6Vn6P/8s8K93t7e5NChQ6Kbmxsxrm+q/eTJtHDh1KkVX3d1pd/VCyIrKwuEkITnPQ9DUCgUEiMjo72Dra1NHIYPB3btAjw86jxeQkICgoODS3U63bdarfZ7uVwuGHC6DMM8Qy/3tgfDMAzzryeXy7PUanXv0tLS71auXFmakPCP+PkdXl5e0Ol0yMrKqvR9QRAQFhbGDRkyRO/CeBzHwczMTLh9+7Yhp1qtYcOGkZs3b3KrV68WMjIyDDbulStXhA4dOjRsxX19/fADsGwZrTxfBRcXF4wdOxYFBQUQRZHk5ubSIn8//kiPAgwfDtDq8JX76ivg22+rfDvAyYnrFBmJkuvXgZkz6ULCk5X5N20Cdu6kGQKP3xsQAEKI8MMPP+Ds2bN1C+yKimgBvsTEpwN9gGYvGOqYQC3l5OQgLy8PwmPPHRsbqywtLd33XCZkYDJCvuiQmenhs20bj4MH6xzoazQaHDx4ULVjx45clUo1eOHChd+yQJ9hXm5sZ59hGIZ56ZX9QKpQKBSnd+zYsadr167mvXv3lr7MqfynTp2CnZ2d2KZNm0ojpLS0NBgZGYm+vr61iqBEUYT9433QG1ijRo0wfvx47Nq1i0RHR2PIkCH1HrOsxSDXpUsXA8zQABwcgE6dgKNHgcGDq7ysdevWaNGiBc6cOYPQ0FC0aNECzs7O9AjA6dO0Sn7v3k8XU0tKArp0oUX1nqRSAdnZaPvNN7jp6Cgaz5hBUFUnAjMzYMUKICgICA+HKIo4dOiQLjo6mieE8ABgZWXFabVa8DxfuzP8ixcDx48DV648/Z4o0mr8zs76j1dHJSUlSEhIQH5+PnJzc9X3798vzcjIsAKA1q1ba0aMGCHleR5xcXEAsLPBJ9TAfvvoo3f7nj//cUd7eyk5caLOafsPHjzA9u3bS4qLi49oNJqZcrn8H9eSkGH+jViwzzAMw/xjyOXyUwqFwjMyMnL3nTt3OowfP97sZU3rDwwMxOrVq4lKpUJlqdXW1tZQq9VEq9VCoucP+EqlEiqViisuLjb0dKvVqlUrcBxHsrKyRFQ8MlAn5RXs09LS0PSx8+fPDSHAsGHA5ZprvfE8j4yMDJ2LiwvvXB78EkKD5UOHgGnTaFr/4zUOCAE++wxPBfEpKbR3/eDBuLh8Oa7cuCF25vnqv9+RI5FVUIDMGzdw7tw5MSsri7O3t3+YQRIaGiru3buXSCQSLFiwABYWFjU/f2Ym8NNPQEkVRdqLimjtgAaoxi+KIu7fv49bt27pLl26VKpUKiUymeycRqO5qtVqUwBcBXAFgENiYuIHy5cvH+fj42MilUqvLFy4sJLVk5fH/hEjRnfLyvqf9/DhEul//lOnQF8URcTExIh//fVXqU6nWyAIwkZWhI9h/jlYsM8wDMP8o8jl8gyFQtHrwYMHi1auXPnJmDFjTFq1avW8p1Vr2dnZkEqllQb6AG3pJpVKRUEQ9A6eQ0JCYGJigufxfWi1WlhbWxskj/vYsWMAUGV/+ueic2dg6VKgT58aq843b96cDw8P1+HJ+ghDhwL379NCeioVTcUHgLAwoH//R9fdugV88gnw/vvAjz8i0sQEJw8fRo8ePQTUdETTxQXBhYXwmTkTxePHC++++y5f/mdMrVYjNjaWODo6YuvWrWJQUBBxcXHRdejQgbe3t6/8z2JqKl2YSE6mGQ6Vycyk6f0GlpGRgeDg4OLCwsJ8QRB2arXaTQBufPzxx5pKLk8HMP3LL78MunLlyiKVSvW1wSf0DB0dMGBQ59jYnfjkE95s/vw6jaFUKnHgwIHS+Pj4dI1GM0wul8caeJoMwzxnLNhnGIZh/nEeS+s/GRwcvLdz587mffv2lfFVpTe/gE6cOKFr3rw5QRXBW0ZGBhwcHCCrrqjbE1q0aIGrV6/iyJEjuhEjRvAGa7WmB1EU9a4tUB1BECCKIqZNmwbTF6i6O6RS2sf+779rDPZlMplYUFDAP3jwAA5PBsizZtECemWBPNq1A77+GvjlFxpMb9sGeHnRz/L3B6RSkKgomJmZif369dPr57rGLi66tvHxfI9Zs/jHd9tlMhk6dOgAABgyZAg5cuSIkJ2dzW/evBmiKMLGxkbIzs7m3njjDbi5uQFKJeDkBMTFVR3oA0BpKT1CYCAlJSUICwtTR0VFaXQ63XxBEDbruxu9ePHiowCOGmwyzxohXK6V1YyWjRqtLNy8mffo16/WQ4iiiMuXLyMkJKRUFMVtarV6vlwuryItg2GYlxkL9hmGYZh/LLlcfkahULSJjo7enZiY6Dt+/Hgzq2oqmr8o1Go1CgoK+OnTp1f6fklJCSIiIjBs2LBaRevt2rWDi4sLli1bxvfp00e/FG0DkUqlokqlAuqZxl9SlipeNtaLZe5coG1bYMQIwMam0ktEUURYWBiaNm36dKBf7tVXacr7vXtAbi6tBaDV0vEtLWlLtbKd/nPnzuHkyZPlu/o1rmaJoghp06Zkwyef6D5ITuarWpjw9vaGt7f3w4WmjIwMxMXFcSdOnMCmTZvg7e0tDP30U046ejRKPv8cFqJY9Rn/27cNksKvVCoRHh6uOX/+vI4Qsl2j0SyWy+Up9R74ZUGI5T1n58lqM7MlSd9/L/auQ6BfUFCAnTt3FmdmZiar1eppcrk8sgFmyjDMC4IF+wzDMMw/mlwuz1QoFIGZmZkLV61a9dno0aNNDNJPvAHFx8fD2NhYtLCwqDR6io6OhlarRfv27Ws99v79+3UymYw3MTGp9zxrQ6fTkeTk5HqPU76b/0IWX5RIaAu95cuBRYsqvUSr1SInJ4fMmjWr+rEGDgSOHaOV7bOygCFD6K7+Y5kcarUaYWFhYrt27UhgYGClgb5SqURiYiIKCwtRUFAgpqSkiCkpKdzMyZNptf5Tp4Cy3fzqODo6wtHREb6+vggLC8O95GT8MXKkkG1kxCl/+QUDBw4Uu3XrVnm0X1hIWwzWQ2ZmJjZv3lyq1Wr/1Gg0n8nl8sR6DfiyIaR5obn55/eaN5+g+/57WaC/f63SlARBwJUrVxASElKq0+mWaLXab+RyedXtIxiG+UdgwT7DMAzzj1eW1v+VQqE4tWvXrr2dOnWy6Nev3wub1l9Vu71yNjY2MDU1rfl8diVMTEw4nufxLJ9dEARoNJqqd7JrIT8/HwDdoXwhjRxJK96XlACVHDOQSqVwcXER1q5dK86aNYuv9hhG//5AixZAQcGj1naC8LC12k8//SSq1WrSrFkzXLt2DVqtFlqtFhqNBlqtFvfv39clJCTwJiYmOmNjY9HU1FRiZ2dHunXrBqfmzYHo6IqFAPVgamqKAffuAd99xwlxcYiLi0NMTAz+/vtv4ufnV/kijIMDYG5eq895XFJSEoKCgkq1Wu2cRYsW/V7ngV5WhAQ+sLcfc75Xr4mNP/1U1q1Ll1r9vU9LS8Off/5ZnJeXF6dSqebL5fKwhpoqwzAvFhbsMwzDMP8acrn8rEKhaHPx4sXgu3fvdpk4ceILmdYfGRkp+Pr6VvoDvUajwZEjR2Bubl6rYF+r1SI1NRXx8fHExsbGIFXxa4PjOFhbW9d7HBsbGxBCkFldT/rnqXFjWjX/2DGajl+JKVOmcMuXL8ehQ4cwatSoqscSBJrCr9HQ/71rF/Dll/RMf1ISTHkexMgIJ06c0HIch/JfPM8TiUTCWVlZ8XPmzIGdnV3lKzstWgA9egAffUQXKfQ1fjzg4gKO4+Dh4YEWLVrg559/Frdt2yZMnjz56c86fZp+Th3cvHkTe/bsKdFqtaPKztv/e9BzEQNzbGwUIaNH+3R+910jLy8vvf/eZmdn4/jx46UJCQlqnU73mSAIa8oWPhmG+ZdgwT7DMAzzryKXy7MUCkXf7OzsT1euXPn5mDFjXqi0fkEQUFRUxLVr1+6p98p+eEdRURHef/99vf8//OrVq9i3bx9EUYSvr6/Qt29f7lkW5+M4Dvb29uLp06eJs7MzbG1tYWdnV+fxbG1tcf78efTs2RPm9dgxbjADBgDnz9MAvZKdbplMhmbNmmmvXLkiuX37tti3b1/SuXPnp8dZuxYICgLOnKG/nzoVGDuWFsZ76y1MsrMjx728tBNnzpSgrh0Wxo7VP8VepaLFB/fvp8cMykgkErz99ttk2bJl3N69e3WvvvoqX2GH//x5egyhlkpLS7F7926VVqsNkMvlF2s9wMuMEHMReC+hZcvAkAkT2r32zjvGjRs31uvWwsJCnDx5Unn16lUdgB+1Wu1Pcrm8qGEnzDDMi4j/4osvnvccGIZhGOaZCgwMFHv16nU2NDT01K1bt0YUFxdLmjVrxr8I58AJIfj7779Fc3NzIpFIYG5uDkIIBEHA//73P2RlZaF3795wd3fXazxBELBhwwaMHDlSHDt2LGndujWRSqUN+xCVaN++Pblx4wbOnz+P69evw9/fv85jOTg44PLly+jXr1/VReGeJ1dXYOFCwMeHVquvhKenJxcQEICsrCwkJyeTjh07Pn2RSkV33318Hr0mlQImJsCbb+IvQdC5RUdzrl99RTBuHHDiBNCqVaULDFXq1g2IiaEt9Gr6M8XzACG0AOET37tMJkP79u3JkSNHSElJidCyZctHk7h7Fxg+nM67FlJTUxEbG5uwcOHChbW68R+g9Icfhlzv0OHjM2++2Wbi3Lmm+rSZLC0txcmTJ9V79+5VZ2ZmrtNqtaMWLVr0V2BgoPoZTJlhmBcQ29lnGIZh/rXkcnm4QqFoExMTs/Pu3btdJ0yYYGZTRRX1Z8nR0VE8fvw44XkeOp0O8+bNg62tLTiOw6xZs+Do6Kj3WFlZWdBqtfD29n6uUbFMJsPs2bPx66+/isXFxSQxMVHvBYsnubm5ged5pKWlwcXFxbATNZRPPgG+/x7YubPKS3ieh42NDcnMzHz6SIZKBVy/TivvVyIiIkK4lZTE91+1ila6z8wEfv4ZiIgARo0CGjWiCwX62LMHEEXglVeqvuaddwArK+Dbb6u8xNLSEjNmzCBr167lu3btSo9tiCIN9o2MKlyrVqtx+PBh5OXlwcTEBJaWlrCxsUHbtm0fZmvY2tpCq9W6KhQKY7lcrtTvYV5uCoWikUQiWUAWLZrVrFkzi5ljx5pIJNX/uK5Wq3H+/HldWFiYGkCwVqv9r1wuv/9sZswwzIuMiKJebUkZhmEY5h9LoVAQiUTyIcdxX44cOdLE09Pzuc5HEASUlJTA1NQUq1atEgVBgKmpqXDv3j3e1NRUnDt3LtE3fT0sLAwxMTHCvHnznn/aQpmNGzcK6enp3OzZs+uczr9ixQpdbm4uP3/+fLyIdReg0QBffAFMmABUciRDpVLhzJkzwqVLl7iePXs+nemwfz/w4Ye0h30ltmzZotNoNPyMGTMqvqFWA999B6xZA1y6RIP/4cOr3+0XRforLw+wta38mm3baJG94cOreWhq3bp1QmpqKmdra4vRw4bB5dtvgXXrkJiYiIiIiPL6EYKtrS1atGjBFRcX6/Lz88WCggIuOzubMzc31/Xt25f39vbGunXrlFlZWYsXLlz4Y40f/IJRKBQEgNljvyQAigBkABAB+AFwBFAAoINMJusqCMKr3t7e6NKli7Gzs3O1mSuiKOLq1asICQkpFQThhEql+lAul99u6OdiGOblwYJ9hmEYhimjUCj8pFLpAR8fH6tBgwYZ1bSj9izk5ubi1KlTsLCwQFRUlKhSqYipqSk++ugjve4/c+YMzp07h08//bSBZ6o/QRDw1Vdfwd3dHdOmTavTGGlpadiwYQPmzp1br/P/DWrbNlpBv5Lv/tKlSwgJCRE7depEBgwY8PS9okhb1llaVjr0/v37hcTERG769OmwrOwajQZISABmzaKFAn19gaZNq66+/803wPbtwNWrFV9PSADmzAFCQmgavx4KCgpw+PBhZGRkiNI7d8jMc+dw8LPPhJs3b3Le3t6CTCaDi4sL165du6eCWaVSiZiYGPHMmTNEqXy4mf/L4sWLP9DnsxUKhTWAOxzHbREEYa1cLr+u16QNRKFQuAEYYmJiMkGtVncDwPE8r5VKpTpCiKjRaCRqtVpGCBEsLCyUNjY2olKpFJ2cnIwdHR2NvLy8YGFhUePn3L9/HwcOHCjOy8tLUalUb8rl8nMN/nAMw7x0WLDPMAzDMI9RKBTWMplsm6WlZcDEiRPNbKva6XwOMjMzsXLlSgDApEmT0KqGomw5OTlYsWIFxowZAy8vr2cxRb1FRkbi6NGjmDZtGprUoQd7ebDv6+urHTJkyPNflalMVhawfj1NxX9sQUKpVGLp0qVwcnKCr68vvL29K96nUtHA/MYNoIpjJbm5uVi6dCkaN24szp49u7rtX0CrpVkCBw4A4eHAxYu0YN7ju/0lJcDNm3RR4HHx8cDXXwObN9fq0bVaLfbs2YOi48fRITZWDBkyhNQ2k0OlUpX3hlcJgmCvT5E5hULREkAcAEgkkh8WLlzYYKtcCoVCIpFIDgNIkkgkjjqdzo8QYtWyZUvB09PTtHnz5pBIJJBKpRUWNbRaLXQ6HYyeONqgj8zMTJw8ebI0Pj5epdVqPxRFcTOrsM8wTFVYgT6GYRiGeUxgYKAyNDQ0SKVSFUVHRwfa2NhIDdEfvr4uX76MLVu2PPy9k5MTXF1dq7w+OTkZa9asgSiKeO211164QnYuLi6Ii4tDfn6+rk2bNrU+YmBhYQF3d3eEhIRwPM8Lbm5uL9YDAoCpKXDwIA2k27Z9+HJxcTHCwsKgUqlw+/ZtREVF6Xx9fTm+fOc8Px8oKKiydR9Ag76YmBj06dOHOFVRBBAALaTH88DgwcC8efRYwOef00J/9+7Rf9rY0H9mZQGTJ9Oq/wA9p9+pU5V1A6qzatUqnUqlQreWLYlFkyak77x5tWq9WFxcjCVLliAuLg6iKEoA3AgMDLxS032BgYE54eHh1oIgdBMEISIwMPBY+XsKhcLk9OnTlqdPn9YFBgbqav1QTzh9+jRHCPlAp9MN1mq1HoIgmHMcp3NxcZGmpKRo09PT+R07dqCgoEDt4eHxMC2C4zjUNmuosLAQf/31lzIkJESZnZ39vVarnSCXy88HBgayXTuGYarEdvYZhmEYpgoKhcJXKpUe8Pb2thsyZIjR86hiX06r1eKbb76Bn58fbG1t0aVLF1TVPSA/Px8rVqyARqPB4sWLX7hAv9yePXuQkpIivvvuu3We4DfffAOtVov//Oc/MDMzM+T0DCMhAXjjjUft88qUlpbCyMgIgiBg2bJlYqNGjfD666/T7+HAAaBrV6CaRaa0tDSsXbsWHMehS5cuwqBBg/RfMBHF/2fvvsOiutI/gH9vmRlAioooomLDqIiKvSv2GlPMqukmJjHVTfztborKzTXGmE0xPSabWKNiib2jYkmUptJEiggKKEiVMszc+vtj1GhEBAQH9f08D48wc8857w3swnvPOe+xHQs4bRoQFwf8/juQmAgMHAg8/7xt+4HRaDtC8LPPAH//Kt3yoUOHEBkZqb/11luMccMGIDsbeOedKvUBAMHBwTh69CgAlAJoIwjCpcq2FUXxUwD/ATCBYRhXk8k0T5KkVizLaqqq8jzPX+Y4rghAjNVq3aTr+jpBEEqrHKRtrHoAnADkAvBhWTZE07RrlSOffPJJVPd4z7y8POzfv78sOTkZLMuukCTpP4IgFFWrM0LIA4eSfUIIIaQCoii6mkymlfXq1Rvx5JNPOjVq1MhusSxatAhFRUV4//33YTQab3o/NjYWmzZtAs/z8PLy0p966immvOvqCrPZjM8++wxvvvlmtffdh4aGIjIyUi0uLuacnJz0Vq1a6RMmTPhrlrwuWLAAaNbMlkiXIzs7G0uXLkXv3r0xLCDAVkl///7bJtmKouDgwYP4888/0bNnT238+PFVL8KoqsCRI7a6AoIAFBQA4eFAt263jPd2fvzxR7Vbt25c3759bbUA3NxsqwqqYfny5cVpaWkzBEFYU9W2oijqAFC/fv3Shx9+uJ63tzd4noeu6ygsLERZWRmys7Nx4sSJkosXL3IMw3yqKMpCQRCs1Qr2r3HrASjp2rUrJk6ceMuHcrei6zrOnj2LqKgoS0JCggrgM0VRvhQEofhO4iKEPHhoGT8hhBBSgYCAAOv+/fvXWq3WvJMnTw5zdXXlPT097TJV3qNHD5w8eVI/d+4cunTpci2GAwcOYO3atfrp06eZDh066P7+/syoUaPqdKIPAHv27NGys7OZrKwsFBUVabt27dIdHR2Z+vXr49SpU7h48SIaNmyIrKwspKenQ9M01KtXD5qmXUugmjd7IR5zAAAgAElEQVRvjt69e7MmkwlOTk7M8ePHGW9vb9SlWgtwdgaWLwcmTbrpfHrb286oV68ejh07pvYfMIDFSy/dupDedViWRZs2baCqKsLDwxlPT09U+WEUywKtWgHTpwM8bzsy8PffbUv6/17pv5KioqJQv359tGrVikFkJDBgAODlVen2ly9fRkJCAliWRVZWlnrp0qWDAQEBx6sSw4IFC0IMBkPTXr16cVOmTDG6u7tf+5lhGAaOjo5wcXG5WjfB2LlzZ0N2dnbv0tLS5w4cOBASEBBQ6VUEfxcQECAfOXLEtUOHDv1at25d6XaSJOHkyZNYv359SUxMTHp2dvbXqqo+OXfu3D0BAQFSdeMhhDy46mZBG0IIIaQOEQRBB7BYFMWjO3fu3J6SkuIxYcIEh7udTBuNRqiqyqSkpECSJFgsFiQnJ+PIkSPo168fevfujfr169fNNft/k5SUhOPHj7MAkJ2drRcUFOgtWrTgNm/eDEVRYDKZdJ7n9W3btrEMw8DZ2VktLS3lPDw8cPHiRQQEBGiDBw9mr25R6N27N670pa1atYqdNWsWKns8Ya3z97ctkT9xwrYHvhze3t4oLS3lsnr3hucrrwAvvVTp7ocMGQJHR0c9KCiIGTx4MIYOHVr52CwW24kB334LhIXZtg6MGwfMnl35Pv7G29ubPX/+vAqAQ05OldpmZWVhyZIlFo7j9quqOkiWZVcAGVWNQZblgF69emH06NGVur5BgwZ45plnnE6cONEmODg47NNPP/3TYrHMEQQhrKpjz5s3bxzP86+0qcQDG8C2QiM8PFw7fPiwlWGYoxaLZT6AQ1f+f4cQQqqNkn1CCCGkkgRBiBFF0TcpKenXH374YcKTTz7p1KRJk7sag9VqhdFoxCeffAIA4HkeAwYMwIgRI+6JJB+wLVM+cOCA1rNnT9bBwQFDhw5lWJblAKCkpAT5+fm4UnCPMZvNUBQFrq6u3Nq1a/WEhATGx8cHx44dY8LDwzFq1Cj4+fnh6rL9adOmsfPnz6/y0ulaxTC2JHrv3lsm++7u7pg8eTIS9+/HlpMnMfb8eXh6eoLn+dveC8/z6N+/P1O/fn1s3LgRvr6+qPDnUteB48dt//7zn0DnzraifMnJtmP2xo0DPvkE6NXLVrivCiwWC0pKSmA2m20/j40aVWlWPzU1FQCC3n333RdEUXyI5/n/UxRlT5WCsJkQFRW1ady4cZW+AYZh0KNHD6ZLly6OJ0+eHH7o0KH+Cxcu3Ge1WqcJglBwu/aiKHqYTKYfnJycxj3xxBNOFRXQBGxHUEZFRWHfvn1mTdOOWq3WWYIgxFbYiBBCqoD27BNCCCHV8NFHH03jOO770aNHO3bv3p25G0Xwzp8/j6VLl2L48OHo0KEDVq1ahcLCQjzyyCO6v7//PZPsx8bGYteuXdqsWbPYqlQl1zQNZrMZzs7OUBQFR48eRWhoqFZWVsb6+vqqzZo1Y0+dOqVnZWWx06dPh1cVksyaZrFYkJ+fD6vVioKCAnRt3x7cU08BK1cCrq43XKvrOi5fvoyoNWuUxJgYPqdZM+i6Dk3TwHEc6tevr/bs2ZPr3bv3DYl/bm7uTcv2t2/frkZHR3MBAQHo16/fjQ8KsrNtx/n99pvt88BA20MIR0dgwgTgyy9tKxAA2+kBn38OjBlT6XtOSUnB6tWrUb9+fW3cuHFs27ZtgYYNbSsHKnF2PGBb8bF58+bQ//znP/0qPXA5RFHs4uTkdOztt992qm5hTUVRsHPnTktsbKzKsuwqSZIWCYKQUM5YrjzP/xvArO7du3PDhw83VbTqR9d1nDp1Cnv37i2VJOm01WqdKQjCsWoFSQghFaBknxBCCKkmURQ7GI3GnW3btvWcOHGio4ODQ62NlZiYiC1btuje3t7a5MmTOZZlUVZWBlVV685y9UpISUnB1q1b9bZt2zITJ0684/7y8/OxcuVKXZZl3WQy6YWFhZymaejSpYtWVlamubm5Ydy4cXxVHsZYrVYEBQWpPM8zvXv3Zps3bw6WZSFJElyuJK26riM0NFRPT0/XvL29uby8PDUzMxO6rjPdunVjg4ODwXGczrKsLssy6+Pjo04uLOSYlBTgv/+91kdMTAzCwsL0ixcvMk8FBcGrd2/UW74cly9fRk5ODjiOQ1paGiIiIgBA9/T0hMlkYi5duqTn5+czBoMBJpNJVRSF9fLy0p599lkuOTkZmzdvhru7uzbt6adZds8e2wz7yy/bkvf33gPc3W379c+fB8aPB9atAzp2vP4/rO3owCr8TIeGhiIsLEyfOXOm7eFXcTEwYgQQGlpurYLyXL58Gd99912poigeAEYbjcYJsiyvCgwMDKl0IABEUWRMJtMqV1fXiU899VS9qhz793d5eXmIjY1Vjx07JjMMU8iybKKu65kMw9QD0FaSpHYPPfSQNnLkSMcGDRrcsh9d13HmzBns2bOnpKSkJMNqtc4EsI+W6xNCagsl+4QQQsgdEEXRyWAwrGFZdsyECRMMfn5+tTLD/s0336itW7fmJkyYUGeP0quILMsIDQ3Vjxw5wvj7+2PMmDG1stQ+JycH4eHhKCoqQnp6OsrKyvDss8/CyckJPM/D3d0dCQkJuHjxota/f3/WarUiKipKj4uL069U8+fCw8Ph5uamyrLM5efnA8C1bQKtWrXSFEVBRkYGy/O87urqqpeWlqJ58+asl5cXLl68qKempmLw4MHMgAEDANhm+b/66it9YNeuGDh3LpO7Zg2kevVQVlaGVatWoV27dvr48eMZJ10HzzA3zfwDgKqqCAsLQ25urqaqqq6qKkaNGsXJsozCwkKoqopt27ZBkiS9YcOGen83N/b8li3onJ8P76ZNbcv127WzFQu8KjEReOIJ21F/rVrdOGBuri35T0+vdMKvaRq++OILrV+/fszAgQMZZGcDGzcCr71Wpe/hmjVrzElJSRoA5x49eiAmJsYsy/JoQRD+qEo/oigyHMe9y/N84ODBgx369OnD3MkpDaqqIj8/H7m5uTCbzeB5Hm5ubmjatClMJlOFbdPT07Fr166SvLy8fFmW39F1fRMl+YSQ2kbJPiGEEHKHRFFkAbwLYIEgCJVup+t6pRP3RYsWqePHj+eqe163PZ08eVLbtWsXazKZtAkTJrDt27e/K+N++eWXWnFxMctxHIxGoy7LMmMymfTS0lIGsFWz5zgOLMti8ODBKC0tRWpqqtapUyd2wIABSEhIwNatW7Xu3buzHh4e6NixI5YuXapomob+/fvz7du3R0WrOTRNw7Zt25CYmKhZLBYWAIYWF2u5aWlsjJ8fAFthwbFjxwLLlgGbN9s+qknNzUXR0qVI5Xk0//RTnPL1Rcmbb+Lhxx+/+eJjx2wPALZsAZo2Lb/D2bNt1zRuXOkY0tLSsHr1agwdOlTrZzKxWLkSWLSoSvchyzIWL14s5+fnG3x9fcu6devmuG7dumJZlscKgvBnlToDIIpiL6PR+IWXl1ePKVOmONXmCpy/KykpwZ49e8oSExMtiqL8n67rKwRBUO9aAISQBxol+4QQQkgNEEWxHsuyWZqmOXfr1k0dM2YMd6t9uyUlJVi3bp0lPT3dAQBGjx6Nvn37Vtj/559/ro0cOZLt2rVrzQdfC1RVxeHDh7WUlBRkZmay//jHP+Dr63tXY9A0DYqigGVZ8DwPTdMQHR2NRo0aIT8/H02bNsXBgwcxaNAgNL1VwltFiYmJ8PDwgNlsxrp16zSj0ciMHTuWad68OSIiIlAUFobBcXGQPvkEF3Jz4Xcl6cfOnUBCAjBrVtUGVFUgJMS2VL601FZdf/p0ZLi6Yuny5XBycsLIkSPRpUuXv9rs2AH88APwyy+3TvQBICMD2L27SicDALZZ7N9++02f0qgR0yYhAfjii6rdE2z/G/n2228Vf39/ZezYsQ5nzpzB+vXry1RVnaeq6mdVTZhFUTQYDIYVzZo1m/D888/X+r4XTdMQERGhHThwwArgZ0mS5gqCUFzb4xJCyPUo2SeEEEJqiCiKTgDGGwyGD2RZ9p84cSK6det2wzWnTp3Chg0bAEAF8ALDMIG6rvs0bNhQf+ONN5jylrZLkoRFixbp48aNYzp37nw3bqVScnJycObMGfTs2RPXF0HTdR1HjhzBn3/+qXfu3Jlp2bIl6lLcd0pRFCQnJyMjIwMmkwmxsbFqcXHx1W8cI8syGIbBwIEDtUGDBrE3LR0XReDRR4GrD24UBdi1y1Ykr7JbNFJSbPvsu3QBPvsMmDLFVkn/SnuLxYJPP/0URqNRlySJad++vTZ61Ci2wZYtwMGDwKefAp6eFY+Rlgb07AlkZgK3Wab+d8HBwTCsW6cF9O3LYvr0KrW9lYKCAmzcuLE0Ozvbouv6EkVRVgGIq2ziL4pifQAFPj4+5kmTJtXaDH96ejo2b95cWlpaespqtb4gCEJ8rQxECCG3Qck+IYQQUsNEUWQAzAbwUWBgIBiGQVZWFjIyMrBjxw4AeA3AT4Ig6Feu/ejK9QCAZs2aSW5ubsbhw4fj8OHDiI6OhrOzM9555506daTcqlWrcObMGbi4uODxxx9HixYtEBERgSvF6TBu3Dj4+/vbO8wadfHiRaxYsUJnGIZp0qSJWlpaynTq1AkdO3ZkNU2Dh4cHGIa59lGu4GDbsv3ffrMl57//biual5xc8eCSZEvw9++3JeEFBcCTTwJt295wma7rCAoKUgsLC/Haa69xZrMZy5YuVX22bOF8XF1heeMNdAwIqNwWktxcWyX9Kib7e/fuhcuKFVq/CRNYTJ1apba3k52djZMnT8rx8fFWs9nMGwyGcIvFskAQhNse0SeKoo/BYJjr4ODwj9dff71Gi2rKsozg4GApKirKLMvyawDW0r58Qog9UbJPCCGE1AJRFBsDyPbz89M7derErF27FgBgMBh++uCDD14t53pXAF0BPAagEIB49b3x48ejR48eda4w3+eff47S0lIAgMFggCzLAICWLVtiwoQJNx0Ld68zm8348ccfNT8/P4waNYqt9vdD14EhQ4Dvv7edca+qwMWLQPPm5V9/4gSwZo1tJcCePcCkScDEibZq+uU4fvy4HhwcjJkzZzJOTk62F99/HzllZdjdqpV29vJl9tFHH0WltoSsWGFb7n/4cJVu8dtvv1VHm83cQ8OH2x5M1JL4+HgkJycjISGhTJblV+fMmbOiMu0WLlz4W6tWrR6bOnWqU03EceHCBaxdu9ZssVj2SJL0siAIeTXRLyGE3InKH25LCCGEkEoTBOHSvHnzAuLi4vbHxcVxBoNh/QcffDC5guuLABwBcORK4n8t2W/Xrl2dS/QBwMfHR4uNjWXff/998DyPixcvAkCN7X+vS0JCQnDs2DG0bNkSw4YNq36iD9hm87/+GliyxLacvmtX257761mtwFdf2Srlz5oFtGkDjBwJPPNMhV3n5ORgz549zKRJk+Dk5GR7sPDGG0CnTvB4/nk87eTEfvTRR4iLi4PJZIKmaejYseOtf77GjAHi4qp0e5qmoaioiGsdGQncphbFncjLy8OGDRsUXdf5Z5991nHlypXL58+f7zhnzpyfbtfWarW+lpKS8silS5fQuAoFCP9O0zQcOXJE+eOPPyyqqr4SGBi4ptqdEUJIDas7awEJIYSQ+0xgYOAhAPUBPCnL8pQqNPUGgMcffxxGo1H/448qnTh210yYMIF1cnLCwYMHAdiS/Pst0c/MzMT333+vRkREYPLkyXjqqafY6+sTVFv79raE/vhxwN8fcHOzzfAfOQK8/DLw3Xe2gntffgk89pjt+LomTSrsUpZlrFmzRvf19dXbt29vqwUwbRrQrZutyJ6zM1iWRYcOHbQLFy5omzZt0tevX4+VK1fqYWFhWLp0qV5YWHhjp40bA488Ahw4UOlbi4+Ph8lk0g2ZmbderXCHkpOTcezYMU3X9Wt/yw4ZMgSqqi6eN2/ek7drLwhCsa7rX588eVKubgwFBQX45ZdfSo8dO3ZCURRfSvQJIXUNLeMnhBBC6qCPPvponclkerSsrMwAALNnzwbP150FedHR0cjNzcWff/6JF198Ec1rKamzp9jYWGzfvl3v0qWLPmzYMNbR0bFmB9iwAUhKAl54AfjkE2D7dttsf26urVhfFfeTb9myRU1LS8Nbb73FsWYzMGMGMHYsMHUqcIufndTUVKxdu1a3Wq3Xpvbd3NzQrFkznWVZeHl56f3Cw1msXw9U4qGToij4+uuvtR49eiDgyBEW//53le+jIocPH5ZDQ0O1srIyE8dxyaqqtrv6HsdxuaqqNgJgEQThtt8sURQfa9Wq1bLnn3/etapxnDp1Clu2bCnTdf1DRVE+FwRBq2ofhBBS2yjZJ4QQQuqo+fPn/0/X9QmapnkCgKenp+bv789269YNtzrWrzaFh4fr6enpWt++fblffvkFzs7OWs+ePdkhQ4bc9VhqW3R0NHbs2IExY8bo3bp1Y2plG0Vmpq243nPPAQMGAEOHAt7e1eoqPj4eW7Zs0V9//XXGTZaB//s/YMQI4Omnb7m3/+8uX76MtWvXIj8/H1arFYCtFsOURx5B22bNgHr1gApWNURFRWHfvn2ah4cHnp00iWVffhlYvbryJwyUIz09Hdu3by/29fV14Xke+/btA4BPAKwXBOGkKIqfAvgPAJhMppOyLH/AMIzznDlzNlTUryiKDM/zP/Xs2XPa6NGjK71UQ1VV7N692xodHV0oy/J4QRCOV/vmCCGkllGyTwghhNRxVyr2TwYwBsA0FxcXbdasWXd1K150dDQ2b9587evmzZtjeg0dqVYX/fe//9U7duzIPPzww7U3SEaGbXn+1q13lBAXFhbixx9/xNixY+HfsCEwb54t0Z8y5Y76TUxMRFBQEPz9/bVH1q5l0aYNMH9+udceOHAA4eHhGDZsmN6jRw+Gy80F/vUvYOXKao+vqiqCgoIsZ86c2WkymbwVRYlmWVaWZfl9QRCu7TcQRXExgBkAwHFc1Jw5c7qV158oiiYAY41G43iGYbozDOP36quvGt3c3CoVj8ViwerVq83Z2dmhkiRNuj4GQgipi+rOekBCCCGElOvK8V1rAawVRfG94uLirIULF6ozZ87krlVbryFnzpyBu7s7GjRoAMB2jBvDMNe2ELz88stwcHCAq2uVVz7fM4qKiiBJEpOTk6MDqL3KiBkZtpn8O0jIVVXFmjVrtFatWsHfwYHFl18Co0YBk29ZC7LSHB0dwTAMzGazrj39NNiCgltem52dDT8/P7V3794cACAtrcrH9V1PURRs2rRJPXfuXAqAl9977718ABBFcSqA2IULF56WJOkwwzAOAK4Fpqqq/8KFCz9+7733Zv+9T5PJFNKgQYPOfn5+9Ro2bMi0atUKld2aUVhYiOXLl5vNZvMKSZLeFARBrfbNEULIXULJPiGEEHIPEQQhWxRFd6vVmrdhwwb5ueeeM6iqitLS0jtOwM+dO4dVq1aBZVl069ZNKywsZM6dO8c0btxYy8rKYhs1aqTWr1+/xh8w1DVLlizRVVVlBg4cWLtHIISFAaNH31EX+/fv18xmM2b07MliyRLbkX6PPVYj4Xl7e2PWrFn45ptvuORJkyD/8ovu3qED07Sco/QkSdJu2OpQWAi0alXtsQ8fPqwlJiaeV1V1hCAI+QAwb968AABr3N3d9Y4dOzYvKCgY6O7u7lBaWipfunSpqE2bNq7NmjXDpk2bZn388cf5s2fP/uL6PnVd9x4+fLizj49PlWLJzMzEb7/9VibL8pw5c+YsqvZNEULIXUbJPiGEEHKPEQQhXxTFyampqevmzZt3rSK50WjEG2+8Ua2kv7i4GMuWLYOjo6P+7LPPMjt37oTFYtEmTpzIpaens5MmTULDhg25Gr+ZOubrr79WL1++zD311FPw8PDATdXpATg5OdVMzYSzZ+/oDPqUlBRERkayr/n6gt2+3Zbojx9/53Fdx9nZGW3btlXXrl3LPb1nD1IiI7Hn+ed1ANpjjz3GXV0Cn5ubqw8cOPCvnw8XF9spANXUpEkTluM4bc6cOVlXXzMYDJ/7+flpDz/88NUtLFen5Y1XPgAAM2bMcPj5558/EkXxuCAIB6++LknS3CNHjnzr4+NTr7JxnD59Gps2bTIrivJUYGDglmrfECGE2AEl+4QQQsg9SBCE9aIoNtZ13RHA0wCSJUlan56ejk6dOlW5v7CwMHAch7fffpsxGo2YPn36tZoAnTt3rsHI6y6LxYLi4mIOADZsuHV9N5ZlMW3aNDS5zVF4FdI0oEMHwNe3Ws1LSkqwYcMGPGoyocHx47bifsOGVT+eCkyZMsWWxL/xBqNlZOBUaKjO8zy7ePFiDB48WPf392cYhoGqXreyPSICuIPTC4xGIxiGuVbhft68eQG6rvtdee2W9SoKCgpw+PBhi9lsdgTQFcDB697edf78+Xp5eXlwd3e/bQyRkZHq3r17i2RZHiUIQmS1b4YQQuyEkn1CCCHkHiUIQs6VTz8RRZEHAA8Pj2r11bJlS4SFhdmlyn9dkJKSgo0bN6Jhw4baq6++yrIVVLDftWuXvnTpUubll1+uVNJYrvR0YNkyW4G+KtJ1HevWrdN6ZmTA182NxcSJQO/e1YujKho2RLvu3dFu3ToWffogOjoahw4d0g4cOMBpmsbl5OTgoYcesl178iQwcmS1h/Ly8oIsy96iKDKCIOhGo/F/PXr0MJV38kN+fj4iIyOl6OhoWZIklWGY5QB+BxBx/XWCIGSJoqhdunSJvd33LTk5GXv37i2RZbmXIAgp1b4RQgixI0r2CSGEkPuAIAiKKIooKipC48aNq9z+0qVLUBSlFiKr++Li4vD777/DwcFBv12iDwBjx45lrFar/tNPPzE9evTQunfvzkqSBFVV0aJFC1TqmL4TJ4Aq7h2/6siRI1rDkBAENGzIYupUwM+vWv1UGcMAM2deO36va9eu6Nq1K5ednY1ff/0VBQUFUBTFVsyxe3egb99qD7Vv3z4rz/MXJEkCAKiquv748ePv+fr6Mu7u7rh48SKsVitOnz5tiY+PVziOW2u1Wr8AYAJwEsAhAA1EUewC4AyAPEEQdJ7n11y6dOnJjh073vKbnJycjPXr15tlWR5LiT4h5F5GyT4hhBByn2BZNm3VqlWtevXqJY8bN67SZ4fruo59+/b9NSv7ANB1HXFxccjLy0N4eDgGDx6MoUOHVrog36OPPsp0794dO3fu1CMjI8GyrM6yLCRJYtq2bau5u7vDYDCwHMchKSlJM5vNTNu2bTVPT0/Oz88PDlYr8M9/Vjnu9PPnkff99+wIoxHc228DrVtXuY878vrrwM8/25L5K5o0aYJRo0Zh3759utVq1SZNmsQhJQWo5vHOmqYhKirKBNv2lBmiKGoAnBRFYZYtW5avaZqz0WhMYRgmX5blEEVRvpg9e3ahKIotOY47qKoqvLy8lubm5hokSXK40u1TANYoinK8qKjoCdgeCtwkNjYW27ZtK5ZlebQgCMeqdQOEEFJHULJPCCGE3Cfmzp3besGCBX9GRET0Hzx4MJydnSvVrrS0FABQq2fK1zHbt29XT506xTo4OOjt27dnhw4dWuU+vL298eqrr14tSscAtsrtf/zxB5uTkwNZlqEoit6yZUvWw8MD8fHxXEJCgnb48GH2idBQXXr4YSatqEhnWZZp2bIl2rZtW+F4ZWYzot59F70LC+GyfDng6VnlmO+YyQQsWmQrBujvD8B2TJ4kSeB5Xr92lJ2qAtXcUpKamgoAMBgMP7Vo0aKds7OzFhMT4wQAs2fPvmH9/ZXtK50XLFgwmef5f/br1884cOBAnDhxwqVHjx6Ijo7Gjh07AOBXAGuMRmOfxo0bl5voR0ZGanv37i2UZXmwIAinqhU8IYTUIYxezaeuhBBCCKl7RFF0AFA2depUtG/fvlJtZFnGggUL8PTTT6Oqx5Ldi0pLS/HVV19h+PDh6HsHS82rw2Kx4NDBg2i8aJH+56BBumPTpqzZbEZ+fj5GjhwJNzc3NG3aFA0bNryhna4oCH3zTc395EnmoeBgBnd4zGJVFRUVobi4GDzPw7GwEK5t2gAGA7Kzs7FkyRLdxcVF79atG9O3b1+Gs1qBjh2BtDTb0v8qWr16tZKcnMwPGTJEGTRoEM9xHIqKivDNN9+YVVVtDKAMQDeO40awLPu+k5MT26xZM75ly5aOGRkZZadOnTJpmlbeMn1vg8GQOHPmTMe/PwiLiorSd+7cmS/Lch9auk8IuV/QzD4hhBByHxEEwfLJJ5/8Lygo6GWj0ag89thjfIcOHSpsc7WKennHzN1vLBYLgoOD4eTkpPbt2/euHyXo4OCA0d7ewOXLTLc5c65lwsHBwVpkZKSm6zpKSkr4Tp06qePHj+cMBgMgSUidP193CQ9nvQ8exN1O9DMzM7F8+XJdURSG53m4XbqE51auRNy2bYiOidE7duyoP/roo38l1zk5QL9+1Ur0AWDChAk8x3GoV68eD9jqSWzdurVEVVVnAB8ajcZRRqPRx9PTUx85cmQ9q9WK3377zXr27NlYi8XyC4Ao2I7iCwagAhh55bVHfXx81L8n+rGxsfrOnTsLZVkeQIk+IeR+Qsk+IYQQcp+RJGkGgO9lWZ60du3auQ899JCUlJRk7NSpk96+fXumffv2N1Td53nbnwNFRUV2irj26bqOn376Sc/Ozmbc3NzUiRMn3vVE/5rYWNtRedcZOXIkO3LkSBYAcnNzsXz5cmbHjh36uCFDGOOaNSgNDmYuf/01HO5yoh8aGor9+/ejb9+++rBhwxiGYVBaXIz8M2f0uGPHdM3REYMHD75xFl3TgDFjqj2m65V73L17txIfHy8XFxc7AnBmGOY4wzBv9+3bFwEBATzDMMjLy8PKlSutiqI8GRgYuAkA5s+f/4bJZPqv2WwGz/Pfzp49OwQAPv74465Nm6zLUcwAACAASURBVDatd/1Yp06dwrZt24pkWR4kCEJitYMmhJA6iJbxE0IIIfcxURSnAPBiGKY3wzAeLMu2MRgM3qqq6q1atZKnTp3qyDAMYmNjsWXLFri7uyuvvfbafTUZcLUY38aNG9GvXz+MGjXKvgHt3Ak0alThcXl5eXlY8c03+qP5+Yw3z+O/jRvj6aefhre3910Lc+PGjXpsbCxT7paQ1FTg+HHgiSdubrh/PxAcDCxcWO2xw8LC9N27dzMAlgJ4AQAaNGggPffcc8b69etfu27lypUlaWlp8+bOnfsZAIii6GswGI536NDBkJiYmCRJUk9BEMzz589/jGGY5U8++aRLmzZtAAAxMTH69u3bi2RZHiIIQnS1gyWEkDrqvvplTgghhJAbCYKw9vqvRVF0VRRlEoCHkpKS3issLET9+vXRuXNnJCcna3l5eRWfO3eP0XUdCxcuhCRJaNy4sTZq1Cj739+uXcDTT1d4ibuqYmxMDFPIMLrLTz8x6k8/wcvL6y4FCMTHx+P06dPMSy+9hGbNmt18waVLwNtvA48/Dvz9qML09Dse393d/eoegBeMRqP1hRdeMHl6ehqvv0aWZaSlpZk0TfsfAIii6GwwGDb26tWLDw0N1TRNGyEIglkURdZoNP70+OOPX0v0T548qe/atatQluWBgiDE33HAhBBSB1GyTwghhDxABEEoArBUFEWDyWQa9OOPP3aRZdllyJAhOHPmDDtixAh7h1ijEhISIEkSTCaT/tprr9k/0dd1ICEB6NTp1tdcvAiIIloPHYoviosx6tw5nWVZ5ujRoxg8eHCthFVYWIiYmBgYjUZERUWpeXl53COPPFJ+og8AffoAYWHlH6/HcTdtU6gqHx8fCIIAWZbBsqyJ427edZGVlQWe57Pff//9wnnz5j1rNBoX+vj41Pf29uZPnDgR++677164cunrrq6ujlePloyLi8OuXbsKZFnuJwhC0h0FSgghdZj9f+kRQggh5K4TBEG2Wq3LZVl2AYDQ0FDd0dFR6X7d+en3g507d4JhGMyYMaN61eJq2qlTQLt2gItL+e9nZdnOsh8xAqaZMzF5yhRmx44dDMMweqNGjWolJEVRsHjxYv3UqVPaiRMntLZt2zIzZ86En59fxQ1//x2YNKn8e9C0GonNYDCgvEQfsNWa0HXdccGCBXNcXFwWT5061esf//iH07lz5xSr1boBAERR7MDz/Odjx451ZhgGqamp2Lp1a4ksywGU6BNC7nc0s08IIYQ8oIxG4yBnZ2d56tSpBg8PDwb32d8F6enpKCkpwdChQ9GgQQN7h2Nz+jTQokX57128CEyZAsyfD1yZwffx8UGfPn0wcOBA5u9V5O9UdnY2NmzYoObn53NeXl769OnTqzYJNGKELbH/O3f3W99jDcrKyoIsy+6Ojo4fvPTSS44uVx6gaJoGXdctAGA0Guf169ePb9OmDbKzsxEUFFQmy/JEQRBiaz1AQgixs/vqlzohhBBCKo9hGGu9evWURo0aGewdS03TdR1LliyBk5NTrS19r5b69YEhQ25+PSMDGD8eWLkS6NLlhrfG3EFl+7/TNA3Hjx9HSEiIJssy6+vri6eeegqurq5VX+3p6wuMHg1ERgI9e/71+jffAKtW1VjMt9KpUydYLBa0bt36WqIPALquawAgiuL/AfhHr169kJOTg2XLlpXJsvyCIAghtR4cIYTUAZTsE0IIIQ8oq9X6RnZ29ojQ0NCW/fr1qxvL3GtYi7sww1wlv/wCzJp142tJScBjjwE7dgCtWtXq8IsXL1YtFgs7fPhwpnv37mAY5s6OINy713aU4Natf73m6Ag0b36Hkd6e0WhEv379bnrdYDDwAFoCeJ3jOJw9exY7d+4skyTp1cDAwLU3NSCEkPsU7dknhBBCHlCCIEiSJI08cOBAaW5urr3DqVFpaWkAcMv93nahKEBICNC161+vHT8OPPkksG9frSf6hYWFyM/P5958802mR48eDMPUwPOd994Dli//a4++JNkq9Lu63nnf1eTo6MgajUZnAL6qqmLjxo2QZfmVuXPnrrBbUIQQYgc0s08IIYQ8wEwm00dWq9X58OHD6iOPPMJVJzkWRREMw8Db21sbMGAA265du1qItGp27Nih+/r6MpPKKyBnL2fOAB9+CDg42L7evRv47DPbvx4eNT6cqqo4d+4cMjMzkZycXHzx4kXnxo0bq0ajseb+/nNxAR5+2LZ//5//BHJygOhooCYeJFRTy5YtwbLsAEEQToui2AtA2pw5c+6vp1mEEFIJlOwTQgghDzBJkn7nOC4rLi7ujSFDhnDu7u63bZORkYFz584hLi5OzcvL4wBg2LBhKC4uxrp16+Dq6qrOmDGDMxqNt+uqVhQVFSEvL4+5kvTZJYZyxcUBJSW24+pWr7Yt21+zpsYS/by8PISGhsodO3Y0sCyL9evXl6mqekHTtD9kWd4DYPXEiRNr/m+/KVMAk8n2eUEBoKo1PkRlybKMkpISWCyWtgAgCEKk3YIhhBA7o2SfEEIIeYAFBgZumDdvntnR0fHVhg0bVlioT9M0rFixQs3IyOA8PDzUli1bMk888QTc3NzA8zwAsEOGDMGKFSuYX3/9Fa1atULHjh3h7e19V5JuXdcRHh6OS5cuAQCGlFcIz55MJlvxvUWLgNRU4KuvgMaNq9VVdnY2Fi9ejAYNGli6devmkJ6eLqelpfGyLKfFxsY6WK3WFgBeEgRhNQCIotgbAFxrY3n9M88AS5cCRUXApUs3FRi8G2RZxqFDh+Tw8HCN47hEg8Gw664HQQghdQwl+4QQQsgDjmGYjmaz2eHo0aPygAEDbkr4NU1DeHg4Dh06pLu6urKvvfYa3N3dy13v7+TkhEmTJrEhISFqRkYGEx4eznp6emLGjBm1eg+pqakICwvTkpOT2Xr16qk9evRgXV1d61bRwY8+Arp1A7y8bMv5K7GKojxmsxmLFy8GABQWFv5+4MCBp1mWPaxp2noA2997771MURQNgiDIACCKoqPRaPx94sSJcHJyqqm7udHy5bZVC56eQA0fEXg7Fy5cwLp168wWi+WQLMuvfvDBB+fvagCEEFJHUbJPCCGEPOA0TfuSZdnOMTExzzk7O6tdu3a9IZHfvXs3Tpw4gQkTJjBdunS57Sy9h4cHJk+ezAFAWFiYtnv3bnbdunXw8fGBJEmwWq03/CtJEmRZhizLUBRFVRRFV1UVmqZB0zTmygcURWFefPFFpkmTJgAARVEQHh6O1NRU9ezZs5yTkxP76KOPonPnznWoKt8VpaVAYiLg4wPMnGnbv6+qtoSfZau0x93R0RHdu3fHiRMnAKAPgEZz587Nu/6aq4k+ABiNxs/btGnj3qlTp5q6m5utXg00bAj88QfQoEHtjXMdVVVx+PBh5ejRoxZVVV8JDAxcc1cGJoSQewQl+4QQQsgDThAEXRTFHy5duvR8XFycpWvXrvWuvmexWBATE6MPHz6c8ff3r3Lfffr0YUtLS7X4+HgmOztbNxgMusFggNFoxNV/XVxcYDKZWKPRyBgMBs5gMMBgMIDneVz93GAwICIiQl+5cqU2a9YslmVZnD9/Hvv370fnzp25adOm1b1j9q7n4GArZJeUBDg5AZMmAWPHAgEBtor2330H/P47EB4OREQAEybYqvT7+QFBQcA77wBRUSjKzERI48aWku3beefGjXmLyeTjlZnZEgyTD13X/z6sKIodjEbjCw8//LBjrd5f48aAtzcwbhxwF7ZP5OfnIygoqLSoqChCUZRnBEHIrPVBCSHkHkPJPiGEEEIAIJVhGMVsNvN79uyxjB492gEAduzYgaZNm+p9+/at9pL4YcOGscOGDQOAO1pW7+XlxXzxxRfMihUr1GnTpnHp6elo1KiR/uijj9at5frl4Tjgt9/++vr8dSvNH3/c9n7XrsCFCwDPA88+a0v0OQ4w2HZWhH7zDZxyc5EyapTDy5s2pR/r378FAH3U3r1bAUwAw/wCoAzAdAD/A/BDn0ce+U8Xs9nk9MorwOLFti0EI0fajgAcMMA2ltkMtGhhW2FQXTwPPP88cOIE0LJl9fuphOzsbCxdurRMUZS5qqp+JQjCTQ85CCGEANyHH35o7xgIIYQQYmcBAQHmQ4cOHSopKfHMzs5u16tXL47neezcuVP38/NjW9XyGfCVwTAMOnfujN27d7P+/v5gWRbR0dEYOHBg3U/2K8LztkTbzQ1o3tz2dbduQLNmtuR89GhcZlmsyspCgq8vJJMJx/r3d8to0QIZLVowhwICPAIOHrwAYNuVj0sAcg8GBBRntW49s0/btgZ2yBBg3TrAagWaNrXVD2jWzPba668DM2YAjRoBUVG25fhPP21L2rdsARYuBJ54Anj7bdtJAjwPbN5sa3/hApCZaZvZ79oVOHLEtiKhFvbt67qO5ORkrFmzxiJJ0rS5c+f+GhAQUOPjEELI/YIpZ8UXIYQQQh5QoigajEbjqgYNGox77LHH6i1evBhvv/023Nzc7B3aNatWrVJTUlI4o9EIq9WK4cOHY+DAgfYOq1bpuo6cnBxs3LhRys3NPclxnLMkSZ1Ylp03d+5cobw2H3/88aIePXq8MWbMmApPWbimqAjQNNvnERG25P30advnM2cC//wnMGiQrQjfF18Aogh8/bVt68Hhw8BDD9lqD5w5Y3twUIN0Xce2bdusMTExkq7rM+bOnUv78wkh5DYo2SeEEELIDURRZAGoANCmTRv12WefrVMF7zRNQ0xMDJo2bYri4mKsX78ew4YNQ58+fewdWq1RVRW//PKLOT8/P1KSpNEAjAA8BUFIKu96URRNBoMha/r06fWvFjSsdZpmKzpoqNyzhcp3q2Hjxo2W5OTkU5IkDRMEoahGByCEkPsU7dknhBBCyA0EQdDmzZu31tvbe0pdS/QBgGVZXC0W2KRJEwQEBODo0aNqnz596lysNSU2Nhb5+fkpV5JdFYAFQEVJ78RGjRpxdy3RB2xbEe5k3385VFXFunXrytLS0o5LkjRaEARzjQ5ACCH3MUr2CSGEEHITjuPON23aVAVQ5xNok8kEg8FwXy9V1DQNLMvmXkn0KySKIuPg4PBe3759Xe5GbLVFlmWsWbPGnJmZ+ackSQ8LgmC1d0yEEHIvqdnHr4QQQgi5LyiKcj47O1u+/ZX2x9bwbHJdlJycbFZV9VglL+/DMEyHTp061WpMtUlVVaxatcqcmZkZLEnSeEr0CSGk6u7/346EEEIIqY7N6enpclJSuVvC65QLFy6oTk5OdX4FQnWUlpZi27ZtSEhIcJJl+cvKtDGZTD+OHDnSkePuzf8kuq5j8+bNlosXLx6TJGmSIAj3xEMnQgipayjZJ4QQQshNBEHIUBTliaCgIGXXrl1l9o6nIizLMrIs35fL+CMiIrQTJ06AZdmdgiDk3e56URS9VVXt2KVLl3v2OMJDhw7JSUlJZyVJeqQy2xYIIYSUj5J9QgghhJRLEIS9uq77R0REONg7lor079+fzc3NZTMzM+0dSo1r2bIlCwC6ri+tZJMn/Pz8cK/O6qelpeHo0aOlkiQNFwSh1N7xEELIvYySfUIIIYRU5ALHcYVLly4tycnJsXcs5XJ1dcWAAQPU5cuXIyQkxN7h1Ki0tDTNYDCsDAwM3FCZ6x0dHce2bt3aVNtx1Qaz2Yx169aVKYrypCAIWfaOhxBC7nWU7BNCCCHklgRBKFAUpcWFCxfOnj9/3t7h3FJAQAD3zDPPICwsDF988YWmKIq9Q7pjkiQhNDRUkmX5k8pcL4oiI0lS/9atW9d2aDVO13Vs2rTJrKrqksDAwN32jocQQu4HlOwTQggh5JZEUXQwmUzBiqJ0ad++vb3DqZC3tzf+/e9/w8HBgdm6dau9w7ljmzZtknVdjxIE4XQlm3iwLMu5uNx7J+5FRERo58+fT5ckaZa9YyGEkPsFb+8ACCGEEFKnuVit1n7u7u4qy7J1fiM4y7Jo2LAhcnNzNdzDkxrh4eFISEgwAPipCs3cjUajouu6iWHunfp82dnZ2Ldvn0WW5YmCIEj2jocQQu4X9+wvQUIIIYTUPkEQcgC0LywsvHTmzBl7h3NbiqIgKSmJadSo0b2T7f6NJEnYtWvX1S+XiqJY2T34SbIsZ4WGht4zFexVVcW6detKVVV9UxCEun/OIyGE3EMo2SeEEEJIhQRBSOJ5/o+srKw6P+tqMBgwffp0xMfHM5s3b1YtFou9Q6qy0tJSGAyGQgDuLMuGAOgtiqLj7doJgqBKkjQ8JCTk8unTlV35b1+hoaFqaWlplKZpy+wdCyGE3G+4Dz/80N4xEEIIIaSO279//x9ZWVkzPD09Hdzd3e0dToVcXV3h7e2NPXv2sGFhYWjSpAlcXV3vmePoHBwckJCQoJaVlTlomhYKYD2A9EOHDl04dOiQc0BAQMmt2gYEBFw+cODAgeTk5Ge7d+9uMBqNdy/wKrp8+TLWr19vlSRptCAI+faOhxBC7jeMruv2joEQQgghdZwoigzP83sHDx48YtCgQfYOp1LKysqQmJiob9u2jdF1HQ0aNNDGjBnDtmvXzt6h3VZxcTGCgoLMFy5ccLrykiPHcV+rqvrKla/HANgrCEK5f8gtWLDgBz8/vxcmTpzocFcCroZVq1aZ09LSvpg9e3agvWMhhJD7ES3jJ4QQQsht8Tz/souLS/8+ffrYO5RKc3R0hL+/P/PBBx9g1qxZsFgs7OrVq7F161Y9IiICGRkZ2LVrF4KDg7Fo0SL1559/1kNDQ6Fpmr1Dh4uLC5577jkng8EgMQwzQhAEi6qqb113yW4A2oIFC34URbHV39vLsjwnNjZWycqqm8fVnzlzBufPn7+sKMrH9o6FEELuVzSzTwghhJDb+u9//3tg3LhxQ/38/OwdSrUVFRXh9OnTCAsL081mM6MoCpo3b65qmgZvb29W0zQmJiZGt1qtjIeHB7p06YK+ffvaNebU1FSsWLECAMBx3DpVVSf7+fnB19cXzs7OOH36tHr8+PHz77//fpu/t/3oo49ebtSo0aIZM2bUY9m6M7+jaRq+++670sLCwmcCAwM32zseQgi5X9HRe4QQQgi5LU3T2pw9e1Z3c3NjmjdvjnvpaLerXF1d0adPH/Tp0+f64G/YyN+/f38mMjIScXFxenBwMOPu7g6GYeDi4gIXFxeUlZXhbtYsaN26Nfz9/dXLly+zLVu2nNymTRu0aNHi2vuOjo5ceHh4k/Laapr26+XLl18NCwvz79evX53J9qOionSz2Zyk6/oWe8dCCCH3M5rZJ4QQQshtiaLYj+O4xziOe8bDw8N16tSp9Zydne0dVq3av3+/dvToUZbneWiadu3jnXfegaurq73Dg8Viwc8//2wuLi6eM3v27EXlXSOKYluDwRA1bdo0Zy8vr7sd4k0kScKiRYvKLBbLYEEQIu0dDyGE3M8o2SeEEEJIpYmiyPE8v6hZs2YvTJs27b7O9jVNw7lz59CiRQtomobNmzfr58+f1//1r3/ZfZbcarVi+fLl5ry8vFWSJM24VaE+AJg3b960hg0bfvfKK6/Us3d1/pCQECUsLGz7e++995hdAyGEkAeA3X9ZEUIIIeTeIQiCqijK8XvlGLs7wbIsWrduDZ7nYTQaUVxcDKvVyi5ZsgTx8fF2i6u4uBjLli0z5+Xl/S5J0qsVJfoAoOv68uLi4n0hISHS3YqxPGazGceOHVOsVuu/7BkHIYQ8KCjZJ4QQQkiVsCxbLzs7m8/JybF3KHfV888/z/Ts2VPTdR179uxRNU1DcnIyTpw4cddiyMnJwY8//liWm5u7SJKkaYIg3PboAEEQdEmSXomMjJTt+T37448/ZJZl1wqCkGK3IAgh5AFCy/gJIYQQUmUfffTRdEdHx28mT57s1KJFi3uyYF91lZWV4ZtvvoGqqmAYBpIkYerUqWjfvn2tjpuamoqgoKAyRVFmzJ07d2VV28+fP/9f3t7eHz733HP1aiO+ipjNZixatMiiKEo7QRAy7vb4hBDyIOI+/PBDe8dACCGEkHvMkCFDToaEhBTFxsb2ZFnWwdvb+4FZLWgwGNC5c2e0adMG48ePh4uLi75z504UFxczJpMJbm5uNTqeJEkICQmRd+/ebZZl+eHAwMBqVbEPCQk5bjabX/Py8nJp2LBhjcZ4O6GhoWpGRsamOXPmLLmrAxNCyAPsgfnFTAghhJCaNXv27O9kWZ5x+vTpsgdtpaCbmxvatm0LjuPQo0cPZsyYMQgPD8eyZctgsVjuuH9ZlpGSkoKtW7daP//8c2tkZOQuRVE6CIIQUt0+BUGwSpL0z+Dg4JI7DrAKVFXFsWPHrFardeHdHJcQQh50vL0DIIQQQsg9LTg3Nzfz66+/bjZo0CCnHj16PHATCQzDwN/fn+ncuTNWr16tBQUFsdOmTauwja7rKC4uRkFBAYqLi2E2m6GqKgoKCqSzZ89aCgoKnIxGY6IkSWs0TVteg0vfN+Xn539/7tw555YtW9ZQlxWLj4+HpmmnBUGIuisDEkIIAUB79gkhhBByh0RRZAAMMRgMm6ZOnVq/TZs29g7JblJTU7FmzRp88MEHN7yu6zoyMjKQkpKinTlzpiQnJ8eoaZpiMBjOAcjQNO2ipmlliqKc13X9CIDjgiDc+RKBcoii+Gzz5s2/nz59uktt9H89Xdfx7bfflhQUFEwWBGFXbY9HCCHkLzSzTwghhJA7cuXot4Pz5s37x5o1a7ZxHMc89NBD6uOPP+5k79jutiZNmkBRFGiaBpZlkZeXh/DwcCk6OloFkKOq6iZFUYIBnACQNXv2bHvMumzIysr6IT8/H7W9dz8pKQlmszkLwO5aHYgQQshNaGafEEIIITVGFMV2AN4C8JbRaNQkSWJdXV11WZbLAOienp7q5cuXWUdHR+aJJ56oV79+fTtHXLOSk5OxevVqvPjii4iKirLExMTIDMP8IsvyYkEQkuwd31Uff/zxZ127dn1rwoQJptoaQ9d1/PTTTyXZ2dnTBUFYV1vjEEIIKR/N7BNCCCGkxgiCkAxgpiiK76qqegpA66KiIhVAHwBlqamp3QGYWZb97cyZM+jZs6dd461p3t7eaNy4MVauXAmGYZIURRkkCEKRveP6O0VRFkVHR785fPhwODo61soY6enpKCgoKAbwe60MQAghpEKU7BNCCCGkxgmCUAagvM37KQCwYMGC6JKSksEAmLsaWC0rLi5GSUmJrqoqo2naI3Ux0QcAQRAuLFy4cHdMTMwjffr0qZXvQXh4eJmiKF8KgqDWRv+EEEIqRsk+IYQQQu46TdP25+Tk9AVQa8vI77aSkhL8+uuvZVar9a3AwMBf7R3P7Vit1h1nz54d0adPH+ea7rusrAyJiYmspmnLarpvQgghlfPAHY9DCCGEEPtTVfXH+Ph4U1lZmb1DqTFxcXG6ruvb7oVE/4r4goKCWpl1j42N1TmOCxYEIbc2+ieEEHJ7lOwTQgghxB7yTCZT6IYNG8yaptk7lhqRmJhYbLVa76VCdJfMZjNX053quo7Q0NBSq9W6qKb7JoQQUnmU7BNCCCHkrhMEQbdarYMzMzNPHzt27L7Y011YWAgA5+wdRxW0dXZ2rvEnLZmZmSgtLS0BcLCm+yaEEFJ5lOwTQgghxC4EQZCtVus/Dh06ZC0oKLB3OHckPz8fpaWlABBj71gqy2AwTOjYsWON79ePiIiwqKr6rSAI98eSDUIIuUdRsk8IIYQQuxEEIVXTtO+OHDkiJSQkQFXvzUn+wsJC8DyfJAiCZO9YKotl2Ud8fHxq9G9BWZYRHx/PqKp6r9QtIISQ+xYl+4QQQgixK1VV95w8edK4du1aHDx48IZsX1EUyLJsr9AqzWw2A0COveOoLFEUOzAM4+7l5VWj/aakpIDn+QRBELJrtGNCCCFVRsk+IYQQQuztD4Zh5gB4MzIyUrp48SIA4NKlS1i4cKHy1VdfWa8k03WW2WyGqqpZ9o6jsjiOm9q5c2eeYZga7ffkyZOlFovlhxrtlBBCSLXw9g6AEEIIIQ+2K0vfPwaAefPmXVq6dOnS7t27G0tLS8Fx3K+yLJuDgoJmvPjii/USExOhaRo6duxo56hvlJ+fL8uynGzvOCqL5/nn/fz8jDXZp8ViwdmzZ3kA62uyX0IIIdVDyT4hhBBC6ozAwMD1oiiGnzhx4t8cx/lLkjQbQFFWVtZTv/32G3v+/PlSANqZM2fcxo4da+L5uvGnzNmzZy26rofbO47KEEWxtclkatKiRYsa7Tc2NhY8z++fPXv2vV1tkRBC7hN14zckIYQQQsgVgiCcA/6/vXuPj6q69z7+23tm9uRCQoIkgFxEgYLiXUBuUlGgUNoXULTiI9aDilrbWuvpY6tC1rMiovXp057WU/FVOa0KKiIXkYoXLrVAexCUIoFARELDJQQCCbdMZmbv2fv5o+ChFq2SmdnJ5PN+vXiR7Oys9R3+Yb6z9l5bvn/6Ma31gJ07d44SkbdEpHHr1q2/27Zt26hvfetb2T179hQREdd1Zc+ePbJ//34JBoNy+eWXSzo+DNi6dascOXKkQURWp3yy5OjfpUsXJ5mX8HueJ+vWrTsRjUb/I2mDAgCahLIPAACaPaXUHhE5fYf38Vrra+fPn7/k29/+dn7Pnj1l/vz5kb/97W8HPc971/O8Cw8fPnzF1772taReqh6Px6Wurk4MwxDXdWXnzp3u6tWrI7Ztj1FKNf+dBEUkGAwO7NatW1IfuVdTUyMnTpxoFJGVyRwXAHD2KPsAAKBFUkq9q7X+1oIFC5YOGzYsu6KiIkdEeiul4lrrkbt3735VRJJS9isrK2X58uXHDx48mBUKhWoMw/BEJOF53vu2bZcopbYnY550CAaDY7t27ZrUnfm2bt3quK47RynlJnNcAMDZo+wDAIAWSym1Ums9ds2aNd8LBAJLp02bduo59x/V/OzOYgAAHx1JREFU1tZaO3fulAsuuECacsn6unXr7FWrVh13HOduz/OW/vSnP40lJ336aa2vyc3N7Xzeeeclddzy8vJGx3EWJnVQAECTGJ7n+Z0BAAAg6UpLS8eGQqFZ2dnZhf3798/t0KGDkZeXJ0VFRWKa//P04Wg0KtXV1XL06FFxXVc6deoknTp1EsMwxHEc+dnPfhZzHOdCpdQuH19Ok2mtDRFpDAQC4T59+siVV14p3bt3/4d/iy/DdV1JJBLS0NAgTz31VMx13byWcisDALQGlH0AAJCxThbcayzLui0QCFzsum7XYDBYMHny5GzTNGXt2rWN27ZtM0Oh0HbP8z4WEdfzvMHBYLBw1KhROV27dpWnnnrKLSkpCfj9WpqqtLR0fHZ29qsDBw4M7t27N7F79+5AIpGQQCDgifx9k72Tfxunff3J32f62jAM8TxPLMva/9BDD52b9hcFAPhMXMYPAAAyllLKk7/vkv/JTvla6x8vWLDgsePHjyccx3nMdd3ZjzzyyIHTf09rPXTZsmXPxmKxPsFgcGu6cyeb1jrLsqxnJk6cGLzgggtERAKe50ldXZ04jmOYpimmaYphGGf8+0xfn/rz9ttv2+vXr3/G79cIAPhHlH0AANDa/Ob48eO9bdteUFJS8vaZTlBKrdVa9w2FQg+7rrsj3QGTLRgMPtitW7e8k0VfRP6+Kn/OOec0eeyPP/640XXdd5s8EAAgqbiMHwAAIINprTsHg8GP7r333pzCwsKkjh2LxeTJJ5+Mu67bVikVTergAIAmYWUfAAAgg4XD4af69esXSnbRFxHZtWuXWJZV9pOf/ISiDwDNzNltvwoAAIBmT2t9iYiMHjZsWCgV4+/YsSMWi8XmpWJsAEDTUPYBAAAyVDgcfmzo0KFhy7JSMv7evXtjnud9kJLBAQBNQtkHAADIQFrr3p7njejfv39K3u9Fo1E5fPhwloisS8X4AICm4Z59AACADBQOh38xaNAgKxwOp2T8qqoqsSzrwwcffLAxJRMAAJqElX0AAIAMo7UeGw6Hvzp48OBAqubYu3dvIhaLnfHRhQAA/1H2AQAAMojWOmhZ1tNjx47NDYVSsi+fiIjs2rWrwXXd/07ZBACAJuEyfgAAgCbSWhvBYPD3juPMUEp97GcW0zTvKCoqOqdXr14pm8N1XTlw4ECWiLyXskkAAE3Cyj4AAEDTDXUc5zYRGeNnCK11USAQ+NnXv/71XMMwUjbPrl27JBAIVCmlDqdsEgBAk7CyDwAA0ARa66Eisvrkt6/6mSUcDv/2iiuuyDn33HNTOs/7778ficfjv07pJACAJmFlHwAA4CyVlpaODAQCy09+e5FSqsavLFrrC1zXHX3ttdem7kZ9EfE8T3bt2mV4nvd6KucBADQNZR8AAOAslJaW3hAKhZZcffXVWVlZWX9VSm3zM49lWQ/3798/kKpH7Z1SXV0tnufVK6V2p3QiAECTUPYBAABERGsd1lp3/SLnlpaWjg0Gg8/fcMMN2bm5uZJIJNanOt/n0VoXua57y8CBA1O6qi8iUlZWFndd97lUzwMAaBrKPgAAaPW01oWhUOijUCi04/HHH1+ktbY+69yZM2dOz87Onn/LLbfk9OrVS7p16yYicoPWum36Ev8PrbURDofnXHnllUZeXl5K53JdVzZv3uw4jvNiSicCADQZZR8AALRqJ59L/95VV13V4YEHHgjH4/EJIhL7jHO/GggEHrrnnntyzjvvPBER6dKli1xyySVtLMv6r3TmPiUQCDyQn58/dOTIkam9fl9Etm/fLq7r7lRKlad6LgBA01D2AQBAq2YYxneKiorOHTVqVDgrK0t69OjhiYhorduffp7WOj8UCs0bP3589qdX0EePHh3OysoaU1paensao4vWuqdpmo/efPPNucFg6h+ytHr16uOxWEynfCIAQJNR9gEAQKsWDocfvu666z55Lv0tt9xiDBkyxA6FQuWlpaXjtNaG1rqLZVkfXH755YW9e/f+pzFCoZBMnjw5Jysr6z8fe+yx+9KY/cnBgweHCgsLUz5XXV2dHD582BORJSmfDADQZJR9AADQammt823b7tyxY8dPjhmGISNGjAhNmjSpKD8//8VwOLw3FAptv+aaa7qPGTPmMy+VLyoqkrvuuivbsqzHZ8yYcWcasl8hIqMHDRqU+iV9Edm6datrmuYCpZSTjvkAAE2Tlv8cAAAAmqnbe/XqJTk5Of/0gwsuuEB++MMf5tbU1ORmZ2dLQUHBvxysoKBAbr/99pzZs2f/esaMGaFp06bNSkVorbVlWdaro0ePzk71o/ZO2bRpU0M8Hp+blskAAE3Gyj4AAGi1TNMsLi4u/sy2bBiGdOrU6QsV/VPOOeccmTp1anabNm1+PnPmzKe11oGkhD1NKBTSXbp06XTZZZcle+gzqqmpkePHj8dFZHVaJgQANBllHwAAtFrhcPj6jh07Gsket127dnL33XfndOzY8TbLslZorftprZMyj9Z6sGEYPxw/fnzOqX0GUm3jxo1xz/OeVUol0jIhAKDJKPsAAKBV0loXxGKxq3r06JGS8bOzs+W2227L6d+//5Dc3Nx3w+HwQq11k957aa2LQ6HQGxMnTvynJwKkSjwel02bNrmO4zyblgkBAElB2QcAAK3VyOLi4ohlWSmbIBAIyIgRI0L3339/brt27UaFQqFZZ3tZv9a62LKst/v165fzla98JdlRP9PGjRs90zTfVUpVpm1SAECTUfYBAEBrdWHPnj3TsjweDAbl1ltvzS0uLp4cDoff0lp/8U0ARKS0tHRcKBTaPmDAgL4jR45M3acTn5JIJGTt2rWNsVjs/6RrTgBAcrAbPwAAaK3+tnv37gYRyU3HZNnZ2TJlypScN99885rNmzdXlpaWTvE873WllPdZv6O1zguHw8/l5eWNnjBhQk737t3TEfUTGzdu9BzH+atS6r20TgwAaDLKPgAAaJWCwWCP3bt3p6XonxIIBOQb3/hGuG/fvuElS5a8GI1G95WWlj7red46ESlXStWd3Mivr2ma44LB4IN9+vQJjR07NjsUCqUzqkSjUVm1alVjLBa7L60TAwCSgrIPAABaJdd1e4fDYU9E0rOl/WnOP/98ue+++3IrKyu/snXr1kf37dsXq6+vz37sscdiwWDQCIfD0qtXr+DAgQOzOnTokO54IiKyYsWKmOu6C5RSG30JAABoEso+AABolVzXnZWXlzdGRPL9mN80TenZs6f07NkzS0SyPM+T48ePWyIi+fm+RPpEdXW1bN68OWbb9o98DQIAOGuUfQAA0Fqtq6+vD0ejUcnKyvI7ixiG4XvJFxFxXVdee+21Bsdx7ldK1fmdBwBwdtiNHwAAtEpKqVgoFKqqra31O0qz8sEHH3jHjh2r8DzvOb+zAADOHmUfAAC0WqZpHopGo37HaDZOnDghK1asiMZisds+7ykBAIDmj7IPAABaNc+j056yatWqqOd5v1NKbfE7CwCgaSj7AACgVdJam47j9CwoKPA7SrNw+PBhKSsrS9i2XeJ3FgBA01H2AQBAqxQIBL5XWFiY2759e7+jNAsrVqyIiMj/ZVM+AMgMlH0AANDqaK0LDMN44oYbbsg1Td4O7d+/X3bu3Bl3HOfnfmcBACQHj94DAACtjmVZv+jTp4/Jqv7fvf322w2JRGK6UqrB7ywAgOTgo2wAANCqaK0vMwxj0pgxY7L8ztIc7NmzR6qrqxtd1/2t31kAAMlD2QcAAK2G1tqyLOu54cOHZ2Vl0fVFRFauXHkikUhMU0rF/c4CAEgeyj4AAGg1QqHQzC5dunxlwIABht9ZmoOTq/pR13V/73cWAEByUfYBAECrcPLy/XsnTJiQYxh0fRGRFStWNLCqDwCZibIPAAAynta6k2VZfxg9enRWmzZt/I7TLOzZs0f279/fyKo+AGQmyj4AAGhxtNZttda5X/Dc3pZlrR8yZEjHK664giX9k1auXHlqB35W9QEgA1H2AQBAi6K17i0iR0Kh0B//1bkzZ858MBgMbho5cmTnYcOG8cjhk2pqaqS6utpmVR8AMhf/6QEAgBZDa50nIttERGzb7vV555aWlk7MyclRU6dOzWrbtm1a8rUUq1evjriu+6RSKuZ3FgBAarCyDwAAWoxAIHC/iBiWZb0tIh0+6zytdUEwGJx900035VD0/9HBgwdlx44dbiKReNrvLACA1KHsAwCAFkFrnWcYxoPjxo0Tz/P6y+eUfcuyZvTt2ze7a9euaUzY/HmeJ2+88UaD53klSqmjfucBAKQOZR8AALQIwWBwes+ePc3LL79chg8f3jYUCpU9+uijP9Ba55x+nta6reu6/zZs2LCwX1mbq61bt0pNTc3+RCLxlN9ZAACpZXie53cGAAAAERHRWvcSkYhSat+njo8Ih8Ovf//7388+9ei8ffv2yapVqxqqqqoCwWBwWSwW+w8R+SgYDKo+ffpMmThxYpYPL6HZikaj8qtf/aoxGo1ep5Ra53ceAEBqsUEfAABoFrTWnUTkI9M0nxWRu047PjwUCi256aabPin6IiKdO3eWW2+9NbehoUE2bdo0fsOGDaMikUiooKDAGT16NEX/U5YvXx5zXXc+RR8AWgfKPgAAaBYCgcA7iURCPM/rceqY1rp9KBSad+ONN+acf/75Z/y93NxcGTJkiDlkyJBTnwRw+f6n7Nq1S8rKyiK2bf/I7ywAgPTgnn0AAOA7rXWHRCJxsYjsDQaDH508NtCyrE0DBgwo7NXrc5+yh88RjUZlwYIFEcdxblFK1fudBwCQHqzsAwAA3xmG8dTJfYT6Pvzww8e01sWGYawdN25c4KKLLvI7XovleZ68/vrrjY7jzC8pKXnT7zwAgPRhZR8AAPjO87wbRUSUUsdERAKBwB2dOnVqpOg3zXvvvefu3Llzbzwev9fvLACA9GI3fgAA4CutdVsROXLy2+HBYPCb2dnZ90yZMiWnsLDQz2gt2u7du2Xu3LnHbdu+XClV6XceAEB6cRk/AADw27iCgoL4kSNHLBH5Y7du3SLjx4/PycvL8ztXi3XkyBF5+eWXGx3H+TZFHwBaJ8o+AADwVVZW1h3Dhw+3Lr300lOHcvzM09LFYjF54YUXIo7jlJSUlLzldx4AgD+4Zx8AAPhGa93BcZyre/fu7XeUjOC6rsyfPz/S0NCwwHGcX/idBwDgH8o+AADwTSAQuKtv375eOBz2O0pGeOedd+J79+7dHI/H71RKsTETALRiXMYPAAB8Y1nWpEsvvTTL7xyZYOPGjd7GjRtrbdseq5Sy/c4DAPAXZR8AAPhCa10UCAR6du3a1e8oLd6uXbvkrbfeOmHb9nVKqTq/8wAA/Mdl/AAAwBeBQODuvn37uqFQyO8oLdq+fftk3rx5EcdxximlPvI7DwCgeaDsAwCAtNNa55um+e+DBg3iEv4mqK2tlTlz5jTatj2ppKTkj37nAQA0H1zGDwAA0s6yrCcuvPDCrI4dO/odpcU6duyYPPfccxHbtu8tKSlZ6nceAEDzwso+AABIK611O9d1/+36669nVf8sJRIJefHFFxvi8fgT06dPf97vPACA5oeVfQAAkG7Xd+3a1cnLy/M7R4vkOI68/PLLkaNHj65xHGeG33kAAM0TZR8AAKRbQW5ubsDvEC2Rbdsyd+7cSE1Nzcp4PD5RKeX5nQkA0DxR9gEAQLqV19TUOH6HaGni8bi88MILkdra2mXxePxmpRT/hgCAz0TZBwAA6balvr4+2/M8MQzD7ywtQkNDg8yZMydSX1+/KB6P36aUcv3OBABo3tigDwAApJVS6mgwGDxQXV3td5QW4cCBAzJr1qxIXV3df1L0AQBfFCv7AAAg7RKJxJyysrJ/79y5s+V3luasoqJCFi5c2Og4zl0lJSUv+p0HANBysLIPAADSznGcZRUVFXHPY3+5M/E8T1atWuUsXLiwzrbt4RR9AMCXxco+AADww383NDQ4R44ckcLCQr+zNCuRSEQWLFgQqa6u3m7b9teVUgf8zgQAaHlY2QcAAGmnlEoEg8EP9u3b53eUZqWqqkp+85vfRPbu3Ts7FosNpOgDAM4WK/sAAMAX0Wh01d69e4ddfPHFIb+z+M11XVm9erXzl7/8pcFxnJtLSkre9DsTAKBlo+wDAABfeJ73XlVVVURE2vqdxU+RSEReeeWVyIEDB7batj1eKcVjCgAATUbZBwAAfvmgtrY2x3VdMc3WeWfhgQMHZO7cuZFYLDbbtu1/V0o5fmcCAGQGg11wAQCAX5544oldkydP7t6lSxe/o6RdeXm5vPbaaxEeqwcASIXW+TE6AABoFhKJxOuVlZWtauXBdV1ZsWKF/dprr9Xatn0NRR8AkAqUfQAA4BvHcd6rqqpq8DtHukSjUZk7d27k/fff/9C27YuVUhv9zgQAyEzcsw8AAPz0xu7du4ORSERycnL8zpJShw4dkjlz5kSi0eiL8Xj8e0op2+9MAIDMxT37AADAV0888cTi4cOHj7v66qsNv7OkSkVFhSxatCiSSCR+OG3atNl+5wEAZD4u4wcAAL6KxWJPv//++yf8zpEKnufJn/70J2fhwoV18Xj8eoo+ACBduIwfAAD47Y9Hjhwxjx07Jvn5+X5nSRrHcWTx4sWNH3/88U7btkcppfb7nQkA0Hqwsg8AAHyllHJCodCHNTU1fkdJmkgkIr/73e8iH3/88cp4PD6Aog8ASDfKPgAA8J3rujuPHj3qd4ykOHTokDzzzDORQ4cOPROPx8cppRr9zgQAaH24jB8AAPjO87zGRCLhd4wm8TxPNmzY4K5YsSLquu5906ZN+y+/MwEAWi/KPgAA8F0gEOjSkh+95ziOLFy4sLGysvJvtm1PUEpV+J0JANC6UfYBAIDvEolEv06dOvkd46w0NDTIvHnzIgcPHnw3Ho9PVEpF/c4EAABlHwAA+Epr3TEUCrVt376931G+tPLycnn99dcbPc97Jh6PP6iUatn3IgAAMgZlHwAA+O2y4uLiqGEYYb+DfFGu68qf//znxJo1a+pt2x6rlFrvdyYAAE5H2QcAAH4ryM3NbTFPCIpGo7J48eJoVVXVNtu2xyml9vidCQCAT6PsAwAA32iti0TkunA4HPI7yxdx4sQJmTVrVsxxnIXxeHwqj9UDADRXlH0AAOALrXWOiBwUEencubPPaf61yspKefXVVyOu6/78oYceUn7nAQDg81D2AQCAX2469UWPHj38zPG5XNeVd9991163bl2Dbds3KKVW+p0JAIB/hbIPAABSasaMGRNd1z1eUlLyzunHDcM4r3v37t5VV11lNNed+E+cOCHz5s2LHDp0aLNt2xOUUjV+ZwIA4ItoMZvhAACAlkdrbSYSiQWe572ptTZO/1koFBrUp08fo2/fvn7F+1y1tbXyzDPPRA4ePPhULBYbStEHALQkrOwDAIBUyhMRKSwsjDY2Nm6bOXNmo23bH4jIYsuyrr344ot9jndmVVVV8tJLLzU6jvP96dOn/97vPAAAfFmUfQAAkEqDi4uLj99xxx15VVVVvV966SURkctF5I54PC7xeFxycnJ8jviPtm3bJosXL25wHGd8SUnJCr/zAABwNriMHwAApFJdY2OjYVmWVFZWJk4e+1+maT5gmubcRYsWNZw6saKiQn75y196ZWVl4nle2oN6nidr165NLFq06Jht28Mo+gCAloyyDwAAUmlDQ0NDOB6PyyWXXBIQETFNc5TrugcNw6g7evSoISKydetWWbhwoXTr1s144403vLlz5yY2bdokR48eTUvIWCwmc+fOjaxZs2ar4ziXKKU2pmViAABShMv4AQBAKvUMBoOJQCAQOvfcc+UHP/iBlJWV3VZdXT0xLy/PGjp0aHj9+vXe8uXLjQkTJshFF10k0WjUePnll40lS5ZIXl6ePPDAAykNeOzYMXn++ecjJ06cWBCPx+9UStkpnRAAgDSg7AMAgFS6sqioKBEIBEREpF27dvLVr37VEJG8aDQqixcvTlRVVZmTJk2SHj16iIhIVlaWTJkyxXz66afdWCxmHj9+XPLy8lIS7uDBgzJ37txIY2Pj447jPKaUSv/9AwAApIDhxz1xAAAgs2mti0VkkIhU5Obmbvjxj3/c5vSfRyIRmT17thcKhdwpU6YEsrKy/mmMk8+4T9TX1wceeOABOfWBQbKUlZXJ0qVLI4lE4nvTp09/LqmDAwDgM+7ZBwAAqXCHiLwWCASmdO7c2Tj9B5FIRF544QU3NzfX++53v3vGoi8i0qZNG7nzzjsDpmm6ixYtch3HSUowx3Fk6dKlsaVLl1bbtj2Iog8AyESUfQAAkHTBYPBKERHDMH40ZsyY3FPHDx8+LL/+9a/FNE1vypQpX+h9yN13322Wl5ebe/bsaXKugwcPym9/+9uGLVu2/NG27YuUUpubPCgAAM0QZR8AACSd4zj/W0Rk5MiRoYKCgk+Ol5eXe3l5eYm77rorYJpf7G1ImzZtpEePHolXXnlFKioqzipPIpGQd955J/7ss8+eqKur+2k8Hv+6Uio9W/0DAOAD7tkHAAApobX2JkyYIJdeeumpZ9i7a9asMSdOnCi9e/f+0uNt2LBBli9fLv369XNHjBhhftEPC44cOSLz5s1rOHLkyIZYLPZtpVTtl54cAIAWht34AQBA0mmtB4mIdO/eXUREVq5c6X7wwQfGd77zHenSpctZjdm/f3/p3r27PP/887Jv3z530qRJZnZ29uf+zpYtW2Tp0qWNruuWOo7zc6WUe1aTAwDQwnAZPwAASDrDMB4VEcnPz5ePPvpINmzYYNx+++3G2Rb9U4qKiuT+++83Hcfxnn76aa+mpuaM5yUSCXnzzTfjixcvbojH46MfeeSRJyn6AIDWhLIPAACSzvO8Hae+XrNmjXvZZZcZRUVFSRk7GAzK1KlTA7179zZmz54tn964r76+Xp599tnIhx9+uNZ13fOUUquTMjEAAC0IZR8AAKTCbJG/32dfU1NjDhkyJKmD79ixQ8rLy92OHTu6hYWFIiLieZ789a9/9WbNmtVYV1f3WCwWG6GUOpzUiQEAaCG4Zx8AAKTCLhGRZcuWybnnnpto27ZtIBmDOo4jCxYs8CorK43rr7/eGDBggGEYhtTX18vChQsjtbW1NbZtj1NKbUnGfAAAtFSUfQAAkAodTn2Rn5/vvPPOO144HA6Gw2EJh8NiWdY//OnUqdO/HHDXrl2yYMECNz8/X+655x6jXbt2hud5snnzZvnDH/7Q6LruzxKJxONKKTulrwwAgBaAsg8AAFKhUkTuEZH227dvrxeRPNM02waDwXNM0yw0DKOtYRh5kUhkkIjI/fffL23btj3jQK7rysKFC70dO3YY1157rTFw4EDDNE05evSoLF26NLJnz55a27bHK6U2pe/lAQDQvBme5/mdAQAAtFJa6w4iUvPNb35Trrzyyn/6+e7du2X+/Plubm6u3HjjjWb79u3FdV1Zv369u2rVqpjnef/PcZwZSqlY+tMDANB8UfYBAICvZs6c+dG1117ba/DgwZ8cc11XlixZ4pWXlxvXXHONO3ToUNM0TTl27Ji8+uqrkdra2opYLHazUqrCx+gAADRbXMYPAAB8Zdv2vC1btvxk8ODBlojIvn37ZN68eW44HDamTp0qxcXFpohIRUWFLF68uNF13Z/btl2qlEr4mxwAgOaLsg8AAPz21v79+6c7jiPLli3zysrKjMGDB8uwYcOMQCAgsVhM5s+f37hnz56Gkzvt/8XvwAAANHdcxg8AAHyltc4RkUOmaWZbliWTJ0+W4uJiqaqqkkOHDrmrV6+2Hcd5y7bt25RSR/3OCwBAS0DZBwAAvtNaW6Zp/tl13X4iIsFg0DEM43AgENgejUafFJE3lVK8aQEA4Aui7AMAgGZDa22JSK6I9BCRzUqpuM+RAABokSj7AAAAAABkGNPvAAAAAAAAILko+wAAAAAAZBjKPgAAAAAAGYayDwAAAABAhqHsAwAAAACQYSj7AAAAAABkGMo+AAAAAAAZhrIPAAAAAECGoewDAAAAAJBhKPsAAAAAAGQYyj4AAAAAABmGsg8AAAAAQIah7AMAAAAAkGEo+wAAAAAAZBjKPgAAAAAAGYayDwAAAABAhqHsAwAAAACQYSj7AAAAAABkGMo+AAAAAAAZhrIPAAAAAECGoewDAAAAAJBhKPsAAAAAAGQYyj4AAAAAABmGsg8AAAAAQIah7AMAAAAAkGEo+wAAAAAAZBjKPgAAAAAAGYayDwAAAABAhqHsAwAAAACQYSj7AAAAAABkGMo+AAAAAAAZhrIPAAAAAECGoewDAAAAAJBhKPsAAAAAAGQYyj4AAAAAABmGsg8AAAAAQIah7AMAAAAAkGEo+wAAAAAAZBjKPgAAAAAAGYayDwAAAABAhqHsAwAAAACQYSj7AAAAAABkGMo+AAAAAAAZhrIPAAAAAECGoewDAAAAAJBhKPsAAAAAAGQYyj4AAAAAABmGsg8AAAAAQIah7AMAAAAAkGEo+wAAAAAAZBjKPgAAAAAAGYayDwAAAABAhqHsAwAAAACQYSj7AAAAAABkGMo+AAAAAAAZhrIPAAAAAECGoewDAAAAAJBhKPsAAAAAAGQYyj4AAAAAABnm/wOPHIced9iinwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.rcParams[\"figure.figsize\"] = (20,15)\n", + "ax = rs_df.plot(edgecolor='grey', facecolor='w')\n", + "f,ax = wq.plot(rs_df, ax=ax, \n", + " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", + " node_kws=dict(marker=''))\n", + "\n", + "ax.set_axis_off()" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/sAAANeCAYAAABNqR5nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4Tdf6B/Dvu8+UkzmSICGJJEgMSUwxBaVmMbdoUTVUi/ZWezuoqp5uU+igOvcqVWNNRVGqqoaagxijZiEECUkQyZn2+v2xToiI6d726s3v/TyP5+Gcvddee599n9t3rXe9i4QQYIwxxhhjjDHGWOmhPOoOMMYYY4wxxhhj7M/FwT5jjDHGGGOMMVbKcLDPGGOMMcYYY4yVMhzsM8YYY4wxxhhjpQwH+4wxxhhjjDHGWCnDwT5jjDHGGGOMMVbKcLDPGGPsv46Iviai0Y+6H/8uInqPiOb8SW19R0Tj/oy2HvK6gogq/7ev+7CIqD8RbX7U/fizEVFTIjrygMc2J6L0v7pPjDHGShcO9hljjP3piOg0EeUT0XUiuuAKaD0LvxdCDBFCjP032zYS0btEdISI8ojoHBGtJqI2f94d/G8gokFE9AcRXSOii0T0ExF5/QXX2UBEBUQUUuSzVkR0+s++1t8VEQW5BkjKFfls1F0++/l+7QkhfhdCRP1JfXskA0aMMcb+3jjYZ4wx9lfpJITwBFALQG0AI/+kdhcD6AKgHwA/AOEAPgGQWNLBRKT/k677t0JEjwGYAOBpIYQXgGoAFv6Fl8wD8D+bjfGwir83QogMAMcBNCvycTMAf5Tw2aa/vIOMMcbYfXCwzxhj7C8lhLgAYA1k0A/gzplIIhpMRMeJ6AoRLSei4JLaIqJWAFoD6CKE2CGEsLn+/CyEGF7kuNNENIKI9gPIIyI9Eb1FRCdcs+CpRNStyPH9iWgzEX1IRNlEdIqI2hf5PpyINrrOXQsgoFi/GhLRViLKIaJ9RNT8bs+DiGoT0R5XWwsAuBX7/oGeBYB4ANuEECmu53xFCDFTCHHN1c4GInqu+D3erV8P4FMAT98t9Z+IqrmumUNEh4ioc5HvviOiL1yZB9eIaAcRRRb5XhDRy0R0koiyiOgDIirxv1GI6BMiOktEV4loNxE1LfLde0S0kIhmua5ziIjqFfn+fu/AFiL6mIiuAHivhMtvgiuwJyId5CDWJ8U+a+Q6DkRkcr1TZ1yZF18Tkdn13W2p+URUh4hSXH1bREQLis/WE9FrRHSJiDKIaIDrs+cB9AHwJslMmhWuz0eQzHq5RjILpmVJz5MxxljpxcE+Y4yxvxQRVQTQHnJWtKTvHweQBKAngCAAaQDm36W5VgB2CCEeZP3y05Cz/b5CCAeAEwCaAvABoAKYQ0RBRY5vAOAIZCD/PoDpRESu7+YB2O36biyAZ4v0vwKAnwCMA1AGwOsAfiCiwBLu1QhgGYDZrmMXAXji33wWOwC0JSKViBKIyPQAz6RERNTbNTByL+cAfIMSgmAiMgBYAeAXAGUB/APAXCIqmqb+NORz94N8F8YXa6YbgHoA6kBmbgy8Sz+SIQeOykD+LouIqOiASWfIZ+YLYDmAz4t89yDvwEnXPRTvH1Ak2IcM9P8AsK7YZwYAO13/ngSgqqu/lQFUAPBu8UZd78VSAN+57ut7yOdRVHlXvysAGATgCyLyE0JMBTAXwPtCCE8hRCfXc38JQLwr66MtgNMl3A9jjLFSjIN9xhhjf5VlRHQNwFkAlwBY7nJcHwDfCiH2CCGskOn+jYioUgnHBgC4UPgPIirjmknOJaKCYsd+KoQ4K4TIBwAhxCIhxHkhhCaEWADgGID6RY5PE0J8I4RwApgJGWyXI6JQyFn00UIIqxBiE2RgW6gvgFVCiFWuttcC2AWgQwn9bwgZDE4RQtiFEIshg9eHfhZCiN8BdIcMjn8CcJmIJrtmlx+KEGKeECL2AQ5NAtCJiGqUcF+eACa6Mi1+A7ASMsAvtEQIsdM18DIXRTI9XCa5shPOAJhS7NyifZ0jhLgshHAIIT4CYAJQdFBhs+u3cEIOqsQVOfd+78B5IcRnrrbzS7j8RgA1icgPctDgdyHEMQABRT7bLoSwuQaKBgN41XVf1yCXXTxVQrsNAegh31m7EGIJbg0YFLIDGOP6fhWA68Xuuyin67lUJyKDEOK0EOLEXY5ljDFWSnGwzxhj7K/S1TWr2BxANIqlvhcRDDmDDQAQQlwHcBlyBrO4y5BBeOGxV4QQvgDqQgY3RZ0t+g8i6kdEe12DAzkAahbr081BBCHEDddfPV39yxZC5BU5Nq3I38MA9Chs19V2k6L9LHav54QQ4i5tPcyzgBBitRCiE+RscBcA/QE8V9KxfwYhRCbkTPmYYl8FAzgrhNCKfJaG2/t9ocjfb0A+26KK/l5prjbv4EplP+wa4MmBnO0u8Xd0XceNXOvvH+AduO2dKU4IcRpAOuTv2wzA766vthX5rHC9fiAAdwC7i1zvZ9fnxZX0XhTvy2XXQEnReyv+DAv7eRzAK5BZGJeIaP49loMwxhgrpTjYZ4wx9pcSQmyETE/+8C6HnIcMmAEAROQBwB8ybby4dQDiXUsD7nvpIm2GQaagvwTA3zVAcBAA3eXcojIA+Ln6VSi0yN/PApgthPAt8sdDCDHxLm1VKLI8oHhbD/MsbnLNVK8D8BtkAAvIgnruRQ4rf682HsIHAFpADrAUOg8gpNg6+1Dcp9/FhBT5e6irzdu41uePgFzm4Of6HXPxAL/jA74DoqRzi/kdMqhvBGBrsc+a4FawnwUgH0CNIu+Fj6toZXElvRchJRx3N3f025Wt0QTyfRKQSwoYY4z9P8LBPmOMsf+GKQBaE1Hx1G1ArrseQES1XOvOJ0Cuyz9d/EAhxC8A1kMuEWhAchs+A2Qa9L14QAY8mQDgKm5W855n3LpmGmRavuq6XhMAnYocMgcytb0tEemIyM1VfK2kAYltABwAXiZZNLA7bk8jf+BnQURdiOgpIvIjqT6AxwBsdx2yF0B3InInWVRv0IPc7/0IIXIAfATgzSIf74AcXHiTiAwkCxR2wt3rDZTkDde9hAAYDmBBCcd4QT6/TAB6InoXgPcDtv9vvwPFbILcCeK8EOKq67PNrs98IH9juLIcvgHwMRGVdV2zAhG1LaHNbZCp9y+53osuuP29uJ+LACIK/0FEUUT0uOsdKoAcdHA+RHuMMcZKAQ72GWOM/eVc6d+zUMLWba4Z6dEAfoCc4YxEyeuaC3WHXA8+B0AOgFOQa93b3eP6qZAB6jbIwCgGwJaHuIXekMXbrkDWHphVpO2zkCn0b0MGkmcBvIES/j9WCGFz9b8/gGwAvQAsKfL9wzyLbMg14ccAXIV8Hh8IIea6vv8YgM11vzMh18mXiIj6ENGhu9/+HT5BkeDRdV+dIQsxZgH4EkA/IcQfD9Hmj5BFEPdC1iCYXsIxawCsBnAUMtW/APdJvS/Sx//0HSi0EbKAX9GdDfYCMAPYXWQJCCCzEI4D2E5EVwH8ihLW2Rd5LwZBvtN9Id9x6wP2aTrk+vwcIloGuaRlIuRvccHV37cf9AYZY4yVDnT78jDGGGOMsf8uIhIAqrjWmjMARLQDwNdCiBmPui+MMcb+N/HMPmOMMcbYI0ZEjxFReVca/7MAYiEL+jHGGGP/Fv2j7gBjjDHGGEMUgIWQFfZPAHhSCJHxaLvEGGPsfxmn8TPGGGOMMcYYY6UMp/EzxhhjjDHGGGOlDAf7jDHGGGOMMcZYKcPBPmOMMcYYY4wxVspwsM8YY4wxxhhjjJUyHOwzxhhjjDHGGGOlDAf7jDHGGGOMMcZYKcPBPmOMMcYYY4wxVspwsM8YY4wxxhhjjJUyHOwzxhhjjDHGGGOlDAf7jDHGGGOMMcZYKcPBPmOMMcYYY4wxVspwsM8YY4wxxhhjjJUyHOwzxhhjjDHGGGOlDAf7jDHGGGOMMcZYKcPBPmOMMcYYY4wxVspwsM8YY4wxxhhjjJUyHOwzxhhjjDHGGGOlDAf7jDHGGGOMMcZYKcPBPmOMMcYYY4wxVspwsM8YY4wxxhhjjJUyHOwzxhhjjDHGGGOlDAf7jDHGGGOMMcZYKcPBPmOMMcYYY4wxVspwsM8YY4wxxhhjjJUyHOwzxhhjjDHGGGOlDAf7jDHGGGOMMcZYKcPBPmOMMcYYY4wxVspwsM8YY4wxxhhjjJUyHOwzxhhjjDHGGGOlDAf7jDHGGGOMMcZYKcPBPmOMMcYYY4wxVspwsM8YY4wxxhhjjJUyHOwzxhhjjDHGGGOlDAf7jDHGGGOMMcZYKcPBPmOMMcYYY4wxVspwsM8YY4wxxhhjjJUyHOwzxhhjjDHGGGOlDAf7jDHGGGMPSVVVo6qq9Kj7wRhjjN0NCSEedR8YY4wxxkqkqqoRACwWi+1v0Jfmbm5u79vt9pqappn0en2uw+Ho/e677/78qPvGGGOMFcfBPmOMMcb+lsaNG/e8EOJTInI4nc7WFotl26Pqy9ixY/sbjcYvOnTo4F65cmW4ubnhxIkTWLRo0aWRI0eWe1T9Yowxxu6G0/gZY4wx9rczZsyYVgaDYcqwYcNMTzzxhIfRaFygqqr+UfRFVdXGBoPhi0GDBrnHxMTAbDaDiGA0GiGE4FR+xhhjf0sc7DPGGGPsb0VVVZNer1/Yo0cPs7+/P6KjoxEQEOAHoE+RY3T/rTXzbm5unycmJroHBATc/OzEiROYO3duvsPheO6/0QfGGGPsYT2SEXLGGGOM/TlUVfUAUBvASYvFcv5R9+dP0iogIEAXEREBACAitGvXznP27NlfffDBB4M0TQskoqqKohRMmDDhE7vd/q7FYnH8VZ3RNC0kKCjo5r+PHj2KxYsXX7Pb7Z0sFsvGv+q6jDHG2H+C1+wzxhhj/6NUVa2k1+t3+/r66nNycvQOh6OZxWLZ/aj7VRJVVZsCqA/gFICVdyu4p6oqmUymNc2bN2/VsGHD22buc3NzkZGRAbPZjODgYOTl5WHJkiU3Ll26tMFqtXa0WCx/yX/UJCUlfR0bGzsgMTHRKITARx99lJeXl5dYGOirqmoAEGSxWM78FddnjDHG/h2cxs8YY4z9j9Lr9UPq1avn/eKLL3q3bt3a3c3Nbdyj7lNJVFXt6e7uvjo+Pn5CcHDwd0ajcZ+qqt7FjlFUVQ02GAwfe3h4JNSrV++OFH0fHx9ER0cjLCwMBoMBvr6+ePbZZ93d3NyaAUj4N/pVPykp6Ztx48b9U1XVu/43kc1mezclJUURQiAvLw9WqxUANrna8DQajfv0ev2xpKSkzx+2D4wxxthfhYN9xhhj7G9MVdW6qqomqqrqXvw7g8HQOCwsTA8AcXFxcDqdzVVVjbhLO7qkpKQPJk2atHvMmDGt/up+F2U0Gts1a9bMo0OHDsbnnnvOq3r16uEmk2mqq1/lkpKSvtXpdDeMRuOJiIiIwQMHDnTX6x9spaFOp4NOpxMAHmr9vqqqMQaDYX2zZs0G+fr6jgXQ927HWiyWS4qi5F29ehVmsxlCCCMAX1VVyWg0Tq1SpUr4P//5T6OiKANVVa3zMP1gjDHG/ioc7DPGGGN/U+PHj3/FbDZvCgoKmqfX6y+MGzfuycLvVFX1cTgcsf7+/gAAk8mEBg0a6I1G4wfF21FV1cdoNP5ctmzZYR07dqyj1+t/VFU17F7XVlW1sqqqHVVV/Y+3lXM6nedzc3PtwM319yaTydR50qRJR/R6/elatWr1eeWVV0wjR450e+qpp9w9PDweuO20tDRcv349H8DWh+xWs5o1ayoJCQnUqlUrdzc3t+F3O1BVVX9N00wGgwE6nQ7R0dF2vV4/z2g0rvTx8enSqVMnN7PZjMcee8zNzc3NUuQ8P1VVdQ/ZL8YYY+xPwQX6GGOMsb8pnU73xlNPPeUeGhqK8+fPY+bMmbNUVT1psVj2GAyG96pVq2YKDAy8eXzTpk31KSkp7ceNGzfW6XSOtVgsNlVVY41G46qaNWsGdOjQwaTT6XDq1CldSkpKXwDji17Plcr+pJub22iTyRRZtmxZe0ZGhn7s2LH9Ro8e/cP9+uuqjq9YLBZn0c+dTueilJSUVxs0aGDw8fGByWTCSy+9ZD537lzVsmXLwt39jqQFQAjA6QTuM8P/66+/XrfZbCOKX9PVnyAA/gAOlbCe39NkMukBICIiAjabLUZVVaPrmbkBaGkwGDro9fpGOp0uunHjxkphPzt27OgeFBTUVlEU1K1bl4xGIwAgODiYAFQDgKSkpA91Ot1wRVGuqqrazWKxbLrHcwsFUAvATovFcuGeN8wYY4w9IC7QxxhjjP1NJSUlTa1Xr96zrVu3NgLAgQMHsGLFimydTrdLUZQmQ4YMMXt5ed12TlZWFpYuXZp/6dIlBxFZ7XZ7QHh4OPr163fzmNTUVKxYsWL7iBEjGhV+pqqqr8lkWunt7R3XokULz6ioKCiKgoyMDMycOTPfZrN1effdd9eW1E9VVd31ev3bAP7hdDo9jEbjT1artb/FYskuPGb8+PGvGY3GsSX1+Q5OJxAcDFy+DKxdC1SrBpQvf8dhOTk5+OKLL/IcDoe/xWKxFu2P0Wj8VAjRx2AwaE6n86CrP4cLj5k4ceL3LVu2fCo+Ph4A8Omnn17Pzs4eriiKt6IoYwIDA0W1atW8goODqVy5cvD09Lxnl69cuYI5c+bkXb9+fYzdbv9Or9envfrqq27p6elYvHjxxbfffvuOG1BVNd7Nze0Tp9NZOygoyHb+/HlyOBw1LBbL2Xs/IMYYY+z+eGafMcYY+5uy2Wy/Xrhw4SkARgCIiYmBj4+PX3Z2dusqVaqUOCMeEBCAwYMHm7OysvDbb795Hj58GOnp6bcdU6VKFTidzlquGeULAHrodLrpQgjTkCFDoCi3VvkFBQWhU6dO5p9++mkcgLUAoKpqRyKqLYTYAiDYaDR+EB4e7tOqVSuzt7c3fvnll3YHDhzYoKpqQ4vFkg8Ao0aN+mj8+PFVdu3aNbhFixZ3X0ZotwO5uUDHjkDlyjLg/8c/gLZtgX79ANcsOgBs3brVrijK/MJAX1VVE4CeRqPx/YiICJ8uXbq4GY1GJCcn11u3bt3u8ePHJzkcjokAFIPB0C48PPxmW926dfNcuXLlFB8fH6Vly5Ye5co9+OqF/Px8TJs2Ld9ms73jdDo/AdA3PDzc4e7ujvDwcDgcjoDi54wfP364yWRKat26tTk2NhZ6vd5txowZV8+cOVMPAAf7jDHG/mMc7DPGGGN/A67CbrUA6CC3pztkNBqHREdH3zYNHhoaitDQ0Pu2FxAQgJ49e9LHH38sypUrR1lZWQgIkDGnwWBAfHw8JScn79Y0zbN8+fIODw8P0/Hjx7Fs2TJn9+7db1tnXq5cOWiaFubqZ1Wj0biwbt26xm3btukAoGLFinjqqaduHp+YmGjMy8urcvLkyWWqqnYtDPgdDsf5TZs2KSdPntSioqKU8PBwVKhQ4daFNA1o0AA4fBg4fx6YPh2oUweoXx84fRqoVQsYNgwYNgyHDh/G3r17r9jt9pGqqtYymUzv6XS6NkFBQc4WLVp4RkTcqlPYoEEDpWrVquZly5a9deHChSEAgu12+83nAQAhISEYOnTofVIOSnbixAkA2PbOO+9MAYAxY8ZEBQcHewJAXl4edDpdXuGxqqoSEQ0wmUxJL7zwgtnX19d16xrS09Pd4aryzxhjjP2nONhnjDHGHrEJEyaMMJvN70ZERAidTkeXLl2yX7lyxRQcHOyIjY39j9q2Wq107NgxZGZmOl988UWd/vx5YO9etHI4TLGDBpk8PT2Rn5+PL774AgBw/fr1O9rIycmBoijnAECn0/WOjY3VtWnTRle5cmUcOXJE7Nmzh3744Qd06dIFer0eRIQnnnjCvHTp0qbHjh07O2HChMV2uz1dr9cnent7i4CAACU1NVVbv369AgDt27dHvRo15Cz+668DJhPg5wd8/z0QEgL06gWEhgIrVgDz5gGvv46zubk3lLJln4WbW5TBYFjTvHlzc82aNelu6fZ+fn7o37+/+969e92XL1+OB632/yCICJCDNHA9Iy+DwQAAcDgccDqd7mPHjp1oNBorG43Gpp6enh69evW6GegDgN1uBwDNYrFcVlU10mQyqYqiVHQ4HG52u30ugEMADlsslow/reOMMcZKNV6zzxhjjD1CqqoqOp3u2rBhw9zLlCnzp7d/7tw5pM+cCefKldhZvz6GzpkDU06ODKYvXACCg7G9cWOR266dqDFhgjLrmWcQnJGBkLJlnS2TknQQAtt37MD69etn2Gy2EQaD4djAgQN9yrvW0Ash8Pnnn4srV65QeHi41q9fv9tS9DMyMnDq1Cnk5+cLs9lM8fHxKAyENU3D5s2bsX79eoz48Ue4paUBY8fK2XvZOEB37qiXt24dTg8fjoDMzBe2tmz5XtSoUUHVa9R4oOfhcDjw/vvvw263Y/To0bctWbgnIeQSgyLLCArduHEDU6ZMybfb7fUtFsvBCRMmfB0TE/NCy5Yt4e7ujpMnTyI9PR0eHh6oWLEiypYtWzhAcJOmaZg8eXKBpmkpDoejVkJCgqls2bLKwoUL4evr63Rzc7t++fJlN0VRzlqt1gEWi2Xzg3X8r+Mq6BgG4JLFYsm73/GMMcb+u3Tvvffeo+4DY4wx9v/Wxo0b/XU63ett27b9c6aabTbg1CkgIwPo3Rve7u4IysvD5RMncLBqVVwfPBhRiYlAdDQQGoobgwZh/pkz1LlzZ7KmpGg+/fqh7Lx5FHb6NPkOGkQwm6HVrIkrhw9X6T916ls1hTAGDRig4NAhoEwZkF6P2rVrU3BwMHbt2oXq1auT2Wy+2R0vLy+EhIQgIiKCQkJCoNPdWiFARAhzd4e2fz+2lC8PzwYNRGbLllQmKEgGw1OnAm+9Jdfqu1y/fh0/7NiBHaGhuBAU1KbuqVOe0Tk5CpUpAwQF3ffxKIqCgIAAHDp0CFFRUSixWGB+PqAowJdfAtu2AV5eQGQkoKpAcjKQlQVs2gS4uwNeXjB4eMDHx0d/4sSJvlu2bKlps9kGZGRkgIhEREQE+fn5ISwsDMHBwfD09Lwj0C98FnFxcfqgoKCQli1bGqKioigwMBD79u2Dm5ub8sILL7glJCToPT09y6SlpTVr0qTJZw/5ZvypVFWNMxqN24xG4xsAXlm/fv13zZs3vzMthDHG2CPDafyMMcbYo5XjcDhMQogSg8AHkpEBzJkDdOsGFK6dX7MGGDQI6NgROi8vHKxQQdNOnVLM3t7Q3noLyoEDyH/qKZw9cgTuL7yAMtWqocyqVUqIEFj65pvOdampupo//qh1PXVKCfX1RYd16zy9p0+Hz4YNwGefAbNmySJ6gYEwrlmDql99hbq7d9P6d94RT3z6KUFRZMB8P888gxYXL+Ky3Y5ZAwdq11at0nU1GlGlShW41a8Pys/HxQsX4OfnB5PJhPPnz+P06dNQFAVnK1QwzQ8KwvPt2iHo1VeBsmWB776TQfg9FBbfSz9zBsFCAAEBwKuvAq1aAdeuyaUEmzcD6ekyAyIsTC4fWL4cSEkBAgOBAweAjz4CwsOBixcRazJRSGSk9zkfnz6H8vPxx6VLiIqKeqgf1MPDA9HR0bd9Fh8f7/z11191M2bMcA4YMEBnMpkA4Erh967tDs0Wi+XGw1zr36WqajOdTtfGYDC8mpiY6B4VFYWPP/443+FweEEWe2SMMfY3wcE+Y4wx9mhFurm53SCie0eoxX37LZCUBDRqBDRvDmzfDrRvD2zcCHh4yGOefvrm4YXp6lu3bkU8AF+dDjOaNXPWjolRXqpZk5CXB3h4gIjQvXt3nclkwr59+6irlxfw5JMIOHECsFqB2rUBHx852/7KK3KgoVw56AID0dhux8Hdu2n+gAF4cssW6MeMAbKzgdRUYPJkGUDXri2D6z/+AH7/HZg/H3T4MALOnsU/e/bUpaSkYMWKFXA6nTAajah89CiO5OZCI0JERIQ4ceIEATJgv3DhAoxmM3SRkcAvvwBbtwJ9+gCxscBzz8n1/oUuX5ZV/olQ5u230bBaNWEcMoRERgYoIwMoKJCBfdu2skaAmxswcaIM6kND5fICb285s2+xyP5Pniy/y8gAzp6F32+/we/SJZS5fh11Vq2Ccc0aYPRomRkQESG3E3zIAZ3GjRvrypQpgwULFuhu3LiBPXv2XC8oKPgSAFRVjTAYDJudTmfZSZMmzR4xYsSAwvPGjBnT3mQyfSSE2GO1Wp+zWCwF97uWqqpNTCbTCKvVOsZisSSX8H03d3f32XFxccbatWsbAgMD8fPPP9uEEMssFsuxh7oxxhhjfzkO9hljjLFHyGg0jqhdu7bhgU84dw5YtAgYMUKm7A8ZImfaAwPluvLHHpNBqNUK7NwJvP02cO4cevfqpew7eBDLly+Ho00bQKdDTkGBLqBfP+jee0/OUq9effMyrfz8YEpJwUd6PZ4zmeAxbhz0kycDH38sBxbOngXeeENeq3dv5OfnY0arVuLy5csEAHPr1XM+26WLDtu2AWfOyP689RbQsCHg7y+v17Qp8OmnMlBv1AgAULt2bVSrVg2HDx+Gw+FA7U8+AVaswBl/f8yePZsA4I033sCsWbMcQgh9XFycMzAwUAciOegRHw98/TWwciUwdy7gdMq/N2oExMTI64WFoXxMDJbb7YgeNQpuiiIHT4qz2YCqVYGZM+U9BwTIYH3MGPkbJCcDv/0GDBgAVKgg7w3A5f378ZuPj/A/fZraHD6MsnY78Ouv8hrduwNt2sgihKGhsv17yMnJwYIFC1C5cmW4u7sjMzNTAEgBAJPJNC0hIaFcgwYNlI8++ugpVVXHWyyW46qqhhoMhh+6detm3rFjR6WzZ8+eAzCiaLuqqpJOpxtiNBqfB5BRUFCQYjAYXq5bt67n7t27awIIv7M3qBkbG2tu06aNAsg6A3v37nXabLb3irUdDsBpsVjO3PPmGGOM/aU42GeMMcb+DaqqeplMpjl2u729wWD4zmq1vmCxWB6o6q2qqjWJqIvJZGppMBgaNm3a9P7Bfm4usHevTNUPDZXBZkaGXF8+ezZQowaQlycD6ipVgHXrZLAPAHGPsTYGAAAgAElEQVRxUJ58EjW6dUOZb7+FQ9OE9thjFLNnD841aiSqfPYZISsLmDIFeOIJICgIpp070SAri04eP45ZI0ciOzcXwdOmiX6tW5Pxp5+A8eNlmvvjj+P8+PGYu2ULCov+litXDqcvXtQdTEuDPTAQtT/4QPbj99+BhQvlTL+/P9C5s+xnsT3t3dzcULt2bfmPzZuB0FDsWb4cANChQwfh7u5Ozz//vH737t1YvXq1rnbt2igsGAgPD+C114Bp0+RMf/nyMtth9245ww4AEyciLCeHtP37kZqaijp16tz5vG02ORv/zTdAp05y1r9opkCPHnKLwNdek8sHHnvsZvthlSrB5u0tTlSuTLurVxft27eX0/nDh8tlAKmpwMmTcmvBNWtuDnSUpHB3gYoVKwIAqlSpYti/f/84VVV/MhqNjRo2bKgYDAbExMRQSkpKTwATAFQOCAiwVa1a1RwQEGD+6quvhqqqOspisTgAQFVVndFo/MTT03NA+/bt3fPy8mpduXKlfWRkJEJCQpCcnFxeVdW6Fotld7HuLEtJSXm7devWboqiIC8vD06n02GxWI4WHqCqakODwbAOAI0dO3bA6NGjF9zt3lRVDTeZTBZN067Z7faZAEJNJtPTAITVav0ewEqLxWK/68NhjDF2TxzsM8YYYw9JVVW90WhMiY6OrtiyZUvDN99809tqtc4EsOV+544fP36KwWAYXqdOHbuvr68hOjoaZrMZP/74o9i7dy9Vr17d2aNHj1tV7DQN+OknGXRGRADvvgs88wywdi3Qvz9w/Djwj38A770HNGsGPPmkPK9vX/kHkCnsmoafZ8zQEBeneF+9SgWrVyP8+HEEBQURIiKAUaOAVavkbH3TpsBvv8E9Nxd9Z83CvgEDxC+//ELnzp2jsw4HIsPDgYMHgRYtkJ2YiPPDh6Pm88+jRtu2NGPGDLRr1w7Lli0TP/zwA+llAT/A4ZDp78nJQJcuMsA9f16ur1+9GkhMLPmBbdiAEykpOFS2LKpXr474+HgCgEWLFmlHjx5Vqlev7gwICLj1vGbOlDPoGzfK55SZCVy6BDRuLFP7hw8HAPj6+sJsNmPVqlWIjo6Ge5F1/o6CAqSfO4eQKVOQGx+Pg5s2od7HH8P9tdfk+v1C1aoBS5bI36JHD2DCBKBOHaSkpKCgoEDp06cPKlWqJAN9q1UOjqxeLQdtJk0CEhJuLbm4iwULFmhEpMTHxwMA2rRp40ZEba5du/Z4QkKCW+HOBv7+/ia9Xl/YOXNhIcQyZcqgUqVKSlpa2oX3339/GwCH0WhsULZsWe/evXu7Fy2meOuV09wA7BozZoxTr9fn6fX6U3a7fROASw6HQ2e322EymeDu7g69Xm8YM2ZM4rvvvvuT6/QalStXFlFRUe5r1qwZAOCuwb7RaNwQHx9fUdM0Z2pqaj8vLy/ExMR4CyGQkpLS7sqVK2dUVY21WCxa8XNVVXUDYH3QATbGGPv/iIN9xhhj7OG18vHxKdu1a1cTAERHRxuTk5Mb4j7BvqqqzYjoZSEE0tLSdDvklnbw9fXVLl26pABAamqq7ssvv3QOGzZMh19+kenuvXsDu3bJWfdnnwWuXgWef14G9jVqyED9yhUZSLuCwuI0ACnp6Yqufn28OHkyPm3eHM369XPWjI7W4coVGYxXrSpnwGNigPXroevaFe7vvIPYggLavXu3yM7OplOnTonQ+vVJ99VX2CSE2HTjBgV37ersN2WKzmg0wtfX1zlz5kzd66+/TtnZ2Zg+fTp2Nm0qahYUkPumTTIgvnFDzuy3awf4+soMhE8/lYMWxda0p6WmInPfPlQaPFg0adLk5pdnzpyBpmm4ePEiHT16FNEREVAuXADi4uS6fUCmyrdvD7z/PrB4sVxn36MH0Lo10L8/evTogVmzZmHXrl1o2LAhDh48iEuXLiH6H/8Ql729aVaXLkBqKvz9/TXP9HRlx9q1WrTdrrRo0eJWB93c5Mx/QYHMtJg6FV5160LTNMydOxeWAQNkoN+tm/ytpkyRSy70erm8Yfx4YMFd42EIIRSdTndzMMJoNCIxMdEEwFT0uGvXrjltNtsFADAYDD0rV67sWfhd7969PbKysjzOnz/fEQD8/f1RoUKFuxaELMzQGDRokM7Ly8s7MzMzLiMjI66goEALDw9XXEUCodPp0KdPH7c5c+YsGjt27LDRo0d/B2DDyZMnlfLly8Nmsx26640BcDgc5Rs3bqyYzWaldevWBgDIzs7GpUuXULVqVY8tW7aEAlAgX18AcvmB0Wj8hIiGGQyGo6qq1rdYLLwLAGOMlYCDfcYYY+wh6XS6FtWrV78ZTKWnp1sBnL/XOaqqKiaT6ZuOHTtSTk6OZrPZKCgoSDt06JBSpUoV9O3bF5mZmZg9ezZsR47obP/8J4xOJ6DTyZTy1FQZGAMyXfzoURkwAkDLlsCGDXJrOIulxIA/PT0dANAkIQH6SZMAudWbnP5VFDn7HR4uBxJSU4F69QCDAb8sXOjcvn27TgDUtm1bbN26VduRn6/rlZyMc97eosvzz1NcXJwO3bsDv/+O4V5eujFXrmDfvn2ikaZRg6tXtfTAQGVvcDAqrl4t2i9YQFS/vtw9oJCfn6wtMHu2DNRds9KapmFeQICIf/llPNuz522RacWKFQURaQEBAcqSJUvQb906EZqfT9i+HahV69aBL74otxkMDweiopCuKHB+8AGseXk4s3+/5lalirJ161Zs3LgRPj4+mq+7u3D27ElNn3mGeuv1iIyMBBUUKNaNG5HZuLGyadMmbNmyBe+8887tD7hHDxm8z52LqocPI8BqRb2cHLme/803Zd2ASpVuPycuDhg58l6vDa5evQqHw3HPYwAgJiZGt2vXrjcmTJjQTlGUuPj4+JvZDkSEwMBABAYG3rcdAIiIiBDHjx+n1atX47nnnoO3tzciIyMBGXjfpmLFihg0aJB56tSp08eOHdsOwEAhxNXTp0+bnE7npcLjVFWtACDfYrHc3EnAaDTuOHbsWNPY2FgIIbBixYr8AwcOOA0Gw16Hw3HA6XR+Wrj0oJBer3/H19d3UP/+/XWzZs0KuXDhQksAPz7QjTHG2P8zHOwzxhhjD8loNLarWLEiAYDdbkdGRoYHgE33OkdRlCGenp4VatSoASIqDJqoc+fOgCuI8rpxAy/VrAnl5ZexLTZWBL30ElXOzsbpevWQeeQI6tatC71eL2eHs7NlobhCzZsDdrsM2vfsAYqtQ8/KygIAlA0MhHnWLPikpYmpU6dS7969ERoaKtee2+3AP/8p08uvXQM0DdeXLcPrEydi/tNPIzo6Gg0bNtQdPnwYZ7y88PSWLYoSFycvUK0aUKECxEsvofP+/XDr1ImoZ0+0e/ttxZaUhF27dkH/6qu0NjwcFU+dEhfXrydPT0/UrVsXSoUKssjg7Nny+hMmAB4emDFjBrycTmo5cKDMatDdytZ/+umn5T9mzoSWmqp9n5Cg9OjbFxHFH/yQITK132zGtJUrnRkZGTpz586ocPasSDh6lGKio6GrUAHeTz4J47/+peD99+VACgDvwjbOnIEpPx9t27bF9evXcfDgQVy8ePHmFn43eXkBY8bAo0sXDD52DIu7d4ffhx+iamH9geLCw2Wwn5srdzgoJjs7G5mZmSWfW0xQUBCGDh1qnjZtWn2n0ylycnJuW5rwoDRNw/HjxwkAOnTo8EDnBAYGQqfTKR4eHt1v3LjRVtM0X7PZDIPBEAYAEyZMeMVgMCQJIYSqqh0tFstvAGC1WietW7euTrVq1Tw2btxoO3ToUKrD4WgxatSoayVdR1XVSgaDYWSfPn3Mer0ely9f1sNVrJAxxtidONhnjDHGHt41u13WDTMYDGjUqJE1OTn5ZFJSUq5Op/sDwPWCgoLGQoh5er3ertfr23p6eob06tXLvcTU6fx8ue570SL416uHgu+/R73+/WnZ4sX4oVo10Jo1sFqtMJlMqFWrlgx6SwgO0bo1sGyZDCA//xxaZCQcDgf27NmDDRs2ICAgQFSPjib06oWX9u2j8ePHY8aMGejRvj3CvvwSHiYTRKVKwMyZoMREQKdDZNWqyoo+fXC2QgUYxo4FgoNR7bXXUK1KFTmTnZIit9MDAG9v3Hj9dQS1bAm3p56S9xQZCSOAxpqG3KNHMb1/f1gff5wOJydD0zRs3LhRGzx4sOLj4wMMHiz7vnAhtvr5IT09He3atRNUsSLB4bgt2IcQ8k9KCqp4eCjbDAZct9kEgNsecH5+PnSTJsGoKMjMzFQ0TcPQoUPh4eFBEEKuox86FFi+/K5ZEfD1vbnWv3PnziAiMWvWLAwcOJD8/f2BEyfkAMtXXwH9+kEsWgTbwYOoPm2a2D5lCp3p00e0bN2a7vjtiWTRwogIWSehiLS0NHz33XcAgK5du97lNbxl06ZNzg0bNuiEEDCZTDR9+nQkJiaWXHzwHhRFQd++fTFnzpybxQHvRtM0pKenY/Xq1ZoQgl5++WVDZmam79dff41y5crhxIkTiaqq9jcYDElDhw51y83Nxbx585aPGTPmXSHEDIvF8tPEiRN37t27t/mBAwfsNpttOYDBSUlJ0Xa7/aQQ4iuLxZJbeD29Xj+sVq1aOm9vb+zatQs6nW7r22+/fcaVNdBRr9dXczqdp4UQ31kslpyHunHGGCuFqHBdFmOMMcbuT1VVMplMqU888UR0lSpVbn6uaRquXLmCrKws2Gw2LF26FADg5eWFjh07onLlyjf3ur/NwoVy5nnAAKB6dWDqVDkbbbXiuIcHNm7cKNLT0wkARo8eLds4cUIWitPfZcx+82bk7tiBH86d09J9fRVPT09Ru3Ztql69Osr5+8u0/40bYbPZsCc5GdU6dcKWhATktGypHc/OVvQmE1q0aCFiY2Np5syZWuXKlZVatWqh7IIFcvb6iSdkv8uWlbUCnn1WrvmfNAkYOBDLBw+GpijoarcD8+fLc774AjnjxuHrAQPwWJcuaNSoEaxWK1auXKmdPn0azZo1k0XohIBj2jQc+uorXBo0SLR+8UXCqlVyj/qi6flNm8rAfPJkbNy4ERs2bECZMmVEhw4dyJVyDgDYtm0bflmzBl6enqLAaqWAwEAMGjQIuqIDB3/8IbfNq1VLXufTT+U2e4W++UbWQ5g6FQBw7do1fD9jhhCXL4vnt29XKCMD+PFH7D9+HGv27tVu3LihKIoC2GzosXAhnAYDfFavhqeXF44ePYry5cvLbApA7hpQvbosIOiSn5+P999/H2azWbz55pslL6wvwmq14vPPPxe1atWi+Ph4eHl5YfHixSI1NZWaNWuG22oMPIBJkyaJgoICatmy5W11Eorbvn071qxZg+joaK1bt26K0WiEzWZDUlISAKBu3br5WVlZjlatWnkV7iaQkZGBzZs33zh69KhwOp1dhRCBkZGR/0pISPDauXPndU9PT6O/v7/x7Nmz1uPHjx+z2Wy1LBaLU1VVvcFgyBo8eLBPYGAgZs2ade3UqVPTTCZTuKZp7apUqaIFBQW5nz9/Pv/48ePX7HZ7TYvF8mBpEYwxVkrxzD5jjDH2EIion5eXV0jRgBKQM6IBAQEIcAWJ0dHR2LlzJ9atW4cFCxbAy8vL+corr9yKMA8dkmn4CQlyrX21anIv9lOn5FZ0fn4od+0aCgN9ANi0aRM8PTxQt3170J49uGgywcvLC2lpabhy5Qo0TUNqaioMBgMCdu0S3fbsUXy3bQOVKXMrYHM45Hp8yGJvDRs1Av71LzSfMgVZS5YonVetwty5c7F+/Xr65ZdfAEDJz8931q5dW4d//EO2sXIl8MEHcmu7IUPkEoLkZDmTP2AArvfujRs3bmjo2VNBgwZy+zsi6I8fh3XyZOTmyslak8mErl27KuvXr3f+9ttvWLVqFby9vZ1Wq1WJrVyZWrq5EbZulcF2WJhcvvD77/JZWSw3g//HHnsMCQkJ+OCDD2jXrl3OyMhI3eXLl3H48GGkpaWhbLlyoqfFQtvj47Grfn1s3boVTZo0kQXqrFYgMhKYOxdo1Qr44QdZzG/fPuCVV4CoKLk0onC9fXo6vE6exKClSynF2xvfVqsmRPfulLVggVAUhdq0aaPExMRA0zQcOXIEy0wmVL92TVTq1Il+q1MHmTVqaFarVQkJCdESEhKU8LAw0OLFtwX7mzdvBgD0LFanoKgLFy5gyZIlmt1uh4eHBxGRaNGiBRUOKPXo0YOSkpKwd+9e0aJFi/sOGBRVpkwZoWkaFe58cDeVKlWCwWBAmzZtFKPRCACw2Wzw9/cXly9fppCQEHPHjh1vOycoKAg9evRwP336NObNm/cjEeVVqlTJHB4ejvDw8JupBA0aNDB9/fXXlS5dutQRck1+Wz8/P6Ww7kCDBg08HQ7HoKioKM+6desqbm5uhaeaZ86c6Th9+vRjABY/zH0zxlhpwzP7jDHG2ANSVdXdYDCce/bZZ30rVKjwQOecO3cO06ZNAyCrl7/Qti0Cz5+XAf64cTJQfucdYN48WXG/QoWbFemFENi9eze8vLzwxx9/aAcPHlScNhtiz5zRTsbEKNeuyaXNBoMB3t7eWkFBAZUrVw6+vr6iTJkySryHB4xz5gAvvAAUZiFYrUCbNnJruqNH5fZ8n3wC1K8vr6soSE1NxYEDB+BwOBAcHIz8/HwtOTlZCQ0N1QYMGCCjSadTBvft28t2T56U2/+lpeHHV18VHXr0IMOXX8rBhaFDAb0e2ZcuIb9GDexq1AgdvvoK+ueeA378Edi7F9mZmdiUny+qVKlCeXl5qFGjBtw3b5ZZD337ysr9gFznPno0MGjQbc/51KlTmDVrFsLDw7WWLVsqs2bNgs1mQ/ny5Z3x8fG6Q599hgsBAcj38oIQAl26dBG1atYkREbKHQ8KtywE5G4B33wjr/XLL7KQXu3acmZ/2zaZraDXwx4RgeTkZJw8eVJr0qSJEhYWdluF+/3792PlypV4++23kfPDD/CaMAG6efOQGxiINb/+ihMnToiwa9fw1O7dpKxZA0DO6n/xxReiadOm1KBBg7u+V/v27cOKFSvQokULXLx4EY0aNUJQUNBtx3z00Ue4fv06RowYgSLB8H0dOXIE8+fPx9NPP42qVave89ilS5c6c3Nzlf79+982MPDDDz+Iy5cvi+eff76EdBYpOzsb+fn5CAoKKnFngB07dmDt2rWHnE7na0aj8ZP27dtH1Sqa3VECp9OJyZMn37hx40ZTi8Wy527HqapqBNAVwHmLxbL5no0yxtj/KJ7ZZ4wxxh4QET0XFhZmeNBAHwAqVKiAUaNG4eSePdg1ZQpMGzfKGeTp04EvvpCBdnKy3Iru4EHAle7suh7quWbhV69eTWazGQPi4rD96FElLy8P0dHRuHTpkrNhw4a6+Pj4okHVrcjp4EGgVy+5vZ1eL/88/bT8Li9P7nPfq5dcf+9SvXp1VK9eHYAccJg0aZLinZMD/7Q0oEULoHNnoGtXIDZWBvvr1sn18+++C1itaF2pEn3y6qtoV68easTFgb76CjhzBn5mM7wnT8aVQ4fE4lmzqEd+PnREwL/+Bb8LF9Bl2TKCp6ecZbfZ5Pr9adOAESOAjh3lwMCRI3JLvWJCQkIQGxuL/Px8Zfbs2bDZbHjppZfg7++vA4Ba06dDmTQJaNsW41atwvKlS8nbbEbE558DiYm3N1b4TH79VT6XL76Qzy05Wab3Z2QArVrBcOUKGjdujMaNG5cY0J46dUoLDw9XAMD3iSeA7t2BQYPgY7ej55QpuNGxI300cSIOxsfj+vr1uGq1agcOHFD8/Py0Bg0a6Epqs1BMTAxOnTrl3LBhg+6NN95A4cx6Uf369cPKlSu1Dz/8UHFzc9OGDRumPEjRvqioKPj6+uL777/H8OHD4Vu4C0QJvLy8lAMHDpCmaTeXqQghcPLkSWrfvv09MwP8/Pzg5+d3z++dTmeN8uXLL6xRo4ZHXGExSEAOIpWwjCUtLQ1Op/OixWLZo6qqiYiG6vX6Kna7fRuARRaLxaqqaozRaFwYEBBQMTMzU6+qarzFYjl4n8fCGGP/c+462soYY4yx25lMphcaNmzo8bDn6efOReVx41DJZsPxrCzYli+XqeEdO8p91k+ckDP7e/YAJVRfdzgcyM3Npbi4OPglJ6NVfj50Oh2OHTuGatWq6dauXXszNf4OffvKon3du8vA1W6X1e7XrgU2bZJb9p08eed5Vitw7Bho0CB08fZGq19/Rcz69Yq1TBk5w/3ee3I2fNUquce8r68cCLBa4e7ujjpt22LZypVYu3atBjc3mX4/ciR0YWFoO2wYnVcU/KtbN7l/+tdfyz4CwPHjMvMgOFj2+cIFmVKvacCWLUCXLjL74fJleW9LlgDp6dAfOoRuHTsiODjYabVaC3+vm7ejKAqwYwewfz/atm2LXvPnw/7MMzgdEyO3Hrx6FThwAJg8WS6vaNMG+PhjICRE1hx47TV5jzt3Ajk58lkGBsp+jRuHm0scFi8GsrJw7do1HDx4UElISLj1TIlkxsBjjwGrV8N940bUadBA81m+HBd+/VU7e/Ys2rRpg4EDB94z0C+8n7i4OJ3BYNBKCvQBWSX/2WefVerUqaPl5eUpH3zwAT7//HPnza38CgrkNospKbcKHrr06dMHALBjx457poCGhoaSEAJHXTsYADLYLygoQKXiWw0+pD/++EMDgK5du3o3adJER1evykKKixbJ3+Kpp+44x8vLC1arNXzcuHELjUbj/vDw8AnNmzcfFhoa+hWAgokTJ+42Go072rRpE5WYmOgJQADI+486yhhjf1Mc7DPGGGMPQFVVxWq1Rt0srHY/QshU+dhY4NgxKBcuIEanw84GDTC9c2ehtW4tZ45fflnuMx8fLyvsT5ggA0iXM2fOYMqUKVAUBU2bNgXeew+GpUvRtm1bOJ1O7NmzB3a7HefOnbt7X0JDZZA8ZIhMvy8okIHs66/LQQe9Xgaws2cDWVmyWF3DhgARskwm/HL0KH7s1QtrRozAgmXLNGvt2jJALvTKK3KGf+RIWWwuNRWPP/44+vfvj507dyrOtDSZzaBpwNSpCAoKQqtWrZCbm6t88803ztv6Wr484OYmn8WqVTJlv1EjmUrftKmsyL9iBWA0AjVqyHN+/VUWONy+HfXeekv3/M8/izIFBcgcORI4fFim5QshBxR69YI3EX5PSMCeiAj8Om4cTkZEICs8HKu++grXLl4E6taV1fdDQmRWwfDhwOOPy5T+c+dkgcKQEDkgoihAzZq3diR47TVg3z4ULFiAlz78UBbi++yzW4MZVivw3HOyBsGYMUgMDFTCWrdG98aNlcGDBytxcXElF3IsQdrp0yijKARNk4MQe/bI3/PDD2UQv3QplD590KFVK+XNn39G4u+/wzs5WadUqiR/r2eflc+wTh05ENGz5806CAG1aiH24EGcXLqUcnx9kZGRAYwaBXToIJ8pZMr8pk2bBABULJKRoigK/P39tYMH/7PJck9PT8Vgs+HS999reOEF+TscOCDfkVGjZIHIJUtuO2fGjBkCAOLj459MTEys2rdvX3Pjxo0xYMAAz6Zyx4M6r7zyitloNNKMGTOuOZ3O5ywWy6n/qKOMMfY3xWn8jDHG2INxVxRFGAyG+x+5aRPw7bfAzz/LILBzZ2DYMHgFB6P1iROYP38+fTdqlNZ9xAjF19v71nlDhwI9egD79wO1akHTNMyfP18LCwtDQkKCLIJWqRKweDFCw8IAAA6HQzRu3JgK0+7vatAgWR+gTRsZ1FksgNkMvPgiULmybHf2bBnozpoFhIZCmEyYExWF3Nxc6ImQlZUFp9OpnD17FiEhISAimT7+1lsyoI6MlAF906bAtGmo2K0bggICtJONG1OV2FhCt25AUBDE889jV1wcfHx8kJmZqfv2228dAwcOlP9NcuqUXA5gMsnBiXnzgH/9SwZ5LVrIZ3vjhkylHzny1v317w8AUD76CH+sXq0ZCgp05S5elM/ys8/kEoDt24HISETZ7Sg3YADc9u6FIyEBl7t1w8U//sBJRUHzzz5DwebNcJs+HXjjDeD772XmxfHjcm0/kay3MH26DDgbNpSZBlarHDCZMgVWIXDe2xu58fFas7Q0Bdu3y/oILVvKQYydO2W//PxkkcO1a4GzZ+XAQbNmwHffyXatVvlbWCzyz40bMqOiUyfgxRdR9+hRxH/7Lc0XQuu+aJFijI6W9R+2bpWDR+7uMkNiyxaY+/VD7c8/x3WHA/ubNkUtHx9g4kSZSVI4079ggbwmACxZghYBATiwfz9+T0+Hcf9+EeTpSfj5ZyAtDTh4EDnZ2Th37hz5+vpqnp6et41QhIaGYt26dWjYsOH9//dSnMMBrFqFx7dvR/j168j96SflwsCBKD9s2K3U/eBg+bxnzJADTNHRAICQkBAymUzOtm3b3pEdUbVqVezevVszm81KZmamk4g2aJq26OE7yBhj/xs42GeMMcYezA1N08jhcEB/ty3vCo0cKYvtLVwoZ6SDg+VMNIDIyEiM6NwZjkaNlBl6vTbYYlFutqYosvhbnTq4MW8eZm7eDL1eT08++STd3CquZ08gOhreBgP8/PyQnZ1Ne/bsEa1bt75/xfXCHQS++EKm4p8+Lfd4b9VKzp4/88xth+ddv35zeYDD4YDFYsHkyZOdeXl5ug8//BAOhwNDhw5F2aAgYM4cmckwcKAMBj09YRs+HJUCA5W89HTg88+Bn34CBg5E9u7dcM/NReKnnyI7OxsLFizQ7/juOzTYuFFmILRpIwsKvvIKsH69HABISpL9nDhRBrPPPAO8/75MiS9iyalT2gmDQQeDAZ/Uri2eb9Xq/9h776iqznXt+3rmXIW26L1IR3oRBaQI9hrssWuiRk0sSUzdaWZpjKk70aiJKRp1azS2xEKs6AKpSlEQAUVpgtJ7X3N+f9ygaFVmuDsAACAASURBVMw++xvnfcc++z3zNwYDZK3Zn8Xwust1M7NZs6hiorCQKgNMTWG8YQMJaV9fGLS0ADt2wGfJEhQ0NKC2tBSDCwuhmDwZcHZGSWmpaFxczIxaWylgoKODnOBgQb5rF9M5cACm0dHM8MYNmnKwZQvKRVHMdnRkQ8vKOFy8SMGA1FRqSfDxoaCBgwMFMIyN6XtODnDsGHksvPwyeSIMGED+Bc8/Ty0IfWuAMUClQo+XFzqcnFBcW8vdUCjEoIEDyfPA0pKex+LFdM1vvAFcvgzexgb3qquRVFWFwORkMmX85BO657NnU5Bm5Uo6RkgIDHp6EL93LzBkCN6IiqIRiLdvAzY2wM8/w3THDniuWCFUNTcLeKJadNiwYVxmZiZyc3Ph6+v7Xy5NtLRQUOXoUQrwrF0LDBsG57AwqDdvhpuZmThPJmMAcPLkSWH85Mnc/vfe6zHSatmAFStY2qRJQpdSiba2Nt7Nze2ph6iqqgLHcSIARERE8Pfu3RtZXl5+Q61WvwGgXKFQrOB5PkIUxcKOjo5N69atS/uvT1xCQkLify6S2JeQkJCQkPjXiBBFkf+XSqy3bAFMTamne/p0yp4mJFCft7U1ZO7u6Ll8GVW//87FxcUhNjYWAAnq+oYGcG+9hbq5c9E4bx6ioqJEnudJyN+/D8TGokMmw5bNm6Grq6t99dVXeQMDg38u9O/eJfF06BAJ0uvXaeRfXBxlxHurBJ7EwMAAb7zxBj7//POHAQ49PT2Wnp4OpVIpcBzHzp8/j4aGBiyvqmJ8a2vfhuhob0fZuXNie3AwHE1N0dHZyeQbN6IkMhK/xMZiib8/rA4cgNW0aXihshKZ2dkQRowAN24ceQjMm0f3TFeXsvz9nebDw+keKxQQvvwS7NVXUXjrFqqrq1FUVMQBgIWFhWBnZ4djx44JPj4+fENBgTg2MpJxv/8OjB5Ngjkyksb5HTxIWfZx4+Awbhwqx48HW78euHIFJaWlyP/xR6bT0YFL+/fDMSpKbGpqQr2lJafj7Y3l27dj/8CBMJg8WTArLGQPFi0S7927xy1fvhx6enqUXe+jrAyNc+bgjoMDvN56C8qxY8FGjqTrtbGhsX+hoTTW8OWXyaRwzRoybTx4kDLetrbAhg3AkCHIO3NGaLK35/RMTWE4eDBDX4tJdjYFB1asoB73Pqf7KVNQu2ULerq7Ubx0KZy2baO16eBAAaq+VoRe6uvrH536+fMYWFZGQYuPPgJSU6Gtq0N5aSnnceUK17RwIQyNjB6+39DQEMOGDRM0Go3o6+v7dA+Ce/dobf7+O/08YgSNOszMJJ8EAC0tLVAoFNDT0xMBsK6uLmRkZHDZ77yDCbGxMsZxMDtwALEFBdyDl14CGIO9vf2fjldWVobTp0+jL+OvVCoxf/58vby8PPekpKQ9ra2tzN/fX9fNzU324MEDr0uXLo3euHHjG+++++72p567hISExH8AktiXkJCQkJB4ArVazQAMAhAGwFgmk5kxxlaJoojOzk5UV1ejpqYGpqamKCgoEIcOHco6OzthYWFBAi06GqivB+Ry4MwZ6oPPySEXfMaAMWOg89FH8Pb2FhoaGlBaWsqdOHFCrKmp6Zu5hynPPCO8WV/PcRERj6ILP/8M/PEHuHPn0NPTg6amJn7Lli14/fXXnz5a7fPPAUNDYOxYqhro7CT3f3t7MpKrraWe9EGDKPv7lPFnenp6YIzByMhIC4B3c3PjkpKSYG5uzrW2tqKsrAwdHR34u76+aGplJbR//jmnVShYW1ub2DVrFosyN9cavPEGf3nFChSMH4/q/fth5eAgWDs4cFi9GvjpJ9QPHCjcDg0Ft3o1h4ICMt47c+ah4INCQefYn9BQ3Lp0CfjuO+SnpCDT1xdgDHp6emJISAjz8PDgsrKytJWVlXx9RQXm7N7NkoOChPCDBznOzIxMAc3MSOhy3MPRfr9++y06AgIQvXYtmpqbceDAAUwOCUFNYiIAoKSkhAGAoaGhOHXqVBbn46NtrazkZ73yCpc2cqRgtmABN23aNBgaGlJLw/376N66Fby+Ph5cvy7eKypiN595Rji9aBH35q5d4NPT6dpef52y2sXFjwIxly9TRQNjD8vUAVAACYDLpEnc9xUV4Lu6kDRokNZ1wQISuamplNXPz6e2jH68JJej8ZtvcOnZZ0Wnf/yDQUeHSuOXLKF1OnEi+QvI5bCwsMCqVauwdetW1OblkQmhnx+ZGRoaQlyzBqNPnYL9V1/h9N//rn32/ff5/g75QUFBXFJSEoTr18GVldG+R4ygtaZQUNDF0JCuOyiIAi79uHbtGn777TcwxmBqasoaGxvx448/Cl4mJpielcXxfdfm7Q188QVscnKAhQv//DkAcOjQITEsLIwF97sfjDGYmZlBT0+Pq62tlSUlJbGbN282BwQEGISEhOilp6cvBiCJfQkJif9YJLEvISEhIfH/HGq12mTdunX1f/EaB2AagDt/NYdboVB8JZPJXvDw8OD09fUVMpkMFRUV3K1bt7Bnzx7hwYMHnCiKCAoKQlZWFktNTQUAzJw5E14mJmB+fiT0+zA3p6+rV8nc7OOPgenTEfrFF1zStm3YW1oK/4AAcebMmczCwgKiKIJrauIwdy5laPvmra9eDSxcCIVCgWeffRbHjh1DW1sb9uzZo122bBkJvbo6KsX+/nvqaTYwoH78I0cenU9VFbUX3LpF7vPJySQ4P/+cxNgT1Qvm5uaorq7mr169ilGjRsHIyAhBQUG4e/cuMjMzMXbsWGRmZjKPpUv5GhMTnHn2WQwZMoQ5Ojoie+9e8Y6np6hYvJgtSU0Fu3kTspkzOaxcScLM1hZF9++LolLJp+/fj5CffqJWBkvLRydw/z6NvetHQkICLmo0cFq7FvydO1i4Zw8yX3lFO33NmodZ3ZycHOgolfDU0RGv+vmxGx4enEdVFSwMDVG+axeqPvoIFmvXIvP4cTQ0NKDx3j1h7tdfc1UbNohae3u274cfRFtbW9Fz6FCuyMAA0ydNQmVlJcrLy8VFixYxjuPg5ORExwsMxDhPTw5JSUBCAjo0GnTu3YvkVaugunQJtwMCUOnvjzmbNmFBURH3U1qa9u7ixbzbwIHUj//zz4CXF62bIUOo5aGkhLL5R45Q+8YTz6W4uBgAGeW1traSa35FBa0TtZrWW38EAcLs2YhLSsKUf/yD9cydC1lUFAnuzk5aK6IItLc/XL9mZmZQcRxsf/yRglXm5mQ6mZ6Og4WFQmlpKWe+aZN2iJ8fjwEDqBXg2WeBESNgZGcHw/feE6u3b2dWxcUk9keNomBTZSV5PRQWkmdB/7F6vdzpnRIxadIkuLi4sG+//Vb08vLCM+7uHHeoX6u9UkltHdu3UzXIsGEPX+rs7ERiYiJaW1tZTEzMn47xyy+/tDY1NX0A4FcAdbW1tRGJiYlTZDJZWHd399d/2kBCQkLiPwj+ww8//Hefg4SEhISExP8R1Gq1QWpq6kmtVrsjNTX1mQsXLlyMiYmp6/8ejUYzQVdX9wDP84s1Go3y4sWLmpiYGLHfPvRFUTz66quvKn19fWUuLi7MycmJCYKAoqIi2Nrasvr6eoiiiMGDBz82ciwvLw8OurowHTUKcHZ+/OQ+/ZR60D/7jDLX8+fDqLwcdh99hFZvb3GCsTFnaGoKZm4Oxhg50g8bRuZyISGAvj5la728ADs7mJqaorS0VKytrWWMMda0Y4dQ+v33TBEWxgyPHSNTwNhYEo5PYmpKpfAeHpRBX7qURP7GjRQI0NMDrKwevr28vFx48OABMzc3h6urK+zs7Poc1+Hr6wsdHR3Ex8eL14yNmdcbb2Ds1Knw8PCAmZkZfKytOXMrKzZg4ULwL74ILi2Netjfeotm2V++jAG//cY98PSE47ffimabNzP4+z9+vjwP6OtD8PJCamoq4uLihNzcXKanp4eZc+fidlOT1qqzkxsWEMDB0JD64AG4urpyESdPwv74cXZh2DCs/Oor3ADwu6enWC6TsesNDcjOzkZ7e7v44MEDFuHnh4FBQcxq5Up2/PhxbW1tLV544QWOXb8OU40GlkuXwtXVFUFBQYz1r4K4c4eCETwPceFC1F24gKOWlrgeGiqWGBrCcNo05jNmDCZMmMDMzcyAESNgWV3NdV69Cv3oaMjt7EgE8zxl8BctAlJSqPqivJxE9pgxlA3X1X14WJVKhdzcXDEgIIDNnTuXIgFFRSR4Z88m8TtxImXuy8oAJyfwa9aA8/bGEZkMZtHRMDc3J+PGsWOpymHePKooOH8edc7OOHnyJLTZ2XBlDCZ94wXXrUP72bM4qVSyoKAgzJk7l7MZMIBE99dfk/9DdDQQFoYHKpVQYGfH/D79lG5YVBQFFD79lN7T0kKtJM8+S2u7txWhqakJcXFxEAQBJSUlyMjIELu7u1llZSWLmTEDbPHix9eIkRFVQCQnkw9Fr/FlTU0Njh07BhMTE21BQYFYWlrK3N3dHz6/u3fvdre2tjrwPO/O8/w4nuf9enp6irq7u9Xvv/9+wp8/PBISEhL/OUhiX0JCQkLiPxa1Wm2n0Wj8NBpNg0ajsVAoFBc9PT2DlixZIlcqlTalpaXz4+PjD8XExDT0baPRaHzs7OxiFy1aZHD79u0h3d3dQfHx8cdiYmKE3teHqFSqOVFRUY8NL7e2tkZUVBR8fX3h4+OD0tJSbWlpqejq6opnnnmGZWVlAQCMz58XlAkJ+IPnBW9vb44xRllTe3tg0qRHvec8Dzg4QLl2LQ4lJzPXPXtgfO0aZU2PHqVyaVNT6vPfu5dM1L77jsRbrxAfYGnJTD/8ECWmpsyzpoYZarXs954eIfy77xj09f/6xl29SuX8c+dSL39sLAmk2bNJLG7bRllkY2PA0BBmZmbs6tWrqK+vF8LDw5/qD+Dv788u37ghmGzbxq5kZCC7sVGwtLRkBiUlVJ0wejT1Yt+6RSXzEyaQOBs6FPLwcDi88w4yhgwRnV94geXn5+P06dM4ffq0kJSUhJITJ0S9PXvwY0sLysvL4enpiXHjxrExY8ZAX18fp+LiOIOJE+Hq70/3ycqKhOP9+0B+PhQ3biD0hx+QqKsrpiqVmCoIzH/fPoT94x8YOXIkwsLCmPnevYLx7t3M5OefWWZmppiWlsaWL1/O6ejo0LNqayO/A4DE6t275Bvw4AGV2jc0QJg9G7/a2wsaf39MaWhgw1NSWOSePczDwwOWlpaQvf46tSa89BLu3b2LOC8veHV2Qj86+vHgkKcnCWFLS3oGr7xC4+Z8fKi3ffRoAIBCoUBFRQWKi4vFsLAwei4GBpTl1tcn139fXzqmkRGVu/v7Q8fPD7ne3hg3fz4FlpYvp+qPvgDG4cPAtWu4bGaGzIwMTIiLg+2uXVBYWNDrEyYg388PxSUlwqJFix4FPlQqEvyZmbSWXFxwt6SEKywsRGRk5KN1k5ZG7505k8wHP/uMrr+ggCpTXF1RXFyM69evw8XFRZg5cyYLCAhgWVlZMDQ0xNCkJGoFWLLk8UXo4kKBqw8+oHugqwstY0hNTUVXVxenUChYSUkJS0hIgK2tLUxNTeHt7a0wNze3trOzC3Zycgp2cXEZpFKpomtra1cmJiaaxsfHX4qJiXl8PKSEhITEfwhSGb+EhISExH8kGzdufFkul39qaGjYWV9fr8sYQ3h4OBs2bJiMMYZe8WN88eLFP9Rqte+6det654vhQUtLi6hSqbBkyRK9ffv2TaisrNwGYFnv6wZ6enrC049KmJmZYfny5Q/LxQVBgK+vL+RyOYrKyrhyjsOdmzf5y5cvY4ijI3RCQynj+IQBGgC0tLZCJpdDdeYM9ZCnpgI//EBj5o4coRFsJiZk0LZ/P5VRJyQAGg2M3noLbh0dYoYgMKsvv2Rnz57V+tjZPd0MrT9OTtQbbm9PJdRxcSS6ZDLK7MbGAnFxEN57DzdVKuF3CwuOMYaJEyf+pTuhTCbDzJkzOfH0adRWVaGgqIizt7cXjfLymKK0FPzIkSSO33yTBOjUqYBCgZZNm1D78ceisq6O6VRWcp999hl0dHREGxsbYdy4cbyVlRXE8+eZKicH48ePh6+vLziOYwC5q6enp2t1dHT4lJQUREdHQ7FnD5Whz50LnD1L5m9NTeB0dHBdLhc7m5u5fYzB4YMPhEWGhlyfUPX29OTiDAyESzt3oqqqis2cOZP67gGIPA928CCJ07feoqkDu3YBWi0J6Lg4AMAfp05py5ua2Msvv8wUXV30zOvqaHTg22/TPa+uBt5/Hw4ffADZ9evaW7/9xrPRo2He/2Z6edF3FxcSrr1jBZGdTdf22WcQ/vgDd3/4AXl5eWz27Nl0EeXlgLMzxKYmnDx/XusoCLzhypWiRUoKy50zR2u8ciWvyM1FuY8PIpcswUOzyfXrqYy+r9/9zTcBAJYrV8KhrQ2Ozs7Q6+8ZIJfDbcYMuI0ZI3D9HSurqig4MWwYBagWLICuri4ZFfaRkEDjAS9fpiDKc89RQGv0aBoBuWYNcOMG5JMnAwBMTU0FS0tLDgCCg4O1WVlZPGbOpPv+NN58kz5DDg7AkCEwCgzEO99+i87WVhiYm7OOjg7s2rULZ86cgZmZGUxMTPCUsZXKESNG4NixYyvKy8vHqdXqqHXr1tU97XASEhIS/5ORxL6EhISExH8kMpls2qhRo5TBwcHKnp4eMMbwcDxdL6GhoVxOTo59ZWXlIgA/9f76RkNDg25PTw/kcjlmz56tu23btnlqtfrwunXrzgK4XVNT8xS3u7+G4zhMnz4dgiDgwcmTOCOTgeM4XDx/Hlx4OCI2bQKcnaHVav90jufPn4ejo6PWzMyMXggLo5JwUaR+5uZmEsevvUbGaOnplH0vKAAUCpjk5LAVvfsyNjZGUVERdu7cKRoZGbHo6Gh0dnaipaUFZmZm0NHRgYGBAVUNvPzyI3f3CxeAmho0vvQSVCoVOJUK3dOmYe+NG6LRnTts7aVLuDh8uJiakiJ6eXn9peB3dnYG4uPx69/+BgXPQ6PRsPLiYhg3NcG/oUEcsGIFg0YDQRBQvGoVCs+f16oWLuRVjInCsWMskOcRlZEBnZdeYgAe3ahRowAXF/g/Ud5///59XLt2jY+MjIS7uzsUCgUQGAi8+y71/TNGI/w+/BDgeVhZWXFOTk7ayZMn89ysWRxzd6d9T5gA7TffIEBfn8vctQuDBw+Gu7s7is+dw/VffgGrrsaE5GTkbtwIq6AgmKxeDaW/Pxnp9ZKamirm5ORwK1asYAqFgkrux4yhKgq1mjLZBw9SAGDSJBgMH441QUF8yc6d4ndnz7IF1tYwNjZGSUkJ/Pz8KOO+bRsJZ1GkazE0pK9Zs3ApI0O8umsXm3LyJI61t0PP1laMjIxkgaWlyCksRGZmJt9uaYkRR4+y6ytWoNzLi798/Lg2/MQJPi0mBq/0v5dPM3cUBHifOIFqNzfcff55+DzhF9AwcSIedHfLurq66L4DVJIPAOPHA198AYwfj0uXLsHc3JyCET09VDWwadOjMYK2tuQz4ORE2f3vvweuXUPN88+DGzYMuv3aFry8vPjc3FwBgsDhyXF+H31E9zYujrL706bR13PPQZ6WBnlsLFBcDB3G4O3tjcTERGzduhXu7u7C7Nmz/7SmDQwMMH/+fL0DBw64FBYWzgPwzZ9vkoSEhMT/bKQyfgkJCQmJ/0guXLhQVFxcPNvV1VVuZGSEp43EY4zByspKkZOTMyw+Pv7HmJiY9piYmM6UlJSp5ubmNhYWFpDJZDAyMpIXFBRMvHjxYrBMJtvg6uqqf+XKFe727dtQqVQw6jdS7J/BGIPqiy/QEx6O21otnjt2DLXZ2UgKDtZmZ2fj+PHjzNLSEgqFAu3t7VAqlTh27BjGjx/PmZqaPr6zkhLA1ZWE3h9/ULays5MyxZaWwIwZJJT69Y6rVCouOTkZTU1NrKqqCleuXEFmZiby8vKQnp6OlJQUZGdni9U1NaL1N9+wWjc3GDo7o9XbG0WNjTh08CAuXL2KtrY2IScnB9Xd3eLizz7jZFFRcDpzhrWnpbGk4mJh4NCh7MmgBUBj0pqamjBqxQqEjRqFLh8fjN66FfeNjFAzYgSzuXcPGnt74fDhw+x2WZngX17OB9XUwKazk1lv2AB9rRayF18ksWhm9mjHCQnA7t1UDdAPIyMjJCYmIiIiAo6OjpRNLikhL4KwMCrzHjSIyuJLSnCmq0sMDQnhrG1twdLSKBDQ3Q3Ex+OjujpkZWfDsqoKtseO4eadO6KvWs26mpqQFhqK+xYWSLS3R0Z7Oy7n52Pw4MEPRW5hYSFOnTrF5syZw6ytrR+dYF0dZZitrWnMn6srBW+++ope37cPxgYGrG3YMPHcuXNISUlhRUVFYmYm+UaahYUxeUsL7WPRIkClgiAIOJOWJiR3dXEeNjZwSUxEqZeXaF9RwWw//xx7q6uRW1qKgIAAcXpcHNPr7obDhg3wiY5GuLExZ/DJJyibNQuD+rv0R0WR0O4nrAVRxN8rKxGWlgbXCRPAP5H9ZoMGoejECZgOHgzjXo8EXL5M7R8TJ1JgKjMTpVZWQm1tLZXxf/ghjXl89tlHOyoqehSUoUUM2NigdNcuRLS2Iuittzg86q9Hbm4us3v7bRjn5oKbOfPRfszNqVKl7zw5jj4foaEUSJg9m/7t6wvdigqUOjkJcydPZvHJySw8PPypfz8aGxtx4cKFbq1WuykmJqb8T2+QkJCQ+B+OJPYlJCQkJP7trF+/PiYtLe3w5cuXF1+4cKEwJiam5L/aJiYmpvTSpUs3r127NqmjowPOzs78Y6ZpvRgaGqKlpYWrrq4Oi4+P3x8TEyNoNJpga2vr4AG9ZmAWFhYwMzPTvXnzpo9KpTK4d+8e19jYiOrqamRnZ8PGxoaMzP4VAgJgO2kSokeMgFF3N8qHDkWrXM4xxlBXV8eKioqQlJSEtLQ0JCQkQBAETJkwASwnhzKTqalk4Hf5MhnZGRhQhnj4cCoBFwTKxNbUAC+9RBl+CwugsRFGLi7IyckROzs72fjx46FSqfDcc89h2LBhCAsLQ1dXF+zs7Njt27cFbVkZS66vR2phITTZ2czo0iUh+uZNlunqiqbmZtbR0SHMmjWLNzAwACwtwU+bBqv2dlhu386ulpcLLoGBDAYGDy87IyMDe/bsQXp6OuxefBGWM2fC3cUFit9+Q42vL241NCDezw9lFRVMBojP1NSIPnI5uaq/8AJw4gSVul+4ANy4QZMEbG1p5zU19DV8+GO3WiaTged5IeHAAabQ1YXNJ5+Q58GUKdSvn5tLmfFZsyAMHoyK3btZ9AcfgFuzhrLyiYl0/9atg9n69QhKS0OzSgVbpRLX9fTYuaFDcdvHB29++CF8Nm1C0McfQ8/MDMXFxbh27ZpYVFTEsrKykJaWhnHjxsGrr/weoCCNhwf1sL/0EvDJJ3Q+Li6PxO7Ro8CkSXAbOZINHTqUBQYGYuTIkQwAS09PFzIyMljI8OGMeXmhOyAA/9izR7SwtGQnTpxg5ubmGODpieNGRujS1WXPnz8Pi7o6OHzyCSZOmwYvLy+GgAAaAdncTEGP1lZ8o1KJtY2NzMPDAyqVCtXV1eC/+gqyDz+kjHgv7e3tKDh+HJ7NzaLpgQMMr7322L1vvXcPg156CYUTJsDBxYV+mZVFlQd+fhQ8+OUXeEZHs8SiIhZqbw/Z+vU0/aF/JcHNmzR5IDb20e8UChysrRVMvL2Zw6uv0nM3MYGVlRUsLS1xUCbDlQEDhPb2duZSWUnPWK3GY9l+Hx/yKXjmGeT4+GDfmTPa1NRU8UpQkJhnbIwBt2+zQa+8wm6OHStePXYMHUolc3Ry6n10IvLz87F///52rVb7tiAIRzUaTZBGownUaDQ1MTExHf/aHwMJCQmJfy+S2JeQkJCQ+LeiVquZXC6/On78eFd3d3f7u3fvzoqPj78RHR1d8F9tGx0dffPixYs/VVVVjdXT07O27ROHT+Di4sIXFxdbtbW1xcTHx7dyHPfB+PHjFX0lwowxWFhYoKSkRBBFURw2bBi7ffs2jIyMoFKpEBgYCFXfzPd/RkvLI5f7554DfvgBAwIC4OvrCz8/P3blyhXB0tJSfGHsWKZNS4NBURGGXLkCuw8+ALOwoJ55Z2fqW37xRSpJ9/GhMWVffw2cP0/H+fZbKok+cIC26ewk1/6dO+Ftb8+qcnORV1WF5158ETzPg+M4yOVyeHh4wMXFBSEhIZxzezsLsrBgre7uLCoqCsHLljHDykpw/v540Nwsrl69mjPoJ+bBGGSDB6MjNhal+/czl9RUcB0dyOnqwu69e4W8vLyHkRbfqCiY944LZMbGYAYGCNy9G3mhoUK7IDD/K1eYeUkJMztwgIExyuwqFEBjI7nCHzxIpfcvvUSvPXhA97bPIK8fjl1dLHjVKsS3tMDy+++h6iutT0+nfv2FCwEDA/xy6hQKZDKYLVoEq6Agqo44dowEeFQUdFUqJA8aJFa6ubFaX1/EPvccmltaxEWLFjEdHR2wkyehM20aHH19UVpaKgqCwARBEO/du8eUSqU4ZcoU9jA7fOIEBWmee46CNl9+SeaKS5eiauhQlNbUwMLMDLh4kUwb9fXBcRx0dXXBGIODgwMGDx7MXbhwgQ0dOhQyX19kr10rhH32GfedQgGZXI7p06fDxcUFcrlcLC4uZukuLqicP18Iv3yZsTlzgK1babqCsTGQkUHrZMIEBPz8M8u6dk1MS0tjd+7cETUaDctpaUGbt7fgOGzYQ7O9w7/+Ko7eto21bdsG8y1bGO7fp9L73pF8TF8fm9vb0cxxYnBwMG1UUkJVDI6OFOQQBMiys1Flba3lX3+d0ztwAAp7+8cfoLExcOgQTRzopa2tDZcSEpiFv7/WzcODw+nTgKsrmKkpLC0tMWz/fmj19ITE0lIuYNQo6FpYIEWrmnD9NgAAIABJREFURV1dHSwtLfEw6KenB5w6hWvGxujS0cHo0aN514EDOScvL+Y0bhwzeust+IaFMb+5c1lFYSGcYmOB2lrsPHy4NTMzs7izs3OuIAjXlUrleR0dndcsLS2nd3R0rIiPj98WExPTAwkJCYn/4UhiX0JCQkLi34pGozHlOO6dmTNn8lZWVnBxcZFfv349Nj4+/kRMTEzVv7C9Ac/zc1xdXW3/SuxzHAdfX1+5Vqt1EEVxQkxMjIGTk9NjZQCMMQQGBrIhQ4Ywa2trJCcnQ6lUCgDE5ORk5unpicfE79OorQXy86lk29aWRuZ1d5OxWm4uImprWdCJE0xx9izc/P2RV1cnltnYMKPvvsNVAwPRaepUxrm4PBoj1seJE2ReFhpKbuzNzWSot3cvZbJHj6b+5EmToKyogCItTdTW1zOP3bvBbt6k4INc/lCoAQCys8Hl5MDlpZdgYmJCxxs0CAOmT0emlRVzDQl5rF+6D30TE/xRVSWW6eqy4uRkrd3mzZxneDizjIjA3bt30WvkB9kPP5Bw12phGBgInWnTELZ8OTM/cQK6N27g95EjWWlFhdbX15dM8kxMaARcYiKJ/LQ0ynx7eFDf+9WrVN7fR1ISlfW/+CKqR43C+bo6ZGRkwMXFhdoufHyA6GgIRkb48ccftSUlJVxgYCBCJk6EvLYWuH0byM+H4O2Nn5RK8Wx3N6sHWFdXlzh27Fjm5OQEPz8/9rAfvbERcHHBsYsXtQUFBdzo0aMxadIk5unpidTUVCaXy6mVQBSBSZPQwRiqOQ46nZ1oGDkS6bW1OHH8uNZ440bumFaLkoQELc6eZTtbW1l2drY2ICCAk8nISkkQBOzbt09UKBRiQEAAS0lJEc+Xl3PVFhYInDFDXDB/PjM2MYGOjg66urpYbm4u3vj0U9wEmNPHH0PxzDOUXZ8zh7L1mzfTvZs4EQovL0RERDAXFxckJyeznp4eDB85Etrjx3G2sVEYNGgQxxhDd1wc0+bnQ/v888zSyoraIsrK6JmCqip0Tp+Gx/HjMFu6lAGAsHMnYG4O1mfmN3AgCl5/HfpJSVyLvj5u+frCva9cvw9dXarkCA9/uD6rq6uRmZkJR0dH5jJtGoObGxku9j5XduQInMaN4wavXYtfmptxY8AA8caNG6yoqAgXLlxAQUEBAgMDwclkwKxZqD5wAA4FBaLP888zc3NzWFhYkPmiri5kcjkO29n1VLm4cIPu3AGmTEH8oEFa1ytXDjXY2YVwPP/N6NGjbadNm6YIDg5WXrlyRezq6joSExNTrVardTQazYTejH91TExM6z//A/HPUavVMo1GI8bExPx3diMhISHxEEnsS0hISEj8W9FoNE66urpLwsPDFQD6euRlRUVFU+Lj43+IiYnpAoANGzbMSEtL25eYmPh+cnLywsTExPUJCQmvMcbeCQoKsoyKipI9rYy/D66zE84WFlxQSIjSSqVi6OqiTGVrK/X3CgLQ0QHIZOC6ujAsIgK+fn7s+tWraGtvZ14DB8JEpaL3avtN4hJF+s4YCcivv6YMtEwGnD5NJdtdXST+bW1pJNiqVUB4OO7p6YkFra0sr7AQJSUlrLGxUfD09Hz8IpqbydDsyy/p2O7uNF7u66/J3f+992iUnZERZTIDApBmairc1dcXA+bP57paWqA4dw7YuZP2FR9P7/X1pTGAjo6PjqVUgrW3o76kROjw8GB/FTxxcnJiuZWVgsP48ZzX1KnMIi0N4vHj4h09PRaYlQWrgwehm5ZG11tdTaZso0cD8fGwKCoC9/nnuHrzJurr6zl3d/eHrvcA6HyWL6fRcTNmULZ4+nTqx3Z0BPLyKCCgUtFowpgYGAwYAD8/P6Snp6OkpERwcnJiBkolBD8/bBZFgZPLuQULFjB/f38oGxtpKoBGA5w9C21MDDoOHIBufT1rd3HRrl27lrO0tPzzRe/YAdjZoUwmY5WVlaytrU3b1NTEPDw8GM/zYkJCAtNfuxbJWVliyuTJ8PjoI5ZTXo59Fha48uABGhsbRb/AQIQdPsx016wRvSsrOUuZjAW//TaKi4uRmJgoDB06lAOAo0ePChUVFdy8efNYW1sbDh8+zESeh9bZWTv70CEOR4/SZABQFjw7OxtXBw1Cq7ExIufMAff22zTrvrmZSuC3bQN++YXWTC9GRkaIioqCXC5H0vnzmL1rF8saPx5JyclCYGAgd23rVjEjIIAVNTQgJCQE4vz56BgzBrKuLrDeAMiZAwdgUFvLlLGxZAq5bx8709yM+JIS0cbGhhkbG6NOVxcO+/bhzqpVGD9//p/vK8+TJ4WXFwV8QH8Drl69KhgbG3MeHh70+yFDaNpAVhZNKHB3h8LcHDqxsSgoLMSCBQvY6NGjYW9vj5SUFGRcvSqkJCeLOSdOiKqsLDgXFzOVSsWgVNI+vvuOAgwLF6I7Nxem1tbM4ddfgfXrEXTqlNzv999D/UtKAoZu2SJ3GjiQMcYgiiISEhIErVb7hUajMZHL5bnW1tazLS0tY5ubm1+5ePHi2ZiYmIqn/wUC1Go1p9FoTDUaTUd/Qa9Wqy1TU1MTtFrtdplM9vrly5cV8fHxCZLol5CQ+O8iufFLSEhISPxbkclkC9zc3B5zx/L392e3b982zc/P3wDgFbVaPUSpVO6eMmWKnrGxMWpqauwOHTqEqKgoREdH/8nh/iHNzSQa3d0pI25tTePrZs+mLOKuXdQvPmMG9TbHxQHHj5NhmYMD2PvvY9bHH7NrAQFwuX2b+smTkynLHhJC5fZqNZXcHz9OZdkAlU2HhgIjRtCM9Ke5nQMYM2YMN2bMGABAXl4eDh06xA0ZMgR2dnaP3nT8OGWp+18jYzTGLTqahEufU/9nnwEWFhBFkbV3d3NfnDsHURTx7saNkLW1UeXB3r1UXh4YSAJw7Fga8ff993RNr7yCAYsXcw3btgnYteupzvvW1tZYunTpo9dCQ1G+ahWeP3QIrbGxMPHwoACHoyNll9PSKBNfVgamVsPG2hqGhoZoamrCL7/8Ag8PD+3kyZMfXaCZGfXoOzgAK1eSs7tWCwQHA3/7G5V+795NYq2XpqYmADSR4KeffsKoUaMg9/QULQwMmIO3N/vuu++g29qKiXl5guuDB5zO888D48ejPTMT1osXM4/XX8cRc3N+00cfYd7ChXDp60PvY+JEwMkJY1xdmbe3N272jlZ0c3NDzLBhzHPgQOinpMBRo8FNrVYUs7LYCCcnDOvpAc/z6K2PZ7hzB2GiyLBrF60fc3MsXLiQ2759u7hx40Y4OzuLPM8za2trrZmZGZ+UlCRwHMe5u7vDx8eHx6hRD0vkwXEYMGAA/lZdjWOtrch3csKpOXOEyXZ2HASBqj9WraKMfEcHjVkcPfqxy4qIiEBaWpo2Jy2NX+zryx08eFDY8fbbGJOby1zfeQe/njiBjz/+GIwx6NbVYc2WLUj/7Tfca2vTaiMi+CxLS2R//z3qtVqmmjQJAZGRKOzpYfv27YO7m5s25JdfuFteXhiZksKwevXjFSt99PQAd+6QnwGATz/9VOzo6OBqa2tFALRBQAB9fl99la7Lzw84dQq+n38O38ZGhjFjyP9g7lysra+H7rZtXNX+/TBZtgzlPI+by5ZpbT78kMf69RSga26m44aGorWqCik1NdCfPBn+7u7Q3bABKCuDkZsbw5dfAp9/DjCG9vZ29PT0AMA9hULxQ0hIiMXIkSN5ADh58mRXRkZGNICrfZe1adOml3men6bVaot4ng/ged6HMcZ4ns9Tq9Wj1q1bVwsASqXy4KBBg/xGjRrFGhoaDPbt2/dGXV3dDQCH1Wq1vY6OzkFRFB26u7s/FgRhx7p168SnfS4lJCQknkQS+xISEhIS/1dRq9W6ADqe9h9UtVo9VKlUvjJ8+PA/1YtHRkbqFBQUzFGr1a8plcpvR40apevh4QEA0PZm1lUq1Z+FfnExlQb//jvwxhskGpcupb739etJKJaWPnp/wePWAIIg4NuPP9bW19fzAzo7tdzXX3OlpaUY+c47rN+bHm0QHEyCPi8PmDWLggEvv0yBgXv3SED/C3h7e0OpVIpFRUXsMbGvo/No/nl/TpyAWFmJji+/RMGCBSLbulVs+uILUalScTeVSk5PT0/w9vbm8vPz0dbWRtlzQ0Ng3jwKDIgiiZ3798nt/sAB+ndjIzx++w2NSiXXs2QJZKWlNK9+1iwSpy4uVB3QZzKnUAA8jwoDA3gDsLO1pXtx4QKQmUnCbOFC6rtfvZoEG4B58+bhp59+Etva2lh2djZfXV0tPjNxIrPqa2HIyqLe/atXyaOAMXqux45RhcMT3LlzBwCwcOFCLj8/HwcPHoSPmRlrzstDSlOT6GpsjHEVFayku5s77u6OZ1evhiCTYfP27dDKZNBZvBgjk5NF/upV1hgV9VB4PuTKFbpvrq6wt7eHubk5kpOTwXMcEBwM6+hoYPduqD76iFls2MDQW63QV5r/kL5Ak44OTQkAwPM8Vq1axQoLC3Hs2DHW3d0NlUrFbdmyRaivr+eMjY3BcRyVwOvo0LMbMICqPZ59FoqODkw9dQqnQ0NREhTELr37rhhZVcVknZ10vO3b6T4GBQFnzpDg73cPbWxsONNp04DvvsOcOXO4vJ4eOLm6orG3skNfX1+YPn06Z29vj7SAAOSUl2v1dHRYe3u7NvbIEb7Gykq0OniQ2f/977D384OfiwtaWlpw+J13uILOTpY5dixkp07B58gRKGbM+PNaHjKEjClHjcLBgwfFjo4OZm9vj5KSElZfX09tJgBgZUXBi19+oeCAKJILf0QEBYY++wzw8iJ/jU8+ga2ODj5dvlwcMGAAGxYZyWP/frr306bRfQGAV19FFMDd2b1be/f333mPjz6C7McfIUtMpEDhzZtkAHjwIP3toOCDHACnVCo5gAz9ioqKugCk9V2SWq1mHMd98cwzz8haW1uHmZqawsHBAUqlEn/88YfP9evXD6nV6pEAbOVyedjw4cPlHMfBxMQEHMeJAHoAQKlUbgoICAj18fHhf/311y9aWlryAVz6802UkJCQ+DN/OStXQkJCQkLiv8vGjRtXMsZa5XL5fbVaHdH/NbVazZRK5c6JEyfqPm20nYWFBUxNTfUAdFlbW3sNGjToodi2sbEBYwxxcXHo6OggIfnzzyTCg4MpUz1rFmU0tVoSOmvWUPn2mjX/9Jyzs7NRU1PD6+npoby8nC8qKmLd3d3sl19+0T72xmvXHmX2q6tJ3O7bR2XnAwYAhYUkipub/xRQ+CsGDx7MEhMTcfDgQW1XVxdw9y4ZrfUGOZ4k/exZdH38MS6dOSMWxcZyokrFD9i7l41WKqErl4tZWVnQarX45ptv8M3GjeK95ctF7YsvAiNHAhs20EiyDRvI+G/qVAqKREeDa2nB0dWrtTXNzZRJFwQq/ZfJyJNg/XoyBYyIoK/GRozZvZs1e3nRvhsaqOR6xQoSyYcPk0N+Vhb1jzc0wHL1arzl4sKek8uxYvt2tF+/znQGD37kS/DGG2RuJwhU1SCKJFaPHychLoqUqb59G8CjzD4AeHp64rnnnoNPebk4RanE2ytXsvnXrzNzf3+Y1dXB0cxMPJOQgNz0dCFi8GCMHj0aNgMGaM+EhjJmYyMEiSIZ9/WH42id9aJQKOBpbCz+uG0beiZMoPO6f5+ur39bwpO8/DLwzDN0Df08IBhjGDhwIJYtWwZTU1NRT08PdnZ2YmhoKKysrLQtLS3C5s2bxVOnTqH83j3gxx/Jwb6+HvjuOyg2b8YkKytMO3qUVdy5w847OKBjxw5gwgQSrdHRVBGwYgXwj388dkpTp05lJba2SL5xQ8t1d8P3449x28cHe/fuFQHAzMyMDRgwABzHYejChViem8sv2LmTW716Ne+o0SD41Clmb29P59JrZGnQ2oq5eXlMb8YMDI6MxKWICBRt2IDdmzcLP/30k7hr1y7s3r0be/fuxR937yLn2jXs27cP+fn5DACcnZ0FhUIhnu8zpQQetcw8eEBrpLubWhOcnSmYFxwMWFri97Nne7bv3Cl8/vnnYkdHB2OMwc7BgSpuoqPps9qfpCTMSErinV59FVuWLkXz0qW4/eWXFGDy8qL7vH8/9Do6YG1t3Q1gSldX147U1NQ2URRRUFCAtra2agDJarXaTq1Wu61bt06UyWTVzc3N8Pf3h6urK3R0dMAYw9ixY+UqlSpULpd/AWCSg4NDt7zXr6CjowO1tbW6AApp2XH2jo6OvL29PRhjIoD/li+AhITE/y6kzL6EhISExP81ZDLZy/Pnz2eNjY2WcXFxPwLoN5sM/jKZzMG3/7isfjDGsGzZMoP29nbo6urqPdmPH+DrK5hs3cpV+fhAmZ8Pq6NHaWTdgwckSvtISaFsnpsbCdPU1D8dKzs7G+np6Whvb9e2tLTw5ubm4ooVKxjP8zh37pyYnJzMjI2NqYSgvJzEbk8PidHPPiMhC5DgiIigrOOmTfS7336j7HZlJZ3HX7UcABg1ahT8/Pzw/fff84mJiRjZ0YGe6GiUlpWhq6sLhYWFQkREBGdmZoaamhqcLi5G/ubNwisDB3IwNqaM5YsvwvrcORh++SX327Bh0DExwfMeHuhev55luroK+yMj2eKQEJjp6dHs9vBwKpHesQNYt44Ev6sr7AYN4rVHjohoaGDgeeCHHx6daGEhfU9LA6qr0eHri8xBg5Dp44N5ZWWwFgTaz3vvkVh/8ICEZk4OUFFBP3t5gXNzg2NkJHYVFqLR0BAPzpyBUd96yM6mbTUaCnr8/DOJ6dGjH5ZV49NPqR3hjTcw+rXXcGvGDJSlpsLB05PM8vbtI7f/NWsoCBESguyEBFwzNWX6OTli6Pnz3A0XFzFg/nwWHBzMNzU1ieeiohDY1xLx0UePKjPmz6dSeFD1R/Hdu5j07rtMK5dDzM2lVgpT0798tg8JCqIqit4xb09iamqKlStX0mLXanmUlwO2tnxjTg6u/PqrkJyRwfht22CvVlPwJDyc1vuoUeBeew37rKzQrlAAooj8HTuEV1555VFiR6mkTLVMRs/+zTepRQRA9vDhoqO+PgV+goJQJYowNDRks2bNgr29/eMfvrVryesCIF+G8eOpPSYl5aHYR3o6FMOHI3LZMgBAd3c37t67h+gbN7iyBQug1Wr7vkSe40R5fj4MDAxEU1NTfuLEiXBxceF6enqQ2v/zeuAAtXRcuUIVKs3NFGjjODQMHy62VVTg2KpVYtfduzLfCROQkpICACjtq+ThOFqzzz9PwQKZjPaRng59pRIBkZHwj4hA7oIF+P34cbwjCOA4jgJP168D48Yh4rXXVL8pFGu7uro+bm9v1+nu7sa5c+eau7q6VjHGJvE8f4DneWzatGlHV1fXpEuXLm07e/ZsmL6+vvD6669zAFVyPPfcc3pHjhxZ/uDBA4SFhen3XaKuri5iY2O5uLi41A0bNnwhk8kGcByHu3fvorOzsx69bQJqtZoD4ACgYt26dd3/9cKTkJD434gk9iUkJCQk/im9ZfjBAHLXrVvX8P9nW1EUVfr6+rC3t8fx48dd1Wq1cd8+GGMj3d3d+X9mqscYg56e3uO/PHcO+PZblA0fzvkVF0Pz22+44+6Ot5KTofNkyTRAgvDzz+nnkSNp3viyZVQazvOIj49HYmIiACAmJoYNHToUCoXi4Ul5eHiwK1euYLiXF42327KFhObu3SToraweHcvcnPYvio96k6dMob747m4ymTt6lMqCn0AQBHz33XdCdXU1BwBJCQlwP3AAR2bPRtehQyLHcaJWq+WysrLg6emJu3fvwsPDQztnzhz+oRA9fJj63WfOhNOtWywsLg4Gzc2QTZuG9iNHEOnqyt3++Wfh7NmzmD59Oqe4fBlYvJiu4W9/o3nnn34KjBiB4JEjcXDsWPa8Ugn96mrAwuJpDwgwNsYNf38xYfBgxngeljNmkBngrl1UBfDZZxQgKS2lcXp99Pv5mS++wLZt28A/6f5/5AgJy9xcKv9vbqZn8PHH9Hpv1rcoKwsVtrboMTBA68svi+jpYcjIIAf3ggKa7T59OsTYWNQ7OoLxPPT19ZksORntly6JJ0+ehFarZdbW1iw0NJQdKS2F9+LF8Lp7l47x9tvUnlFQgFJTU1x7+22hTavlHJcuFQLNzTm5re3Te9H7EEW6B0VFlGXfsoUmD8ybR14AP/1Efg/btlEgxdmZjPVeeYXWikYDo99/x6j4eK5n/Xph4N69nJCbC87DgwSssTFVaEyahJd37MDde/dw58QJaF988c8VnH1tAD09FETx9MT27duFCWfPMndnZx6+vsDf/w4xLw9NTU1ISkrC0KFD4dQ/OOHsTIEYNzcKwgC0L29vCigkJlKFQ7+s/P3799EWECBO4HnmpKdHWfjeVQRRZPj+e3iOHk0mk724u7sjPT0d1dXVsDA3J+PL7dsBjkPP11+jIjsbV44dE6fPmMHi16wRym7d4keYmjKft98G3nwTHaWlQmZ5OWdsbPyo93/CBArGFRYC779PVSh9mX5RBLO1Rfvf/qbVarW80Cf2AZp68eqrcOd5ROjrBxZZW+/x9fWFTCaDKIq6PM/vZIxZOTk5idOmTWM7duxYJoqiQVdX1/sAzrW2tnKffvqpaGBgoJXJZMzPz49fuHDhQ5Hfn8DAQGZlZaW6du3aewYGBpy7uzt27tzZ0tXV9f66detEtVrtoVAozgKwYowVAgj468UnISHxvxnJjV9CQkJC4i9Rq9UqhUKRbWBg8KJWq33l4sWL5/6Z2/STJCcnT7S2tna2trbGnTt32hobG2/HxMRcV6vV+gqFYm90dLSZmZnZP99JnzCJjKSebRMToLoaZrNn46hKharekumrV6+KpqamzKK/KL16lQTnggWPepRlMvR88AF+Li8XLl6/Lty6dYuzsbERXVxcxHHjxnFPegDcS0mBzoULWu9ff+XabtyA/L33KLs8evRjZdgAKGvv4UFl3H0j2wDK6CuVJHAGDwbeeYfKz/v182/dulXb3d3NLVu2jOno6GBIUxOMGhrg8PrrmDx5MouIiGDh4eFgjOHWrVtie3s7mzNnDqenp0cBhWnTqGrBwQH4+WdoExJQ1NMD6wcPkCYIOFZfj6amJu2UKVP4hIQE4eLFi5xYWSmW2dqy6qYmZF+7JrpNmMCYqytlOk+fxu2gIG37V19xNpmZ4PuqF/o/l4gIQKnEDwYGTNnejgmnToFNngwVQKPanJwo2+vqSr3iFhaPu//3oqenhxs3bojp6emspKREa2ZmxhnW1dH9eeEFahl45hnK7H7yCWWzzc0fbn+rtBTnRBE+fn64aGzMovbuBRNFem9NDQUWLlwAOjpQERuLiooKtLa2YuBrryFy8WIWNW8eq6io0BYVFXG3bt1CU1MTbtbXi1FTpzL89BM9OwMDoKEB+0pLMX3LFuZdVwfHuDgmi4khod/QQGutuZl8BTQaErvffkvn8MILJDD19GhKQ2Ulic0TJ4BRoyjjHx5OQnruXGqrsLenQIO1NYn/F16AtbU1OyqTiWZffsmM580D27KF9jVyJLBkCWTe3tDLzoYiLg4XLSwQHBuLlKws8XJeHnqOHWO6QUE4eeYMTunoCKk1NYL35Mlcq1zOgr75hins7ek+LVyIzu5ulJeXC/fv32fXr19HZGQkHgvMMUbrffx4ypQ3NwMtLfQ5XbCAAmz9pjmcO3dOCAgN5ZwNDckjIjLy0WeSMXq27u6PrQ+lUon09HTx1q1bCMnMZNi9Gz0rV2L37t3a0xoNV56ejvGffcZkq1ahpLSU6wHEcYsWMbZmDZiZGQbOncvMHzwQM0xNmbazs8fZ3Z0OGBdHz8POjoJS/QIMTYaG2FtVxcUMH/5nk0Y/P3BtbXDcvFkWFBurYxcZyX3//ffampoamSiKBhzHoaamhoWFhWHw4MHytrY279bW1pmBgYFQKBSM4ziuurqa02q1XEFBAQYOHEj+Ak9BpVLBzc2NHzBgANfT04PTp09zoijO0Wg0TKFQpI8cOdJx8uTJ8suXLxtHR0d/9NSdSEhI/K9HEvsSEhISEn9JUlLS31xcXMYvWbJETxRFxb1794SoqKhT/+r258+f12WMjfDx8ZEbGRkp8/LyRl26dCmA5/lPvL29LcPDw/96XN6vv1LW+a23SPC0tdGIOX9/YMwYmJqZITw8HD4+PrC0tISNjQ1OnTrF7t27p/X396f/1Gs0QFgYrtTVQaFQQF9fH+B5VE+bhvyTJ9moIUO4IRMmYMSIEczLy+vxE6mrA7ZuhWlWFkrv3+cU+fkokstxxMpKGzh/Pvcn47U+Ro0iwdY3a7w/Li4kHPPz6buFBXD+PL6/fFmsrq7mVq9ezYyMjODs7AzL6mrox8bC3M/v4eaMMTg5OSEsLIzdvXtXuH//PvPy8iKxdOUKuf9v3w6Ym4P74APUREYi08ZGaO3uxrgTJ5jNjBmclYcHwsLCuEGDBsF061aWYWCgTbt1i6usrGQODg4o7+zEdY6DsrUV4YcPc3+Eh4vmFhbM1M3tz73obW3AiBEoPnECDUZGiEpOhu2aNTTNoK/i4cYNymi/+y49Rz+/hyZ9/QkJCWHm5ua4cuUKl5GWhmHLl4O5uVGlhL4+VR7I5VROP3UqicVewa9QKHD16lWEhITgzp07CA4OhkJHB1iyhIzYzM2BMWNwV6EQEwSBcTIZtIzBqaQEllOngre3h6+vL5eVlSV2dnaynp4eqFQqhI0cyTBtGhkOfv018NtvsMrKElNCQliFsTHqMzK0locOcdyNG+QSf+0aMHAgPV9bW2DMGBLh0dFU5j9vHq3r5cvRsHo1FDY2YNu2QYyMRNmNGyj6/XdBNzqa6ZiZPZw5/yTV5eUozMpiNvn5MH31VfD6+vS5GDeOMu2BgWCDBuGnzk509fTgjpMTTGJimHFdHZzieXosAAAgAElEQVT27GE/t7Zi1LZtCGhvZwPmzePEtja4LF8Ow9JS8h2YMQPw8oKFhQVCQkJYZGQkUlNTceXKFW1GRoZw8+ZNBAYGst6HRln8mTOBr76ic75+nYIV0dGPnXdKSooYFRXFjEJCqLVFX//xVoY+X4aBAwEAqampOHjwILRaLdPR0UFIQwNDWBjiysq0ZWVlbOnSpazHxATNeXm4pq8vZN24wSwtLeHv70/j9QBg2TLojB3LDBITMeT117m/CwIiBg+myp5586hNo7PzYdCuZ80abG5thbGNjfjss88+/Q+TrS2dI2NARgZ4X1+urKxM6O7uZoIgwMvLS/D29ma6urrw8PCQDR06VOnm5ibz8PDgzp49S8eh9SWEhIT8f+y9Z1gV59oFvJ6ZvTfsTe9dehcpKoiKgr1L7L2XWFJOYiw5GoLGk5iYWGJMYjTGxNhijxixgopSRBBEQaQoHaT3zd4z348bEKI557zfj+8773v2ui4uA5l5ZuaZZ+aadd/rXjfT/otOHX/G3bt320RR1JHJZB/b2to6jR49WlZYWIisrKysAQMG7P23BtFAAw3+66CR8WuggQYaaPBaREZG6kskkg+GDx8uZ4zBxsaGSSSSPv/DYS53uKQ7Ojpi3rx5egcOHJiur68PNzc3vEL0lUoiCocPA9nZ5Obu50f14m+//YpUmjEGMzMzmJmZISkpiUkkEjx9+pS/fv06hvj6AufOIW/NGlyMoviEkZGRevz48XxSUpIQlJrKuZaUgJ80qfs5NDdTNvboUeCDDyC5dQshKhXSDh5Ezz59kHnyJDt69CgmTpyI0tJSeHl5QalU4sSJE+KMGTOY6ttv0WJjA0NQO72EhAShvLycqdVqxvO8OGnSJOb6zjt0rLNn0bRqFcrffJNNCQujYARAWeJvvqE66NeAPXoEx0ePuMc8T4Rl8WKqZ+d5IuAlJUB2Nnzu3EFMUxPXZGEBcycn2EREULbY1RW6urrQNTTEnIkT+R+SktTFxcX8yZMnRY7jRI7jcEel4sy8vDD58GFm+PbbRLCvXCHJ+JtvkhnbkSPAhx9iVGwsvp8/H1m//ALrDuf0DowYQfXdDg4UiJg2jcoNXpPh9/b2xqU//lD79OjBs8TE7mRw6FAyQxw4kPqsr1rVKROPiooSAbCmpiZIJBKxuLiYufXoQXPz6ado3bwZhRMmiEddXdmcigo4XLhAAYiJE0kJAQCFhVgVHs62HzmC8ceOoXbnTta5Dm7e7Oxrb2tkxLQKCsQcXV12B+CTZDIsXroU0r///eW5/qm9XScOHYLKzAynZDJ1wfnz/JvjxuHwBx+INYmJzDc+XnTMzOQepKZi8MmTFBixte22e21ODhR9+kArPBynp0yB3Zkz6kWLFvFgjMolTp8GJk6ERCKBQqFQGxgYcHM++IC1rysmREZiZXMztMePBy+KFLxJSqJ7MmcO3afp0+k+WVoCgwaB1ddj8axZKKmp4a9fv478/HyoVKqXXQZcXanUwMWFnpvmZiq9eA3EjvKW99+nQF7Pni8VGoaGtG7bUVBQgNbWVigUCqywsWFoN38s//FH+Pv7c6amphg6fDhSTU3huX49V+jiAt/Jk7u/IGQy6PfogaDt23HR1hYLduygedq+nTwlcnNJgfLoEaCjA3b5MtSTJ2PIkCH/pCYDQHAwlZZs3gzvVavwe3Mz5+HhIQQGBnKOjo6vNb9ub9nXibCwMM6Q3P3/JXiex+LFi7UyMjI+MDAwgK+vLxhjePTokbKtre1cx3aRkZESAEJERIQQGRmpBSAUgAWAAgBxERERyn/rgBpooMH/GWjIvgYaaKCBBn+FCT169BA7ZPampqZoa2tzi4yMZB1t9CIjI020tbUPAfBQq9UVbW1t5wH8GBER0WFbnqdUKiUtLS3Q1taGra0tRowYISQnJ7PffvuNzZs3D46OjtTWqv3jGVVV9NE/axa528+eTWT/6lVypu9aI9+OI0eOCM+fP+emTZuG4uJi3LlzB46FhXC0t0d6cTGsra0FW1tblpiYyP/666+QyWTciD/+AK+nR7XGjo4va3cPHqSM5ZQpVJc8dSrkkycjSKGAIAgwNjbm7t+/j2+++QZSqRTnzp0Tvby8WE5ODtu6dSu809MhcBxy/P1FiUTCHB0dxZEjR3IqlQpJSUnsyJEjiIiIAACcVKmQ//774uIxY5hVcDBJ3YOD6Zx69SLDt4oKImEvXlB2e+tW4Kuv0PPZM/H2sGEMW7YQ0b9zh/YzN6dJuXcP2gUFGBgUBOsvv0SWgwNk27dTpnvUKBpnwwbAxgbzvbz4p0+fwsPDg3EcxwBg+/btQu/58zmzzZvBrV1L2c+MDJKaT5sGzJiBtm3b8I2VFWrnzwcAMsX7M7S1qR0iQPN88iRJ8i9ffiXDn5mZiQEnT/IORUXUSaErevemjgAAeSDI5cDSpRC//x4cxzFTU1N1SEgIf+/ePaG8vJx3a2kBoqJQPHQoku/dQ+mIEcKc8eN5BwcHmqfcXBpTJiOCOnUqaiwsRAQGwhlgzdbWdH41NeQd4OsLlJSAc3GBxZgxzCwuDq4PHyLewAC/btuGmRER0PoLF/6srCyk37unHvXJJ/yFKVPEcrmcrdy8GY06OhgcGsoEY2N4rl3Ldu3apR6tr88jNZUk8cePU63/++8DmZnQs7PD8zVrYB8UhF5GRrh27dpLYjl4MM3P8OHAxYuQyWR8aWkpnjx5Ivj5+XGPHz+Gs7MzBZS6ekakpdF82NrSGisrI2XCjRv0/3/5BSbGxjCqqgKfmYm0/v1FyYoVDJaW9Izk5VGmfPFiak24bdtrjQrb2tpYVFSUuHLlSoYePcjh/rvvyMQRoLl+8KBz+/bMuHrypEk8HxAAfPIJRFGEtra22NJulAgAfv7+gIEB3AIDKXjwGnC//44CpVLts2ABj/nzydciMpLm99IlKg1qaACflQXfCxeEuLg40cvL66+dNAFEPXsmFPXtC4s//hCDc3P5DD095ujo+Jfba2trw9HRUSguLmZeXl7Mp4ti59+Bubk5zDuebZDhYWpqKlQq1R4AiIyM7M/z/GWO41o+//zzNIlE0tfU1FQwMjLiX7x4oa6pqRE2b9489aOPPrr6lwfRQAMN/s9BQ/Y10EADDTR4LbS1tWf7+Ph0FqUbGBhAKpVKVCqVJ4BHAKClpXXIy8trhIeHh/TEiRPOPM/3Y4xFbNu2La2lpeU0gFae58WudfBqtRqVlZUMogirhQtxPDwcXqWl8FGrKet3/Tpt+PQpuWAvXEit7KKjgQULSC49YkTneIIgID8/n5syZQpcXV1hY2OD+Lt3ob1uHb5dtEhofPKEc3R0ZKNHj2ZWVlaiUqlk3t7eRHpyc0km/vHHRKhbW6k1mq4ukYGdO7vJ8X/99VcxNzeXAcD06dPh7OyM/fv3IzU1FQDQo0cPDM3Lg7ZEgpoFC5iFhQU4juM7rvv8+fOit7c3A4DKykpkZGRg6dKlzMramoi0hQVJ4DMyqPd4QwMRmAkTSAY/aRJlUo8dQ/mjR0x+8aIaFRU8nj8nUzxzc2oVdukSTubnCxn29hyKi+Hu7w99tRp2N24Q+dbTo+t8+hRYuxaywYPh5eX18uaXlMAS4MoyM9VcQQGPjz8mM8KwMDIabGwEkpKgMjWF5ODBTvOz2NjYV+ucraxoH7WalAf29kT4R4wAYmK6EUMjXV1EDRiAxLY2jM7Opr7yHejogNCBoCAytjt2DPn5+fD29uYBwNPTk3/48KEwYPlyjqWnw3TqVHAcB5++fflOk7nSUsrm9uhB85mRgabffsO3Bw4wtLVh9+zZUJ06BVEUseHgQUhkMsrsf/wxdWBYvRrchAkw++gjjI2PR9S5c2gdNw5qc3Mo1q4FXFzQIJPhxo0bSE9PR1tbG8JKSrir4eFq5ufHLxk/nikUCigiI2G2cSPJ3yMiYGdnx6Ju3BAtL1xghoaG9Czk5dH5+vqCO3oUDn//O6xaW7Fjxw6EhIT8qUWFL2BlhfS9e1FWXw8ASExMZDdv3hRramqYjY2NuGjRItZpOgfQvdDWJqO9wkJae7t2vVTRtCtfuOpqcDduoPrBAwEeHjxqaqizQlwcBaQSEig4VlWF12HkyJEsNjZW7PzD6tU0dlwceT84OdFx168HGIOuri7u37/P71+/Hi1jxqAhPR1iWhoYYxJ/f//ug584QS0vk5LouemKoiIIy5aBnzyZN//ySwoSAeSXMGYMPS9yOSCKEHfuRHJVFWdGhn5/idzcXDx48IAbP3Mm+LIy2GzcCHuZjHUz5vwTpFIp5s6dy6Wnp+P27dvi1q1b2dSpU7s/d/9DtLficwZQIpVKZ4SEhOi4urrqVFVVhVlbW6OrciAvLw9Hjhw5HRkZaRMREVH///qgGmigwf8qaMi+BhpooIEGryAyMpKTSCQhXYkbYwy9evWSJCcn74mMjHyb47iJCoUibMiQIdKdO3fC3NxcnD9/PmOMaWVnZ/ctKCjwb2hoUAYGBmp19JAWRRHFu3dzE7KzcT48HAXNzajIzsZpc3PY/+1v6JYXzcsj8gEQKbC2Jln2Z5+RqdmuXRAA3Lt3DxzHiVVVVQwgs7dwqVQotLXlymUyzt/NTR0WFsYDeFlrDBBxvH6dyAHHEZlLTCQSsGcP8Mcfr3y4T5w4ke3ZswdLly5FhxHghAkT2I0bN4RRo0ZxxsbGFJwQRci77HvlyhX1/fv3ebVazZqrq8WT774r5ujrc2OfPhWsPv+cw9q1dB5r1pBrfXU1kafGRiJUHcGSFSs6xywsLBSG37zJw8aGiHCHMeHo0QBjMDAwoBPgOOT06gWVSgWpry+G+/tTAMHHh4hZVhYR+YwMconPyYG6d2/4GxvD+NNPeWzbRuMHBZHqAaBSgR49IGcMq1evZj/88AOKi4vR1NQkAOguY+Z5aqP3+PHLzKubG5VqjB5NHQBMTYGyMlj4++PNW7ew89QpHDlyBDNnzoSbmxvtM3ky+RycPk2/a2kB27ej7euvYV9aijJTUxEACw0Nxc6dO1mbmRmqPvwQ16RSPPP2xhxrayoTiYujdfTee6Ry8PQEDhyA/OJFDN67F7G3bqGtrQ1vnD6NPA8PgdPS4jBxIpFJnidC2qcPlRPU1ABz5yLjxQsxvbaW2RYVIWjLFnCVlcjR14cUgL6LC0aGh8P1m28YNm7k/yzNh58fZdcBTJkyhfvll1/Es2fPqhcsWMBj5UpStdTWoi0wEC9cXFC1aJHQWFvL1AEBbMCAAQCA1tZW1NXVoa2tDRVr1kC9aRN8JBKk+fmhtLSUAcDAgQNx+/ZttmXLFri6usLOzg6ujMEyIoKIfgdJvnULuHCB1BddYWQEvlcvNOTmMsyc+fLvQ4eSCuPixZfGe6tWkWHfzz93bqalpQWO41664nMcyelnzaJ7YmhIYxUVAba2GDRoEHq6usJo2DC07toFSWgoJBIJ9u/fL5iYmLwqlT9zhpQCmZn0e14elZ6cP4+ovXuh1dCglmtr89i8mUh+SQkpVMrLKfhVVwfVjz/CwdcX006fZiWtrXhaXi7oJCSwyg0b2HA/P8DaGod++UVVXFwsCQgIEH18fBh8fIDgYBgcO0YBtK++6t76swtSUlLE33//nfE8zxQKxeuv49+EVCqFk5OTVlZW1q3IyMhFWlpaIy0sLGBpaQnL13hiODo6Ql9fX6yqqnJHe/s+DTTQ4P8+NAZ9GmiggQYavILY2NieCoVicVhYmKzr33v06MG3tLRY1tXVLbK3tw+ZMmWKjlwuR0JCglhTU8P8/f0hlUqhra2Nnj17cl5eXlIDAwP68B47FszPDw6urqjMyMBTBwekubigWUcHlpaWYmpqqsgYYzY2NnSw7GzKBne06LK1JUIilUL55Amq1q/H0fx8MaeuDgMGDEDv3r1Zh4LAKCmJXZBK0ainh2HDhnHdPn6VSiA5mT709fSohvftt4nwvvceOXQ/fEgZ9k8/pW1kMuCHH1Dl4IDSq1dF7vlz2AUHMyQnQ8/SEj6+vkze3Eyu3r//TiRj2TIgIQEt+/bhWEEBt2zfPoS5u0PR1ib2O3GCc1+5Eh5GRqykthbnGhpwTyZDmb6+WDVgAEsfNEh0GD2acXI58Le/QRg8GPezsmBtbY2mpibcuHYNBpGRrMHJCWWTJ+PJixeQyWRISEhAhbMzrkdFqdMLCjhzc3Nh9uzZTCqVCgUFBcwvIABWAwfSHFy/ToRszBjquR4SAixfDpiaIn/SJBxTqTBy4ULwS5eS/N7Pj8ixQkHBiHnzgLlzUVpVhZiYGLi5uSE8PJzJ/9w+DyAZv7Ex1XV3wMKCSP+6dWRqaGgI2NlBNmQITE1N8ejRIzx8+BBGRkaipaUlw4gR1HWgy/jPKytx8fx5DL16FW4ffcQMTE0hkUhQXl6OrNpapnfpEl7Y2EDRpw/6GRiA//BDFFVV4VcXF9xXq4WmykpRLZUyo4gIsMmTYZ2QAINjx1Dg7S0OqatjvXJzGbt8mSTys2bRQQcOpLny8QHefBPs8mX0276dufbsCaPevXGipgYZDg5o0dODXm0tht+8CePnzyExMQHn4UES8q5k0MuLMvLvvw+MHg1HJyd29epVzs3NDeoXLyBbuBDZvXrhW319pOXkQJGVxcTmZlZhaQmrJUtwoKQEsUlJSE1NxcOHD4WioiJ1m5YWCzl/nt0PCIC1nR1CQkIwcOBABAYGIj4+HtUvXsBt3z4UpKTg6d/+Jpr07s2kUim1mdPTo+DOwoWvBLs4jsPt27fZ4K7mewsXUhBoyxa6l4sWUWDO0ZHucf/+wPz5qKiuRk5ODvr16/dyUGNjuu9nz9IcV1SQpN7KitpuMgbOwADSqVPB8zwYY0hLS2P6+vrdWwECFIyaM4cCUY8e0TqNiwMmTULVli1i8P793FVPT8Fs3z5o+/kxNmwYPfdaWhRUnDULvJkZPEpLkTVzpnBeqWTqFy9Yb0FglxUK0Xf6dKa6fx8Pq6vZsIsX2QOOg5+dHePa2uiedgSwevSgwNtrCD9jjN2/fx9BgYGYN2EC021qoqBeRQXN4bFj1ELT1xfYt+8vvQ86cOvWLZExxqysrIY4ODgYBQUFSf9ZK9O4uDilUqncGxoa+uKfDqyBBhr8n4Ems6+BBhpooMErYIyNcnNze8UOXCaTYfTo0fLRo0d3+/vSpUvZnj178PXXX3f+7e9//zskDQ1EAMrLKWuelwedqVPhNngwlA8fora2Fnfv3kVVVRWUSiUXHx8PnucREBBAbeS6yrgBwNUVKoUCTw8cQIGDA+ZfucKkn30G5uf3stVdXh5YcjIsx4wRy7Ky2O3btwVnZ2cOKhXVIcfE0Pl89BHJ2FeuJPl7cTHg7U11wx2KgmvXyHlbKoV65078WFaGkbdvM/2oKAjvvANu5EjK9JqYAOPGkVz9rbco03nmDFBdDWlaGuDnh6czZsB/wQL0cXfn8Omn6KiPOL1nj1CZm8u9d/Uqnvn6ijdHjRJVpaVc4LFjMJ4+HTA3x4n9+9WSlBQ+OTQUVQ0N4hsXLqBYV5fFmZvDJCdHUKlU7O7du8zCwkIIOH0aYzMyeGV8PKysrDhRFLFv3z4OAJobGoiQbN9OmdXKSsrCtraS3L4dBgYG0NHREXbs2MHNnz8fFh0+CU+ekLHZ2rU0L1paMElOhra2NgoKCmD8mlrtiooKiB4eMH9dtnPwYKC2ljwSJk8GvvwSAODl5YUhQ4bg+vXrqK6uJvZSWUnZ43YCVFFRgYMHD6LP5MmwWbaM/B0+/hjgeUxSKBjeegvixYtQzZ6N0s2bxaioKGYgl4u3eJ5pSSTwsrLitDMy8Dg6GqYLF+LOgwd4kp6OFffvo9zYmOk8f06E65NPgPR0yloDFAyKiKASkKgooLgYks8+g3V4OKx79oSrqytkMhkaGhrw3XffodjGBuFnzuBq//4Yd/8+pAsWkCncqlU0loUFlY3ExQGZmdD38oK3p6dYOWwYSwoORsHixdB+/lwYM2YM17dvXxQUFODXX3+FVlMTGuRyOPn4YGJiInhra2DtWg4A19DQgCPGxsKbMTGc2XvvEYEGqV42vf8+kJsL8f593Fq8GHGPHrH4hw8BAKtXr4Zx//5gH3xAypYxY7rdLgMDAzLZA4hU37xJ90xXl1QP9fUU2OvT7uNZVkbBOm1tmH/9NexeR0RDQ+lZT0mh3589ozaEdXXkLRAb221zqVQKpVL5UiHQAcYoq9/eDhJZWfRTVASvzZtZ4qVLqK6u5vZMmIDRNjboq6ND7v/9+9M1VFQAkZHQ7tEDfgMGcD4vXqB5wwboOjnhb4LAbgQECPG3bnE6tbWs3sICSo5j7OOPSbVy9+7LUpvff6cSoC++oEBGSgrNTUYGLPPzscLPD9zs2VDxPCRffEH7+/uTGaWfH72DtLUpMCaKtNbWraPuBX+Cu7s7S0tLExcsWPD6/n1/glqt5gCYRkZGchEREcK/s48GGmjwvxus86WtgQYaaKCBBu347LPPTg0bNmxSnz7/vvl+Q0MDJBIJDh48KJhWVmKqQsHh11+JVA8dSrJZV1f6qG6XnIuiiK1bt0JPTw/9+/cXExISUFlZyVatWgXDbdtQ27s3ogUBhoaGyMzMVDc3N/OiKMLa0FCY09TEyQoLyVyN50kC7+JCBD0zEzWzZ2PXrl1wdnYWZkmlHBcdTQS1owZ61Cjab8wYIrrJyfSx/aeWZzU1NTh79iwKCgrg7Oysrqur48rKytibb74JCwsLVFRUdEr6UVZGWewJE4jAtBt2HT16VP3kyRMeABYuXIgePXp0jl+8Zg0e5OaKqR4ebMLs2fD29sbhw4cF28OHufyQEHW5VMrEmhpu6enTKHByEh0aGpj++vX4IT9f5GQyLFmypDvpqa8n8t6lD31ubi6ivvkGls+fw+/hQ4g2NnD5/ntwzs4v/Qq++KLbME1NTdi+fTtGjBiBfv360R/79qUMt5MTyb0XLwYGDsS9779HVEYGgoODhdTUVE5fX1+wsbERa2pq8Pz5c945PR3GNTWoWrBAmDFjxqvS5blzKfiwY0dnDf/mzZshiiKWLFkCGxsbIvqbN0MdF4eUlBRER0dDrVZj3bp10OJ5CgJYWZHp4KhRVL+dmkrBmKYmPJs+HT/FxAAA5s+fT5nhuDhcO3ZMuG1qynmlp8NqxQr0a2hAy9KlULe0IPv774U+Q4dyaGrq3hkgJ4f8Av7xD0AUIbz7Lhry86F35gxYl3r4pMRENG3bJujY2nJR7dcV0rs3QurrIS0poeCJiQmR5alTaf3I5YCrK+rCw6HatQuGXl7oqLFvaWnB7t270dbWBo7jRKVSyaZNmwbPW7dov5AQUqxcuUJmfatXE9HfsoVOqLycMvHDhpH3BcjzQqVS4dNPP+0872DG4Hn1qqg4dozpm5khLS0NLS0tqK6uFlJSUrhBgwYhODoassuXaZ47SHx2Njn8v8ZEs3riRNw2NhbHf/wxQ1QUBdk6cOkSdd7o0YPKST79lDLe27cDv/3WbZwTJ05ALperx48fz6O5ma47LIwCR/PmkRfErFmkTngN9u3bJ/Ts2ZPr378/zdPBg2QOmJlJa+jpU/IG+fZb8iDw9OwMeoiiiIMHDwpFRUXc/Pnz6TkWRXoHHTpEgYaEBFL1KBTUySEujt57dnZoamvDY55HUno6tM3NsWDBgu4n98EHFET55hsKXv3xB40XF0fn8id5/h9//IHExEQ4OzsLc+bM+ZclAampqero6GilSqVqU6vVUz/66KPL/2ofDTTQ4H83NDJ+DTTQQAMNuiEyMtKWMbZ73LhxUplM9q93aIdMJsPdrVtFq99/5+S5uUxiZ4ebU6ao7tbWwqd3b8aZmtJHa0dterssNz4+Xpw6dSrT0tJiGRkZTKVSwcrKConnzuFmQwPqeR719fVC37592YQJE9iAAQMQOGAA4wMDyaF/8GAieefOUb3vhg3Ajh3QNjKCjyDA6m9/Y7V5eTDU16cP5zFjKDs9YgRlHfX1iaxMmULBgC6krqmpCT/88IMol8sxbdo01r9/f87c3JypVCrx2rVruHv3rnj37l12//59tVtCAiebNQvcF1+QyZieHhFYAD4+PpytrS3S09Px4MEDVFVVwdPDA1CpoLdvHxxmz2YxVVVwc3ODpaUlrK2tWXlrqxB69ixv/u67LGjwYFi8+SYsb99m2hkZQGUlYkxNMWTIENYZaOiAlhbV9vfp0+leb3T/PgJu3YKdRALjZ89waMwY1MhkcHd3pzp6PT0KDrT3J3/w4AGOHDkiuru7C8OGDeM6pcHLllG3AA8PKqv48kvg0iXUtbbCPyICN6VSJjU2Fq2trTmlUsnp6OhwM2fOhI+1Nczv3cMfWlpMS0tLtLW1ZQBQfv06tOfMAXf2LGXK4+LQ6OGB7bt3Q61WQyqV4v79+ygqKhLqLCxY+YQJuHz5svDo0SPR09OTlZaWorW1FdoKBQxCQynQUV5OwYiKCqrh3rIFmDcPj0pLhby8PLZx48aXCoTkZDjdv8/6b9sGn7VrYT9hAloPH0bWoEG45ucnej95woy2bmV4++2XyhGAAhIWFsDu3Sj19sZPpaXiTQMDFrB+PbR0dEjiD6Dsu+8Eo9xcrteRI8jNzUVdXR2el5Tgbm0tekyfDsPp04kIPnpELvZnzpCSoKUFWosXQ37pEljv3iRzr6yE2tAQpZcuifWiyFxdXODi7Mx8AwIgCQoi6bdK9bKl4PTpJC0PCaEMvLY2ue1Lpd3aWDLGwPM8+vXrh/j4eAwePBh3nj8HX17O7qSm4nJaGkpKStQ1NTWorq4WDRiD8U8/sfzp0+G0dWt3ufonnxBZHjjwlfdDnq8v7jU2ol91NcOBAxQounSJ7pWzM12jkREF3UaNIt+A7dtfKSUou3IFqpYWwe35cw7BwUSQDQ3peWnFdFoAACAASURBVHZ2pk4N331HpSmvwb179wQrKyvOtr6eOkLs2kX7TptGa3rmTPJJeOedl9L8pCQgNBSMMdjZ2bHk5GSEhYVBJpPR+Uml9F6TSOja5XK6vjfeoO4IAQGAiwuinzwRYu/dY40qFZYsWYJX3q/Z2RQwWLWKyjsSEqjLhp4eBSIrKoAhQzo3d3Z2Rnp6OoqLi1nv3r2h1f78/hUsLS25gQMHSu3t7bUePXo0JSYmJmvw4MGP/ulOGmigwf9qaGT8GmiggQb/xYiMjPTmeX6ORCKxVCqVeaIoZshksq3BwcESXV3dfz0AQBmnpCRg0ybY9ujBbtnbo8jFBTGCAKSlSQC8lP4OGED18IxBKC9HdnU12tramKWlJXbt2oXm5mYYGhqK586dY7PS0zHys88gJyn/q1krqZTc8r//nmS0S5eSfNbKipz7HzyA/qFDqJPLoT1mDBGw0NBXMvedePPNzqxyS0sLjh07JpSUlDBra2tx2rRpXEcteo8ePWBnZ8diY2MRGxvLnJychNbYWP4HU1PoTJ+Okfn5cC0vB5s8GSgrg1KpRFZWFhwcHBAREYHHjx/j/NmzIkaPZnkGBjg9cKC6JSuLNzc3F319fRlAbQ5Dly/nsHcvBSmamuj61q4Ftm5F7e3bsDt9mimysykDyf1peoqKSEmhp0dZUnt7SKdPh2F5ObB6NUYrFIiOjhbGjh3LcaamlEXMzET1rFk4ffq0UF5ezo0dO5b5+Pjw3WqAhw0jj4OAAFIt3L8PFBZCx9wcrWZmkLa1wdHQkI1vd3DvRJ8+MOR5DB8+HNeuXWNSqRQGBga4evw4+nAcDPLy4PL++6hZvRr3li+H6OMDSKVoa2tDUFAQ6uvrufS0NPXcdev47B078M4773BPnz5FRkYGUlJSUFpaKixatIiDpSX5DhQUEKGdNQtoaoIIoPzzzznzgADwBQWUMV2xgiTWv/8OWWEhSfVnzcJ5NzchU1eXs7e3Z3YlJbS27t2j9dPehhIA1MbGaNu3D79yHFx694ZzWBiuZmVh9JMnaMvLw6OyMtgeOMA9X7sWiYmJKCsrw4oVK2BoaIjvv/9eOHToEPfhhx9Cam9PwROViu5bejqRxpgYUomo1XR/7O2hJZNh6rVr7LKPj2gaHc1809IgKS+nDgfjxlHN+sOHJH2Xyeg6HR2pjt7cnAIfq1e/ul5AreEAICgoCIMHD4bw6BHUy5ejZt06mDk6vmyn8dtvePH0KVJEEYJEAghCp/IAQ4eSaeFrwBij98DMmfSjVtO/ly8DdnZEzn/8kQJO27ZRAOTtt2nnzEzK8G/ahOCtW5ExahTDd9/R/MhkVALSARcXysY/fkz//gmiKIIxRkHB/v2JrG/cSIGxtWtJYdHaSufn60vr/c4dIvH79sHU2xuenp7qr7/+mlOpVKxXr17ixIkTGQSBAhdHjpDs/ttvad10UUeNHDmSKy8vR0FBAY4ePaqeP38+L5PJKNA1dy6pkrS1ScXSqxcZk27YQM9waiq9u7Zto44Qv/8OjuMQFhaG06dPo7y8HHp6/5aaH/b29li4cKH84MGDP0dGRj6PiIhIBIDIyEgDqVT6d47jZgO43traujgiIkL5bw2qgQYa/EdCk9nXQAMNNPgvxZYtWyZIJJLooKCgQR4eHgFmZmaDAIwJCgqyGjBggOSfGT0BoPr069fJVOrnn4GtW2G0bBlcR41C6JAhUKlUKCgowOjRo2Fra4vO8QwNIaxdi+pVq/CjtjaGDRsmODg4MHt7e3AcR63tBAGjLl3Cl7q6iLl5E4WFhepevXq9Xqbapw+5yjc2krRcpSJJ7bNnaNm3Dwf09ZFjZITAmTNfutq/DhIJcP48MGgQfvzxRzVjjI0bN44LCwtj0j8FCBhjMDU1xd27d2GUmMgmnzqFpKAgNOjr4+HDh3hQUSEa9ezJ2tzdsW/fPmRlZYkJCQmstbVVsJZI2OOEBNasVovXbG2Z74AB3MSJEzFw4EDWbc55/qVb/Z07pEgYMwbQ14eWtzfExkbIfvwRCaamcFGru9XcY948IhBHjhCJCQoiQrNyJRAQADMzM9y+fZsZGRlR725bW1SkpWHP3bswa++qYGdnh1fWQFwcETpjYyIeS5ZAPHMGR2/cwF0PD7TJZJjz0UeQOjl173kulQKXLsF27lyoeF6Ii4sTbbduhVb//miZMYNdu3ZNzM7OFq+o1WxYWRn06urEAmNjNnbCBAwaNAje3t7o07cvJ2tuhs+bbzJeLoeZmRlCQkJQXV0NtVot9OrVi4OFBRndKZVEdL/6Crh3D6pRo2D17rtwWbAAejU1JL9fuZIk7eXlwKlTNN9KJew++4y1KpWoSk0VSgwMBPdDhzhmYgLB2xtPa2tRYGSEzMxMnIiKQmpwsHquhwcXMGkSMzc3R4pSKVxraYHn4sVMFh0tZkydyhxmz8a5c+cwfvx4ODk5ged5uLi4sKSEBOhERQm2lpYMn35Ktd779pF64tQpyvL27En3fNYs+tfODi8mT8bZnBzWEBoqXA4IYKmPH4svQkIEi3nzOG0HB1oHfn4k+ZbLqaRkxw4ir7q69MymptLxAKoFl8sBjkNMTAxCQ0PBcRyYmRn4xEToWFsTia2u7mx9Ge3ior6XksLdvHkTeXl5gr+/Py0UuZyIaEjIK49XZWUlnj59iuDg4Jdu/OvWkW/BnDl0Pt7e1JngnXcoEDB7NilOKipoLc+bh1t9+uCJsbHoHxjIva6OHRxHwbHKyteS/aSkJMG5rIwznzcPrSNG4Phvv4n6ubmilpUVk/TtCzZiBJUS8DwFEsPDSX3h7EzKBV1d5IiiWFhczImiCEEQhL75+Rzc3Slg0UHuP/uM/ChCQ7s80jxSUlIEhUKBkpISztPTkwh6fj4FqMLDaUNvb1IYyeXUHcTOjv4mkZCKwcSEMv/r10MYNAj3HzxAWloagoKC8Od31V9BV1cXurq60mfPnvUcOHDggcjISD2pVPrY09MzdOzYsUaVlZWuTU1Nw65du3YoNDRUU/OrgQb/S6Eh+xpooIEG/4WIjIyUcRyXuGDBAh0/Pz/OxsYGzs7OnL+/v5atrS37p0RfqaRWXefOUf17WBgRSWtrgDFIpVIwxuDs7IwnT56oU1JSuNjYWBgbG3cavR3Iy1PftbXlJg0fDv++fRkkEujr68PNzY1ZWVmhp6UlLCwsUNu7t1BaWsqqq6u5jIwMtUql4hobG2HapR4dAH0ET5xIH80jR1KGLigIsrNnYRwejtScHLi7u+OfqhWqqoA1a1C3YAFib97kpk6dyrrW1v8ZeXl5kP30E+xWrsTvFhZopNZi2LhxI8BxLDU1VSg7epQZDRokLl++nNnb2+PG1atiyOrVTKGrixu9ejGlTIbBgwfD2tr6JbFuaQF++YUI25tvknqhqora4h0/Dpibg+nqwsLPDy/GjsWDU6fQ+9NPKTvs5ESZyjFjKCP5+edUqvDiBf3b7qIeFxcnZmdns+zsbDg5OUHfwwOFX3wBCy0tYdz69dxflm8MGUIZ4o5z5ThU79sH0+hoZPTsCZHjkOHhgX4rVpA82syMiAljtFacneHo58cGBAUxqyNHmPOaNcw5KAh9+vRh+fn5zM3NDf4ffojGr75iFlpaQr+lS1m3LLSzM2V+u8iVb926JcrlctbT3Jx1Oqu/8w4FbvbuBSZNwp2EBPE3Kys2duVKkmZ31ItnZxM5dnAAFAo0xccj88YNse75c3Hs9escn5rK5fn7izZOTuysSiUmv3jB9A4fRnFrqzp4wgTujbFjOZ2pU4ng2dnBx8eHNTY1sfsymRD64gXnNno0WhwckJ2Xp05PT+eamppEfZmMmSUnQ6euDlaHDjGDkBDKJuvoUCbXyIiUKevXE1EcNoyIZ0AAAEBHRwf5+flCS0uLuGLlSk5HV5fl1daK15OSuHpBECzDwpiWiQlluAcNorUE0DXOmUNZfgcHCo5dvUpZ86NHIZw/j7a0NDjb24PxPAUGRo+mgMgbbxAZ/f13YMECeHp7c6GhoZDL5SgqKhL69OlDN6mujjw6li9/ZelUVlYiOzv7JdkHXq6jadOojEalIkK9bx+t3YQEKhsZPJgCDYyhuKQEpaWlYu/evf+6Rl2tpiDZ8OHdygBEUUT8lSvM76uv2OXmZvFRUxOys7PZU0FgcY2N0NbXJ3+IyEh6z92//9JPwsEBmDQJqi1bII+KYo/t7Vn4tGkYPXIkx8aNo8BCR+cQgNQG/fq9oiTy8vJijY2N4vPnz5mdnR0sN20i1UiXtprw96e17ulJgZ7mZhpHR4eeP19fKtfYuhXyd9/F/YsXITE2Fm/dusUcHR1h0F6+869QUlKC3Nzc5IEDBx6PjY2d6+TkFD5t2jSFnp4evLy8pLGxsTaiKH4dGhra8m8NqIEGGvzHQSPj10ADDTT474SWKIqy1/Vj/qfYsoWyotOnUxu2oUP/WhYP6v/dgTNnzkAul+Pq1atCa2srt2rzZigGDqQP4r17O7dzd3cHlEqU5eSIqTzPdch/X7x4wV+5cgUAYG1tjUGDBsFdV5eIgLs7ERMfH8qAHT5MsuY33oDXt9+ixsdHOLB/P9cvOBhDutS8doO7O3D5Mq5cuAAHBwe1lZXVP5EBAG4tLXBLS0NseTlqu8wBx3EIDg5GYFISV3/1KgynTGEA0CMmBmP09bkDc+eiWle3sy5BVl9P/zF/Pn3Ez5xJGc833iDSmpJCMl61mpy5W1rog/+jj5C7caOgI5eL+OMPHpaWlIHU1aUgwZIltN3ChUTwpk3rPMeePXsyHR0dxMfH4/bt25gxYwaemJiIQQkJf02gRJFUArW13ZzBny5YIN5RKNh8R0e0kuSe/v/t20S03nuPyNLDh3R+paVU9tFulgeQhHzq1Kmdv5dGRoomH3zACfv3g1u27CVhGz6csr0ffdS5bd++fdnV6Ggitxs3UunC5MmUET10CJg/HyUlJUwikXR3cN+0iVQAGRkQvvgCscuWIU5HByZ6eizg8mUmlJTgzpQp8PvkE+xyd0edgQHjTUxgWF2NkIoKXubpSZLrI0coyIKOUxwOSCQchg4Fvv0WVtHReOfoUT4rJQW3Tp4UbdatYyZ6eujx0084WVSEhStWQH7yJN1bgJ6nRYtImdGvHwV7oqNJqeDtDfTogXHjxnHffPMNKioqEBAQgICAAD4/Px/R0dFs9+7dWL16NRG+igoi9FOn0vOxeDGRZ1dX+lm8mI5ZX4/WnBwIGzaA3bxJnTNu3SKSKZGQcV5KCp1HF+Tk5IgtLS0v14ytLWW0BeG1pQJ/aQqdnEzrqiMTb2REQYqsLFIQKZWdnglyuRxtbW2stLS0Izv96ng9e9L5Pn9OJQ4AVCoVrl69ClVFBUsZNgxW06axu3fvCgDYyhs3EG9iApOO+Th5ko6prU2y+SVLUKutjVu3bgnJbm6cC8ex8FOnoDhyRFSeO8e0nz179Rw4juYjPp4CTO24c+cObt26xQHArWvX1A7Jybzh2rXd9z1+nN5HAD1L+/bR/Bw//nIbNzfg4UOcOn5cXPXdd0zrxx/ZKYkEUVFRwvLly7l/qcwCvZ9VKpUsMjJyvEwm2+Tr69v5YGdkZEAqlaauX7+++l8OpIEGGvzHQpPZ10ADDTT4L0RoaKjyzp07q7y8vHQVCsW/v+Pp00TaLC1J1rtjB30YGxgQMdDX70b+c3JyuKqqqs7f09PToa+vj4ULFzKFQkFBgwkTiNh0qYdGZSVUL16wQmtroa6ujrm6uooODg4YOHAge/z4McTCQhh+/z2Mdu2CRKEAd/w4kYKOTGivXkBDA7B9O9iyZehx6xbzLilBlEqF+KQkdUNDA2dsbIxuPeEZg7hoEUoePxacZszgzc3NXz8Hogi8+y7YkCGoW70ap65cgVwuF3mex9ixY1lHAIULCoL2ihW0vVoNzJsH+bBheG5hgREXLqDe0BD2+fkIXLsWDW+9hYqHD5EhiigxM4Pptm1gcjk4S0sir9OnE3lYvZoy/traEFQqHCkqYuG//MIZZGeTtP7HH4nompgQoZbLiYjOmdPtErS1tZGdnY2srCxUVlbi9u3bKNbTY4Hjx0MBvNZNHQCpJ/6kdqiqqUFBUhLz++or2C9fDmtvbyLnM2dSTfSQIbRm3NwoO5yRQT9vvPGXy0ylVrMzzc0YlJ0N9uIFXTNjlN0dOrQbkaz67TcUAWLfb79lePiQsqJ+fkT+09MBxnAqIQFqtZo9e/ZMaGxsZGZKJVQrVuBmQgIaLl6E3sOHiHN0FEInTGCjxo2DQVQUMhUKFDk4wO7RIyZTKjGBMYTq6uL+xInwWrcObPx4cnNfvZquUU+PSGZGBhlQrl9PgRYfH+CTT2C6aRMCfH3Zzz174raXF0a4uKBNLkdGa6vosHQpk3Q1ujMyosz2gAE05pAhwIkTFDiZMwdXb98Wampq2IgRI8C3l6YYGhqiT58+LCUlRV1fXw8nJyfGHThA5H7dOgocSSREGEePRmRkJGJjY6Gnpwcre3vUa2nhfHk5Bm3aRMcNDSX5+J49pAKYOZOk8cbGneUw6enpYmVlJZednY309HQkJCbCasMG8WxaGrv69KmYnp4u3Lt3T0xMTBSysrLQ1NTEZWZmqtPS0piPjw/jUlPpXbJxI11vz54UoNm0iWTqCgVluIODKXg0ejRqqqqQlJLCkpOT8eDBAzQ2NqrPnDnDNTc3i46OjowxBhEAZDKwM2eAkSNRXl6On3/+WWyIiWEzjx3DzYkThWmzZrGgoCDWp08f6AYGIqqmRgwaPpzJ5XJSjkyahJqkJNRfuSIm3b6NU4WFrLGxUXB2ceGyAbywtUVQbCzLa2mBeXAwnWtXMEbvRS+vTqNMACgqKkJeXh4cc3LgkJrK3V24UBUwfHj3yMixY/S86OvT76GhgLc3apqb8fnXXyMxMVFIS0sT0tLSuNzcXOa5ezf0Q0Nh98knkF29yhLNzdWenp7/0p3f2NgYVVVVNtra2uH9+/c38/X17VR1/f7773U1NTVrQkNDH/+rcTTQQIP/XGha72mggQYa/Jdi27ZtOfPmzXOy6lrr/Vd4/33KyP76K7B1K/XCfvqU2ls1N5Mcuryc5OZZWSRHHjAA2379FS3txl99+/YVHRwcmJ2dXXcjKbWayOnx4yTBB4Cvv6a+959+CrVa3UlohIYGxKxcKTrGxjKzykp8s3o1WuRyOFtYYMa2bZA8edJdaZCQQHXbwcGAWg0hKgpJkycLD7W1xbKyMt7W1hY+Pj4wMTGBra0tcj/5BI/T0zHy119fdcruQEkJyeSjo3EiJkZ4/PgxN2fOHDg7O7+67aRJZJa2eTNJ6c+epYzjxIloW7kSn8bFETFpvz7GGCQSidjW1sYAYN2qVdCeNYtMzF6D77//HpXPnuHD1laSHHt7U6/voUPJoKyj3vlPOHv2rJiZmclGjRqF5ORkFBYWAgCCU1LQo7ZWaPjiC87Pzw/dCGhVFbUpe//9V8Y7fvy42Hj5Mlu0cSMFA7p6IyQkkOFZeTkR1l9+oSztP8k8FhUVYf/+/dj0zjvg1q8nmfySJRRsevass20cRBFNJia4MHQopu7cCRYeTlnpjrGjoyEePIjtdnZwCAwUOY4TSoqKmOGDB1wDz2NUcjJ+Gz8eplIpFqxfT/J1AOKBA4jNyVHHaml1XkhgWZl6dHMzj+XLSWkxfTplXQ0NifT7+pIU/bffgIYGPOrbF7bx8dD/8ksgMBBiUxOiFy9GZlYWdMrKsOTECdxdvBgxADw9PeHu7t5pdFdUVATfS5dgOmIEqRk6UFEBHDyIvDNnxKQZM8Rp77zzCqGrqKjAL7/8olbk5fGT6utF8+3bGdLSKGDQ2EglOL6++PzOHUilUtTV1WHBggWQyWQ4dOgQ1q9bR+oRAwMi3/7+wNixtJb79KHs+759qKyvxx+XL4v19fXM09MTarWavBO+/pprDAtDWb9+4Diu80cQBFRVVcHAwAAxFy/izXfegZGjIykW+vcHPvyQSj0AyqhLpcD+/fR7WRm9VwoKoN62DecGDBDqjYy4fInktT4choaGYmthIZty4wbS1q0THzx6xCCKcH3yBDotLRh++DC6BjnT335bvMrzbP6mTSgpKcHjx4/VdXfu8Ky6GnxIiOjn4MC8AEjaVUHVZmYoW7sWlcHB6H3tGmTPn6Nl7lwgMBBFRUUoLS1FRUUFlM+ewSwhQZ3aty+USiWnVquZWq0GAAy9fBlyqVToHRPzKil3caHA3aBBUKlU4DgOGXv2wPwf/8D1zz8XAoKCuKqqKtTV1YmWlpbM19eX9ouLQ+mTJzj0+DEWV1XB8NtvIfk3a/j/jMuXLyuTk5PvKpXKsREREY2RkZEOEolkGWPMqK2t7QKAixERERoSoYEG/+HQkH0NNNBAg/9SfP755w+mT5/ey75d5vqXaG0lKbBMRsRDpaLM6eHDRGwYo/ZXBga07aNHneS0LjMTuSkpqDEyQu8PP4Re796djvfdUFNDpCkjgwjrF19QvXdHH2pRpOO9/z5EFxfEL14sWA8bxv30008AgF4PHsCyuBjO58/jtRn5Q4eI5EybRpLYzZtR6OSE+zk5wpMnT1hjYyMDAGlrK6bW1Aiue/e++gEuCJSNXrOm04CssLAQBw4cgJWVlbho0SLKziqVZDLWpw9lCJVKuo4PPqCa5vae9YIgYO/evaIgCDAxMcGYMWOYkZERqqqqkJycjLt370KroQEfHDoEVlr6illeW1sbDq1YgeBnz+A9eTJlkS9coOucOpWywLNnE/mvqKB5BXDz5k3cvXsXS5YsgUkXNYUgCHj28CEaDxzAVUtLwcDSEjNmzOjsQoAHD+j6c3P/NC0CLl26hLS0NKy5dg2Sfv1e9nXvCgMDuv7Bg6nl2nvvEWm3taWMcxdScunSJfXTp0+xevVqHuXltB569qTWeo8fUx/ybdtQHRaG3VFR0DMwwLuiCE5LizLtXXB23jzBpLqahZw+zSCVAnv2QP3FF2g1NgYXF4fWtjYc2LwZ7x49Cu75czIhNDLCI4kEp06dgomJibqmpoZnjGHdunXgmptp3dvbU+vBwkK6rk2bSDaenIxStRqq1FScmjoV+rq6qDU1hdDWJszYu5dr7dVLNNiwgeVmZCCmulp0d3dnJSUlQnNzsyiKoqhUKrnm5mZO2tqKVfv348Knn0KQydQ6Ojpwc3Pje7q74+bYsbBZvhzOVVUUBPlz4EQUkbBoEaCvLwRMm8bxx4+D7dqFqqoq1P32G7SuX8cBd3c4uLmhqKhIbG1tZQDgWFaGeYcPA999h5qmJjQHBcHq5k2qW9fXhygIKMjMhN7x4+B278a+994TgwYPZoMGDXp57Lw8Iuft6/wV/PADGt99F6riYhjo6JAKZ+lSWgtpaRRAyc+n90HXGvgOPHsG6OpCHD4c1Q0N+G3qVPWY/v35JhcXxMfHg+M4GBgYoKysTLQ9fZo9t7NDqY0Neicmws/KCtb79r3sHtCOWnNz5K5eDbf338eOHTvg6ekJT09PeNy8Ca6qCggMJHVMcjLUlpa4MGUKHnp5gbWXs9g+eQKz0lLI2trwcPhwUWFiIhgbG8OqrY0PXLYMBcnJMDAxgba2NirKymC8dy/qli7F/qNHYWJiguHDh1P5EjoetQeIiYlRK5VK1tLSwomiCCnPY3lVFYw3baK5+QvU1tbi0rp1QvDFi9zNf/xDmBMSwuFfveNfA7VajfPnz7dkZmY2MMZiBUEY4+/vL9HX15feuXOnqampaUpERMQf/+OBNdBAg/9PoanZ10ADDTT474UoCAIAoLi4GPX19Xj27BmMjIxgZWUFxhhsduyg2up7917uJZFQffGRI5SxjowkkunuTgTX359+ABzZvVtoMjTkZstk0Lt6leqAS0ooczd1KklVLSzo4/XxY/qoLi0l6a6rK5H81FTKSs6aBXzzDdjYsQhWKDgAGDBggCojI0Mib2pCWq9e8O+QvXa9SFFEXXg4ynr1gkVKCgw8PKDavRtGNjboP2cOV2Vqqm5tbeV5nhctbWyY686dHCoqKNjQAUEgh2+5vFv9rZmZGRhjKCsrY1GTJ0Nn2jRx2IsXDDt3ovr+fejNnw+JpSU5rMfGUv/s9rZ42W1tqKysZOPGjUPvLqTG2NgYw4cPh5+fH37av1/8dsoU9mLzZvA8jxEjRogKhYKhpQU5R46IIy9fZjpffUWEs18/qi9+7z3K4FZU0JweOULlFvn5AGNITU1VDx8+nO9K9AHyGnDs1QuwsoJ7RQX3vZ6ecODAAXHu3LnMwMCAMtddiH5zczNiYmLEJ0+eoL6+nqnVaiQvXowgQehWY43SUjJLCw+nYNCaNZQ5LisjtcPp07SG6uvRMG0aKr29cV+l4s3Ky3H31i0Eh4SQBP3rr4nwf/MNjRsdjYKmJugZGOCtVavA7dlDPg1dEB8fjzRHR+49XV2Sia9ZAwQEgA8MhOKrrwCFAtoA6vX10TRuHHQ7DOYGDUJOYKAgCAIXGhrKW1tbY9euXYiNjUVYWNjLIJSTE3Wi0NGhe6xSAb6+0F65EoiLg1FVFVhlJVZs3447f/zBWWppgTt/ngn19bg6YoQYHh7OPDw8gNe0lszPz0dBVpZoHx2NjKFDeblcjlOnTqF6yBAkDB8Oi5QUOCUng4kiPRtda9dTU+GUmYnvR43iCnfuhM+DB7iydy+qq6uho1Cog5uaWM+6Oq7/iBGQy+UsZv58WD17hmfh4SiXyXDq5k2UW1nB8euvMamxEbXh4bDS1UVNTQ0OnToFbYVCsJg7F2/OmcPpDRtGczBgAB07IYFax/2Z7IeE0DaRkfghOxuLqqupHOPLL8nkMymJTBW3bKHn//JlUqu0GxN2op24suRkVN65A6uDB2H30UdAZCTc5XJ6B5GHAoOeHtSVlWieNw8sJAQ6VNZRuwAAIABJREFUa9e+4iXQ0tKCnatWYeyYMSgtLYW2trZ68uTJJBd49Iie2w8/pJIQV1fwe/eiJjwcqvx8yBjDW2+9BW1tbUjq6yF+9RWGqtUMQUE8evWiA4wdC0cdnc7j2ldWAufPQ2/LFkyfPh0nT57EsWPHAABjxoxBfX09vGfOhNvf/sbZjBnDnJ2doVQqoVAooCWVkmrnyy9fnZd2GBgYYOCmTdzNwYNRmJ3NYelSUrv4+Lx2+78Cz/N44403tIuKirRLS0snOzk5wcjICABQXl6OtLQ0u//RgBpooMH/L9CQfQ000ECD/1Ko1Wru5s2bOH/+vLquro4XBAEKhQJSqVSsr61lBrW1GDhoEAIWLnx156FDKQtXUUGS5suXyUhs/HiSN4MyvpX19ZzK0BDfAVi+fDkszc2pbjs5GThzhkifsTER6d69aUyJhFqPjRxJQYWKCpL5RkaSLL0Lhg0bJtFiTNQ6fJg9DghAfHy84OjoyPE8j4yMDLGsrAylpaVMpVJBS0tL3drayuva2cFILsfYM2dQmZCAXoGBXNiGDbD38KD0qJtbNwM6qFQUbJgzh2ppu0C4cweDr19HTFgY+sXH47pCwb4bNEiU/P3vrH7zZgzOyRECzMw4XLhApnmDB1Ntb2go7KZMga6WFlQPHrw2g2lmZob3Fy5kqj59cOwf/4CtrS2uXbvGTMrK4JeQAHNRZOaLF0Pr2TOao8OHKXt/9iz1J3/2jMoXrl4lp++kJGDjRtQHB/P/1Jhx+nRIZ87Esn/8g/v5l1/Ue/bs4d3d3dXD6+p4gxMnIP7xBxITE8UrV64wmUwGDw8Plp6eDm9vb/QaO5YIUv/+1C5QJiPZt7U13dvr12m9nDpFPwCd41tv4eqNG0BtLVrLygQriYSb9NtvyOnXj64nO5vKMRYsIPO6jz8GLlyAR14eEg4fFu7s2iUOTkrisXgxZdkbG5FRXo5b58/Dw9VVrfvWWzx+/pkIaEkJKUjagx03btwAAEgjIqiU5Pp1QBTh+vQp9+jhQ7H0zh2mq6WFQJlMLX7+OXftwAHR58ULzry2lkoarl2j0oV2eTYGDoThsmVIz8lBo7Y25qxcCa0NGxDm5UXO92vWILWwEKipYbcvXRJiY2Mhl8tFBwcHNmjQoE4m6uDgAOzdy7BrFwYuXAjIZHj69KkYExPDRFFEnlSK1hMnoF1bS8G1DRtoblQqYOtWmH35Jf4f9t47LorzXR++ntmFhYVFWHoTQUClCIiAICpYsRN7N9bElqImmiZii6ZYookak2gsscTYeyMgAiIoRSkiiqA0kd522Z35/XGzFMs5Ob/3Pd/3fN+z1+fDB4GZ2Zlnnhmf676v+7q/DAoCampQVlcH3bNneTs7O+Hdd98VYcwYCjxdugT06YNRVlZovHIFd4uKsHPJEnAcB2tLS+hlZOC6QoGUX36Bs7MzP3DgQE5XV1f4ZMUKOk9BoOCIrS0RYhMTev5ra+kiiovpXZGcTM9y9+6ARIIamQx6oaF45OcH52PHaNu7dyk4pcHmzXS/3kJqwRhUcjmyu3Rh2L2brnv6dPIY2LyZlCgDBkA0YwYMFQpSY7i4vHaYPXv2CAt+/JHphYfjfklJ+xKjceOobeX69RREs7EBn5WFRltblVQq5Xie5wwMDEh1Y2ICtmYNGfJt2ECBjSVLgJ07gfh4et9dvEjvl8xMgOPQtWtXfPnll7h9+zYuXbqEq1evoqmpCd0HDxaGTp/OYGsLgDowtMDHhwIPbxmXkpIS/NJc/uDp6alGaakIMhm9T/v2JaXPfwG2trbUoaANjI2NJTo6OhMiIyPPRkREFP2XDqiFFlr8S6El+1pooYUW/0vB8/yzvLw8zw4dOohWrFgBlUqlqWNl2LABymPH8K1cjoeNjfwkd/f26TC5nDJsFy8C8+ej0MMDKb16wauoCLbz5iF/0SL8cemSIJfLIRaLWWFhIXbv3g1ra2th/vz5DA4OVAMsCFTLnZFBRCsujhbGqakkB372jLLJ4rf/d6V48kTQkUhYrb4+7ty5w2JiYsAYg7W1NVQqFbO2thamTp3KOI4TqVQqVFVVoUOHDhB/+inke/YAcXEMmzdTZrZnTzKT++svah2nVBKJGDmSFv4aDBsGrF8PZVERrEpLIRKJsEvTzq20lLm5ufFWeXmcyNyc401NwXJyyAbezg4A8CQ6Gkd//x1dHj6E3+7dJLc/f56CAW0y7pxUCt3evTFjxgyA59E7IwPPHj0S+BcvWM2ECZAoFMCMGYCjI+2gUpGJ3ujRJO2+f5+IGMcBNjZQ2dlBBUCdl0cE/E1wdAQ2boTuiROYO3euqKKiAmfPnmXHk5Lg06ED//ivv5Cbm8uCg4PRo0cPVl1djXv37qGkpETQ19dn8PGh4MW6daQI2b+fgiUiEZG3RYuIkLdRYTwuLsatW7cwcccOdO3alYuLi8NWCwt88e67pOzIy6OxKyqia9yyBRg8GLrz52OKQsElW1mh4cEDlK1YARtdXTScPo2Y4cPxwYED0HV2FsHEhAhbeTkQFgbs2gUcPYo94eF88J9/chM7dxZ0w8IYFi6kMo/Ro+GUkABnqZR5RUejRi5H2P79onKFArmGhjiSnw+P4GD0HzqUgkD19RRM6dGDSg0ePEDdO++gMT5e0Dc1Ze0MD8eNQ9ypUwiKi0OPR4+41GPHkPPoEaKiohAcHNxeYm5pSdd78SIwejRWrlzJ6urqkJaWhitXriDv+XN07dqViGxeHpFMtZoy40FBdIxZs2DWrRvmrV3bemCJhMjo4sUUqIiJwaPhw9GYmyt8tWQJ4zgO2VlZkEVG4uDUqQCAwMBArrl+vLWrAWPURQKgbPqLFxTA05Q0rF5NpT+CQMaZAHDvHkyKi7F9zBjUGhoiQnNOY8e2b9l36dKb52cbGBkZob6+nnuQlQV3d3fyhBAEeo+cOUPt8kpLSdXxhqDl1atXUV5ezkrs7JCfmqqulUhgaWnZ3gTgiy/IZyIpCdi7F00ffICX/fuLu+vqYkD//u3Laxij4JWtLRkKjh9P7xUdHTqvhQtpHr7i71FbWyvo6elBU06R5u+PEFPT1+UeAAUyrlwh9cSwYa/9WSaTgTEGb29v9O/fX1TR1AQTgAIP9vb0PF24QMGZ/0sEBweL7t69G8rz/EoAH/5fH0gLLbT4b4eW7GuhhRZa/C8Fx3GFgwYNQkBAAEQiERnSqVS0EFy2DPd8fARVYiLT1dV9s6vzqFGoWrECxysr1SUqlahjx478gcePuYDiYkGycCHznzyZD33/fZFmMfzbb78JBQUFLDExkff396djMkaExtKSMmiMEdnV0yPiEhLyn16H5PBhrtrAADzPw9PTk92+fRsDBw5EUFCQZhXeshoXi8Wtdepdu5Ic9tw5cgPPyyOpet++FHAQBCLfQUG03b59ZFAXHQ04OUHgeRxvaOCLpkzh1Go1unfvzpeVlbHCwkIWGBDAmS1fjh8nTcLZ+np4qlT8yPp6Lu3hQ3h4eODy1auCu58fG7lmDZEzxqgkYtIkkrvHxxOJEouJPJSWAl9/DcmDB+iso8NyBgwQYnR04PHFF6ydkWB4OGXTT5ygn6uryYn9jz8AOztUbNoEk7VrYREaios//iiEzZnD3tiiS1+fMpLjx8PExAQzZszg6ocMweWLF1l5eTk/b948Tt7svfDjjz8KAFhZWRkrKyuDmakpqTAcHKgsY+TI1uPKZERcz56lAEczrKys0KFDB/7evXtC165dRRrTSI7jKADTsydteO8ecPgwEfYXL4B9+6Dv4oKeLi74a906obiqSmhoaODY/PkYNWoUJDt3tn52URGVOQwbBgwejBQzM5Q8e8YZzZkD2y5dGGJiaLvsbNz38BDuPHnCnjs4IMPHBzzPY4WPD0wDA2EKsKozZwTrb75h8POjsZo1q1Wd8cMPwMGD8M/IQExMjHDo0CHMnDmzdZCXLsXCAQNw7/vvcSM2FuXHj/Nmjx5x7hERAsdxr9+MUaOop7ogAIzBwMCgJft89epVddeuXUXw9qas+Z07FKRKTGxtfzduHM11gI5x9Sp5Vxw4QPdo4EBALkeRRAKxWNxyDl1qa4GQEHTp3RspKSk4cOAADA0N0dTU9Ob3wdy5NMbr11NGPymJPn/r1vbbLVqEMCsrHPLywheaLPPduxQUePGivcze35+UAm8whQQo6yyTyQSxWNw6boxRIOP0aXqf5eTQ718p8eF5HklJSUL//v1Zp9BQnL15U9SkUiE8PLx1I0GgeZqVRQFOGxsUvXghvL97N3vq6IiqqChBPyaGwdCQAoSGhhTguHqV3mHe3qR8GDuWVEFZWRRoeQUBAQHszp078PPzw8OHDxGwciXblZmJLmPHov+rAQWAPE4iIqid4it/k0qlsLOzU6WkpIjv3bsHAPjyyy8h0pS4HDxI8wSgefUmY9H/BEVFRVAoFOVqtXrDf3lnLbTQ4l8KLdnXQgsttPhfCo7jgq2trVuc7gHQgjQiAurMTFxKTGQAMFCTkXsFR6OieLu8PC5ALuec1q6FVCrl6uvrkZmZyRyVSsgjIkQQBJKUA7CwsGAFBQVobGx83Rk2K4sWxl99RYROJqOWfv+A7PsrFGj47jukXruG0tJSAADP87xCoeAkb1hYv4YRI4gA/vYbkfmLF6n/eGoqEZcpU4DgYMpKN0u1H37wAU6cOAGO47By5Uo0NDRAJpNxDQ0NePbsGazv3oVoyRJMnTYNCQkJgtfy5dyFly+FZBcXlpqaihcvXrDhw4fT52vGPyWFvp8+TcGFadOAjz4i+e/hw9T2bMECYNkydFQomPzoUfW3334rEovFgkwm42UymUh36FB0sbSEt+baTEyIgDUTRXNzc5j16qXerqMjasjPZ0OmTQP7/ntqf9YWAQEUACkoaFENSD/7DO/k5DDcvNku8zlixAiWl5eHu3fvorKyEmYjRlAbxK+/bi/L1kAkorr70aNb6sylUikcHBy44uJiHkALuWmpkdfg+HHax8GBlAOlpeDGjoV01ixMmzePAWDHjh1DZmYmzNt6LowbR5nMvDxUr1qFRzNn4vzgwXD38VHbZmWJMG8eXWtRETBrFmwsLdm0GTNwcuJE4bm7u9CgVLLDhw9j/PjxzFCthtXLl6zLrVsofucdmBUVQdzccQIAZYI//BBcbS169erFRUVFYc+ePfzo0aM5CwsL4PJlXLh+HckXLsDX15cPApjzjRvgevRgmvvUDsHBdEwPj5aAgsY00draupUZcxwRyf37KftbWkrGlHV1lHVftozm9JkzJCU/dIi+5s9vnn4p/KC2LeAqK4H58zHIzw9OTk44ceIEamtrwRhDU1MTdNq6vKvVVGJx5w7V7HfqRF062npf/PkneTbExCDhyBG1m0Qiaun20LEjkdBX6umxatXbZfygevuamhpWV1f35g1EIirLsLWlsSgpoXIHAOfPn4dYLGbdnZ0h69oVPocPC0nJyUypVKKxsRF6u3fTOyE1lSTwKhVl6r/+msUePIhULy9YduzI5gMUrLC3J/Lc7FeCI0eISJ892zoGWVl0TmVl7TwNDA0NMX78eBw9ehT6+vrqpA0bRHW1tUJsbCxzcHCAs7Nz++uaMIHUMvHxrQqONpg9e7YYAPLz87F3717Exsby/fr1o8GdNo2+LlygLgvOzlRm8Qa/k7dBKpWC53kzsVgcu2nTpkeCIHjwPL/h888/3/mf762FFlr8K/Gf9uDUQgsttNDi/39Yu3btNAAOHTU902traRE8ZQqQlQWeMZiZmYHjOOjp6UFj5KdBRkYGcnNzOfeDB+Fx5gyTNhMUqVQKX19fyAMDgV9/JeO9hQuB6uoWE7qamprW/3tiY4mImJiQrH/+fDL6k8uJiBQU/McXkp8PyejRMPL0RH19PUJDQ8FxHK5fv85t3LgRhYWF/2xAOI4yk+fOkeP80qW0aD91Chg8mKTJv/0GPHkCxcWLuP/FFxjG81ju5saJb92CrKQESE2F/pMncLGwgCgqCnBzg5UgoE9ZGcscNYqXvnjBPB48wIv79zHj778Fs0ePiBAEBtLx/f1Jkm9pSSTpzz+JAGn6zGdmtmQ4JRIJZsyYIfrggw8wY8YM1q1bNzZw+3bBsb5eOP3gAdLT0+m6bGwoy1hZ2XKpjx8/FtUZGWHJwoXgysqAigoiZq+ivr59RnXbNgo8vAJPT0/k5eXxxuXlSPryS6hqa5Hcowe2cpzwu6UlnzJlChISElBdXY3a2lrUW1gQ8a6paTlGYmIiMjMzMXLkSA4AHBwc0KNHDyEmJgYqlar1w2JjiVABwJ49dH/OnCHS04y6ujoeAP744w+e53kKPDx4AAwfjhs3bmC7jg4q7e2F5U1NGOPgIMKAARRAqKsj8mNpCbmFBaoyM5HZsSMbsXcvN27fPpafn88qV60CLCzQxdoa+cOHC78NG4Ynr85Rxiir6+CAvioVPvnkEzDG2M6dO5GamoqG48cx9OZNSCQSoampSXD9+GPGpaXR3PP3p7nwKhYvputtRlNTE/T19flx48a1RAbu7NkDdW0t1cj/9BMRwrNnaV5fvEgZfKWSgjBXr9Lc8/ICli5F7erVUCgUnEvbmvbDhwEDA0ilUnh6emLUqFFwdXWFIAjYsGEDvvnmG+HYrl2o9fODet06IuYffUTBhuXLaUy/+671eFevAo8eobisDPn5+aIhmjabACku/Pxev+4RI+j+vuU5VigUAIC0tLTXA4iRkUSo+/UjYiuVAnFxUCmVOHHiBNLT0zF27Fh0MDcHTp/G4CFDmLu7u/rWrVvC5jVrUD5oELBxY+vxxGLA1RWPTp3ic/r1w5Jr12Bz/jzu3r1LwRN9fQrIfPMNbX/sGI31/fsULAgIoJ8PH27tGBEWRpJ8pRKdbWywfPly+Pj4iCSHD8PF3p7JZDI+MTFRKC0txWvds1QqUv/cv//GsQGAvXv3AgDMzc1b37kLFpBKSS6n915JCQX2srMpKPgPoFQqoVarYWZm5jxkyJCwd955x47juFX/aGcttNDiXwot2ddCCy20+F+GNWvWDNXR0fl51qxZei1Z/fR0WnSqVICODnR0dCCTydSMMXz99dc4dOhQC9tvbGzEmTNnhKFDhwrGtraU/d7wBjWnvT0weTKZxg0aBNPmrJ1EImGKjAzKoickENGUSklqrsmA6enRovltve41SEkBOA7PCguhq6sr2Nrawt7evmXFWlZW9s8HJjubWrx99hl9rqMjZc3u3KEsaY8egLk5JDo6cDYz44vu3BFKjh6l2uLbt5Ezd65Q1r8/GjdtIrJ19ixw7RpMd+zA0CVLuJD0dFg+fw6eMRTX1rLfjx1DulotxDo58ecuXlThxx9JmtuzZ2s2cckSUjsMH07E6ZXFuEwmg7W1NUJDQzlrT0/mP2ECGzVqlHD27FnkakjxkiWURW/GsOY63zq1Grh8mYIrTk4UnGmLkSOp1riqin4+dYoygG9At65dMX/3bvgkJ+PbqVNxjrwJmJmrK+scFYW7R49i69at2Lp1K7Zs2YIjN2+qm4YPB69S4datW7h27RrCw8Nh1+xpwBiDp6cnA4AcjQwboPvz5ZetPz99CjQ2gh8xAieOHUPBzZsoKyvD9OnTAYC7/OGHePrTT/grMhJJu3bh5s2bUPE8Mnx8oLt3L7nA29qiPi0NF+LioFqzBrhzB4Ig4MCJE4LczEy4MWOGGu7u+Ky0FHYHDwIiEXRTU9Hp3DnGZLLWwEpb6OiQcV/fvpDq62Pu3LnMxcVFff78eZw/fx71lZUwMjISatoEPBAaSgEvkahVeq7BmDFEJtPSAADOzs5oaGjg9u3bJ+zYsQPbf/gBZX/9hXIXF2pxmJ9PWeVFi2j/9euppWDv3tTZoEOH1mMHB6Pw8mUhyMJC3WIEV1NDKoc2WXUfHx9MnjwZoaGhsCguxpjdu1lBTg6irKywUalEkaEh7ffyJe3w3nukwPjoIzKn/PlnYPVqPHjwQLCyshJkMhnKyspQX1xMQa02fe/b4eef6T3RjMbGRmRnZ6O6uhoHDhwQdHV1UVRUxE6ePNn+4Xj/fbpugAIlFhbA2bN4MGSI4LphA0YMHw4nJyfycbh6FSKRCGPGjBF9ZGXFPtq2DdX6+iSTb4tNm5DZvTt774cfYDxyJHxCQnDx4kUi/G/C8+ek1GlqAj79lAwE4+PpuQMo2GJnB5w5A8HUFH8eO6ZWbdqE7vfvo6+PD2bPns01NjYKv/76K7Zs2SI0tA3KWVkRaTc3fyNJ16icwsLC4KarS0EgjSGquTkFMxMSqNTHxYXmWFhYq9HkW1BXV4c9zYEnpVKp9vb2hkgkAsdxWqM+LbT4HwitjF8LLbTQ4n8RIiMj7cRi8dEpU6boW1hYUMZ3+HCq8X6FyBUXF7PQ0FCYm5vj2LFj3IULF9DY2Kiurq5mtra2gre3N0UKQkIoc1hSgnZGZACRnkWLgIkTIQ4NRYCLi3CnsZH5//ADVACKUlPhvHz5m0/W0JDO7c6d16XNGmRlAV5eyM3NFczMzASO49iUKVPY5cuXcffuXZw8eRL29vYtLaPeiOpqWvDHxNDxdHVJijx/PmVbKyqoFj46msbpww/RrV8/7sHx4/j54UN89dVX4DgOp4uKhLq6OmZvbw/T995Ti4ODRb379oUxEU9w5uZQT5kiNJSVMbZ9OyquXxcuFRayeldXZpSXx+67uMDBwgIytZqykXPmUMYToH9nZBBZ6927Vfqvwa+/EqHhOPg4OLDa2lrh9OnT/NKlS0WIjKSsNYALFy6gpKQEAMm2bW1tOXAcEVMbGwrA+PpS/bdIRATlq6+oDv3GDSKQbTOyALBhA3rl5XF3/PyQ4e6OLl26YOTIkRqZN8Po0VgYHY1qHx/wzbXmUdevsydnziBmzRq+RCLhwsPD4ebm1u6wUVFRAgDmoOkRrlYTKcnNJSUIQCaOAwZgQ10d3A4fhvzKFdR/8gknl8tRW1sLw5QUKK9ehb+RkXBy2jQYGxtj3vffs7SRI4U9EyeyEefOCZdWr2bP7amLWLm9PeqSk3mzxkauoaGBrZw2DZyRkQjPn5PLO0DzIzsbqK2FUqlEUVERjzclT3r0oMzwjRvAlSsICwsTbd++HbrTp/M7k5I4VWUl1xyUIBgZUaApNpYCLY8ft16nSERBoMOHge7dIRaLYWZmJjx9+pQBgE1BAexKSmA+ZAhlbk+fpqxtZCRlzOfOJQ8GjiMSXlfX0sIOtrZI8/AQ+hUUiFrKCA4epDn/qqz+4kX4Z2aiXiZDQceOeO+zz6BrZIS7X3+Nm+vXC2O+/ZaJm0sMIJWi0cEBZd9+iyd+fsLTgwfZ8+fPhcbGRsZxHNatWwee56GrUKDLjh0YqaMDHbwBzUQ6Ly8PR44cETQmdgBgbm7O5s6dC47jsH//fuzevVs9Z+ZMkdjPjww/NSVIzQGZFy9eIN7Tk02Ry2Fkb09zqqCAVA7r19MzNm4cDt25g5JDh6Cnp6cWiURoampicrmcWVlZsRpBYNycOcDAgbCVSLBk5UpsaWrC33//rZZKpczPz4/z9fWlY1++TCUN5eXkm9CtGwWoPv6YTCY1z7ebG66KROqC7GxuUseOEG3cCKmJCeDoiNkPH3J8bi7+2LcPt2/fFvr06cNagrS9e5Ocf+RIOmYbWFhYYExiolBx+zbjd+0C5+REPg7r11NQxtmZ1DupqeRXMmUKjdfq1fT7VavaBYUEQcCVK1fUNTU1TDPfy8vLRbW1tVCr1VCpVOaRkZErAVyPiIi486ZbqYUWWvzrIVq9evX/1+eghRZaaKHFvwgJCQmng4KCOnt5edEq/vPPicReuEB1rSdPAjwPlY0NbkRFMRsbG/j5+aGmpkaVmprKFRUVcXV1dWzGjBmcnqZO2cCAyMPjx2jpLf0qpFKwsDB0XryYdX74ENcWLULlihVw9/SE+C1O+wevXFF3uHKFSzQzUz8tK+N0dHRgYGDQ6lZeVwfMno36detw8vRp1q9fP2ZlZQWRSITKyko8evQIADBgwID2vgQaaLJhAQGUSV2zhszAyspIxr9wIf3+4kXK3p88SQSoZ0+I3Nwg79sXadXVePbsGVxdXZGUlCQolUpWXV2NYgMDTpGZCb/Zs6Ezfz6N0dSp6NShA0t48gRBQUHgOI4ZGhpCoVDw1dXVXGZmJpzv34eBnh5EY8ZQfbAmyLF7Ny3my8pI8RAW1qp6ePQI6okTkRgQADNraygUCkilUhYfH8/V1NQg8cEDoXLdOiQkJfFpFRVcVVWVJnOutrOzo8E0Nyc1xcaNlI0cMIA+29CQMumjRlGJQd++reOnUlEWd9IkcJ0740hQkFAtlbLa2lr06dOndTs9PWDTJkiuXYPe5MnQ09NDNzc3VujoKNhfusRGb93K3tQK8OHDh7y5uTnn7d3sQNDYSDXfGgdyQQBGjkTU4MHIr6xEl/HjkdSjBxpKSxGwZw/s5HJeuWgR3AYMYHKlkgWYmLBeS5YwHSsr2H7zDUvu0gVlHTuynhkZsBo2TOjZvz/zvHMHRfr6yHz5knE8D/8pU6A4cgS6ublEmmNiKANtYgJ89x1qiotRIhazzIICvkePHiwnJwfnzp3DpUuXBA8PD6bn4IBKxpAC4Pjx40L37t35ka6uoqC5c5E2bJhw+/ZtoVevXu1NEjt2bHWO//RTCq5wHCllCgrou6Eh/P39WY8ePdBFEOB67pxgnZ3NdMViOk+plLaNjqZ6/08+oQz7sGF0L7dsIaIIIKe0FDfz81nvR48g6dCBVB4//EBZbU2ZT3w8oFKh6rPPkJSZifiuXeE8Z47g3LUrE4lEKCws5IevXcvdfvGC7zRsGAMAPiICpevX45GjIx5bWLBSfX04OzvzgYGBXFZWFsaNG4d33nkHblOnIr+uDuU2NoKDg8Mbo3qChQUulpfzMg9oo6mSAAAgAElEQVQPbv78+ejZsyecnZ0xePBgGDSXGvj4+LDMzExEXb8u+JqZMfGkSS1BseqffwYWLMBOhULo2qeP4D53LsPs2RQgW7GC1A4JCRRkW7YM3UJD4erqCldXV65z585camoqa2xsZNXV1UJAQADvMnMmB8aAfv0gYQxdPv8cti4unL6+Prtx4wbi4+OF0l9+Edjp09jv6cmr799HtFrNu/v7c5yvL6mG3n0X8PQEbGyQk5ODi9euce+++y4znjqVyhcWL6YyBC8vsC1b4Jiezs4aGAhu06ZBPziYQSajd6C7Oz0bmueksJD2HzUKllVVLLGkBGkGBrznF18waHwWnj8nQj9qFAULhg4F+vShMoPZs6mbgZMTBTt9fFreQ4cOHeJqamqYWCwGx3GwsrJS+fv7c6amppDJZEYmJiYh5eXl02NjYz2Dg4P/etO91EILLf610JJ9LbTQQot/I0RGRprcvHlz0e3bt3+KjY0dd/369cSQkJCXr2yjHx0dPS86OnpwdHR0fkhISFXz7ydIpdJFEyZMkHAcR+7RHEdS0KlTiSDk5ACJieD++AMd4uMFhUQCx/p65hoczAUPHAgDAwPBx8eHvdp3GSYmlB0LCHhdjpudTbXIY8aAcRwK5XKh06VL7JGzM7r6+b2R7Ofn5yMmNpazGT0a4rg4Lp0xPjk5GXfv3oWrqyvT19en/vGmpjhVW6tmjAnDhg1rSUMaGhqiuLgYVVVVKCoqgqOjI9RqNV6+fAlDQ0Miqf7+lN2MiCCSr0FeHjmVf/cdyaF1dakmNzUVWLmSnMY7dIBswgQ4/fmnYPPrr+wXpVKwtLRE7969WUVFBRQKBeqkUrAePXinESMY6uvBp6WhfuZM3OzSBS6urggMDISbmxsUCgXLy8uDIWNC8KZN7GR5Obq9/z4qKyuhUqkgEonwl56e8LSujhUaGACxsaiTyWBkbg5IJDh1/bpwwtWV5eTlIT4+HgkJCUhLS4NarUZxcTEsLCz40MxMzqpLF85v/nwkJydDJBJBpVJxWVlZag8Pj9b07fjxlN2bPp0yo9OmERnIz6d/SyQU0FEqyWsgIwPYvBncvHnoExrKampq+Pz8fCaRSAQ7O7tWEjtgAO1XXg6YmQEALDt2ZBY7djBRaGi7doMalJaWcsnJybh//766pKSEs6+rg46paWuv9KtXUZSejlMdOsDAwEB4+fIlvPz9ofviheB57x6zuHyZ2S9fzkT6+iRRnjiRyjKGDUOttTWuq1SYFhkJOx0ddNTTY+a9esFgwwa4h4WxgN270cnPD0JTE4yTk1Hx7rvQ//13Mo4MCaFsvSBALJPx4pwcZpiZyVyGDcP+P/9ESUkJ1Go1e/jwoZCQkyPcLCtjgatXw2TiRH7wmDEiJpeDdesG32nT2PXr19mjR4+QmZkJY2NjdNBkUg0NSXHyzTeUtTU0pOfqwgUic927A8+fQ7JrF4y//BIiR0f2S0gIbHJy0OG772i+7tpF1+3iQs+5WEzS73feoUCNSgVMnIjcuDh0nDpVcO7Vi+HePZKVq1REAAsLqYQlPBwHc3JwsUcPdJwxQ5g2bRrr1KlTCzHv6urKvlGr8axDB1ZbWwvF8+e4XVTEZ8jlLGz/fvht2IDeS5eiW//+nFKpRHp6OoKDg2FkZAQDc3MkdewIpSAIbm5ur5H9CxcuIKmmBkJwsDB5+nSmq6sLPT09yOXydi71YrEYXklJrOHMGXYxMFDwDwxkjDFkZWXhxLlzeNnUhNquXdmUKVNoXg4ZQpn2o0cpkPXNN0SwDQygo6ODDh06QC6Xo6ioCJmZmVCr1RgwYACCgoLoeTEyorFatQqy48dhYWsLx+Bg+Pr6wk0uZ56HDjHlzp3Mxdubs79yhd2QybjYxETEx8cLj2prhe4jRzJ28SJe1tRg740b6N27N1oCW6WlNP5ubkS0hwyB5N13IajVrCw1lXWcNYvUF+PHk9nl55/TV34+BQITE4GhQ1Hh7Y1zeXno3r0769SpEx27vp7ebZ98QqUNzZ0vANAYhISQqqmqitQsVVWAjQ2K6+qQnJyM4OBgYerUqaxPnz7o0aMHxxhraXXq7OzMubu769y+fdshKipqY2xs7PLY2NjhN27cuBUSEvIf1wdooYUW/y1grxl+aKGFFlpo8T8SkZGRfjo6OlddXFx0vb299cvKyoSoqKjqpqamwIiIiBbb840bN16ysbHpa2pqqpOamqoSiUR3eJ6vEYlEIVOmTJHa2dnRIn7BAspme3m1fEZTUxM2bNiAEH9/PD9zBhbOzuqBSUkixMUBa9dSRig0lBbJbet+AcoAN5MpAETs9u6lbWfNojKB5prslIMHIXz/PazDw2H5+edgOu0FvBUVFfjhhx8w3MEBPX/6CYiLA89x+OWXX9RFRUWi7t27C0MrKhhvY4Otd+9i+vTpsG+WYrfF/v371U+ePGlJ6xtVVODDqipwGqftOXOAVz4b9fVEjvT0yP398uVWc7QrV4gIp6VRycLjxyi4eBHKgQPhFByMXePGodTKCpoFsFQqxbSyMpj/+Sfi9+4VGjduBPvgAxYyaFCrQqGpCU0TJ6J66FBc0tHB08JCoampqR3pMTU1FSZ/+y0eW1iwvydMgFNCAnzu3UOFqSk65eejKj4ely9f5i0tLbkxY8a07MfzfOvnKBTgdXRw5MgRvrKykpmbmwsZGRmcp6cn2u4DAHj4kOTGLi7UHWHbNlI1DB5MEmC1mtqJLV5MmeM2SE1NxZkzZxAeHg49PT20mL7duUPzICqq1ZshLY3G2sPjtXtXWVmJ5ORkSKVSpKen890PHGD+zs6MazYdU/zwAw5lZws+c+cK3bp147755hsEBwejv6UlnXd5OZUmCALJ/Y2NSb1y9ixOVFaqnz9/zpYsWUKDs2QJnZODA5GdgQMp6DNwIG5/+SV/5cYNThAEiMVifPrppxBXVADLl6Nm7Vrs2bYNYQoF3Orr8dLREbt4HioAHh4ePMdxQpcuXUSuq1dDvHYt+SPQxASGDkXkTz+1XK+hoSG/bNmy18sBnj2jDO/ff5Oy4+uvyXAwNJSy0iNGANHRKJg0iX8kEnFBNTWQDBhAcu23lb8AwL17qP/0U1yRShH04gUseJ4yzRrFjoMDtc27fx/Q18eJ8+eRnp6OiIiI9sdJTweCglBfUIBrMTFq2Q8/iLyTk7Fn5UrMmz+fSmiuXYNw4ACuTJ4sJN+9y/z8/DBo0CB6vszMcLamBk+ePBFGjhzJZDIZzJoDQseOHRPy8vLYhDFj4LBvH9iaNa+XFrTFjh1oKCzEN81dOEaOHIn09HS+qamJDXZxYYZ2dpBrWs0JAgWtrK2pVGf/fmoXaGREBoPXrgF9+uDWw4e4fuMGBEGAkZGR8PHHH7cf1Hv3qGPCsGFkqllXR8HTTz+l96FCQVn3jAy8KCtDeXk5jhw5gkGDBiFILseLhQtx39ZWCD1woPW4sbG0b5trVSqV2LJli9CnTx8WFBREPgA7dtCxBw2iZ3LXLirTaMb169cRGxuLd999Fy3lMEeP0vM8bRopefLz249hZSVJ+H/4gWT/lZVAYCCE4cOxzsQEwcHB7TtkvAKe57F58+YGhUIRa2Ji0tvIyIgVFBS85DiuUa1Wm6jV6kVfffXV0bffRC200OL/TWjJvhZaaKHFvwk2bdoUM3DgwD4aV3sASElJES5cuFDc1NTkGxERURQZGdlZJBJlTZkyRZyXl8f36NGDi4mJgZWVFdzd3WFgYEALuA0bKLM9eDAaGhrwyy+/oLy8HIwxCIIAqVSK+vr61kUiz1M9+61blB1cvJjIgEb23asXSdWDgojAKZX079xcIl2vtMArKirCH1u2YPCFCyjt31/oMX8+M/HwgCAIlNWPieELCgq4mTNnwjYzk+qVjY1b9j1x/DgfePAgdzMwELXm5lixYsVbywHq6+uxbc0amFRWYtrgwTD84w/K3Gtqi1/FF1/QNZw9Swvq/ftpMa8hak+eECH65BMyD5NKiTgcOoSikBAUjRoFw5oapKxfj8yMDDBBgF1BAV7a2WGGpSUsgVbjtMpK2vejj8h8zsICL1++xA5NfTiApUuXUl/1ly8pwCIWo7CwEFlffgmpuztvrlRyh9VqGBkZqRcuXCh64zg0NdG+Dx+2BFzS0tL4kydPclKpFD179nzzAn7bNjIbfP99Cgr5+JC898MPSeXQtuVcG5w/f15ISkpijDGsWtXGpPvYMZKP29gQES0spAxmTMzrwaM2SE9PFy4cOsSmT5wIGx8foLwceRMmIH7MGH7ywoUcABw9elSor68XZm3dymHQIKqHdnYmJcbWrZQpX7sWdUVFeNajB5527ozBx45RicT06ZT5j44mlcr48TSHf/kF4DioVCqUlpZiz549mD59OhkJ8jx0goMRP3iw+qpEItKvr0ev+Hi4PnyIuHnz+DGrVnHtAknx8fQ8TJtGz85PP6GyWUpfVVWFffv24bPPPoPuq6aUPE8ZV0NDask4bBgFJlavpm4JvXoBP/0EISYG2b17I2H2bLz77rtvHUsN6mtr8cP33wsDDQzgu2cPY5qWcUePUlAkMZGIb3N7xB07dqi7dOnC2rXnA2j+3rxJz3tsLFTdu+NZZiZs/Pygq6uL+vp68DyPig0b8DgxUXA9cIBZa7LJQ4cC/fpBtXw5fv31V9XLly9FTU1NTCwWQ61WgzGGJUuWwNjIiNQKFy+2KjteHaPVq+nZlUigVCqxbds2mJiYCDo6OlAqlZi3Zg3Dp59Sec6TJ3TPw8MpqHP/Pimdzp6l+x4aiuopU5AREADjx49hdecOknbuVDvv2MF1mjaNITycvAR696Yxio0laf7x43Q+5eXklwDQ+3HZMuDIEWRlZWna6wkfffQR09XVRerx4yg/dUod6u0tgsa/xMDgtfdmYWEh9uzZgyF6euhw+bIg27mT2Y0aReU9p0+Tz0h6Ot27lmHhsXHjRri5uQnh4eEMajUF8Sws6L6+qdXjkyfUqjIuDpBIwPM8bp05o3ZsbBSVfPstxF5e8Nqz53XfkDYoLS3Fo0eP4OXlBalUimfPngEAOI7DwYMHG1Qq1VcqlWpzRESEloRoocV/M7QGfVpooYUW/yZgjOk0NDRAEIQW+aq3tzerqakxj4mJebRp06YbYrHYX61Wi6OiovDs2TMuKSkJKpUKeXl5gpeXF+30yy8QKiqQaW2N5AMH8OTJE+jp6QljxoxhdXV1uHv3Lj9nzhyusrISlhrDPY4jSanGRG3YMFogKxSUDYuPp0UzzxOJdnKi38tkb8zEWVtb4+ONG1HzxRcomjOHPZs2DUnh4ep0IyNOoVDAxsaGLV68GEZGRsD585SF/+OPln0XhIdzhXv2CF7h4SwkJOTtgyYI2PLdd5h4/DicunQBN2YMSZv/I4wYQdJ1gLL+OjqU2de0EXN0JGnry5dAXh4a5XIcvXwZz58/h+jQIYhDQ2FcUYFZYWHArFl4eesW4p8+xYyffoK4spLk1IsWkVQ3KIiI3O+/t3x821ZzmtpYACR1X7UKKCmBze7dsFEqgfx8rvLyZZj364fpW7a8mehrruOvv1oN3wDIZDIOoGBITEwM+vXr1/pZGnz4IQV2jh4lKf7ChRR4cXF5K9EHgOHDh7O8vDy+rKyMS09Ph6enJ/1hwoRW1/klS4j0h4cT6X8L2W9oaMC1a9cw5+RJ6I8dix9//FFtU1LCTDiO+Q0e3HLCvXv3Zod+/JGp4uMhzsqiDH1WFl27kREwfTrSb97Eie++Q3c3N/hOnEj3cP16mltFRUR+KiuJQGmCO833wcrKCra2tsKBNhnYYaNGIbC+XpRhZYXCkhKkjBuHGrGYD/v7bw4rV5L6oVcvegYSEkgZMm0aPSuMwbjNNQKkaGl55srK6NyDgqh2fvt2IpA9e1IQYtgw8snYtQv48ks8njoVRwsKYF5fj+3bt6s76OhgxqRJIjQ1kTnfggWktImJAc6ehZ6ZGQL79mVuS5dCkMnAli2jGm57ewrs/PEHBaGa50hNTQ3XrVu39szw559JZaAJCm3eDPHDh+jUHMQAgN9++014+fIl01OpMC8vj8mb2+VBqSRyzXEQcxzee+89MUBEMTc3F2lpaWCM8cbGxnSPmz043ojSUjrfpUsBiQS6uroICQnB9evXmUaKL+Tlge3cSc9vYiIFBszNydwyJobq3pcvp8BF1644umCBurCwUMSZm2PiggXwCQoSqeLiaKyys4F160jN9OuvRPxXrKDxsrSk0qjiYvoCKFABoLq6GgYGBrxSqeSuX78uhISEMK5LFzzq1k0ILSwkKf6GDaSCahv0qauD1bJlcNPTE+oBiKuqmO7t2/R+PXiQgpdbttC9aEP2OY5Dv379cO3aNda3b1/Ijx6lOZCYSO8SFxcKerSFoyN9fnw8hKQkHJbL8ejRIxEAdA4OVo8rKBAhOZm6qPTr98bbYWFhAQsLi5af26qu3nvvPf39+/evqaur84yMjJwXERHR9PYbq4UWWvw/hbZmXwsttNDi3wTXrl27V1hY2O/Bgwf6Xbt21dVkAB0cHDgPDw8dc3NzV19fXwMjIyPcv38fMpmMd3BwYEOGDMGdO3fY48ePURsfz4vz84WH/v64kJAAsViMwMBANmnSJGZpaYnY2FiYmpry7u7unGFzRu+NqKmhvu++viT3tLMjgn/6NMlJt26l759//lZyzRiDnp4e/nz8mJzqs7I4p4cPMXnrVubTsyeTaLJa1tZENqdObclCsV27YBQSwjqNHfv2c2w2rerarRuO9+zJp3p5MXNzcxgbG7+2Kc/ziIuLQ0NDA0yfPgVzdaUWVQAFOH7+mWph9fSQn5+PXfv2wWTxYryorISJvz9ydHRQbWUFnufRpKeHelNTBPfvD65XLxgEBaHLxx+D09EhYta/P0nZO3cm4jZiRLtzMTQ0RGJiIgBg6tSpMDU1bSXhDQ1U8+7lRRm4QYMgmT0b1ampfNXx48z2nXfePh4SCbm5BwQAAExMTPDixQv+xYsXDCB3/sDAwNd13xxHJLCykshEairJ7v+DzB5AgajY2Fg8f/4cgYGBrX9wdSVy7+9P97N7dyL+48a98Zjbtm1DbU0N87p7F/v19ARTOzv037+fq3jnHd5r+HBOE/gyunwZvitWoHLBAhju3Elk/9IlwM4Oand3lN6/j4NlZbCytsakr7+GSWIiEU5jY7ofW7YQIbe0bO1J38ZLoLKyEgkJCbC0tGSdO3cWiouLWQ6ArPp6jN6zB72+/x6hYWFw9fNjOuPHE1FPSiJliL4+uZ1PnUqftXMnZWKbydLOnTuhUqmQnpYmlN29i5ozZ5jpsmUQe3lRsGXRIjqX998nl//9+4FDhyhYUVMDODhAZ8QIGMXE8AN+/50VhYdzoxcv5nSKisB8fChQEBZGARU7O8DLC+UzZuDYy5eILyxEtKsrXENCIJs3jz6H40hFEBsLTJqElLQ0ZGVlsbCwsPZml0+eALW1RJCXLiUJeRs1g1KpRFpaGkQiEVOKRPD++GMYaM5l7VpSBs2c2e5+p6en48qVK6itrcW4ceNYy/Oq8XtYtKh9oOnOHcqEf/lly+8fPnyIc+fOQaVSgdXUYMb584Ls+nXG7t4lsuviQs/f8uVUn+7gQOft4UHZ+rw8dAsM5JKSkgSZsTEKGhuFzOxs4W+1mlXa2wsd+/RhOjNnktN+bi4FIr77jmT1ajWNc10dnZOlJT33P/+MW2ZmfODevZxIJBKKHz9mTRcu8PmMscrSUvivXEmZ9/XrqXRo4kQi8fPmAfPng129Cvfly5nj+PGscu9ewaRvX2YwcSJ10vjgAwrm1NVR8KwNOnbsiPj4eEEsFsPRxYVhyBCaA9euUfBP4xPwKs6eRcPlyzjXPKZ9+vTB6IULOfHEifQe+OwzCojJZG9XSb0Benp68Pb21ikoKHCtra39ODY2dvnNmzdX3rhxIyEkJOTpPz6QFlpo8Y+gJftaaKGFFv8mCAkJKbp+/fpPSqVScufOHX+JRCI2NzdnIpEI+vr6sLKyglwuh5OTE/T09BAQEMCCgoKwd+9etUKh4BQVFeh88iTLaGpiiRIJGz9+PBs8eDBrm3WJiopSeXp6iq3bmjY1NJD0s7KSFtqCQJnuAwdooS4IJHseMIAWvgEBtMh98oTM+UaMIGInkVBNsFrdLtuvr6/P38zPZ9VGRnDKzmaZJ07gcmYm7xEYyHR0dGgxaWFBx3Z2pp0OHKAgwqut/gDK0M6cSW37OnXCVTMzvqiigtXU1LDU1FT069evnbEXQNnEY8eO4f79+/DfsgXF+vq419SEqqoqGBkbQ8fREfyKFcDEidi3b59QV1fHMjIykP30KUTDh2Poxx+j7717cBsyBLezs8HzPMninZzoA8LCiERIJEQoTpygLPfBg3S+trZkFNitG/DoEVyfPsWdpia8PH0aT54+Fdx8fRmqqmj85HLKPEdEAM7OYObmKKuqYla7d+O2Uglde3uIxGJUVlaioaEBUo1h4v37tED/4IOW63ZxcWHl5eV48eIFpFIpC2gOBLRg/XpSHWzfThnfNWvo925uVNrQXBLwJohEIjQ2NvKPHz9mpaWlvLu7Ow26vT3d/3nziADr61Om2t6+dbzawNraGua6uqjv2RMew4ezfhYWzODKFXTcvZtjmnnE84CHBw5VVal91q3jdDdtIgO2tWtRY2WFnysrhViZjM34/Xc4m5pCPngwZdjT04ksd+tGZRmffUaBBwMDIDQUvEoFhY8PLly4gPPnz0OhULCwsDD07NmTpaSkQKlUok5PD0NtbWFgYUHnr5lbjo70LBgaErHfvp3ufVgYZfudnFqIVidTU3h27oz+mzYx2xs32F9ubng+YAC6T55MRLKwkL7WraPjbdxImf+6OiKSP/0ESUMD7MLCmMTQEM5Dh+IXExMBY8cyO29vcn6Xy4nUNnt0SDt0QKdOnfDgwQPByclJCAgIYJyxMT2rpqZkBjh0KPi5c5FQUcEbenkJ3bt3Zy2Bpz//JJUGx1HwYvbsdrLzhoYGbNu2DYIg8JMnT+aGDh0KAzs7Gou0NHpfBAbSODWjsbERR44cEcLCwtjkyZPbB+b09anTgMa0ToM5cyizPmoUACAtLU04deoUGy+XY8iBA0iXy9GoVDJFeDj45GRIli+HSCRCzpYtkBYWQmfpUlRXV6Ourg6ibt2Qm5aGDt7e2F1RgTqJhOnq6kKhUKC8vJyb0b078o4fZ0kpKfCZOhXM25ueyYAAupcjRlAL0qoqCoaePUv3jeeBzZvRrXdvVldYKGQrlcxWpeK7pKVx2ebm6om//SaSHDpE74Tvv6cxUqnouE5OVD4zejQdNyUFebduMZuxY6Gbk0PziuNoHLt3f2OZg46ODnv53XeM/f03CgYMgJmZGUQDB9Jx3wY/Pzz08oJ8/37e0MpK8OjfvzXw0rkzMGkSneOwYfSObuP98p9BLBaje/fuOu7u7vo9e/aUSiQS/cLCQr5Pnz5n/vFBtNBCi38ELdnXQgsttPg3QkhICPr06fP39evXLxUUFDjHxcXZiMViZmdnx7UlsHZ2di3O3rdu3UJTUxNb0r075Eolbnh4CL169WJta/81+PvGDRbg5sYkublkKObsTOTkzBki0MXFrW7t771Hi3tfX3Innz2b5LyBga1mZ5qstVRKZDcqir5/9hlJ/2Uy2Dg5MXd3dzh6eKDI05Mvys9nIZcvsw52dtBxd6f9ExMpIzd5MmX4cnNpcd82y1hZSZ4CYjFlGsPDAW9vnDl/XlAoFBwAfPXVV8jJycFff/2F6OhoWFtbw9jYGNeuXRMACDKZTIi1sGA5Uqm6ur6eZWdn89HR0Vzckyewu3wZp3JzUSoSsZCQEEyePBmhoaHoFBAATl8fik2bcPfKFRQ7OQmDhgxp37FAKqUM8vnzpH5gjOT72dlEmC0tqZ69Tx8gKgoGp04hxccH4/fsgZWRETMyMaG2dyEhtLiOjqYMeTNZNLCzQ3znzjCJjxcU27ezP8rKcC89HQkJCcjJyVH7+vpy6NiRiH6bOl2RSARHR0fExcXB1dUV3bp1o/OtqaE6/08+Iem5iQnJfm1tKWvp60vEYs4cklD7+b1xvhoYGLDk5GSUlZW1L7ewsKCATZ8+dOzBgynooQnmtIGJiQk6RkfD9sgRmH38Mdi5c6QC0LiLA+Qj0bkzitLSYCyVMtm1a1AqFIgZOVI4cvcuMzc3ZwsWLEBqaqra47ffuJpbt6BTXIwmXV1sCAmB7uTJ0DEwgMGVK8BHH4G99x7Oy+XChawsZvbJJ6jOzcUzGxsAwIMHD3Dr1i106dJFKC0tZQBQ4OEheBUVMRw/TmZpGjBGJKxXL7r/CxaQfHzwYLrvjY3A3bswmj4dxjY20JHLof/BB5Beuyb4HDzICtzd0WHuXBTl5CDD2BhWEgk4Kysap+RkCsSsWEEKgZ49aZ5lZ0Pc1ATnzZuZ7fHj0O3WjQJD6el0T2/fpu3Ky7H34EHB1NqaTZ48mQJrGtjYAB9+CD4hAU0XLsD2+XPmP2wYE7u4tGbux42je7huHQUBX1FlNDQ0IDY2FmKxmPXt25eJxWIaD1dX8o5ISgLmzm23z6ZNm9DU1MTGjx//5naZRkZkUKgps3nyhJQPo0YBjOF2XJyg+vBDNrS6GrbvvAPBxQVXlUoU2tsjs6oKyU5OiI2JQUJsLDx+/hmHfH0Rm56O27dvC/Hx8SwuLg6Zubm44++POiMj+CYmwsbLi02IimKdx42D46FDcKioQGyXLvytbt1Yk5ub2rFPH66l5EMmo6Datm0UXNm+nc7R2RkYPRpMKkVUXR3/mOc535kzmcuqVfDq35+TLFtGJTKadnqxsVTq8f33ra3vTp8GPvgA9WPH4oBIhIFnzoAplRTUAijgsmMHBategZ2dHexu3TsbfTYAACAASURBVMLjxkb+UkUFe/r0Ke8dFMTY5MmtCqZXcObMGfWNGze44ampzD80lBlrxlwDiYTe8337UgBqxQpSVjSXLPxn0BiY6uvrQ6VSITs7W7d37947IyMjLaKjo92jo6OVISEh9f/oYFpoocVboTXo00ILLbT4N0ZkZGRXXV3dv/z9/Z0HDBig+6ZtVCoVkJAA8cqVJPlsa5bH87T4P3IE9V98AcHREU9cXJAUEIBxUikkH3wAsa0t2KumYa9i/36qMc3IoJ81GeA34elTCgT4+tJC9fPPaaG4YwfAGK5cuSI8P3kS49zcmKy8nMiRSkWE39eXpNZXr1J2E2h11V6yhD7/5s12mb+ioiIcOXIE1dXV8Pb25lNSUjiRSAS1Wg2O42BiYiLU1NRg0qRJzNHeHoKnJ1h6OgUNQBL/J0+ewL6uDrWHDiFlyBD06tWrNWPejOzsbBw5fBgf/PknTAYNolIGDZKTKUuXnU1Ey9+fAh81Na9l10pLS1FWVoYTJ05ArVZDJBJh2bJl0E9LIwm9pSVd+5kzFCBQKiF89BHS09PxNCtL7ffbb6J7gYHqTLVaVCsWw8/PD0OHDqWDL1lCpFpjJAa0GAI6OjoKM2bMYCguJnJqYkLZ3dJS6uX9Jj+AXbso4+rhQWTyFWO4R48e4dChQxg4cCB6t6njbsHKlSRXdnOjLPHPP7/RmR85ORRoCgggYvn55+0ywoiOBnbvxgVdXeF5UBALS0wUrurpsbouXdQODg6iUe7uJNm2s0P9b7+Ba2rCjf79cae5vMDIyEhdW1srsn35Eg7p6SiaNYu3t7fH33//zblkZcGlulpwWryYnYuKUhfJ5SKFQoHJkyfD1dW15RrdjI0RunMnDKOioNdWGdMWgkAE8PPPidRZWZGKAKCSg02bgIkTobazw+4ffkCZuTkkUikMDQ35+vp6bv6ePeiQn0/7ikSUPZZKKdCleeZ+/x0wNMTx48fVL548Efl4eKCXri49Q7W1UNy6hcbAQKg//hh6L18Cv/4K6V9/UfDG3p6OHRaGknv3cOHOHd7v5k3OYd06yMaOpfO9fZvmQlER8NVXVBqied6USnoPHDyIZLlcSDh3jvW+dQtl33+PgX/8QWR261bKRDNGpnp2djQurq64UlSE+IwMfPTxx61tCNuitJSChZmZpA7o0wcoL4fw9ClKFy4Urjo5YZhMxuRjxtB2AARBQFxcHH/t2jXuvZ070ejrC0VAAOqfPhUky5axEydOQCqVYurUqcjIyBCCrazYraIi3nb+fM4hLw9XPv2UH1pSwonWrWvXpu7AgQN4/Pgx9PX14efnpw4NDaXoxIcf0nPm7EyKg0mTgMWLIcyejbKGBhgZGeHWrVtISUlRL126tDWiIQjA5s0010UiGktXVwrQ1NZSy0SJBFm6ukjdsUOYuGYNQ4cOrUGWQ4eoNCIr6/VxS0mh797eaGxsxO7du4VuhYX84A0bRG8rxzl48CBfVlbGPvroIwaepzm7bt2b3wPNBqW4cKHVi0Pj/v8PkJaWhrNnz74Ui8VFKpXKpUOHDo1VVVV6IpHoT4VCMS8iIqLxHx9MCy20aAetQZ8WWmihxf9wREZGWgAYBMAGwF0AKRERES8BICIiIisyMnJyampq7NvIvrihgQjAd99Rxig3l7Ix48ZRptzaGlCrwQkCti9cCH0HB7WdnR3b9uABp9q/H/b29vzs2bM5QRAQFRWlrqioQHh4uEgkElGwYPhwWmT27Elu2a+Q4NegWQQmJ9P31FTK8jGG+pkz0UGlQryrK0txcECfkhKSeu/fTwZcN28SsdFIRnmeyPLgwdRv+tU2eiAZuJOTE5+SksKlpKRwAKBWq7F48WKo1WqkpaWxoKAgIu9VVWBmZu0WtBzHoXPnzoBSCXlREfpLpW+8Rp7nAcZwuF8/9Hd1Rde4OJLdpqaSTLxXL8qM6+lRFm/tWlqEp6aisLAQp06dUstkMtHjx48BAMOGDePNzMy4/fv2QdzYSJJ6V1cKkOjoUFaN54GqKkRfuMBX/vEHU4waJToVHs4HpqeLQjMzIf7tN4jbZsCnTSPi0AZ6zTW5ebm5rHDmTNh88w1lT+fMITXF55+//V6+/z59P3OGspCTJlFAo/n+ODs7w8DAQKivrweA1/0A9PRov4MHiSS8LQFx4gQpTJ4+pTHUEP21a6kl3Y4dQF0dApKTWeajRzgyerTQv39/5uvlJUJ2NilPzp8H1q+HdPVqwMsLg+VyBOjogNnbQy6XixobG5GQkABFjx7Iy83lcnNzAQA5XbsieNYslr1qlTr85EnR+Q0bhF7h4cypOYPp7OyMqVOn4tChQ8iYOBFLJk2CXkREa/a5LRgjdcXPPxMp69OHSJJm3ja3eBQBmLNlCxoaGkjKnprK5Wzbhr8nTBBGDxzIoHn2evem5yIsjPY9dYoUM5s3w2PSJNHR+npcTkyE04IFqK+vx/nz59UVcrlInZEBzJuH5cuWwYAxCuYwRu+GoiK8fPgQ9V99hRF1dZzxJ59AZ+5ckpNLpaSoqKqiTHJkJAUAiotJZl5YiKrr1yFbtQoP+/VjQ8eOxf9h772jqrq+7fG5z7mF3ov03lWKgIoF7CVixI49lmjsLdHERD+YqNFUSzSJJRprjL0BUekoggUREVRQQEF6k8495/vHEgFBk7zfeO83xnt3jsFI5N577jn77LPZc6255rJ+/hxcsweCqip1P/j2W3r+g4LoWPfuAV9/DTuFAjqVldAoL6fgxNChtF4YGlKQy8iIyHBtLXkXbN4Mcd48xHt4KCCK3ODly5mes/MbQ87Qq1cvzsnJCWpjxqCTuTl1vliyhMHVFS7OzsDBg2APHsC4vJxh4kQEJCRw1Vu3osLQEMlnz3JO0dEQc3Ph2IrsT506FTU1NUhJSUF4eDjfq1cv6qSgrk7Gifb2dI4LFwK3bqHq6lX8YWEB3s0NVVVVqK2t5fPy8mD6SjGC+Hhq47dvH3D6NI2TuzsZAHp707OvrY3S48fx3pEjDIsWtc3KjxxJqqeOHPYXL6bXPTygoqKCOUOGsNCQEL60ogJ6HWT2BUGAm5sbd+7cOWrfWVtLz/icOSThfwOZWVnQHT4celOmkIfLTz+RIqhTp3adWDpC586dwfO8vkwm07e1tQXP8/K6ujqcPHlybE5OThGA5X97ECWUUKJDKDP7SiihhBL/PyEkJEQDQMO6desaOnp9/fr1g2Qy2R6FQmFsZWXVoK+vr5KdnV1bUlKiwvN8fkNDwzlRFFcBGNGpU6e9c+fO1Wx3kL/+IrKsUBBxCw0lB/2ffwYyMiB27oy6hgZIpVJIJBLU1NSA4zioqKjg2rVriIyMhCiKMDY2FvPy8lhzRvzTTz8lp/jcXCJ8Z89SRm/rVpJ0+/n943Goq6tDamoqbty4IdiHhXHMxkbwnj2b0+vdm+qSm+W+M2ZQNvH+fXK7njOHsqS5uZTxfYc7/K5duwRNTU1OS0tLfPz4sVhVVcXNmDEDnTp1grz1ZrSykoIJlpYdHygsjEjIG6Z6ra+jpKQEt27dwtKiIqidOgUUFdE5W1u3bMIvXgSKitAQFITI774TkkWRc/D0FHmeF83MzLhu3bqBMYbbCQkwHDcOzNcXZn/+CcZxJAtetoyIHYCqqiqcXLkSU0+dAp+bC9TUEAnYvZuy5Gpqbetpz54l8tCqzODiiRPI++svfHDjBiR5eUQ4hg7tMHjyTuTm0v0/dAgICED648c4ceIE5s2b97p3ehsIAsmVb96ksgsvL1I8GBq2fZ+jI5HL48eJRE+YQL9/8oSCEVparw32BGdncM0EauJEegbs7cnc7fff6b80cGQw9tNPRDqbT0lVFfuDg5FrZQXGGHR1dYVZs2Zx33zzDaT19bDKzsZ7iYmizunTrLUK4dy5c7hz5w7W2NhAcukScOxY22sQRZoDP/5IpS63blHQ7dNP6b/jx799XH180JCairAjRzCytQljURFdT2ty19QEHDqEJgcHNG7ciAS5XLzh48OaFAr4+fnB1tYWVlZWEEWxffcFAGlpaTh79qzo7u4u9urVi9PW0KA2bIcPk0/D6tXUTm7iRCrtCA2l+djYiKraWnzfStGyYsUKtDH63LaNlDk//kjlIJWVbe715s2bRaGsjH06ezYFcSoqKPCWkUGqpBEjaC3bupVq5QcORH1tLU5UVUF75EiMsLWlZ1ddnYIL2tptu4GUlJCRoLk5Bc2++ILmx/DhNP/mzqVMeats9+a1azHqjz9wYswYrNm4scPbs2PHDoWqqipzd3dnXnl5jLt6lc4RAFauRNPw4ShJTUVcdDTkDQ3I8PeHppaWMG7cOE63WUGzeTOdi1xOa+q1a6/Xu3vjx4umL18y/evXcfH331GYno6pmza1bTf68mVLGUFz+RNAgZHcXJp7zQqtw4dRuHw5ymJi4NSq60QzcnNzsX//fjDGsGbNmhaPk6Ii+jvyySev39vY2IiNGzeCMYYvvviC3ltY+DrohE2b/tXfg9a4desWrly5cnrVqlV/00JFCSWUeBuUNftKKKGEEv/DCAkJ8UhISIgWRXEzY2xNQkJC4NWrV+8EBATktXqPv0wmuzBu3DiDkSNHStzd3eUODg68t7e3vHfv3nxlZaXOixcvuoui+JlMJhsZFBSk/to8SRQpc+bqShn9q1epXnjiRMqM+vtTrXenTrh1+zb279+P2NhYFBUVCY6Ojkz1lbOyhYUFCgsLhYqKClZWVsasra3h7++P9PR0JCcni4qTJwWDW7c4yW+/gUkkaGhoAP/NN5R1bW7R9xaIoojs7GxcvnxZceHCBe7FixcKd3d33v/jj+Hw3ntMVVeXZMWuruQPoKFBxDAqijbDkyZRu6zRowFn546lpa8gCAKuXLnCgoKC4OXlxe7evStWV1ez5ORkVFRUCM7OzgygDCD27qVs5cyZHR/M1pa8C7p1ayPpBch0ytTUFHZ2djDcsEHkYmKYxrFjNObh4WRi2EwiRBE5Bw7glydPxMB9+7jednboumwZc3Z2ZqampmAAxK+/Rk55Oe6KIiIcHaGurU1ZQFGk47wi8KGhoYoqHR3R++hRDhxHJN7Ojsbt1i3amPfp00JyJ0yg8Wyusw8Lg9XMmYjy88O9vn3RLTkZrG9fGv9/C21tIir29oC3NwpiYkRZYKDo6enZPqtPg06EbsYMIlvp6URIWpMVQSDHdH19IvY7dpC0uUcPylaGhdHnrl8HVq4E09Qkxcrvv5PUWyIhAjRlSltFhlxOhK9LF8qoWlggPDxcOGVszEr19QHGYGpqio8++ohdvnwZ+fn5UPA8SvX00H3AAKbapQsZUXbrBmhooK6uDunp6dAPCECn998n5/3336frOXyYvsfampQwBQWU/fX2pvr1zEwKALwZXPnhB8rKRkQgIzAQMTduwMrKqkXirq5OwQ+ptOV+cRzg4QHOwgJSNTVU3LkDRXEx88zMhO/s2dDp1Ak8z7czqRQEAQcOHEBCQgIGDx6MgIAATkVFhY5nZUVeHUFBpKQ5dAgYNozI/rVrqBg/Hk9SUnDs7FkIggA1NTW4ubm1tFwEiODb2wMffEBZ+qAgCohMm/b6LTzPs4c5OXDo3h1aAQFEEnv0oDGbNo3m8PLlRORra4GtWyGJiIBddjai6+rg8O23UK2rIwXQsmU0vn5+9Fx7edG6ERZG1zRsGD1Lfn6kYunenZ6rNwIguS9eCNGmpmyQh4do3r8/w/TpLaUXr9C1a1fu6dOnLCUlRbx17x4zTEuDMHw4VFVVUb5pE468fIkEFRVBUFVFt/v3mVhaikmrVzNVfX0KZOzZQ2oDIyMKZjBGATtra2Q7O+N0aSmr53k07twp9rh2jV3x9RWamppgY2PTchNlMuDuXbzs2hW7L15UNDU1cRYWFqR6MjSk62++150744f6erz33nvoqF1ncXEx7t69C1EUER0dDZ7nYWVlRYGa77+noMir+XPy5EmhrKyM8TwPAwMDGBoa0vi8UkzgP/+hNeGNMfsnSEhIqMnLy/sjOjo6PiAgQJmdVEKJ/wKUZF8JJZRQ4n8QISEhXhKJJPq9994zHTNmDNe7d29OU1PTLDMzc3JkZOSJgICAEgCIjY2d17Nnz37NGd7WYIxBU1MTN2/ehJ6enrho0SKpvr4+Za3OnyeCPHcuZUMDAykDHB1N5E9Pjza0VVXAmjUosLREOaAIDAzkkpKSxKSkJObs7IzIyEjFs2fPuDt37jB/f39MnToVHh4eMDIyQmpqqmBra8tZ7NzJ3QZw7NEjxMbGIjY2FikyGeKqqlBYXt7k7OzcLm1YWVmJGzduiCdPnsS9e/egqanJxo0bxwYMGMBZW1u3ZBp5vqXP+fvvUz33X38R2X/2jIzjJk/+Ry2fHjx4gMePH4tDhw5lCoUC4eHhDCB5viiKePr0qXj27Fmmrq4OEzc3Igitpe9tB5/IY2IimeW9iQsXwCorEXXvHnNJToZ8xQoKSDx/TmQiPR3o1AnHr14VbXbvZo7LlzOzDRsgHTqUCIq1NVBSgrrcXJQvWYJYY2PRfOJEJnCccPPmTfbixQtUPXjQZHHqFIeJE1FcXIzQ0FBu2rRpnKqaGhGVDz6gQMDcuaQo2LKFyG5iIhG1uXPJMyA/nzbjPXuC9eqFXosXgwmCeGTcOGRrajIXF5cOM79/C5kM4DiUeXrir5wc1htg2j//TISto/pgHR3K2JaUUCDl2jUi0M3fHRtLRNPamgICLi4UADh1irKMO3fSNTVn8aOiSLkCkIph/fp2BO41jIxI+jx0KDINDMSbhYWc2a1bcCgvF8Zv2sS6desGnudhaGiIR48eKezs7JhcRYVdfvEC7t26QfXKFQrmmJhA1dQUCTdu4OHDh1CoqUFy5QqqKypwOSsLzkuXggUFUWac50mh8MsvpE7p0YOc6d97j7womjP3CgWR/bw8YMkSGJqbQyKRiOfPn4eTkxNTbyZP1dUUvGtWMzSDMcDFBZ2Cg1lOdrZgnZLCTqWlQfjmG0RkZysKm5o4Gxub1+tLbGwskpOTMXLkSLFbt25vRgIoU61Q0HkOHEj3KCMDOHgQp0+fVvSdNInLnzhR7OLpyfJfvBDz8/NRUFDAdHV1ofnXX8CFC0Sqm4Nko0bRXH31/WVlZThz5oxgbW1NnQFa3zNBoMCCvj6tYUePUv14SQnE1auxNSgIFbq6uNOtm9jniy8Y+venshALC5ob06ZRNt/Pj7Lcs2YRua6ooHKmZg+BDhAWFiY2NjYyJ29vZubmRvewrKzN2iORSODm5gY/Pz+maWKCsqtXxVPZ2Szx7l1RNzkZVh99xIKmTGHegwaxGC0tRUNREdz27mVoaCC1w6eftgRIJ0xA/ZkzqIqIQIZMhof37+OFiQkmfvklSg4ehNbDh6zThg3sckQEs7e3h6Zmi6BLOHEC0QkJwgtzc/7Ro0dwsLODZmYmjUEr5VN+UBA0nj8XbSdPZm/+fQGA3377TWxoaHj9wpMnT6CiogLewQEaK1ag4OhRXP/tNyHs8WMxLy+PmzBhAp4/fy5KJBLY29vT55qaqHwmMJCCbn37dji+74JEIpFmZWX1aGxs/OratWvzIiIiTgYEBJT/6wMpocT/YSjJvhJKKKHE/xDWr18/QSqVng0KCtLo0qULOI4Dx3EwMTEBY4x//vx574iIiCMBAQENUVFRpqqqqoM6d+7cYR1+aWkpUlJS0L9/f2ZRVESb4bAwkkwuWEA/X3xBcuw5c0iS7ehIRNbcnLKMWVkotLVF948/5izr69F1yRIWHRODxKQkAEBWVhYkEgmbOHHi6+9ljKF7t27M6dAhaO7YAa3hw1FUVCSOHj2aWVhYoN+aNShwc8P90lKuvr4eurq6kMvlyMjIwMWLFxVXrlzhqqqqhD59+nBjxoxhXbt2bSEtrfHiBcmDQ0MpkyuT0Sa/rIwye5s2kfT2b/wBBEHArl274OnpyRwcHMBxHHr16gUPDw+kpqaK5eXlrKioiAmCgIcPHyJAoSBjulbtCNvB3R344w86nzff9/HHqLtxA5Hm5tAeMQInnj5tiktJESMZ4/JPnFDYLF3KndbUFJ4WF6ObkxMzr6igrHt5OdVfGxkBEyci0d5e+KtbN3Hu559zdnZ2cHd3Z3V1dUhJSUFtXh7X7dEj4IMPcPr0aYWOjg66d+/esmPX0KCAhKUlZWStrYkYXb5Mqg41NVIolJVRAGDkSHBdu4K9eAG9devY0/JylpWVBSsrqw7ref8JBEHAz3/+qbDp1Qve3box3L5Nc3DLFgo0vJlN1NWl7N/du+RjIJO1kJ+XL0kxkJpKY3XsGAUxOI6I+u3bROYyMohQyGQUINq6lcbgLSTuNbS0II4fj9MJCUw/Jgb6paVw0dJi+sHBrx3hVVRU4OvryyUmJoo5OTkMAHr16wf5uHFE/kaNgsrFi2CTJwtPnjxhOTk5yFVTg++2bSgpLMSdL79EfkMDOnXqBKlUilwjI0hnz0bO8+fk9QDgr8ZGmPr6QlZZSa798+ZRecPCha+vwcLCgtXW1opRUVFC9+7diQ37+pIxZWFhh60QRVHE0StX2AMnJ9TxPGwyM2GQmcnl5uRAKChAeFqaePbsWfb06VNoa2uLo0aNaj9g165RgOL4cVLueHgAGzZAXLAAz9TVcS8ignM+fBie/fszyxEj0N3KiplNmcKysrIU5Rs3cvn5+WLtnDnMsLVaRColsm9mhlxBwL59+2BhYYHg4GCujRN/fj4Rx3XrKMBz9ixlqnkeMDZGtKqqIk8uZ9N37WJSNTXRbsyYtucvkxExl0op0DBpEvDLL2hcvBjV6uqQFRSAzZlDz0QH8+XZs2dCTU0NS0tLY/7LloE9fUrvXbiww9IhQ2NjmMfGss5BQTBwdWWuL18yk6lTX895TirlorKzmc+AAZCFh9M8njePglQbNiA7OBj7RBE2dXVoGDMGFmlpovm0acx6wgRorl/P9ujrw+rJE2glJOClqyssLS3R0NCAuLg4qPz0k6hSUcENP3AAd+/eFU1372aGq1e3KdkBgNunTwuGvr6ccZ8+7c4fABISEtBM9rW1tSGVSoWCggIhLi6Oi4uLg+GBA9DOy4NmcDA3atQo6Onp4fLly8zCwkK0s7NjSEmh4NvJk1SiEB5OypN3tOrsCPr6+vDz85P5+/vT2ldbGx4QEPDkXx1ECSX+j0Np0KeEEkoo8T+A9evXD5XL5ftmzJihZtxBb/hevXrxpaWlbmlpaUkhISEDABRWVlYKbzuegYEBDPLyoK+vT1LkOXPIbXz6dHqDKJLUNiqKjJ8AagmWmUly5sWLydzs7l1EjR/fNG7IEIlGaCg+O3IE5bt2wdDFhXtcXY0Tp061//LwcODyZaj85z8wl0oxa9YsBgCWlpZA584YPX8+bj5/jqioKCQkJEAmk0EqlQpOTk782LFjoaGh0bH9c0YGcOUKEehlyyibv24dZaXWrKFAhb4+vTZqFF3PN99QlvEtYIxBXV0drwziAFAWTk9PD/PmzWPp6em4ePEi7OzsRLlcDmH7dsa99x5Jqt9+UJLGbtvWUovq4EDnungx5PPnw7BzZ+Hsy5ccXr6UGBkZYfr06SgrK+OfTJ6M+shINv7oUSb75huSngNUCztqFF2zTIb0+nrR2dmZb85uchyHYcOGQS6X4/alS4iQSKCXnIzs7Gx+6dKlHZ+npyf9pKdTMCg+nkhkcjIRjC++oKy6VEqqjwMHoArg+enTAMjY8N8iLS0NUVFRgrm5OSeXy9mQIUM48DxlsQsKyHise3fa9NvZtSX9e/bQ/KysJJl3M4qLqeSgqoqkyLt3E+Ffv57M/RITqVbZ1PS1aRtsbf/xORcXF+OnvXuhW1KCsVeu4MqaNei0cuVbhtSTe/78OURRxI8//ghBEGBkZCROOXuWaebnw//MGa5PSQlyevSA+erVKCovR9fLl3EoMRGpamqIi4sDAHjdvAmLnBycHd22FPlmXh5mXr0Kw/R0POrZE5q5ubB+Q2Wiq6vLCYKgaPPL3bspUNSjR7tzZoxh9uzZSElJEdzd3Tmtzz7Dw4cPFZr/+Q9vuXYt4qZPZ/YFBXjWpQtmzpzZnuhfvEjBtZgYmjcGBlRO4eiIlD17BLXoaG5qSQnUv/iC3n/qFJiqKmyTkmAbEsJXaGiIvzk6Mt2cHGjk5sLMzKyNYuTJ/fs4evkybG1txaysLHb37l3Rw8ODziM5mVQff/xBcnDG2hHsTE1N5mZiwkw2bICJlxeHs2dJDfLtt23eFxERoYiPj+e1tLTEAbGxrCAjAwkBAbDT1lbYDRrEnsbHiwOnT+dfmJggdPRoUeQ4CKKIhoYGvqmpCX379lUwxnjY2FDphbY2kdkxY9pPFAMD6Ny5A505c2jcWp2zpqYmLPT0hHs7dzINKyvmYm4OfuxYCvjNn4+/8vIE3syMM+zZE7ZDhwJRUQwFBYCvL9QHDIBuQQFuRkbivbt3USCTid9/9x3q6uuZmpqaqLpmDXPgefA8D297e2a+Zg22u7oKxq6u3MCBA6Gnp4fIyEjcdXHhpsya1eaUk5OTERoaCg0NDbGqqop5eXkJt2/f5ioqKjB//nzO0NAQNTU1KCgogNVnn4HjOIatWwEPDwgyGVRVVcX09HRu0KBBYHFxFASTSunvU0UFrXGC8HaVzVtw9OhRxdOnT/mGhgYNAHH/6sNKKKGEkuwroYQSSvx3IyQkhJfJZPvGjh3bIdEHiMyNHDlSrqOjYx8fH3+PMVbi6uraPuXd0ACUl0M9Oxuz9u1D1rx5ROZaZ6MUCiLMf/xBG6vWLazs7Mi9u7IS2LQJksBA5FlaEnEWRUjt7WHo6gr4+MDEyAjynj0h3r4N1lzvmZBApCIqqmPztqlTIbOwgJ+VFerq6hAbG4uGhgYsXbqUU31Tcq9QEAE8dIhM2QIC8IpauwAAIABJREFU6DpsbWkz3Zzda2iga/T0pExu83uOHiWZc2kp1cN3kMFljMHFxUXx8uXLdgEGDQ0NeHt7IzQ0FJmZmQwA0gICoNLYiBVNTR3Wsr7Ge+9Rj/T//IfkxZs3U6eDJUvAIiMx2dSUazZss7S0FPT19Tl9fX3A3h5uPj4Mjx5RhvT8eQpynDtH4xkfD8WSJShYupQPDAxs97X9+/dHgJkZMufNE4+cPcucnZ3btQBsB2dnUkikplJ2X0uLAkNffgmsWEG/69fv9duHDRsmhIWFcT/++CNWr179j6X8TU1NOHPmDORyOXfnzh1MmDChbYbW2Bh4pRqBry8pDo4ebZFQGxvTfV+9msb28GGSim/YQJnZnj2JZPbuTaUc8fE0ds0kNCGBgkH/Ak1NTbhy5QoAoNbMDH9t24b3mprAqagAWVmoNzR8Xe5RUFAAR0dHamUJYMKECVAoFDhx4gT7fvt2uLq6Kjy9vXnbjRthfeQIoKsLkyNHgPp6LPv8c+R7e+OhhgaioqJg0LkzjCwtsXjxYqiqqoIxhvr6eij8/KCVno5vVq6E+927kH70Ea6MGaOYNGkSr6amhvr6ekRERGDQoEFt53OzGWBtbYelLWZmZjAzM3t9I728vPinM2Yodnh68kbFxZj07BmYpycFW1xdWxzUs7KoTOLEibYkbc4cVJw4AfNTpziNmTMhnzGD1pSqKgp8AZSFd3CA1tGjbJSHB/6qrsa+p0/B8zykUqnIGBMHLFrEhZ4+jfcnTECXLl1YRkYGTp48iZcPHwq9zp7l2E8/0Tq2cCEFjHx9212bjY0NFxcXhxIbGyHYxYXjMjPpPBQKOvf581FaUYHY2FgeAORyOet04QIcCgvRU18fh/76C8kmJrCwsOBvrVkDndxcjCwtZaZRUShZtQq/37sHACguLmbNrTBhaUldAebMITLb2oQQoKz2H39QCUZ9fZuXTDt1wkwLCy5REHDGxgYIDRV16+uZUX09nmVmohhgU6dNg+bo0S3eGsuXA48fA6BAb6qLC54tWoTitWsx8sED9vi77wS//v05rbVr6bmZNQs9TU1RkJKCLtnZLDc3V9i+fTuno6OjqKys5D/bsAH8uHFtzBEfP36MhoYG2Nvbw9jYWOHp6clnZmZCW1ub6vABqKmpwaa5E4YoUhmNjQ24kSPRr18/dunSJTyfNAnmixdTxxGA/rbs2UP3QhBIdfMvkJ+fzysUCjDG6tauXduhma0SSijxdijJvhJKKKHEfzMkEsknhoaGWrZ/k21kjMHf319ibW2tV11drefcuoXUy5e08Rs4kDJrp05h14YN4iCplDWTXEEQEB8fD5lUitrhw0UZY6zHjRvgOnVq+0U2NhALCyHGxEBboYCoocFenUDLZvr+fTyNjobxgQNQjBkDyeHD5Jr+6ackCW82d2uNmhrKtE6dCoCIaVNTE27fvi0eOnQIfn5+oputLYeHD4l8xsaSkVpDA2UO3d3bE/YjR4gg/vUXOa+3zqI5O1O/+RUrSGb8ww8dEn6e51kzQesIs2bNQkNDA3R1daHq6ordwcE4fvw4OnfuLNrY2LDWNbGvIZORUdXNm+R4/9df1CHg88+JjPbrB++5czFs7Fj8vGgRl3/2rGgSE8OQnk4EdsIEkp//+itdY1UVACKfu7OzxZ6dOjHDt5BsTlsbNoMHMzQ0oLCwUERHLe3ehEJByoGFC4kwa2pSrfe5c2TiuHkztckaOhRePM/VdO4sxty7x/4p0RcEAYcPH1bo6OiwIUOGcElJSQpHR8eOFRwAEfPycjJt+/136t2uokIy/eBgei05mcbq++8puzt3Ll1D3750vqNGUbbw4kUqT3hXcOYN1NXWIjEpCfJjx1BbUwM1IyMs370bfHIy1Xo3NgKdO+PQ8uXipI0b2cEpU1BtaChydXWM19eHQqFAVVUVfHx84OLighcvXiD3q6/42ps3xZ3TpmH+pk2MmzevJUhhbw+T776DSUQE/P39qUylsZHKFwDg6VPIf/2ViBqAVV27gl24gOpff0W+IHD79+1TzF+4kL927Zqgrq4uenl5tR1bxui879yhoNM/QGBgIJ+WloZCIyNsHDQIHwQFwXTJEiL4sbEUSFmxgoh+qzVEFEXk5ubiyMOHGNyvn+A1dy6HEyfo/v30E/DgAV3fb78BJ06AaWtD7uYmlujpsekAdBsbUTJpErt48SK7euwYPvv+e7BX7R2dnJwwJzCQxW/ZgseZmaJGYSEz0dOje90B0QeAXr16wcrKCjExMfjxxx+FmTNncql6elA9fx4u69cjSV0dZUVFAgSBA5VOCQYWFhy+/BIQRXy4e3f7eSoIwPnzyJRKMf+HH/DA2RlXBIGrGTq0pUbewYF8JqqqaM377beWOdipE5XJNDVR2UBr7N8P4eJF3HJ3xxxra1QPHMgSXF3FvJs3me+5cxjeuzdM1dSoDMXBgdYYKytaf62tMXToUKipqeH8+fMw8/dng3x8YN+nD4eXL0m5c+AAkJUF9v776HTrFjoFBDAA7OXLl0hPT+dLS0vx0/LlWOjkBO715QrIzMyEpqYmhg0bxgDwoihCFEV0uP41z7nkZLrG77+Hz/LliP/zT8ivXEH5+vXQaX4fx5E5X0AAzasRIzr27mgFURSRn5+Pq1evitXV1czBwQFZWVm1ISEhzuvWrUt/54eVUEKJNlCSfSWUUEKJ/0aEhIRYSySSL8aMGaPakRFSR7Bq7kMP0EaqupqynqmpRGxebb7EVuSmrq4O58+fR9nly+h37RqyvvuORV+9Cv2MDDj4+IAD8OeffyoePnzIC4IAQRAg69YNBrm5CExM5DBnTlu3ZI6Di78/4h89wkYrK4yQSuH1669EbN3difAvWNBCVgDa/M2e3YZwDx48GBaqqix73z6kXLvGLBIToeXmRgZ7kya9vcVdM5KSyGsAoGMvWECGd83Q1aWa/tOnqYRh505AQwOlpaWorq6GQqFAfn5+2wzzG3jd51oUgV69MHDKFFyMiBAyMzM5QRDg6uoqDB48mNNurZAAyLFfVZXc+/fsoSy/nh6VIqiqwlRLC7h1C33q63Hs1Ck28ttvYUeD0iI5t7IiQ7a0NGSkpCCZMbFeTU3wP32ax9mzVJ/8JkpLIblwAZ9GRuLbb79lDx8+hIODQzsjRwAUgJkwgchSSgq1Kqyvp/u3fDl9v7ExzbH4eMDYGOKBA5A+fcrGlZZCiIoCt3w5BTJMTckUMT2dPB9UVfESwNGICJSUl4sqKircBx98wLS1tWFnZ/fu3TzH0VgtWEDnUF1Nzvq//AKsWkXZ0owMcpoPCqLX1NXJ7Cs0lLKD48dTrXPz/OgIz59TxtnZmTwDduyAGBkJcfFiRH76KcZER8PcwgJD168Hb2lJAbWjR1+79I8aPZo1SKWo0NHB9N27mV55OTZ8/jmW790LTR0dwNsb3I0bMHV0hOmYMWjQ12enSkrwbVwcRuzdK7paWTE4OpJXwYEDwJIlFKjYsoVq0Y8epfMMDiYfgg0bAMYoehMYCPXAQAyZOZPVXr3Kb6mqEhUA161bt3aX2dTUhGcTJyJGQ0P0TU8XOzLHfBNSqRQLFizAtm3b0KRQoFoQyETvxQsKQH35JQX3tLQAAEVFRYiMjBQfPHjAeJ6Hnp5ek9eJExIsW0aGiDk5FIwLCaHgW2IiIJXi2rVrinsjR0JRVMRbaGiALy6Gto0NPszNRd6cOeDmzm3x3li1CoYnT2JwcjLbu2+f2HfcOOSam4Nfv17RDehwTsnlctjZ2cHW1pY7fvy4Yvv27TAyMhIUCgXi16zhXubl4cNt2zgHNzfEBAUp+vTuTcf58ksKTCgU7cknxwHvvw/LigocnDYN2qWlCM7OFjVHj2bYsaOlBIUxUhZlZ9NxmtdkQ0NaG7KzKXDQjLt3gQsXwH3/Pab4+SGupATDjh+HLcCqx45FWWkpzHfsYK+DWzt2kHJIW5vKp+bOBcdx8PLyQlJSktDV359jvr40t9atozGfP58CL7t2tXTgQIuSCRkZkCYniyVlZUxdXR2HDx8WeJ7n6urqKBDVCpWVlSgoKHj3RHr2jIJ2fn74QEUFW+fPx6I322w2GwTW1VHp1erVbz3c1atXFXFxcc03hPXt2xf+/v5ISkrSioiIuPP1119fqa+vX7Fu3bqH7z4xJZRQAlCSfSWUUEKJ/08ICQlxlsvlGziO06yrq7sgiuK+devWvXz1mq1UKo0fOHCgTLc1Kf47iK86DH3yCZkb3b9PktE3zOAaGxsRHh4uREVFobi4mBNFEUOcnBQOEglvP3gw7t+/j/TqamRmZGD44MEoLS1lPXv2RI8ePaCiokLy7MZG4KOPGMLDieC0Ivwcx2H8+PE4ceKEWLxmDSvKyYF2aipkmZmUbXr2jGrpO3emDeaLFxSQACjjGhoKZGbCJS0NLra2iDY1xS4jI/gMGSL4ODtzb80YAZTFWrSIDMGaZcl9+3Zcn6+mRmRJEFDfuzcuLF/elPrkiURNTU1olmD7+vr+fYq6uhpYtgxOHh5w8vDgBEHA/fv3cerUKe7ly5fi6NGjmba2Nm2+k5MpI62pSdlYT8+WHtatXdG7dIEHgCdZWcjauhVqHh4wqa2lII6bG3DmDBr09ZG8YYPgfOQIF/bFF8KEyZN5tmABSbJTUjpugWdsDJlMBkdHx6ajR49KAGDOnDktgQuAsuVOTvTj7U2b7b17SbK/dCllw21tqXZ/xQoi3QAwbBjC1q+HtakpHIYMwe2MDBj07QtLLS0izq88AGqOHUNlSgq0evXC+Lt3maaLCzgDAyLp/foRmdXWpsx2TQ1lO98s/VBRITf0mhpqy1ZbS+M5YABllHfsoPvy888UqPDyouPs2EEGjQA9L4xRJtTfnyTogwYR0Vq4kMb6/HkKaogiHvv64tTixfD19UXndevQuflcFi5sO6c8PKC3aRMq8/LQ5dEjMfXgQfYgPh6SpibK5urq0jP67bcUAOvTB7LcXKw7dgxRu3YhOiFBdPXxYThyhMjj/v1E9nbvJvJTV0fBjW3b6F7J5R0qU/S++w4vfvsNU3x8WEJ0tFhUVAS8UnMUFhYiKSlJcefOHV4URdiVljLF3LkQo6I6Dv60Qk1NDSIiIkSO45ggCHhdYsTzFGT78kvkeHpC29wcqZ07I3LwYOgbGbHp06fD0tISHMfRHnLtWjK+Kyqi9WPPHipRkUohiiKSkpI4U1NTFhAQAL65w8bTp5CfOgWbDRuIlEZFkUHl7NnAqlVQ09DAR1OmsNtHjyLK1RV2T592GORoDcYYxo8fzysUCkgkEg4A7t27h1OnTuG3pUvx3sCBWBAXx2PkSFpPjY0peLprF0nuO4C2tjYWbt2KXbt24cLLl2zZ8OF0jba2lEX/+GMqR4mJoWd17FhaA2Uymv+3b7esC/Hx5Dfi4wMcOYL9c+aIpRzH7B89goODA9TV1aGurk4qp6QkCnAVFlJQUSajc5wxA8KxYwgvKICuTMa8VFVpfk+fTsfNzQU2bqRgzaNHHQ/Uo0ewe/QIMTExyMjIgKqqKmdnZydqa2uLr00fX42ng4OD+OjRI/bgwQPY2NhApQNDQlhbU6Bn0CAwjgN69YL0zee8sZGua9cuWhsWLmxf+vAKzUR/wIAB8PX1hezV+HXv3p338vLiY2NjhyQmJg74+uuvr9XX149ft25d6VsnhRJKKKF041dCCSWU+K8iJCRERyKRpPbt29e9c+fO9oIg+FdWVi6NjY11iYyMnCKVSr8ZNGiQrq+v77uznK0RFkbkTkODNr7TphGhfDOrDCA+Ph4+Pj6ctrY2eJ7HoMpK0XPMGB7TpoExhp49e0Ly9dfI8/JCYV0dMjIymKqqKjw8PFqIAM9TtrSsjKSoAwaQadsrqKiowEtHh9U6OuK8XA5jZ2foOjmBBQfTZjkzk2T4paX0+eRk2viqq9P/+/tTdnDQIFj36AF1AwPcunVLiIqK4qRSKczMzDomJTExRPjHjaN/371LRm1vcY8GYyi3ssL+3FwEbd/OOU6ciPfmzmV+fn7Mz8+PtVFLvGvsV66kbDFos2tsbAxHR0fcu3dPiI2N5Tw8PCA3MSHSOmcO9X+Pj2/fG74Z5eXA7du4eu2aMPzcOaY+cyak06YR+QbQNGkSYuPjxZuenvD49VfmzxinOX8+ZUg1NSmIYG5OAZVmKBREkrt2haurK9ejRw/cu3cPiYmJcHd3pw15ejrJZQcMoCxjYCDdh8WLW5y58/Mp01xZSffL3f31dRcUFIhPcnJY5O3beJibi+SaGjyQSlGmowO7OXPQ4OKCH/PyxPpp0zDm00+ZypgxYH37Ura+qYm+IzycxsbIiL772DEKEh04QAGcb78lUmNmRhnJoUNpTn33HZHp4GAi6VpaRIyrq4lg/f47nffw4ZSdnTmTSNQXX9BY+fjQHO7WjY7RLKMOCgL09XEhPByVTU344IMPOpwGdXV14Ly9sUMux325XIx8/pz5hYYyeWQkbru5QeB5yD/9FNbvv09z9OJFCkKpqxNpHT0aViNGQC8jg/EcB5XPPqN5Eh5O19WvH41Fp04UzHvxgq7nLeoTTlUVWj17QvPyZTh8/TULt7dnGq/qqLdu3QqFQoH+/fuzwMBAWKmro/bUKbavuhr6+vqva63fRG1tLVJSUnD9+nUmiiLs7e1FHx8fhpoa4ORJKGQyCIsXY9u+fUjp0gVW3bsj6NEj+N27B51Ro8BaB+pUVckY0NSUSmnu3aMMd3AwXgwaBIeFC5mTqiospkyhebt6NZVmPHxI89HPj4jp0KF0T1VVgQMHwC1dCrPr1yHR1satW7dYr169/jaAwRh77TGRmZmJP16ReJEx1CkU6PrBBxQw0tensoDgYAq0jB371q4NeXl5iI2NRX1jI+rs7AR7Ly+GIUMoa75tG11L//4U8KivJ7l6XR09pydPUuDDwoIy2lOmUDBg7VpU8Dx79uwZ7qWkoI+6OrgzZyhgsnAhlQeUl9MzunYtKRD++guCpSXKV67EM4UCfZycmO7s2bRGjhrVEiTbv5+ULB9+2PEgOTri57o6lJWVMR8fn6bg4GDO2dmZubq6tmvD5+Liwh4+fCimpKSwuLg43L59W7C0tGxf2rR3L2BggOLQUNRPndpisNgMExNStCxZ0nKOr1QENTU1uHPnDurq6lBUVITU1FQMHToUfn5+eFORxfM8bGxs+B49ekizs7NNy8rKngcEBNx856RQQon/42BicwZJCSWUUEKJf4WQkJC5jo6O3wUHB79OhxcVFeHKlSvIzs7GBx98gLcZ8nUIUSSin5ZGUvD6eiJGr6S+FRUVuHjxIgRBgCiKyMnJwaxZs9CpuZ62Tx/a9K1YQf9WKNCgqYkf1qyBura2UFJSwvE8j8DAQLi/InZtsG0bESR9fdosAi0t4b75BlsfPVJUVlbyM2bMgIWZGW3qq6qI7CQkEHGrqSHSPGDAO+syT58+rUhJSeElEgmcnZ3h5+dH7u+iSFLxzz5rS3DXrCGy/8svHR6vvLwce/bsgZGRUdO0Xr0kmD+fCKa//9+3XmtGaSkFLzrwI4iNjUXOrl0YFxsL2cmTRCpjY0kin5BApPSrr1q+q7iYAjbLlwN37+Luzp24ePEiDAwMFFKpFHZ2dryamprIJSaym4WFwuy1azmO4+ief/klEaKoKHKu19cnMtScFU1Lo+zdoUNtznHr1q2CRmkpN+3KFUiPHycCzPMtngCv5NivUVhIcvj4eCL848cTke7UCZWVlYiJiRHU1dU5JycnXL9+HamvVBuffvoptm3bJjQ1NXHLli2DvNnM7e8gijTGubkUAAgNJaLbty8pOIyMiNRkZlLQZdEiMnAEyJvh9GkKSPz0ExH4n34iUsnz7a/tHQgJCYFEIsGaNWsAANXV1bh06RLS0tIAUICrrq4OMpkMFhYWqKqqEidPmMAOfvUVRly6hBtduyJgxw4YaWtTkKe8nIJxjLXc//R0/PzDD9AuL8eEBw/A/fADEcraWiKY+/fT+2prO2zf9laUlyPryBEUHT2KxHHjxMqqKtZ8Hc0QGhpwa98+XC4thZeXl2hkZMQ8PT1RWFiI6OhosbKyUnz+/Dknl8uhqqoqzpgxg6mqqiI7KwuFK1eK9rq67Gd7+9fH09fXR58+feDu6AgcPEhzcsECIqHW1nQflywhknvrFpltamgAwcEQBg/GDW1tJBcVoffMmXDJzYVk6FAas6oqUpMsXUpBkzNn6AsbGkgW7usLBASgsLAQu3fvxmeffdaG7N++fRs2NjbIzMyEq6trG6PKe/fuISwsTKypqWH6+voCY0wMDAzkLZvLhpqaKDi0ahWR8JQU8s/ooANFRUUFDh8+rCgqKuK1tLSwbNmylhcbGojQd+9OAZ9PPgFcXCi4lphIz3FgIM3v589pzIKCgOxsnN6yRbC4fZuT9ekjdrl9mzF3dzofUaQxHDGCFCbNz9edO1AsXoyvBg7ERx99BCMjo5bzqK+nuaShQYEFS0sKYnSEiRORUFAgWh4+zNoogf4GaWlp+PPPP+Hi4oLx48e3vHDlCrBiBRquXMGmnTsxz8ICxn36tBg1NuPPP+kZ9/YGZs0ClixBTGNjU2RkpASgQI1MJhMZY+KKFSu4dxmkKhQKbN++vbqiouL9devWXV2/fv1QqVQ6raGhYfW6dety/vFFKaHE/wEoZfxKKKGEEv9FyOXyfg4ODm0c8w0NDeHl5YWHDx8iOjoaTU1NcHBwgI+PDxoaGlBWVoba2tp27bQgipT1CQmhTVFdHWUKm/sSe3qiaPp05NTWwqtbN5ExBnNzc/a6D3pODmXDWxPboiLIVq7EKiID3Pfff4+qqiqEhYXh1q1bUFVVFYODg1s+sHgxmXtNn06S6O7daRO5YQMwbBiWdO7Mn1uzRiE/epTH/v1EvGbOJEO6FSvou8vKqJ5V0bYz2JsICgriHzx4IPr6+rL4+Hjcv38f9vb2ikl9+/J49oxIRGssX95S3vAGQkNDFYmJibyLi4swfvx4+rt29iyR18hIMs3rqHPAm7h0iYhjB2Tf1sYGd7p0EWMKCljP99+H2vnzYBMm0Is9etDYf/89EVSJhCTpO3cSIWUM7gCMjIyQkZHB5+XlidevXxcVCgUb//SpyGQy7tmzZ9S6UC6noEFODh1rzx4i+/7+JEvX0aFxqK5ud44f9u7Nnfj9d1SlpUFPoaD7qa9P96UjMmxkRAT6yROSJRsZkXu4sTG0tLQwYsSI15LeMa+MEVNTU7Fp0yYA4D755JN/TvQBOg99/RbH/Natv5oVG4JAxEhPr+We8TwRylWriCgB9J7/ApoTHOrq6goAvEKhwMGDB4Xi4mLO2NgYXbp0gVQqhffixeAiIppryRkAaHl6CvHV1VzXa9cQumGDEBgdzek5OUE4ehR5gYGoLisTz7z/PqRSKXv58iVEU1OMCgkBMzZuqe3OzKT710z2a2ooK2pi0taL4m3Q0YFt//6w+OMPJFRWMi0VlXYGjVxaGnw+/hi6iYmITUhAUlISwsLCIIoiNDQ0RFtbW66oqEisr69n9fX17McffwREES4vXsA5J4f9/Eoub2lpiZycHJSUlODMmTM4yxjWrl1L92jQIArUfPcdqUgWLKDgFECSbTc34JdfwHXtip4//AD1yZPFCxcusFMNDRhmYABfX1+6xwCaNm+G5FU2vikzE5Lhw+lYr4h3cXEx1NTUxNZp5+PHjwsPHjx4PT8jIiIEFRUVaGlpscLCQtTV1TGZTMYAYODAgVwbs1OFgu7Ds2f0PO3ZQ4GvgAAqQdHRoaCihQUwcSK0c3IwPyeHT0lLE1InTgRmzOCwbh3d07AwUgKlp1OwQFub1A0uLkS8s7KAfftoPXNyomM6OgIWFvBZtIirsLJCVFOTeG7QILZ06VJoaGhQUGDlyhaVlbU1HaNfP/Djx8PmwQPxwIEDbNmyZS0dQ+TylqDA7NmAhwcAMt5rzppraGiQasXJCenq6qzzvwiQAcCTJ9TefsiQIS2/fPyYFB2XLkGirw8DAwOhccsWpnjyhPFfftn2AJWVFFTx9wcWL8bT+HhEVlVJNLS0sGLFCgiCQO38/oHhaFFREWpraysARISEhHjIZLJTtra2KpmZmXUAZv6rC1NCif/lUJJ9JZRQQon/Onp2lBmxtLRE//79UVBQoFAoFOzSpUtcZGSk0NjYyDHG0NjYiG7dumHEiBEtH7p1i3quZ2VRrfKaNeTu3LcvvT5zJlS6d4f3V19h4O7dDFlZRKxlMiJrrq60+W4t93/xog3pnj17NhobG/HTTz8hNzcXcrkcNTU1bVu39e5N8mqZjGr4y8tJ9vrZZ8CKFdAvLmYKfX061+bvevqUNveZmURyJ00iGWp4+DsHr9loSkVFBSkpKaLJb7/xcZGR8IuKatvuramJlAYPO/Zjevr0Ka+vr4/x48e3fEhFhRQRu3ZRNu2TT9qaCXaE+Hi6puDgtr/Pz4dZ585YvGwZe7ZuHfadOoWu1dXwa2xsqU0dM4bu1fr1dO3Z2e1KL0xMTJp717OcnBzs378fNnfusHxfX0RERGDGjBktb7a0JK8Gxqjm/eefifQWFhIBfbOOf+NGqP74IxyPH0fe1atIPn1a0WvePP5vyfjPP5Mi4+JFUgo8ekRBnOjoduNlZWUlpqamvt6Ib9myBWvWrHl3i8J/itJSUrGMHk3BGW1t4OpVkjzX1FAQatIkIlS9e5M0+l9CFEVER0eLjDG2ePFi/vHjxzh8+DDU1NSwevXqttehpdVOETJ16lTuMMeJJ01N2YirV7nq4mKEDhsm5m7ZAkdHR9HJxISztLDAw4cPwfM8PvroI5w7d05QV1eHn58fZ/b0KZU6XLhAGfIbN4joP3tGwb2aGsr+nzv3zs4CNZaWODptmmB5+TI3/M4dhpkzXxNOSGb2AAAgAElEQVRnAET0nj+HvZYW7F1cWF1dHbKzs2FnZ/e6lt3d3Z3FxMTAxsYGzs7OuDpvHrxv3cLBqVNhaW2NnJwc+Pv7w9raGnV1dUhNTUVoaCj2rF4tco6OmHHqFOMmT6aa9XPnyJAvLIyy9EZGJEV3dycyePUqunp7s66fforffvtNyMrKYr6+viwvLw9XduzAmK1bseWzz0Q5z4tGGRmctb29YFBezrm8IvsxMTGCjY2N2NTUxJ8+fRrPnj0TXr58yY0aNQoqKirQ09NDeHi4+Pz5c15XV1fRs2dP3tLSEo8fP1bEx8fzjs+fU/Bv1SoqnVi5koJGxcUUeElMJML+6680/86eJVVBTQ3VmQMQXF1hZm7OnX70CMKzZ+AUCiL4u3fTZ+fNoyDn3r207mzbBsyYQeonjmvxktDXp7VeTw/mAMwBuAHc119/LdbU1DCNZj+IJ09aTAu/+oqy4YwBJiYYkZnJttfUvL6n7TB6NAVox4zBmTNn8PjxY+jo6Cjq6uqYVCqFmYqK6L1gAa/xlpr5d0Emk4na2tr0YCgU9ExOmACsWAEOwNy5c7lvq6rEwYMHw2vfPhoDjkNDQwOuS6Ui9/KlmPLTT6gsL+feP3IEPXr3xqB16wDgH7f4BABNTU0IgqAPoL9cLl8eEBCg4uLiwvbu3Ttx8+bNPRsaGnYIgrB73bp1ylZ9Svyfh5LsK6GEEkr8S4SEhEgBjAVgmZ+fDwMDg9cmQgCgqqqKPpSp5AEgPz8feXl5nI6ODuzs7FBQUICDBw+K5eXl4qRJkzguKYnqLc+coayZqSmRjfh4IjYAsGgRDOrqkODujgGffEKpD3t7knOPHUsb1Dfr+kWxpT4bgNarTM64ceOE48ePc4IgsG+++QZrli6F5P59IphffknkOiaGNup6epRhXrUKsLZGYmWlaNinD0xaf5eFBW0umzeP69f/K2kyYwxSiUT0ra1loRKJuGPHDmHx4sUtNQClpcCwYYCuLnJzc/Hnn38KgYGBnIODA3Jzc1FSUvI689wG6uqkCNi5k8yuwsLadhx4E9u3tydZTU2UYQwJAXbvhvn06TDr21eMiopiCoUCAQEB4IKCiET8+SdloCWSDj0WWkNDQwOiKCLv1CnUZ2RAzM1t/6bmzf7cuXQfP/yQvAv++IOICkBz5tw5kgpLJOju74+Cq1dxcf9+LvbrrzFz5kxYvGHs2AYLFlCAqRl2dpS1bWykn1aKCG9vb+bp6YkTJ06I6enpTCqV/qsNeoe4cYOIbng4EfvevUlZMXgwncf9+xT42rKF5vq4cdT1YOVK8kz4F4GGmJgYITo6mps2bRqqq6tx/PhxuLm5oV+/fu0lw2FhHZZ/eHt7s8ePH6NTfj5ue3rCo6QEw6VSpvPtt4zduQO3GzeQPmECTp8+jV9//RU8z3MVd+5AsWIFSq9fh35ICNWl/+c/RDh37yavi+HDieAxRte0eDGVsXRQd52fn4/i4mI24ddfIT95kshkfDyV2zRDFGkdSUuDio4OnJpLQF7B0tISU6ZMoX/cv48uDx7gxJgxAMehuroan3/++et6aTU1Nfh06YK6tDT0mjOHbVq1Cj/PnYv5zX3UBw6kgF9ZGWVu4+KoPERXl4jgvHkUjPz4Y/jNmsVduHhRkZCQwIeHh0O7thb5M2di0sSJzOjDDxk3fTqijIzEuDNnEBoaqvDw8OALCgo4CwsLbN68GTKZDF27dkW/fv3arLlTpkyhkz17lkdlJWBsDEs3N/7p/PliXkICM39VooGEBFrnOI6eVYDW2gkT6BlzdSXyb29P/548GQDwfWGhUF1dzQFAxZ9/QldXl97THLBtVjWIIj2PdXUUmAOotMrVlZRbb0F9fT07efKkOOSXX5iZuTnkFy4AABoaGnDPxQXlM2YIVbq6YoGLC5zv3eMdx4wR7OzsOn74DhwALl1CUVER0tLSMGPGDJibm7espyoqLef9D9HU1ITS0lLo6+u3PBSpqaRceuU/AgASiQSWlpbC5UuXeI+dO8G5uwPduuHJkyeIevKELT92jMl+/BEvnZ2h6eCAIc+e0TrzbxRCANTV1REcHCw/duzYxfr6ermKigq0tbWxdOlS1aysLOe4uLgt+fn5KzZu3BjGcZxafX39pnXr1mX8qy9RQon/JVAa9CmhhBJK/AOEhIRMSExM/CUmJmaLIAgbNDU1h7u6ukrv3LmjiIyM5CQSiWBpacmampraESBNTU2YmpqiWXKvoaGBzp07s7i4OCQlJsJ70ybG+fpShnXqVNrwy+VUr9zK9E0ikSD2+nV4jx5NGeVFi2hjt3EjZZOWL6dMrY4OkfT9+ylLFBDQcjJZWTB88IB5du4Mg61b0en5cxiGh0MeFkabtgULiEgtWUIZyF27iGjb2gKBgUh69EiwdXTk9PX18fz5c4hffIHGGzcgLljQkhnV06PNtL09ZZlaGf61RlxcHLy8vFhTeDgsjx2DWWwscxgyhMXHx3N5eXlobGzEixcvwG7dQmOPHoh9/BhhYWFQU1NjiYmJePr0qRATE8P69OkDnw6k9wBoLH19qSRhzBhSKXRQlwuA5LWurnStAG3cO3WiQMq0aRQI0deHi4sLS4+PV/RZtYq7Y20Nq969iWybmFB2sEePv1URREZGIi8vD4NWrkRKcTEcAwNh1iow0wY+PlTbvHMnGdj16kVZNXNzyqxlZ9Nrr0opNDQ00KVLF5abmyvExMSw+vp6GBkZdSy5V1enz9bXU40tY6ToiIujAMn06W024hzHoVOnTiwpKQm2r8bJyMjob43T2kChIIM6ExP6LltbyhCfP08k+9QpGr+6OuC99yjQYmlJGetp0+j3OTlk1mdpSZLpf4AXL16wsrIyYfDgwezw4cOiqqoqpk6dytooW5ohlVKHiTeCQwYGBigqLBS1Hz6E35EjzKh7d6b6669gTk7kvH7wIAxWrUJxcbHo6+3Nhnl6wvnuXRhcvQph8WKoBAbSgZKSyHxxzBgilMHBLa0NATK3tLamgE+vXsC8eSgqLkZ0dLQQExPDzMzMBG8fHw6envS9Y8cCEye2lGuoqFCgytf33UQqMRFYsgQ35swBZ2oKDQ0NFBQUICAgoOWeTpoEtn07rLZvB7dqFSKvX0dNTQ2io6Px4MEDAQAzc3MjAmluDoSGov7sWSgMDJBhYYHjcjm6nD4N/uxZhEqlYokgcI8ePYKfnx8m6+lBb+ZM6HAcpElJkKxaBXsXF87Pzw/V1dWIj49nAHlyWFpa4sMPP4SDgwPjeZ5KOVRUKFjl6Unr1g8/0Lo5bBiSVFRwD2A1zs5w++ILuhYdnfZBnGvXSLY/bRoZ7fXoAaFnT7Bm00D6fpaXlwcnJyeFj49Pe5ItCHScnTvJhPLqVZqbBw9SAC01lbw2fH07vA21tbVQr6lh8Vpa8Pj6a9xJTcUff/whRkdHs4yMDAx69oxZWFpy6sOHc+rR0ajJyWHnnz0TYmJiYGJi0lLOBdD6M3kyDl26pDAyNhZ79+7d9nxXr6Z17R8+sxEREU2HDh3iysrK4OfnR8HDPXvoOGvXtgu4denShYuMjkbFrFmokEhQvHOneOXFC2Zrayt6cRwzt7GB7ciR0HZzo7X1wQNSL/1L6Orqonv37pK4uDh4eHjAwMAAjDHo6enB3d1damRkpGtsbOyjra3tUVpa6ty7d++D//pLlFDifwGUZF8JJZRQ4m8QEhLir6qqenzEiBF2AQEBaoMHD2Z+fn5SZ2dn9OzZkzM3N8fFixeZpaUltm/fjqSkJNy5c0cwMjJiWlpaHRIhuVyOrp07M93Nm1nckCGCq54ew4MHLTXJRkaUTR84kFzZX+H69euim5sbU1dXJ0Jia0v1zlu30uZt0aKWevfPP6fXKyqIMNXVUZY0LQ1FPXogLzER9aNHizY5OUxSVAS2fj0RnB49SPY+bRplblRU6POurjCYNw8Gp06x3xkTbsbEQExPF7PKynA6K4tlZmYqCgoKBHt7ew4yGZGNgQPfatQXFxeHbt26Mf7QIZQ1Noqmkycznudhb2+P27dvC0+ePBFzcnJEs++/ZymPH+OJnp4QFBTEhgwZgoyMDDE/P5+zsbHByJEj//4mGhmRzH7aNCLPHW12q6qIXKqr01g1NND4ZWdTEERFhcy49u6Fd0gIlxcTI8aqqjLr4cOhYWlJnzMwoOO8Q2aen5+PsLAwDBo0CE+SktDYsycGNNf/vwvTphGh6tqVau2vX2/pIPDGGKuoqMDLy4s1NDTgxo0bSExMRGVlpfD48eP/x953h1Vxdd2vM7fRi3AVEAsoHQULClLs2IKKJpYYWxJrjIkajSbxVVJNYsprizWxl9hrxIIiFoooIqKACCiKgPR+y5zfH5tLUVCT759fvu+u5/ER7h3mzsw5M/estdfeW2zXrp2gi9pqtVqU79iB2OhofvDxY+Tl5YnFxcWCzMUFJubmVLCxqqoRYTQyMkJkZCQKCwtx7949xMTEwNvbu1GktUlkZZGt+dgxEqkGD6Z5xTkJS35+VDStuJicLv/5D41RaCgJEXI5/R4QQKJMcjI5Ay5coDQPXS2AZiAIAuLi4phSqURcXBymTp3KmmwlBpDt2sWFRKuG0Gjg+tdfbFPbtkwtk4ntvb0ZmziRCN6mTSS8SSRw69mT2YwfD9lnn8E4MhJfa7UoU6u5s7MzEwSBzvONN+he9fcn98Y779TPycBAwNUVmuJipN+4Ie7IyWFtZ86E9skT7jx5Mhs4cKBQ91xp04bqHxQX01wYNozmg78/OSK6datv/9YQGRlERmfNgvOoUfD29kbHjh0RHR0NYyMjtPb2pjEZP55cFDIZIJXCz88PEokECoUCDx8+ZGlpaYiMjERkZCQyHj7ETaUSpwwNURAeDrfdu3G3ZUtYXLqEa+7uYMXFLKSsDEHLl8PDxYXOs6amfk7UOkkEQUCHDh1YQEAA+vbuDf+iInQKCQH7/XcSNadOJSFKqaTuBh07kjAaEgIMHIjKykpsu3ABylatkJ2djYyMDNHR0ZE1KXjFxNC1qxViUtLSsKWyEsUKhdY5OVkA5zBydsaNGzdQUFAgdO3atV4402opDSM0lMj+8uUkKIoiEWKVisSH2bNJwLlwgebvc88eJwMDdBg1Cnf9/LjK3Fw8f/68oFKp2JAhQzBw4EDYvPceTPv3R2u1GjYjRsBp3TpYLl7Mqqqrce3aNaSkpLDr16+L9+7dQ41KxVr5+iLV3l4Y/fHHQqM2eAkJdIyv88ys+5MEnpubKzDGkJ6ejiAXFzClkoTcZoRTrVaLtLQ0rXD1Ku+2aZMQ1bUrps2YwYRu3eg5oEtD8vQkF8vfdOnoIJFIcO/ePbGmpkZ0dXVt1DbQ2toabdq0wbNnz3hWVtatgICAf1boQw89/uXQ2/j10EMPPV4N17Zt28Ld3b3JN3V5k1evXoWJiYl22LBhkoyMDGHPnj1crVazAQMGiL169XohGmS8bx9aa7U4XlUlbM7O1r6/fXs9YzM2pmj0pUtkMa2FVCoVy8rKJC1btqRo3hdfNI7cX7tG//fpQxGTtDSKmM6YQYvQoUOBe/eQpVaLARcvCps7dmTXXV1h0qsXf7e0lD1+9gxuANmCz5+naLYo1jkMImbN4hVpaXCXy4WBX38NlprKYG0NP40GFy9elMTFxWFwbTQMCxcSAbp/n9ouPQd5VRVMpk5Fxpw5uP7gAdeZQVu1aoWZM2fWX69eveDi4AC0aFH32rRp01hKSgqOHDmC5OTkZsemEZydaWE/ZAhdhzlz6kmQjtjrWpX5+FDNg61bieB/+y0V/NNq6XpIJHA+cYJd372bb9iwgS1ZsoTIbmAg2c//+18iWQDKyspw/PhxjBkzBiUlJdixY4fo4+PDZTKZkNO+PSvRanXFqV5+/LpCe97eND7e3kRGo6KomFcTCA4ORnBwMKKiopCRkSEUFRVpb926BWtra61Go5Hk5eVB6uyMPnZ2bLCvL2JjY1lWVpb24sWLkrlz58JowwaKeuraqdVi4cKFUCgUyM7OxqFDh/DTTz/B3t4e48ePxwuR8mvXiIz170/iz9q1tMDnnNIRJk6k1A+d0LV9O0X8Fi6k3yMigDVrqI6ADm3akDsgLo6s7gEBwJkzJLI0kULBOYdEIoFKpcK+fftgY2PDzF+WapGSQqLX80JVQgIk69dj0oUL2LVnD1MqlejcuTPZ1pXK+gJkc+bQvZOVBQBw9/Dg6enpuHHjBu/RoweDmVn9cXp5EflaupTys2tRXV2NA1FR4mMfH9ba2hraiRPhHxIioKqKzj87u5406pwk2dnkerC3J4Fm/366Nv36NT6PJ0+I9I0d26idpdm5c/hgxw6sBZAaHIz+Dg6weY7QKRQK9Kl95jx9+hRHjx7Fs2fPYGBggIKCAlRUVGDKlCmU3iSV4r1Hj1AVHY32rVvDID4eQmoqOYakUorKL1lCYhpA91ZCAj2rFiyAlHMSLCZNIreJv3+9e+F6g45rDarDazQaVFVVwczMTFtYWCgZOnQoUlNTsXbtWi6RSLhMJuPdunWTBOnqobi41Ll5cnNzsX//fgQNG8YjIyMlHa5fh+WqVfhj7FgYmpmhqqoKKpWKrOcxMVQ4z8yMinPqCpYWFdW7gQoLaVt7exJk1qyhuf7ZZ/XPHlEErKxQs3EjnqWl4cnFixJPT08kJSXh1KlTAIC3334bTps20bP87l0IM2bAPTkZruPGsZiYGF5TUwOpVCo8ffpUjIiKYp3lcoRMnw5DQ8PG415aSsf3NzB06FCJtbU1oqKi4NaunSiEhAhYupTmfDPo168f+vXrJwGA4mXLMO/RI0ijo+n+3LuXXCgSCYmuO3fS9fjpp791XDowxlhCQoLQrVs32OsK2jZAcnJyeXV19dV/tHM99PhfAH3rPT300EOPVyAsLKyFVCrNnDRpkmlz+c8nTpwQMzMzeffu3SW+vr51r2dkZGD37t1wdHTUqtVqVFZWMnd3dzFILpciPx+8WzcUb90K9apVaPn0aeOdVlcTcbhwoS5/e/Xq1Ro3NzdpRVmZ1mv5cqFi5Up4DBxYHybS9a9+6y0i+/v20b8ffqB/ixeTdffyZTzKyoLC0BCVlZX4888/UVVVBQBYOnEiBAcHWqBGR9Oi+tEjImg6PH1KUb+EBPChQ6GysEDN7t3Y8MMPWPjNN/Xb7dtHx6Oz0TbArunT+VuZmezW11/jeny8ZtasWS8K0NevU7RSlxP7HC5fvizGxsZi/vz5r588Xl1NIkn79hS1tLKiXPiRI0kcuXmTFuiRkWTFffttcgV8+mmTua4rVqzgtra2fPTo0YKJiUl9S7wJE4DaaNjOnTthY2MjFhQUCN7e3uLAgQOFNWvW8PdWr2Yn+/Xj99u1Y/Pnz4fxy2oKAHR8rVpR5PvgQbKB//wzvR4VRWToJaKBKIrIzs5GYmIibt68iXfffRe2NjY03gcP1nUi2LBhg1YikQj9+/ZlDpmZFEk3NGwyJUOr1SIxMREnT56Eqamp9qOPPpKgooLy7XNzaSG/fj1ZmHVRxrIySjswNyfyoyMllZUU6TUxqd/2yRPaZv36pk8qN5fOfdEiIsErVwLduoEzhqtXr4o3b95EcXGxIJVKubGxsWhqaioZOHBg82kTAB1Xaipdax3Ky4mg1roBNmzYoBUEQRg2bBi1MKuqonurTx8i/rqc7VrcunULp0+fxpw5c2C8ZQtVTdcJI0VFJIJ06UKReQDff/89qqurMWfOHFg1dC2Ul1NBxbFjydHw7rskjGi1dHx375KgFR5ORLasjD5HJ1yUllIR0JISas8IkGDSrx8QGAjNrl1Yb2SEgoICjBs37oV8/1eBc/6im4lzuj6zZ5OI2Ls3iTOMkTgxZQqJl+3b071WUkLuFam0XgR6TRw9ehQJCQmQy+VcoVCw6dOnw9jYGBkZGVCpVKipqcFff/0FKysrbmZmxhwPHUL7Tp2g/OILXLt2DWfOnMGYMWPw4MED7fXr1yVMFDH05EmYqtXYP3w4gjIzeefkZCZ+8AEUNjYwHjKkvl1eRQWJK/7+JE6kpxNB11Wmr6qicc7Lo2eiqSkJHZWVwB9/oLy8HDdu3EBAQAA2bNgg5uXlCTKZDN7e3uLQAQPoxpbLad/bt1PaUFOIjqZ5WluV/59Co9Hg2LFj/Pbt2wwAPp08GQYnTtA4/p16HbNm0TifPEn38kcf1YtdFRUk+C1c+Lfs/KWlpdi8eTMvKytjHh4e2pCQkCYLkmZlZWHbtm0azrli2bJl4usftB56/O+A3savhx566PEK9OnTp+rixYuJd+/eDfXy8pI1taBwdnZmPXr0EJ6PLFhaWsLc3ByZmZlCbm6uUFJSwqykUrFtWJhwtrRUjKys5E69e7MjVVU4l5TEFQoFqyMhUimR6kePEKtWY+vWraiqqhKepKXBKSaGFX76KTt95QpVWOacKkTPnUsk5ZdfiDCZmdGicNMmWlyFhRE5AGBuYQFjY2NYWFigZcuWuH37NgSNBn7vvYdCf39axLq60sJ72TJa4DFGUU+ZjBarBgaIcXLC/qIipIaHY/aqVdhpYcETL13i0YmJYlxVlRgrl3PZkiU4VFiojY6LE6Ojo0XFwoV4aG0tOK5fj+KSEty+fVswMTHRVauvx40b9TbZJmBnZ8fOnTvHvL290awl+3lIpRR9P3+ecmwHDKBiXCEhdP0++YQW7G5ulBYxZw7ZTJ2dm9ydh4cHi42NFSMiIoSysjKt3eDBgvarr5CWm4ureXliREQE8/LyQmZmJtNoNOjbty+LjIwUS0tLETR3LlO5ubHUrCzY2to27p39PCoqiLz5+FDV788+oyjZ+fNE5Lp0ITeBoSGJFc9H9UD2VnNzcxQXF6O4uFjs378/Y4JA5+riUldk0dnZWbh27Rq7cfMmgqZMoc/66isqtvYcBEGAra0tbGxskH3tGu/u5iYgNJSOa/lyWui3b19PNm/fJgL/4AG939AJ8MknRIamTq1/zdSUBBpT06YLH5qYkBjRpQvl+4sisHYtnhoZ4UhcHAsKCmKDBg3CwIEDWc+ePQVvb++6YpXNYsmS+oKTOkyfTj3Zp00DAJibmwuJiYlMKpXCsaoK6NSJUld27iQnyHNkyMbGBvfu3dMmJyXBe9cuxt5/v34bQ0Ny8/z+O+Dri0fFxbh58ybmzZsHi+cFFrmc7M8ACQs9ewJnz1KEfvFier9NG7oeV66Qa6C8nEi0Wk1iSH4+uX3mzqV5f+MGRV27dYPg74/u3bsjNjZWVKvVzN7e/vVbLKrVYJWVRHJzc2msL1+m67JmDYkaEyeSYyY3l+Z0djaRYDs7uobffUf3qIfHa9djACgqv27dOl5QUMA1Gg3TarVs/vz5MDIyAmMMlpaWsLa2ho2NDTw8PFBVVQW1Wi2qo6OFO1VVuF1VhZycHJSWlsLR0RG9e/cW2rZti1u3byNXqYRPVRW6RUbyYkFgF7t0wRWZjF/OzmZRUVEwWLIEwtGj/Mn06czKxATswQMSXBMSSKTS3TcyGYleiYnkWPH0pGswbBjQujXkcjnatWsHrVaLmJgYVl1dDVEUMXbsWKYwMqL9BQQAK1bQ/aNUNu7EoEP37iSQPl/gcfBgcovpake8BOnp6di1axd/+PAhs7KyQufz59Fq61YYbtny2vn+dXjjDRJN//qLxv3mzfqCknI5PVsTE0mceM19b9++XVtQUCC8/fbbCAwMfLHIZi2ePn2K5OTkKgDixYsXKyMjI5/qnCl66PF/AXqyr4ceeujxGujdu3daZGRkW4lE0sXBweFvrXQuX76M9PR0aLVadPb05NKTJ4U4OztWERDAquPimO+JE0ju1w8FBQVMqVSKHTp0qNt/VnU1Evfs4TflcmbZooV2zJgxgmtKCrqcOsUcV66EXC7H5WPH0HPSJEiuXKHFfV4eWUpPnqToWEoKkcK+fSkS3Lv3C6QpLS2Np6enM8Y5nrRsifMVFbD/8UccefZMe6WykhcEB3OnR48EODtTJOrgwbpiYg+yslCsVovvzJ/Pbvv5wdzBgfX74gvmWFIimLz1luBgaCg4//knsxo1Smjn4yM4K5VCxz//ZC2XLoWtszNkMhkePXrE7969y/39/Rtf22fPKDe3CSLPOUdpaSni4+MxYMCAv1ckjjEiR3Z2RGJTU4n4f/01kdTqaoo8z5vXbM0BHQwNDdGzZ0/BxcUFJ06cEGJiYlCo1YodDhxAiq8vCw0NZT4+PnBzc0NpaSkuXLiAyspKPmPGDEHxww+wCwlBmUSCy5cvw8/Pr2k7P+dEYqdMIVJ+5Qod2/XrZBX38aHIdocO5ED45hsiGI8f19ueayGKIk6ePMmVSiV3d3enDzMwIAIxZAgAsmqXlJSgoqKC+/j4MDZkCBXTS00lwtKQCIsikJyMkpQU+CxdKhh4ehKJnz6drl3D87l5k1739iai+XwueZs2RE6fz78PCyPC2sA18wLataNzPnoUSE6G1NQU8jNn0Omdd2DeXFHG5tC1K90rDYWIN94g90ftuVtZWeHxo0dot3On2Mrbm6G4mOaMhwcJbCtWULS6Fvn5+YiPj4dCrUaX8+cZ+/jjxp9pZ0fX8tQpXJFIUFxSIvbp0+flk7plSxJB3N3p2KytyZLeqRO5UkaOJFHuvfdo3M6cAU6dojQWFxci1hMmUPeDBmIWYwympqYs4do1fuPUKebbpQvYtWs03zQacpZcvkwpGlu3kiA4YACJjO3bk7iYno7oc+e46ulTPJHLmZFUCrmfH20XEkI2+C5dKO+7bVuag2fP0ryOjaW5++gRzTlBoHn8knuxrKwMMTExTKPRMHt7e96pUyfR2dm5yfCzoaEhHB0dmbu7u+B48ybkffqg1NBQtLa25gEBAczT0xOMMVQ/eQK2dSvMysshy8uDundv1iU2Ft137kRAcDDr4uUFn0Q8aHEAACAASURBVORkYNAgRHt7s8vx8WBHj/LH48YxJpXCrEsXmgMNHTuCAPTqRULIpEkkKD5XuG/z5s1ifn5+3djb2NjAxsaGxlujIaJ86xYV/uvV68UTVCrpWfG8e8XLi7bXpSs1g8rKSmzcuBHm5ubso48+gm+PHkjftQs3vbxEr6FD/ybTrwVjdA/Z2ZFo8fbb9e+1akWpT1pto6K0TSElJQXbt28XCwoKJKNGjYLbKwQhCwsLmJmZyS0tLXsXFRVNFgThnfPnz8f06dPnyT86Dz30+JdBn7Ovhx566PEaCAsLk0ilUk/JK4hfU+jZsyeys7O15eXlEuMNG1iXmhqYnjiBn1atQqCJCeS1rfr+/PNP+Pv7C1euXAFANsXkO3fQ98EDZmpjA1lAALOTSKhA1aJFQGoqen34IaQzZuCmhwe6yWSQyuUUuRkyhCLSc+bQAurGDYoeurvTIlEup3zJWvj6+rKCggKtw5dfSoyWL0d6bCxyLS1RWFMjKS8ogLSgQMTu3WTt37uXSEktRFGEgYEBNzU1RY9aCzJSUmBcVYVWsbG02C0uhmtSEvDHH0QGkpLg8PAh8PQpWjKG0MJCdqiigmP7diKyv/5KUcukJIqQlZTQ8Y8aBezfj/K8PMSYmcH06VMEtGkjCqGhAkxNiaCdOEERTC8vIgvdulHlbgsL2tfZs7TwbN2axIROnahwIUA54AkJf7sVFADY2trijTfe4CdOnGBZTk7wcnNjYwQBitoFt1KpxLhx43DhwgX4+/sLct1YzZyJkJAQ3L17V9yxYwcLCQlh1tbWjXe+aFE9udJq6fwYI1I/ezZZhXXRunXr6P3iYorWZmYSQTUxAQQBhw8f5jU1Nejfv3/9ZDY1pZSL77+vcwR07twZ8fHx7KuvvsLYsWOhVCphumABeEUFLi1cKBqIIvNxdmYGK1ZAFR6OA5Mno8eWLbzPyJEvkoGqKiLCQ4dS5NvJ6cULqBMrZsx48b0vv2xUqLJZMEYtFKOiYLh/P+zz83llYCAr+O03tBs0qFErwZfC2bnxtkFB5FAYP77+Nc7R5s8/ucfRo8LR6mo4r1hBxKKiAho7Oyjc3SHVaCCVSnH//n3s37+fe3p6YlCXLgLLzW36c0eMQNmlS1Bt3owWI0YIAJCXlwepVIqioiJcu3ZNDA0NFZpM93B1pf9TU4kUHzxI9vCRI6kgWuvWJF44OtIcMTKiegx79xLZioqiHPPhw4E1a+D19Cmc+vZlD86fR7lSCePbtyEolSSqKBT0Ny4udG0cHKjvvIUFkdlaITA8LIzmQnY2HdudO3CorNTKysrYyOBgwfC778hy/vnnJCLOmUOuiJQUujfLy+n9lSvpPtUJV0ZGJNa1bg20bInknBycO3dOBCDY2toiOzu76WJ8TUCSnQ23KVPg5ulZLwzUplXYCgIGdOmC+z4+SOMct27dwrsnTqBNbb6+WdeuQGQkLA4fRgczMxRfvQrD4GD2m4ODePHKFWHc4MFoN2AAjm3Zos3KyhJmz57N5LpCk7p7ITycnscNLPelpaVgjEGXattKl04ilZIY8sknJOqFhpIl/vmotrU13W9RUY1fT00lV9NLkJSUhEOHDsHIyEicNm2aIFRUgAcG4l6fPhi3ZMn/rNfmvXtUH+WLL+iZoHMfCQKN/b175HRoJp0pOjoa4eHhACCMGDECrro5/xJIpVJ0o/op0uDgYGlSUpLriRMnzoWFhXktW7Ys6390Pnro8S+APmdfDz300OMVCAsLayWXyw+pVKpeAGBvby9OmDBBeG3beC0OLl+urU5LkwxZtAgtvLxw+NAhsSQiglkFB4tDhw2TfPPNN+Cco2XLlqIgCDAxMRE1Gg0bWFAgsbOwIPt9586U1xgQQP+8vQF3dxzt1EnrFR8v5K5bx7p164YXLI0jRlC09PffaTHl5kYL7AbE6tTRo1q/uXMlljExOH/njsZo6VKp4aef4nhiIszNzcVAURS8P/0UTyIjcae0FAUFBdzJyYkVFhbi8ePH2qlTpzathJSXE9E0MqKIuYEBLabt7WmxOnkyKpcsweEuXbQTfH0luHWLIo6//UaL/FGjKAImikDLluBPnuD333+HZ1AQOrZoAQM7OxiXl9NntW5dX7jMwgIoKKDIYUYGEaB27SgSLpPR/9HRRDI8PWn/b7xBpNPNrWl77GtArVbj8uXL/NGhQ6zXX38h6+ef0SUgAC2a2p9KRcfCGBISEnD06FEoFAosXry48XaZmUTEunal3319qaaAQkG5sG+8QTnDz0fEddfe3x+wt8eNTz9F+PHjmDJ9+ospExoNiSrP7UOXs8sYg1ajQcviYt4pOxue4eHsuo8P7gYE4BnnsLSyQnBw8IsL8Kwsyt/fvx9Ytap50j5zJgkWOsGoITIyKBKoK0D5Oigrg+rbbxGXnS3aXbokaIyNcT40lBs4ObHQ0FC8tEBfaWmdOAKAItajR1MEGiDXzJgxODBnDjLlclQ0YSGWqFTolZIC6//8B8ePH0dgYCAPCgpiSEmhVIVVq5r86Gt796Jq40bYTZ+ODHNzHhcXx3QFBgVBgEwmA2OM9+/fn3Xp0uXl16C6mkScKVPod6WSajxs2kQ/T5tGY+PqSiKSoSFFVquriTCamuLnn3/mZWVlDAC6du3KQ0JCXiuyq9Fo8M0332DhwoWorKzE1q1bIZPJYGtrC+mpU2ibm4vuul73CQmU2nH0KDltmkpn0WjIAp6fTw4FzuneSUxE+enTSPD0hNfIkTB1dET4xYtIEASIZmZ80uTJ7KX1GfbsofvH1JTcBPfuUbR9wgQioObmyMvLw2+//QYAmDdvHszkcio4+cUX9Dzr25f2JYp0nHI51Q64eROjjh3DrblzxafPnmHAgAGCt7c3sHs3PaPGjyf3VWwsOWees5cfO3YMiYmJkMlk+OijjyhVSRTpObBzJ3UAKCmpL2apw8KFlM9fUtL4dSsrsvd36tTkpbhx4waOHz8OPz8/BAcH04vXr4Nv2oQv7exgbm7Ox48fz1o1rGXxd7F7N13badNerDkwezYJ0nPmNPmnRUVFWLVqFeRyORYtWoR/Ir4DwLVr17QXL17MUqlUzsuWLdP+o53ooce/BPrIvh566KFHMwgLC3OVyWQfSKXSd318fGRt2rThERERTKVSsdWrV4sDBw4UOnfuDI1G8+q2Y3l5CL16VVL0/vto4eUFAAgVRaF0/36c8PMTtm3bJjLGBEdHR+0777yjW8EQ0+CcFmeDBlGrtTlzyAK9fz9F1WbPRm8/P8nFixeRcvEiT0tL46NHjxYaVWL+/XdahJaVAaam0Jw7h82//QaHYcNw190d5ebmsHz2TJK7ZAmm2tigv42NFGvWAG3b4mhCAkpLS4VjGg3aGhnh0n//iwJ/f25kZMRPnjzJzM3NX8wrBuorzOss3z4+RCJWr6ZIVn5+3bZPt25F7pEjtPjVRU87dybb8OLFFKmurW7/UK1Gftu2vOe4cU2TjqaKKNZW2wZA0X53d4p6rV1bv3+NhgqXDRtGrgCdA+B1o8G1kMlk6Nu3L0PfvshctQo54eGIvn0bTk5OePPNNxvb9O3tiaR7eMDb2xsxMTGihYVF/QZaLR3Ljh31RB+gY9btp21bIgxjxhAJbShCmZigvLwcEfPm4eGdO6Lxli3Cp7//DuHzz4k0NDyWX36hnNqIiEbnM3z4cDY8JAQoLIS4bRuEzZsZOnaE+q23kNu/P56lpsLC0hIWFhY4dOgQJk+eXF/87q+/yNK/Zg25OprDuXPUas/Orun3bW2JgOvEoteBqSnk330H//h4QSWToTQnB52Tkphw7hz23LvHZ65Y0TxpbdWKSHD79kScvv6aiLAoEnl++BDo2RNZxsaoqA2aTJ06Ffn5+Th37hyvrq5mVioV73H2LPvFzQ2iVAqNRsMBsGrOIWnbFk3NqrKyMlx78gStlUpI1q1D9siR2kmTJknt7OzqBLyEhATk5OSwY8eOwcLCAg7Pt3msqSGLeEQEPS+USuqGUFND0eCOHYlclpRQuoGTE0WZm8GgQYPYgQMHwBjDjRs3WMhr5HsDFFG1trYWo6OjhX79+uGTTz6pe68qKQlRjx8jLS0NTk5OJFq6uVHe9vTpJITohJX6HZKY17p1oyj4k8ePsUuphLtCoTV1cJCgpAQDHz2CV1wc0mxtmVFODj2DXF1J1LOxofGVSume/+gjSid48IDmaVAQiQ8NnumFhYV1P//3v//FUk9P+ntjYxKpfvqJ7uX+/YGcHABASEgIOnToALf27dHpjTeEg5GRSE9P13p7e0uwZw/lzwMkeFpYEAkvK2uUTz98+HAMHz4c3377LbZt28b79u3LnJ2d6fiKi0n4/fRTivY3FJy++opqI2i1dakPmlqxpLnc9pKSEpw+fRrBwcHw0xXKW7ECMDAA27ABEx88QEREBNu0aRMCAgLwt/PeN22i76ypU8mhUVn54jZLl9JzbNasJlM2LC0t4e3tLSYkJAgVFRWvrr3RDPzo+9IOgDWAZmw2eujxvwP6nH099NBDj+cQFhYmvXbt2lapVPrfbt269Rg5cqSBh4eHxNramvn4+KBr165MJpOxM2fOIC4uToyNjeW9evVqnjhotUByMpi1NYwmTap/vU0bZHt44GpaGswKC3mfQYOEzPh4dKupYXmmpkhfuRIoKIBRq1Zg27cTwTt7lizu+/ZR9GvjRsDJCQYGBnB1dUX37t3ZlStXxHPnzgkJCQn8+vXrPDY2lscmJfGi7du56fz5bCPA4zMyxCJAmFRQgB6MwffLL+E1bRpqWrcmuzNA+3d1RWFVldht0ybmk5SE6KAg+PbpIwbPmiVUVlbi8ePHaN26NXvw4IFQWVmpLSwsZEVFRTwuLk7cu3ev4O3tjZTvvuPC0aMw3ruXISCAzqNhT3Ggrmd73XVUqymP9c03ya67YAFUffviSkICv3jxIrOxseGdO3f+e7mj2dm0yOzdmyzxv/1GC+2OHUlAOXaMCrONGUPRvrt3Kdf5gw/+NuHXwUKpROetW2EzZQouxMYiLy+Pe3p61h93eTnZamuFGQsLC3bhwgWUlJSILi4uLPfhQ1SmpqJ61ChIZDKo1WrIZDL6mzFj6msvtGhB12zjRmD4cGg0Gly5cgUHDhwQIyMj2dP8fISMGcP6vfMOJGPG0Nh26EDOAl2hLCcnIkW1YlTd8Wm1RK4SEsDmzydi8f77KO7eHZJFi9By4ECMnz4dXl5eJCxERHCmUsF63Tom9fYGGz68rsp/kxBFcqkEBjYWZRpCKqW88urqJjsCvBR2dpAEB8PI2Rltdu+GSfv2yCkuZm6pqWDduzc9tsOGkZX/6VMiIDNn0jH07Uu5xQcPAtOno1fv3vD09ERcXBwSExNha2uLCRMmsPz8fNHY3p5779ghXL1wAVpBwMOHD1l1dTUSVq+GJDwcv+Xnw8LCgtvY2LCioiJs3LgRFy9ehEqlgmtoKAJUKvi4uwsWvXpBIpGAMQbGGGxtbeHs7Izq6mqcPXsWjDFuZmzMDJ49I8FkzRoaX2triqIaGZFV/8svififPk2pLlIpiYDl5SSseXlRhX9BIKJVe3/qIto2NjYoLy+HkZER7OzsXqtGxunTp1lwcDBMn3NzyKRSpLVogfM3bsDKygpKpZKOJyCA0g4GDybBIjj4pVXf9+7dqz1z9qyglssx9pNPBEWnTkCnTmBvvolLHTuK1zlnxS1acA9/f4bbt6lwYEICiTdr15KYGB1Nwt/QoRRZDg5+gWjGxcWJjx8/ZhKJBKNTUriyd2+GuXNJQAgJoeu6YAER2VqizBhDy5YtIcydCzg746FUiqKCAu4dHy/g668b59o7ONC8PnSIxqM2b72qqgoHDx7UFhQUCC1atGDR0dGwtbWl7gy66HxQEAk5DUVOzoH27XHXxYWfTUxk169f5zd++41ZLFyIrWo1v337Ni8rK2Occ1hYWECr1eLw4cNiTU2NOGbMGLrgokjur8mTgTZtYGlpia5du8LMzAzh4eF4/PgxMjIykJ+fDxMTkxdbbtZPAvreOnmSHF1Ll9LPJ0+Sg6vhPWhqSs+lFSuaLCIoiiLCw8NZTU0NAgMD6Vn4D6BWq3Hp0iXOOf+qT58+6n+0Ez30+JdAH9nXQw899HgOEolksVKpHD1p0iTDpiL2EokEPXv2rKtgn5iYKDx79gwv5FkDRE58fIg4HjxIha0+/JAWmF26oEPXrliydy+Dp6ekuGNHPI6PF8SNG7Ft7ly8uW8fVL//ztcMH87mJCdTmD89naK406fT4vI5GBgY4IMPPpCUlJTg4cOHjHNetyLnPj5ILS2FpakpuvToITEyMoJ02TJApYJ00CBkdOsmPu7evX5l/fnnwI8/IjQ0VFgTEYEPRo6E04ABwK+/Cli9GmZ9+jDOOc/IyOA2NjaIi4uTAIBCoWA1NTUAKAo24Nw5VtS+vdiSMQYXF4rQ3rrVKDrHOUejtDKplCyqutzuAQOQ9d13/LKdHRw7dMCoUaMaMQBRFPH48WOUlZXB1dW1cfRcV7MgKIgiZ0eOUEqEWk0kB6CFpUZDPzs6kl38gw8ohSA1lSzkmzbVE+PXhaMj0L8/lCUlMDExgUqlEgHUMwlX10aR6o4dO8LR0REJCQlC5d69aJedjWsjR4rl69cLOhv3wIEDeXdLS8aqqxt/1qRJAGOo+eEH/KzVclNTU969e3f25MkTZGZmckEQmEQioTxrgKLuLVoAmzfTojs9nUjOpUu0AD97lnKDd+0i0tipUyPiFXntmrZ7aamkW4N7ZNCgQTCUSJjsm294Sn4+TgsC3v/kEzRxZ9SjpoYiuq8oGoZ16+jzX7Mft1arhVarJdeNoSE0PXrg6owZYLt3o6OBAYScHLK3L19OUeWG5PXcOXIZMEb3blgY2aYPHKAIbgPyqosuiqKIqKgoWFtb46233qpz5Xz66694tnYtrltb48mTJzDlHIW1KR1Hjx5l586dQ0VFRd3+7O3tNf3795ciKIjmpZ1dk0XYBg8eDMeSEqRs3cqzkpJgZmfHhEmT6L49dIjmllJJx96xI2oPkkjutGlELtesodcrKshR06IFpSvk5wNXr4KvWwdjrRYVEgme1rYG/euvv2BsbAx3d3doNBo8evSoLkWlocMnPz+/jvC+gO+/x+CvvoK9TIZDhw6hQ4cOEEURt2/fRsuWLXF6zBjuk5XFu33/vVDZvTvWJiZCrVbDxsZGK5PJIJPJhIKCAhQUFEgAYP78+S8ICv369ROuX7+OZK2WYdAgckbpMHIkpfiEhdE1USpJXGzblqrnu7pSLv28eYBMhkGDBgkpKSlckZrK2sTGMvz4I2BpSftq25bSC3JzyQ2Qk0NOFB1WrgQ6doQP5zi5ZIlEfeoUZLU1DRrB2xv4+GMSk8rLoXr7bWzdupVzzuu6CmzcuBEHDx6kNJ+YGDqGEyeIODdsWyeTAY6OuJCYyJ4ZGKB9+/bMuWtXGJWUICgoiOXm5rLk5GQxOjqaqVQqprt2da6ynBzqwHHmzAtOGl3nk3379sHY2BgVFRWIiIiAh4cH3mxQkBI1NVQsNiSE2jru3UvHm5hI81kQSFTt3ZtEHh26dycx5saNxm4mUFvFkpISODk5iQqF4h/XD4iJiRFlMtnlxYsXV7x6az30+HdDT/b10EOP/3MICwvrxhgL5ZxfBHB+2bJlvMF7HWQy2ZJRo0YZvcqa7+DgAAcHByE9PZ0nJSWxRrbGqioqfjV3LpFKCwuKVM2cSXbNoiJaBO3aRQSrqAjFmZm4/eQJrJyctO5xcZKMJUt413nz2PgDB1Dx118wtbSkxVFKCu1r8mQiPqamjYi/IAiwtLSEpW4x2gCH33wTIV9/Devz5+sXpLVkiAsCzLKzaZGmUNQRGta3L7Te3tAEBUFOJw6sW4dOH36Impoa5Ofni7pibyUlJfjzzz+1nHOJZ3Y2nCMisHfsWIAxwXjlSiiVSnHSvn0CO3u2EdmvjVzWs/1hw2jhW0v299jbw2vrVvbe0qVoNW4cgLooD9LT07VlZWWCIAhMo9HAw8ODj9QViRs5kqLXp05RZNPVFbh/nxaSDdGpE4kCOkilNH66XtaBgXS9Vq8m625t+8LXwqJFMOncGdIBAzD8/fcbhww//ZT23aBl48SJE5GTk4Oib79Fx1at0GvBAqG8vBwVFRUoKirCkSNHwMaMEbtZWAg6evro0SNERUVxbW6u6H3woOAbGir2nTOn7rN2797Nbt++rXVxcan/fB3pf/ttIiycU+93qZSia6dPkyCgI4oNUFxcjLspKRK/8HCaK4MHA7t2QbhyBX0+/RQ4f55tP3uWqx8+ZM1F/AoKCpCSkICuo0cjc88eCB06wLmZ9oYAyGXRIPVDB1EUkZeXh2fPnsHAwAAmJiYoKSnB4cOHUVNTA0dHR25ubs5v3rwpAIDz9OkY+eQJpUbs3EmW4ZYtgW3b6qvv//wz5W8fPUoi3bFjNBc7d36hNZhMJkPXrl35jRs3mFarxfHjx+GhqyjOGISEBLTs0AE6o3yVoyOijh8XnZyc8JCuD6usrMTUqVPRhqKz0todk4vns89oDurExOxsIkwrVsDZ2RnOb70l/N6ihSifOpXVVSbXtdo8coRSEXTo0IHs6uHh9L5ORDA2JuILkJhYUADU1ID98AM+OXECJVFReLBxI6Tbt+PQoUM4cOBAk0NkZmbGzc3NeWhoqJCVlQVTU1NRKpU2JmWcU/0JFxfgwQNotVrs3r2bP378mBkbG4u15FM8oVRKVDU16DhlChxnzBB7Tpgg3Lx3T1JTU4OKigoUFhbWCYTPE30AiI6O5pzzxnUNamrqHRo//0wCQP/+RJyPHiXHT6tWFPE/fJjELldXCIMHY6ZCwR5cuIBbK1bwAFvbxpMgPp7+nzqVovJTplA+P0DC0d27sOrXDy5vvIFfbW0x4tGjpue6gwPw+eeonD8fsRcuiGK3bnzWhx9KBEHAvn37kJOTg/fee4+2bdGCxuzePfqOKS1t3Hnju+9ge+GC2CUkRPDz8yPhedYstK6fv4Ioiti9ezevrq5mo0ePFuq+M/bsoedmMykzrq6umDp1KszMzGBkZITk5GR+9OhRVlZWJk6YMEGQHzlCefmDBtE929CNk5VFtVMEgQqwVlfTc6a2EwiMjUnYO3iQviMaCIy6WgFjx44V/km+/t27d3lERERZSUmJSq1WT/vbO9BDj38h9GRfDz30+D+FsLAwmVQqjejevbtZcnLyxzU1NTFhYWETli1b9jQsLMyUMXbP399fUCgUyM/PJ3vpK9CnTx+Eh4dzX19fZmBgQFWkk5JowT1lCuVOKpVENg8coPZjFy/WE30AKC9H26+/htTWFtorVyRKhYLHxsYyrZ8fgkaMgGLiRMqxNTcnu+2yZbSIt7YmYSElhSJze/cSOWvG+soNDFDVogUVPGsYfeIcjwcM4K47d0Jz5AikV67QQrd1a8DGBpVmZqiurqYo6YgRFHE5eBDdR49maBCpViqV+OCDDyS//vKLpouLi7S8qAhgDFZWVigoKICNjQ2YUkm5mz161PcLb3SQnBattYthzjnup6ej7RdfwP3bbyGOHIlzUVG4ffu2aGBgAD8/P4mtrS1sbW3xxx9/aAVRlMDWlnLhf/yRokunThFZbKpNFUCku7iYqto3xKRJVAxv3TqKlpaWUr52fj7lPTdVTO55SCSQzZiBvseO8Vu3brGgoKD69w4datQVQQfbAwdgu3x5XbE8ExMTmJiYoFWrVnjvvfdY3sCB7EnHjmg9bhxycnKwfft2eHp6ii379pWYuLnB48oVCZ48qcuBd3NzQ2RkZNOTwsiIrMu11l88fkxjU1ND9Q2aIPt//fWX2KpVK25rayuBKJIwtGcPCSbr1qHczAwZmZls+PDhTdp7Y2JicPr0aZhyzqv69sXV69eZGBsLExMTuLq6ikOHDhVesIm7ulIUPiCgkfX+zJkzPCYmhpmammo556iqqpKIoojAwEA4Ozvj0KFDPD8/H+3atcOgQYPqCxO+9x4JSr6+FNn/7DMi/bNmUWSztJTOadiwujzsppCYmIgbN27UHayVlZUIXb0NgAj2rFlEcBYvhuGDBwju0EHQtR47d+4cAIitWrV6cXxcXSld45NPyFWi0VAuvrs7iRVt2wKMwUarFf7ctw+LjhyB4bJlNJZz5jQm+joIAjlXrl4lItrU+7rnXmYmACBuxw5Izc3Rx9MTTv7+iBwzRrxjYyOY5ObCdeJEpKSkYPDgwUhLS2MxMTHs9OnTolarbZKEIzubKv4bGcHd3R2PHj1CcXExpk+fjpYtWwoAUF5eLvnpp59w08ZGFPbvF0ZfuSLgs89g/+WXqGzXDkePHoUoiujXrx+XSqW80fUGPTMiIyMZ0MBtcO0aiVKZmTTH5XIS7yZPJvFu3Dh6flpb03a6nPpjx4DiYohjx8KiuhoazhnefpvOIzKSXDEhIfQ8AMgZ8+QJCbHBwfR9IIpAaCh69usH7ciROHjwIGbNmvVCrRNRFHE6Lk6b5OgoGRkTIwSKIoSaGogKBe7duwcAsGtY16J3b5oL5eV0b/z8c/17770HX3Nzdi80lH4fOpQEggZCjSAIeOeddxrfaH/8QZH4Dz98cewaoG2Dmgre3t4sPz9fbLlggVD8xRe85WefMfz0E8375632CkUjoRd79lBXkfv361/r0IGcRn/+SeNSC19fX0RERODhw4cv1qp4BVQqFQ4dOqTWaDSLARxdtmyZvvWeHv8noK/Gr4ceevyfQlhY2BClUrlv9uzZplqtFhcuXFDFxMRoAXyl0WjsJRLJbHNzc15dXc0qKysxbNgweHl5vTQ3kHOOffv2aR88eCAZd+YMWmZnI/3gQXjpcp+3bCFSa2lJEbrERPr3+DEtdDIzqUjUkCGI/vhjnL17F24pKFZxZgAAIABJREFUKegVFYVnHTuKrZYvF6ytrCBZsIBIqYcHLcZ1C73ffqNiR+vXU2RpzBhaUB07RqS0QeXkw4cPQxRF7WiZTAJ7eyLtqamAtTWiU1PFiPPnBSfG+FstWjCsW0cL3h9+wLfffovp06fXpyrcv09547GxL9qvY2JQFBKCp+HhcKuNqv3yyy+8tLSUmZiYIDAwEJV79ojq1q3FkloyUl5eLuTm5gq9evXSBpqaSmBtDdjbQxRFbNmyRVNQUCBt164dhigUyPvtN5wcOpT7+fmx7t271xecOngQ6WFh/PaXX7Lh+fkQJk6kyNTMmSSU7NnT/MQoK6MFeXMV2mtqaBwfPqzP6R07lkSW6upG17hJqFRImjePP7S2xlBdOzKAoorHjjVuNVVRQVHky5ebzWG/PHKkqJw0SXAZNQq7du3iRkZGYmhoaH2o648/KA9540ZAKkV4eDjS0tLEOXPmNKMCcbJ237tHdQuGDaPjmjEDSEujffXtCxgYIC8vD5s3b8acOXPqC2SFhtI1LiwELl2CaGKC7du386ysLPbxxx83qnz/5MkTbNq0CfLqaizJzqbrKpcjNjYW8fHxyMvLw4cffth09wInJyIrDeoKJCUl4dixY3zx4sVMEASIovh6RTMBEifWriVColLRvdi3LzlCPD3JmTN2bLMdBLRaLb7++msAVEyt2er4GzeSe2PoUBKgLCzoegOIi4vDqVOn6jYdNGgQb926NWtjZkYR55gYKlg3bBgVC3RxebHVWmEhft2+HV1PnEAvziHduJEI08ugUpFgMGHCK4sehtVG/RcuXAiju3dp36dOgc+fD/b0KQklffsCAwfi4cOH2LVrFxdFkc2bN+9FsefUKbKdr137isNTNR7DvXsBMzNcXreOR3TtysytrPDhhx82TtmpBeccBw4cQHJyMgbFxsLX1JScG8nJVIwPoGfjO+/QsUildI9360bH1bt3/c5+/RW4fx97evXS5uXnsxkzZggGhYUkhHl60lwsLSUx94cfKO1j715KgyksJHdQTg7V5XBwACQS7Nq1SywrK8P06dOFhsd/+PBh7f3799n7778vWJqa0nh37Ai8/TY27t8v5uTkCADg4uKiHTt2rIQxRsLC1q10X1y8WB/dj45GdEYGjy8sFD/44AMJCgpovjeVVqFDfj6lnZ0+Xd/K8VUQRaqt0q0bHj54gKK4OHhdutR8bY3p0yk9Siem0ICRAG1vX18Y8eZN+p4ZMqSuyGt2dja2bNlCHRH+ZnE+tVqNDRs2VFZWVkKtVkslEsm+mpqayQ2dfXro8b8R/7N+mXrooYce/zIYGBjM6dGjhylA1vEBAwbIZ8+ebWhvb7+0ffv2k2bPno3CwkKmUqkAACdPnkRZWdlL98k4x9itWyWzpFLcfPNN7b4PPxSPHDmCXF0v7dRUii47O1MBqMJCiiJnZdHPVVWAqSkyduxA+J076JqaKnbu2hWyn35Cqzt3hMM7d+KuKBJp7dWLCtytX0//Fiwg4eDBA2D+fBIUdu+mhWdaGkUsr14l23pKSn3v5qgocgcA5AjYtg2+vr5C3379UCmXi0hNJXfC1q1AcTEUajXU6gZ1jDp2pAVhVVXji6FWA5aWSOrVS6ttIJC0bt1aa2trq7WystJevnxZ+6xbN8Fv5UqpaUmJVCaTSc3MzASlUonIyEhJ0YgRKKmt3B4fH49nz55Je/fujdTUVKy9cQNlGg2fplQyX19fIvqLFtH5ODvDKjCQZWZm8pVFRaLmjTeIhKxf/3KiD5CN9GXbKBQ0dsOG0WddvUqRPYWiPsr6MvFcLoe1kxNzPHKk8XZpaY23KyqiRe/jx80XqwPAVSqwggL88ccfYmZmJvPx8WnsaZ08mSLgmzYhOTkZ0dHRKC8vF7J1/c6fR2wsLayDg+v7cA8fTkRCLqcI+KpVQEYGKu7cgUwmE83MzOi6TZxIkbnTp6l1mEoFQavFlClTWNu2bbWrV6+G7n7KycnBpk2bYGVlxT8dPJjOtXZx36NHD0yYMKHZauEAaB43SHkAAGdnZ8hkMnajNjVDEITXI/oAiTZz5wIDBtBY2NvTvOecxnfXLrrHvv+enCKnT1PEsXYMMzIy6nZl/9xxNcL06UQMd+0iYq2rRQHAx8cHb731Vt2xZ/73vyx7zBg8W7kSPDyc/u7RIxofieRFoi+KgKMjPnZwgG1REb/v5sZfSfTpwyiyvWvXKzcdPnw4AOD06dNEiC0sgLffJqIPEJktKQHi49E2MBBLFixgn7/7LoyaEhHatycx5RV4YQzHjQO8vOChULAesbGwUavFpog+QM/kPmfPQpmbiwdmZsBbb9G92lCMUamIpOqup0IBbN8O1YYNUD+pDfpWVgLnzwPvvov2Dg6ssrKSvhvs7ICePUmki48nYj9+PNVAUCgoBcDBgYrR2dhQ+odMVufkGj9+vFBRUYFTp07V5Q4VFhbi7t27klmzZpGdXiqlDhkFBcDatRgfGCi0a9cOAJCSkiKp1tXsePCAnvnLl9Ox6pCYCJ+wMFZUVCQpLy+n2hwNU5WeR1ERiQU3b74e0a+sJKv9gwf0/IiPxyVXVxwZPfrlRTQjIhoXAQUoNaZ/fzpfHbp0oXtu27a6l3Sie6PvoteETCbDnDlzjBYtWmS0cOFCuYGBwSgAr2HN0kOPfzf0Nn499NDjX4+wsDBbUAudlGXLlqmaeN8IgA8AQ6lU2s/d3b3R+5aWlpg8eXJdn7qPPvoIUqkUCQkJiImJ4QBYTk5OXQ68gW4Bq1JRi6PPPwfr3RuWb76J0Y6OEgDYuXOneO7cOWHChAlkv3VxoUVLRAQtqlxcyPr58cdElEALmF63bvGBFRUC1q4Fdu5E5YMHKPjlF6q+PG4cVM7OSFUoRJ6YiPYTJgimpqYUIczOJuIFUKRdF21/9IjI1IcfAjdvQrJgAZz37SM3gJERCRHbtxOxPHwY7ffsgQgwODnRAmzECODkSUxdswY1Hh71C1czM1q0u7pS3rO/P+2rtm1VQv/+vLco1l3jMWPGvPh9c/s2BhkZ0WeALKwRERHYW1XFLdu2ZW2uXMGVK1fg4OCg9fPzk0ilUpiZmcFl3DiGnTtJrAgLI5tsbi4QGAiLtWsxce9etiExkWmmTYO0Z8/Xm0Tp6bSPVyEwkM750CHKdf/lFyJhUilFCdVq4M8/kZeXhydPnqCoqAgVFRVatVoNTatWTHRxETreuAFpbRtB3LhRnycOUJ7vrVsU1W8ClZWViIqKgnlBgXD3zBmYjBnDZ8+e/WJ9BkEARo6E9osvcOfyZdj16cOrq6vZ/v37+bx58xrbdi9epGjr999TnYKGJIsx+j0lhYjCDz/AbuVKyBYvpojoL7+QK0V3T/36K6VCLF4MxMZi6tSpkm+++QaVlZWQy+UQa+fEzHffZUJKygvneeTIEd6hQwduaWnZNIvbuBG4coWufy3kcjmCg4Nx/PhxREREiCNGjBBcdPUIXhdOTiRmREfTvTJoENmzp00jst22LZ1/eDiR/zfeAKqrIRMEPvDRI3bf0BDbvv8ec774AgbNEZ2//iLxbMiQxqRLq4W7KGKZpSVw/jzEtm2xRyJBpEaDN2fNQkddGsWmTTTnYmPrCeovv5AIGB8PfPYZDBYtYr/fvQvHHTtgbGwsBgUFCU0WDgVoH9eu0XPs9OnGkdYGyMvLw7FjxwAA7ZtKCwDq2yoWF9MclsuJ0LdpQyLa8uVUONDIiJwNuh7ufxetW2NVp06wzs/HxE2bBJiZkZCigygCZ85A268fpDExMOzaFc/8/Dgo3agxvvvuhYKb+W3aYLdSidE+Psj28uKt791jv0+aBBw/jjZt2giiKCIxMRGOjo6wsLCA0bVrRHjXraMd6FoY6kS933+n9I0HD+rb6i1aBCEwEO+//76wevVqBAQEwMLCQteqlJuYmDQ+1v/8BxXff49HX34Jla0tYG6OZTqhFiBRLymJiPHBg/Q8FQQgOxuSwkIYGhry6OhoNmDzZhIrG6ZvNcSMGeRsqhWemoVGQ0T/9GkSFX18gNRUcENDpH/5JUx0rVabQnEx/U0TqUu4c4fmR0VFvdPps89IxJ45E6gtUArgH1fh10Eul2PAgAHGp06d+hzAif/RzvTQ4/9z6Mm+Hnro8a/GN99887FUKl1hZGSkqqysFMPCwkYuW7bsou79sLCwDlKpNMbS0lIGgPv7+8uabRFUC10eZYcOHRAVFYXVq1cDICeAQqFA9+7dxb6OjgJUKirqNHs2WZ8bwNHRkUVEREBTXg7pu+9SpN3OjnKwAwOpRdbHH9MieeBAwM4ObVetwn3O2a5+/TQTBg2SwscHUKnAOUdubi6MFizA7uPHucbNjbd6+pTdef99jN65E7JNm2hhuXkzEbedO+sPRLdoWr8e4BzybdugTE4WkJlJ0aB16yiC+/QpMHQoigMCcJdz7v/RR7TAsrcHGMPe+/d5sIsLw+zZRAA3bCBHwQ8/kMWyqIjO76efABsbMMbqiF2z+O47iqoOHQqYm0MQBAw4fhwuGg3b+vAhUrOywDlHz549JfHx8Th16hQMKysxdcAAKI2M6LOWLKEFtQ6cw2LBAnj07o2DHh7i+LZtX9K4qwGeG7+XQqkkguHmRgvXjz4CHzYMfOlSqO7cwfkff+QOf/zBYt59VyO3spIYGBhIZDIZ1Jxj6KhRkK5cSU4AQSASqavEXlhIlbifr7Jfi3379vHU1FRmYmICxyFDuFdQEGvfr1/zVapatMDDfv1gvn07fysoiO1LSIBCoWjcDUCrJbK+YgVFHQMDmz9viQRYsgSxHh4Y8umnAs/IANuzh/JvKyvrRYshQyjdQRCA8nIoFArx4cOHgoWFBaKjo8EYo2tw/DgQF9foI8zNzZGSkiKkpqaiScI+YkR914QG6Ny5M1q1aoX79+8Lx48fF11cXP6+c1EQSPT55BP6+fPPidjrLNvTp5MDAKDzzcpCO7Watdi6FcLVq2hRVIRHfn5o17IlKvz9YenoSIUfJRJKvZkxg/5t2kS1MPLyaLxv3aJ70NQUWLsWgr09QisrsXr1ar5r1y723nvvkWvAzY3ExZkz6V5Xq8ly7udHbpPWrdHmzTfRYc8eMT09XQAgpKSkYOzYsXBsziViaEhE7Z13UJOYCIOG+eC1aCgWnDhxAgYGBnheMK1Dg/QExMTQXC4oIBK6eDEJAQcPkiPIwIDG0tubXBUKBbmfnj2je0wU6dq1aEHz1MAAkEoxeMgQnDt3Dg++/hreMhl1zVi0iJ6tly8D776L9GPHsGfUKDqOoiIWHh7Onz17pi0sLBRKSkqEUaNGwT0qqrFQAGD37t0osbJCXPfuCMzMZKolSzBz+HDk5OTgwoULHAA7f/48zp8/D8YYPra1hVlTT5hbt+h7Yf16muOc19fGyMgAIiNhbmYGVwcHccuWLWzixInMwsICarWa1ZL+Rrt7NGIEkuPi0OXKFfjOmcMBNBYESktJoHr/fUpFcXQkgaV/f3SqrmYpKSnaAWlpzT8rLl2iZ0Dr1s1uUoeePWn8QkNJ8AsMBGQy8NrnPWOscc2KhsjIINGjqbaNRkbkKvD3J5eITEbfPxMn0n2zeXOdqKl9mUPhNaHVasE5VwNAWFiYRKFQbNFoNG+JovjWf/7zn1Ov+ns99Pi3QE/29dBDj38twsLCvORy+bezZs1SWFhYKC5fvowrV658AuCibhuFQrE5MDDQ0t/f/28v/m1tbeHq6soSExPRpUsX1NTUICMjgwvLlws8KwssI4MIbxPwS0tjrbZtQ9KwYXCSSlFYXY02I0fS4nXgQFq4rlpFYkFoKCCRwKB1awyOisLaNm2kWLUKAGAklWLUqFE4fvw49z91inUYMQIdhw2T3Fq+XOx34QKkugJ/jFHEWVcMqrT0RSslY1BbW+PI/Pl8Wo8eDPfvE1m4eZMKTdnboyw2Fur4eFqQf/ghCQf9+gFKJXYdOoRBP/4I365dKQK6fj2JFhMnUlT/0CHK/wVej+wLAi3wN20iggUArVqhjacnlg4fjpMnT+L69evYvn07jMrL4dO3Lxw/+4wXHT7MjC5fhrEoUlcCHx8izD4+wNGjkGRno29ZGX755Rdh06ZN4owZM1499gsWUPTt8OFXblp3vYOCgG3bUPTRR7j744+I6N0bXC5HO4mEB7Zrx2Z88IEUmzeTmKHL6eecSNDjxxT1XLCA9lVRQXnQZ89S66kmYG5uziwsLPjs2bOZZMkShuvXaWxeghM5OdzHzg7YuBFqZ2dkFhdLfvvtNz59+nT2LDsbLVesADt2jKKPoaEURWsGnHMUHD0K36oq/OXujoqNG9HV15fG/+5dii4XFNC5fvABOQV27IDTl18KcXFxolQqFZKSktCta1eO3r0ZJk9+4TNGjBjBzpw5g+PHj3MXFxcmiiIKCwsRExOD69evY8CAAaK/QiEgP79RrQjGGGxsbGBlZYVLly4J0dHR8PX1fY2BbABRJDK9ejWRMnNzIkxLl5IwMXIk/S+VEjGprXxvvHIlLFJTIa+sxJ7Dh2FSUYH/x957h0V1rd/ja58zM3QQkN6l92bBjh17iUZjbDEajSUx6k23oLEkliQaS6Imltg1dlEREQFFQEQBxYIoRUCQLnXmnO8fL0MRsNx787n3/n6znmeexOHMzJl99tmz1/uud71ts7MxwdGR2vtt20b32BdfkEJiyxZS9tjZUSBhxQoas7VryXNj40Zoamtj9kcfsTsDBqC4QwdYFhaSqeW335JU3NCQsvIPHlBdt5cXBc54HhMmTODo6whYtWoVbty4oWhXpzhqCaV2dtjy0UfQWrUKoqYmCjU1YW5uLkycOJGTSCTIzMxEYGAgLl++DFEUcfjw4aaZ5VdBXZ2yuHXmcjA1pQDAmTMUCNm/n9rbXb1Ka1ZQEK0t7dqRCkoQyDzvp59orEaPhm9yMl5UVsJi+3a6Z3R1aSytrIjoZmbCiecxhDGcPn0ahoaGyMvLQ9u2bSVubm4oLCzEud27UThwoKBVW8vVXL+OiooKXLlyBQAwx8gIhqmp1P7t0CFgxAiY+PjAx8eHlZaWorCwEBkZGSi4f188npsrTPrll4axFQTKsN+8ScTbw4Pu70uX6LofPkzHnTsH7NiB0d9+yz04dkw8UFCAfpMmgTHWxG+iqKgIGRkZKCkpQYqnJyp0dTEpIoLBwaFpqz1dXSLS0dFE2n/7jZ7v0wda27fD5skTHr6+dF4vIz6eAkjnztF63BJqaoh4f/AB3ROXL9O8a/QbowxQtKrKAShI8KqAgq8v/aZKpbRWKuX9y5YB9+7hSZ2iJT09vcVuM2+Dy5cvl1dVVS0PDg6WymSyP42MjIb4+flphoaGfgNARfZV+P8MVGRfBRVU+J8Fz/MTAgIC1JWZ+IcPH5ZXV1cfVf49ODi4k5aWVodOnTr90/4knTp1Qm1tLYKCgiAbPRpl1tZsU5cuCDh5EmovZycUCnL2XrwYgpMT7js4IO7UKfR8/31F7NOnvN7XXwsfbt3K8dnZdLytLWVFli+nDPzcuahZsgSlISE4cuSIOGLECCaRSODm5gYXFxeG48fBmZmx9cePK7wnT+ZjRo4UnnzzDafr7a0YM2YMX+njgwRBQKcNG6D2/fdUb/3SOdrY2CA5OZnGY/z4hsxZHXGqq+kXwRhl6utM0j788EO2d+9e4fnz5xxkMiK64eGU4VTWOJ87R9nJH3+EVvv2jJWXv36A584lGXx1NakLBg6sr6sdPHgwvD09kZSUhP6jR4MFBUEeE8O+X7MGn2lqkonWrl10Dj16EFk1N4dCEPBjXe2nTCZ7s2s/dixJTF+BgoIC3L9/HzY2NkhMTEReXp6Yn5/PmJeXOLaykn115Qqqt2+HpqMjfWZtLZEZNTX6Xrq6RCC//JI2sFFRDZJaDQ2SiLdC9AGgf//+SExMRFpaGpzatm3o5NAKRFFEYWEhi3F2FgMqK9GrshIpPj64FhPDTp48Cd1ffoEDx4lGhoZMs7aWiKinZ/3r5XI5EhMTYW1tDWMjI8QdPSrYzZzJnRsxQrzp5cVcTU1pU37gAI1dUhJlvsPDaUO/YAHQvj16W1pi465d3OGsLDDGMCQqiuHMGQoWtYC+ffsiNjaWrVy5sr42V+nMHxsby7qeO0eO6RMmNHutVCrFuHHjcPDgQTx58kQcM2YMa62uuxkuXaKyCqUMOSiISP/06ZSNXLSI7u/586k+u+6cOI6Di4sLFAoFXrx4IV66dImV6emhYswYkjSPGEEkMD+f5vr+/fQZZ8+SZFpJgJXzLzcX0NVFfm4ujAsKSGn09CmRYDU1CqpUV9NzW7bQdVu6tEWiJpfLkZ+fzxUXFzdzfgeodOj3338XTZ2dhfevXePlFy/i/OLFePLkCbZu3SrW1NQwhUIh6urqioGBgdzly5dhYmLSeub2Vbhxg+Tt+fkUVBs4kDLKAwbQ30+epA4JytZyjdU2yr70tbUofvIE13fuhIedHc2D4cNp7VG+judRVVWFiIgIdOjQAYNIWt9kIbS/fh3Vly+zCxYWcqlUytTU1HgA0CsqwuOiIsHwjz84dOlC1ysqiua1jg50dXWhq6sLW1tbPP7+e8bdvs3/pK0tzJo1i5PJZHSehYUUxG3sV2Bu3tSEU+n2n5EBRxMT9ryiQsyYN495ubtj8+bNipKSEl7pXaGjoyMUFxdzMpkMbUePFmBpyeGrr0ji3rgMwcKCAkFPnpCHgpkZ0LcvrDw8EH/zJgoHDUIzy8vCQlr7d+8mldHLuHSJSk/mz6fgwrNnFFgaOrTFS9yuXTvFo0eP+JycnIauF41x6BB5PrwKDg50z2hqkvpMU5OCzz//jHBnZ8HFxYXzaKmLy1tCXV0dPM8P43l+haWlpfvYsWM1y8rKIJfL3YKDg9/heb6TVCq1rqqqOrZkyZKD//IHqqDCfwgqsq+CCir8L0NsvJGvMwEzCQ4OZnUOu45WVlbCKw2/XgNzIyO8GxMD9OyJikGDcCg9XbD19hbV9PQamJaydVBSEpEAHx/wVlbw27kTHXgebefO5bsuXIhL+fncVkEQTc+eZdbW1si7fRvdi4uhp9z0Hj8O9XXrMO3MGRw/e1b8448/hOnTp/NAXdYkLAzgeSg2bGCpqakiy8xk0379FRumT+fLBw5EaGgoUlJSEC2TiR+eOsWMi4tJJrx0KQDKEoWFhcHMzKxhs96uHUlg09KAmTOV2RkGd3faYNXJetXU1KCpqSmKooj09HTY2NiAUwYS+vShjXtmJmXX7O2hUFMTHadPpw3n0aO0CZ0xo3mtpq0tkcLc3AbPAaVh2L59sFywAJY5OZQJNzCADIDj/fvgQ0Npk9+7NxGe7Ox674PG9dBKuXFWVhbMzc1bdO6mC23etEd1I6SkpCAyMlLMy8tjmpqaCA0NhampqWBoaChmZWXxc+bMYQYGBkBiIjTHjKGMdp8+RISvXqU3mTmTpNbJyZSV7dqVSPKyZZQNDw+njfUrwHEc3NzcWGhoqOgUFMRQUtLqsXUkDwDg7uHB0KMHLCZMgIW1NQocHUX5vn3sqaUl7ru6Cs/WreMndusG6cyZsNDVRUV5OY4dO4ZHjx4BADRrajDzwQOUlJVxNVFREO7dY0hMVPaEJ7RpQ0Gae/coQOTjQ9L1nTuh8dFHmBQWhh3Tp+Pzzz+nDfwrHME5jsPcuXNx69YtGBoawtXVFRzH4cGDB1Q7vnVrfUvCltCuXTtMmzYNmzdvZklJSTAyMsKRI0cUnp6efM+ePVueAzExND+V/dIbToa6BVy4QESlf38icvr6RPwbZRd5nkf37t1ZXFwcOI5rWrvMcZS9NzGh7KqxMQULGverP3GC/ls3j89v3SpabtggDunShU44KIiCaosXU5Bg1y7g9GkKeiUk0L3cyCSQ4zhMnz4d+/btw71799CpkX9FbW0t4uPjER4eDh0dHWHy5Mk8Jk6EpKAAwzMzIQwezIWFh0NfXx9+fn6M4zhWFzwS79+/z6qqqhq8S94ECgWN78aNFPCaPJk6gbz7Lp2zp2dD+YqZGZXm9OpF49bIQ0KorUX++++L6NOHJWZmon+HDjSWyjZvvXsDPXogJjAQZWVl6N+KN4CtkxPg6cmchw6t/3F4cfQoambPxo4JEzhjKytYARRwWLy4QebeKKDCb9yIyydPCiUlJdy5adMEr3v3uJwPP0SSXI6RZWUwajw+Li60BmZkNCXV1tbApk3oqFCwnBkzUHniBOwXL+bt9fSQ36sXdPX1oaenx1H8lQHKdXvbNgpufPIJzQvlWjxwII3fwYPAvHnItbcXnx44INaoqXGan3zSdBAEgVQ5rq6kKmmM06dprW7ThrL4aWkUjHxVPT6AcePG8bt378bevXuFhQsXNr/RXrygdeF1WLSoaZcXKyugogJuN29ymYGBCplM9upI5xtg3Lhx2tHR0R+1adOGDwgI4DmOg4GBAbp166b15MmT3y0sLLR1dHS4kJCQ0cHBwVeWLFnSev9NFVT4L4aK7Kugggr/s1AoFA9zc3MrAGgBwKhRo7T379//7YsXLwYHBwePYoy109XVbUWX+AZISqJsSVQUMGsWknx9UVhWxo0fNow23d7eVPM5aBBlWYAmMmgTpXRbTQ0SXV30Gz0a5r/9xu4UFSmS9+/nhx46JMqeP2dJly7Bc+VK2viuXQuTTZvQU1eXXdTVbWrv/sEHgJcXxrz/PpeYmIj2w4fj7IsXgme3btDT0+P8/Pxw//59aGpqsr2RkXA5cQJ9jx2DdNEigOdx/PhxUUtLC4MGDWrYhE2dSsSzEdEVBIGIdH4+1ZbXmU4xxsS7d+/ixo0b0NXVVXz6+DHPnT5NcmIDA6rBDwkB1qxB7datLPmPPxDg6EhZ0ZgYKl/44QciVJcv0wY6IKDePBBbt5JcdPBgqgv9/HM65tYtymQOGAB9OD9nAAAgAElEQVQUFcEpNRXSnTspk9+nDxlUlZZSdmrhwnoy5+/vj3PnziE3NxeJiYmQyWSik5MTKyoqErS1teHg4MClpqbCzc0NBkuXwignB7WhofUZ0KysLJw/f16RlZXFOzo6okuXLqKXlxerrq6GTCbjGGMIDg7Gxo0bYWdnB319fQy9epU24cnJdD2VhHjrVqpDvX6d2k5FRRHxOXyYMlevy3bVYdCgQVi1ahV7evIkzCsrW62xj4iIQFRUFHR0dNCnTx8iTatXAxs2YPywYUx48gTctm2Atzf//fffi/e3bhWlhYWcOGIEUlNT8ejRI7Rt2xZBJia4euWKkJSZyUmXLoWFiwsS09JgYGAgqqurNy+8VdZ3x8VREOPMGUjOnkXR6tXokZ0N9b17idh17PjK76mnp4cePXo0ec7MzAzl5eXsaXw8zNeupbFsBffu3RMkEglXVVWFP/74Ay4uLlxiYqIYGxsLNzc3NrRxZlIup2zi8eOtu4j370/XaNUqIle7d5PR3N69zQzPTE1Nxby8vGa93+thbQ1MmUJS61YIc3x8PEpLS1nPnj0bxjg2lgjt9euUuT10iMpvTEyIHP35JwWUSkvrFRrm5ubgeV5o06YND5Da49ChQ2JqairjeR6mpqbyadOm0V6Q4+g+7tIF3MKF6DdzZpNzYoxh+PDhbPny5fj+++/xzTffvLpzghKVleRJsHcvlS/Qm1HQJyOD5knHjg1zYudOmtc//khlRllZ5FFQXQ1u+nTo5OQwF2NjWG/YQO/Xvz+RXwD4+muk5efj2oULYOrqLZ+fKJLnSONAS2IitKyswPbswYurV5u6vS9dSmVGV6+SgojngaVLYZWbi4nr1nG1qakomjmTO+vmhic5xAe3bNmCNm3aYObMmQ1dBZYupTKdW7eanVJRcTHOde4s5NrZcR3S0gSXyEjOysKCAqjDhoG93N7U3JyChWPGkIJoyBC6fl99RfN4/35g2jRo79zJjI2M2Dsch5qbN6EeGtrwHs+fE9lXehsAFHAZO5aCW25uVIZw7Bj91r3BtZZKpfD09ERISAh35MgRcfTo0Q3zVxTpeikNJ18Ff3/63bCzo98AKytg9mwUr10raL/sV/BPQk9PD4MGDWrS8oExhh49ekgBSAHg1KlTlTKZLKG6uvoN3FtVUOG/Eyqyr4IKKvzPQk1NbbKTk1O9NrJt27aYNWuW1qVLlzrFxsY+5DhO6ufn94Y9uBpBaXa3eDFtRmNjAQClaWmwvHEDCiMjlGdnQ3vxYmo11rbtK9ukQVcXEASw/v3h0a8fPC5f5qGjAyxZwp5wHE6Fh+Opvz8GXLoEjBwJRZcuMPztN2by1Vd8fd0iQCTYwAC2trawtbVFaWkp7piacv8IDoagq4uHdX2pi4uLYWVlJZaam4sb2rTBgvv3ObFvXzyfNg2jJk9mRnUbx6dPn+LSF18IQ4cO5fR++gn46y+cTkoCz/N81PDhQsCQIZzEz6/+azDGIJPJoK+vLxQWFvLP9PVhWlNDBEEiIbnz2LFA374wNzfnIiIjoW9oSEZryqy9iQltdsvLKXgxYwZtJFesoEBJURFlz37/vWH809MpY1W3OY/t0gW+f/xBG9OLF+l9lZ4BffqAWVuDMYb27dsjPT1dvHv3LgMAS0tLsaCgQOR5npWVlYlnzpwBAKSlpcGod2+xqKCAyX/++eWrx48cORKenp5MKSVXa5Tdmzt3LoqKinD37l0hJSWFKyoqUkzav5/Hxo3A+vUUNAkMpIP19Ci4sX071cgfPUq+DbdvN7h4vwYSiQTq6upCpYUFh1ZUCqIoIjo6GoaGhpgzZ07DH+zt6VwWLQL344/17a+++OILhh9+YEcfPRL++OMPDgAGDhyIji9eAIsWwT44mMv56qt6We6LFy+go6PT3CSsMdTUiJCMGgUYGcGza1fK0AoCBTleQ/Zbgra2NoyNjbEnLg6fSCTQaHxvALh+/Tru3LmD/Px8oaqqihNFEWFhYRg+fDg8PDyYst48ISEBgwcPbsjwL11KASjlHG0NhoaUAb16lWqjPTyoltzMDJgzB5BIUFZWhqysLFY3Pi2D40gB8eRJA/l9CRkZGXBwcFDo6Og0ZDCrq0k+ffkydaKIiWkgYCtXkqFgYiIR08mTgb59obC1hVwuZ1FRUXjw4AGePn0q5uTksM6dO6N3796QvMyGJRIiV/r6JGF/iZhxHIegoCCcO3cOISEhGDhw4OsJ/+rV1DLUyanp866u9Dm+vqRqULbFU8r6v/qKsv55efSd7Owg9O2Lu66usO/dGy4uLuQFkJfXkC3v2xfH1q7FjK1bcbNxm73GuHOH5qGeHv37+nUKovz+O9T79IFeSopw6dIlZmlpyWQyGV2v9euJWEdH0zi7u9O6P3gwpJ06wTguDlNA9x4APHnyBLt27cLq1avRoUMHceDAgQzLltWrrF6GKIrIysriRo0ahejoaPFmUBCG6uvD9bffwE6domCOunrTrLieHs3ZsWNpDCZPpnvsr78owJKSgus//ihkl5RwGlZWGNq428L586Q2unu3QTkRE0PXPiGBWhLeukXz/eVAwyugUCgQExMj6uvrs5SUFGZgYIDeSl+RggIKRin9WV4HZaeZOjVYqbU1DO/e5Vwbta38u1FaWiqvrq7etmTJktcY0Kigwn8v+KWtLDwqqKCCCv+tCA4OVo+MjJympqY2ZcSIEdLGslyO42Bvb8+7ubmpdenSRWpg0KxK8dWYMIEyJsHB5JbPcfTw8ICdVIqH/v5I0NNDmiAorIOCOGhqIiEhAXFxcYqDBw9ydnZ2zWtjf/2VJN3z5lEmbtYs2kht34427dvDwcEBoaGhePj4scJrwQKu7B//wImRI4Wxt24xPiKCMuI8Tw+Oq88WR0REoLikRPQwNGTHYmPxhOPEdu3aiXl5eaxXr17M0dGRpaSkiJ2HDGFPS0txnedZL21tMEtLJCUl4eTJk6LP3r1cZnKyYOvgwNixY3jcsaPCXaHg2LVrELOyWEJVlVCqULDCwkJkZ2ez3NxcZslxwshVqzidGTMg3bQJ6ZmZSEtLg7mTE2XkvvgCzvPmMam2Ns6ePSvm5eUJ7dq14yQSCQUGXF2JDH76KakKUlIaWnc9ekRqCR0dMtybOpUksBIJ1TjPmoVz/v7oeOQIpI27KhgaUkad44D27fFcTQ2uY8age/furGvXrujRowd8fHxY+/btmZ+fH/P392eBgYFQPjpkZrLOz57Bc84c2NraokOHDujVqxe6desGKyur+prxl6GhoQEDAwM4OTkxb29vhIeHcxUVFbAfP542yXv3EqlzdaVN9aNHFJhwcCAyI4pE/F9qAdYaampqcOXKFdbHzg5q1683uMM3QnFxMa5fv45x48ZBT0lolFi2jAItdnZEVjmO1BRLlsBh1y6WnZMjmunqov+JEwz+/uTr0KEDdHR06t+itLQUt2/fZp07dwbf2DegpoYM0gwMqJxFQ4Oycz16UOCmoqIhO/qG3/dlpKeni7klJeyJVIrMjAyFppkZp6enhz179ohxcXFMoVDAx8eHARCnT5/OevfuXa+wYYzBwsICqampYkZGBjw8POiiFhRQD/eW2oG1BCsrCpro6VEJSVoakVKpFJUyGaKiolBRUcGioqLE2NhYpKenK7y8vDiAWidevXoVBp9/DjUTE7QWsLl//z6qqqpET09POmDuXCJ6I0cSMd28uXkLNZmMSO+ECYCzM2qHDcPTlSuR4uzMikpK8DQvD+Xl5WzOnDnw9PRsvaRFR4eUNn37kgKhca05AEtLS7Rp00a4fPkyi4yMREJCgnD79m0hNjZWvHbtmiiRSDhzpav/mjU0rrNnt5wZ1tamc7axobFQVyciHhkJWFujtH9/hNy/Lx4dMYJFe3ig8OhReCQkwC44GPz06RQcXLGiXpFRXV2NsrIyRGhqoszLS/DX1WX1JRNKFBTQOmVpSYFcbW1SCHXooAxosvj4eObp6Qmtl+vsL16k633zJs2DkSMbug+A5hhjDG3atEFgYCB0dHQQGRnJAgICwKurU4nP9evN5r+mpiYEQRAiIiIwbdo0TltbGxcuXxauW1vDdfFiphEWRnMgKIiCgzY29J04joj59u20zri50Vxu147m5uPHzHf7dtgD0O7cmYIr1dWk2urbl9YlUaQSsXHjSJHk60vrhJERlVe9YX18dXU1Hj9+jLi4OLZw4UIkJSXh3r17uHr1KjQ0NNAmKwvSGzdI8VSHsLAwSKXS5uuUEt27A3/+iYcLF4rbcnKYwt0d7fPywHr2pN/Uvxna2tpqd+/eDbx06dKBwMDA1uumVFDhvxgqsq+CCir8zyA4ONg7JiYmVBTFdcbGxr3fe+89rdZ6+mpqajbJwL4ScjkRTysrImFDh9JG/upV2vh89hnQsSPYuHGw9/PDY1FEQUEBu3v3LrKzsxEdHc3y8vI4qVSKAQMGNCVAABlvffEFZalPnCD57ooV9ZsVHR0deHl54caNGyw8NhbXXVzYx2fOMNn77xNB0tdvMCs6f57MiwBYWFggKioKMTIZM8zNRT9XVxbw3nusW7duMDc3R2lpKZKTk8XnhYVCyLNnnHpFBXrNm4frjo7i+ZgY1r59e2aflobU8nJWOniwYNW7N6vIyeG4mBjR+d49phMdjZvm5kgtLlakpKSwZ8+eMX19fYzt25crOHYMRlev4qKDA85fuIDU1FQ4OztDx8aGyOSOHbCcNQu+vr7s2rVrYmRkJGdiYoJmwZcff6RN5927JN+dN4824wcOULb7nXeI5OvoUHbQxQVX8vLQtVu35hlFxmjjPnQowh48QPu//oJEUxPMwaFVsl6Pa9fAZ2RAa/RoGBkZoU2bNlBXV2+Q4L4B1NTUYGNjg3PnzkEqlcKyY0eqp750iUz51NUp2HPkCDBpEpFjpTy2S5c3kskWFhYiNjYW/W1sKMM7enSzY2praxETE4Nu3bqhSZvJkyfJZGvxYiqnEEXayMfGAmlp4MeMgbeREXNPS2PIyWm1H7aVlRVuHDsGTzMzIqyenmRMtmIFZT3nzqVMubs7lWN8/TWREicnIhorV1Jm2tmZrutbwN3dnQUGBsJq2zbI09O5UyUliI2NRV5eHvv444/Rr18/2Nvbw9fXl8lksmbXXV1dHRYWFuzixYvM1NQUbWfMoGDa2yoN1NQoYNK+PRHO6GjgyBHIjYxQbW6OnJwcCILAALCCggIuPj4eN2/eFC9evMgeP34MxcWLouP77zN88UWLb5+eno7y8nLR29ubWnyuWkU17uPHk8Taxqb1c5NIIKip4fuCAjyxtETv8nKMiYlBoampYNe+Pbz8/F4vg7awIGKpr0/r40v3gampKevZsye8vb2hr6/P2rZty1lYWHCGhobcpTrvifzQUEi3bkX53LnQfpUDu5sbrWsffUQKnshIiO+/j206OmKomxtzHjWK+fr6Ijk5GXkGBvDfuBEGBgYQjxxB5alTuJ2XJ2rPn8/OWVkpzp8/z+Xm5oodBgxgI8aNYywggO67Dh0aPm/JElJbaWiQjL1LF7pPQYGsPXv2wM/PT+Hr60vREIWCMt5mZg2Z/dhYUuXUqWNag4mJCW7evCnm5uYyNzc3CmxKJEDHjhBFEcnJyWjbti04joOtrS27efMm5HI569atG5ydnVlsbCxLe/RI7DBzJsNHH1HGfvZs6sJgaUn3j1RKqq/Tp8n7w8eH1pwff0SboCDIU1NRlJWFu+3awcrLi8bY2Zl+R65do9+7ixdp3T59mu7ftm3psW8fzbVXeGwoFApcunRJOHDgAEtKSoK2trbQtWtX1qlTJ3h6eiIhIQGpqal4ERIiws2N1Tg74+jRo4rw8HDxwYMH3O3bt/Hs2TPRzc2t5Xn57BnuX7smqgUFsbHTp4N79oyCw4MHv3Ls/x3Q1dVFYmKiUFVVFRYREZEbEREhD1QqtVRQ4X8EKhm/Ciqo8D+B4ODgzlKpNDQoKEjLzc0NMpns3xPWj4ggAnTvHm3a+/Uj8tKpE23mbtygTWFdmyMZgNGjR+PBgwds3759yKmr0XRxcVGMGjWKl7aUbVi4kBz3d+0iA6kWHNd1dHQwbdo0dvDgQTEvL0+QhYRw+OQTChIcO0bEbts22oDXQV1dHZ9//jkDgMThw6GxebOIDz5gShJsYmICuVzO3bx5E7q6umK1TIbz+/cLLu7u/Jjly2E+bBh+9fUVKysrWeqlS5xJTo6ge+0ah127mJGnJ7KfPsV7FhaM4zhJUVERNm/ejN579woaZmZc4mefKcIfPuQKbtxgQ4YMwenTp6EsD8DEifXGZtoffoiPP/6YP3r0KA4ePAg3NzfFoEGDeDU1NZIcf/011R7v3k3kyd2dyMy5c0QMZ84kk8E//qCN6aFDsE5PJ/mujw8AUFuqlBTI5XLI5XLU1tYKz3V0uFo1NahfuEDydXNzuo6tYdq0t505LcLKygqG+vri7YQEMSAigsOFC9Rm7OxZIgre3hTE6NGDWnuFhTXIgrdsofn3CijbTZU7OUF79uwWjzl06JAIgDVpTRUSQvN5zx4iB9u3Uzaze3e6VpMnk3/Ad99RMOKDDxpee/kyZQCzs4Fp03Bm+XIMO3ECmrm5VBvcsycFLlaupAdA5FQJZQa5uLjBWO/iRRqDFvq6vwmMVq5E0YMHqE5JQVVVFYYPHw7jVxCSxrCysoK9vb2QdPUq51xQ8GaGYa3B35/cydeuRe1vv+Hyrl0wzs6G+bhxKK6tFRwdHZmDgwM7evQoNDQ0oKenB3t7e9yMj2cuq1ejteKf1NRUhZ2dHR+zbx/8Hz+G9OxZCtKsXdvEFPBlCIKAlJQU/PXXXwCAIQsXwtbWFrh5E88OHmQTpk9nYkIC2NKlr+3mAE9Pui8ePqQ58BIYY9DX12/WAq1t27aI2rYNPeLixIi5c8X7Z85wWpcvy83NzSV9+vSBpqYm0tLSkJ+fj6SkJKFXx46cx9ix1Mrt668h7NyJ1fPmofbZMzZlyhTY2NggODgYANCrVy/RysqKAUDYkCEKRX4+n8pxrMrbW6yqquJnrlkDNn8+0+jShbwLkpJImfDrrzSnZTLKauvrU/B15876dQSgtUSrqAhWlpY8Zs+m7PaQIfTaw4eJGCcn08G5uXQvr1tHvgEtQBRFqKmpoba2lspeZs2i15WWIqOoCH/99RciIyPFoKAgxnEcCgsLmTJIvX37dtTW1qJNmzb0WnV1MjSNiiLFzIIFROpjYykgsXw5BZK//ZZ+N6yswEJCoPXDD/gtNxdlT56gbVwcHB0c6L7fvZvu9eJiUlfExjYxeIStLd3bMTEUHGjhty0yMlIRHh7Oa2lpYcaMGdDX12/SAcXQ0BDz588HYwxpM2eKKZmZLHnbNhgYGHCDBg1iFhYWqK2txY4dO7Bnzx5BQ0ODy8jIULi4uHCDBg0i8t+/P+QaGpzdwoV4bGGBdmPH0m9CVlbT8/0bcOfOHVRWVt4DkA2gVCaTrQHw5d/6oSqo8G+GiuyroIIK//UIDg4OlEqlp8aMGaPl+O+q11MoyCxp8mTaPC1fTu7P2dmUAVXKSl+uM61DbGws2rZti/LycgQEBMDHx6eB6MvltHHy8yNS8+IFkahffyUZd1ERkVcbGzomNBTo2hXSwkKMrahgmysqkLxxIzw++oiyLJ060cZu/Xra4Jw7V38eHMfh/PnzuNGxI8aNGsWM09KI3IIyzRMnTsSzZ88QEhLCBg8ejBMnTvC3bt/GBA0NUc/IiE3esoU9MjXFhaAgnDA3Z1NmzoTB++8Dq1bB6vPP6bNsbaGvr49vvv4aSE7mcP483lEo+KzgYBgYGODw4cOCtbU1JBIJl5eXB0NDQ4SUlMjtDh/mHV1dWQJjuHv3LgDg3r17/KPoaMyLiQG/aBFl8V1diVA4OVFdrI4OZZ3NzMgJPSKCvmxWFmBoCJ/4eMhmzyaJ/KpVeDJgACLu3RNNTEzA8zzjeZ7z8PSE1siRdA1nzaL3uHWr9ez5t98SoYmK+ufmU3k5eQvo6GDKN9+wkHfeEYXx48HZ21Nm8do1ktkePEhz4rvvqI2VlhZliVetInLy4kUz2XRjPH/+nK57VhbV8YaHNzvGxMSE5efnixzH0Wb58WNSPKxc2SD91tYmI6+BA4nsSqWUnR82DHB0pFr00FAKVEybRp81ZAgwcCD09fXx5+TJGDJkCPwBMlF7Uyg/Pzqa7pPBg+m+eNtNu5UVHBYuhNi1K7y8vODTiLC9CbREUbQ7cQJCaCi4t1BvtAQ5Y7jatStuFBZi0rVrMJRK0SkzE5g9m1N6edS1CmMAEXJDQ0Nc3b1bNJVImGbjwAqoVKOiooK/desW9C5fRkVNDfRCQ0kS30prxrKyMiQnJ+PChQsAyN9gwYIFDQf4+qKjKLJdoii2q6kRTQMCOHcbG8g2bmxeDtAYGzeS6qagoMF88TVwd3GBe3Q0sGQJcx0yhGVnZyM/P1+Smpqq2LJlCw8AmpqaopaGhmBQVcW7dO2KYz//rBh57x4vfvghUrp3F2WjR7MPp02rL8HQ09NDSUkJDAwM6rO/zj//zD0eMgSzP/8cEomEnnd1JTXKyZO0tpeV1ZuGwsKCSK2LCym5li0jMltbS+qt4cOhk5SEj7dswR4jI9HdwYFJHBxozNPTG75geTm9fv16ul/atyeF0qVLwKlTTcYiJiZGLCwsZGVlZeLt27fh6OgIjQEDgAEDcNzCAmpqaspuEQJjDE5OTujYsSNXUlKC6upqDB48GO3bt29ab8FxpDzbvp3aL6akkCv/l1+SEsrEhNa8r74CDh0C+/VXfGZqivgJEyCdPp3Ie8eOtM4YGtL579vXTL0BgPwApk6lY997r8mfCgoKEBkZyQ8fPhze3t6ttmJUBi9cAwI418BAjHJ0BHtJcjN9+nS2bds2JooivL29+aSkJMWgQYPqo1HdundHYW0tju/YAXz9NTIWLBBdpk5lJT//DCcXl9crt/5JcBwHQRCspVLpFWdnZ6SlpQ2Fiuyr8D8GFdlXQQUV/quxfPnyd2Qy2e6xY8dqtnuVCd7b4NNPaWN26xaRDKWTdUYGZXxay5wJApExdXX0SEjAX2pqok1ODjPdsQMZR4/Cc/p0FFla4pSvrzhp/XqGqKgGQyZtbZLkP3xIWdD4eNqIWlpSuYClJZCSAunVqxi6cCETpkwhwvvxxw01qY8e0Tnn5dGGDkBmZibi4+MxZepUWCQk0Kbv/v36LIylpSUsLS0RFhYmamtrs379+sHU1BRWixcziCKMS0pQMHAgOnTogP79+zPJzp1EPjt1osyvspYyNpbGaP9+4OefwdzcYGVlhaNHjyqysrJ4Jycn/Pjjj4rS0lLezMxMUVRdzZe7uTHFpk2ibNo0JpPJMH/+fNy7eRNXDhzAi5wcaM2bh33z54v++/YxN6Wr/Jw5pH5Yu5aks43rResI4YnRo+HyxReQ5ecDjEFSVoaRJ07ARVeXISSEMmeNZcObN5Ps9fBhCl788ktz+fikSa/NqjdDeTkR1YkTiVhUVADh4WDnziEtMpJdqK5GUGOZ/YMHRKI3biQZvb9/w2eOGUNzw9eXlA22ti1+pGFdZlxqZNRiX/WysjIkJCSgnuhXVpLxYe/eNLaNYWZG9bPffEOqig0baHM/dy7VFCsl/A8f1r+k9IsvEL5xIwBAU1Pz7fqt375NmdbGkMneqHyhGfT0UBUfD01v72au/W+CLo8e8S+SkrB81SoMHToUfo2MKN8GZWVl2Lp1K0RRFDoPG8YZrlxJmd7aWsr2fvopjWcjcBwHf39/aK1dKz5at47FiiKmTp1a//dTp06JxsbG4nQLC+68mRnuxsUJAe7uXGtE/+nTp9hW50ZvZmYmTp06lbVkmufn5wcPDw925MgR8bZMBvXCQtE1M5PhvfeIKDY2cFNCQ4PUKHZ25GPyUmCiGeRyMt389VcKZILKjSwsLODj48NXVlaioqIChsHBDFev8oiPR2737rh9/jw/WCrFsU6dBHOplH324YfgG63D8+bNw8GDB3H06FHyDOB5tH34kB2qqkJxSIgwdOhQmodeXvSCUaMajP4WLSLvAV/fBmO93bvJyG7uXFpPCwoAiQRt5sxBXLduyAkJYckDBzYLIj3NyIBaVhYiqqrEwX36MDU9PSLfgYH0u6FQNDjYu7igrKyMmZubQyKRCOfPn2enTp3iOn75paBrbc21efgQxcXF8PDwYGPGjGnCVkvq2mqGhYVBX18f9nUB3GYwN6dHWBj9PvXuTf/+9ltSlDk7A1paYBMnwiY8HIpnz1DRrRs0nZ0p0Hf2LKl9XhXwWr2afAl6967/3UlOThZPnz7NPD09RW9v79czbVGkYOO4cS0Scz09PXz66adgjOHRo0dIenmdAGCQkACbI0eQMm8eEvz8mHZRETK//hp2Bw++VbnV28DNzQ26urqGUqkUGhoaSE1NtQkODtZasmTJi7/lA1VQ4W+AiuyroIIK/5UIDg425nn+E6lUOn/y5MkaZq/KPr0JBIEM3AICKIO/fTuRwvDwhrZzxcVEyDp3pmzmxx+T4/v48US0u3Wjze/587A6fRrDVqxgl8LDUWRigscpKeKDoCD2qKwML+RyVq8QiI2ljK2GBm3IwsOJQO/b13Buyv7XdY7s98+dE+/NmSN8+umnlNno04cy++PGUaZ7xgySfJuZITExEUZGRoK5uTkHCwt67xbkuRKJBLW1tejSpUvDk4yBrV0Ldz8/uN+/T62YfH2JqBgZUf28cmwSEynQsXUrZYXqyhru3bvHe3h4CFVVVWKvXr14XV1dHD16lOnr6wtVXbpwhfv3M5116wRJr16cJDoa7iNHwvjrr7Fp2jRoqalh5LJlLDEgQDRzc2P6+fmkdsjNpUz8smWtXk7GGBH6rVtRER+PuwMHCi6enjwyM6kGd3w7QiAAACAASURBVPFikiHn5lJtqqMjZbEuXCCSHh3dlNxoaLwyo94Eq1cTsZ8wgUoQBg2ijF4dwZJ17IggLS124sQJ9O7dmzaiRUVkmrVtG2WzfXzIqb+ggIiCVEp+EfPm0TiXlNQHWgSBjKA5jsOJEydEAIw3N6fN+ktQtgzT1tamDXZKCpHOGTOaHigIpDAwN6fv3a0bBUViYqg+19i4aZ1zHbZu3SrK5XLWvXt3haur62t7XQuCgP379wMA/GJjYWtvj/piComESFFODmVko6IaZP6vwZWoKFybNg1BffrUB0DeGBkZMJ48GYpPP4XP5cviuXPnmI6ODt5WNVRXq6zQ0tJiM2fO5OoN7778kgIbyclk5DZ1Ks2ZRmUGampq8DxyhNuwYQNKMjMhl8vrPSgeP34s9vbz4zBmDHq0b49wdXVOMXcuXh7s8vJy3L17F2fPngUAjBgxAq8jXjKZDOPHj+fCwsIQmpICV39/ygILAhF5R0ciiY3JE8/TdTI3pwDlq3wWliwhMt1SLbtCAQ03N2hs3UpBkDpXdtOAAKhdvozc3FxkyOXouGgR4/39ycxuzJj6l48cORKrV6/G9evXhQEaGpz6lSsYo6mJ3bt3cx07dmxodaqE8n6Oi6N1fOhQuq9evKDvt3AhXSvGyCOkDlciIxUBAQG8Z137wsY4vGsXLL28kHzvHiuytBQ+vHmTQ2wsKXN8fSnYMWIEFDY2eDR6tNA2K4sz2rQJ/v7+PEDtPI8dOyYO+e478W5QkGjj6ckcHR2bXTNra2ssWbIE0dHROHz4MBYuXPjqrgdK1UVsLN3zsbG0jhcUAIWFQEoKjHx98YLnxSOensy5qEjhd+ECL60r93gljI1pXZo9G7V//IFdBw8Kz5494wYMGAB/f/83S6mnpdF63ajF68tQKuPMzc0hl8v5P//8EwEBAXBo1BGij7o6au7cwaM+fRRXu3ThR7ZtC1l19auDFf8CGGOwUrZPBWBiYqLIzs7uBeD03/KBKqjwN+DNI/IqqKCCCn8TgoODNYODgweuWLHixx9++OHqypUrn/M8n+Xu7r7go48++teJ/mef0Qbv5EnKqA4fTlmKCxeIxOvokHx/7VrKAgG0KayspM1vXb0oIiNJESCVAvfu4URWlsLh3XeFtJkz5dnZ2WISYxBNTWFiYiLg+HHKFn/yCWXl1dToM7/8kjYmn31GBPAlZGdnIyEhgY0ePbphb29hQWQBIEI0aRJlZEURPXr0wPPnz9mFCxdQXl5OG04HB5KIN4JMJhPj4uKatw86coTqVtevJ1l8QkJDD2wfHzrHpUuJMG/bRhtwhQIA6mvkhw0bxo0bN4738fGBubk5qqurue7du/M5OTns+cSJirLycm5mQQHJRZcvh9G6dfhoyhQYGhsrFH37is+7dBGvT5qESmUwJSeHxvzRoxYvpyiKEEURGRkZOH78uCIqKkosNzambJ6tLcnlJ06kFlvLltFGf+BA2gDv2EFkf8ECIjB1RBq//UYGYS9DEIjg3LpFhPTOHbr+lpZUdnD9Oj3/0kbc3d0dhoaGwunTp0lG7+1NAQKlqZS9PWXa27Yl6W1BAT0/axZlv4OCgLIyFBYWYsWKFVizZo1YXFyM5ORk1q9fP3C1tTSfX4LSAPHFixf0nebPp6zcy9k0pYw5MJDm1ObNlBVdtoz+VlHR7L03bNggVFZWsvHjx6N3796vJPoPHjxAcHAwli9fjocPH+Lhw4e4lZeHg0lJ2LBhA5YvX44bN27QwSYmdE++ohZdCblcjpiYGISHhyPo7l3Ru3Gv9DfFBx8AW7eC19PDsGHDmKurq3Dy5ElBGVR5ExQVFeG7775DYmIi37VrV66Zs72XF91P48bRvAsIINLVCIIg4J116zC9sLCeyGVlZaG2pIRz1dUFfvsNGh4euNejh2Ljxo0IDg7GmTNnBFEUERERgXXr1uHs2bPo3r07vvnmG3i/xixOiZqaGty5cwdFRUVMLoq0lgwaROOiDLT94x/U410Jf/+GoMxL36MeO3bQ9/7mm6YBx5MnKaDJcaRS6taN5n9duzyFQoHq6mocOHBArKio4MxtbGitMTKie68OMpkMgYGBuB4Twz2dP19UZGTA2toafn5+ih07diA/P7/p+YgiqaZGjaL3mzWLAlwrV5LyQE+vxdIEhULBnJ2dmxmtVlVVQSMzEx0yM8XRo0cjKyuLW6uri0fZ2Sg8cYLWJZ7HrXHjsGHrVjFZX190nToV/i4upCgoLoalpSXmzp3L23XpwqaMGcNNmTKlRRWGEl27dgXP80JcXFyrx0ChoPUjM5OIflYWdcTo1488T8rLgdxcsDFjoJ2aykZ36wbNykr+5KhRrb9nk2EUUebvD9HEBC/27EFubi63cOFC+Pv7v9HrAVDAuxWPkZehra2NIUOGCJWVlYoDBw4gOzsbERERSEpKwo68PMXaqVPhzxg3dcECWJWWUuD+/whWVlYaHMf9czIgFVT4D0GV2VdBBRX+IwgODmYA+qipqU3jeX64sbFxjZOTk7aZmRlnZGQEfX19MMb+dRO+TZtIOu3hQdmXU6eI+PTsSWTN1ZVM+MzMKGutxOHDDf8/ZUqztw0PD4dCoeC6du3KJBIJp8xgPr5zB6PT0jhs3UpkuXG2WF2d1AXl5bQJzc4mUmVmVm9iVlVVBUEQUFpaCovGUnRbW8rQrlxJGdcffgDefRd6+/fj3XffZefOnVPEx8fzgwcPhvfo0WClpU0yiePHj+e2bduGmJgYBAQENLxvXVawHmPGEClftYoCGzU1JHmdM4cI75079UZ3qamp0NTUFBozHXV1ddjb2yuOHj3Km5iYCMPHjeOr09OhuWYNfcfgYGDWLBgyhverqnhUVmJKejrL2bYNW3ftEmt/+EFkjKHvw4ei78mTPOoMEBtDFEXs3btXfPr0KbO2tuY6derEPD09G3bmUik9pk+nR1UVmcEBRDYOHqRa9PR0qt8NDiaSq1QSKBQk9w8KIhWDmRmZK37zDQV/3NyanVNL8PX15aJOnKAgz88/N29htW4dkY/Hj0m9sXkzqRLefZdqcYuKcOTECcHIyAiWlpbi5s2beQDw9PSka9CrV4uf+8EHH+DIzz/jQWEhHHfsaEq8du4k+fKmTSTT37ePgh7HjzcYB54+TXPs22/pvOrmkb6+PldUVASNRkaHjx49wsmTJ4WAgACO4zi4ubnh2rVruHr1av0xjo6O8PDwgIVcjvOZmSiqC3KdPn0ap0+fhoGBAaw7dwa3aBH6bdqE8zt2wMXDA9bW1oiKisL169eVZpPis2fP6qMWtl9+yfD48Rtdi3oo/TPqiApjDEFBQdz69euxa9cuTJ48ufWWdKBuCDKZDJcvXxb09PTEgQMH8s7Ozi0fLJHQPXvsGJWk2NtTln/VKkAmA8dxuNKjB8Y0IkGPHz/GiJAQqP/5J82/zZsxu6aG37x5swiAxcfHc/Hx8QAANTU1cf78+extJMxJSUn15n1eXl5NCW2PHvTIyiK/hpQUWjuHDaP10s+PAqIaGpTBbkxS4+Ppe/70U0P2dtIk6rTRoweVhwCkknoJgiDA09NTlEgkLCkpCeXl5VDr04c+38+vwQkfQI8ePeBoY4Okq1fZtehoGD18KDo5OXHm5ubinj17RC0tLW769OngVq+mdWvfPgpiDBlC68+1axR4U1cnc9DvvmuyRu/Zs0esrKzkqqqqmpxfaWkpTp48Cc2KChg6OTFrd3cUFRXhzp07OOPrqxj0xRd83OnTYsWwYWJKSgrXuXNn1m3WLDIiLS1tKIn6+GOaB9u2tRrMBEDrbkkJUFGBTiUlSN+0CfZPnsC4uJiCR46O9PfaWgpc9O9PgbusLPq8zp3pHlYGES0saL0YNAia3t6oXrkSyWfPwvvhwyaZcyVKSkrw7NkzPH/+HNHR0WJVVRWTWVhg9E8/wWnsWLlMJns7/nDnDt17bwh3d3fO3d0dK1euxPbt2+vvSS8vL/Tt2xc2Q4YwFBeT4mDfPgpAvW2b3X8CZmZmUjU1tYDXH6mCCv89YKIo/qfPQQUVVPj/GYKDg5lMJtuprq7+TkBAgKanpydrrYXevwSFgmTJu3ZRJreVTbkyo3fjxg04OztD9xVSQ4Aceo8dO4Z33nlHrK6uZjdv3hRtbGxYz549secf/xDeOXqU0zYwoDZ7jSSALcLNjTbEGzbUP/X7778rbGxs+D59+jQ//vFj2vy+eEFZ9+fPiTQCuHXrFkJCQkQ7Oztx1JMnnHTw4CZO4zExMWJUVJQ4a9Ysrr4l26JFpDxQmnl16UKZsA4dyLQwOJiey8uj5yIjiUibm+P8998LQlERN/D770kSO3UqIJdD+OQTPD98GIbTpoG7fZsMvjQ0KMhy8SKR30OHKOs8YwZlPfv1g1wux9OnT3Hz5k3cT00V/jFnDveytF4QBCxfvhxSqRQzZsx4ewl3bS0Z8fXqReTb3Jx6Ze/ZQxvs776jeTN/foMDuYVFq/3QW0NRURG2rF+PGdu2wXD58ia9uAEQWXJ2pi4QEgldywkTSGr8zjuAkRFqPv4Yj8LDYRodjTaGhsjMzMTNmzeFgQMHclKplAjr1avNavd3r1mDnhs3Qn3TJpgMHUpPlpbS3Nm+nWqZlQqDpCR6XnmcEuXlFFCqrqaA2LBh+Gn3brGkpITNmDEDpqamTYhjSxg/fjzatWvXQCjnzAHGjIFYF3hZ9nKZhiDA7c4d3PHwAFdbC6GR+7eZmZmYk5PDAJKre3l5kdvd/PkUAHtVpwUlysqotOPiRVK/NEJ6ejp2794NAJgyZQqMjIygoaHRpL748ePH2LVrFwAqi5k6dSreWHUkCOR58dVXFDwcNw7w9MTypUsxWaHAX/r6AjiOq3n6FAP19ATP9HQOmzc3kSfL5XLcunULZ8+ehY+PD4a+fM1eA7lcjrVr14p+fn7M1dW1iTy5RdTWkrFdcjJ5UpSW0trw2Weknjlxgo5LTycvjxEjiNDOnUvB0hUryPuhpXWsFezYsUOUyWRs4sSJ9MSmTUTUTUyIoAPAp58iXV8f4dbWorq6uvjkyRNWU1PDDF+8QPsrV+Dm7w9df38KFLxs3Dh7NqmeDhygNTcvj4J4daUJStf/+fPnQyaTYevWrWId2WcA4PLoETy8vODe2PwQQMalS3i0bBlSvbzgNW4cEhMThYKCAu69995rWh7y668UZHNzo2DzN9/Q3OV5IqvnzlHw+d13G9Q1ZWUIe/5cdBoyhFkpSyg6dKDX6OvT+t1SZ4UtWygg0LEjBXA//5yCepGREHV0sOnIEdHd3Z31aiFouGbNGigUClFHR0do374936lTJzx48AD8zZuwW78e7OrVt1sTN2yge66uVO1N8fTpU/z+++8YO3Ys7O3tGwJxgkCfn5lJQaaMDApE/c2IjY1FaGhoilwunwogbsmSJSoSpcJ/PVSZfRVUUOE/gS4ymWz07NmzNf8uYx0AZISWlERkNTKyRbJfWlqK3377TaioqOBEUURcXJxi1qxZr5QoR0REiH5+fqKLiwu3evVq0dbWlt2Kjhbt5s6FfMYM7uD8+cKHt29zeFVvaSUSEohQrVtHxO3oUcjlchYXFydWV1ez3r17Q125yQUajNuWLSPSbGlJdbLBwfD29oajoyP75ZdfUHThAozLyoiw16FDhw4sIyND+Omnn8SFCxdSRtDIqMGED6AMWmAgZUyioym7lpNDm8WhQ+n/e/UC8vJgdvYsU8vPx2/29sIH8fFcjo8PnkoksNTWRsjBg5jYsSPUCwtpc/3DD1Q2cfUqEdy1a4kMTJ5c/9E8z+PBgwdCSkoKN3DgQA6M0fnFxgJ2dqiqqsKePXsELS0tbtiwYW9P9AEKVPTrRxLf2bPJzPDUKarrBUjNsGYNycr/BVQWFUFWUYGwoCBx0NixrFkoq7ycAiTK7Ki+PmXUv/uOxuadd/B8wQI8ys2FS1kZYGAAKysrWFlZNeywq6uJwDYi+zmZmVDcuYN7zs7oqyT0lZVEuvr3bxJUAkD3R0sZMW1tmmOZmRBOnwa3eDH8MzIQ7uODsLAwtGnTRoyPj2cAtY20t7cXBEHgbt++DU1NTYwfPx6mpqZNM8clJYCFRT2Bnj17Ntq0aYOysjJUVlbC1NQUcrkc3deuhd6PP2LTt99iwoQJkMlkMDAwYFVVVVBTU2tq8BUdTcEvpRnbq1BWRpnVFjKZdnZ2mDNnDn755Rfs3LkTAODk5CR27NiR2dragjGG0NBQwcnJCYGBgZwoim9O9AEiJpMmUWa7c2ciYqdPw8/PT2H43nu85IMPOIm+PuZs3AhJhw4cIiKalV5IJBL4+/u/nXy6DpGRkYiMjATP86xTp07Qa3zPtwaplLLfAGX6N2+m9cbIiEi0QkGPOXNoXYqNJRVARQWpaRYvfuvzfPHiBZNKpdRqDqB79IcfKPB2+jSNyYULsDt2DHYuLgwAQ0gIqtasQWhAACr19KAbHNx654DGnSM+/ZQCRRs2UIBCVxdDhgzBxYsXkZGRgdOnT0Mmk4keHh6cvb09JBIJFCtWIOn6dfH5lSvM0dERCQkJyMvLEzMzM5mZkxN6h4bikkwG18GDubi4OOTl5TUl+zNm0Jj17Uv/PnOGAkDGxhQECAyk8W3Tpsn1T1y3DvcBTHnnnSbKmlYhilSKIQi03qWnUzAxOxuorgaztYXfkCF43Eo2nDEmjhgxgrm4uNTfwI6OjqQoUFena/vdd68/DyVOniQ1w1vC3Nwcffv2xaFDhzBlypQGtRvH0e+It3dDC8Tnz9/Y8+OfhYeHB0JCQtwZY9ekUumZ4ODgbwAkq0i/Cv/N4JcqnaJVUEEFFf6PEBER4ayjozM2ICBA9ne1zAFANbNDh5Icdu5cyqg1kp5evHgRx44dg5OTkzB16lSuQ4cOuHbtGlddXQ07O7tmb1daWop169aBMYYRI0ZwampqSExMFCorK1knb2+YRkaiql07IbCmhtdcs6Z5nXRLkEho86SuTsd7esL9+nWm17s3e/DggRAWFgYHBwem09gUq00bqs2/cYOyb4mJgEwGwdERsbGxePLkCbQnTBCtR4xgyM+vJ/N1MmsuPDyctWvXjvpjd+rUkP2qqqIsu4cH1d4eOEDjlpREGafjxylg8u23gLo6TsrlQu0773D3799n0fb2SCkvF8slEkiLilivTZsQO38+7E6cAKqqII4aBURFge3aRd85O5uyrHVGfwB1Fjh37hwmTZrEnJV9nY2NkePggAOHDglhYWFMT09PmDJlCvfWPg7Xr1MWLyWloWd8ZCRtgsvLaSPcvj05z5eVEVl4gxry1qDz7rtwLSnBGXd35u3jg2bKlQcPiLwMGdLwnLK8RCIB9u7Fvbg4JHl5iR1XrWJITm5OaJ2cyPSvUQa8ZtEiSBISEN63L65duQL3fftw6Y8/8GzyZFh/9VXzE12+nDKLAU2Vqc+ePYNcLsePO3aIyWpqYhLHiZKsLG7E8eO4zxjul5WxHn36YMyYMWjfvj08PT2Zq6srAgIC0LNnT+jq6jaXw4eG0neoGwtNTU1wHAcNDQ3o6OiAMQae56HdtSvut2uHrBcvhN4uLkyjriuARCJp7uQ9bBiNQws9wJvgwgUKqNWpYFqCpqYmqqurkZWVBQDQ0NBAVFQUu3LlCq5cuYKamhpMnz6d09PTg86rTOpeBY4jlYeJCbB8OZxu3+Zu/vADkoqL8Wn37pCWl1Opxb+odBIEAevXrxcuXbrEwsPDkZ6ejj59+uC9995rGjx8U9jYUGBOFKk2Pz+fAic7dtD3KSujQOCIEXQvvWUQt6ioCKGhoUJGRgabPHlyfa95ALRO5OQQsUtOpjXdyYmCD0eOABwHSbdusJoyBYfz8mBgaQnjRiVMTXDsGGW4x4+n+61bNzJNvXUL8PCAuZ0dbty4ISQkJDBbW1tMmzaNOTg4QF9fH3p6etCprES5hQWS8vPF6OhoJpFIFPr6+mKHDh24m3l56NWpE7o5OKDcwABJDx5gwoQJDXO2tJSI99On5CGir08Kp4cPiay2bUtkVamCaoSamhp2//59FBcXCy4uLi93rmuK58+JWAcH0zXasoWuy6JFNP+kUmDyZIQ9fYqOe/eytvfvNwQfQB0moqKi2MiRI1tuaWdqSr8HPF/f5vWVqK6mcZ82rWUFwmtgaWmJuLg4hY2NDde2cRCnbVsKNOnpAd2703cdN+7Nfnf/CaSnp2PLli0AgClTpjAtLS37/Pz8DziOGxUWFlYdERFhHBgY+IraDBVU+M9ARfZVUEGF/3NERERkKhSKCWVlZQZ6enpMU1Pz398n99gx2hwOGEBEuqKCyF1di7eQkBDcunUL77//Pjp16sTxPA81NTVYWloiJCQEpaWlcHBwaHJef/75p2BsbCx+8MEHnDK7UvzsGdd7wQJW3qWLaL9xI6d9/jynER4O2ZQpb/edzMyIcN2/D8mcOTD7+mv4+fgwSKXi8ePHWXFxsejs7Nzwhnp6tOnatAl4/32IEREIOXVKSHzxgg0YMIC179iRsdWrydhv2rT6lzHGoFAohLCwMNHKyorpjR+Ppz/+iN8rKxUe6emcbM4cMrJq04ayN4GBlO3OyiL57sKFJI/V0kJubi6eP3/OampqBEdHR3H65Mlce7mcWQ8eDHlICG7k5+Pe1KlCvkyG4mXLWGlODu5NnqyomDuXU3/yBNzDh+B0dGjjDjJ1e/bsmSCKIpecnIzjx4+L8XK5oLZ6NWegpgY4ObG+fftyr83o19Q0lHC89x5tMOfMoU39o0ekTPjiCxq/jAzqke3vTwRs8eKG+uOaGspkvY1cVRSB1FQUe3ggwslJkVdQwNna2jYnH48eofbePRx4/hwuLi5NM+B2dkBAANK2bBE719Qw3c8/JzMzZZcEJT74gMiK8rnSUmju3QvzP/9ExYMHqM7LE9teuvT/2HvvqKiur338OXdmqAPSi4JUpStNQUABW2yJRuzGkmiaJUajn5jKS0yzJTGWxBYTe4k19oZKVRQLiKh0AZEuDMPAMPf+/tgMHUuSz/t9f2vNs1YWcdo9c865Z/az97P3Zgn9+uGJri569erVVPFaLpfj8uXLsJ81C6xv3yZyxvM8CgsLsWnTJmRkZKC6upopFAr2lOfZ427dkOrhgaD4eIQA8PL1hcTREZIW5LHTYmOCQA6XIUOe32qPMejZ20P06afMZutWsDlzOn/tX39RCkoLhUiH+PNPItCd1DlQ4+HDhygoKMDYsWMxbNgwpnb6VVVVCdOmTWMvFBF/HhgjZ93gwcDvv8MmPx9hv/4K0dmzJI2/eZPSfzIyaM569qRUJI6jdfr6a1IrnTpFkeF+/eie7dIFUKlQO24cfquq4j1PneJc795FdXCwMHvrVuY4ZAi4khKagw8+IKXBwYOUxmJmRtLwa9fojFy6lP594gSRa319UhJdvEi58LGxdA+Vl9Nj27ZRFP76dXKqvfsu7dlPPiEFz6hRlLdfVtZcDLVHD2DTJgjnzmFLXBwcT53CoMGDmRlAnUtsbWk81dU0BnX6T3IyqTNOnaJ1f/11wNMTEh0dmJmZ4ejRo7CysoJEIoF22/aUMhmNWZ1aoHawnTlDkWJXV1y7c0elUCi4N954A03pTo3g3nkH3d5/n/mPGMEGDBgAb29vztXVlevatSuSk5NV5fb2cLt3jxXt3Ssog4NZbx8fkprPnk3zrqtLaTp//knKM7mcxu/vTw6VTlBZWYn09HQ8efKEmZubd+7MAGhd16+n82/XLiL5H37YigQLeno4ExPDPHr3hqmJCd0bFy4Anp7YsmWLYGBgwPfp06fjg09Hh86c6Ojm+gfPQnExnceBfz/VPSYmhvn5+bW//3R0KLXk+HE6z2tryTn0X4ChoSHi4+PB8zwKCgr4CRMmiIKCgiQSicRCLBYPraysfCM6Onp9WFiY4vmfpoEG/3vQyPg10ECD/3VERkYqo6Kihty+fTvy1q1bY0Qika6ZmVlDQECAoYeHxz8n/jxP0ecff2x+bOJEMojr6gBtbWRkZKjCwsJEbfNW7ezsMH36dOzbt0/gOI4Nb2xvdvXqVZSUlHBz585tRWjuZ2er9Hr0EKVXVEC2eTPidXRQP3AgltTWtjMUXwienkRA6+sBCwv0376d6zl7Nnbu3IktW7aoZs6cKWq6vr095WBHReF+fT38T57kBpw/DwNXV3r+s88ooqPOb2xEeHg4V11drdq2bRtCp05F2r170NHRER3IzVW9uXatCHI5yUqzsiif29ycIl9PnxL5yMsDkpPhmJfH5QqCasmSJaKm6x0+DKSmQjpwIIZGROD07duoyMtj3hUVKHd3R0bPnoxbtIhP6tkTdVIpF5CYyHueP8/hq6/w4MEDvqqqSnTt2jWoVCqMGzeORUdHi7TlchTn5LCndnbC7t27hSVLlrQ3QmNiSOnw5pskNZ4wgUiCOid+/36K6BsY0Hx88QUZ/mvX0us3byai8sorFCHKyqK84//8hwjFC1Y6x5IlUJw6hTXjx4NxnIgx1tQzuxVychCTn89nGBlx69at40NCQjhvb2/cunULDx48EPz9/dmV8HDmaWVFhMvRkQjap582E1tb2+Z1TUmhPX7jBti1a+i/di3KwsLYgUmT6PnKShw+fBh+fn64e/eukJqaygAgZNYs6Bw8iKqePREbG4vMzEy+vLycA4DS0lJIpVLIZDLo6upi+PDhsLCwQNnMmTCvrCRycOoUGfEREc+OqCkURCxbpJU8C1KpFJdHjhScxo9nFpmZtGYdtcYLDGyurdAZDh0idc8LrOG1a9cAUDeFH374QaiurmYAYGpqCnkHHQr+FpRKur937yZn1PffkzPk6VM6n6ZPp/vs0CFa+5Ejgd9+o2i0oSFFVT/6iO7DBw/oM6uqIK+sxIHoaJVfaamou62t4BsRgfonTxAjVQbViQAAIABJREFUk7EUGxuhX7duDKamdA4KAu1zoLn7hr8//f+VK/T42bPkXNDToxoTAJF1xmic1tY0joICIlklJbRO9fVEzs3Nad+WlVEU++23myPB3t7knJBKkfXwIa8yNub8TE2ZLs/TWXP0KOWaL1vWXEyvurq5qKarKzlA2sDd3R3Xr1/nd+/ezQFAeHg4BqiLc6qv21bizxhdJzKSOiAAoqccB/2OWnHKZE3FAtti1qxZog0bNghp48YBp0+zgOJiOnesrOiahobgZ88GvvgCnFxO1zUyou+rVmi1rTHQCGtrawiCgJ49e+Lw4cPQ1tbusLAetm4lov/hh3QGHj9OXUaSkpp+D0tKSnD27FkeALN95x0GHR1a688+gzBiBPRra6F8nlPL35/I/oYNzakenSEtjdbtb0Imk0GhULBO0xd++omcFQoF7ePntYf8B+NoaGiAgYEBhg4dygHkPA8MDBQFBARIV65cKa+trbUA0L7NjgYa/D+EpkCfBhpo8P8UjVX5uwPw19bW/trKyqr7xIkT9V4oL7Ez3L9PJKgtOdiwgSJCQ4dixYoVwvjx41lHcn2AqlafPn2aX7hwIScWi7Fq1Sp+2LBhnGfLiupOTuC//x6Z3t549OgR+r7+Okreew+7DQ0xe/bsdn2feZ7HtWvX4Ofn1xRhfSbS0yna88UXqLO2xo4uXXiFQiHMmzevKQxcXl6OvIQEmM+di+zZs1Uhly+LsGVLc5Tozh0y+u7ebSehXLt2raB/8yYbGhYG7eHDce2ttzA0MhISLy+SXI8aBUydSsZt2+JHixahOjUVvw0cyC+oq+Mgl1Okr3t3ipIFBwPjxpGhHx1N0tXt2+k1rq7Arl1IEgRcOXlS8L5yhRlXVOByaCh4GxteJpNxAGBpaYny8nL4+fnhZkIChhobC9d1dYVuPI/H9++zUjMzfPD990y5dy+6nD5Nhq2NDRE7Hx8iFm3rNCgURIoHDSLHgNoo3LyZpPUrVjS/VhCIbF29SoTn44+fHeW/fh2wsMDRc+dUacXFovDw8NadD1rg5ltvIbe6GgO3bkVSUhIfGxvLBQYG4vr163B3d+czMjI4uVyOqVOnwlmppAj27dukrGCMSMGWLRSVdHIiya6RETk9vvsOPM9ja2wsCgsLwRgDx3EQBEGt7ABAufZjdu6EsH49Dly+jLq6ulZjFIvFGDt2LBwcHKBUKjuWricn0zWPHGmOOHdE+nNyiNgmJHQ+f22wZs2ahvDwcHGvr74iEtlZMcBDhyi63REJUyppfrZvJ5XKM6BSqfB1mzzk999/HzU1NTh37hwUCgXfo0cPLjQ09OUcedXV1PXC0ZEiun/8QXniCxaQkmT1aiLDEyfS3H38MRHotn3jn4MffviB19fXZzNmzGAtpfqCIOCrr76Cvb09HxERwUmlUhQWFsLCwuLZvdvpzc1KhIEDKcd961aK2Ofm0p5TO3ESE58f5W0DhUKBNWvWYNSoUfBoUUy0Q6Sl0T3Wty9Fytesaeqq0BK1tbV48uQJzp8/z3fr1o1TO2wBULHQ4OBW7QPr6+vx119/Cbm5uXyfM2c4Jc8zh+++g4O/f+sPrquj1Kbp0zt1bG3fvh06gqDKv3dPtODXXyG3sUH0N9+gtKxMkMvlvKKwUCQtL4eus7Nq2qJFoqZUl507SU2Rk9Oh8mX16tV8jx49MGLECO7cuXO4d+8e5s6d21q5kJ5Ohf927ybH68cfE9G/f79ZCQYqglhWVsZmzpzZSiHwuLAQ0spK6A8YgO2jRmH0jz9SqldnqKmh83L48GdH7VesIAfQ5593/ppnYM+ePXxhYSH3UZuiiK1QW0u/PWPH0m/8kiV/61rPwvHjx/kbN25wXl5ecHFxabVfVSoVVqxYUa9SqT5XqVQ/REZGqv71AWigwd+ERsavgQYa/D9FWFgYwsLCnoaFhd27cOHCRrlcbpWamurp4eEh+VvF+9RRpZCQpj7OTZDLySDt3x/XkpJ4R0fH1jmALWBiYoL79+8L58+fR25uLkpKSrjBgwdTcaS6OjLIrKzAXnsNppaWeFpejn1GRrjZmJIglUrRvXt3yGQyaGlpQR3h3bVrF8RiMeyeIdlsgpkZ5VfevQuxgQFcBw1i9w4f5nwb87wzMjKwfft24YlcLigiIvhBhw+LWL9+1NrrrbeImJqbkxw4KKidId67d2/mdeoUTB4+hO6UKTBevBh5RkawiImhYm6VlWQ8jRjRPtfylVfAJk5E2qFDzPvnn8EVFhLhWryYCrsZG5Oh+eabNFfl5cC6dWRoN8rSu3Xrhh4eHqzE1RXXlUpM2L8fKrmcFdvbg+d51NTUQFtbW+jj68tMN2yA/7Zt7OaIEYL/qlVcUHk56ycIrKaiAtnZ2XzXvn0ZZswg0hEaSo6etmubm0sk//PPiXi2NJQZI6VEy3VhjCTU7u5AZiYZ4wMHti5oqMbRozTnCxYgTyZjRUVFmDBhQrvc2v3796uOHDnCicvKBJ+JE5ll797o1q0bi4+PR2lpKe/v74+RI0dyQUFB6NmzJ6ysrCC2siJSw3GkSNi8mdqZHTnSlPsNDw+KwjIGRESAWVqipqYGOY2t6ZycnHiZTMY++OADhISEwMPDA0b6+g1ZubncJbkcJiYmqK2tRcsAAM/z0NXVFUQiEevatWvHe9Tamuo+BAQQcb11i8ZkadmaEJWV0fheQsqbkZHBVCqV4Lx0KcOECRQlFYlapzIARGzq60l23hZ37tC6ubk993ocxyEsLAyXL18GALz22mtQ52t7enoiLi6O5ebmIjExEe7u7h1HftWRaZGIyFZUFO351atpT8rl5OxSp+1IpVRLJDiY1njQICo4Nn483UNVVa3yqZ+FhIQEfvjw4VxbiTdjDL169cLZs2dZQkICHj58iMuXL+PGjRt8fX19pw5P3L1LjpLFi2mskybRPRMbS2k98+fTGru7E+GbMYO+h5HRC40XAE6dOqWqqanBiBEjnp2HzvM0J9Onk/qJ54nEKhTk4GtxPkkkEhgZGaGoqIjPzMwUAgICOIVCgcePHyO7ogK1/fqhi7s7VCoV9u3bhxMnTggSiUQYNGiQyHrCBGZXVATLW7fAfH3JyadGTg45aSZP7niMgoCzhw5hxooVXF1DA84MGwbzx4+FEicn3qpHD6579+5cwOnTQrAgsNNdunCOjo7NhRJ79aLPffSIzpdGwl9fX4/jx4+jrKyMTZo0iWlra8PBwQEJCQl8amoqtLW1mVKpRN3Zs6jq0gUGHh6Uo19SQs5tXV2K6jdK78vKynD+/Hk2bdo0tLynb926hd27d+NqejpSevRAqakpPD/7DCqZDDpBQR1/Xy0t2g9//EH3f0f3AwBcvkwKs2elHnSCP/74oyEvL0/0zjvvPLswoURC+2D6dLp/rKz+9ei+vb09s7S0RF5eHh8XF8fS0tJUPj4+HMdx4DgOHh4eory8vKC6urpJFy9ePBQWFvbivQY10OC/CA3Z10ADDf7PICwsjO/fv//JCxcu6N64caOPubm5xMTE5OVk/VVVFM1Ty5dbont3YN063DU0ROqjR9yQIUPQmUNBJBLBx8eHdevWjZWUlPCMMRYSEkIGqacnGVPz5gFiMeoSE2EaGoorQUEwMjVFTU0NnJyccPbsWf7ChQssISEBqampfHx8PGOMCbm5uay6urqhZ8+eXG1tbdP1OkW/fkQE9uxBz59+guK998Axhs1btgjh4eGIiIjgerq7c2zYMCL6ixdTS7Jx48ggGzqUCE9AQKsWZWKxGOLXXgNefx0MwFVvbySUl/OB27YRuZo2jeYyOLjjOfriC9geO4ajixcLvTIzGXbvpvxMc3PKO+/VqzlKVVVFhcd27qTnG/Mq9fX14eDggD5DhiCjRw9YP32KwdnZEKWlIc/ODvPWr2dFcXG46+YG29xc8CUlkGhrQ9vSkj328hJSR41iSZaWQtDChQzOzq0i72qHgZZEQu3W3nqLCLKfXysiqlAoULlnD+SpqdAJD2+/36RSiiYGBhLhUKmI4Kj3Tnw8PT9pEjJranDy5EmmUqlYaGhoq896/Pgxzpw5ww0ePBiDY2KY8cCBQPfuqKmpwdWrV6FUKtmwYcOYulidgYFBc+RVLCZCHxBAkXSeJ8eEVErtvG7eJPnu8OFNxKewsBBlZWXCmDFjWHh4OAsJCYGWlhYkEgkMDAzQTaHgXDZsgPHSpUhKSmoi+hMmTICjoyOqqqr4Bw8ecKmpqXB2du68JaW6a8KUKRTt+/13IkaMkQEOkGri3j1yUrwgKisrWVZWFu/n70+dGZYsIbLcWHejCZ6eJNFvO77oaFKmzJ//UgXjHj58iOrqahgaGjZVUheLxejTpw/8/f2RmpqK+Ph4ZGVl8b2dnRkTBJIyx8fT91Q7XxwcqIBgr1407l69KOo6ZAipbfT1qfPD1Kkkyd+0iQjf6NG0j+Pj6d7dupUcB++998xUiZiYGHh4eLCOorG6urpwcHCApaUl6urqGgYPHsxZW1uzS5cuQSwWt27DFxFBaon336c97+xMLSpVKkodmTCBHGZti4bq6tLZM3PmC9e5KCoqEjIzM7lu3boxk2f1Sc/KIsXQkiU0B35+dC988AHlpU+d2m5uLC0tuejoaC4uLg4xMTG4efMmSsrKeOOdO7EjM5PFXr0KmUwGQRDYnDlzmIWFBQwMDOgMyMkB9u2js1d9ZublkYOhZVFNNW7cAF55BbkuLrxq6lQEfPcdCxwxAmZhYcx12TLOYeZM2Hp5waiigknefRfRycnIzMzk09PTWWpqKtLS0vDw8WM4LF0K7upVsNGjwfM8Vq9eLeTn57Pp06c3dR/hOA6BgYGsoKAAt27d4m/duoUB8+Yx5d69qBCJoD1qFMQ7djTfD7NnUxpG//5QKpVITEyEsbFxK4fzb7/9Jjg7O2P8+PHMxMkJQaGhyLp3T5X66BFXkJbGO9XVsQ6L8dnakoNPJqMzsaP9uWcPOUlfwgkEALGxsbh58yY3ffp0WFpaPt8O8PKiNVu1in5vXqLl44tAJBLBwsICrq6uLDY2FnK5nAsLC2sal66uLnx9fbWUSqVJUVHRxIsXL+7REH4N/i9AQ/Y10ECD/3Po379/9Pnz568+ePAgLC0tTWRqaqr1TDmhGrW19AO/cmXriIwajAG1tcj/+WfBae5cZq9uY9cJGGMwNjaGu7s75+/vz1h5OZGsoUMpUtFIxMQWFii3sYFB376oqqri5XI5Kygo4HV1dYV58+Zxtra2MDAwYH5+fhg+fDiLi4tDt27deI7juF9++QUxMTHIyckRLl68yPr06dO+inkjRH36INrLq+HK9u1crwkTUDxokDB84sTmF+vrU2Rj9mwigrGxJGnnOJLfWlu3j3CuWEEGkr4+rKZNQ4ybG3Nctw6G9vb0+qlT2xvuNTVATg7Ks7MhPXIEisWLme3nn1MUc9s2kv7OmkX5vDIZRZUaGoDSUqrUPXZss1EolwNZWWDm5rB+/XWYLl6MjL/+EnxjYphlaChsAwLQRamE7cWLuOHjg4EXLrD9Y8awFG9vJNfWssKnT8FxHEJCQlhKSgpu3Lgh9OjRg/E8jx9//FEVf+4cZ7p/P8wvXSJJvoUFlEolEhIShOvXr/M2Njbc+vXrobh9W3hUWMhqevZsingJgoDMzExIpVI0NDRQhH3GDGojdfQoEVmFgvL8R40CXF2RmpqKnJwcREREtEvj2LNnjyCTyZiHhwe6rl8PzJmDcp7H3bt3MX78eAwaNKhzQq2GhQUV9PrlF5IxnzhBOdxLlrSr4F5UVIQnT56ohg0b1vGG4jige3fI7eyQnp6Ovn378tOnT2eWlpawtraGv78/69WrF65du4abN2+iV69ez2/75eZGc1FVRbn0Bw40523n578U2dfR0UFsbCwXEhJCBvUbbxDRX7SI5l4dKayqIkdOyyJ9DQ1ERgcNItL9EnB1dUV8fDwcHR3h6OjY9LhIJIKOUol+GRnwt7ODfNMmZrR0KWINDFROVVUcAgLIyfj22/SdTUwoyp+VReR54EAipx4eRJzv3CFHmo8Prd2339LzAN0fU6aQI+PmTSJUb75J6RujRrUjTmlpaUhNTWUjR47s9PwwMjKCjY0NPDw8ODMzM0ilUiQlJSEgIAAmIhFUFhZI9vSE9SuvgI0bRxHmlnOnrsTv4tKx2sDNjR4fOpTOnRcoZmhvb8/p6enh6NGjTEdHp7m1WlusWUOOhJaqDo5rbmW4eDFw/z4a+vZF8s2buHPnjnD69Gnm5uYmvPHGG6yiokIoLy9nCxcuZLaRkazPypXwHTgQAwcOREpKCp+amiq4uroyiUTS7EwoK6N88KFDKYJ98ybtKV/f5jGcOkUR9AEDgK5d8cDOjmU+fQp/f39yDJua0jjv3KEIuI0NEBYGDw8P6OnpMQMDA+jp6QkVFRXIyspidxwdES+R4F50tColP59raGjAokWL2jlwGGNwc3Njge7uXLCJCeOMjVH/9ClievTgHdavZ9ozZjST/TffbHKQicVixMTEYOjQoU1pOeXl5UhISGDh4eHMwcEBVlZWMDQ0hN2YMVy3IUPweNMmGP78MztqaSl0NzJiOm1Je//+5Ph2dm6vpmtooMh+RMTLFToFdWfJysrCrVu3cPfuXcHd3Z09V+2nrU33xtWrdJ+0LdD4L0AsFqO4uJg3NjZmvXr1avUcYwz29vacQqGQFhcX+4eEhGz/1weggQYvCU2BPg000OD/JCIjI89HRUU5FhUVTdizZ8+6kSNHGvfu3fvZrv0bN0i63VmPZQAxNjZwyM1lxn9H4jduHH32gQPNj339NaBSwTIyEpYA+vfvr7ZomiwbBweHplZ+PM+DMQZzc3Pxzp07YWtri/z8fFRXVwvV1dVs3bp1mDNnTjvFQXV1NfT09BA6cKDYxd0dpx4/hrGHB4cPP6RImrqwk1hM0esPPyRD86OPSEJ8+TKRjra9iJ2dyTiysoLuRx/hg7VrkXj7Nm+RlcVJ9u/vuHL6pEkQcnKwd9YsPnTyZC7o3XcpollVRQadiwtFNAWBnA7r1hHROXSIopp1dUT4jx0jcnPnDkUxX38dyMmBq4UFK7G0hMXatRBGj4b0f/4HJRIJPAEgLw9veHhgfWO/bCsrKzDGBADs2rVryM/PZ35+fti7d6/KoKZGFH7xInQdHUkC3lgnISkpCXFxcVAoFCIvLy/wPA+hvp6J9PQEKysrBgCpqanCuXPnUFVVxUQiEXiex6JFi6iF3nffAZcuQTV/PmRDhoDt24cKIyOYVFcjOjoaAGDeVmoOIDw8nO3evRsZDx7AZ+pU1FlY4PdffxWqq6uZvr4+fHx8Xmwfqus9CALlg7u7E2H85htKX6mrA2xsIJFImvLzO8Tt28D9+7AfOxZLly4FWuxZNVpGW/ft2yfMmDGDPTdfXSwmhUFwMBAXRwXhcnJoj1ZUvHBLQ7WzRB1lb0JGBrViU+fMWluT/Lm+vjmC/+mnJOfd/nK2Ns/zOHv2LADAWColFYWtLe3hgwep8vzRo9CfORMuP/+MPWfPCkbm5gwLFjR/SEkJpcDMnUsOuH37aL+3xJYtRBQPH6Z/29hQtPzJk/a5+p98Qv8VFlIqyoMHpALw8mpSMMXGxvJ9+vThnpuD3wL379/H0PPnBeODB/HL7NkwGzaMpV2/Dp3x4+GpVmSoMXYsRfdXruw4sq2GnR117fjySyLBL1DbQF1l/cCBA4iNjVWZmZlxxsbGrF+/fhTNLi4mx+XChe3fzBidYQsXQli5EoejooQntbWMc3aGTCZDXV0d09PTQ1BQELt37x5ycnLg/OgRdACok5reeOMN7uTJk6offvgBEolE0NfX5319fUVB06cTYZ48mc78jIxmwnrzJilo4uLIAeDoCDg54dX6eqxevRpJV64gwN2d6gzo6TXvnUZnhrm5ecszglVUVGDDhg34MDIS9QUFYF5eou2TJuHVjz56NsGdPx/YtQvc8uUwWbUKo3r25A6XlcHg1i3VKBsbkvhMm0ZFHidNAsdxYIxBJpM1fYRRI3l/+PChys3NTdTSWdSlSxcE79rFsjIzYbJvnyCaM4dVX74Mg5YOD8ZoP8+YQd+x5XhTU2mO/kbLveDgYNjb20OpVOL48ePC3r17hbfeeovrzJkFgJxjnp7kAB069G9f+wUglJSUCJs3bxYMDQ25iIiIJhUWYwwhISHihISEsKioKJvIyMj8/8YANNDgRaGJ7GuggQb/ZxEWFiaEhYWlXrx48URmZuasvn37ijs1ZuvqoDx0CFnz56NaJoNUKm0V4WpoaMDRo0eRmJQEzwEDYJmX13GOb0d48oQMvXnzSMLa0nhISyOy3NL4eQYYYyguLhbi4uKYSCTC3LlzER4ejoCAAGZra4ukpCTExsYiISEBFy9eRExMDNLT03Hu3DlcuXIF8fHxuHPnDkrMzODi4gK7c+cor1ZHhwxRbW2KEr7yCpFSdREtDw+SAZ8+TU4LNdzcKIp1/z4QEIAqV1dEV1Yy44ICweyzz1grWeaRI0BCAm5XVAiSxERWIZUKQevXM87QsLmSN6hN1JlLl6Cjrw+jxYvp2j4+lPd+4wZFPv/4g6JhdnYU8T10iEiOoSHY8OHIe/tt7NLWRj+VCiJBgLGZGYxdXCCyt4fuO+/A1MgII5YsQWpqKv/06VOuvr4emZmZUCqVuH37NqzLy9mrp0+z+x4eQvX06ezYiRMqc3NzzsTEBMnJySoDAwNOpVKpkpKSOMYY7LKzBZ/evVnXV18FAJw4cYI3NDTk7O3tUVpaCp7nYWRkBH19fRQUFEBuZATRsmXIzc/Ho7g4pNy4gYTSUiiVStja2sLFxQWnT59WxcXFCR4eHlx0dDRiYmJQX1+Pob6+MDl9Ghm9eyM5OZkBVDU8ISGBj46O5s3MzLgOW7zdu0fqiUuXKJq2bBn9+8EDIhs+PmRsv/oqMG8eRF9+CXlREXqOHs06ldemplLUrRNcuHABeXl5CAoKQmFhIcvJyYGXhwcYx1FxvvR0iv5OmED1De7epRZjCxfSGO/fp0ryX35Jr7W1pT05bRopUC5fpn3bicQ3KSlJZW1t3bq2xuTJtG/CwugetrEhAlpX1xzNvHOHiHBntQY6QEZiIhITE2GxYgXc7t2Dj58f2LJlRCb79CHVjIsLRZPd3WFgaYkzFy+yyZMnU6XwwkKguBh8WBhSCwqwy8+Pj7WzE0RaWsymJXmuqqLaIfPnNzveGKP0Bx2dplaU7WBgQE4MJyeS2J87B0yZgoa1a3FOJkNQUBDrrAZJK/A8hO7dcaKmBoUmJizLxgZd+/ZlYXPmwMDQEOfOnUNxcbGqtraWs7CwoHM0P5/Gt3x5q1SgDuHlRfUvJk0iwvWMCH9paSkeP36MiooKKJVK3t/fXyQIgvD48WMhJiaGSSQS2NTVAX36oNTcHDdu3ABjDPr6+qivr0daWhpu376NvLo67JDJ0C01lb2RlIS+S5eyQoWCf/jwIbOzs8O2bdsAAGPGjAHr35/mstFZpKOjAy8vL87Pzw/u7u7s9u3b3L179zBgwAAwNzdSaLz/Pjk8rKxozfr1o30/ciTNR3Y28OefEN27B/9ff2WiffsgsbCAJDqalFA9elDdEpWK3jt/Pjm/Wuz7mJgYBAYGQtvEBKJXXoHv5MkwEYs7d5ikpJByqqqKHEuenhCHh0Px8ce4cvUq5+rqSs7JlBRyCDo4gDEGuVyuunDhAqdWtiUlJaG6uhrZ2dmcjY0N2rY2FYvFMLewQKWBATulUiGuoEAI/vxzBnv7ZuWHiQmpLlasoDQU9Xlz4QKt/3NaXnYGQ0NDGBkZwdfXl126dEmorq7mnZ2dny8RuHCBVFempu2LtP4LsLe352QymZCens6VlpbCxcWllUMyLi6u4dGjR3cFQfghLCyM/9cHoIEGLwFNZF8DDTT4/wPSAChqamp02vVNVuPXX1Gwezd211CKHMdx+OKLL5qeXrduHf/06VNuxowZsGeMInVy+QtFnrBsGUVBY2JaP752LRGAl+y9bW9vz9LS0mBiYiJkZmbCxcWFAYCTkxM+/vhj3Lp1C1euXIGenh5MTEyQn58PLy8v+DdWh963b5/Qv39/FhgY2CyLHj+enBLqtlkGBkSof/mF/goC/b9CQdJKtdPkzTeJgOvqotLWFud1dBBYXs4XrVzJubaMoAgCGfrFxXjw7bcC/+gRGyWXc2IDA+qp3YjS0lJs3bpVkEgkrOLQIYxNSIBhTAwR0fJyut7cuTSXGzZQde2gIIpqtpChu/I8xIaGQuq4cczn3j2S6UZGAoGBYD17wis4GJBKMWLECC49PV14+PAh7+XlxXp7eXHFu3YJ7pcusZzPP0dySgpDYiJUKpUoOjoajo6OKCkpYfb29pgwYYKooaEBYrEYF7/6CmdKSxGakwN7e3sYGBggOztbyMzMZB4eHqrU1FTRmTNncPr0aVgpFCrD0lJW9uGHeGvpUk50/Tr0N27klXv3clf69UNuQwN27NgBhUIhMjExEVavXo2GhgbY2Njw1dXV3KXTpwVTiaSpMJpEIsGvv/4KAJyWlhb2798vzJo1q1m6e/06tc2aNInmccIEmrNly4Bff6Ve5GFhRJ7d3SnCJhIBggCJXE4R5Pffp79FRURO+vWjx9o6zxoaKNc9LAw4dw7mv/8O45AQYciyZcx1xAgcT0ggJUltLUm6nzwhQ14iISLj7U2t5ACS0mZkkBNn9Ghy8kRFkYLjzTdpjJ9/To6yuXMpZeTQISJHAODuji5durCioiJBfY80QSSiQnfqKPjq1bTnv/+evv/ixc/uty0I9B02bQLMzaEqLESXFStQNHo0RMbGsAoKAjd6NI37GeA4DoVZWTDZuRNYvx6PN23CgYkTBT0HByHM15e7f/8+YmNj+cDAQK7puu++S5/btltrl+UBAAAgAElEQVRIcPALyY7v37+Po7Nn85ZmZmzAjz8y++++g2jJEub48CGRr84iwVu2QPjtN5z58kvU+fqiwsQE0+bOhampaVP1/uDgYGhrayM3N1d06dIlvmr7doQmJHDc2rXkOHnRvGtvbzob9+6l/dKB0kUmk2H9+vVgjEFHR4dXKpVcaWmpsGDBAo4xhpSUFPx19Cgcjx5F8Tvv8Efj4zkTExPhypUrTKVSNdWY4DgOUqmUd3d3Z69+/jnjcnLA37uHV3fs4LZ5e+OPxhZ9TSkOEREdEkB9fX3I5XJUVVVhypQpzc7i4cNJOTJ0KN0vw4bR91OpqJaCoSGtaY8eQI8eiNHXR0JmJuaPHw+9d9+l1K9Fi4iA6uvTPSMWU1rT5s0AY5A1KkOaovje3pS6sHlzc8HHlsjIoDoV779PNTu8vIjUd+8OAxsbiMViNDl+vviiVS790KFDRdeuXcNvv/3W1KnD2toaAwYMEOzs7DpVz504cYKcHYLAZIMGQSoSkfPY1JScYcOGUbeJY8ea7xuplObtH0IsFmPUqFHckSNHMGzYsOe/4fffyfE4axYVbH1eetRLQl9fH8OHD+eSk5PRs2fPduknNjY2YgMDAwe5XJ4dFRU1IjIyMuVfHYAGGrwENGRfAw00+NcQFRVlCCBCIpH48zxfrVKp4gBcioyMrP6HH91PV1dX3Gnefl0dCr29cTwnB2+//TZkMhn27NkDNZEDAH9/fy4uLo5kyYaGRAxu3uy0+BwAitSdOUOOAb6Nc76+niStgwe/NNn39/fHzZs3G4qLi8V79+6FjY0NP2vWLA6gKFNgYGCrlm3379+Hk5NT03dZsmRJe4Ns/36K8hw7RqT42jXKn5w/nwzChQup7dnly2Qcqh0X69aR0VpeDuWMGfCTyfgeYjGHIUOaP1tdfXrlSjSMGwerDRu4qq++wlNPT7SMASXExuJSTIzw/tatzHDWLJwKCBAeZWczj/79KQJmYEDG/8cfU5qBhwf9NTcneXePHkRsq6vBicVgjCEjI4P3mTKFQ3AwyaH37ydJs0IB7N8PmwkTYGNjwwCI8PQpsH8/rK9eZTh7FrYSCaxLS/n8/HwOAAoKCvDVV19BLBZz48ePB4CmOR2oULD7jGHfvn0IDQ2FQqHglEol4zgOSqWSMcYwZcoU2Nvbgxs4UARPT0CtjAsJgYrj8GjtWiHi8mWW5OiIjN69oVQqYWJiIpSUlDAAeO211zhdXV3cWbGCZaan486uXTAwMOAXLVrE3bt3D/v374eRkZGqoaGBS01NRX8jI1pPdV0Ade5wTQ3N4YABVIk+Kam5SnpISBMxKPv0U9w9dUoYOnw4zZujI1UTz8sjY7hHDyJvubnkRAgOpr0zbhyQng55Xh74rCyEff45g64ubIOCoBUbi+Uff4xu+/YJTlOmsGD1/bNrV/v90tBAJMTMjMbp70/R6MhIIh9Pn5LMFiDZ+6RJFCFcvpwcUPHxGPfdd9zViRNVcHMToaCASJCauGzaRA6k7t1pT2tpEZG6ebN9nn5tLTkxbGxIkv3bb5Q6EhODsqFDsbGiAg1z5qCnm5sw4LXXnp+qAOBRZiYitm+HxcGDiPngA8SPGQNVXByChgwRQkNDOcYY7t+/rzIzM2tmapmZdJ+2VNeo4epKc9Py3muDhoYGHDt2jO/atSszNzcX/pLJBMXixVx4RAQk6naXP/9Mzhf1eRkQQAU6Q0Nx5soVXL16FSO/+AKv+vp2mN/v7+8Pf39/yGQybtuXX8K+vBwOx45RmsjL4N13m/u8r1/fTmWRm5sLAHjjjTfg6OjI8TyP5cuXIyUlBb169YKXlxcMqqpQ9eefOPrkCefp5YXRo0cznudx5swZmJiYQC6XIzQ0FK203Y6OyFQoUFhbC8PHj2ErFuPVX36BWE2kIyKaU2HaQCqVQiQSNUe3R46kWgrqTia6ulQAztiYzq1585rWZdeuXSg+e1aQy+UsNDycNzExoTFduEDqG/WesrQk2TtAqVUPHsCksBDTf/8dhxjDuC+/pOfmzqUzUiaj3yz1vs/OpnvdyYlqVXh5kRPpxg3g4EHEbNumCgwM5MRiMb3B3p5UXZ9+CoBqT0yePBkqlQqHDx+GUqnEq6++CgsLi2emyY0ZMwZHjhwBGMPjqVOpeOWCBaQOOn6cXrRqFaXt+PjQfXn9Op1d/wIePXoELS0tKBQKaGtrP79gn1xOZ92aNeTw+C9g8uTJ2LNnD+rr61ul3jk7O2PBggUGt2/fNjhx4sSVqKiovpGRkQ//K4PQQIPnQEP2NdBAg38FUVFRFmKx+K69vb2uvb29vlKpFDIyMqqLiop0VqxYcaOuru4sz/NpAB4BUAJoAPAUQFFkZGTtsz5bW1t7nr+/v576x53neZw6dQouLi5wdnaGbPlyVO3aBfHChejatSuqqqoAAHv27MG0adMAACEhIcjNzeU3btzIhYWFCX0GDGDYtq3zvuAAEf2NGykK2dIo5nmKkObl/e35evvtt8VyuRyrVq1Cz549hWe91uVFZIiMEZkODqaImkhEZPQ//yHj/+hRKla2cyfJq3mevpM6p/LkSaR/8gl/4+xZrldYGFLWrFEZCAJeHTxYpJeYCPbkCbZ6eqokY8eKyi0soH/rlhATE8M8HBygJRKBP3eOH7JzJ6d/6RLroq0NpqMDp7VrmXF1NUVWIiKI9PXtS9dXR/rWrqW/SiX4lSux88wZ3nPjRmZWVMRq33yTDVixgsHdnSLWCxdSBPfkSRpzejpFuQGSix84QAben38CjEEH5OTJz6eUSY7jMHXqVPA8j3Yy+aoquHh6onuXLqrExERYWVmJZs6cCUNDQ/z8889MEAQc2LgRYeXlfMCRI1xbB0/x06eoGTGClRsbwz4qCq7p6Tg5ejTu3bvXtHHULRmDXF2R//QpTjx6BGdnZwCAm5sbPvnkE4jFYtGRZcsgvXWLovZz55KzRr1Hy8tpjRMTycl09y49LpdTnYRTp4jcAdDW1gbP8/TexsdACgIiEHp6FGFszPuFtTWRmKdPAQCnLSxQOWcO/6aXF4fGQlRvubtj5cqVyM7OZtnZ2ejduzdJhdvi0iUi5g8fUnG5lStJeSCR0BquWkV95XfvJoJvZNTcG3vDhqY9UR8RgTyVisPZs0QsiovJKRASQiQyJ4ceDw+nfR8aStfLySFnw9dfU2T0229JYjx3Lsnw33oLsLND3e7d2Lh6NQy7dsXMmTMhlUqf3/ojJQXCp5/itpERlAEBcFqxAtd27oRCTw9z33kHZmZmTWvu7OzMnTp1ishAURGdJRcvdlwLw96eyJ9S2YqMFhQUgOd5WFtbY8eOHbypqSmmTp3KGGPslZZEKjWVSOGkSaTw6dmTnH4zZgDe3sgSBFxtrKju6enZaSE/AIBcDmlICEb//DNkp09DERHRlOP+Uhg1iohubCw5pxp7vQN0jtOl5ADo/gwKCmKHDx9Gt27dEB0dLXT74QeWPWgQGlSqJsccx3EYPnz4My8r1tXFpYEDMbZvX3h9/z05kD7/nO6FuXNpHJs3t34Tz0NXRwcDMzJUQv/+Ity9S2tSV0eqk0mT6F7cu5dULY3OCnWdh5ycnKb9U1hYyOrq6qCtrU1OjhUrOvydEcaPR3Z2No7u3IneTk7QNjLiMXYsB3NzulcHDyYn2bBhtJcBSr3q2pWcV+qK+kePEqmdMQOVlZVMX1+/+WIJCe0c0j0bU0WcnJwgEome3Q2mEUeOHAFjDBMnTmzqUoE1a8jRsH07OfTu3iVn39KldKakp5Oj4V+Ai4sL4uPjsXz5csyYMQPPK7CLPn3I2bBhA90PL1Ec9EXh6OgIKysr/tixY2zcuHHtFrh3795QqVSGp06dSo6KihoWGRkZ968PQgMNngMN2ddAAw3+FYjF4gWenp7S0aNHq21CFhYWZlhXV4esrKx+BQUFfZ88eVJTWVkp8DwPQRBYXV2dqLa2Vuf777/PUSqVy3me/y0yMrJVRbGoqChTsVj8uq+vb5NlqlAocP36dSQnJ4PjOPgmJED22muY3BhRNDQ0xMSJE7Fv3z788ccfwowZMxgATJ06lYuJicHJkyeZ/5dfUj5ucjLlrLdEfj4ZVr/+SsZ5W/zyC5GHgoK/PV8FBQXYsmULPD09Vf379//3KgiZmhIprqgg8jtxIhm2o0cTyRg/ngjAe+/R94uNpehxbi68p03jrA0NsatLFwwaNEjkP3Ikin74Ab9Nm4b3L13Cq4GBojyJBL69ekF69y7LsraGpY8PsgID+YYBA6Dq2xe9vv22qVJ3F5kMylmzSLqtRlJSxwUUJRIku7riSXQ0N/jwYWzduhXmhoawcHWlaNrXX5NxnpdHn1dSQg6EykqK5B47Ruv4xhutPrZXr15olMbDz8+vVXX1Vhg9GrC2xmRPz3ZrsWjRInby5EnY/vIL71RRwVpF2Rrh7OzMJSUloby8XAj86SfesbBQNOPDDxE3apSQ6+yMaTNnNudTW1vDZtw4fBEc3CoiqZWbC1y9ij6HD+Pp66+TLLctIXv4kBwmauM9NJSI7v/8D0mNtbSAxEQ8dXPD8ePHhU6NeJ6nehNiMak8Jk2iyuPh4U3frbq6Gt27d+daRtAYY5g/fz42bNgAmUyGDiPggoCKMWMgSCQoW7YMBr17w6qqqpnAqnvQh4XRfvzqq44VNhIJjL/5Bo+/+44pxo2DjnptBw+myP2DBxQ1jI4mue6BA9RisbCQ6hF8/TXVCOjdmyKNly61u0RWVhZEIpHw3nvvsecWt9u3j0jNd98hzdERNw0NYWlrq1q+ZYtILSnftGmTsHTpUqZeVk9PT3by5EkkJibC6uuvIeveXdDPymItlTpNMDBo3tuNUfCdO3c2ZGVliTmOg1gsFurq6rhp06Z1HNV0dSUVyIoV5MRsjAgrz5zBmr17UVNf3/TS+vp6qKX7HUIkAvr1Q/cff8T6ceN4WUMD6wu8RA9UAs/zUM2fD8m2bUQAly9vSr1wdXUFABw8eBB1dXXw8/OD2jG3bt06GNbVsX75+bhhbAy3nj0xcuTIF76uuq3cqZQUeJ05Q3Papw85P7dsad6LPE/3jZ0dnZ07dqC+Xz8uRVsbYQApEt5/nxxip0+TMsrTk/aBUomq997DXj8/PC4tBQAsXLgQ5eXl2LFjB//zzz+Lwtzd4fvBBxAlJ0MQBJSWliIrKwupqamqJ0+eiMRiMWpra6mjyMmT0NLSoq4Ojx7Rfp0/n/aErS0VVz15khQ6jc6qJoSH07gYg56eHlJSUoSAgADqCHDuHO2HDmpBPLe6fSPS0tIAUIeSds5nxsih1KsXOUZWrSInz4YNdD531mHhRdHQACgU6K6nh/cHDsSfe/fCMCeH1jQ7m66vq0sOz8ZxwtSU3hcfT6lBK1eSI83a+qW7AjwPvXv35hISEhrQCafy9fXl0tLSxFlZWQEANGRfg/91aMi+Bhpo8I8RFRXVT0tLa2H//v3bWY/a2tpwc3ODm5ubCEC7xDme55Gbm+t07ty5H8vLy2dGRUUNaEn4xWLxh+7u7pBIJEhKSsKZM2eaKox/+umnkK1YAX7oUBi3qdTs6uqKuXPnYv369ezgwYOIaCxCZmdnB11dXTKWv/2WDL+2ZL+4mEiVOvrdEoJAMsWJE//eZDVCbWSNGTPmv1IqGMbGzVFfBwciwWvWUCS1Xz8ihQ8fUrX+KVOAggIUnzqlOv/0qWihiQkMVSogOBh2Fy5gxpw5MPzmGxgeOwb7nj2JWC9YAMf33gPeegtegsChro6KsAUHE+HIysKj11/n7zs7s2ktSYKhIUX2r1xpN7fJyclCr169hK5du3K2trZCbm4uK/3hB6pa/eGHZLCWlhLp8vam6K2xMUW+Nm7ssEhiY4sqAEBtba2AzghLXBwZq56e7Z7SEYsx9v594M8/OejpdWgs9ujRA1+S/JZSCgBkmJjAa9EiRHh4MJSVNasZoqMBb+/myGpdHTlobt4Etm5F7Lx5MLOzEzw5rvVYy8po3hpzkAFQNE0d4dLXp88eOxZ3DhxAeXk5W7BgQcf7a/Vqkv0ePw6MGEFy4XnzSCExbBjg4ACpVIqioiKV+vuooauri+nTp2PDhg1Yv369ijEGDw8PUXh4OLB/P0qkUvwyfz4GXryIhMxMGF+/jp4eHmgXVwsIoPtvyhSSiA8Y0C7iLRaLoa2tzT958oRr6gv+7rukPujShUhQeTn9BWhfd+tGKQ9SKRHfp0+J3K1fT0TJ2prk/tOmoWHpUvSXSJh41ChyRDk70zyqVJTmUFtLFfMNDckJOGEC4OmJvGHDBP7aNcZxHHv77beRnZ0tnD9/ntnZ2bWKmOvq6kJfX194sm4de2xuDtGoUULmkSNMoVBALBZDS0uL19bW5vX09ETGxsbM/8ABlF25gvv+/sjIyADP8+L33nsPDQ0NyM3NZQ8ePEBsbCzv6OjYfhNGR9P41Gs4Zw4gCBCtWYP3oqNRYG+PbufPQ2pt3eGWaMKMGaQCGj4c2LgRgrk5V1ZW1qQ+qq6uRmZmJlJSUvjXXnutw2KSCoUCsbGxiGtM07CyshKmOjsz/YQEsOBgwNwcEokES5YswcqVK3HlyhXBz8+PZWZmwtfXF8nJyQjp3h3ddu/GvJCQZ4+3AwiCAMYYtYrU0aH98c03FOXOyKC13rePpO1//UVzdvEi0Ls3bq5Zw3S8vYUw9Vnxww901nTpQo6jsWMBQUDKhQswP3ECZZaWiIiIgI2zMziOg5mZGRYuXChKTExEzqFDqnobG1Hm0aOqx48fi3ieh6GhocrZ2VkUGhqK6upqWFhYYMuWLfj999/5d955h8h+QAD9/kRGkhNn1Cgag7Y2EdqWTsuLF0nl8pBU4uPGjeN+/fVXfPXVV/jyyy8h/PILOImk88KPLwB1WkOfZxW19fEhVUr//nQWR0bSmZeRQWlvVVXkrDU2bv73zZt0fkkkpJY7f57Oc319+h3evZscGW5uqMzLQ8OVKwhwckIXBwc6hx88IKWDjQ05qGxsyFFmYkJzFRxMDhKlkl47ZgwpPJ5Ti+NFkZGRgdOnT6Nv376d/o7zPI+srCxtQRB2AEBUVFSAjo7OJ/X19Yd4nt8RGRn5TGWfBhr8U2jIvgYaaPCPEBUVpaWlpbVv9OjRui3bdL0oOI6Dg4MDZs+erb9ly5beRUVFMwD81vjZYrFY/OGAAQN0fv75Z76mpobT0dFB165dYWxsDI4xdNm1q1kK3gZmZmZNOXVpaWno2rUrb2dnxxkbGxOB8fIiQpCRQUb+o0dE4s+fpzzLjhAURHLpTz556e+qRlJSEq5evQpDQ0NBJBK9dLTspZGcTH9/+40kzZaW9L2fPCFD8bPPAKkUTp9+KnL67DMiTF27Anl5YLdvw2r9epJIf/ghGbsmJjQPffo0V0NXRxoVCsobDgqCwxdfcBe2bMFff/0FX19fKmJkaUmS7bIyMugePgRkMiTcvg3bixdZn8mTGZYuxfiHD9khPT0oQkLIYFRXdn/1VTIqu3ShqO6aNWT8CgIZ8H5+HZJxAwMDwdnZufO5NjHpvGXjhQsk3f3gg05zfTtCOcfh6uTJWNqlC40zNJSK06WmkgFbXEwRp1u3KDK/fDlgYAD+5k2oVKr2jomVK2mPtkSfPkTa1YZ8eDgeJSTg2ubN6NFYybpDDBlCZE4NOzsiPRs2gP/oI5RHRCAzO1sYNXZsh0asmZkZJkyYAIVCIXr69CkuX76MR48eCZO3b2clYjHGA4L499/ZazyPyo0bhdInT1hsbCzu3r0rNDQ0YOLEiaR0cHAgdclbb5EjY84cwMKi6ToJCQmora3lFDU1VHTv++/JMXL2LO2HqVOJJNTX03waG7d2GLz2Gv0VBMq/rq+naGNBAeDggAoPD9Q+fozrly7x/sXF5LR68IAk2m++SXtZW5uI4dSpEAQBycnJQkpKCuM4DrW1tdi0aRMkEgkmTZoEJyendnvM38GBOa1ZA4Pff4fRoEEcDUdATU0NKioquMrKSq6iogIlJSWqTKmU4eFDTvDz4728vLjw8PCmlJNu3brBxcUFGzZs4CorK5vX9sYNWrsFC6hjhokJRYQ9PQFra3DDhyP9009V5UlJIr3QUEjLyui+6+y8trUloqlQAIcPo+y776BTUMAAoKioCBs3bgQASKVSbvfu3cL06dOZvr5+09vPnz/Px8XFcQAVMnvllVdw/PhxrFapELZxI/ru2oWijz8GMzPD3bt3eQCcj48Pq29UHty+fRsQBLgdOgS06WP+IlCpVPi6UfIeFhZGD8rl9H1GjaI2oDU1NG/ffUcOIQDw8UFZWRmqqqrg7e1N69i/P52P6qJwBw6ges8e5CxahKMjR0I1Zw7mvPsuzF1daY+0SKsIDAhA4ObNovy1a1GRlyfq378/Gp1Bre6prKwsSKVSPHn0iMPdu3Q+GBtTAc6iIjobQkPpvPbxaV+PQiSiFJjGM9jS0hKTJk3C3r178dVXXwEjRmC8jw/cX3omm6FUKiGVSpGfn8+jgxadTZBI6BwrL6fzWBCI+HfpQuOvrCRns44OEXA7Ozq79PWp9kBoKOX6a2lRtH71akBPD7wgYM2yZYCLCz755BOIXkSREB5OKQXXr9O5cfQoqX10dUlR1KMHqSZe4kxvi5MnTwoBAQFsyJAhnf62cBwHV1dXxcOHD1dHRUUd0dLS+iUgIMDi9u3bQ+RyeXhUVNQ7kZGRyr89CA00eA40ZF8DDTT4R+A4bpa1tbWJu/s/MSXoB3Hw4MH6Bw4c+ASNZB+As46ODnieR01NDQcAixcvbs4vvHSJosydSbNBuYlTp05FbW0tYmNjWUJCQlPPe+jpUYT4+nUi+8bGVKX5WfLWL7+k/PF/gKtXr6rKyspEffr0QWZmJg4fPizU1tayyZMnN+Vw/6tQF+pSV5COjKToaGPvZfTq1dzWLSeH5PJbtxK5rKkhuf/ly6SEsLMjEmFg0PoaPE/vjYkhQ8rKCubl5Xi7uBhFP/0kxHTrxlxTU2Hi7Y3u9fUUxf32WyLBFhYoMjDg+3XtyplIpUBgIPQHDIBZSQlOWFnhvS+/bH09dWqFIBD5bWigiGZGBn2HmTNpbRv3iUwmQ3V1NSsrK+t8joqLaW7aYvlyInxJSZ1XOe8ElpaWEIlEAmbMYBg8mGTmH31Ec3XwIBFKCwv6/xbVokUikZrsN6O8nAhcW9l8fDxJ2IuKmh4ys7PDqykp0EtLw+auXfnevXtzffv2bX6PXE5j+emnVh/F8zzuhYYipqBAcPz9dzZSpYKrmiy1QUvFBAB4JSUh5/x5rB48WHDPyIBDYiIz1NMjB09oKNteWorrFy7Ay8sLKSkpLDExEaPU/dpFIioYuGoVsG0bMHQoqszMsGnfPj702DFugZ0djNzcSIUwbx6tyZo19N6PPiKCNW4cOYX27CHlw+nTbQfcvIdMTam4GYCc8HBkZ2fDt3t3hrlz23/R//yHnDFGRkBVFa6mpeHMmTNsxIgRcHFxwb179zgXFxcYGRl1auyHKZXY/MorUKSlYf6gQU3zJ5VKIZVKYatWJQAihIZS5HHKlA4JlampKaysrBrWrl0rnjZ1KuyNjUmmrW6xqU6H+P13mqvGKL7/t9+KoqKiUOjvj0kyGXQCAkhRsmwZOfIYo/n9809ag8BAus+0tMAYg0gkwo4dO/isrCzOzMxMePPNN5mOjg5WrFjBVq1aBQAYMmQI4uLiIJfLOU9PT9TW1mLChAnQ0tKCl5cXy8nJwR+CgMqbN8F//TUeuLhAoafHBQcHY8CAAeA4Tq2OAV9cDO7RIyKGL4ldu3YJANjwV16B1+XL1MlixAhy2M2aRST//ffJMdiG6FVUVAAAQkND6YEBA1orhv7zH3B79yLf0xPD7ewE+7FjmampKTmqPDxoPgMCmnu8Z2fDxssLNm2dFgoF1d1IT0daaio/8tw5zrqoCLylJbjqakrVWbOGfo9yc8m5dfw4OSpaIiuLnGWffdbq4R49ejTtq9Cvv0bCw4dw37nzpecSAPLz83Hw4EHIZDKMGTPm+Rr4uDjaP++/T+dbZOTfum5LnGgsADh+/Pjnpx40NNCZMmoUzWH37hTRf+MNOmPEYvqNP36cHPunTtE50jIt4gWhVCpZZmam8CyyDwAjR47UPXnyZERNTc1oHx8fg969e6Nfv356u3btmvDkyRMVgNnq10ZFRYkAuAOoBJCvifxr8E+hIfsaaKDBP4K2tva0gIAA/ee/8vloLLjTLSoqyiUyMvI+AK3a2lrdzZs3w8zMDGFhYbxIJCJjQ6GgaMbatc8k+wBVxhUEAQ0NDezYsWPw8PBojqwMGED5w4sXk8HW2I+5HRQKihLu3//i7ac6wTvvvCM6e/Ysbt26xW7dugWJRCKYm5sLu3bt4mbPnt2ujc+/hkGD6L+rVykaLpWS4dPQQITBx4fyLMPCgMeP6TUBASR/Dgqi+cnOpqjg7dv0WV98QUT0m2+IjFpaNkuJLS1hZmQEs4gI1mPIEBz86Sd0DQxE94AAMqCHDAFefx0KhQKpK1dyoXPnIj49HTAwwNWrV1VVVVUisZERcsrKYN/WuQCQPPPRI6o/sH075bjn5ZHhFhdHaQyCAH19fbi5ueH+/fuqgQMHdiy3rKmhSFNLPH5MFd8nT35pog9QKsmJEye4xJMnEXj+PEWpXFxo/saNQ2V4OO4VFqKvvn4rnXwj2W/9Yf/5DxmwjVHVJowYQeNsAV1dXZju3o2zR47wuikpXHRhodC3b99mYzQ+ntQKLfK+8/PzsWfPHl6pVHJSS0v02bcPhvHxjLt1ixxqn3/+zPZVpjU1MHF1ZbZiMZKGDBEO2dqi17VreP3114H16zH5P/9BXWAgpFIpq6mp4cvLyxlaKhcYA8zN8fTBA9S9/TbMkpPhvH+/4LdoETixmJ5PT2990bOW//4AACAASURBVMpKUpvs3NmcIuHt/cKFM3meR3Z2NgBg0KBB7Y31hARqmdalC62Ztzd0Gyuaq+XMAerCh53h0CFg1y4U9+6NhvLyJnl5pzA2pvFXVDQ76drg7bffFl+8eBGi8HDUentD9+jR9i8yM+vw/bk6OliuowO9GTOEt8+eZUaJieT44bhmcnbxIs1po+OxS5cuDXl5eWKO47gPPvgAxsbGDKD5q6urA0DtI8+dOwddXV1hwoQJrKUjSA17e3t8vHQpGhoaoL18Obg7dyDas6fD9qdcZGSzE+JF0ej8GykSsdLdu9Gja1c6H/r3J0VNyw4Is2dTekebloD/H3vfHRbVuX293nOGmaGKSq/SBBGkCKig2BUVW2I0GjWWWFM1uTGdjElMjMnNNSZqokk0GhNbjF3sCliQKggKAqKCdOllyjnfH5uhDqjJbb/vsp7HR4WZ095y9tp77b1/+eUX2NjYgKutJZL6xRetriF1+nQcNTTE00OHwvXdd1mTHFxL5nNzKY2kpoYcCRs3Uu2EM2fIadSnD6WFKJXkcLKxgfvw4dxJUcS0t99GNzu79vcVEUFjMm9e+9/98AM5WdtAqVTCzMwMycnJuOvoiH6PKGjYGa5evaopLy/ntc9n5cqVuotyArTvh4c3pxqMHk1789y5j32+O3fuYNeuXeKQIUPYhQsXWu2F586dEz09PTufFP37kwLsnXfICTpqFL2/TUxoPU6fTs6UoCDaOy9epGe4bh3NkQ4cnLpgZ2enyc3N5YuLiyndrAMYGhrimWeeaTXRZTIZZs2aZfDll1/OUSgUioiIiHuNP9/J8/wktVrNMcZSFQrFAlBB4xxQceNgADUREREJj32hXfifRhfZ70IXuvBXUalqS5L+JDiOQ58+fbikpKRpAD4BMIQxxg8bNkwMDg5maCkfrK8nAtKiRV1nOHr0qCYlJYWbOnUq69cyymJrS17+8eObc591obyc5Lz/hH69UqkU4eHh8PDwQFpaGuzs7DhXV1ds2LCh86JZ/yz4+lIU/OLF5tzF4GCSNZaWUuTTyYn+/+uvdM+2tsD16/SMtOkPffqQISeXEyE8c4aM3pYy+uBgAIAMQK2fn6bUwIBH795EnhoNxsrKSvA8j8LCQpw5cwZmZmZC//792aBBg3Ds2DHs3bsXixcvbl9BPz29KU8VHh5UiHDlShqnQ4dIjj1sGNiFC6ipqdFYWFh0XB9h1KgmcgOASLWdHR3jMSpVN6GigpQiI0eCGzUKc9zdsaumRhxw5Ahjzz5LkaSPPwb8/JBw8KAY9fAhO3nyJIKCgtTjxo2TALQO2pH9oUN196tmjAoVLl9OzpdG9DQzw8wXXuDqXF1x1cGBHTx4EKamphSxHDQIiI9HZWUlysvLUVhYiMjISAQFBbFRo0aB09YKCA+n+9m7l4zgDz+k77YkYD/+SF0rdu8GE0VYuLhgwqZNrO/zz0NPGzVtaICetzf0Gsd76NCh3Pbvv4e6pgaS2FhyZFy7Bhw9inSex9WQEEw0MxOn3LvHY/nyjnvPb99OjqqW6Rd9+lCEbuNGeiadQCsb79atm8bAwKD9IC9dSvnZERG0Fv7xD4iMweX8+XattnTi4UOSDL//PubZ2mLr1q3QtKgqrxM8TxH12lrdZF+jAV57DSOmTMGeBQuEUlNTtkQQWLvK+nI5nbsFQkJCEBMTA0dHR7i4uIjfAGzu7Nlw+OknUu9kZxNh3r+fFDqN4+zl5cUnJSUJCxcu5FqmhWij4IMHD8bI5rnXKRFr2t9WrwaOHiUJ/YoVravFl5XR+des6exQhLo6clT27UtS+549Ybp1K44NHIh6Pz/4LFqk+3vZ2URIV69u+lF1dTUAUiggNZWuQRRbzffIqCgMu3QJriNHEpG9eLG1E2HrVspF1zpVtW1Hk5KaU58GDaJUCcaQmJiIQ4cOARYWsNRF9HfuJFK6a1d7uXlNDfDii7hVUIB7p09DFEX06NEDMTExmoqKCp7jOIwYMQJ+S5fC4E+k2GkxePBgvqamBjk5OdAWomyHrCxKI9m3jwpkCgKp4IyNaY94ArJfW1sLlUrFzp49C4AK7j711FOwtLSESqXqeH49eEDpAN99R/PhlVdIaSGR0Lvm738nx/W0ac3vKGtrSuVQqchBvGsXzamaGlr7jyjm17t3b/7mzZtITEzEGF378yMgl8sRGBgoxsfHX1QoFJ8D+EkqlVYOGDBAPmTIEC4qKso3Njb2MsdxQk1NjT5jTGNsbKyqrq5mCoXCLSIi4kFHx1YoFJYARgGI7Wr797+NLrLfhS504S+hvr7+t9jY2JB+/fp14Op/MgwYMECWmpr67qefftpXT09vQlhYGPz9/Vu/4GtrqYjPuXOPfdzS0lL4+vq2JvqCQJGs9eup33xHUaTUVJJ5Hz78Z26pQ7i6ujbJ9jdt2iS4u7ujZ8+e/5xSwaJIOZJRUc2F0K5dI4Nn7FiKVvftSyQ+L4/kvwsXUuTZxYVIh75+U29mAB23Llq4kIylV17p1DgaMmQIv3//fkRHRyPY3BzcuHFAQgKuXLkCGxsbjbGxMS+VSrFs2bKmg0ycOBE7d+4UtmzZwk2aNKmpVRQAUmO0hKkpkZbUVCJqW7aQ8sPRESOfeYYr9vIiYqwDNd9/D83ChTBxdiZCtXkz5Xk+iujX1dFzGj0aWLsWYkYGxDffRMGVK1DNmIHibt1Qk5nJMmbMgPvkyfSs//Y34PXXERgfz27NmwelhYUYGxsryc/PF4KCghjP80ytVjdb1bNnUxG7xirm7eDo2I7YaSG/fh2SuDiUbtuGJEdHxMTEiH/bvJnxe/bgm7NnRa3x3L9/f3H06NGsXdS5WzeKgk6ZQoXbHByIoBkb0xyztyeHW309FbDLzgYA9Gr5fCZOpAhqQgIQG4tEa2vhja++4iR2duRs0ubV792LmjNnUB4dDac9exjee4+cSWFhzQX4tPjoI3rmLdsSavHgASlNFi3qNB9X61DRaDS6F35SUuv/T5oE98xM2EZG4sqbbyK0TRpEO3z6KRGNNWtwpFGRUV5eDrOOakO0PO+9e+S4aonbt+k53LkD9OiBKW+/zX311Vfib7/9BktLS3h6esJaW3wvO5sISyMuXrzYVCxvzpw54Hmey87OFn7avp0b5uWFoX5+5GR49ln6QmoqPffnnsNIIyM2MjubobYWOHoUaldX7EhOxt28PIDjHq1u0AXGmknwc8/R3qodx7Q0IogdKBtQV0dpCmVlNAeTk2lNnT0L2NuDB8BGjxaSbtzgfAICdB9Dq0pqgZSUFFEqlaKXUsnQpw91LWmB6upqVFdXw6KhgfbW1atpL/XwoNSm/Hx6l8TG0l554wYVzmvTIaQlTp48KQJgz2qfe0ukp1O61fDhzW0pW2LtWuTs3y/+Nn06s7e319BX0pmXlxcLCAiAidYx3bMnXVcn19EZ9uzZIz58+JDZ29uL+vr6MDAwaL1eqqrI6WZsTOtNu2dWVdH7YPFi3cVuO4CnpycsLCw0RUVF/JIlS2DVol1jp87w8HByjGzaRCqg6OhW9T9gZkbv8YKCpm4XTdDTa37XHT9OqR+urjSWc+Z0uL/W1tZCKpUiuNGp/WcwevRomaOjY6+oqKgvCwsLRyuVynvFxcX1jDGD0NBQSWhoqAQA1Go1VCqVRF9fX3bq1CllXFzcGYVC8UxERMSNtsdUKBRyPT29WBsbm575+fnc6tWrn/rggw9OtD97u+8ZAZgIYHdERITwONevUCgYgDAA1yIiIkqe7O678O9AF9nvQhe68JcgiuLO4uLiz/Py8oz+GfJzS0tLLFq0SD87O3umvb09bNq+lAEyZEeNak8AOoGjoyOflZXVXPSsrIwKVO3ZQ1HTzEzKi2zZt1qLHTvIoGybL/lPQEVFBS5evCiWlZVxAJCbm9vUNuqRaGgg6bqlJeV/HjlC+cyDBhGRf/556nVsa0sSfQ8PilDevt0sS//jD5LfZ2WRbNnEhKLzjyOfraujaO/f/tbsINABpVKJ8vJyuLu7Y+bMmdizZw/O1dbiaT09sfjkSZaYmIiJEyfyVlZWUCqVraKmHMdh9uzZ3FdffSX8+uuvHADMnTsXTr160fglJLQuWCWV0r1Onw5ERED12WfIy89HqocHM3FwEBEVxfDzzxT5bSSC+fn5qEtNRdSBAzA9cEDsBzCLixdhpCt1QKmkPt3ffUd/nz9PRrmXF85GRWmiyst5fvFiSHfuFKRSqdC9upqbmprK9fzmG2o9xnGAmxuUEgnO+vtDrKzE5ClT2PZjx3D//n3u4cOHMDY2bs4Bb2ig8fL27ngcvviCpMI6wAwMEOLtjYH79uHBnj346dIldtXBAQ9yciCXy9msWbNgZWUFuVze+YCbmdFc2buXSIOrK0Vm09OJdH/+ORnZjbJ4AGTs5+cTMZ82jYjdwYO4O348ru3ejVBtzn4L0uXl5YXo6Gjcr6iA/fr1lFazdi2RUG1V9lu3aN0uXqw7vcLFhZwqjRLzjmBoaKgt4MldunSptcH+zDOUatKmEKfMxQUbFiyAoUSC0DlzyEmooxo9qqqIWDQWDy0oKMCAAQMeTfQBIiy7d7f+WVoaEcjz55ucjlIAc+fOZX/88Qeys7Px8OFDzbRp02gRzprVquXZ3cbUBkdHxyZn2ezZs7l7zz6LhNpaAbt3c/j+e1JDxMVRisz69URiMzPJwcpxwK5duFNRIdo7O2PGlStM9vrr4NesIUfPunU0RwIDyWmop9d5+gtjlGuurTvxzTdEqr7+mhyHWogiKY4iI0nN8fbb5MScMoXGqc1epVKpkJWVxXVaOT4oiOZkfj4EKytcunQJ0dHRjDEm4uWXaUz37Gn1FbVaDQDQ37OnmUTOmUNOpcmTiVyGh1NEW6lsLvwXGkrPtQ2hT0hIgEqlYqampqK7u3vrmygvpzop167prKKvVCpxrLxcKBg6lJs/fz4cHBw69kreuvWXFGnDhw9n+/fvh4uLC4YOHdr6On/8kcbjwQNSgWnx4oukLvnyS3Ka7tnTXCj2MbBs2TL+888/F+7fv8+1JPs6cfkyzbOzZ5vrchQU0Du75Ttp5EhynKxY0X59tcS4ceToys+nOZeSQs5xF5d2Dtfa2loolUrExcU1F4N8QjDG4O7uDkdHR/0zZ86MLy0tVQ4YMKBdbotEImlSBY0aNUravXt3j1OnTsV9+umnFYIgGEokkgJBEEwYY98xxsrs7e3NZ8+erZ+cnIwTJ0588MknnwyRSCTPiqJ4uaGh4TyAuIiIiCaPpkKh6CmVSg+r1eqBgiAYA/j+MW+hO4BjjDGlQqEYGBERkfikz0ChUEgA+ADIioiIKO/kc4YAlF0FDZ8MXWS/C13owl9CRESE+qOPPvry8uXLH0ybNk1H0+0nh7m5ecf5b1VVZEB/++0THbOhoUGQy+XNoYV+/Yikvvoq/X/kSCLMbcl+YSEZK/8CFBUV4bvvvoO5ubk4Y8YMdvz4cezevbtJsmhsbEwyapWKSNSxYxRlnTOHDOB336VUhpdeoghinz4kVzx+nPIlpVIyhjtCVhbd77BhZAQlJZGhWlNDDpBHEZMNG+i6nJ07jaD++OOPmsLCQn7IkCEYMWIEVq1ahfr6elzy9xdrjx4VXQYMgL29PdfYikwsLS1l1i3ag3Ech9dff50DgLVr14o3b95kDra24L/8UndRJcaARYtQOmwYBF9fpIwcKRSOGiWGzZvHIzGRDGmOI0fF8uU4ffq0aNyvHyvr0QM+Z8+yXBsb7Pj73yHXaND73j3hhosLN333brGHqyurXLcORocPI6p/f/HptWtZU77xV18h7ZtvOF9fX0ym1AgOAIfjx8nQ7dGjleEpvvEG+sybhyF2dujx6qt47cgR8FIpvvzyS9TU1KCkpIRXKpWQbttGpLqx9ZVOrFtHKobbt3X+mnXvDsmDB7DneQz76SfccnfH/YwM9OvXT1sn4/Ggp0ckMiCA5t7gwWTAe3mRFH/BApqPH39MzpbcXHJEeHiQFH/BAojz54N9+y2r1SFlLyoqwpnGLhjm5uY0jgsWkJogIYEcCy4uRF6uXtWZ690EjYYiw5cuUdpKB4iJiREBMP22kbupU3U6E+/evYs6AwPY9+pFzzsykj7bcv5XVND6OXIEMDbGsWPHAFCx0MfC+PFN9SYQF0f71LFjlEbTxvlpbW2NZcuW4eDBg0hPT+ePHz+uGTduHI+VK4GzZ1HN81i/fj3UajX8/PzESZMmNZE1nuchZmSITtbWHIYMobHbv59ULW++SbUDfv+dVBmNjpCin37C7i1b2PLly2GgvefkZCKlgkCy9rw8Iss//UQKi927yfHyzTfkLBo8mNatnh6R0EGDiNguWkROODs7crQcOkRz59lnifAuW0bPYvBg2q86AMdxCAwM1CQmJvI9e/bUrTxgDJr0dBSWl2O7RiPq6+tDT0+PKevr2f5FizRPT57cjjzX1dUBAPSqquj6lywhJ0ffvrT/HjpE+4pSSaTw5k26l6lT6fk1NEDN8/jhhx809fX1XHl5OfPx8RFsbGzaO9rCw2nOZ2W16i4hCAISEhJQ+umngi3Ps36ffQYHB4fOZhPtDTNndp6m1gm0jtfLly+zpsKF2jSwadMoVaFt1D44uJl4z5zZ7Kh7AgQGBnJHjx6Fh4dHxzUCAHIG2tjQ3AForaxaRW39WoLjqLju6tXN6WodgTFylu3fT6qFVato7l65QnPZyQn5+fm4dOkSpFKpGBoa+pe76sjlckyYMEEGynrrFIwxBAQEMF9fX3l5eblcKpWivLzctb6+Hnv37n0dwCVbW1s5YwylpaXqhoaGAHNzc//w8HBZdna2Q2lp6dRbt25BoVAMioiIuK5QKHie528rlUrTgQMHIjExcRIayf7q1asHS6XSdxsaGt5oqyJYvXr1OJlMtkmpVIqDBg2SXrt2LRKAhY5L7hAKhcJLKpUeZ4xZADioUCiWAKiKiIhQt/mcL2MsTiKRZH322WcPNRpNX47jqjUazZL33nvv0JOc838NXWS/C13owl+GIAg/3bp1S6FSqZrzdP9V2L4dKC5u14+7M4iiiNu3b8Pd3Z1ysK2sKBrQUomgzYu8c6fZKBJFItBbtnQo//4rqKurg0wmE5YuXMihsBAvm5jgiCgKD+bP50yKi0Xj339nCAujSKqPD/WYV6up4rylJRnAo0a1P7CHx+NdwMGDREy0kTFfXzJufviBJI0zZ+o2qgWBHAyLFlEE7hG5y9XV1Rg2bBiio6NRX1+PYcOGwcDAACP69uUwezZFfxqPIZfLhZKSEt66g17gAQEBiI6Oxp1Dh7Bg/nzIOpGGnoqPF7glS7jppqYcTE3J2AsMJKOtpoby54OCMNvTk935+GOxX0IC+2XuXCw+c0YMdHNjKeXlYuA333DDbt9GgZUV9qakoGz3bjh+8QXu3bvH9p86BRMTE/j6+sLY2Bhubm5ISUkRBUFg3NWrzUUfdRTHkgUFocHcHA+GDEGPuXPRLT0dGDAAAQEBolwuZ9HR0Uj99VeN/5df8o+U3y5b1i5q2A6GhsDhwwjZtw+OL72EYxYWwvXr17m8vDy89NJLnX+3JbR1HgoKiOh+9RVVOZ8xg6J8O3aQguGHH+icP/zQqip8WloaqqurMarNvC0tLcWWLVtgaWmpmTp1KtdKaaCtp7B+PakAGttxdQqeJ6L8iM4ZAQEB7O7duzhy5AiuXr2q8fb25kMkEponbm6tPltXV4ft27cDAJ557jnKQy4tpSj2zz83E5ojRyia25iDnZGRIZiZmXGP7VjR0yPyfPAgRZAHDaKIdyf3PHr0aDDGEBsby/fu3RtOGg3OXryImMbibU899RS8vb2bnqlw6hRyjxzB0VGj2GJtX3SJhBwNffvSeM2ZQ9Hzl14CRo1CfX09Dhw4oPHx8UH37t2byXBISHMXgF9+ab6oV1+lvcLUlEhxbS0pFGQyWoP799N+/tprNE7DhxMB03YCqKuj+bVr1+PvaSAnxvjx4/nevXtj9+7d6NWrFyxbRGTv3r2LixcvipqqKiY8fIjg+fMRGhrKNDU1YJaW2DxvHr82K0ucPn06c2qhGspNS0OvrCzIduwAXFxQ4+EB2QcfoObKFfDffguD5cvBGRjQPnP4cNP4Y8UK+tveHlEDBwoFXl48DbMewsLCuHbS9ORk+k5wcNO60eLixYu4cOECJmVnc/0WLQL/iOK0ACiPfvDgP0X2S0pKkNSYzuLj40PKOFGkcY6NJWecLtWAlVVzoTtHR0pL+fFH+vxjQBAEDB06FLdu3RLOnDkjTtbhfMHPP1N9hAMHWqs7fH0pbU2XjTBgAF3bd9+1TlHrDBIJ7TkREdTJ4Y03gJUrcRMQAHDPPfdc+5oZ/yZIJJImtZA2bWPatGkG6enpQ7Tpj7dv364B8El9ff0HDg4OMgcHBwkASVxcnHjy5Mnza9as+Q3AVY1GY6o9jlqtHqVQKKQAeKlUutnFxaVvZmbmkLVr18YLghClVCrfB2DBGDsybdo0ztnZGbdv30ZcXFzncipQtwGZTHZRFEUnlUr1EoAwU1NTs7Fjx0p37NjxDIBpMplsl0Kh+Egmk20FUN3Q0DAFQIlEIqmQyWSu1dXV2gduxBh75Dn/19FF9rvQhS78ZURERBStXbs2MSMjY2Dfvn3/dSeqraWX9cyZj/xobm4uLly4oBFFEYWFhTzP8+KIESPIkAwMbK8MkMmIPMfENBtFjFE0TVfhpD9z7XFxFC28dAk4dAgmCgWWffQRh/PnKUp09CjCV67k8o2McPHsWTbGygpVMTHILyiAhYUFHGfMoGP9iRZBOuHt3drhARDRWLqUSF1GBqU2vPNO69Z3x4+TU+RRbQoboVarOQ8PD/To0UM8f/484uPjmaGhoWbmzJm8dX5+U1RUrVajpqaG70zqPHLkSBYTE4PAa9egTkuD7MKFVr+vq6vD2bNnNXfv3mXFxcXci6++SmM7fz6R0y1b6IOGhiS7BVDz9NPolZnJACCspkZUOzqKRvb2bNCsWQzLl6M7gO4vvMCM799Hbm6uGBwczIqKivD7778LhYWFLC4uDkqlkgFgHMfhwqlTGN67NxnYLaL55eXl2LNnj+Dt7c38/f1ZmosLRuXl0XwePRro3RsTNm5kAJCTk4PzSUl89bvvinxSkhASEtKxTNfEhCTDr73WuRojPByb334bo4KCsMzbm1vz668oLS1FfHw8vL29H11wLi+PCMiRI/RMJ00iWblGQ3nXMhlF81uiuLhVZD0yMlIMDAxkbYvU7d27V/D09BSnTp2q+z61RPfDD2kcBw5sap/XITw96dnOnYuSwEDk5OSgsrISSUlJGDlyJHx8fODt7Q1LS0s8ePAA+fn57PTp0xiQlASJgUFr4go05by/+uqrzUX2zMwoei2VUiS2vJyi8i3y+Y2MjFhRURHEykpy2HXvThHCmhpSLZw7R86M6GhaV8uXU9G5qCh6fo+RD2xgYICbjd0Kdu7cCc8BA5DX2KVh0aJF7dKhUnbtEvSuXOFmiiKkU6YQqV+zhhx4UikR/cpKIuDnzyPRxASHjh8HAH7WrFmPvB6hMUebk0hI5aDF5s3N/16zhpwBTz1F9xsZSXMpJob2Jo2G1AXffdcc2c/Jod/pSrFpA1dXV0ilUpw7dw5hYWGorKzE4cOHUVJSgj59+ojD336bmQ0bBrZlCwNjkBgZAUePYmrv3tiyZQtLS0ujNq0FBcBXX2FAURHKiouxnzHUDx4Ms9OncaOkBKIowltfH+UvvYSi3r3Fyenp6PPqq6y6uhrp6emor6+Hu7s7DkyZgoIePbhxRkai29y57GhkpPDVV1+xgQMHsuGNTlUhKQkICEDGhAkotbKCl4EB9PX1kZqaCjs7O1y5cgW91WrR59dfGefu/shnAIAI6p+AKIrYtWsXHj58qC3CyLByJc3R33/v+Iu5uRTxLytr/tnVq+Rg74TsC4KAy5cv4+bNm7h//z4YY9DX12eFhYWcqamp2C6F4N49Ur21JPoHDlAaSEf1fAIDSXmkneudVNBvBxMTWg/nzgEqFYaGhHB2ogjNtGntCjn+J+Hu7g53d/cmdYCRkZFEIpFMayq82oiAgABmZ2fX/datW0uys7Nn+/n5wdvbGzzPIzMzU52Xl5cNoMjZ2dnl6aefRlFRkWFBQUHomTNnApRK5SAAI0RRRK9evZCQkKA+efJkg0qlepzCEKONjY29x40bZ3zkyJHtPM8LLi4uop2dHfr37682NzeXXLx4sZeent7WhoaGwb179667c+fOfUEQftZoNFesra2Hl5WVoby8XC0IwswPPvggsuXBFQoF17LegEKhcJRIJPGCIHz0/vvvr/+Lj/f/JLrIfhe60IV/Curr6/+4f/9+QN++ff91+8r69WS47NvX4UdEUcSZM2eEa9eucX369OENDAwQFBSEPioVj9hYMqg7IjWLFlEEXdtXffbspoJjj4QoklEoimQMHTpERvusWSTrXLeOopLLlhHRDA5G+t27Ysbf/ibMe+89HhzXVBnfZuBAPKip0Rw4fJi/c+cOjI2NhYaGBta9e3fRxcUFXl5enJWVVectvB6F27cpYte2nZkWoaFE0rZsoUjG8uWU+vDaa2Tw/PHHY7WjU6vVaGhoYEZGRrC0tGTe3t7QaDQ4dOiQ+OOPP2KwXI5B334LaXY2Nm/erLGxsWHW1tadhkneeOMNfCOXi7kuLuJToshpn4NKpcKRI0eE+/fvc0FBQczPzw8GWpK4YweN6fz5ZOxpnRzl5TAGoHRzw53u3YX8oiLOu6KCie++C/bhh8250v36wc7ODnZ2dgyg2hLLli3jRFHEnTt3miphn3zlFQR/8QVQWopDISGaW+vW8T4+PoKTkxN36NAhURRF7sKFC+LJkydh4eAgdL93j0N1NRnP9+4RzNdL9QAAIABJREFUeR42DP3y80WXn39m35iYMNy5w3McJwwaNKjj53L4MBXC64zs//ILpu3fLypjYhg4Du+cOYPff/9dPHLkCDt+/Dhef/11tJOza5GdTSQrJ4eiuF9/TTLZn34iMqpLYQJQFK1Rvq5tf2nXxnmWlpaGoqIirlMSuXo1GfaLFxNZ/vFHmocdnbcRGnt7JNy4IUTGx3NyuVxoaGjg1Go1Dh48iIMHD+Ktt96ChYUFLCwsYGJiwsXGxkJy4ACt4xZQKpWIiYmBkZERTNu23pw5kxQyvr6Up//xx+T8KCkBXnoJ477+mhVJJBDj48npt2IFRR6trKidmrEx/XvGjGap8dCh5CwaM4Zqakyc+EgysXjxYqxfT7asf0ICnvn++/ZF7pRKqFatwmWZjJMOH44Fo0eTDLu6mpx42lz50aMpyv/yy4h0dkb/8ePx3DvviPYvvsj09PRQXV2NqKgoFBYWIigoCJ6enrh//z4SExORmJgIkVpeCm+88YbuOZubS2Mok1HXAomEHDj+/uTkqK0lgpidTeqqnj3JibJ+PT2XlBT63vr10OzfjxovL0gGDIBB9+6tHGxSqVTMyMhgt27damppOWPGDHh4eNB1ubjQPC4qojabhw7BBsDUsDDEbd6Mi19/Lfa/fZvh/fdRN38+rjXmeg9NSMCg2loEPP88amtr4TB1KjQvvogHc+cy/U2b8BtjYoazM+vevbvA8zzOnz/PCY1r0+/LL5meiQmee+EFLjo6GhcvXqRUA40Gx779VjCePJlVTJ8ulKWksHPnznEajUarmBNVKhUbfewY4wwNSUHzOPD2pmfdWQ2DNlCpVNiyZUtTxwV/W1tyvIwd23F3DC3s7Mjx1XK+vv669sBNzl1BEJCSkoKKigpcu3ZNqK+v54yNjUU3Nzdx4sSJnIGBAdLT09nNmzdF7b4LgNZXSoruvPuqKnIedYaMDCL5ublPRva1MDFBVFSUcH7aNM6mvBzP7t5NdsXXX9Pa/Q9F+TvC1KlTDZOTk4M8dKhjrKysYGVlxQ0dOrSV92zOnDmGubm5hmVlZbY+Pj7gOE77WXTr1s3g559/HsHzfH1oaKhcIpEgKSmpRqVSbQTgq1AoigCIoEJ/2wFUA7ABUAigBoC/paUl5+zsjFdeeaVVfkZ4eLikoKAAKpXKQ6VS9ZdIJNcCAgLMR4wYoX/lypXlxsbGev379+dNTExw6tQpxMfHTwRwVPt9hUIRCCD2s88+++att956WaFQuEgkkotqtbongP9ZBUAX2e9CF7rwxGisvuoAYADHcb56enp2Uqk0tF2V3n8mBIGMaW2rOB1oaGjAtm3bhIcPH7LZs2fDvmXO7YIFZAjs3dvxOYyMyNjduJGK273/fusXtyhSNK60lAzjESMo6nTxIpHJceMoIubvT9cLUITP0pIi+hcvtr7ec+eYxtaW12Uc9OvXjz9//jycnJyE2bNnc0qlErGxsez27dtCXFycKJVK4ePjA2dnZ6bRaJCcnKypqqrC8OHD+ceSC8fEkOHWGYEwMSEj7dYtkuT27k0S0w8/fOy+8xKJBBzHNVfQB8lsp06dKvHz80P02bMaqb09f+Hjj0WJXM4vWbLkkcc0MDDAa9u3s2+nTkVCr15wcXHBlStXhISEBM7AwEBcsGAB165Nn1xOJCEpicb2yBGaD6+9BixeDOnYseg9fjyXX10tfD5gALd08mRYGhlRO8EvviDnQF0dETtjY5IVcxwYY2iS+sbFQTV0qOaKuzvvVlSE1NRU3snJCXl5eSwlJUVjamoqLly4UAKApaWlwcjIiOP+/neqfD5oEM2TGTOADz9EUFgYe+jsDGRlwcrKClVVVVAoFHjhhRegsxBmcnK7H4miiLy8POobznGAuTnS+vSB8dtvw75vX+DSJTw1cSLz9vbGb7/9hs8//xy+vr4CY4zz8/NrXj9RUUTwMzLImVBbS0URtdFtfX1ycOnKSd+0iaqugwhzXV0d7t+/Tyk1AOrr6xEZGSn4+/vDxMREt5W8Zg05plxdaT3OmEEE8NtvSXnTtmp9IyorK/Ft9+4wKy/HwoEDYR0e3nT848ePIzY2Fp999hkWL14MY2NjHD9+XBx34gSrvn4dlRs2tIqG5zYqFqZOnarzXBBFIujbt9PeMGkSKV+CgnBgwgTR3s+P+U2f3vz5lm26dOWUv/QS7SNjxtA+JJc3d8/oAKampvDy8kJqaiqqjYx0q24yMsAdPozx9fVg779P+eQAdVN4442mdpgAgPfeg7B5M2JdXVE+dixMU1PF02vWiMUSCQcANjY2go2NDXfgwAEkJSUhs7ENprm5OcLDw7Fnzx5OoVDAzc1NM2vWLB4aDe2tv/xCedYSCdV2MDGhlIlZsyid6quviIQJAqBWQ8jIQJ6NDQyMjNDz0CHas/LycH7DBsRv2oTB0dFoOHoUSqkUw8rKIHnnHSJfenoIGTVKTNy3j6nc3FBcV4dXXnkF3Vs6QDZupEJs5ubUnz0vD/jhB3gXFcHGwgL33NzYF4MGAbm5MK2oaH7WCgWYpyccW+6D48fDpLoa9Tdvwu/uXTbJ3h4GBgYcACgUiqaP3TpxQvDq149j772HwXPn4qxajXXr1mHRpk0Ir63lpKWl4PT0eIA6RlRWVqJbt26IiooSL54/z3JfeAFm8+Z1OA/aoU2xRi06S7vjOA7FxcVN/zacMYP2qJbKjI6wZg2p41oWTgVIMZaW1vQe/P3333Hjxg3IZDL4+voiMDAQPXr0YC1bggQGBiIwMLD5JaVWk3OqZZtULa5dIwXQo9r8zZ5NDou33qJ6KI9yXuiAra0tJ+jpQfT1heHChcCJE7QPurvTOnqM99i/CwYGBhg0aNATfYcxhl69eums6eLk5AQzM7PKkpKSiOjoaIWrq6uJi4uLvKqq6iUrKytZTk7OCgDGrq6uRhkZGe9rNBpjQ0PD6vr6egnP8/f19fWtAgMDDTs6t6WlJXr06CEtKipKt7a2FmxtbWFgYIDJkyc3bWhqtRppaWm1KpXqokKh4AAYAwgBcAgAGhoaXlQoFO8DCFCr1TZmZmbVJSUlhU/0EP4/QhfZ70IXuvBYUCgUcgDdAIRJpdKPGWM9bWxsVA4ODsaGhoase/fucH6c/ME/fwFkHDbmP5eXlyMyMlKTn5/PAYCJiYlQXFzMm5iYiG+++SbXlEOXkECG348/Pt55pkyhyH5uLkXht22jKPbGjWRsh4RQpeGYGDLGw8Opcq+bG0WhtHbKlCn0dyfFk4qLi0VBEHSy7aFDh8LT0xPm5uYcQMV7QkNDERoaymkjInFxcUJcXBwkEolob2/P9+jRA7/++qvIcRwzMzPTqNVqptFoIJVKRXt7e2ZjY8M5ODhQv/qSEqqS/jhwdydym5NDRnFlZcdtsXRALpcLmZmZnHebivK9evVCrwULeHVYGKx+/pnJn3vu8Wo+KJWQ+vhgQFgYi4yMhCiK6NmzJ2bNmoVevXp1LHdnjKKkWoeMRkPt0bRFGUtKMLiggIvq3x9bjhyBl5eXZsKHH/J6enpUbTo6mqKGzz9Pz2/LForGh4YS2V66FAbffovLxcVi9E8/sf79+yMsLAygDhCtrstTm0s+dy4Zh2fPEpE+cIDI4oED6P7LL+A//hgFBQUoKCjgAODEiRNieHg4s2zbhk+hoLl+8GDTj6KiooRz585xNjY2QkhICKc5d06M6duXveTmRobp888Dy5fDbcUKuLq6ChkZGdz169c5AEhMTIShoSFenDsX+uHhZKD7+JChfO8eFVTTYvVqIo1tI41lZfTcGq9VJpPh2WefxYEDBxAXFydyHCc2NDRwLi4uYlhYmO5xO3WKVAvLl7fOwe3Xj3JoT56kSu7fftuO3F69elXQ09NjC1JSOD47m9ZqIwwNm23Nbdu2QSaTiXp6esgOCtLcrazk0rZuZRzHwdTUVJw9ezbLysqCXC4XnZ2d26/Xp56iyP7p0zQnTp0i5cy5c4C/P0rlcubxpH3O164lx2T//lRw7Kuv6GdffknjoMNJt23bNk1ubi4PALKGhvZFM//xD6h798bOkBCA4/BUy3SoNWvapysFB6Po0CEEx8eL3lu2sNzUVG7E3LnAJ59A7/nnASpCCScnJ+zevRv29vZ49tlnm9Q05ubmUD58COf6eh5z59L4hISQymnwYFo3c+YQ4ff3J0dut26kclAogLg4FPzyC8xjYnBywQJ4fvcd7D76CD2+/x7bk5M1xfr6/NOzZ8N0xQpUVFRg37598JkzByJjMGtoAHf7Nny7deM8MzKQmpoKNWMwTU6myPDJkxTx5nmqJv/GG6TAGjUK+OgjsJkzYdbQADMvL7icOoWf//gD5YKAoLg4ZAwcKFzduJFz2r8fhUuXivb6+gx+fkRmzc0hd3OD++HDtEY8PZFy547IqVRM0NPDc889B1dXV3o5XbkCFhqKV155BUJODuR5eZDNng3WYtx4nm9yTgwdOpSzf+011I0c2WErOJ2YP7+d4icuLk48evQo8/Hx0UyePJlvqxLjeR79/f01Zp98wjsvWgRpdPRjpU4AoNQTXZ1yVq1qpZhxd3fHrVu3MHz4cNHGxoYzMjLqXK32zjtEznU4NgGQE3rgwEdfn5UVqTnUanqnPUE9CC2cnZ1hYWEhqiiNgDXVZdm5k/a9ZcvIIf7RR3+pE8J/K7p164aSkpL7giBsTU9PXzFy5EjZ8OHDZUqlEl988YXdgAEDNCNHjpTGxMRIo6Ki8MYbbxhVVVWhoKDA1cXFBZ3VOGCMYfjw4UZFRUWawYMHS3TNCUEQUFNToyeXy1+uq6vT5lsJDg4O7P79+6Kenp4oCEIiADE4OFi8dOmSHICeQqEwBqCJiIio/Vc8l/9WdJH9LnShC+2gUCi8OY6bKpPJhouiaKNWq60ZYwYSiURtZ2enGjx4sJGTkxMYY09gcfw5iKKI48ePa/rs38/Hjhghir/9JtTW1uLBgwe8vb09Gzt2LBMEAaWlpXxAQAB8fHxak4a4ODK6W7Zy6vhkFGVNTiZjQJsrO2ECGaHZ2c0kV0fRtSdFQUFBp9XQO+pIwHEcfHx84OPjo31jNr0NJ06cyHJycpCXl8dLpVLo6emhsrIS9+7dE2/evKmprq7mberqxBEHDuC2t7cwcsyYRzSSB3UkyMwkh0d6Osl7t2+nFneP6kMPGsO2OdotISkpgdO6dbp7SetCQwPw008IlslQXVsrpqSksIqKCiZ73AiNSkXX7eVFBbC0+ZbR0UjdsAHT1Wocl8nE5ORkfsiQIejZsyd9TtvZ4No1Muhu3qT58vvvJHENC8MUHx8+urQUySqVGBYW9mili58fOYRiYogIubkRaY6KAu7cwaxZs1BSUoJLly4JFRUV3P3791l0dDTs7Ozg5+fXnGcfFkYksBGCICApKYn5+vpCFEXu8q5dmunff89PPX++WYaenEwELCoKM2fO5ACgsLAQmzdvhqurK4z27sXXxcUYf+aM6MHzTBIbC/bZZ+3H/PJl3dLV0lLq7tAC7u7uWLFiBcrLy1lGRga7cOECxo8fz+ucHydO0HGPHqUib21hY0NRS7WaHHTbtrUiNampqWzEiBGMf/11Gt8WebVBQUFNUVOVSgUTExM2wsICkn79eAwd2iQxPn/+vLh+/XrG8zx4nm89nt9+SwR51SpyiDFGqQWRkURmv/wS6gMH0Pf6dWiepBe9KLbvNrBiBe05Fy5QF4x33mlVs+CTTz6BWq3mtd83rKlpr0ravBlcQwPkQUGwe/nl5j7s9LCIdAO4cOGCmJSUJBgYGHCCIGDWjRvM2NAQFiNGkCJGIqHraMzF9/DwQERERPOxNBqgpATjzp4Fd/QohJ9/pjSEiRObHTKiSGqC/Hxq2Xb2bLMDY/VqICsLac88g25XrqDCxASjFi1Cz23bsFUiwZjXX0eoRsM7r10LA1tboHt3mJqaQiKRYOOOHQAAQ0NDUS2ToSEykmHECFhZWYmjPT0Z0zoq09JoL0tNpXfEvHnULeDWLVrr587R3C0ogMlnn2G2vT02duuGofHxGLdhA5e7ezeU+vo4y5j4fG4ug5UVfVejoUhxRgYVIAwKgu2PP7IXMzNxfMoU0fbZZxl8felZhIQARkbo3q8fOcVOniQHSCfzQi2T4bJUiieqjOPsTMduLCCZmZmJCxcuMDc3N6Snp3OiKMLFxQWenp7N+3RdHexsbBjq61EDPD7RF0VywumqdO/kRNL7CxeA+fPh7e2NqqoqxMTECEqlkjM1NRWXLFnCtSN3gkCkfOVKUvXoQkEBpRTpaoOpC0FBtD5WrSJn/p9IiauoqGDt3tHade7pSaqmmzdpva5aRe+b/08glUr1JBLJ12q12vrWrVv1I0eOlDf+HG+//TbPGOMBoKysrGlOGRsbU4ehx4C7uztzd3fv0GiQSqWYP3++XlVV1cC8vDxERUXB399fOXHiRDkAiKLI9uzZY3nz5k39rKwsjSAIGp7n/TmO+06tVhsrFAqPiIgI3e1r/j9EF9nvQhe60ASFQqEnk8l2yuXyiT4+PhIHBwc9ExMTmJiYwNjYGI0b+JNr3v4CsrKyoNyxg6t96y24eHiwgoIC3sLCAmPHjoWtrW3H7uFr1ygK9ttvlOf7KOTnk4G9eTNVf963j6Lz3bqRlLtR0vgkEe1Hobq6mulsC/UXwHEcXFxc4NK+eBkDwKvVatw8epSlFxQg/to1fuiIEZ0ScaxZQ8bw0ca0OEdHIjRz51L0ZuXKdu3A2qKuro7rVPXRrx8Za4+L554jwh8ZiTFjxrBRo0Zh//794tatW9mYMWN0t9rSorqaDO0NG8jYDg8HnJ0ROXkykpKTxfG7dzOn1FTY/vSTOHfuXNajo4hsjx7kDFIqyUnxxx9ATAzY3bvw/PVXWKhUdI1mZuQsMjPTbVAyRkQjNpauJyqKSIYoAlVVcDY1hXNQEAICArjGCD8OHz6M1NRUnDhxAqtWrYJcLqd83EuXAJDE8R//+AdUKhXGjh1Lv58wgcesWejbsjq9gQE5csLDKb3ByQmWlpaQSqWiV58+zCkmBpXGxvj96FH2zO7dsLCzg2z//vYG244dFNVuJFpNyMpqXaSrETKZDJaWlrC0tERiYqLmypUrbOzYsa3XcmUlKWi++46edUeQSqkd5aBBpND49FNgzBiUlJSgrq6O+fr60jP+5hvK926Umsvlcgxv22nigw9IvXH2bCuHWlpaGsrLy3Hq1Cls27YNs8aNg9TIiOTo77/fWoYvk9G49+gBKBSQZGXBa+tWVH3wAfYVFmoGjx3LP7JvuEpFBfwM2yhdPTzIGaTR0P52/DiwbBn+OHxYVKvVzNraGg8ePABEEbGBgbBFY+j98mVawytWQBwyBLf27oWXqSkqKyuJ8BcUkGKj8T4SExMFV1dXvlu3bugRHAyj8HBqHzl/fnNdghkzqP1iyzoL16/TenjzTcDLCxZLlmCdhQXE1FQEBwdjcEuiP2kS1QXw86OftVwb+voQ33oLmePHI2nIEAyUSDBw2TLR6OZN9sK1a8icNw8OlZUwuHOH0nB8fGC0cCECAwPFy5cvs9deew2HDx8WrKys+JiYGG00vfkE9+4RGd++nRwzVVWkKjA2pv3dxYUcYVqVzJkz4KuqoPnHP3B0wwY84+wMx7ffRtr48ZB88QX3g7e3OHnrVqbn749uxcXkEOnfn5yiAISnn8a3Gzagj4sL9F97jZxTgkAdCiQSKuqo0dD8HDCAovY6nGfqnTtxb84c5JWUdD5/2qKkpMnJUlVVhT179sDPzw9hYWG4f/8+27lzJ1JSUlBcXIyRI0fS/HNxge+6ddzWl14S8vPyONddu4RZs2Y9Ohk9OZnS23SsewBEflukQwQHByM4OJi/cuUKIiMjWXJyMnzbtsr89FPq6pGd3XFNkvnzqfr/qlWP80RIZm9kRHtWdDSlBjwBsrOzoVarYW9vL6BxmbWCoyO17K2oIEXg7dsU9e/fnxyT/yXF/P4sJk+erH/v3j19c3NzGBgYtJJUtXTWZGZmaqysrHhRFP9ajSEd0KZZubu7o3///jAxMWm6DsYYpk2bpl9UVITu3bvzN27cEB88ePCaKIqyhIQEAPAG8D9D9vkPP/zwP30NXehCF/5LcPny5c22trbTFi1aZODu7s6bm5vDxMQEMpnsn75RPw6Kiopw8LffxKl79jC7V16BTf/+6N27N5ycnFpHpXShpIQM4o5ybLUQRYqqrl1LxvWGDeSV15LPr7+m/MM1a8joWLqUIlGurp32ln8cXLp0CZ6enmiXX/4vBMdxsFi6FM5vvYWorCz4+fmhXesnLUpKyOB9553WRpZEQgbLnTsk7y4tpRxqHXMkPj4ed+7cwZAhQzqV7uHsWYpOP44CY8oUMs4bpayMMfTt25dZWlriyJEjcHBwaF9EDSCDa9w4Gr/+/SlC/fTTiLp4UZQePMgGzpvHXObMgdTNDX0HDGD6ndU+SEig6/jwQ5oT3buT08LZGckeHogzMxP87ew4XLlCBHDuXIoiWlkRke3Zs/l5detGBR39/akmQJ8+JCf+8UcikwsXgvE8jI2NYW1tDWtra+jr6yM/Px9qtRqurq6AKEJ0c8MuuVw4ePYsU6lUWLp0KWtaJ1OmkNHZ1umirVNhZESGuo0NpJ9/ziobGjQehw5x4q+/ovvt2zg7YQKu2tvj8uXLaGhogLW1NSQSCURRBHv4sLlye0vcuEFkvIXioC14nufOnz/PQkNDm/eYggJyuH31FUmtHwcWFkQyfvgBePAA2cbGyMzKEocMGUIHdXGhqKkuebEWw4dTakMbmJubw97eHvb29rh++DB8ly6F1M+PjPk27fkwa1ZrstajB1Rjx+JadbUw6qOP+MSrV+E6a1bT76uqqqCnp9d076IoQkhPB7dgQZOTsrCwEDU1NdRrXNs+0tSUIscHD+KPsjKmaTzGokWLYGligpCPP4bk7bfpuBERwDffoH76dNx3dMT169eRnp6OK1euIC4uThR+/51Jk5JgNH06cnJycP36dc7d3R2DBw+GhYUFmFRKqh7teQ0Naf05OtJ+qa9PDq9ff6X9dsKEJmdghVqtKSsr427evAme5+Fob08OgexsIqDTplHbyBZ7g9rWFr8VFQm3HR3Z1GefxaAVKyAvKGCoq4P06adhPWIEDCZPpnaogYG0H02cCGcjIxa8bBkMzczQr18/LiYmRnj48CFzc3Oj1nubNxO5GzWKovDjx5PDbtkychZ5etJ9mJhA89lnqMvLQ7VaDfbmmzhdXy8U19WxwsJCODs7o1u3buippwfvefPwwNMTZteuoTori+23sBDdr15lkqwssMYofVFREW6kpcHDy4s5DRxIygEbG4ouV1QA770HTJ0KMTUVNWlp0Lz2Gkr79EFWSQn0ZDIkJCQIe375hfV7+21cNDdH/4kTmxRhSqUSSqUSjLGmP+2wciU9J0ND5ObmIiUlBS+88AIYY+jWrRuGDBmClJQUobi4mIkbNgiF5uaCzXPPcTHGxmJyY1pPZWUlC+1MdaCFTEbPUldOPUCEfPRoUnU0vj83bdqkzsrKYv7+/vDy8mJN76OqKprjy5ZRzZ2OlFuiSA6TpUsf/53MGL3b3d1p/+3T5/G+14hz586JFRUVmDt3bucOEG2tGHd3ev8cO0bjf+oURfofQxn33wiJRIIePXpALpe3qsfTFoIgcNevX4e1tTUp5P5FkMvl7eY+x3EwNjaGRCKBjY0N17t3b4mNjQ3UajUKCgomX7p0qWLIkCGx/7KL+i9CV2S/C13oAgBAoVD0kkqls5955hn9R7bg+jfhwIEDgjXADI8ff3yjPzmZDO6kJIrcdIaSEmpZZmtLhCcgoPl3Xl6UMxsURIbBunVkVKhU9FlfX/p+aWlzfv4T4NatW9BoNB1K9f9lKCkB7t1DpoEBNBpNx5/buJGiqomJuiXajFF0JC2NnCCVlUTW2/SFPnXqlDhixIj2Eui2GDyYipI9TgujF1+kSG0beHh4ICgoSLN9+3Z+8eLFsG55LTk5FIlcv74VQTsQGSncMjfnXhk0CAavvkpR0IwMKoyWlqZbydHQQHnoQ4fqNC45joNGT4+IzLRp9MN+/Ujqf+4cKUVmzKBo+ODBRIzMzMjptGtXc2/4t96iqPvZs0RUG41gd3d3uLm5oaSkBImJicjJycHTTz+N3Z9+iqqGBm7cuHFwdnZGqxaGgqCzVZ0gCCitrUXae+8h9OBBsPx89MzMhP3YsTwEAb5+fiiVyTD29ddx9+5dnDt3DlevXsWVK1eajuHj7Y37VVWo/uwzeHl5CeHaQnhHjhAh6wCJiYmIjIzE2LFjBcZY8yRbtIii2BYWHX5XJ9zcaJ1+8AGcT54E5+/f/LuePYlgzZ5NEba2WL+eVECXL+s+dkUFXFavRoOlJX6bOhULG6O27eDkRIqiFnJjAxMTZHMct/355xGUmgrxiy/AQkNxqLhYnZiYKOndu7c4YcIEZmxsjP379wv50dHc0uHDwVQqXL16FWfOnAEA9O3bV5g0aRInlUopfWDjRpSlpGDhyJFI8vFB323bYGZmBjMfH5orGg3NeX19lCYm4qcDB1DT2H3D0dFRDAkJYXfu3GGa+nrNaY2GF3fsQF5enqhSqVr1l4e1Ne1xt28TwRdFKtL47bckVc7MpCKWVlbt9orx48fz48ePR0JCAs6ePSsM/uwzjtnYkFQ/JIScb22URfnFxfCJjuZGFxaiftgwclJFRBBhmjaNzjFkCM2vwYOBkSOBlBSwrVsh/fBDGucJE8DzvOhqbS16f/MNw7Jl9D0HB5oL69dDEATcSk9HQ0MD3KZPx8PgYOQsXAi1Wo2EkBBUV1fDIipKDCosRE5+Plu6cyfumJpC+fTTQHExuLIywN0d4ePGMeHtt5F04gQK7t5lP8pk8FYqoR+AO4msAAAgAElEQVQTA4HjcPLkSQBopSQRRRE1MTHgw8MRu2ULeri4wODePTGjrIxVDhwoFEVGsjmbNrFLwcG4MWwYJoWGAk89hfI//hCjoqKYh4cH4uPjERcXB4DIl0ajgYODg2by5Ml8qyKE0dHITErCkRs3xMrKSgYADx8+bFWo0NbWVrx19Sr6HD7MZY4aJVQ9/TQKTp4UAbApU6Z07BBui+PHm/evjjBxIu2bf/wBpVKJoqIiycqVK9srhg4cICf8zJmd573Pnk0Kj5ZpL4+Dl14iZ8uaNeSQfFQrzxbIzMxkbdtZdgrGyGmxbBmpuA4eJMdjVhalh3XWReX/MEJCQlBaWorTp08Lbm5u//E2BcbGxnBzc8O1a9fkjLEnLKTyfxddkf0udKELAIALFy6Md3Z2Hu/v7/9vlel3hJKSElw9fZrN27GD8XPn6s4B1AUTE5IQPqIlF44doz+mpvQCbltIz8mJnAV9+zaTDsbIE//mm1Sobts2ImzTp1O1+v7920tvO8DJkyc1lpaWXL9+/R7vvv5ZuHgRZx0dxdPp6SwoKEjo06cPaxcNys4mwvvGG03F1TqEuTkZb5mZ5BzgeTLKASQnJyMnJ4dNmzat/TnaQk+PyMLu3a2dLm1RVUWG/6uv6nQKuLi4cHl5eZqysjKut7Y6/LVrdC+rV5PzphFJSUm4dOkSmzd/PnpMmkTEeuJEIguxsTSubSXkp09T5OqDD8i5oQP5+fnIz88XAwMDm40bU1MiSoMGURqCszMRpshIymE9epQcLOHhzc4IxmjuvfEGRYJaqFQYY/Dx8UF8fLz48OFDdu3aNficP49nHB3hNHNmc8tBgBQYI0e2cnLcuHEDu3fvFk6ePMni4uJwx9gYhhUVyPvlF+Hy+PEYeuIEY5cuAevWwaCxdkW3bt3g6+uLoUOHws7ODhUVFaisrERFYSFe/PJLXBgwAPkFBUyrFhH37kVBQACu5+fDQUehyr1796pDQkK4QYMG0UAKAkWKX36Znv2fURPJZMCoUWByOew+/ZTpjx8PScu9Y/NmIgdto1FWVrTmdRGVvDxq9RUTA8eVK3Hh3j0kJSUJHh4erB0JCgwkKXaL5y+VSnHhwgUo5XJYTp+OuGPH4LRlC2Jrajj/wYNxr7RUPHPmDEtKShKLi4uZjUol5GRlcQeyslBUVCQMHDiQjRs3DhcuXEBRURGa1ixjuJqejhP6+vDT0xNd8vIYDAzoXmxtybH36qsQV63CT4mJorGxMQsKCoKpqSmeeeYZZmZmBhcnJ/Ratozr+cUXyCsr0xQWFnLm5uYapVIp7tu3r7mgp4sLzduCAnJm9OxJfxwdyenXu3en49XNyAhJp04x68BAmC5YQPvF3/7WvmI7aJ5JDQxQcfky7ri5ib0GDKADe3nR/p6VRc950SL6QkgI7R8DBlDU+OFD4Nw5uHzxBZelVrNuSUnicY6D4+LFTDZsWOOQ5uHmzZs4fPgwiouL1Xd79RJu9+olFtfUsKqqKmZiYoKJEydi9LRpzOaFFxhnaMhO1tTAdswYeGnTZnr0oHH+4AOwefNgPWIEQkNDgR49YPfpp2J6Vha7UlUFADAyMhKDg4ObHlDsuXP49eRJ3HJ1RS7PI+vOHU2eubk4ISiI8588mQ2YPZtJw8LAevbE2KtXmeX770MWFgb3ceNYbGws4uPjkZ+fDxcXF8yaNQvu7u7o06cPcnNzuZSUFCEgIIAB9B49ZGOjuZSWxhwcHERzc3P4+fmx3i07Z+TlwWnaNC7B3R3chx+K5VIp279/PysqKmIAMGPGjNaOw86wZAk5SDtr8xcaSmoOuRwajQYxMTHw9PRsVutlZ9PceO89KszZ2T5QXU1kfcWKJyf7lpa0344ZQ8S7k04XbZGRkSHyPM98OlEtdQhbW3JgWFiQw+yPP2h91df/U9ME/1tgYGCAuLg4NrixZsR/Enfv3sVvv/1WK4ri6Hfffffn//T1/LvQFdnvQhe6oAV7NCP710OpVOLMmTNCQkIC18/KSpC88ALXTiqrCwUFZKjfvEmkriMIAuX1PXxI8sbOohAKBcl6Y2J0R7e1Ranq65sLOm3bRjmtb77Z6qOVlZXIz8+Hnp4ecnJykJOTw8+ZM+fR9/XPxo4deGhiAp+JE4UxY8a0v6ldu6ha9ZUrj19FWE+PjDcXF5Kqv/wy8MknyMjIgFwuFzmOe7x5lZdHKoElSzo28IyNqbBWJ3BxceGio6OFsLAwThIfT9Xc33qLouuNOHr0qJCcnMxNmDBBtLGxoZNZW1Nk+P33KUI1YQJFYBqdF7h6lQzVQ4c6bT3IGIMoiiIEgeT+9fVEQn/7jaTi27dT+sPJkxRl7tePIrVFRXR+R8dmWSljJI/Oy6NrmTwZtbW1OHPmDOrr61FdXc2WLFmCXbt2CYzjOD1dksqPPqLzb9yInJwc7Nu3T2hoaOCCg4NZQEAA9PT0cP/+fVRdvy64Jydz/tHRVIhPBxHTwtXVldIHtBgzBh8EBWHzli3Cvn372OhRo1heQ4N49vRpppbJEBIS0u4YMpmMlZWVNee8/vADGb4vvPDXelVLJJBMmYLoU6cwQzuGffqQw+XiRVL/tDTSHzyg9Tt/fvtjrVlDDoLbt4ERI2APwM/PT0hMTOSOHDmCWbNmtU5PUamo/kcLBwPHcQgLC8OJEycQFxeHHsOG4e+9e6Pf9esYsnMnhi5fzikXLsT58+eZj48PzPft4xsKChDw/POwtbVt6iwyZcoUtmfPHnz66afQaDQQRRGiKAImJiieOFFEURHDvHlExj/6iMhMZSVKKitRsnEjCwwMbD8ON28CMhlsvb0xw9ubz8zMxL59+/j4+Hh4e3tj/7594mvTpzP2ww+kYsrIoH0uIKB5jbaosN4RuOeeQ3hqKnpev07rKyuL1lEHMJo1C3c2bcKNmzfZUI0GTDuvtW3kZswgh83r/4+97w6L6ty6X+85M5ShShfpRYoIiKJgRVExNjT2aNRYEqMm0SQmMdF48cYkfomaWJJoYoyJvRs7IoqAEaWqCChKFQXpfYaZc35/bIYioJji/b77Yz2PjzIOM+e87ey199p7v0fKGFtbOq9//JGIZnU1ivX1YX/vHio7dWKqO3dw9uhRuPfsqS76Co7jBFtbW2HmzJlkC69YQQ6xMWNaXE9VVRUKzcxw+/FjsZevL8OUKeQI3rKlmSQdANUMWbGCle3ejTsSCTQ1NcX58+c3O9C8/vUviHV18GtUktANHjxIz6/ffgPn7Q1nb286cwoLAUNDmL76Kvr166e6yhivUqkwY8YMAGgg48bGxti6dSv3ww8/iMbGxsKdO3f4pV99xddFRsKge/eWh+rNm4CzM/jXXkPXnj0RfeUKU7fkGzRoEHqoayq0F1euPHs9WFuTos7SEidlMujq6jZXuBUV0Z4Enu3wO3uWvrO9BQSbgjFSZ9nY0LqKi2v3M8/S0lLMzs4W0Vq+fnuhp0fPW5WKlGobN5Lzt6rqqalP/9dgbm4OpVKJvLw8PJca4h/AxYsXK+rq6r4AcPWZb/4vQkdkvwMd6AAAICIioqaysnKRr6+v9KkF2/5B3L17Fz/88AOKioowLziY9Vi7lmHTphYyzxaoqSGPuINDs8htC1y/Trmmb75JhOJZnnwjIyo6VV7+9Eq6Egl9pkxGjoGiIspNHDSIor96eti4cSPS0tKEO3fuCFVVVRg0aBBz/RMtf/4SlEpUp6Tgd21tNnT4cNYirz02lgxotfH8vOjShYjxgwfA+vXoNHAgrt67175cT4CMriVLSCbf1pxPmEBR7rFj2/wYS0tLlpqaKmb//LNoe+kSk86c2VCJGgCio6MRHR3NZs6cCRcXl+bWZJcuFPkdPZocFzY2lNcbGkrf/e67zUnw/fsk91cqoVi7FtdPnhQl+/axfocPcxp9+oDNmwdWVEQR/ZISyssfP56cQTY25Ezq04dk0m++Sf/+4w+SsPbtSyRCKiXyO2cOIJPhYnExrl+/DgMDA5W/vz/n5OQEf39/5jhjBiR9+rSMWjs5AYGBuJqSgiNHjsDY2Ji9/vrrcHFxYZqampB++imMDxxA58OHmcb27eDUXQFcXdsfXf/9d0AigV3fvuzKlStiSlQU6xsTwzIHDYKTk5PKzc2tmVGckZGBnJwcLjU1lZmbm8Pk6lWwbt2oWGFr9RaegFKpbMjRrK2tbdGysbKyEueSk+G/dSsk06cTIfPyIiLi5ETzqy6Ud/o0ydAXLGj8gF27SGUyZ05jTYN6dO7cmV29ehUlJSUoKCgQPTw8Ggdp/nza/08oiywsLBAZGQlBEBAcHIzisjKMWrECWm5uQHk5+E8/hePEidC1sQEzN4e0Z08YODs3y0M1NjZG79698ccffzSk4OiXlEBkDGJmJvOKjW1cNw8f0hnk4wNZly6wtrbG2bNnYWxsjGZtGzMyKMpYT7YMDAyQlJQEmZaWOF1bm+ls2sTMDAyQ++CBsM3Tk7nl5kLT2xusXvIsdu+O6qgofJWaipycHNHR0ZE1SwOrrUXc9u3C8bo6ltqvn9Db1pZJuncncvUUFZRSpULNt98i8Px57MnJweXsbFFfX58ZGhqCd3Ag5010NKUrxMfTvPbpQ230vLyAadOwsaQE2hMnov/o0TCLjERlWpqqKiJCTKyoEJhMJs6bN49vpr45doyuqWfPFtdjb2+PstOnMXjPHqbTvTudcfr6NN8hIaQG+vhjIuYSCUqsrJBy9ChM7e3FvLo6lpycDG1tbejq6kKD45CQkSFctrNjTh4eVItBjW7daP9mZTW2hFu2jBw4Dg5ATQ1S8vNF7zNnuLEuLtAYNKjZHpXJZPDz80N0dLQol8vZK6+8woyMjaE1bFhLB+WlS5RG8c474IOC0NXFBRERETAwMMDSpUthZ2fXvlaoaly8SA7SxYuf/d5TpwCOw2WFQmCMMR8fH3Dx8VAGBgKrVoGbNevZZ09KCrXdXLCg7Xz+Z2HoULILtLUhVFYiQRBQWFgIuVwObW3tNvPRjx8/zpRKJXve/vWtguOoZeDcuXR2vPYaqRPt7Mgh8J+Pwfwl8DyP5ORklSiKaLV16QtEenq66vHjxyMkEsnrFy9evBAQEPAclYH/76KD7HegAx0AAAQEBBRHRkY6P3jwwMXDw0P6nwjyJyUloba2VliyZAmnExFB8uOm1Z5bQ10dkfKgIJJwtoaqKiIjGzYA69cT8WtPXQLGiLweO0Yy6PZEG3v3pkJhtbVESmfMAFasgFFUlKgxdiw3a9YsrlevXqzzE7ntLwTffov81FTEGxmhrKxM1aVLF66h3/j581Ste84cVNnaorS0tFkv8nZDKgV8fSH07YvaV16BQUkJrKdPb3+kdt8+knC3VajPyYmiiq1ECMrLyxETEyMmJyeLnRMSoJ2Tw103MRG6v/FGs8WcnJwsPnjwgI0cObJ1Y46xxqJhyckULVT3ec/OJtXD++9T9HbRIiAiAnm9eiFh1y6ka2uzOzY2SPLwQFheHiI8PJBoYwMLb28YjhhB0k19/cb1p1JRPQpXV6pM3rkz3eOJE0RgRJGIGFXUB2xtYV9UhGuPH4sBAQGcp6dnIyHMzSUC+8knjQZiSgpFUuuLvSUkJKCyshLm5uawsLCgyuAaGlSboVMnUnUEBZGjqlOnxmrpz8LKlYChIWQDBqBfv36sr6Eh9GNjYfz227h8+TLn5+cHQRCQnZ2N/Px87N+/HwqFQpBKpSzvyhXRec0aVj1sGLSfkdayd+9eHDlyBJGRkYiIiEBERASio6ORn5+PiIgImJiYQEdHB4cPHxY0NTWFPv37c5gxgyJod+6Q+mT16ubrx8OjkehXV5PBvW8fObyGD2/R01xTUxPdunVDfHw8Hj9+zFJTU0W1bBozZ7aZQnT58mUAFPkdNGgQNDU1ybmkTuk4e5YiuEeOkAOzVy9SIikUdJ589BEkI0aA//xzsXdkJDNYsECctmIFKzc0hJG3t+Bw6RJDp060PktLSTGSkAC2fTuMunbFlbt3oW1ggGYS7hUraE3WE8v81FQY79yJAbt3sxwnJ1zX0IDJ/Pm4AggPy8q4/NpaGG7ejD1SKSorK3EYwBVTU9h37SpmZGSw6OholJeXq4yNjTktLS3ULloE2W+/sWuDB+P9RYuYZORIOh+fkdcdFRUlXq2uZk7ffAODwYPx8OFDdvXqVWRkZIj6+vrsZnW1aD1uHOPmzaOI7K1b1EGlpob2pESCuJQU0d/fn5n4+EB3yhTY+/hw9rW1XK+bN7k+hoachpdXc+n3Sy/RnNfVNbYIBGgOPv8ct0tKVKXa2pz54cN4NHgw9BcvBnN2JudUZSXtgcGD8Uilomrt586hZ0UF8125EgUFBbh586bq7r59XNfXXsPu3r2ZlaurcPnyZfTt27e5qM7Ojj5LIiGy969/kTJJQwPw9cWljAxmqq8vOsjlDJqadD41uRee5+Hv78969+7N9NQdBszMGs/gmzfJ2fj223Su1UezHz58iNjYWHh7ezdfI+2FUknOEnXL2qchMBDw9MS5EydYlUKBnIwMISUnRyzJzmb37ezEdpFCDQ2as6cV3XwWeB74+GPcCwxEyqFDYpQoipnZ2UJ8fDyLiIhgd+/eFUJDQ1n37t2b1S1ISUkReZ5Hw77/O6ChQfM0axY5fWbOpIi/+ln0f7SYH0CFWC9fvsycnZ1RWlr67ALL/xBcXV2lvr6+qK6u1i4sLFQOHDjwzH/kQl4wOsh+BzrQgQaEh4efqaysHFldXW3q5OT0QsP7crkc58+fF42MjDgPGxsiWSEhTyeJ9+8T4QoOpoJ5reHRI3p4lpZSJebnyMsDQIbS5ctkjD9PJF4qJdLK80B1NQoBdkepFL3Hj2eYMaNZpPCFYfVq6M6dC/O+fREbG8tpamqitrYW2vHx0OjcGZX9+2PTpUuIiIhAbGws+vfv//QK+k/BD3v2KK9aWHBBXbtCe+dOisS1J+/T0ZEk7W0pKSIj23S87N27V7h79y6zjI+HRXw8l9SlCzItLVlAfZ6uGs7Ozuz69euClZUV69RWjqQoUgT/jTdIcjx7Nq0DZ2eK3g0ZQpHEhQuBOXNQq6ODQ4WFKDM0hFxLC13c3UU/f3+Wnp4OuVyOpKQkXL9+XXBycmLNInmCQFGpKVMa70lLiyLPRUVE3KXSxnzl+/fBZs9GlpubEHn7NmdsbCyam5uTwamvT9FcG5tGsh8TQ0R+yhTo6+vD1tYWSUlJSE1Nhca338L4k09QtmIFZOfO0f12795YfLFXL2pL1R6Vx6uvNo+IJiYCTk4wCghAQkKC6vr161xkZCQSExNx8+ZNDBs2DFOmTGH9bGzgzRi75OkpnsrMZHZ2djAwMEBNTQ0uX76M4uLihoj0N998g6Kiooav0NLSQqdOnWBmZoaioiKxuLiY3bhxA1FRUSgvL2fz58+nYnY8Twqb69cbWy4OH06krrKSfn7vPfrZw4P2+ldfNW+p9wR0dHTg4eGBa9euoaqqqnGNrV9PbepGjIAgCA2OmNTUVCQnJwMA3N3d0aylI8eRU2XAACoU+MsvlNO+aBE5Au7fp3ldsQI3vL2RkJnJur38MrwnT2bsww/RdfJkOERHM6SmEjH497/JATppEv3s5QXFt9/COCoKdiYm0Adoj3EcqUhmzACioyF8/TWu/fYb5DU1yHnvPcFk5EiWVFYmXo2JYYWFhZxEIsGckBCUA2Dp6UisqRFs8/PFKT16sN4zZrCBAwdCR0cH6enpuBIayoo3b8YJGxtc9/LCiNGj0VlLi87TZ3VIofFlKRcuwDkkBA5nzqDn55+jTKnEnTt32M2bN5Gdns70v/sOpgUF4ESRCrlNnEhrODwc+PhjOF65wvi8POgzRvNsakqOmBEjaF+88w4Ra6WyQdmAwEBSc6ml/Eol1SI5cgTWublcuZ6e+PukSUJsXR3HJBLR1taWKZVKPCgqgsGHH0IhkUDs2hUX5XJg8GCh15gxTMfaGh4+PvD39+ccO3VCLs+j87hxGDVqFLt27RqrqalBs9akGhp0Xj54QM+tb75p5pyWyWTs97t3me8nn0CD4yjlyMGBan506tSiSCrMzUk1pKtLTqO7d6kmyYQJzRxZt27dwr1795Cbm4snz8x24d49chK2w0lcWFgIrcGDoZuRAWZtLU5atYqL8vcX+6xYwc6dO8d0dXXFzp07t02k4+PpHP7ss7+U8lNcUoJrDx4IUY8esf6PH7PhL73E/GbN4vr168d8fX1RUlLCSkpKRJVKJTo6OjZcT+fOnVl0dDTz9vYmp93fCYmExnDGDAoeXLlCzkgnJ3Js/JUUp/8QysvLkZSUhFu3bokJCQkN5/yLBmMMGhoa0NDQYMnJyZbh4eFZERERxQEBAVUv/GJeIDpy9jvQgQ40YNWqVfKQkJDRcXFx2f37928uL/ybIYoi0tPToVAokJubi9jYWOjq6grBwcE8vviCovr1+YhtondvynNrLfovl1NudHQ05ej/leIwY8aQcaFUPjuloDWMHQuJmxuKDx0SsXQpg5kZGVoyGTkg2lOB/q8iLw+YNQvc8OGwqamBQqFAQkICtO/cwfRLl4Cff8aVujpRoVAwiUSC8ePH43nTOUpKShAaGoqsrCxRoVBI3lq+nB7oZ8+SIb59O5Gap0lDZTJyqnz5JUWzmiI/n6SOkya1+LWDBw8KOTk53IdOTtCQShlmz4aTh0eb96CtrS3GxcUhIyMD1tbWcHBwAF9RQW2YJk0iGfSCBUSKVq+mSMvGjW1ednZ2NgDggw8+gDYZ0KyiogJnzjQGDqqrq7lff/0VS5cupeuKjSWJ7oULrRtw/fvTd+bkkLPh669p/M6cwfi8PP7nAwcQFhbGujftVFFURJ+rTmdxcCDyWQ97e3usWrUKR378ERn6+nC+fBnXX30VI888EeCQyWgPjh5NEfFnFWr85hvKN1V/TnY2jSWAefPm8WfOnIGnpyccHR0hCALdvygCU6ZAOnIkRq1YwZTHjyMsLEw1YMAA/uTJkyhr0o97x44dAIC5c+fCysoKgiA86YhiCoUCJ06cQN++fWFqatp87hkjcufvT+tq0CBKBTEwIII+Zw6N8cmT7XbqqT+/mTqkSxc8KijA3g0bVOXl5byGhobo6OjIqqoabUnbtpwnmppUs2LvXro+gKKw6nP41i0IiYnIs7KCIiiIXjt/vrEt6JQpdI+FhUT6tm2j1z79FMIvv+DMp5/i1S5dSL69ciU5dqKjIRw9iqRp04TbZWXc/X79MGvePNjY2HAAsGjRIrZlyxaVtrY2RowYwevq6cF50CA4f/MNgr7+msOKFSTfrq8/4uvrC19fXy73gw/AYmJwy9sbphYWkO3aJSpiYtjjAwfwLHerQqGARCJBgbk5dO3tac3X1SE4OBj5+flKO8YkPSIioHXzJgrPnIEFz5NjOCuL7qt/f0AuR5SXl8o+O5u3KimhtXz6NNXFmDuXiNOmTdSC7/hxUhr4+JCKS01CkpLIMeHoCCxYAF1/f/R2cmK9Af6nn35ShYeH8w8fPlTl5OTwlZWVWLJkCb7ZtAk9+/eH60svYYCzM4cvviBn0qJFwLRpMJg4EQbffttwryYmJsKNGzfQt29fTiaTERHPzianw6BBVJB06lRg926Sxy9ZArfOnWH++DGKi4qg4+RELTrlclKjbNtGTubqalICMUbqIYCI8c6d9B2tkPmm5KuV/QWA2kBmZ2fD1tYWWlpaSEtLg5OTExISEtBr2jSEDxqEslGjhFmzZnFKpRJ3796Fi4tLs8/Ky8vDjz/+CL1hwyCtqoKOs7OoOnyYLRg2jNPQ0MDkyZNx4MABZmpqCisrq9YXSV0dpWz8xZTD33//XSwTRW7R4cOQbN/e8DrHcdDV1cXIkSPh7u7O9uzZw/z8/Bo6Bqhbj965cwe9nlZQ9q+A4yiI4e1NTiwzM3I2v/IKzeX/Ibi4uODDDz9ESUkJ2759OxQKxX/0emxtbWFiYmKal5d3mOf5kwBaFur4L0IH2e9ABzrQDKtWrSr8n//5n/TCwsLu/yTZz8vLw549e6CjoyPIZDIEBwdzHh4ePKqryVh52ndHRpKhev9+6wV1EhNJ1hkbSxG6523h9ST8/IjMuLiQEfYnUFJSInLa2iKWLKEXvviCojYFBRQ5zcsjY/95Kwq3FydOUJGxqVMhCAIAQC85GZwo4vrcuaKJjg77IzS0weMQHh4uuru7P9MDQXXoBFy6dAlRUVHql9n06dMbjccRI8hwXbKE5mvBgqe3OSosJEnuk2Tf3JwidE9AEATk5ORw9mlpSD12DKVz5ogDfXzY0xI1goKC+NOnT6vKS0v5hFOnYOPmJk5avJghPp6iq8ePU62G27eJZC9aRMW4WoFCocDJkydhZmamJvoAqM3PW2+9ha1bt0KhUOCVV17Bnj17sGbNGgCAv1yOQe7u0HxapKZrV4o+XrtGOcEffwylnR2uf/SRMCUigss9dar5+7dvpwJlvXuT/HvYMIpoN5Wt79uHlz/4AMjLQ5meHpLS0zFcqWzpGLGzI6eHUknOrqat7J5E//7N96K+fkP1f5lMhglNWvBxHEcEZO9e4KefGooRDh48GBs2bOB3794NY2Nj1fz583l1QafTp0/D2dm5wfhvjYhoaGg0+55W0bs3FQdbsIDmWd2ic+9eGmt1Hn87oKOjA6lUCpVKhQ0bNqg0NDRYTVkZGMdx/n36cN7e3sjKymI3btxQlZSUcACYTCZr3QF1+DCtsYsXKTKvLvD5xDno4eGB48eP4+qJEwI0NTn7yEhyGPn50Rt+/JEcPkolEdx6h4lEIkGNjg7uOzuj8+zZVETT0hKoq0O1uTlS8vOZm4MDxsycCf0mnRM0NDSwdOnS5vrhPn1I2XLjBuWSN0V5ObByJay+/BLVn3wCm99/Fx4/fswK7t1DjJMTMjU/WHQAACAASURBVH/6CavUhU1BtRW2bdsGjuNgZmYm5ObmcjU1NfSfHAfNf/+biGtGBtClC143NJRg1SooO3XC+sWL8U5yMqlffvuNznpHR7q+fv1g9vnn8Ni0ia5JKqV7zswkMv3oESleNm8mRUV+PpHHmprGzgJ37tDZNWNGC2n6vHnz+Ly8PERFRfEARADs+PHjAACjjz+Gd7dutK5nzQIeP6b5AJoXXjt+HNMcHLgzVVUqhaUlCs+dg82+ffTs0tSka9bTI7Ivl1PkvLgY8qgozP7pJ0SOGUMpUu7upGzIzKT5OHOGziwXF1Lm7N5Na+u111p1lKrhWH8me3p6tthfmZmZuHnzJuLj4+unhgPHcVCq7wtA/MyZqNXSgiozk9u+fbuQl5fHqd9ramoqlpSUsKFDhyI1NRVaWlrgioux8LvvULtlC6czalTD5zg5OcHDwwNnz54V5s2b13Kj37pFaXn15+ifhVKpRE5ODhs2ahQkMTGk7pgxg9ZSk3mys7ODlZWVavv27Vzfvn1Zjx49IJVKUVtbi7i4uH+O7DeFen+fOkVFNVetIuXHkylJ/4uhpaWFqKgoWFlZCU5OTv9ReQLHcZg9e7ZmaGgobty48V/fgq+D7HegAx1ohpCQEIlUKrX8J4k+QMWmpFIppFKpaG9vz3moZdtr1pBxtG1b27/81lsUKV6xovnrKhVFMUNDqeDZ0z7jebFkCRmTQ4b8qSh8bGys2LNnz0ajuWlO5OXLFIkbOJCk7keOUP51W1GNPwNLy4ZUB1EUYVhbK044fZopVq/GScbExLAwwd3dHdXV1QDAZWZmsuvXr8Pa2ppyu9tAfHw8Tp482SBX/uSTT1onM9raVNV8xw4y1IyNybBqjegGBhJBLS5u3vpuyRK6jyc6HXAch3e6dIE8Kwsl69fj+OXLrFd1dfP2c0/AmePwzsKFfN2sWSi8dAk6qakMY8eSYygnh6S7hw+Tsb1zJ8lo21BgXLp0CQARlydhZGSE5cuXo6qqClpaWhg/fjwyMzOh/OUX5Bga4ktbW/Q5e1YYMWJE28aPhgYRkdJSiIMGIb5LFzFt3Dj4/fvf6JGSQpFoNdE+caLx91QqMvqbGoNxcbR33noL2LULenPnQrlmDeRyeevzJpNRL/UvvqDIaVtr38uLJMJqfPUVkYy28K9/0bU0abGnr68PTU1NsX///qx///7NCObItvraPy9EkQjdsmWkWqiuprHdv795nnY7wPM83n//fXzxxRewt7fnjYyM4BYdDeMDB8B9/jkDADc3N7i5ufEAcP78ecTExOCLL74QdXV1xZqaGriWlXGWpaW45ekJz+XL0f3iRUh5vs1xlvA8FgYHQ/XSS1yaszPsIiIaazZ89hmdI4sWEeH7+WeKTH/5Je4GBwNAYy52p06kuNHVRVRcnKhKSED36mpIv/+ezt8ePWidWFi0rsQZMoRSPcaPp89Rr7vr18kxJJFApq2NV6dP5xAcDISE4EpoqBgUENDsxg4fPiyKoihaW1tz1dXV3MiRI+Hq6oqUlBQUFhZCs6yMzoxz54ioVlUB3bvj6ttvQ4iKgnT2bAjDhoFzcKAo75YtlMcdGwtl37788VWrMJExOjv+538oQtq0wOayZbTfHz6kNJRffmlUwpiaUiHXoUPJcbxnD6UIhIcDI0bA8tVXoczKEsbu2MEdnjgRXSIjxRH6+sysb1/aL0eOkMPM15eccNHRlD4wZAg5HLZuhYa/P4I/+IC/mZwsxly7Js5bt47DZ58RqYuJoWupraW1efYsamtrsfbsWWiFhOC9wEDa2zxP67pTJ/q3SkXngUxGtTqUSnIWREY+dT1LpVJYWlqKdXV1LRbflStXcPfu3YafBUGAIAgYN24czM3NIb1yBbkhITj28ssAgEePHnF9+vTB8OHDERMTg7t37zJDQ0NER0er5HI5m1pTw9lu2ACIInRaccYPGTIEmzZtYmlpaXBRd0NRY9cucpT/ReTm5kIQBPj5+dEZf+ECqXvCwlpUw585cyYfGhqKK1euqC5dusT36tVLlEgkrLKyUlQoFM2LUv6TcHOjP4MGkTLl/HlSwbm60nmbnU2qh6Zqr/8lUCgUSEtLw2uvvfa/Ig9BKpUiKytLpVQq6/7T1/JPo4Psd6ADHWhASEgIJ5VKt1laWmobt7ev/Z+ElpYWFi5ciKysLP7cuXPgeR7Dhw8nw0Qd/X4Sp06RERMf35IkpqVRS6hx48jb/VeK9rQGPz+Scu/e/ez0gieQl5eHkpISzret3sPq18PCyIjJziaZaXExRWtsbNrfBq815OYSobl5EwBgcO8e3nF2ZoiMBBwdMbeV9kHbt29Xnj59WuLt7S0GBAQwPT09MMaQmpoKW1tblJeXQ19fH3fu3FE5Ojry9+7dQ2Bg4NOl/4yRXDo9nYollpQQWWilBzs2b6Yc1KZt9rp2bV2lcfky+N9+g2zjRsgcHCCLjRVv377NWkRcamspKuLqSsZQWBj2DRyIMj8/cbG+PoO+PkWN1q0DIiIaq8Lfv09R8tu3aQ08geHDhyMtLQ3FxcUoLS1Fiy4HQEOxQ09PT3h6egKrV+MwgFxbW8TExHDtSZspFgQcmDBBcMnKYq+lp3PSIUPIIbFvXyNBuXqV8nMTEshh0dRojY0lSXFiIkUJ9fXBAZDJZKq0tDTep63I/ZtvUoQyJYWcNK1J+hUKyoMvK6N5rqujNdwazp4lKeqSJS0KZQ4dOpSFhobi6tWrIsdx0NHREQ0NDUVBEMTa2lpWXV3NampqmL29vdCnTx++TZlvU4giybMvXqQI7Y4dFM1dupTSJLS16Ww5eJCcIK20CWwL6enpAIDAwECS+Hp5kXy61csQoVKp4OHhwWRaWmJnCwtOZ+NG8HfuiF3GjUNMerp4LzKScxg6FC3rwYPW4erVeAyIF6ZNYz1eflnFGGsedVePp6kpUFmJ5MePBfv9+7lDdXXw8fGhFme1teRQO3EC8PKC3urVLMbCAp+D0lsWDx/OZNevU67w1q3kJHz5Zdqn6r3q6Eg1HZRKIsOVlZSa9MsvzUnlvXtAVRUKzM0hl8vZlStXoKur29DBIDMzk3l7e7PgemeEGg2pKVVVNH88T9H9SZOAt99G7LffinK5nJ1dvFgs43nm+/77cBo2jBw5VVVAaSl0ZDLc1tdXobiYR3g4SeI7dWp4dgiCgNraWlRoaKBSKoVNcTGkcjmdM48fk2JA3Rrv3j1a43Z29PPw4YCLCzxNTLjKgwdhYGyMbhIJM1Ona5w+TWeMUknnL0BpAYMGNTqhT5+uv8UqXHJ1ZbxCISIsjJxgly/TuDo60nhOnlw/vRrQ1NQUTU1NIYoia0bqfv6Z/n777cYCp3/8QcqANWso1eLNN9ssoMdxHB4/fszcnyiemJSUBCsrK9y9exdjxoyBhoYGOnfuDCMjo0ZHk5YWjHv3htvy5SgtLcWFCxdUf/zxB5+QkCDa29uLM2bMUD9jeBQU0NjMnUv779EjWj9Nzj9dXV34+/uzffv2ITg4WPT29qYveviQHBh/wRFeVVWFhw8fIjw8vPFFiYSuJSyMUkHy8lpEzIcPH47hw4fz8fHxSExMhI6OjlBbW8utW7dOnDdvHmvWPvCfQmUlXdubb9Jz6qefSIHy6BHtkQ0bKE0jPJzW+tatpLB6+21aU8ePUz2AYcPorH6BefNZWVnQ0tISu3Tp8sKqP1dUVIDn+TYd/25ubvzly5cHffbZZ+ErVqwY8qKu60Wjg+x3oAMdQEhICAMwSFNTc62xsbHH1KlTZS+iGr+hoSEMDQ1hbm6On3/+GY7Hj6PQzAy+rq6tN6/dv5/IxoABja8JAhHwpCSKRE2c+M/lv0+eTFXYp059rlzBixcvqlxcXHitZ0UO1dV4AXoQa2tTqzdDw0ZCN3ny8xfoOXuWCIyahM2YQRL5p0jp586dK0lKSsKxY8dYYmIiunbtquJ5nktJSWk2uNra2mzWrFmorKxUFRQUAAAviiKqqqraJq9OTmRYhYZSZG3cOGr/1RRz5rTsNTx5cssif4cP07js3AkYG+PUqVPK2tpaSZemhRgjI4mwrFxJ+cqJiVAUFGDPoUNCVn4+19ADWxRJ6rp8efP2b+oCapmZjZLgemRmZiIyMhIVFRVwdnYWtbW1n734IiOBmBgEiyKG19Rg//794vr165mxsbFq0aJFbZZc3rdvn8qoa1duwPLlTLJ9O+Wcnz9Pc/rLL1S92cEBUEfB9+1rJGe//dZQrA2PHjVI5wEgMDCQP3nyJDw8PNBmhEomo7VoZEQRzieho0OOFImEUlMWLGi948X165SOsG9fs170avTq1Quenp7IyspiArXBYsXFxeB5Hubm5jA0NISOjg5iY2O5X3/9Fd7e3qqRI0c2HzOVihwaZWUkz9fQoL3UowcZuVOm0JjV1BAByssjp9O0aUSEg4JIAv3110/t2qFUKnHw4EHo6ek15PJCFMlx8ERXgeLiYvxRTxzHjRsH9O3LwdtbTdCYLYBhPj6s7vPP8ZWrKy6tW6fq1KkT5+joyLzc3WG4YwdFnj09cai0lAUMHSo2Uz+kpdH8qI3aXr1QsnAhjly7xmkNHYrujx8LQUFBdHDU1FDqkKEhMG4c+jg7w2boUKSlpSE6OprtvH9feOPjjzmO48gpkJ1NjpDr14mg3bxJpHXNGpLM791LMnhd3cZCd+q5PnUKCA+HGajewoULF3DkyBHm5OQELS0tDBgwADExMWLv3r1b71CyfTudEaamRLZffx1gDBMnTmSHDh1SdT17lpPY22PPgQPgeR6jRo0SPV57jWHNGvS4cAEXP/yQ27R/v7Jy2jRO+c033Hvr1uHQrFlijpUVU6lU4FUqmJSVYfzevajmeRh8/z1J98+cobz2d9+lOg+DB5Ozr6SExmPzZqBbN0gYw/mAAJRXVeF3a2vh9ddfpzE+doycBd9/T+0Qv/2W/l1XR46TegiCgB07dojCw4dsyIkTXEZwMAy3bIGBhQU4iYQcvnV1tKZ5HhzHoV+/fiw8PBwPHz6ETWuOUjUOHCBHw+TJdGb16EFRcY4jAvjE/lOpVKirq0N4eDi6d+8OfX191NbW4tixYw3vMTMzaz2P3scHCAqCBs/DzMwM06ZN4+VyOe7fv88OHjzIioqKYGxoSE7DTZvoDFI/p/v1o/P+k0+afWRAQADi4+OF4uJiDqCaMNrvvAOmrw/Nn35q+76fgtLSUmzcuBGiKEJPT08VGBhIe8jUlL5fpaJ/79jR4noab9UHPj4+DAATRRHnz58Xf/jhBzZp0iT87e10S0vpvJ07l9ahiQnw66/kCLKxITVPTAxdd3Q0kXs1IiPpPfn5dHYwRjVJ9PTIhjI2Jqf2/fuUphgXR4EST09yWF66RHvgedovPgX6+vpQKBSsrXoQfycEQcC+ffvq7t69K/X09FQNHTqUj4yMFHr27Mk1bT06YMAAmJmZ4dChQ4NDQkImr1q16sBTPvb/LJgoiv/pa+hABzrwH0JISIi1pqbmZ6IovqStra09YMAAXW9v7zZ7y/6TuJeaCiM/P+ydNg2cl5eoVCpVrq6ukqFDh5LhlJJCJKwp6uooQmhiQgWa/mpufnvw669kDLz0UrveLooiNm/eLPbp04f1VhdNe16IIkXD/fwoT+/UKXqIt6UUeBK7dxPJefSISPHy5e2qjK9QKLB582ahoqKC69SpE0pKSmBnZ6fS0dFhd+7c4Xr06CG+9NJLDKBquxs3bsScOXMQHh4u3Lt3j+vXr58YEBDAnhrtv3mTjJWYGCqUpiZNQKNk9rPP6P7d3UmO2rTS/LJlJJc1MYEoivjuu+9EY2NjNnXoUIpyv/QSRaLrx6C0vBzHjx8XsrOzOTMzM2HChAmciYkJRQPnzKFiZ605Qa5fJ5I0cGCzl9euXSsaGxuLgwcP5hyfVodAjWvXqOBjenrDvaqLVe7Zswf29vbKmTNnthiwvLw87NixA4sXL26shVBVRcazpSXd67x5RIays4mk6uoSCX/wgCKSu3cT0W0FX3/9tTBq1CjOrYkToAWUSnKuXb1KOfpPGmzLlpGRqKVFTpivvmr+/3fv0jXz/N8iMy0tLcX3338vjhs3jrkZGpLhamJCvc9tbMiALS0lI/lJR9uWLZQbv3o1OZ7OnqVo4caN5DC5e5fG9ddfycE3cGCL1lc7d+5EZmYmpk6d2ig1zs6mfZmf3+y9ISEhAIDZd+8KtuvWccjLI8LV1CF25Ahw/Dhqt25FTk4OsrOzxUfXrwt2p0/zOrW1YsLo0YJPcDB/7NgxDB06FP2aKhA8PYGgIFSHhEAmk0GpVELw8cEvfn4QOA7Tjx5F6cWLUBYUwLa8HNzYsfR7mZm0B+urz+fk5ODIkSOipaUlJk2a1NxxJQh0X7//TgoYuZzWws2bFEFW5xWrMWECjcUTtTe2bNmicnJyYkFBQZwoirh48aJ47do1LFy4kDW05CooIOVBeTnNkZYW7c/ly1ut5/L7778jISEBgYGB6N+/P3D8OCp/+w1Hzc1Fr/nzWWl5OaKiomCbnIyAzz+HyeXLkJiZgT94ENDTQ0KnTqLe+fPM6cIF2jv79hEx2rWLzt9t22g9p6XRF164ALi7Q9ixA8L69Vi7ZAk+yMiA9I03iFgVF1OayOXL5IC5f5+cI6dONexPURRx5swZ1ePwcEwPDOTzT53CjQcP0D8sDJuWLxdHjBjBfHx8aE+tWdOQhvX1118Lvr6+bODAgeypTvnXX6ezrLCQ1kd9EUUsX06OgLg4UozV7+Pa2lqsXbsWABAUFAQrKytsry9aZ2ZmJk6fPp212TLN1pacGa2k22zatEksLi5mEoUCcw8dwv01a2Dq5QV7e3tSgpWUkOOplXuJiorChQsXoKmpCZVSCav0dBSYmcHAyUkYP34897zR9PDwcERGRuLtt99Gi04sFy9S7YMffyRl1LBhLdputoWjR48KN27c4IyNjVVTpkzh/3SUv66OHKYzZhAht7SkZ9Lhw/T/nTs3P3fj4ykIUl1Nz8PISKr30B7U1+5BRgapeF59lVKAevUi5Ur37uQ03bCBnsNJSeSomjWLzsPt26kgqLpV5TMIvCAI2LBhg8rExIRNmTKFe2bw409CEATExcXhNClnBHd3dy4jI0NZU1MjAQAnJ6ea9PR07R49eigfPXoEb29vibqQ7qpVq158z+kXgI7Ifgc68P8pVq9ePVwqlR7u1auXlqenp8TU1BQvIprfFhzz81F+9SoGKpXIz8/HjRs3JMnJyaqhQ4eS7O/hw8Y3iyJJIFesoDzwXr1eXA/arl0pkjV0aLs83omJiaioqGAebbWSaw8YI2Kgbjt24AAREg8Pyl/fsKFtpUFeHkUpJk4kx8jYse1rgQeSjL777rvcjh07VNnZ2bxEIsGsWbOaDnTDgtHV1YUoilRlWU8PI0eORGRkpJicnIxJkyYxy7aKCHXvTvfGGBmK27c31jNQKMjYAMhozc6m94kiGTg//URGd/08ZNy/jy4REazfihUU6d61iwzux48BxpCXl4edO3eKdnZ2bPz48fDw8Gi0Tlavplzepi2wmsLXl8jhK6/QddQbNnV1dWzq1KmsXTUu5HK63/j4Zk4Nxhic6iXvGRkZkvj4eLi6ukImkyElJQVXrlxRPXr0iO/fv7/KwMCgcfx1dIiMfvEFtQA0NCTCuGxZo4TexYX2yeeftykvB4Bu3bpxYWFhoqura9sEQiIhwj91KkXnniyGl5dHY62l1VwZAZCjZPp0MhQXLXr2WD0LNTUwrKnB2Ph41mnnTpLfZ2eTcyc+niSsT8PChRTxNDQkB4iaxBw5Qs6CpUvpXtXt4rp3p+jljz+SMc1x6N27NzIzM9FMRaKOpD0BplJh7PjxsF20iENyMuVtP4m8PGDlSmhpacHZ2RnOP/zAEBrKq8LCkK9UMsd797jQ0FAAjfutYa7i4rBjxw4h+6uvOCcnJ6G4uJhZdu3KqnR1MeX99xFqaKjKOnyYuf7xB2eSkYG6/v1RWloKm5wcSL76qoHsW1tbw9raWnj8+HFLy53jiGy88Qb9XF5OeyInh5w4t241tsz89Vdy3rUSeR4/fjy/Y8cO9OnTB4aGhrCxsWGRkZHIysoi+b5cThHF7GwqMPfOOxS55DhyAIwb1/BZQteuCFu6FNkqlaCtrc151xNi5ahROHbwIAKPHmUmoaG4tX8/6urqkNWtG1TXrkFj8WKwSZMgDhsG8aefoOXnxyLnzIGTWsnRuzflQqvrdMyZQ4S2pobW7+bNgJ4euJUrccrTE2JsLCQ8T2fOiBGURnbpEnVQcHZGyfDhKLezEzp17swJQ4eipEsX8Uy/ftC/dYubevcukwwejC6bN6OLKEK8fRveWVk4ceIEUlJShOn+/hzu3QO8vfH48WNUVVVxbm5uT39eHz9O54KREZG0ps/HL74gWffRo/Qs27gRcHWFpqYmNDU1YWdnB2tra8TFxQGA2pn1dONg61ZSP7SC2dOmMa2BAxE9f77w86xZnGFBgfB4zx7OwMBAtWTJEh6dOtH6e/fdFp/h5+cHHR0dGBgYwG7FChR4eUEydy4OHjzInTlzRjVz5sznevB3794dkZGROH/+PCbXp0Y0oGdP2oMmJvSMrapqqThrA2PHjuX69u2LsLAwbufOncL777/fvtC1IFDqgIMD1aVYvpyc8o6OtJf696dndlvIyKA9lptL5/7atZTO2B6oybmjY6ODu2kR2uJi+nvFClIWAKQIs7CgM+6HH2hvTplC4xYXB3Ttiqp165CtVMJ0927Ev/46LAsLoWlmhvS6OvTs2ZOPiIjA7t27xblz5/7tBqcoijh8+DBu374NAMMAqFJTU49yHHea5/kolUq1JT09/VcAeUlJSVJBECY9fPjQRVNT84pcLp/zd1/P/xZ0kP0OdOD/Q6xevXqUVCo9MH36dNlTZYAvCqWlwJIl0D94EB6urjAwMGAxMTFYZGnJY/RoirCo8fAhGVF791LEvz09wP9O+PmRkXT7dguZeUlJCQwMDMBxHLKysnDp0iVVbm4uHxAQ8NRicc+N/fvp77Q0ku7xPBnd7u4tCVh1NckkJ02iCvet5JM/C7NmzeLXrVsn6ujoCADaNK4MDQ1VlZWV3KRJkzhra2v07NmT27hxI6Kjo1WTJk1q2yjT0iJjYvx4IvwjRlC7xBEjyPjLy2ssdjVqFBH83bspwiiVAllZqDt+HLtKSvDeH39A5949isa+/z59PmPIyMjArl274OzsLE6ZMoVrZih/+il9TyvFF9V5vTKZjEieoSFQXY2ckhKcPXsWmpqazSrwPxXz5tF8qKM0TcAYQ0BAAC5duoTw8HBcvHhR0NLSEgoLCyXa2tr8G2+8ARMTk5ZjKJPR3J84QfdRWEiS69paMlbHjiWS+kRRwycRFBSExMREVlBQAPOntdmTSEiVoKVFRKxpS8vdu4mUrV3bPHJfV0fr9Jtv2swXfiZEkXJTU1OJvNRHomxdXLDfzAyPy8th5OgozPTze3bEqLSUjPjTp2m+V68mEvfdd3S2ABTZ6t+/0XAODSVVxp49wK5dqFqyBKfra4dIn3T6OTmRykDtBCgsxEdffonNlZXwjIpqXcJaW0u/M3UqreuzZymd4OOPwRsbwxKAZZcuzMfHB+vWrcOxY8egUCjg6+tLEcBFi2Dt4IDc/HwoFApoa2sLvoGBvGdBASwtLTFh2TIeHh747YMPVOvLy3ls2gQACB41Csbjx0P66BEsLCwgiiJyc3M5U1PTZxvi+vqkeDl3jupg+PqSQ2fcOCKUQUGtRmstLS1haWkphIaGipMnT+ZramrAGIN7166k0Pr9d0pPuXatIZqN3Fxax3I5kaH6GhiZPj64npuLgSNGsO7duzekDmVnZ+OeszPcHBxgkZUF7soV6FRUwP/aNWScP4/c+fNFp+Bgppo3TywXBBYeHAwNpVKAun6JgwM5K27epKi4VErnUVERqSEqKojwODlBXlcn2GZmcikmJnBduxbc7NnkqDA2hhgUhNtyOf4YNUrsd+MGiwgOVvU9dIiTlJez4TIZnMaOBTdrVmOqwCuvgM2fDwu5nAFAeno6t19bW5gSHs5hwgRUVFQAAL7//vtmXQ2aobSUHFZRUSTVTkoi5cUPPzS+p3Nncryp1ToLFkC5ciXkcjnS0tJw584diKKIgQMHNusv3ypiYxu7yTwJpRJ6xsbA+PEImD+fC6D54a5du4YzZ87wJSUlFGHv1q3VApkSiQQ9evRoKKxpMW4cYGKC4OBg/Pjjj/zhw4dVEyZMaBfhr66uxvbt28FxHEaMGNHyDfr6lO506RI9jxq7yzwT6jSjCRMmsLVr17LqpxWIFUWyX0JDyWk6fz6lDE2cSJFzmYzOpPbgyhVal+vWUWQ+JoZId89Wq378ORgbN6Z8NO2AUF+vBCdO0BkP4PaIEQiNjkZnhULoc/s29/DhQ5XLF19w1To6rHThQlXgokV86fLlgvOjR8CkSQwHD9KZ6uZG9lRdXfuVCa0gKSkJt2/fBsdxy1euXBlW/3JTo+e7J35lZUhIiPSjjz76ry7S10H2O9CB/88QEhISKJVKD7z66quydhW3ehFQKik/zskJJSUl2LdvH3x8fFAmCNDr0YOsL1GkKG9ICBHu33//2y+jpqYG27ZtgyiKokKhYNra2iLP82L//v3h6enJVVRUoLi4GJF1dRg4bRo6x8aC19JCaWlpgyGho6MjdunSBRkZGczBwYGfM2cOWs1F/Tvg4kJRTICM0PJyMoSnTaNoAc9ThFJXl3Jr/wTRB6hw07JlyxieQvQ5jsNbb73V7P8fPHiAiooK9OjRo33RFyMjkgtu2UJ53bNmkSFx6BBdf10dRdRCQ8nRs2kTKSzS0qD68UeK1KWk4GFFBQpv3mwo8lVZWYkDBw6Ivr6+bPjw4c2JGVyBHgAAIABJREFU/oULRCpaKRYHAKdOnUJ8fDykUimsra2Fwbt2cZ02bcJxPT2VgYEB99prr7F2p728+eZT+9UPHDgQXl5eiIiIEBMTE7mamhrOzc0NL7/88tMLHwIUGevdmyKLixdTW7TTpynq+pTWTNXV1UhOTkb37t2hoaGhKisr459K9gEyRlNSyPGSldW4rlaubCyC11TG+tZbtC6PHn365z4JlYqI5KVLRIbWriUCvmgRRSYNDaELYFp1NfLy8nD69Gns2LFDfPPNN59OTvLzyaBUr4NhwxqLqDW9ZkdHuj8DA5L4W1nROeTujlKVCnO+/Rb5FhbQeOstel1NVkaNos/PyaH1unYtbn/3HSoePEBqaiqeLIAGgKJorq4k9/7qK3LgPNELvba2FuvXrwcA9OjRgwo9AuQk8/eH3qNHoiAIcHV15fz9/Wl/XLtG7zE2BurqMD05mT85dixSUlLg5eWFE2fOIOjkSWT88QdSu3WDrq4uamtr2ejRo589P5cvk9zY15fGMiGBSO6CBURcn5JWNWbMGG7Lli0N6Q0GpaXY9dZb4siEBJhWVjLo6dF9qWFjA3z5JUrGjwerq4O+IICrrcX1gABYy2SqAQMGNGxChUKBc+fOifb29ug5cybD2bPwmjQJHoKA8mXLEOnujqyoKGb9yit4bG8vas6axeTJyVBqaTX3wsTGUjrB1183vqbOcxZFWg9Ll2Li0qXc9X37II+OxlcbNmDx4sUIy8tTPdy6lbf97DMkxMfjveBgphkQAPevvuJx9CgR8Pv3aY2cPUuf/corDYoPLS0tGBgYiPPnz2ffrV/PZUdGQis1FQ6urrC0tEReXh5UKlXLlDtRpOeAupgmADg6QjhxAjcSE3H58mWxpKSEjR49Gj179iSiWV4OQVMTsfPmCc6urlyFoyMKy8ogkUgwePDgZzt9Ll6kPTrnicCoSkVjtG1bizZ5vr6+OHPmDDZu3Ahra2txzpdfMiQlkTOnNbK3cyc5X+o7KVhaWsLJyQm3bt3iX3755XapEh8/fgyFQoGPP/647fM0P5/qK5w9S+qI8+fpfGgnHtYrEOPj4ymdBKA5zs2lM3H4cOoKIZVSoEJXl86YPwOlkmpLfPYZOXUfPqTnYVgYOcleZDpmvcPzpJWV4OXlxQUFBXFYvx52AI9ZswAAboLAo1s3jPPy4hAXR45voLEGgb4+OUrff79lClg7oW7/KwjCxfb+zqpVq/6riT4A8P/617/+09fQgQ504AUgJCSERUdHL5dKpT9Mmzbtf0dEHyAS0KcPeaY1NfHgwQMUHzqEoV9+iR+6dEFq585CN3NzJt2wAUhOJkN/4sS//LVZWVkoKSkBz/MoLCyEutr8+fPnIa+PqmhpaTFRFFlKSgqzsLDA1q1bkZiYiBItLdinpqKTtTWuFRdj3759SEhIgJ2dndizZ0+WnZ0tDhw4kA0bNqyxcNc/jREjyDN++zY5RUxMKLJ29SoRl27dKAqQn0/R39xcipQWFVEhs5KSxqrIcjlFOmtqyGBT4zmL6kRHR+PBgwfw8fFptUJ9q5BKG4sJvv8+kYmZM8mQTEuj+7G0JLn2xx9T9HTKFAjz5uHatWuIjIxEXFwcUlJSkJCQIOTn5zN1Pl6nTp3YwYMHkZubS0Tp7FnUxcTg8ZIlKGYMhYWFuH37NrS1tVFZWYmdO3eqcnNzuQkTJsDf3x+3bt0SpevWMYeff8YVZ2duwty5zKQ9KREqFRGiadPIQdMGGGPQ0tJCWlqaysTEBPn5+aywsBD6+vpoMw2iKfLyyID86iuau6go2itffkmR486dKYrXJBIdFRWFsLAwXL16FXK5nHNwcGifc8rUtDFf8+5dcmJYW1NEqa6O5lBXl4hR796UP/ysiI1SSeT0wQNyHPz0ExFtW1sivu+8Q2u6U6dmUUCpVAojIyN069aNhYWFsbi4OKh7YbcKnqdCjGqoO19IJI3VqV1c6B6nTSNl0dSp9DpjgLU1dK2ssKGiAsXGxvApKQFbsqSxpVvfvnR9Dx8CW7Yge+hQHIiOhkQuR19PT+iqo8IJCbQH8/Op5VdkJKlzNm1qrPreBDt37hQqKioYAIwZM4Yior/8QukInTvj9OnTrLKykmVnZ4sDBgxg8PQkEqBWnsyZAxYaCsdJk3ApPh6zZ8/GwIEDYXrrFji5HBldukAul0OlUqGoqEj08fFhSqWy7WJaGzY0tgKjiSCnmVLZSDZu3aI0nSdw5swZFBQUwNTUFNN9fBC4bh1crl5lPy9axG4NHixGx8ay6OhosVu3bkxTvW58fJDepw86rVqF9aII+ZYtqsDvvuNCvbw4Dw+PBoVNWVkZLl68yBRVVegHMGzbBubgAM7GBtqvvYauHAcPOztg6FA4rF3LCjQ0YP/11/CKjYVh004wVlY0dl27tlT8iCKqZs0C3n8f5Z9/jkJBwI0FC1BVVSVGRkayiooK1NXVobaiQgzW1mZGfn5gP/1ETupffqHIrrU1KW6ys+nvNWuQW1uLw4cPIy4uTgTAAgIC4Ojighvp6cLlhAR2+dYtoaKignEch8zMTMHV1bV5TZTNm8kRtmxZ4zWbmiL9yhXxeH4+DA0NWWVlJe7cuQMdHR2YmJhAoqODBHNzXAbw+rVrrFdCAnp9+y28evRon2qpb19SdDRFRgbtJXX+9xPjxxiDn58f9PX1ERcXx9zd3aHTrx85dZ6s51FeThHvuXObOaxv374tFBUVsbKyMpWLiwv3NMIvCAKOHz8uMMYEf3//th9kdnY0587OpN7YvZtUce1ERkYGMjMzxen9+jG8+y6dh3Pn0nNr/nw6C4OC6Hk8ePBfKyaclkZnbVAQ7TnG6N+HD9Mzp2l73xeEkpISMTExkfXo0aNlsVfGaE9JpTTPgYH0+owZ9PyYO5ee5xMmtNr15mkQRRFKpRLqNCcAGwMCAgr+8g39l6CjQF8HOvD/AUJCQvQ1NDR26evrB86YMUNm8ALbrTwTEREkO968mX5WqZCfm4vK77+H4bJliF+9WlBmZnKdNTVxPzgYlSqVWFFRITg7O/PDhw//U19ZXFyMTfUyVolEAo7jRFEUmbu7uyotLY0fPXo0utU/bARBwN69e1Xp6ek8z/Po168f7O3tcfiHHzD66FEcmDwZbl5eSE1Nha6urqqsrIzX0dERhgwZwnl6ejZEEIqKivD999/DzMxM+frrrz+/qqq8nAhcRgaR8cxMIuceHkSKbt6kh2ViInnIT54kAqNQkAEwdSpFkwwNKeeuqoqivzo6ZHSqVCT15HmSrdbWkiRQLieDRSKhSJ66xZpUSkSlpISMPX19uraHD4GBA1HHcYg5cwb6ZWWwe/ll6FtZ0T1kZtLnaWgQ8czKImIlk9E1FBaSwSWV0nd99x1Jt+PjieB/9BGpQCIiWjgfRFHE/fv3cfPmTSQlJTW87uXlhaSkJJiYmIiFhYVMIpHgndmzIfTpg8OjRiHb0hI8z4PneSgUCgCkVHB1dVWNHj2ab2bwKpWoyc5GgSjCtj0F+QCS1b77LkW42tHFQS6X48svv4SmpqY4ePBg5uvr2zbheviQ8kuHDSP59JIl5NQZPZqMZgsLysmVyciI3bmTiMUffwAaGrg/dSpCt29H71dfFUWplNVH+Nt3XwA5En7+mdZCbS2lW3z+Oa3D0FAi7SdPkqOhNeTnU2QQoMhdly6Ut1pVRevqOSWdJ06cQHx8PGQyGaZMmdKyWnlFBSlIHjxoHnkeN472Qf250ABBIIP6+HFa3x9+2PBfW7ZsEQsLC9nSpUuhX1RE4ztoEMlbpVLaczIZoh48QNc//kAnANIlSyhaDNDesreniP6SJeSsyc+nNVIvU2+KsLAwZGdnQ6FQiPn5+UzC81jyzTdIWbkSp8vKANAekEgk+OSTT+i8MDene+3Vi+ajvtjg5xUVeOONN2BsbEzzFhsL9O8PURRx4cIFMTo6uoGFGBsbCwMGDOC6d++OoqIiat/36BERocWLG+coL49a1PXoQY6ekyfJQRMdTfvdyKjhXrZt2wYjbW3VxPBwHhYWQN++KCgrw/f37rU6r9ra2qKtrS16ffopqzEzE6VbtzKBMZgaGeFMaKhQVlbGAgMDWW5urlhZWYm6339n3a5dg/n8+ZD16QOZvz+dIT170rUdPNiQZpCdnY0dO3aAr6vDcACmUVGInDMHcrlcGL5+Pbs2dKgqx96eqVSqhj8DQkNx3c8PBrW10CkthWZFBTLt7THHxQUVQUEofestsZjjxGpzc67HyZM4ERwMQUNDNDIzYw5BQehhYQHO0pL2y4IFEGprkXTxIk7VR/n9/Pxw/fp1LFcXpf3hByjv38f9efOwd+/ehnF54403YGFh0bhWHzxAZkICzjx4IFhYWODBgwfQ1tDAkLVrOfnhw3CtT4vYv3+/kJ6ezpmamoqenp4sNDQUI0eOFHv17Mlw/z7l4Ofnk0Onyby1CisrijCrSboo0rr76iuoo7pPw/fffy+4ublxAX36tF4Q78GDxnoRT2DHjh1idnY2W7hwIZ5WFK+qqgrr1q3D/Pnzn+3MXLuW9uiaNRTh9/JqdOS1BpWKnpX+/qj198edqip47t9P979mDV33P1EP6cIFUg3Mnk2FH+/cISXf7ds0fytXtrs+z9+Jf//73xg8eHCjsuFZyMigM8PSktbQvn3PPV67d++uTU9P12KM1Yqi6LRq1aoHf+LS/2vRIePvQAf+y1FfiO83d3d3/VGjRmk9Uw78IlFURA9TtYF95w7g4wPzR49g/u9/A19+iWFyOXd/+nQxSSoV6hQKWJiaMjc3N/7cuXPQ0tLCrVu3hICAAE4tjY2Li0NYWJg4ZsyYFv2C1UhJSQHHcRg2bBjc3d2hq6vL6qu38mZmZko3N7eGQeI4DtOnT+cTEhJgY2NDxjGAN1asgLa2NpZZWUFr4kQkJiaKBQUFMDExwYkTJ7gTJ07g3Llzore3N7O2tsaxY8dgZmaGsrKyJxkqEeCCAiLMcXFEDuvq6HVPT4rSGBkBq1aRUWFmRsTEyoqI8YcfkkGhlvUdPUpjOmYMOVHs7OjzAwOJBP5ZqFREUASBvkuhIFLGcXQf1dV07To6iIuORpq9PfQqKlDNmKqPtTXPqqvp99QGXV0dGZT6+kRGy8qIdLi4ENmpqSGHRUoKvb+mhkjq3LlUCM7MrJlRwBiDo6MjHB0dMXDgQOjo6EChUEBPTw/BwcEoLi5m27ZtwwhPT6SPGoWwqVMx9vXXMcPeHowxSCQSXLp0CREREXjvvfcgk8la6iAlEmjfuQPb0aNpvbZV0E+NxERKOVD3wG4HNDQ04OzsrMrOzuaMjIxaEv3KSpI+WlqSVL+8nNQPycmNEvWXX25MS6iXSgMgibVKRfOVlgY7pRIvnT4Ng9JSZti1K62XTz6h6/b0fHZ06KOPKJKYmEiOpJkzyQF19y6NzfbtzY30mhoi3F9/TdLf99+nvO8hQ4j0t0JynwdjxoxB7969sXPnTuzYsQOurq6qSZMm8Q1jqKdHBvKTEvMdO1r/bo6j8SwspDUH0PrnOBQWFjKAiuU17N2AAFLNWFnRvpXJUB0bK27r3p0ZWVqKCxcubN2Kramh75HJAHNzyL/5BucMDVVSqZQNHDiQ09HRQUZGBvLy8jBz5kwWFRUFKJX4+q23gNJSSCQSDBkyBM7Ozo0tL/8fe98ZFtXZbr2ePYWhd6SKHQFBBBuIit3XEhF7N9FYYkmMMWqiMaQZW2KiJprYEjV2g4pYEcWCDVFAOgiISu8DQ5m9vx83w9BF3+ScnHys6+JCh5nZ7Sn3WnfT1KRQeLmcftvYUH5sTAxsAwOVfn5+7K233uJMtbTI6/jgAZi2Nvr27cs6d+6MoqIiaGlpIT4+np09exbnzp1DZWUlTExMlAsKCuie1iT6Xl5E8FXHHzWKIo4ePaIQ9RpF3PioKPTo1EmE69dpnK1fD1NBwMCbN2FhYYFDhw7hnXfewa1bt1BcXAwLCwsUFhbytz79FP3atRO1OXeORJG2bTFt2jTO398f58+fV2o9e8Z5Xb3KCnv3FkJ79WJP8/Mx0teX796+PVdd2E8koufaowfw3ns4f/cu9LS0UGhggOLKykpjfX2RlaUl066s5DS6d4enlpa4ZMwYyGQyyCQSyLS0oBUQgH5DhgCDB8Nv0yYh9dkz1vPOHeh9/z0OLVmCfnI5pI6OSO/Th1esXs1NMTFB6aFDzODDD7FBLofjli34Yd06waukhGl5evKBbdpw3VeuxIhRoypdly0Tl5SUVLdqBAAMGQLxzJnotHEj9PX1+YKCAk5fX79WfQ3F8OF4am+PU2ZmcHJy4oqLi6Eq5Gfg4wPDGmvVpEmTuF27diErK4vduXNH0NPTQ/fu3Wlstm9PRdm++47G8s6dNE8bEgEFgXLFVeuEnx+JdLGxry6SCRLTs7KyOE9PT4qGcXWltU1V6DEjgyL/VOlqNXDr1i2kpqYyAHhVhJW2tjYcHBz4PXv2cOPGjUOTXUcGDKDQeJmMruPxY9p7a6KyktbVPn0oMuPrr4F795A0YwYuJyXB2cGB1pS/E0+e0DoD0Nw+cYL+7eBA69uhQyS2/Q8iKioKgiCgWQWJFQoSJE6cIPF+1y5K13oDYSQhIUEGYI8gCEvXrVtX8vpn/u9Gi2e/BS34F+PLL78cL5FIfp8wYYJms9qC/U/jk0+IhO7eTYa0qam6KM6KFbTh9uxZux1bFUJCQoRLly4xFxcXISoqikkkEl4mk7HCwkJVNXFh9erVDAAeP37MZ2VlCYMGDRIxxpCWlobDhw/DxcUFQ2rk4712/9fISMrpW7So2hCqqjnADxkwgJMUFODc6dPQf/4csqIiGLm5QffGDb67sTEHR0fyxltbE8np3JlChsPDKdfSxYVIRZs2REKaSge4fp1yfLOyyFjasEFNZh4+JEGlpIRI4saNTfYO/6uQl5eHy5cv4+nTp1AoFPjwww/fPKUhOppIfs+eFJY+fDh5C/v1oxBiIyMy3K2tGzUUXr58if3796Nz587C2D17WGLHjjhiYoLKykqYm5vzM2bM4LS0tFBRUQGe56HRlEe5sJDCVnfvbjIHHwCR2rAwMrxeA0+ePOFPnTrFWVpaqqsWnzlDosGGDeSdX7pUHQqpwqefkjdn2bJmH+vIkSP8yxcv2LKRIxlu36YogfnziUx5e5MXdN48EnrEYspJl0prR1b07UtG5jvvEOndt4+EAB8fMphv3yZxyN+fiL2ODj2zrl1fOz2kuQgMDMTNmzchFouxevVqmtszZtC9a6j1n5sbGe0NFe+qQsbixdD090fIrl24c+cOtLW18dG0aXSPIiJI7PjjDxLgoqKAoUNRWFKC77//HgsXLoRZY3nsWVkkfkyYACQmIiY7G4XLlgGCgHxqpyfcvn2blZaWYuXKlZCJRCjX08Put99GVo0xOHXqVHSsGTZ/5AgJhN9/r35t9mwoxWLscHYW8vLy2MqVKyHbuZPuTZ3e6yrI5XLI5XJoa2tjy4YNmLd7Ny6sWAGJmRnGentDKz0duH4dT3r1QlFREXr27Fl7LX34kNb3JUvwgOeVjoGBIsmYMRCr+r7XOM5PP/0EhUKBNWvWNJyL7eFB3zdnDo25RYvI+xsaSs9v3jzgrbcg2Npi45Il6H7/PtyfPoVWbCwJzBxH8zYmBhCLEbdsmWBx/TrbP2sW5lZUQHPWLHoeM2fS954+TWJFQQEJbE+ekGD0++/A1q3gbW0R2K0bIrt0gU5JCdr16SMMXLqUsZAQdYoDQASxqAhKjoN8wwZkzZkDTJwoVAoCrFasYDpvv03r982b4AF89dVXtfPLv/sOGDECsYwhIiICT548gb6+Prp16ya49+7N7g8ciKiBA/k+U6Zw9YTu+fNpf6mqA1FZWYmvv/4aIpEIAwcOVLq7u4savNfJycDy5SQWdetWP7z66VOK7nJ1pf936UIE8913GxxHdeHv76+MjY1ly5Yt4ziOI/I3a5a6m8jz51S3o049gPLycqxfvx4AMGHChIbrYNSB6pqrI1+awrlzFGVkbk4dOGbPpn345Elaf6OjKX3m7bdJ1Koaw7du3UJwcHC17fG3omtXOp8OHUjAdXcn+0kVNde7NxXzbSoq4S9CREQErl69qlQoFCJPT09lnz59mi4YkJBAQvXu3ST2ffst3c9r197IPlHV/hCLxVcEQRArlcph69atK3+Ta/k34h/k4mtBC1rwV8LX17erRCL5bfbs2ZrVYX7/JOTlqXO1iopImX7wgAh0WBgZp3X7NteAu7s76969OyQSCRs2bBji4uK4yMhI5YwZM0Rbt26FRCJhSUlJsLKygp+fHwcA7dq1g7+/v2BtbY3y8nJWVwBpFtEXBPI2V1TQNdy4QaHorVoBTk4w3LkTCyMiOBQWAmFh8NHQEIqyswETE3b96VP0dnPj0LcvEQvGiKjWPG4T7dHq4d49Mnjt7Ijg7d1bv9WVgwO9/sknZKhOmULE//Tp5h/nDWBoaIiJEyfi66rCTE2S56bQpw+FIK9ZQ9c4fTqF848ZQx7j9HQyvocPp/f26kXGTceOgI0NlEolAgIC+MePH3O93Nww5OxZhs8/R3s3NywrLUV4eDguXrzIyeVyaGlpNZ7nXRN6elQIb8wYiqJozIN16xYZicuXv/ZlZ2RkMKGyEoM6dWKYOZOesbExFTKytW34+VVUUG7oaxbCe+utt7itW7ciFoCdKpf93Dn6LZfTsa2s6JqvX6e5OmMGGbl9+1Lo9v795OUdMkTdFSIsjIzQr76i8PbVq2n8/Q+kEaWlpeHu3bvw9vaGn58fvvzyS7i6umJ0Rka94/M8j9TUVBR07oz4wEC+JDMTurq6XHZ2Nm9pacnJ5XIhOTlZqKys5MRGRug2a5YyKzUV7ePiRFoKBUozMqDZvj2lS2hqUpHJVq2IlP7yCx5UjatGiT5A5PLTT4nst2+PttbWOOvoKEiys1nihQvoER4O40mTkMXzgkwmYxAEKA4cgFFlJfKTkgSlUskA1C7YxvPUTSAvrzbZ//ZbvLh7F8Xh4WzkyJH0fW3a0JiqW2StCtra2tCuinz4SCLB1SFDkFJYCBQW4t6YMbATiXB+0iTh2YkTTE9PT7h27RrMzc2VY8aMESsUCpQZGaG1hgbKw8PB6euLMHEixPPm1Vr7zp8/XxkaGirW0tLiGWNcZGRkdZHNWqhJCAoLKZpp+XIiiRIJjd05c4AzZyDz80OKrS0M9fTgKpXSmvHVV7S3DB4MAOh09iwrzMtD2bff4sXz50L7hw8Z4uJoLUlOJjHh1Ckq3GZrS0VDDQyqe4vzL1/i/qZN6Nu3L/r27QsADG3bkrd7wQISBvv2JaHs5EmIXryAnosL9IyNgdBQNSlU9XV3dAQ3bx6kUqlQUFDAVNFkqKgAgoNhN28e7Ozs0L17dwQGBiIkMJAZLV6M4FGjMHrSpPpEnx4gzdMqsi8Wi7Fs2TJcuHABN2/eFHk01iWjTRvyvBYVUXFMLy+6DyphYP16EuxdXEh8jYhoVHCtqKhAVFQUOnfujIqKCpSXl+PRo0ei9957T733fvEFkft27UhQWbiQ7ncdSKVS2NnZCXFxcSw4OJh3cHB45eatmhumpqavFvZVfeWHD6dotY4dKUrJw4Oin8TiBtfZW7duQU9P7+8n+i9fksCismFEItr/kpNp3HEciY5Tp9I+9DcJqgAQEhKCy5cvw83NDUOHDoVEImma6MfGErGXSsl+0tMj0t9Y9EgjKCgogEwmg4aGBmQyGRQKBSorKweLRKI/Afzri+69DlrIfgta8C+Er6+vuVQq9R8xYoTWP5LoA6TkZmeTF6ZnTwr1XLCAiN0PPzTYhqcuVMRMJpPB2dkZzs7OIgBYtGgRIiMjhcOHDzOO46Ctrc1ra2vzBw4cEBsYGCArK0vw8fFh7eqGYCuVVCE5K4sIwf37ZCgrlbVD6i0tyTC/f5886AkJ5KVs3x74/HMyKC0tAcZgDjBzkMcq76ef8MjCgm/Xrx/3X7Xiu32b2pgFBVEBrnXrGuxnXXVz6G9RUXROW7aQoBIVRWF0Ko/M3wSVt0ihULxeLjhAwkrfvkQkZ88mz+CaNURiPDzIwPz5ZzJAFy0iIyI+nrxNX3+NkuJi3OjcWciVSDiZgQG4n38WkoqK2JOUFIx0dYWWlhbKy8thYmLCm5qavp41xPNkRAUGNlwwUqmk13fuJFGguVAqgeJidD55krkdPIhKb2/yQs+c+eoogi+/JK+aqmd8MyGTySCTyZCamgq7ugUEtbXV7fI+/ZR+ALr2khK652lpFIbu6UniS0wMeVC7daP5s307ech0dJqOUPmLUFxcjEOHDgn9+vUTunbtyllZWWH37t2IvHULDz08gH374OzsjLFV1d6/++47Xi6Xc05jxiidIiNF0To6fHlFRaWdnZ04IiKCNzIyEsaPHy8yMTGBpqYmGbM//gjezw+BHh7YV1KC9xYsoIMrlUSaP/2UvJIAKjdtEioqKtjBgwf5sWPHcto10gVyc3MRFRWFjh06oNXeveq+7gCko0ezsLAweGppodfFi+x+RgbfVSIRwPMizJgBve3bMdnQELGxsezo0aO1vcA8T3Nj/nwSYSIj1aHR5uaI3bdPmJaZCdu1a+lgcjlFnzRC9quhUEDr1i2M2r4dozp0QFRUFCpv3hQC7e2ZQqHAqFGj0K1bN/bs2TMcPXpUvH37dgiCAMOKCnhcvIguz55BOnUqLyss5DBrFpFDqRQgb7V44MCB8PDw4P7880+EhYUpnZyc6hMHqZTG+Y8/0tyYP5/W7KVLKaKlap1JXL9emPjkCdu7ZAlc/vOfqtNXQHjyBMUSCdJbtYJcLkdJSQlKSkpQpqeHmw4OaD9rFtUnefyYhIP8fPKgdu9O6+2NG1RLxMoKiIuDuGtX9OvXTwgMDGTNJ9poAAAgAElEQVShoaHKtm3bitzd3WHGcUTQc3NJENbToz3vzh0SzWbMIA+xah8yMaHIrrIyICEB+mZmfF5urqia7A8dSukSVWjTpg3mzJmDoA0bBP2CAlauoYFG6/HMmVPdHk0FPT09DBkyBDt27EB5eXnj6zNjdO737tE+OHkyCapffknpYiUlVATWwaFRop+Tk4OTJ08K6enpzM/Pr3qcmpmZVRoZGdXmIlOnEsHPyKD1p5Gq8t7e3uzixYt49OgRl5+f33gRWJ6ny8jNhY9SqTz18qXo6Ycfor2zM433jh0p+u3yZdq/09MpUufZMxLjP/2U1vmpU+n6migep6WlJVhZWf39ZD8xkTz7Ne93164kyqjQoQOJhxs3UpTVXwye5/HkyRNcvnwZM2bMQNu2bZsm+aWlNGefPiVhyMiI7KyyMkqJU62hDaC8vBzPnz9H26oohcTERBw8eLDWeziO28Tz/Jo1a9a0ePTroIXst6AF/zL4+vpyGhoa/j169DDvWqcP/D8GgkDhjf37E9mcM4e8gNu3qw3S/wImJibw8vJipqamwqNHj1hKfDw3c+BA7n5ICHrp6TETQWDIySFPY1ISGYzh4USKb96kkPpJk8jYUIXUCwJ5OWbMUOecT59Ov995h15rIg9QW1sbHh4ewpUrV7hNmzbB1tZWOXv27NfrjXP1Kv38+CMJJC9e1Kqs3ihGjiRRZfBgIvyWliQWbNtGQsXfUTyoCh988AE2bdqEK1euwMfHp/kfLC4mA2XrVhKGaoLjKKxfLqexo6lJ7frs7Kqr3ef7+ODYZ5+hp6EhG2JsDP74cSgSEljcsGF83vXr3C8xMZi3ejWio6PRoUOH178BhoZkpCQlVedw10JODhGsRsKia4HnifRoaJDn+623YDB2LPYC0AoLwzsrVrz6OwoKyCM2f/5rXYZCocCuXbtQVFSE8vJyJZpor1gLqhzZ1q3JI5mbS4S+Rw8iM6NGkTghl9OzCgqifPSePWmuKxQ0lyorKf1CJqP5VTfS5Q1w4cIF8DzP+vTpU53Pu2rVKiitrBAzeDBOtGuH8PBwjB49GmKxGIIgMDs7O95nwgQRli+H3eHDHDw9OQDo169f7ZOprKSw3pMnwZ0/D/nNmxi5axdefvIJLKysaJ1YuVJdiPHCBQz95hsm37MH4ZGRXEpKSnXIMc/z2L9/vyCRSITAwEBuVlCQoL1gATMcPx63b9/G48ePIZVK4TB9OqQrVuBDhYKDjQ3d+7g4QFcXL168wPHjx2FpaclzNV2Va9fSM9m0icbpkCHkNa2q2RHdpg3z1NRUiwvjxpG3W6lsumXXw4e03nXoAJSXw+GDD4Ddu5mzrS0AVM8jW1tbfPjhhxAEAZIvvgA2bULB2bMocXZGl1at6Dzz8ynq6MgR4I8/IJVKBUNDQ6bqiuHj41P7RJRKCmV/7z016RWLidxHRanX5Z07gZISFK5cicPBwRAxhvPnz8Pf358+4uQEDUEQxFevChoaGoKGhgY0NTUF66wsscuFCxQhsGQJ3avkZPKYtmpFZCQtjXqxy2S0NkmlwKefwnXCBJbm5QXG8yLLQ4fw5+zZwnxXV4YNG9QRSYmJNBcWLqT1TdW+ryacnWlNSUnBu+3bi/Lv36fUF4D2l9GjSUxT1UVITMSA3r3ZFwoFAFQXGK2HiAgS6OoUoAwKClICEClrdl1pDDIZ7Y2ffUZpOgEBtE9OmkRRPxER6toTQK15fPLkSaSnp7NVq1aB47iare9q8xDGKFJALqc17dixhs+lvByywkI4OjpC2LcPivBwEiDmzaNID1XBy2PHSGDcswdplZWw+fFHEZYtgyg/n+YHQEKynh5FYIwYQc8lIoI8+e+/T/Nh/Xoi/FXRII3B2dkZISEhAmrMhb8FGRkkNtVEUZG6CKUK06dTwdS4uL+0Ov+tW7dw9epV8DyPt956S2jbtm3T16uqfXDrlvrfKodOeDiNmQZSTXmex9OnT6uJ/WeffYbc3Fwkqgt5jgdwouq9sS2h+w2jhey3oAX/MjDGZhkaGnYeMGDAP3d+f/gheQPatyfjLTiYlPRXVf2tC54nj45SSZtZeTl5UNLTga5d4bhjB3OIiECgszPEd+/CtVUrKrBnakpqvqsrbd6qNlH6+rWJb5U36JX49FPy4np7N0lUPDw8WMeOHSGRSLBjxw7R0aNHhbFjx7JXerxVuagPH5IxkpT0elV2HRwo/PTGDfKUA2QMLVxIHqvDhym3728o3hgfHw9WlWPq5uYGWyIFr0Z4OKV1bNxIpPmPP2r/nTEyeOfNo/sTF0fGYY8eAICA8+f5DDMzzmrBAnAZGeCOHIHO77/DNTmZ65iRgbgLF/D06FG0s7KC20cfMRQWvrZHvLq90erVtftInz1LOat1e7fXxcOHdM/XryfjMiiIiESXLtACkHPrFnKePUNsbGx9j3tdPHhA31PXAHwFUlJSkJ+fj8WLF8PY2Pj1GzOXlZGX88QJ8oyZmBAZ+PZbmuOBgZRLqqpiX1JCIaiJiTR/09Lo37/+Ss/Ty4vSMioqSAzU1SXPZ1kZzVlz8wbHaWZmJkJDQ+Hi4oJ+/fohKiqq3ntEERFw1NBAJ6kUP/30k/Dtt98yU1NTlJWVMScnJwbGKFqnsQiKlBR61tbWwJ9/Iq2kBNmBgXymmRmnfPYMFvr65M3ftYsIEEBhwJmZcIyMRHRoaC0ylp+fj6KiIrZ27Vp2/Phx5Pn5sdCTJxGTmAjGGCZMmIDOnTurjy+TkbcxPZ3m7ezZSJw/H0ZGRvzcuXPVC8/GjSRg/uc/dE91dIjkFRcDSUm4nZ6OXENDsHnzKLz/ww/pu729KRqgsSragkB56qpru3+fyG4jUUXiFy9IbHB1Bd55B/r9+9cO0zUwoHnC84AgYICfHxTdusHv1i2lvb097O3taTxevkzrwQcf0L0dPJjG07p1RPBjYug1Ly8i6U+eAA4OcB06lBVpaODatWuYO3cuzMzMIBaLwSorAT09hvv3Gbp0IY/ounW4ZmvLGwYF0X2cN4/E5wcPyLusEkUMDChnG6AaGgCgVCJ//36kBgVhlLk5DIqK0HXOHIauXammxltv0Rq2bRtdww8/0FpT1UGhQdjYIHzMGIjs7QWTP/5gGDuWrtXNjcQ0Fen84APA2hrdR4/G/fv3cfDgQaxatap+2lTHjhRNUAfZ2dno3Lkzr6mpSdfN80QkU1PpuqOi6LXwcCKT3bvTGImOpv2krExdQNXTk/bx7Gxg7lya64MGAebmkA4Zwq/YsoWTTphAa/X331M6xgcf0P40bx55offupefn6Ulr64gRlBfv5UV/NzWl1I2lS4HgYJyaPVuYEhrKWGgoedxV4vfkySQ8ACQeaGvj+d27uLR8Of4zbBja9Oypvgk18/d1dSklRBDINnn/fZofPE+dTF5B9t3c3FhQUFDTkRJ/BU6erC/sduhA62jNeglmZnTvfvmF5uJfIOwrFArcvHlTGDx4MLO3t4eBgUHTX3r5MolDXl4kZjNWO3Jz794GCwcrFArs37+/JDs7uwyAIQB88cUXtd6zbt26k76+vjoAvAAE/HdX9u/FP5cMtKAFLXht+Pr6ijQ0NNYOGjRI+7UKzf1PgufJ6MjMJA/f8uX1q9YKAnnQEhLofYaGZFjm5tLfUlLIA7J8ORGBVavURrqtLXkf7OyAb7+FslUr3NmzB/dEIkilUoHneQiCgNH6+szB3f2vuab27Snf7MgRCvVrBIyx6rzdmTNnYt++fSw2NrY6L7W4uBhisRgy1Ub48iV5G+7cofD7LVverNgOY2QAPHqkJvsAqendu9NmXFlJRtpfnPaRmJgIc3NzvqSkhPPz8xN69OjBOnTo0HT+cmIiEYg7dyiSoSkC27s3/fzxBz2DhASUCALi4+M5AAjduxfDi4vJOKrqVa8LoNOiRbi8b5/SNTGRM7pyhSEoiLzxRkZ0z9u0IU90U5BIiJzXNAAFgQzVP/9sWDxJSKD836FDKTT/o4+ILBsY0HOq0T5q1qxZ+O2335CSktI02S8rIyNP1abrNaBKhWmWZ68u4uKo+FtSEnn59PVx584dwWbSJGZ15AiRm44dSQibMYPSGbS0aL60bw9BENQF2FQtusrKaM6np9NPTg556A4fpt9DhxLhFYlorLZpgwILCwT5+fEF2trc/ZAQCFWe6dDQUDg7O5PRvWEDpdfMnAkJgPnz57OrV68KpaWlgouLC3NwcKATEQQ6v/h4tYe7qIjmyObNVIF78GCAMezdvh0Cx3HWX36Jvhoa9OzOnKkVSisIAniRCMbTp2OUSIRLRkZ49OgRr1AokJuby1lbWys5jhNNmjQJN/X14WVkBGVystC6dWtWi+irEB+vTnvKz0dhQIAw6M8/ufj+/dHR0ZEM+tRUIls1Q7r79KHIjzlz4LJ7N65JJEhIT4fjpk3k2TQyot9NefUzMujavLxIxElMJGGrIQJRUkLvy8ige6aqBVEXYjGl4OTkQLOoCFxQEHR4HnqWliJ+5Ehwv/5Kc+bJEzq3hAR6RiNGUBh5ly70vAYNor3gyhUqCtmxI1BWVr2WJicnw8rSkgjc/PkkWAwfTmLThx+Cd3PDrehozvrgQRprPE/Xpq1Na6OhIb23oTB5kQhavXqh4sEDdFq8GOIPPqDXY2Ppd3ExjT8nJ7pvNTFmDEVVTJ1K5FSV5sJxiBwzBq319Oh6PD1JFP/mGyLeAM2DQ4cADQ10y83F/fv3AQCbN2+uX4BOFXWWlUUCRl4eYGWFKWlpooiDB1Fx4QIkxcW0H+zdS2vuwoW011pYUNi1nh7d4wMHqGL9jz/Se/39ad7WFC9Uven37gU4Dm2TkoQLAwdiZKtWkPK8OrWpVSsae4JA4xagNV+pJFIPEOk3Nyex4/ff6bWdOwEAH5SXs+94XujTvTtrZWysFmBq1vupSpu5UNXWsGdNot8QOnRQC1jx8fQchw+n88vMrN/Jowa0tbUhFouRkpJSu1DmXwmFgsSjPn1qv967N7XXrItRo0i0uXKFInz+C1RWVuKXX35RWltbs549ezJRU+tFaSnN/c6dqztu4PHj2qJ6TAytZT/9VO/jycnJyMjI0AJgB2AEgOuMsc2CIKiUAQUArFu3Tg7g3H91Yf9ytJD9FrTgXwSRSLTY2NjY7B9ZeV+FMWPIu7NgAZGvkhIyYs6eJePRxYW8nG3bUsijnR0ZDnl5ZEyrQuptbMiAVKnnjZBsMYCVq1ZBLBajvLycnTt3DhEREYiJiWlWBd9mw8mJPDbjxjWrN3jr1q1hZWXFx8bGck5OTsjLy8OOHTsAAO3y8pQDgoJEhomJSOnZE1YREdD5b5+pvT0ZQnJ57RZjbdqQt+zyZSK5UVF/aW/e7Oxs3tTUVOB5XoiMjGSXL19Genq6kJSUxKRSqTBlyhRWrz/yokVkXB8+TM+8X79XH2jqVDKKHz6EbMEC2M+ahRyJROj53XcM331XTfRV0DUygs/y5WpLpayMQnYDA0lUqWqBBomEiETXrg2nTEybRgbw4sXkAZo2jTxVa9ao35OfTyGhbdvSfVYoaPyHhzcYCcLzPK5fvy4EBwczkUhUnafYKF68IAP1DdJ2/vjjDwwaNEgwNTVtvstHEEio++gjChOtERp88eJFBgCun37Kj/rmG44dO0bGupERiQJGRoCBAcLCwoQzZ84wgHqFV1RUwNraGkxDg+a2jU3tY6rqIiiVJErl5wPR0SjLzkbAgQNon5zMdZfLUdm/P1hhIVIKCqDw9xfutm0LpxkzmEFYGCoyM1GRnQ0NAwPIZDKMGDGCoW64rbk5EZmiIhJgrl8n8lFeTs+uxtwxNDQUcnNz2bBhw0i0iIggsubpCfA8YuPjERAQgMLCQuiPHy9YOzoy3fR0QU9Pj+vUqRNsbGxgY2NTPQY9i4qAr7/GxBs3Gn8WTk5EwKoIh7tSyZ6fPo1Tx45h4bVrMJg6FeXLl0OnoSipYcOAZ8+glZuL4X374vSNGyjct0/p/vy5CEZGVHH98mWKxGgIS5bQOGeMCn4uWFCf6JeVkbATFERikKqdYBN4/vw5Ll68yL/08eGWamhgnK+v6En79sjU1RXMi4oYFi4EFi6EIAgICgoSdCorma22Noy7diUjdvNmKIYMQeyXX+KFsTEvvntX0D12DJ1WrRKZubqiZ1oazO7dA3/2LLidO+n5fPSRer7MmgVBqURlRQVaL1tGY+/XX9VinVhM19tE96ry8nIIgoDTp08L48aNq31TdHSIZH3+OXmRp0whURqg6JWOHUms7t+fCPMffwB6eigtLVVKO3QQobCQhN/evSmF4cIFSs3y8KCIml69YGFhgbVr12L37t38y+fPuYsHD/Jew4dzGh9/TF7ua9fIu/vkCc1BJyfAxga6Xbogu6CA3y2Tce/6+kJsbk73pi6Kikgwfu89ShFxdCQSnJJCItiKFUT+VVCtlVXX2dvMTPStiwuccnPRwdFRnfdeU6D8+WdKU7h4kcihat2r+Z5x42qdllQqhYWFBf/o0SNRZmam0sbGRtStW7dahVbPnTunjI6Orp5nd+/eRa9evRp+kD//TN1CVOJqQACJNYWFtFar6hQ0gpycHFRWViItLe3vI/vx8TTH6orJ+vpkT9WNUhOLaQ9T1Z1oRkvExvD777/zmpqabOLEiVyTRD8piZwfIhGlsnXrRoJJ3ei5334jAasBwVC173Ect2Xt2rWTfH19uRpEHwBeMxT0/1+0kP0WtOBfAl9f3/4SiWS9j4+PZoMtdP4JCAkhLwDHkXdq2zYiaTo6RFjef58UdWPj+pvCsGFvfFjVxq+hoYGcnBxeR0eHG/yKcLzXhrMzGY/37tX2njcBLy8v7tChQzA2NkZERITQhzG+r7+/qFBTU1QECGc+/pgvtrDgsk+ehLGxMdPX1xfGjx//Zg/X3JyISkxM7Zw+FYYMIdGFMQqRXb/+v86djo2NRWZmJjd69Gi0atUKHTp0QHFxMYKDg1FeXo6SkhK2f/9+rKiZk65QkCghCBTK7eZGHrWmIgFUkMmAXr3ATZ8Obx8fvBgwgB0eMQILvb3xyivR0KiV84/SUiok9PAhGZtt2xKpNzcn47x3b7UXVFdX3YO9a1d167YjRyhq5YcfKNXA3Z2MyVegoqICwcHBDACsra2Fjh07Nv7MVX2um/G9dVFSUgKe59GrVy/W7DUjL49C9HV0qIJyjSKXgiBAX19fsLGxYRGxsdxAOztoy+V0fo6ORNgLC5Fz5AjOnDnDWrVqhYyMDOzatQsA0L9/fzDGlEqlUuTg4IAGi4uKRECrVijU1MSR69eRk5MjGPTrx1x++w2cVAqpIAAFBeggl6Pi9m12xc9POH/gAPrq6qL0zBmUXL0KXhCQb2yM1i9eILdzZ8F5wQKWEhuLtm5ukHTujMrPP4f4wgUiq0olkf+qKuY1wfO8IJVKq+9dgakpnq1Ywdv9/juXMXUqAm7eRGFhIWQyGV+gUHA+Xbui9dtvMzx8SN6uuhgwoOnQ7shIqlFx5071S0YeHvh1yhTeOSSE07tzB36mpkhOSEC5ri6UVeS0R48eMKqKKNDT02OTDxxg7Z49Q9tx43Dt+nVRr8OHwan61u/YQSHVdcdDXBx5NXv3JgP99On6UUCPH5OXDiBi2AxSkZycjN/37cP7P/3Eyc6cgUZpKfD550jX0gJ35Agz++EHcD/8ACXH4ciRI3xCQgI3IDAQl1u3Rptbt1BWWAinTZtwNi4OuR07CtYlJczIyorLcnGB2/79CNfTQ/eICOSYmiLO3x+d4+PpwFeuUOHPqhaV5UFBGHfiBOI/+wyOEybUv/7Ro8mzW6cInCAISE9Pxy+//AIzMzNERUWxcXUIKQAiy0eOUMTA06fqVpwffqh+T24uea9jYwGZDLyWFrqPGkVCQGUlfe7XX0kU4Hmaf25uJHzl5oL74gt0dHdHv6NHYZaZyV3avZsfzRgHExNaz5YupbnYujXtr1IpXr58ifC4OM7a2poXzMy4epEdJSV0n2bOpLnXoYNaOA0OJiHH3Z3y5PfubbTAo4aGBgwNDYXw8HDWQdVWTwWeJ9FAW5vWT6mUcu2Dgih64RWYMGGCaN++fcqnT5+KIiMjYWFhAZsqsbCiogIPHjwQAYCOjo4wYMAA5uLi0vAXKZW0ttXdHz09adxv2kTrgELRYAHhgoICHDlyBABUXRn+HqSkNJzyyHFkO+Xl1befevWiYpPXrpGo9wZITU3FixcvuEWLFjXdtebIEYr+WLOGxKU1a0hEr+tEyMqi8VVHpBYEAY8ePYKBgQE0NTWF0tLSib6+vlPXrVun9PX1rc7RB2ANIP6NLub/M7SQ/Ra04F8AX19fC4lEcnry5Mmaxs0pCPa/AaWSvMt2dtT66JtvSPX/+GMyEJ89IyPGxYVCMw8cIKMiMpI8ZiEhRLoSEyms8A2r2evr6wvGxsbQURU4+ivh7k7haD16NKubwI0bNwQA7MmxY5h29Soz4DiRyNUVRr6+MOrQgdkCIkEQcOfOHSErK4sPCwvjXrx4ofTx8RFZW1sjLy8PBQUFaNOmTfPOTyWw7N/f8N87dybR5dIlMtbbtm06rLcJ8DwPPz8/wcPDAxYWFgwAVAUj3d3dWUxMDI4fP46JEyeqP1RaSvnQly6pDa7s7NfLpReJgI8/hmTGDJjn58Pi5Us8Cg2Fa1Uuf7OhqUkeegcH8l4XF5MR/uwZ5eeXlFDEiYkJGeAvXpAgtX49/d3ZmSIDJk0iQly35kATEKpImqOjI14p7ty9S+f6BoUti4qKIAgCysrKmtdyMDiYhBeplDx5Nca4UqlEcHCwIJfLWb9+/VBUVKT0NzZmk/T0OCxaRPnjx4/D78gRZcX8+aJ3YmMFm/Bwdv/BAwQEUKrl9evXIRKJREqlEvfu3cOqJipIx8fH4+XLl3BycmLe3t7qNlqqvGoDA0gmTIBjr15M7u0tiPPyELd9Oxs5ciT4oiIUZWSg9O5dRPr5scSDB2GUno7CAwdgVFICaV4erNLTwXr3pqJ2DRB9ACguLuY4jsPLly9x6NAhlJWVwZ7jUDJ3LgIDArBszx78Pno0PBct4gICAvgSgMO9ezTPGirqaGJC9zcnp+HCjhIJrZE1iKhCoUDn27c5LxcXVGzYgD46Ohg/aRLKdHXxeN06pKSkIDU1lY+Pj2f5+flcRkYG1hsYoFdUFFhCAl8uk3FPFi4UnAwNGSwsSDRSKut7DW/dIrITFETiVc1im4JAc2PAAHXxwKZQWUnX/vXXsD1+HMK4cXg2bhy6dOxInx84EF1fvsS5hAS+4O5dLuKjj9BRLudT27dn0ydPhtkvvyDF3l5w9vZmx2fMEHI++wwTQkKY3ooVDEOH0vM/dgwwNobXgAE4unt3pfaFC+KBDx+SV3zAAJq7jx/T+WRkQHPdOsi9vYXglBQh58YNrqCgAEZGRqioqEBpaSnfYft2aD5/joD33hPKyspYWVkZKy8vZ5WVldXzNTc3FzzPIzAwUDlo0CBaOAsKKDLJ35/uy++/q736daHakzZuBACUbd7MPZg2jfewsuLg60v74dmzJKKoamK0aUNk9KuvAC0tDPjPf7is4cOxbf9+DDAx4YTdu8ESEmhfHTuW1lIvLxJPjx1DaWkpJBIJZs2axdUS/FT1cPz9ab+YPl0tUKggEpEIoqFBaSP+/pS/30ihWkdHR4SFhfE8X7uWJNaupecVF0djCyBPdEhI0+OoClpaWli0aJHo1KlTiIiIqE4RKyoqqo6W09HR4ZcvX9605puYSB7punve9et03xijNJCff64WiWri/PnzQnZ2NgNQswDhX4+YmMaLARcXq/fvuvjkExor3brRuHlNnD59Gu3bt+cNDQ0bvo8VFfQs7e0pAiIggESi0aMbjha8f5/eW0e4ePToEc6cOQPGWLkgCFIA/1m3bp0SoBx9/N3FD/+FaCH7LWjB/3H4+voaS6XSy+7u7lr1Wsn9U1BZSeRn40baqADazK9dIyOhXz8q7AMQ8a8q2IQlS8iwefaMFGKAPNBvv02fc3Qkw/jAAcoNXbGC2tI5OTXa4qt9+/acv78/srOz+Xnz5v21hQ169CBDOSys8VDYGhhtasqyzp3j7S5d4jhPT7qOOkY+Ywzu7u4MAOvduzd+/vlnUXR0NM6cOaPMysoSSSQSfPLJJ807v5EjaRN+9qx+mLQKlpZ0/unpZJQGBNCze03s3LmzsqKiQtyQh4PjOJw8eRIAULMNGWQyMoZVRH/bNhoHS5e+3sG/+AJszhzIdu9G6vbtwrDx4xmWLGk4PLW50NGh83Jzo0Jm+fk0lp8+pWJTVR4d7NxJZGLq1DfuJx8REQEASEhIEFJTU1nrxtoqAhRivnv3axdeCgkJQVBQEFxcXHgtLa2m54Eg0DGuXqUUiwZSZsLCwnDr1i02YsQImJqaYvLkyaLvv/9euOzvD9fKSpQ8eQL/L74QsjhONHrsWNgkJjLwPHooFOixbh14nkdUVBQcHBzw3XffvbKGQEVVGzFXV9cm+2W3ptoPDDk5GGlhAQDgdHWhr6sL/Q4dMHrKFOTk5MDY2Bhffvkl2sfHY0B6usB0dOiGfvIJCTbLllEIc5VhmpaWBqVSqcphBQBoa2vzI/v04TQsLPCiuJi/5+AAPXd3OMhk3HVtbSE9PZ3v7OXFYds2Kv6myumuiXPnyBiv264xN5fmbRURVKHy9m10iYzEnZEjMczODroAcPUqNHNz0Ts4GL03bgTu3OFUYdUlJSVITk5Gh9WrIfXy4viZM4GFCxkGDqT82gMHKKf7/ffVB8nKIk94z55EpE+cUK+vhYUUydSlCwkBjYlOqsJvZma0pp84AUybhqiq+ghaH39cixBYWFhg5vr13PPnz/Fs61ah95UrnNeCBZDk5QHTp2PGF18wPH6MOZaWDDNmkOCmUFAIuCeOYhUAACAASURBVGouDBwICAJKJRJk2Nuj39KlJI4FBZFwUV5OAqOVFXDjBlpnZDDNkyeFuLg45cuXL0VSqVQwMzNjGhoaXMzUqdDS0YGjiQl0dHSgq6sLXV1d6OvrQyqVIjo6Gvfv38fTp0/x6NEj0cCBA8HKymjd6N+f0pGUShJsZsxodLzyVW3iAMCmbVuW0b49D4mECPqQIeoOMBIJRQtER6ufRVXesykAa2trBAUFoVOnTjDfu5fInUo0DQig53H5Mtro6YHneSEjI4PViqQZNozec+UKRZM0hLg4dW67qnjmjz9Sl4IGUtl69OjBbt68ybZs2SKsWLGCYfduGlurVlF6Q801zMeH9vLc3GYX7lW1HVStB8HBwSgrK8NqSgNoeo2LjiYinJBQPyJFX5/2zYQEPJs7F1anToF79121OFMFhUIhAGg6j/2/hSCQ2FAjuqcWBg1S13SoC5mMnCyrV5Nw8xqRe8XFxcjLy4OPj0/DH5LLaV/o3p2e3enTlBK0ZEnD+2BlJUXw1SkyWFlZiTNUd6FCEARdAJXr1q3j639BC14HLWS/BS34B8PX11cfwDDGWBeJRGLBcZwWY0wfgE1FRUU7nuclIpEIbm5u6N+/fzNcc/9LYIzyO4cOpfzdlSvJgBg7loj+9u3kcUlKIkVa1Y5IRWJnzFAbSElJ9FsuJ5LFGBmc+fn0uo8P5aDLZFRw6uVL2qgNDYHFi+GWlMRsZs7EroMHubS0NFjXbX3032LzZjKUHjxo3Ct++zZw+DBMTpyASe/eXEPhoQ3BxMQE1tbW/P3795lMJhO9++672Lt3b60cxO3btys1NDTw9ttvi+p5F0Qidc/g2bObPpi5OXmLrK3JgB4ypNnGwc2bN5GVlSWePXt2ox7jdu3aISEhATt27MC0adPQITWVvFU1CwzJ5a8fWXD8OHnsli4FNDTQ1dWVBU6ZIrzVqxfDuXN0n+sWNnoT6OuTNz88nEhwz54UPmlrS4Wt/gsYGBjAzMxMyMzMZPv27YOTk1PDbQsfPqSolzr1CF4FnucRHBwsjBo1ijk7Ozf9UJ8+JeK3YAHNt0YKOEZERAjW1tbM1dUVACCTyfD++++z8L59EbRnD18sFnMz9uxhZT//DGNV5eXHj6l41LNn4PT00KWKKHbv3h3Xr1/H8ePH0alTJxgZGWHv3r0AgHbt2gk+Pj7s4sWLAPDq7g4hISTEqDyGdcBxHExNTQFBgNv9+2ijoSFY/fQTtebU1iYS8+uvFKa8bx9FaUydCtHAgRAEAe3atYOdnR2uXr0qyOVyruzyZWj06QPv+fM5eHuTcW5oCPt33hHdLSyEl5cXiZWNCWgXLzZsHJ84QbUkagoEZ85Ax88PN774gr+XkMBZRkRQsU+plJ7ToEFEsBmj8Oqvv4aWhYW6VsnBg+CuXaPw9H79SExwcyPvYE2kpFAY88qV5InbtIleDwwk7zLHUS51QzUjVFXSP/uMcoYTE2ltrEqXOXHgAMzNzdGQUC2VStHW0hJt33qL4YsvaO2q8tRixQoSJJ88oToBsbE0/zZupOKYycl0D955BzPnzhUL776LJyNGwPn0afIofvYZqivc+/kBHAcLCwssXryYA4CoqChcvnxZ+fbbb9MiWlFB9yAkpHZHgSrY2dnheJVgLZfL8dvWrcK0VavYyc8/54udnYGDB2EdEQHX48e5PFfXWgU3VaksQp2aAFapqRiak0Nh+Bs30h5YUkJrznffETFtJPd82rRp2LBhA26eOcOPf/GCw+efq/9YFRVXvn8/ElNSBG70aCaTyWgfHT2a0jh++YVEkKZERBub2u3cJk+mSKwzZ9QF+mpAr0ps0NfSYpDLaf3U1GxYmBeLydvfv3+TRW9roqCgAIaGhggJCRGysrL4yMhIkZGRES+VSl+9cXXoQOO5sdST3r0RqVDgVFAQ7Dp0EIbcvcsMBgxAUVERdHV1wXEcUlJSOACYrhJkXgGe53H06FHo6OjA3t4e7dq1a1K4BEDjetiwWoVca8HenjqCNIYhQ8jJsn9/oykXDeHcuXMwMzPjrays6p/gmTO0Nvj7k5g3cyatEePHNx7hGBZG60q3brVefvDggeqfLi1t9P46tJD9FrTgHwhfX1+O47j5YrF4o7W1tdC6dWsdTU1NJhaLoaGhAR0dHZiYmEAqlUKpVELrDUPa/0ewfDkZnFV9UvHzz7W9P8bG1EIpK4vUZpWX8r33Gt/QADLEVRW8Fy9Wv56eTr8LCshLBZCXQeVpmD8fpqGhGJeczOs4O3PIzaUogf79yWvyww/0fW8ahmdmRp7f3bvrt8bJyiIvYWRkdesgvEYRH47jMGvWLC4uLg7W1tbQ09PDxIkTceLECRQWFqJNmzbIyckRmZmZCT/88AM/depUzqLKm1mNTp2ItDQURlwXs2eTcfnee2Qcq+53E3j+/DmCg4MxYcKEJonYlClTsHXrVhQVFeHQoUNwLCzkB7Rrx9WKa1i2rFnFDqtx7hyd77ZtgIEBYmJiEBwcDE5bm+U/fSrYHzokWMXHM8vYWAaR6M1qElRU0FjW1KTza9OGCLeqpkB0NBGZ/6LeQUpKCp+ZmcmZmpoKZWVlgru7e8NfVlxMhlVzQvBr4JdffqmUSqUiVReIRnH9Ookn48dTHYJGrkmhUCA1NZVNmzat1utaWlro7ekJyGQcVqwAvvkGOgUFRMoMDYkcZmfTPe3cmUi5iwtcXV0REhIixMTEsLot9JKSktjmzZsBAAMGDOAZY03f6KwstRDYGMrLkbdrF2xevIDBr78ydOpE86NzZwqbXrqUfpKSgJ9/RsXp0zCZNw/T+/QRrIYOZbIePdC9e3cGAFxkZG1PJGPIuH8fwYcPw+vcOQhDh4J160brTe/eVNBxyRL1+3//Hbh5k8i9CoJABGzuXPVrqak0J0+dwiBra+7e+vW4ePEiunTpou5wYGxM311cTEQ+N5c+17EjnaNq7fHxoTz8xES65vgaabBlZXTcPXtorKtqpxw8SGRh1Soy3GsiNZWEqLfeIsHhxAmKGvjmG/p7FdFNqhJuq4WsrCwi06NHkzDs5UXh58uXk1AwZAitnfb2FAVw9ixdo5ERiQpmZnQMFbFNTwc4Dk8iIvDnunVY1bMniTVff00Cc1IS7TU//0zPe+3aauJZtbeqma5EQsfMy2uwNWNISEg1WfeqrATXvTt7sn07rO3tq8enYGmJExUVUJw7h44dOyI5ORlhYWFITk7mRSIRZ2VlpZw5aJCI27mTUtUKC4HWramF3+XL5DHv3Zv2zz17qNDfd9812K1EJpNBX09PcNq8mTs8eDDeqqyEdo219MaNG7jZpQs6jh3LL7t2TSQdPJha6Q0ZQgJcc6KStm2rXUWdMSLmS5bQ+ddp4aiK1pm0YQMJFd9/3/h3a2qSQ+A1io6amJggIiICQUFBDIAIAGxsbF4d8nT4MF3HjRsN/pnneTxt1w537t7F8PR0ZZGNDSv8+GO2c+xYoUKpZLa2toKPjw8DKBKvZnRGU1AoFIiLi4Ouri4ePnwIBwcHYcKECU2fb1oa4OaGyspKXL16FYaGhuhRM0XNxITqBi1c2LBQwxg9n6lT6Tk3oxaOqqBxnz59aq+1paU0L4ODyZNva0tRMxoa9O+m9qWNG2u3q60+/eronlf0rW3B66CF7LegBf8wVLXPO21gYODl7e2t3WCRqv9L8PCo7bU2MmrYYDI1pZ67JSUUCtinDxX8ad+eDIfXhb6+uiXaxx+rX8/NBQPQfsMG7qCeHmyvXMFgW1s6flERebOXLiVDNjSUvI9Dh9K5ubuTkbh2LRnBEknDBGj2bPKMqAr5JCaSd/TyZTLQf/2VrusNIBaLa3URaN26NSoqKnD79m3cvn0b+vr6wpw5c9iZM2dw8OBBYeHChaxWfQJ7e3WRqOacg5YWGdgiEYkYH3zQaA4zAFy6dIm3t7cXHBwcmnTJcxyHadOmISQkBK1v3MC94mJuu6UlVpWVUY/ozEyKKpDLm0dmX7yge7tjR7Wn28bGBrq6urCwsFDGxcWJnnp4MLGnJz7dto2EpRs3ml/7ITOTUkyuXCHPYf/+RHgGDVK/RxBojBw6RCkTb4h+/fpxt27dQlZWFgPArly5IsyYMaO25fbsGYXU371b/RLP87h9+zbatm0LCwsLcBynyiFGz549cerUKaGwsBAlJSXixYsXo9GifKoUmuRk8gC9ojtDUVWrOb3Gait0704EztWVCNaUKSQi6OrSsxWLSWhr1w64cAF6Hh5YvXo1A4CvvvoKEokEM2fOhIWFBaKjo6GlpYXffvsNZmZmHM/zTXvDBg4k0tkY8vKALVsQdfeu8GLZMkxwc6ObwnHU3u3x42pyKrRti6cLF+LUqVPo0LFjpXdxsRgTJwLGxuDGjCHP5pIlZMTWiBgqlUggCAJapadD+fw5xC4uZHQvW1a/00T37vXFCV9fih4JDqb/37hBnrSQEEBTE1IAK1euxMaNG5GVlVW/raWODq09AK1lRkYkhIpERPhXrqR0qBs3KDUlLY3Oy8qKvJ1WVuS5Dw2ledavHxG969fV6UqCQOe5cCHVpzh7ltaLvLwGSUfa2bO4d+YMOnTqBJMxY8hTHxNDc2r4cGDiREqLcnFRzyVHR1pTVZ7gmmKVak3U1KQf1TMEed3NFAr+9rRpXC+eh+aECXT+qnGzZg1Fkd27R+t1nz6QSqXgeb72iR87RqH/NZCfn4+DBw8KeXl5bNiwYbyFWMy1HjgQbM6c+oVaPTzwfORIxBYV4dtvv0VVpw3l4H79RPoHDkD244+iX7y90Ts1lXfZsoWrviZBUBcJXbqU7idjJNxu2UKEvwEMMzBgYkFAnKkp7ty5IwwYMICp5sr169fBSkogv3mTi4mP550qKjjI5cDq1WDNjabi+fqRPsbGRNIfPCDhyMQEcrkcL1++hGLlSsHI0pLJzpxpXo2RpCS6blU7vVegX79+6NixI3bv3g2xWAxDQ0M4Ozu/muy3akWiWx0oFAqcOnVKSE5OZiKRCJ4ZGUqXoCDR9e+/F/LPnIFGfj4TDA1RVlbGtm3bBsYY1qxZg5cvX+LSpUsoKyuDp6cnDBuJFpDJZDA0NEReXl7VabRiqvUsNzcXRg2lLyQkIDUvDye3beMlEgkrLi5m5eXl6KOKVjMyoiiX3NyG634AZE+tWkVjZ8OGV94elWhfa7+Qyyl6o107EssyMii6be9edUpbY4iKojWlgTFQ45o1ARS+8uRa0Cy0kP0WtOAfBrFY/KmpqemA2bNna/2tuV9/N6KjaTMIDa3tnV29mjxEVX1y60FLizaiZcuI9G/YQKTGxeUv7QGvYWIC15kzlQEBASKdIUPQW9WXNzubfu/cSRsmQB6K1q2JYP3xB5H9kSPJ2Ll6lYzQAwfIyDx2jCIVSktJvb57lzw0rVqRB7hm2ONfAJ7nYW1tzVtbW/O2trZisVjMpFIpRo0axU6ePMnv2LEDgwcPZo6OjtRzmjFS3Y8eVadJvAoq41lVI6GxAmIA8vLyBBcXl2YN3FatWsHb2xtFX32FdDMzZFha4tq1a/ywYcM4GBhQuGFziH5aGpH848drVYfX1tbGh1TtWlRcXIzi4mLs2rULmRMnwszSkp7L1q00JhsjvsnJRIqGDSMP9JgxRBSGDKmfYsAYeRNlMjLQ37ArRlU7KaG0tJTl5+cjKSmJxcbGQkNDA9ra2hR2fv06KkaOxDdVIdXLli3D9zU8ZaampoKRkRFLS0uDXC7HvXv3oFQqmbGxsTBq1ChBV1e34ZOLjCTRZM4cEnVq1lRoBKamptDW1sbZs2eFOXPmNPy9y5YR2f/xR5rLMTH0f5GI7pOqVeHq1eRpXrsWALCmZgtDAPb29igvLwfHcTh69CgAYNCgQYKnp2f94169SiJDcXHDzyIlhcLmRSJEeHsrc1JTxWFhYYiOjuZ5nsf0LVs4bNpE+aViMeRyOQ4cOAAHBwfB+6OPyH764QcSRCIiiJxWVJDB6+ZWPW/atGkDPT095b21a0WdRo4kgjx0KBX/S06meXXvHt1rDw8Kw605fmbNUvcNz8yk2hOHDqnnJYg4SKVSQSwWNz3oLl2i69m1i9bWp08p2mjXLsrB3raN7ptqDJ8+TZ71Fy/oXPfto/W8Rw8S1a5cofd//TUR/IEDaf2uWVzRz4/WnMJCYMkS8MeOQfHZZ+iqVEJ7xQqkFRbCqFs3aHl7I3vuXBiLxZQTXQWlUomysjJoamqCmZurK/7XQE5ODvz8/ARPT0+mq6sLQ0NDFBUVQSSXI3/zZvQpLuZSS0qQ9uWX6FiValINHR0al9eukdg7dy6kHh71PbQffUTXUDXuAODq1avIyclhPiNHotOmTZzG/v0kcDRU1V4QMHLBAjilp8MSgEFFBdjq1SI4OpIwMGECempp4bS/P9fK0BDVEndoKP188kntiLOPP6bc7SdP1K3sVKishH1ICHLPnoXhpUu4efMm8/T0hIaGBk4cP64UCwI3/dw5hvJytmfyZBZlZ6d07tdPJOF56AQFoV5EWF1UVFBaQUNC4KBBFJ2yezewciV+2roVirIyzL57l3WcNQsajVXDrwuRiJ7JayAmJgYSiQSampp8Tk4OFxoaqiwqKhJFR0crX7x4wbm6ukJbW5t17twZurq6tF8bGFCaUh2EhYUhPj6eTZ48GZ06dQJjTAQAPbOzWcjkycpRR4+Kjo4dC57n+T59+nBhYWH49ttvIQgCrK2tlampqaK0tDR+4cKF1akhDx484EeNGsUZGBjgp59+UvI8z02cOJHFxcUpg4KCRHfv3uWdnJy4u3fvwsPDA+7u7ggMDESPHj1gaWkJnDiBa+3aCYUmJtxHH32Ehw8fIiIigi8vL+eeP3+OIUOGoNWgQSRSDhxY63qKi4tRXl5OhLp/fxIPr1xRO0UaQWlpKQCoU20uXCCHxZo1tJa9fEkC5dixzYvEePCABMMG0mEiIyMBABzHXQXgWO8NLXgjtJD9FrTgHwRfX18mEok+Hjt27P9tog8QSRs7tn4Y9oULzfu8hgZ5e6ZPpxzFd96hDWL58tcOW24M3bp1E1VUVCAwMFB49OiRYGxszE+YMIHWRVXeK0DkR4XoaPp96RJ59wF13+T792kDPX6cSADPq9XuusbYXwQtLS3MmTOHQ50CRDKZDO3ateNSUlLg7++PixcvCg4ODmzw4MHQqQqPLJg7F3fCwtCnT5/mdSdQhd05O6trLdSBRCJhcrm8+RcQE4Ok3btx//RpAEB1pd8zZ2p5RxuFIBAZGju2FtGvCx0dnWrj3cTSkrywql7AY8eSmFOT2CYlEelasICIvlJJ9RgGDmy0+CMAIknz5xMxqsorfxO8++67TBUSunXrVuHIkSPVVZ415HKM8vPDUVXveQB79uwBQAKHi4sLbt26xbKq2gHOnTsXxcXFOHLkCGxtbVmD4ftKJXlcZswgEviarS67dOki3L17lyUnJzfcHYIxms/nzlFthvnziSjUDeV8+FD9TBlrsHOEVCrFhx9+iAcPHiAoKAjR0dHMs07IMAAqlBgR0TDRDwsj4ursDPj6YgEgDggIEK5fv640MTERJSYmsqzcXJiGhNBY9PGBjo4OjI2NhYKCAgGqitBSKYXYA5SLP2gQEBuLrBUrIDl6FCHTpglRNjYoKysTJSUl4dmzZ2i9eTN5aSMiKALpP/9R57ZyHAkdPXrQeA4IoJSkKVOI2Kla7zUwBnmeZ82qAi4Wkwfe1ZWEkCFDyKOemUmk//x5Eja9vCh6wNycxvOsWRSltG0bnfOmTRQN9fw53ePgYCJPNjZE/H/4gQSEdevovMeNAz77DFFFRTjp7U2Xe/QodI2NlSV//CEyNjbmMzMzudatW/PTpk3jGGMICAhQhoeHi3ieh6mpqTDH3JxJqqJZ0tPTceHCBWVBQQGXn5/PADBV6zORIMAhJgaO4eFI7NABKc7OQma7dqxHU2uKlxd5o2NjYTR9OvS7das9cD75hK63Bvr06YNnz54pr5w9yxncucMS/P35vmPHcvWeQtV9083JgePXX5MIfOUKCQheXhA4DqGhoSiu+v7MzEwi3P7+JOwEBNTf93R16Xv37iURuuY4/+MPQFcXRnZ2sIiIEDQ1NQUNDQ0OJSUYuny5SMfeHicmTADT1RWQn8/Ky8uZ/u+/I/TaNaT98AN6uLmh29ixjVeVz8qiPfC99+r9qaioCDpr1kAYOxbczZtYtnkzfp00CXvffReMMcRv28ZPnz6da8zjXY0tW0jIkMubFB0LCwsRGhoKVRePKVOmoG3btlxOTg4uXbrEXbt2TWlubs55eHiwiIgIvri4WLh//z7ee+89Dnv2AMOH44/sbKVCoWDjx4/nVBFK5ubmkEqluHbtGm9nZ0f7UmQk9Hv2xPCsLBF/5gwWDx4MQ3d3jjGGvn37oqCgADo6OoiMjBQlJyejpKSEbd26Vdm6dWsuJyeHvXjxgtuxYwdEIhF0dHS4xYsXM7FYDDs7O1F4eDi0tbURGhqKvn374saNG7hz5w6kUikSEhKE4e7urG1+PiTu7tRhAUBxcTGfkZHBKRQKwdbWVti7dy83RSxGG1U6I0hkuHPnDtLS0iCVSoVVq1YxyGQ0h2/fJoFRSws8z6OkpKSWLZCZmYmdO3eic+fOyrbm5iIEB5Mg9uuvFCUYE0P75+7d1QJtkygqovWrjoirQlZWVqlYLN5cWVm59dVf1oLmooXst6AF/yyIeZ6X6b9hFe9/BASBNpG1a6kwXl389huR9y1bmvd9Fhb04+REG0vXrkT8FyyoVw33TdC9e3doaGiwjIwMdu/ePe706dMYPXr0qwvlcJzas6bauGJiyDhZsYJCf83MyBMUF0f/bqoGwV+EtLQ0nD9/ns/NzWUA2PDhw2FjY4OAgAAhKSmJfffdd7CxsUFnLy9krlyJR23aICoqCt7e/4+9946q6tq+x+c+5xZ6r6L0IogiKmLA3ruiRkWj0cSoKUZjmnm+aEwxicaSosbEEo2JNfYaBRRQQBGwgAgISpMivV0u957z/WPRuRTN+/zeG+PHHIORCPeess/e+6y51lxrTYWDg0PHThIcTATkyBGK7jUiWrq6uqyysrKBDLV9sUDfvvB6/BghhobqyspKPjQ0FD4+PmB//knPui6iqQkqFRXt+vbblr2RNUBbWxscx0GhUFCdC0dHioAUFdH/79pF97JqFd3jd9/R+RUKIqEdiHIDICn3P2y9VCeZrK3TwGJjY+Hr64u9e/eKbqGh7KmFBcDzWL58OaqrqxEeHq5mjPEDBgyAtbU1nJ2dYW1tTSkRtRgzZox469YtAbX5rPV49owcWs+eUQTxBRyNo0ePZk+ePMH+/fuxatUqyDREbRAYSOtm61aKan/0UUuVSJ1EeflykoZmZVEkqFl1eh0dHQwePBhXr15FdnY2Wsj5BYEi1rWF/Zrg4kVapyNGNDnu+PHj2fjx4yWVlZXYtGkTioqKYL52bZNUD0dHRzx58kRscczkZJK1FxYCjCF5xw5Ya2ujZ0oKG3LwIKp69ULOqlXU/7uugvmSJbSHHTpEUtjUVCLQO3c27BUREUTC61KIDhxo1dkkCILmcdcEjqNjKpWUMmVsTNLa336jufv337T+eB44fpwk+ra2dM2XLtF+tm8fEfk//iClwq+/Uu6zoyP9u0cPOk9dizsAmDED6bWtFmfPng0bGxvo6enxqampSE5O5gIDA7Fz50527tw50cbGhj148IC98cYbMDExwddff82+T09HD0dHdd6+fezx48eci4sL7+3tDbVaDX9/f0h4HqqkJIhvvQW5iwtw7RrczM1x+fJllnfjBp4+fdokzaGsrAzp6engeR4KhQKVlZWoqK4WjZycRMeEBA7nzlE6B2M0Ph99RLL52rlmCWD5d9/xiIxE1uLFCNu9m7Px8oKrqyvtT2o17R0jR9L/b9pEc9/WlhxFtXvuvbt3cf78eVhZWQk2NjZwcHDgUFlJDoZDh1p3cC9aRO+h7OyG3P3KSrre11+HIIpQKBRQp6ZyyhEjIDt0CNz69bidnIxX5s2DnZ1d3T7NAYBNv37IHT0a5UeO4JhaLc6aNYtpTPcpKWmRApWTk4OoqCghLi6O41Qq+JeVwXv2bHBffoklb74JlUqFR48e4cSJE9z27dvx9ttvw6itwrS3blH9nO+/p7QODaisrMT27dtFExMTUSaTicOHD2cODg4cAJiamiIwMLA+fx8ABgwYwKlUKqxfvx5CYiK4M2fwOCsLjw8e5J2cnITt27eLZmZmQnl5ORQKBW9lZaX29PRsGABPT2pDqasLbudOmKSk1DtZeJ6vl6F36dIFXl5eanNzc87AwICPjo5WV1ZWsokTJ4qhoaF8WVkZJk2aVO+c4zgOVlZWgq6uLldSUoLhw4fjpZdegkQiQX5+Pk6dOiXePXZMzDc05JKSk9k777wDXV1dFBQUiAAwZcoU5uDgwA4ePCiGXrvGLGxt8TA2FvHx8cjIyEDv3r1hZmaGu3fvsvT0dOpSMnAgqo4fR9yqVfDZvBkHDx5Up6am8rUpLE1k+9O8vfln8+dDJZPBJCgIT9LTEfX227Dz9xec3n+fu/LokdogPx/dunXjvby8WncSRUfT3txKUdm0tDRBpVKdXLt2bWHrE6MTzwv+s8YVOjvRiU78VzF06FAhIiJikYuLi6F+W9HD/2UolRSxmDNHMzlKTibJ17Bhz3dcfX0yjF5+maR9d+8SMXF27njetQYwxmBlZQUnJydYWFggKCgI2dnZYody/QDyVP/rX1RYa/NmimpFR5MCoXt3kstlZjbI/F8wV781xMTEoKSkBPn5+Thy5Ij65s2bnLu7uzhixAhu7Nix6NKlS120l3l7e6OgoECorq6GPs9DHhPDJCNHoqKiAklJSWo7Ozvu5MmTKC0tRWJiIuztKVpNXAAAIABJREFU7TU7PXR0KDdw924iTjNn1hs8EomEhYeHM//2Kt6LIhGdN94ALCwwYMAAztXVFRERERg4cCC4wMA2awMAIKP52TNy/nSAoHIchxs3bsDZ2bm+TRMYI8O9Vy9y2hw+TBWuu3enqNmCBRS57SiJAogIlZSQKkVDLujzQkdHB46OjpDL5ch5/BjIyMCT3r3ZqBkzRDs7O6anpwcPDw/O3d0d+vr6YIzByMiohcHFGGMRERGciYkJLOtqZly4QHnZXbtScbMXVBQxxtCzZ0+Eh4fj6dOn6KWp2jxjRFpWrqTUnOnTaaxdXFquC2tr+v2pU+Q4rCvC2Yx4XL9+HYIgwMLCommuemEhpeIsXdr0O2fP0jOeMaNpvYVGuH37NlJSUjB9+nQi3T4+wOTJEIyMcO7cOWZvb885ODigifpq2TKa07WKCGtvb+wRBDHewYHZ6Oqqu+rrcxbZ2WCzZtHa6d2b5se0aUT0//6b7nfQINo/796lOTh6NKUALVlCZL+1/toArl69iqFDh7bvqGwMnqcceV1dSjtyciLi/+gREX9RpKi+XE6R/Y0baf+eNIkK740fTwQoIID24sWLKU3LzIxIvwaiaG5ujtTUVNy8eRN5eXlCr169mLGxMZydnSGXy+Hs7MxCQ0OFhIQEbtSoUczV1RUcx8HDwwNmcjn6rVrFpU2bxiwtLfHyyy/D3t4eDg4O4B8+BNu9G/yff0Kybh2NWe07SF9fHwkJCUJCQgKzsLCAWq2GTCbD7t27xdu3b7PMzExVZmamUFBQAIVCwVW5uzOrwYPRZceOhnQQnqcxmDeP3kd5eYC5OaJu3lQfzM9HbFwcLKqr2YjqanC9etG7QKWi8b17l/a76dOhqqhAmbk5qqqqUFlZicrKShw4cADm5ubilClTOGdnZ1aTnAx+4kTEbtmCNJUKaWlpSE1NRUpKClJSUpCUlITExEQkJiXh9rVrotG//832KBTq8IgIFG3bhtIrV9hulQqxp07BNCaGVXAc+NRUcJMn4+yTJ6JELmfDhg3TOFf05s1D+aRJyPn5Z1ScOSPW9O7NioqKcODAATExMVHs3bs3Q0ICKhUKHHj0SDx9+jSLiopCVFQUJBIJevXsycZYWaHHkSO4PmSIoLh0ieX5+MCmWzeYm5tj4MCBiIyMrCehrUImI0fRhAn1DrLy8nKcO3cORUVFsLa2xg8//CA4OzuLr7zyCu/t7c117dq13fc2x3EIv3IFg5ctg6JPH8SXl+PJkyewsbER3NzcOI7jRAMDAyxYsIDr27cvZ2Nj0/SYJia0zl9+mQIao0e3sHX09PTQvXt3ztbWlllaWsLb25sbMGAAMzMz44KCguDs7IzBzep1SKVSREREMI7jMGjQIEilUvA8D319ffj4+LCeKhWzc3OD35IlqLMP9fX1uezsbNHX15dpaWnB0NCQFaWkqKW7d3PHJRJIJBKMGjUK/v7+cHNzA8/zwvnz58X+/fuzsLAwXM7MFF0uXGAZ3brhbmoq8/f3ZwAEHx8fDBkyhKlUKhgGB6M8NFRMFgScdXdn2dnZyL16FWP27EGkjg4LBqmtZDIZHxsbKwQHB7OcnBxBFEVYWlo2HbvAQNpnWkkDTExMVJWWlr5z7dq1r4cOHdp2/9VOdBiseauPTnSiE/9dbNiw4cqECRNG9Pg/kn3/n+LHH4l8rVv3f3+u9HQim7a2FNV4553W2+Y8ByIjIxEWFiZOnTqVubRVKf/xY7pPpZIiX4MHk3HcONdREEiRcOQIRfgfPCCjb82aDvcObg2CIOCvv/4SHz58yNRqNXiex5AhQ9CrVy90SBmiVKJ6xQpI1q7FvnPnhIyMDI7jOBgaGtYXDBo/fnzTSr+aIIqUj52djbyffsLZs2fFjIwM9umnn7ZNOj79lJw2jSognzp1CnFxcehSUIAFJ08iPSQEjo6OmgvJ/fILGdN+fh3uZ19aWooff/wRq1evbrj2w4fJaXD4MD2fNWuIrH/wAVUrftGq+uXlROaOHv2PpZ2Ulpbi4qJF6JubC5tLl6gGw3NAFEXs378fCoUCS+bNowjVxo00j+sKrf1DxMfH48SJE3jrrbc0F5gCaO2cOUNr9soVyu9dtapJDnqzC6daAqNHU6pBo3UeGRmJujZ8r7/+ekMrzaqqpscTBKrrkJtL0VBNqQYAqqur8cMPP6CyshJr1qyhubdqFTBsGEK1tYXw8HCupqYGAOpy5EXfsjIMXrqUg4VFE0VHZWUlzp8/j/j4eLz55puwkEqpUryjIzkIfXzomqKj6bo++ICcS1ZWDT3UdXQo8v7SSy1ycBtDqVTim2++wZrGKUdtobKSyGt+PpHZ+fOJuNjYUHrB1loV7aRJNJYZGRTJv3qVIvZ+fjTHTU07rnhpBFEUcejQITE1NZV9/PHHGiOBKpWq5e/Vahq/5OQGB1xGBr0LtLTIaRUY2KrT6urVq7h3755YUlLC6qrDcxyHT1uTICuVNOdWrqSo/tixNB+zs8m5kZaG7w8fVo/bto2/MnIkLHNyMC4hATqJifRMGxeivXEDOHQIqp9/xjcffgheT0+s29tEUWQcx4mMMZGJIiYdPMjuOTuzhJ49YWlpKchkMpHjOHAcJ3Icx3ieFzmOA8/zKCsr4yeePcsUb70FzsEBxt99B2H+fEgdHCD7+GOwoiLUHDuGU6dOiRUVFRg2bBg7cuSIUFVVxfXp00c1YcIEjWHY6q++QvKVK+L5ceNErrY1YVpaGjdjxgxkf/edUJOZyd0fNQpTp05FdXU1qqqq0PfxYxqnpKT6vTN63jyUPH0K6x9/rC8ue/bsWfH27dts6tSp8GqW5y0IAq5cuYL8vDy8fPo0ZAMG0PgD2LJli9rY2Jjl5uZyHMeJRkZG4qJFi7hWi422gnWffQZPQRAeyGScrq6umud5TqlUijU1NVxNTQ3mzZvXttJtxgxy7p8+TeuyUdHc9nDjxg0hLCyMk0gkQv/+/blBjQo5VlRUQBAEaAz2fPghKUTaS7GqqYHaxga//vvfYs++fcXGVfRFUcSePXuE0tJSrrS0FEZGRhj8+LFYFRXFwiZPxltvv91w7qoqnH/nHcE+IoJ7Mn8+7gCihYWFYH/5MpdkYMBkZmbC4IULucuXLwtvvPEGJ5FI6tUbJ0+ehFqtRu/evdUPHjzgHRwc1GM4jpcGBUH2ww+t1rN5/Pgx9u3bBwAGa9euLdP4oU48Nzpl/J3oxP8YRFEsUjar+PsPj4czZ84I1dXVGDlyJKetrf3cJKHDKCpqv4je0aOU51ebT/zCsLUlkpKbS1Ldl18m0unv36Ge9a3BzMwMCoWC/fnnn/j4449bjtXVq1TUau1aKsa2Zg2RpuZFnwAydubOpb8vXkyy2Koqqn796qstWhM9D0JDQ5GQkMDeeecd6NTm2+k+j9Etk0FuYAAEBWH48OFcfHy82svLi7e0tERsbCwuXLiAkJAQUSaTsebGWGOUlpVB9tpriN++HeGbN8PV3l4IePddvt3o4rx5LSL348aNg5ubG87v2oVgd3dEHjgAa2trcfHixU0tg/Bwavmzc2eHiT6AeiMmIy0N3b74giTiGzZQBDgoiFow7dhBRGbOHGoNFRLS4eM3gZ4eFSY7dIgIwj+Yk3XYv2+f2l8u55w+/5y12r+4DTDGMH78eJz84gsUBQbCeMwY6izwAmStNfTo0QPHjh3D+fPnW+83bW1N1eGtrclotrQkpc+5c5ojPowRwdywgcZx0ybKOdfRQURERP3H6iXsokiR5ZAQqplRVUXOnNhYSs3Q4IQQBAGnTp1SJyQk8IwxDB8+vN7JJK5bh2dLliDcyYl75dVX0Y1y8PHw4UMmefqUdZkzB7srKwWjl15iAQEBTKlU4tSpU3j48CFWrFiBZ8+e4fr16+qAgAAe339PJ/T2phz3nTtp/v3737QvnjhBUf5u3ag92aZNpA5qZ6+orKyEfmUlOQhcXGjujhtH+c6ff05ze+FCijT//DN95pdfyAny7bdEkMvKKGp/717DgZ2cKHofF0dqlYcPibQy1uAQcHUl5+vs2eQQMDamrh1BQUTMLS3p2H370r5vYgLWtSvKSkuZSqXCV199hRUrVrRwUmqUAvM8jUlZGWBgQM/z8WMan6lT266nAWDgwIGIjY0V1Go1z3EctLW1xTlz5rTOFGUyUmGsXUvn3b2b0rViY0k1MmECZpw+zVedPCkGTJ7MIquqcLamRjUTkLToOOPnB6jVSEhOFn1EEWN27mT45RdyYhEYFAqGWbOAHTtg6uyMpF9+QW5uLlfveGoNc+cSEfTzI4n0rFmkmtqzB+A4SAF4enqyv/76C2fOnFFPnDiRj4+PR0xMjGT8+PEajy1fvRqeq1czzw8/ZHj0CDh+HDdv3sThw4dhq1Zzk5YswagpU8ipm5dHjuz+/cmB2MjZ0u+nn/DE2xvnfvoJjydOFH19fZmJiYkAgL948aLo5eVVf/K8vDzs3btX0NfXh0wmYyW3bjHzmBhg5UoUFxejoqKCX7ZsGaqqqnDnzh3m6empOc2gLaSl4cPt2xG+axe3Yvhw6Onp1V0sUyqV+P7774WysrK2X2DHjlGawfjxpDyIi+twm1g/Pz/O19cXQUFBXHBwMKRSKaRSKfr27dv6O1wQKGjQEWeeVAr+o4+wdOJEBkfHJoPDGMOUKVO4W7duiTk5OWKPHj3E3u+8w1ePG4eXBg4Eq1s/Dx8C69djhK8v932XLqiqrgZjjFU/fMgNv32bdf3mG9hPnMjJZDI4OzvXj1Vt/QGYmpqKWVlZLDExEV27dkVKSgrTu3wZmd26YXppaasBiRSqRVDdSfT/s+gk+53oxP8YGGOS55JhNoJSqURZWRnKy8tx69YtUV9fn0VGRgK1+Xh1PatlMhlWrVrVtvHwPHj6lIj2vn3tv/DGjCEj8D8FS0uq4P3hh+T9//xzkru6uLwQwdLR0QHP83B0dBS0tLToQajV9KI1NyfZrVJJLZBmzqRWWW3hk0+I6M+aRcT07bfJMH73XXJ8bN36QlXbZTIZrKysBFNT0xdv6L5kCTBtGuxjY2Fvb19vnfXt2xdFRUWCXC7nzp07h6qqqoZuBbWorKzEb7/9ps7Pz+cBoKuPjzA3PZ0z+/JLHo0qaWvEggX000xGLZPJ0L17dzjPnYtsjkPkyZN4+vQp27VrFwIDA8kQiokhMrJtW6vR2dZQdP06ph48CF1ra8rFHziQooLbttFzDA1tmL+//04RvcuXqZjW6tUvVl1/3TqaP/9Qzh8ZGQnDqCjepaKCyN+LQBRhfvQoBpuZidcLCsTxS5dyxcXFqC4thbGx8X/UCfjo0aPW/yiXUxS5tJRIW69eFB27eZMIiyYlBMeRg6iqikiqvz/g44Ply5fj+++/R2lpKdLT00nKzxiRMRcXIpebN1PUd+fO+mPn5OTgypUr6p49e/I2NjaQSqW4f/8+v3TpUuzZs0dsLN1Nz8mB4sYNBLi7U64rqACml6cnoK+PktOn4W9mxl28eFFcv359fT9xAEhOTtbcknDw4Ia2eyNHEjn64gtKVYqNpftbuJBIeF4ekfCwMCLaX39NjrK5c4lMz5mDmsOHMfb8eYrSR0SQ2sjDg9aIhweN36pVDYVHS0sbVCt1TpnZsxuKA8rlRGQSE2lfjY0l1UIDMW1oiVddTbUXdHXJSVFcTA6VukrtiYkU6dXTo+Pn5wP/+hcW/P477lRXQ1pTA934eCLPhw/TdwMCaP3VpS1IJPQ8a2poLy4spFzuWbNIEWFk1FDjQUuLFGbPntG95ufT75KSINHSwnve3nzk/v2oefwYPrNnM60jR+ic587R5/v0IbVFaio5O1QqItAREeTQVqvpWnV0gMmTYUMV+hnMzdE1OhqXLl2S5ObmNqTKNEKOiwuira1Z35s3Rcyf39DCs2tXmg+//07FXn19Yc5x+PDDD/Htt9+isLAQppocYXUqA6WSntmGDUTwP/64oQCjTAZoacHNzQ0TJkxAUlISd/jwYRgZGYmBgYHtk+W6wowKBfq7uUEmk8Hw449hVlHRMIfWrqVnHBREc6AxjIzQ7do1zAoMxG+mpoiJiamvbG9TV2egFufPn4etrS2bPXs2y8zMxKWICDh6eKB/bTFcURQhkUigr68PjUU5OwJBgM6772K0hpacf/zxh6ijo8Pc20iXqcfUqZT65OFBQYDnKGrK8zzkcrkAgLt06RIMDQ0FLy8vrtVc95QUemd2NL2zLv1GQ9FaMzMzjBs3jqFRXR2tgwepUOf166RWqKgAhg+HfP58LHz2DHfi4jDo+HGcKihgqthYuLbjIJ45cyYrLy9Hly5dyK7IyOAK7t3DLWtrHDlyBDNmzNDYkrBWmSVft26d89q1a1M6drOdaA+dZL8Tnfjfg3GHiyw1Qm5uLn5u2s6OAZQf2adPH/Tq1Qvh4eGIiIiAUqlEbm4urP5TreweP24wKtqDlhaRKk05vf8EEgm1T8rIIGnwxo30Mp4+vcMedwAoLCxETU0NHj16xP342WfCODMzzjkzs6Fyt7MzOTU0VTTXBMaI5P/xR0PlYltbMvD+/ptesBs2aFYGtAFdXV1U13UDeFHY25PzIjy8SeSQ53mMGTOGAwCO48SrV68iJiZGHDp0KOfh4QFBELBlyxbY2tqyuXPnQi6XQy6Xk5Ry+XIix/v2UZS8ueNKFIngtVGsUDJzJmyXLMH06dMREhKCrKwsXL9+Ha7W1jCaMwcJkyaJ/e3tWYdfYH/8Afz1F3Jffhm59vZij5kzGcLDKTpTVkZk0Nm56Xd0dMgBEBlJBclWrCADSIMB3yYePKB7Lil5LhVCc0RERAgB9+9zel9++WIHqKwkklhQAOeVK9ml8+exefNmQalU1svS20296CCMjIxQ3LxXfGMIAhHYWbPo39u3k0z97Fl6Jr/+2mTelJeX48iRI+qysjK+rKwMukuXovTSJawICMCjoUNR2r07pFIp+tStoY8/prUPUHTfwIB+1+iYmZmZePToEV9QUKCurKzk1Go1E0URwcHBgq6uLjM0NMSWLVvEnj17it27d+eCRo/G0mZFArFmDRARAcPgYBgCcHV1ZfHx8SgrK0PPnj3x008/QRAE5ObmqocMGdJ6MYRRo4gQb9zYUOBTFCnKv3w5kfADB4ho1imiZswgUu7iAoSHowzAufnzRfcPPiADvpHiAbXtGdE4JacxwVOraU/+5BNyuiQm0n4wcSIR6epqIt5ubpr3Urm8oeBW4zxkN7eWnx05EoIgIC8vD8KIEbi8cyd0KypgM3IkzF1ciPxWVNBPejodOzi4If3i008pgnz0KBEfUWzoFZ6RQc4SHx/ag7KyaJzy88kZkJpKaQoWFvDu1w+RxcXCXzdvcgYSiThw6lRmPGcOKUusrBqKE5qa0nzV06Pz37pFe0FICP1bS4v2uexsYOBA+Fy+DKGgAEXOzrgaFSUK9vbi7HffrZeZHz58WCy2s2Njxo5lOHeOIqjBwUT2Q0Npjm7aVD9Xa3OhxWfPnjGjmhpwCQlgdnakaHj4kLoc7N1Lz8vEhK7Z3p6cPUFBpIiJiwP69AELCUFvBwe4z5rFLKOjxSKZjElsbck54+BA96jp+Xp60s/ixUBMDHpHR9N5HBzIYaylRQ72Nup9cLa2MH3jDbwfGsrSPv0U+/fvh729vWrOnDlNtvH+/fvj6NGjrKamBt26dcNkQYD6229xKioKD3r1go2NjYBmnWeeCzdvtlkN3sPDg127dg1RUVGQy+Xo27dv63tiRgY9pwkTaA8bPfq5HMKDBw/mbGxs8Mcff6CkpIT76quvMG/evIYWd43x+HGrRe00wsqK3jkdhakpBWxGjiTnxXvv1acmmJuYYKSnJ/DNNygZMkSMiIlhjVMPNMHAwKCpkzM2FqZeXnipTx/h1q1b3A8//ICFCxfWO08BUlfFxcVVAdAG0GXdunVZACSdUf5/js6c/U504n8MGzZsiJkxY4a3xg2/DWzduhUlJSV47733kJKSAmdnZ+Tl5cG5EYlRqVT4+uuvIZFIYGNjI86fP/+fh/Y//pgKpGky7DRBoSDCVFT04vnQHUFyMhlgb75JEbIPPujwi1jx4AF4iQSqYcOgLClBiY2NqKquZpFTpwreixdzHfL6N7+W5GSScze/55gYihJ98QURHk1RQA0ICQlBTEwM3n///ee7luY4fZqiBrU5kc1R11s8Pz8fPM9DEAQIggCpVIoPPvgAUk1R2OTkBuUC0NA1QRAoKvvGG20XglOpyIiXSiEIAvbs2YPCJ08wIDQU9z08kF/rpHJ1dRXNzc2Zjo4O/Pz8ml84GWC2thRx6toVxVOm4Mjq1XijpgbMyYmISXuFBOsQFUWOkStX2iySphHLllGl9rt3n+97ANLT07F3715Y5uTAExAG/vAD99w1AC5fJiK3YwdJkqVSVFdXIyEhAWZmZrC0tMS2bdugUqmEDz/88B8vypKSEmzdurXBmKupoWKajo60BoYPp581a+hZ//vftB+kpkL8/nsk2tvjiZ0ddAHUqNVIcnRElbY2yvX0IEgkYIxBFEVYZWWBt7ERJ3bpwqzMzRsI/uTJFGWLjycFx/z5La5RoVDg+++/h0QiEeRyuaBUKrkJEyZwJ0+eFEeMGMFu3bolVlRUiBzHiRUVFbyns7MYsHo1Q0gIRV4VCoqCOTrWV1RvjPj4eBw7dqz+WleuXAl9LS0irYmJRGRjYynC7uZGxyoupqJ8V67QWnnrLXpuHUBCQgL+/vtvccWKFc+3p+fnkzQ9Pp6UD5MmkWrgyRPqTrFjB6VbbNtGe1VaWrt7lEqlQm1+OWpqanD79m3x6dOnoq6uLlOpVOzhw4coLS0FQAoJhUIBX19fjB07tu1rPXCASPuZM5TG8/PPpATYvbvFNT179gzXrl2DSqWCKIqwtrYGx3EQBAGiKNbtY+KzZ8/w8OFD9t5772lWYNQhLY2KJ8bEUPpWTQ2dOz6eFAbOzuRQu3cP17ZuFZ4BXNf0dFHgOOZVWAi5vz/uODmpH0dF8aWmpliwbRuR8G++oR9BaFBNpKSQU+HOHaB/f9xfsAAypRI5XbpAv6QE9p98AuOKCpp3/v71apXc3FwUFRVBFEUYGBg0RM1Fka734UNysllZIePQISTGxMCre3dYlJXRu+fdd+ndvH49OR66dSOCyXHk+CwoIGeAjg61zFyzhpQmTk40Nu1BqSTHK8+jLCAAmzdvBgA4OjqqhwwZwp88eVIsKipiADB48GAYGxvD8+xZSEJCUL1oEYSpU6HdWl2PjuLTT2lu79/f6kdOnz4t5ubmijk5OZxUKsWqVataP96ECeRwy82l9dqRcWiGmpoarF+/HgDw4YcfUqeY5tizhwh5c4djawgKIgfMiRMd+3xyMr2X7e1JMTRqFP2+upqcsoMHAytXYs+ePYKRkRE3bdq0jh0XoLnt5UXBDWtrKJVKfP3119DV1cX7779frzDNyMjAnpbdUwrXrl2ruZpfJzqMzsh+JzrxvwdVXT/wjiI5ORklJSVwc3ODgYFBfYSrufGSlpYGbW1tcebMmWzv3r3sxo0bgp+f34sb9woFRT1fe63j39HSej6P84vCxYV+zp+nF97ixWT4z5zZuhTuwQMgOxtay5cDvXtDWlAAhYuLED53LnpNmMAenz7NFQYFqd3d3Z+vZLmzMzkdtLVbdiHo04eI5KpVlN/9/vsURWkHPj4+iIiIQFpaWsdb5mnCgAEkWS0v19jKUFdXF/PmzcPevXvFgoIC5uXlhVGjRrVdH8DFhaq8X79OtRSioxtksOvXo02Zf0QEGc+1/bI5jsOiRYuAV15BWe/eGLh5M/bt34/09HQkJSWxpKQkAICzszPMzMzA5eSQwmPBAjJEhw0jY6W8HEZr1sA/NBQVW7ZAb8SI56s87+tL92RjQ3Pou+8aWqg1wqVLl8TY2FgYGhqKXl5enJ+fH/UlfsGUmQsXLggAuEBRhKxnz+cj+tXVZCTm5VHxzEaRXblcDm9v7/p/L1iwANu2beP++usvTJgw4R9J+nV0dCBTKKDavJnG6uefaQ7cukXqgmHDqEPFzZtEJN58E3jyBMKZM9hqbo5Z27bB0dUVWQYGgkliIveKlhZ0eR6lGRnQv3cP3IgRwKBBEF96CczCguHwYVKn1BWTW7SIiE1AQIPR2gxaWlqYOXMmcnNzmVwulwQFBSEtLQ39+/dnly5dglQqFT/44AOuUVSPISmJrtvamsjRjz9qJPoAUJmRAavsbDgD8PD0hP6oURRBf/11OoalJc1Rnqd1kpVFe0FKCkm5r10joh8QQA6SJUvaHHOFQgGpVNqxlpd1uH2bosqCQEqcwECa1+bmdK0APZu6FJSKCvp9bCzVHGgGlUqF3377TczKymIAzQOVSgWpVCoaGhpy6enpKC4uhpubGxYuXIibN28iKSlJMDAw4KKiolBWVoYATb3dq6spsvndd+SAqC0AWxAXh8qHD8Hn5MDyl19wf8AAhN+5I5SXlzOFQsEAoE+fPuoHDx7wKSkpsLa2FhkBHMeBMcbq3rWxsbGipaUlc3Nza5neJgg0T//9byreaWZGa2nDBlI/XLhAUd5PPgF8fTHk4MG6ScN2794t3njwgJkUFECVksLP7t4d+tnZ9M5kjBRi/frRu+HbbylK/8EHlKoQGAiMGIHimTPVkWVlvNzWVqyoqGDucjn0zczousLC0LdvXxgaGuL4l1+i9/37wpXhwzlBEDB+/Pj6W6i/J0NDMIUCl7S14bNiBSwar48FCyj1Qa2m+SmK5OTIzCSiuW0bvSPLymhPuXGDUh+ay/Zbg0xGNQU2bMADQRDkcjmbN28e27VrF5+ZmQl9fX0mlUphZmYm3rlzB6WlpexqdTUGeHujv64uuH9K9B8/JtVMO1L4sWPHsgMHDgiCILReZLQOy5eZlxn6AAAgAElEQVSTsyM9/YX3+MbKgaKiIkRGRsLPz6/pHvzjj+Rc6ig8PTseTAkLo+LCy5aR0+z8eXL4VVeTE9bdnfZUAMXFxUwmk2Hnzp3iG2+8wTqkBPv9d0oJqi1eLJPJ8P7772PTpk04fPgwAgICIJfLYWFhgSlTpkChUIiXLl2qG8zRrR+4Ex1FJ9nvRCf+xyAIQtc2IwyNoFKpUFVVhczMTADAzFZ60dYhNTUVFhYWgq2tLT916lScPHmSs7a2fjGy+Pff9CKIi3v+7/r7UxSpA6T2H8PeniRpiYlEAnV1yaBZsIDIrVpNEYsPPiDSPXcu1SAwNgaysmBsYsLNAeUK/vXXX2hTjtsaGKPzPXqkueUgY2ToXblCEavz5ylK0Ix8Z2dn48SJE+qqqipmYmLCdHR02P79+8HzPBYtWvRiaRkWFkQ0bt9uNRdcV1cXU6dOZbt370Z5eXnHCwH6+1MExdiYDPUlS8jgastAqKlpGqUTRZIhL14M/ZdeAngeCxcuRH5+Puq6B+zYsUM49a9/cRaiiAnm5pCUlNB9nThBkdOzZ4HPPoPw5ps4a2gIy+xsLHiRFnO9epEBpKeH+4cO4XZFhRr29ryxqSnUajXy8vLEwsJCNmXKFBQWFrLQ0FAUFhaKEydOZMjIIMM+Pr7Fc42JicG9e/eEefPmcXXRx8LCQpiZmaGqqgqDevWCoa6uxgh1m+M4cSIZal9/3W4RPmNjY8yZMwdBQUHC1q1b2YgRI1i7nRgaQ60GVCpUf/01Ks6cgc7AgTCLiyM1xO7dDXn4dXmt/v5UmX7JEnIA/f03jm/ZgsqyMuhv2wab/fvhumkT17i6vaFKRVG5Bw8AtRosKYlI0c2bNHdnzaL1o6tLzzw8nIgIYxQlDQggJ4CxMWBlBQfqZ85yc3NRXV0NPz8/GBgYYBit0ZaT9IMPyLh3dCRlgp8fzYe8PJIGZ2cTEdy/H/3i4yGOGYPKsjLx8q1brP+KFWL3gABWL5N+8IAcIMeOEXG8eJHGaeZMiqa/+ip9buRIkmK3g6qqqjqy3z5EkQjqkSMkc584kfbzykqao0OGkNLIzo4+r6ND6qj168k5mJUFZGVBNDDAkydPEBwcLGZkZLBaFQObM2cOjIyM8PDhQ9ja2sLW1rZ+LJVKZX0hxdGjR2P06NHcgwcPcOTIESQkJGDChAlNyX5aGjlq33iDnEVSKaBUoubkSdzr3Vt0Ki5mf+zfj9n79iEtLAzdZ8yA26RJLO3JE9jb26Nbt268vb29ePz4cbZw4UKN5OTOnTs4deoUE0UR77zzTsvc+GnTKOpel4bFcdRNoaKCVCTe3hSdv3iRxqo2+pqamorMzExm5eKCkcuXIycnB/p1a0oU6T1z9y7VmampoffPxo3kUCwpoSKLQUEIUqt5Gzc3vPbaa+zMmTMoLi6uT5N58uQJ7t69CwMDA7VWWRnvy3Fc348/xoEDB4To6GiBTtUwLQRBYGVlZXxt6k5T5xBjDelVde+SwYNpD62spGjx/fs0Dw4eJEfu559TSkNUFOWtT53adrqSmxvUU6eiaPt2buHOnbC0scHy5cuhr6/fuJUlq71WpJ86Bf6991B5/jz0NOTYPxfq0vpa67xQi127dqnz8/P5Hj16tKhV0wKjR1PA49Ejsi8uXGjVAdgaRFGEvr4+ysrKsGfPHpiamgq3bt1ivr6+bOjQoaQasLMjJ3pHYW5OzsPS0taVOKJIe9qDB/SeNjOj392+TcVlt2yh+/v66/qv9O/fXwgODuZFUWQnT54Up02b1raHQxRpn6tbO7XQ09NDt27dVI8ePZJs3LgR/v7+6N27N3R1dXH79u26j9msXbs2u+M33YnW0Cnj70Qn/oewbt26kbq6uqdWrlyp0xGP6ebNm1FWRulMEomkoaVYK9izZ49ob2+P4cOHsz179iAjI0NjFeQOYf588tTW5Us+D959lwj4P4lIvyhSUujFlpNDROjAAYrSZWRQVPnVV8n4bUZ8CwsLsWPHDrTWJqpDmDmTokFtFZYrLqacTRMTql49eDB2794tVlRUoKKigvXq1Ut0dnZm6enpQk5OjiiTyVhiYiLn7Owszp0798VCCyEhZKi0IflTq9W4evWqGBERwaRSqTh8+PCOk8GsLDJUfHwoYtkWmisMdu8mIvLLLy2NSFEEzp+H0KMHKv38ENarF5RvvilOmTKFQaWiqFNMDBmqq1YBpqYoKCjAb7/9BiMjI/Xrr7/+Qk3lQ0JCcDMqCst27sSznj1xPTBQzRiDjY0N7+HhUU8W8vPzsXfvXshkMrVt1668T3AwcufPx9P8fHh5ecHCwgJpaWk4efKkqFQqmaGhoRoAKy8v59RqNaRSKWpqajAxLk7s26cPa89IrR+TEyeINOzaRXmXzxFxqq6uRqOcVaFZdLspHj2idcPzFPn5/HM8zsxEVFQUEj088OmaNa3nu5aW0nNu9PfkHj1ELYmEdbtzhwj0qFFE2tuLHAoCEe3r1ykaKpeTc+/ttyk9JTWVopLh4URWe/Sgv738Mqq/+QZZp0/D+soVaBcX05qbNIkI2+ef08/du2Swbt1KEU8dHYpU1cnveZ4cl05ORJaNjEjJUjvuf//9N6KiotC/f3/1aBsbntVJiPv0oYr5GzeSND0uju5l4kRSttTNd0Egef/27UT+NSA4OBhPnjxRL1y4sO05XV5OUcKyMnpmjo7k7Ny6lfZkExNySB492lBgDwDu3oW6uhoZc+fC7NkzxP38M4SffkLIiBGQSCSQSqWwsbGBv78/7J+zcKYoiti6dStKS0ubku1Tp+gdERJC74za8Xz69CkOf/cdBo0fL/bp04ept21D+Wuvwcjamop+8jztGY3m/bp16zBnzhxoaqcaHByMsLAwaGlpged5vP7661AqlTA1NUVVeTn0160jxVVdW8c6LF5MjoC69IPERCpU5+yMKwMHqq/fvMnb2Nhg5syZLVMEwsJI8XPhAr13Nm2iqP7KlTRPb94kx4aDA85Om6a2WLiQ79+/f4trT0hIwOXLlwVnZ2fO19cXZo2fmQbU1fZ5+eWX4eLiojkNSxBoXg8aRO9BQ0N6Flev0nq0sqL35qVLNFcNDUm9s3o1zVNLSzrG66/TWmmG4qIiJE6ejAEzZpDzrC1UViL77bfFmyUlzH39erh1797251uDKFI6l5NTk/aYmnDgwAH1o0ePeE9PT3H69Ontb54bNtCxu3ShzhStdSFpA4IgIDMzE3p6ejA2NsbVq1cRGhpKqVBPnzZ0f3gevPMOOVM11Rd68oSUKpMm0R7UWO0QGkr7waRJZA9p2MOjo6Nx48YN9bvvvtv2fhMbSw7NL77QeBylUokTJ04gNTVVVCqVrM7ZDaBq7dq1GvIZOvEi6Izsd6IT/yNYt26du1QqPR4QENAhon/w4EGUlZXByMgIY8aMadfAqiuKNGLECAZQlNjHxwd6jYhV46hLq1AoKBdsz552X5qtYssWevn+N2BnR5GTI0eIUDx4QNGKTz4hg7JZhfg61ElSFQpFkzF7LvTqReT1iy9a/4yREf09MpLIWng4iqVSlFdWMoDaJ9nZ2cHNza1+kqjVavA8/+L1FwYNAv78kxwhzQvV1YLneYwYMYL5+flh//79LCwsTPDx8emYTrBLF5I5lpQQ0Tp4sPUCjc7OZGjMnk0EyNycVAGNiX5VFRGw2Fjg4EFwW7dCLysLvXNysGvXLuZbWgqryEgiiVOmNCl+aGpqijfffBNbt27lY2JiGoq6NcKDBw9w6dIltaGhIZs8eTLXONIXERGBiIgIzJ49GzrLl8O2oAC2e/bwkErpmhvB3Nwcy5cvx7179/i0tDT1GU9P1ufTT5k4YIC4/84dTq1WQy6Xo3fv3vD09ER+fj5fXl4ODw8P3L9/X9DW1uZcnZxgPGwYtehqD4WFNG9++41yY5+z7gdA8v7Ro0ejV69e2LlzJ5ebmwvrWvklAJojP/1EkZq6avC7dlFU08EBtoKAfV980XqnD0EgB8SxYy2UPekbNyLt/HlMPHQIVpMn03iePUsGa1t7ImM0V06coAgpz1N+cHAwRfEWLaqXoTZpK/f0Kb778kvwrq4w7dYNrwPgvvqK5o2xMUU1TUyIdHEcRbtKSkiOPGkS1T9YuhSXQ0NRVVWF7OxsoWdxMZf78CEcHR3Ru3dvAMDoUaPQQ08PuStW8M+qqkTzn39m8PYmp0RUFJ1n0SK6j9RUMr4bz3eOIyLu7d0gKW+G6upqyGSytjfVxEQaJ6WSxqVOFv3557TOTEwo2vz2202JPgDx5Ekojx3DvjlzYJOdjdmvvQZRRwdev/8OwzoFwAuCMYZ58+Zhx44dDVHoQ4fIKbFrVwtCeODAAWFcfDzzFEWGoUMhuXYNRtraRMj//pvu4bff6B117hxgYABdXV2EhIQILi4uLQavf//+UCgU4DgO0dHRuHjxIpKSkuCSmIj+N2+iKDgYts2JPn2R0h/qyH737nTeR48wKCCAL/byQiLH4ciRI2p7e3vezs4OLk5ODbJ4Nzd65v7+5DRTKOj9kJSEh4cOweSzz8Tb06cj1sKCX/7ee+SI+uGHJpfg4eEBDw8PuqegIHp2iYmtjnVVVRV4noepqWlLoh8URGvHyYnuKTubSH6do+LePXp3rlhBa+HMGVI3XLtGzgsXF5pLZ86QQ33oUJq3S5fSPlx7PgNDQ4QPHIjeWVnQaiUlpB46OugCMNeCAtzbskV027nz+d9zKhU9m5MnO2SzvPLKK/zWrVvF8vLyjqXFfPQR/Tc3l+bgpEnPXYyV47gmxeqGDh2K0NBQBAUFYaG2dodr+TSBVEr2TXOyn5FBtQY++4yUDo33aqWSnFhOThr3GlEUkZOTg4iICNHExKT9sbl/n/L1W9m/ZTIZZlGhVpaeno68vDxcunSpQKVS/bNNpRNNwH/22Wf/7WvoRCf+f49169a5SiSSyHHjxhl4eHi02wqnqqoKp0+fBgB8/PHHMDMzazfa/Ndff4kqlUocOXIkY4yhoKBAfPDgAUJDQ1lYWBhCQkIQHh6O8vJytYuLC9fqNVy4QNXLly598QJ7rq5EtFsh1v8nqKoicvLLLyS9fPKEjC5zc4pk5eaS8WZpqbH1l0QiwY0bNwBAc7XcjsDdnQw6R8f2jY6uXanCskoFv19/Zb0WLEBGTY0QGRnJHBwcmqgx/nEFdY6jlIzHj9s2vABIpVI8e/ZMyMjI4Dw9PdsvmCQI9LyHDSOjo6SEyPfTp5or8o8ZQ0qL1FSSygYE1FcFRlERRYSHDSNJ77ffUvTI2hpgDPo1NXBcvx5Z0dHIGzsWJkuWQKIhKlybF4ozZ85gwIAB9fJRQRBw5coVBAUFYeDAgZxKpRIuXLjAxcXFqaurq7mIiAjExsYiMDCQ5oBUSkZYQQEZNX37tlAmSCQSdOnSBT169OB8fHxY1wsXmNugQcx12jR4eHhg0qRJcHFxYYaGhrC2toadnR10dHRgb2/PunbtCu19+0gu6+XV9jinptKaVKlojmtoa/Q80NPTQ2FhofrOxYvM29eXsSlTKL3EzY0cLUOGkAT05ZeJtNaeLz8/H9HR0fDx8YGrq2vLA6tUpKqZObPF/uHo4sJyABh+8gnKjh8XE954gxmVlUG+eTORBU17kiBQAcJLl4honTlDUccxY4hAu7rSer91q4GU1UIEEHfnjliuUrEybW1ERkZCaWcHxwED6Ln6+ZHR7uFBpEYmI9n7xYtEugwNkV9UhOPHjyMnJwdKpZKlpKRAX19fiImJYamPHqm8Kio4/PEHDE6eRJKbG+4FBgqeEyZQ7YV33qFr/fxzItoARbFLSkiB0Bg+PqRQsbWldIVmbUVr26oKPXr00LwZnDxJDs5+/Wie1O1xcXFEPGfPpud45gwV7Zw+vcnXc5ydsbOoCFpqNd7atAnyM2cgt7eH1oAB9GzmzOlYN5ZWoK2tjZKSEvX133/nuq9eDflbbxHpaLR+VSoVfv75ZzXHcdzoqVOZpLyc9sjp00ktdeECrRNDQyIrpaU0jsuWIb1LF6GSMU6TGkkmk8HFxQXOzs71hB8AuqWno9TQENLBg6FWqxEZGSl269aN1cvNvbxoD8vLw64LF4SrV69C28AAVr16McngwfDIzISPpSXSyssRm5rKcnJy1D4HDnD46itSAIwb1zCnN28mouXtjb+uXlWHpKVxxpMnM97JCbN+/JHpuLmBvfsu7YG//qq5EJy2NqUvtdHZJTk5GWlpaXBxcUFubi4y4uIgvvMOrhoYQOvLL5F16xZOSqVC5PDh6hsxMcL127fF4JAQjvvpJ8FWpWL45BN6zjxPrTCXLwcKC1EdGwsuORls4kQa+9mz6Tno69N+uH49rZkRI8Byc5GsUAiPHj8WHC5f5mRDhrSdZrR3L/SVSjwrL2eHMzPFu3fvMkEQ6tq0tY+KCtqjZ8/usMopOjpacHV15TusUvnlF9oLBw4k20KDCuN5UKsUw/Xr19EnMhIqHx/InkfGDzSQ/boitFVVpCDZuJFUGl5eTccjOJhUJZ9+SrU63n0Xl4uL1bmiyLp27cpUKhX27NkjhIeHM3t7e8ycObN1OxGgd+GKFeRU6EBHJG1tbezduxeiKB4GcGHo0KE1z3fDnWgNnWS/E534L2PdunWDOI4LVavVBklJSez27dvgeR42NjbIyMiAlpYWJBIJlEolAODixYs4WlvlfODAgR0inkePHhUfP37MXnnlFVaXb+3u7s78/PyYk5MT+vbtiwEDBsDLywvBwcGM53l069at5S5+9CgZ+e+993zFzZpj9myS6D5vVfEXQUQEGbe6umRQp6dTdDIpiXLRvv2WCGVdT+7ly8no0mAwmZmZ4cKFC4iLixMrKyvZc9c60NWl84lih/Jwoa1N1+XmBu3vv0dfb292Iy9P1DU0ZM8rlW0XcjlFyv382jWI9PX1WVpaGkJCQnDv3j21r69v694GlYocHDNmELkbNIjGwceHijU2Nr5v3iRSZmNDxHLpUiLQz54RwZw2jYzZr76iHF6JhK712TOK6i5cCP3PP0eQo6MYlZ3Nenh6alRhJCQk4OLFi2qlUsndu3dPfePGDYSHh4thYWEoKirCzJkzmaenJ9zd3TkfHx9IJBIWHR0NnufFgIAAZtc8kunuTob7wYNEYt98s3XiM2MG4OICvaQkGLdXs0KhoGJkgYEtIq31qKmhSHtUFBnfdbneLwq1mojz06dwuHuXc92wgQVracF50CBEu7jAcuxYcJMmEdlsNk9u376NP//8EwBV024hKRYEKr64alWra9/JyQl3undHur09k+zbJ55RKNhLGRlgXl4t2x6q1USUL1ygSKK2NkUf09OJ7Ovp0TU6OJCKoKyMilDVRrMYY+jXrx+ztbXFxIkToaOjg1u3bqlfeumlpvN51SqajytXUjS/f39Kt7Gygq6uLgwMDJCcnIzVq1fDx8cH/fr2ZW4JCdD78Ucu/s4dMbamRnw8axaLLC/H2HHjOGOVimTPr79Oc6WxIfzLL3R8TYa9jg6RWj8/2qMaOQzv3bsHuVwuNlb8AKD58eWX9N/Jk5vWDKmupoJlPXo0OJMkEoqCNttf9A0M8Cw0FC//+CO0Vq6k9WdgQARnxAiKFJaX05p+ATDGYFVQwJWeOoVCPT3Yvv02WCMJeF5eHjZv3gxBELhly5YxubMzkZMBA+i5P3pE60SlovHT1SXiVVUFHDiAIl1d0YzjmH3Pnm0SD1tbW0ClwkvffouYfv2Q2r07kpKSEBsbi8zMTFZZWal2dXXlnj59ipRHj5B18CCqvv8e17t2ZYaGhkwmk4nOzs4MVlbAqFGQXr0Ku59+YtLiYgwzN+d016yBuHgxFCoVysvLUVxcjPz8fBTL5ciRSnEwOBjp6emckZERaoyNVXkKBZJsbZFWWYnHZ88yy99+g/zpU1rnRUUN6oy6Z2do2PpeAeprHx8fL2p//jkrv3FDvK+lJfY4f56l9O+vLhg9WlQOG8Z16dKFOTo6ct27d+d69uzJmYeHQ8jJgd1337F6J9PixeQ8l0qhsrDAYV1dXHJ1hXtkJHQCA2mtSCQ0t1xckOXtjcTSUiGpsFCwf+89rhfAqnv0QEFwMOM4Dnq+vq2/d7y8IAkIgO2oUejSsyeLjIxESkoK7t27J0gkEsYYg35rRfcKC8mxsmHDc9ksYWFhorGxMWdlZQV5R1r3envTeu7Zk/ZtF5d/3G3I1NQUckDQ/+Yb9pOVFeTa2h13cAC0392+TeszOZmceNnZpJZpnl6hVkOYMgU3GROeODiIUqmU5Tg6wurTT7lTJiYsIzMTly9fRk1Njfj+++8zT0/PdoNS2LmT9uz2umzUQhRFPHz4UFFeXu4D4F9Dhw5d1/Gb7URb6JTxd6IT/wWsW7fOGMAAiUQyVS6XzwsICNAOCgpCfn4+lEqlePHiRXbx4kUAJB+vrKxs8n1zc3P0798f/fr1a/dcBw8eFLKystiiRYtg3Czax3Fci5fH5MmT2ZEjR2Bubg5ra2uUl5dDoVAgJy0NPm+9BfH0afAvvfTPBuD2bTLUJ078Z8dpCxs30stt61YyciMjiYw5OpLn2te36ee9vOjHwYGI5bBhDTmZtS97d3d3rFixAjExMSwsLAxPnz5FSUmJ2s3NjR/RUZXCq68SGamFIAjIz8+HZVv92wcOBHx9UTBvHqbdvs1um5mRRPI/CXd3yuFLTGyIpLcCS0tL9O3bV52SksKlpKTwR48exfTp05Gfnw9zc/MGpUFyMjk3fv21qSEnkxEpk0jIKJw9mwz06GiS3R45Qg4YNzeSSB4+TI6ACxea5s0qFETCwsLIuI+LAyeTIaC0lG3ZsgWPHz8WraysWlgkly5dUru7u/MGBgbQ0tLiBUGAlZUVtLS0YGpq2kQpoa2tjQEDBrDaQk1tWzeLFlEud0oKtaT84w+KmjbHhg00Fyka2zoSEmgOtpanmppKayk2lsa5rTnUFkSR5M/btlHe8EcfAW+9Ba2lS3GzTx/cvn4dSdnZKCsrw/mvvoKNjQ1sbW2RmJiorqqq4iUSiWhtbc2KiooAAJ6ennDT1IozLY1SeN59t9VL4TgOw2or16uPH2dcdDSiv/tO9Nm2jaF//4bOH3UKBj09klLXEd/Zsyny3Rh1+1VUFBngjJFzYPZs8DIZnJycANC+WlVVxSckJMDDw4Ou91//onWxdm2DgZyQQIUWt26tva00ked5xmpqoBsTA3z9Ncy6d0f2ihWw7NePyUtKxOjoaHH48OGCo6Mjj/feIynt8uVNFT5VVTTPv/uu9Wc1axbN9ylTSCFR61RSKpXQ19dvOj+fPaO9zt6e8oibqz1SU4mc1LUsBOjcGrplVFdXQ8vPT7zw4AGbrFRCS1ub5nqXLjTvbt1qKICoac63h88+g96xY7g/eTKq5XL41tRAqxE5+/333wEAK1asaEg1O3MGQkUFOFtbSkPS06O0j+xsmtPDhpHj8K+/8Oj339nYTZto7I4dI2dTK2RlqIMDaqys0GfqVAwYNAgKhQL3799HUFBQfTu7y5cvq3Nzc5mWo6PYizHeTlcXehYWuHnzJnf79u36dAROqYRsxgzMPHoUVWlp+KmiAgW1xehqfwSe50W9ykpx2i+/SGrefVc0NjZm1tbW0NHRkVhbW0OvVy/o6+vj/J9/ir27dmX6H31EBSLDwojw1zk0w8LImVjb1rAF0tKA4cNR+vrrKNfXh8TERDS2sxONk5PxskSimQkHB8MkLw9H3dzEQRYWDQNWWysoJTUVZ95/X3ztww/Z33//jbPl5epXjx3jFaWlSF29Wqh89VVOT08PR48ehb2DA0tLS+OK1q4VCx89wqyaGq4mPx/Cjh2kaFm1qqWiBaCim6mp4OPi4BwbizVr1iAtLQ3x8fHs7NmzACidYdy4cS2du9ev0x75nMEJPz8//saNG0J0dDTn5+enHjFiRNsH4DhSD8ycSeobmYwcwP8QA4yNuZpFizBq/Hjh0qVLXF5eHiZ3tFChnR3ZLvfu0V4zd67mGks7dkAdH4/1AQEQJBLO4OZNdXh4uCiKImbOm8cW5+Tgor09evToAX9/f65DNYuUSnIa79vX4XuVSCQIDAzU2lq7r3biP4dOst+JTvx/hHXr1unIZLJ1jLFZPM9bWVlZVTo6Our5+vryurq6jY1jlpCQgHPnzonu7u4sJiYGAEXx+/XrB0EQWpD21nD8+HExOzubLV68mHW0wn/37t3h6uqKgwcPQhRFSCQSmBUXC5Lqanb5rbeYcPkyzOPiRDc3N6ZQKIRu3bpxNjY27beoaYxLlxqqhf8nkZNDckgXF3q5L19OEZ8VK4g4xsS0T4g8PRt+NmwgA1wmq5crGxoaYtiwYVCpVOqnT5+iR48efGhoKPz9/TvWrmz4cMrp8/BAiZsbdu/erS4rK+MNDQ3VarUaSqWSEwSByWQyoXfv3lzXrl3h5OSE69ev40bPnujv4YE+27ejkjHoLFrUIXlchzF2LJG9jRvb/aivry/v6+uLoKAgITw8nKuVEUNfXx/z58+nqG5KChmjmoxqIyMyyKuqyCDz8iJiW1xMBGTrVjJSli0jwtVMtoxjx+h7XbpQ/nijSKiBgQGmT5+O06dPM0dHR1hYWNT/7cGDB6iuruZHjhypuTjVP0WXLkSqbGwochoR0UA267B6Nd2TWt26ESoIrRIvAERq9u8nA27v3udr+1RTQw4ta2sijaNHk8LC358is43y2v2HDYO+qSlyc3MFS0tL7vTp08jKykJWVhYGDx7Mh4aGAgBLTk6uz9NvNcrWtSulznQEPI/qw4cRsX49pr73HsO6ddTX+5VXUC+Bl0pprjZed7m5ZGxXVbWMrPn6EilUKqlGh4cHOf+MjACOg52dHby9vREcHKz2sLfn8c035ARrXuRw8mQiO6KIktJSJMXFMeuhw9wAACAASURBVJekJETPnQvDjAwx2s9PMBg+nJswcWLdlzh/f38gIYHH1Kn0vAwNW15fXBxF4dozpgcNIkemRELrxcgINTU1kMvlDQcMDycFzMqVwIgRUCiVaLI7JSUROa+VrNfjyhWK9jfDrl27xGfPnjHTQYME+bhxHHbupHVa105xxgxyyunqUirApElt30Md4uMpTz0wEPyyZXC4ckX98OFDXqlU1u+nYWFhKC8vx+JFiyCvLaSa9/XXyAfwOC4OPXx9YR8SQvNaW5vWzp079JzXrgWSk6EzaBB7On06rObPJ3XJvn107c3TkH75BdDRgfTaNQys/ZWenh4qKiqgUqlw5swZPjg4WKyqquIHDRqEIUOGAKdPY8iOHRDOnkXh0KFo1NoP+t7eqAkMROaVKyj48ktY5OTgTRsb8MuW1T1nemaiCOzbh/cDA1mLQoC1OKGtjVsTJoiTbGwYJkygdfvnnySP37aN/t2Y6FdU0PMYO5bSDfbsARYtgqWlpXhnyBBoaWlxJfHxmDhxouY0wIQE4O5d6Mybh6zr17nw8HAMHFg7KjNmIPbePeF8SAg3eMwYZrh+PfxPnEDC9u2syNUVkVu2CP4HDnC/OzmpFWo17OzsxHnz5kl+/PFHISExkQOAzQoF5EuXinP69WNYsIDmdFQUzc2PPqIUDo6j1BOFgtaMWg3G83B0dISjoyObMGEC7ty5I964cQObNm1ihoaG6tdee403qEuv6tmTnCDPAZVKBT09PchkMpSXl7cItrQKR0faQ4cNI2fefwI5OZC6u2PAgAGcoaGheOTIEebr69t2cOD/sffeUVGd7Rfofs+ZoRfpCAqKShULAqIUGyjW2Ii995ZoojHdkhi/WJJPYyXRGI0Fu8FeUFRUiiigIAIiIFUE6UM559w/HoeioFjy3bvuj70WS2Fmzpzylmfvpymho0Nj/do18rLXFy2kUADBwZDGj4eHpiaioqKkNm3a8IOV8/fZM2DBAkxwcmpcNKISly5RFOhbCn8aGhrgOK5KFMW3zFlowuvQRPab0IT/AVasWNFcLpfftLKyMvb09FQ3NTUFx3ENVnB5UXSHAcCgdyTEFy5cQEJCApsxY8arlYDfgNEvFRrDgAEcjIyADRugUChw6tQppKamguM47t69e6JCoeA6dOiAzp07w8LCouHiXEp8aOX21i0yeL74ggy+bt3Iq/rf/1J43cWLNXlrjUWHDpRPGxlJxvmzZ5R/OGECIJfDx8eHB4Dc3FxcuXIFv/76K3ieF9u3b88GDBjw+hvg6wvFtm3Y0q6d5OjoyNzd3ZGens5raGhAVVUV5eXlKC0t5W7evCnExMRwRUVFTFdXVxo2bJhkb2/PnbKwEEo2buTNy8pg0qfPG/PsG42JE4n8va5dz0vo06cP5+zsjGfPnuH+/ftISUmR9uzZIy7q1o1H+/bklWkIjFGbMYA8OqGh5D29coVI3Zgxr4YFP3pEIk737hQl8aII2sto3749rly5IiQlJfG1yf7FixeF7t27M7lc/p6FDl4DdXUiMPn5lMu8fHnd8HqOo3tsakqe0Pqqzaen0/tejuAoLCSxoGdPEgwauP5XUFBA/Y67diURITqaxvaKFVThvYG0A57n0ZnGFwcArVu3hrq6Onieh0wmQ69evVBeXg6O47Br1y5kZ2ejoqICaWlpaFn7ug4cII9+Tk6jTvfJkyfYs2ePZOngILWIjuaQk0Nh2z16UB7+4MH087LYZWQEnDyJS0FByMvPhyiKyMjIENTV1bnCwkJp8eLFHKeiQvcXADw9UaCpiX0ffSQOGTKES05OllwePuTQqRNFTLxIeyosLER4eDi6desGDRMTIDERFXv34uHp0+j74AG03dyQZmUlFM2dy1moqPBXrlxBVHQ0eJ6XevTowdycnSnX38am4XoK+flEbBoDDw9q97Z9O5CcjMrKSlEul3OQJIqkiYsDVq5Eka0tAg8cEBISEviWLVtKFhYWzMvTE7Jz58Dmzwer7QktKaGCbPVEZQiCACMjI8ycOZNjShEPoLG+cCGtlQoFCRZTpxJRrK8mR20UF5M319WVrpsxDBw4kH/w4AGOHTuGCRMmIC4qCvf37cMMhQLNv/kG90RRys7LQ1KvXsy9VSu037VLymnRgrVijITczEzydCvTsM6dowiHb76RLPPyGP76i/rD9+hBc++LL+h+WVoS4T5wgFIrXsLz588lvOhg5ezszMzMzGpa1vbvD/z9N7jnz0nklCQ67qJFwJkz4K2t0ZbjkDtvHrIOHED84cNSi2fPmM706TXpEozR+MjLe7Xq/wv06dOHnT59Gt7e3lD//HP645Ej9BkVFSpkmZ5OaT0KBe1hBQU1bRTlclQsWYK0NWs4Nzc3JCYmioMGDeLqFamzskj4cHOD3NsbE6yssGfPHiQkJAhqamroFRTEXZQkbtTkyWjbti1gZIQzz5/D2ciI27p1K4zNzcGlpWFeURGP7t1JWAGwYMECrrCwEHv37pVycnLYvPnzmba2NnD0KK2T//0vCWmVlbQujhtH1/XgAUXdRUXVSbHjOA6dO3dmnTp1QmFhIU6fPs22bt0q9erVi7n++iuN6Rf1jRqLc+fOISIiAnK5nFuwYAH09PQaFxYgk1FRyR07qI6Is/Nr6yc0CtHR1fPRzs6O6ejoSOHh4axRduGlSyR8JSbSnIiJqVus76uvaI07exYyAL0AmJqaslOnTomDBw+m/dHAgObDzp0krDY2NSEh4dXoyUZALpdDX1+/Ijc31wfA7299gCbUiyay34Qm/MtYsWKFgYqKyo3u3bub9+jR438y527cuIHw8HBMmTLl7TzuL0PZgufIkWqjWk1NDS+1o+FiYmJw+fJlKSoqirVr106ytrZmERERkru7O3Osr+3Lrl0Uqn369LufmyCQJ6m0lAy8Tp1IuU5NJbK/ZAmFDL9UaOqt4eREP2lpRJJ27yaDxMEBkMtRXl4OxhgqKiqgq6vLhYeHIzo6WrK0tGR+fn44duwYevToAUNDw5rw8ClTkJyeDgNRxKBBgzgA9UZrtG/fngcAhUIBVVVVpkySGzh5Mh9oYCA8OnCA97pyBcbjx9N1vq+nWlWVDNegoLqhvW+Arq4udHV1YWVlhZKSErZu3Tq+au5cyHx9qTBTY9CmDZF9Q0MykpQtxuzsKDQ7NJQ8/3fu0HhMSXljtXl1dXU+NTUV3Wp51gsKCvi2DXQc+ODQ0yPPJUDXM3ZsTRi6jg6JUA21lZs3j3KtawtnSUkUudKiBXnrXlfUShDo5z//qQkNP3OG5snu3TUkecCAt7qkZi9HWADVApWJiQkyMjJw+/Zt3L59G0uXLsWpU6fQrVs3mI0c2XA6Qj2IioqCkZGRNHb8eA7jxhH56NOHPPbx8UTQ6hEoRADBp09L9wEmWFigsLAQDg4OvJaWFkJDQ1/ts37pEsKOHRN1TpzgVL/9FpqDBrHmL1qLVcjlOH38OKKioqrffvfuXdHd1pZzZgzSjBnI9/RExdy5Qpfp03lroJoUdO3aVZmPzSJ+/RWOI0ZA88GDui2uXsb58xRB1Fh88QV51J89A19QIMl5nvKGDQ2BpUtRrKUF/+3bJT09PTZnzhwEBASIoaGhfJm/P3SzsnBz4EAMun8fhoaGeP78OYQTJyS7y5cZO3Pmla8yNDSUKisrmUwmI2H17NmaqBV9fXom/fvTGE1IIJI5fjx50F+OXhFFqlp++zaFb9d6XUtLC3YtWogVFy5wx0+cQLvkZPiUlCDE3V3KNjVFvqYm8/DwwOguXaCVnY1sf3+UlZWh+OlTyGbMgKKqCq+MUENDpFlbI++jj6BvZUVryalTtM49ekRziuNoTTlxggSMioo646u8vLz2vajbwk8up8JnCxdSPjRj1L5s9GiqOQIoq4wDeno45OPDBtnYoMuoUbRuK6u5BwfTfrtzZ72P28HBAadPn67dj57uubL44q5ddN7Pn1NK0bffEgF1dKwWTR8+fAi5XA53d3d4e3vXz9xKSihioH376g4jynS/oqIiXktLS8o2NMRHI0dCuZYm8DyeGxqi2ZAhcPf3R49+/ejYamoUnWRgUE02dXR0MGfOHLZjxw4hICCATZ06leNcXen7Ll2i8wboHqal0V5+/DhF2IwYUS+BZoxBV1cXH3/8MRcVFYXAEyfQ6rvvYPwOqU3l5eUSAKaqqopbt24Jvr6+/BsdGEoIAqXOzJpFQtz27W/9/XWwfTuJ3y/QtWtXXL58+c1OoJgY2nOePaOxXVpKotpnn1EtnMxMEpvXr3/lo5WVlXUv1t2dnsvRo7TevAmpqfTs5s5tzBW+gvz8fHUA21euXLlZkiT5smXL3r3TUBMANJH9JjThX8WKFSuYqqrqWScnJzMvL6//yXy7desWrly5grFjx9ZtmfUuOHKEvBPJya9VdB0dHeHo6MhiY2Nx6dIl6caNGyLHcfzx48eRnZ0NLy+vui39HB0hlZQAkvTmKICXUVRExa369yfPw2efUV79998T2e/enQyVxoaRNgKlpaXYeeKEVGBszNpPnCj0W7mSVxMEYNUqmNvY4IsvvkB8fDzOnz8PTU1NjBw5kh0/flxatWoVA6ggnKmpKezs7ODh4YHiqipIMTFwMjBoVGuf+jwvgwcP5hPt7LDP3x/Tnj2D9qRJ5CVrqKVdY+HqSh7fd0RKSgq0RFGS3brFGiU+HDlChsiff1I+obk55dwWFBApePSICOlnn5Eh++mnFHI+YAAZIFevEinOyiJy4eREY3bBAvRfuBD7d+5EVrt2MH1hIKqrq+PmzZviiBEj/j3Pfm0o87wnTiTycOcOeSDNzGisTp1KUQ0zZ9Z8JiKCUgBq105Yv54M+oMHyUtXHx49ovtQXk4G3erVNCfs7Mg7dOrUv3aZyiJmampqkkKhYACwceNGsaysjNM5e1Yw09DgsWFD9furXhQo09HRAcdxyMzMxOHDh0Vzc3MuKytLfPr0KWdkZMQBwJ27dxFy/rwwKz2dl3/+OT3jMWPIC1trjOXk5MDf3x+zDh5kTp99Bm76dNy8eVNyc3Nj6urqCA8Pf7W9qIoKnLy9uYvPnwsl16/zPUND0aJ9e6SXlWHnzz8rez6jTZs2GOHqirQ9e1j5zz9LYZLEcnx8cL9DB3w+fvwrnj+ZTAZDQ0MYlpfDpEcPXC4sROmZM+LHH39c/7grK6PUlEak0FSD46hV5fDh6Bcdzen+/Td5cfv1A1RUELBjh9isWTNMnTqVA4AFCxbwYnk5Ku3twQIC8DwjQzp58iQqKyuZIAhomZrKElVUMJBaedb5quLiYi47O7vmD5cvk/c+MJB+l8tpPe7dm7p6GBiQlzk/n8QA5f6RnExe2jZtiPArvyc3l6ICgoPx8ZkzXLGvLw6lp+Ncnz5QNGuGmTNnMmU0iba2NgmnOjqIHT1auvvPPyyuvByapaVI2rABLi4uaNmyJQRBqB5fgiAwSZLoPLp1q0mt6dmTCLoywujTT+k8li+nc+/SBXBxgfX06WzElCnY+MknUNm9mzzVQUE0r/v0IQ/04cNUiyM4mIS858+rbxdjDDzPQxAEyORyPFZREbocPcojIoI+u3gx7WnFxQ0+bg11dWgVFiJq40a4FBXRXG/VigRFCwtaF9LSKC2lrIyez5MnRNZerDM2167hhqamsOn773kTBwdh4uTJdR+0INC6AQCLFuHp06f4+++/JXV1dUkmk3E9e/ZEhw4dGJYvp++E8vHlgtPXF/UdHDjL2kVXZTKKQKqooHXu+vXqSLRJkybx69evl3744Qd4eXlJvZYvZ1i4kMitpyfN8Q4dSFzX0yPy2ro1qqNu6rEdeJ6Hk5MTzEePluLT05nxH380eD8bgrq6uqSpqSl17tyZCw0N5XR0dGrSF94EuZyeS2EhiatZWUSq3wUpKXTNZmbVfzI3N2eMsdfbDZJE7Tx3766xgzQ1aX9QKGhfycujPfYlXLx4UerUqVPdY3Mc2VinTlFkVq1IuXpx8CA963dszfztt98yURQRFxcnP3z4MH788cc1giB8vWzZsqp3OmATmsh+E5rwL+MjTU1NO29vb5W3JrXvgNDQUAQFBWHMmDF472rtsbHk3X2Lqvl1ev4CuHjxIiIiIqTo6GjMnj2baWhoICEhAQ/S0sS0p09Z0Zo1rHv37qisrERlZaWYkZEhiaLIJkyYwKm87LWLj6cQvqQk+v/IkaT2L15M+csXLpAK/gFJvhIcx6GwsJDJZDKpUC5n67t0gXNlpdDpyBHeMDYWauPHo+OgQbC0tMSGDRtgbGyMTz/9lOXn50NNTQ23b98W4+LipOvXr/OXL18Gz/NoYW0tddfWfn3e9hvQtm1b2PTqJexOSsK8UaN4HD1Khua8ee9eCdjZmcjziBHvZKSUP3mCBf/5D8OsWXWMlAYRGUmG4IQJ5LF+/pwIzL175DmMjSViMGZM3eM9fUr/2tjU1H7o2ZOMwYoK4OJFmK1dix6RkaLO339zSE1FgaUlOnTujC7DhnHo0YOMytBQMrC9vd/rWbwREyfSv/Pnk0ARFUXGavv2r1Q+x7175ImXySgHffVq8s4dPUpiSG0kJABbthBJGTqUjOPNmylq5kXhuX8TVVVVuHbtGq5evYp+/frBzc2NiaKIR48eobKyknv69ClyNm3iBQMD1L6z+/fvx6NHj6Cqqiq1bdsWiYmJMDAw4B4+fAhra2sMGDAApqamuHTpEsJCQuB7+jQfZG2NJwkJ0tAff2QGrq405wcMgCiKiIiIwM2bNyEIArQSE6tbQvbt27d64TUzMxPXr1/PtLS0xAkTJvDKKAWD3FyMio/n0377DQciIzHx5Ekcv3BB8tbSQo5Mxh7k5qLN5s2oOHkS1kOHMsyZg0ItLVR8/DGkJ0/w9OnTuikLShw9CixaBP3ISHgMHIg///yT/fHHH8LUqVP5VyIMbtygtexdonOWLoXq0KEsb+pUaPXpU+2RzszM5D55qRgit24dVI8dAzp0wBCAKYt9KRQKRE6ejCgzM+zZsweTJ0+u8zkXFxf8888/KC4upiJoP/1EodaPH9eMXysrIvMtWxLhjI4mD6OrK0WXqKtTXvnMmeStLSwkInf/fs287diRivXxPAbm5GDPnj3oaG0tGhsb17ug9UlN5fq4uNA8YAyBTk5CbGwsl5iYKBUWFnI8z4MxJslkMtHQ0JCGYG4u5TFHRhIZtrQkMdHKinL8J00izydAnn41NcSfOyclDx7MoK8PE0/PGiGufXtat4qKiEhxHN2DuDg6ZmEh4OMDoy5dsGTJEsg/+wxXBw5EbGQkg4MD1X8QRbonW7fSeqcMt66ooHM9dIiIWosWGHT5sqTdqhXDjBl0z9q0QXXqhr8/RQUUFZF39cABOsfERCL/cXEoffIE6h06YNQvv0A0NeXRsSPtmzNmkAh55AgJlIsXo7KqCnv27JEsLCxgamrKcRyHDkoxWUeHvlc5rjgO6pqakvbp00RytbTqtgdUUSEvs5oaibKffgqZiwsWLVrE7t69iwsXLrCbN29ihKGhYNOvH4+bN2kf6t6djjVxIpHNL78kcYQximKZOJFSMmpDksAPGMBuyeV4HhiIwW9pE/Tv35/r/6K4XmJionDp0iWZlZUVzBqznymhrPuTnk7j4F2QnEzHqGU76uvrQxTFho3J4mIaT+npr1bcr6gg+2DbNjpmSAjdz3376kSYvSz0AaB95eRJmg8N1ZEBSEDYt49SK98DL8RfAIAgCEsAbACQ/l4H/T+MJrLfhCb8i1BTU1vcs2dPzffug94IhIeH49KlSxg9enRNLuG7orSUckKPHn2vqu/e3t7w9vZma9euFdeuXcusrKyEx48f884VFWz22rXs8qlTePDggSiTyTgAzMTEhIuNjRXj4uLQUdkK6vp1UpKVObrr1pHhsnQpeUCrqihszt///a75NeB5Hi4uLlJYWBibMGECKy4uxqlTp7i/nzwR9HR0eOPAQNHlk0+4O716iWjZknvy5Amsra2rUyg8PT05T09PVFVVQZIkZWE4hsGDGc6epbZV7wgPDw/+9u3buNqhA7zmzqWQ1MGDSV1/XZh3Q5DLaWMPDHz9pt4AWru4YPekSRivr496MkFrMHAgkYTNm+v+XVeXxt38+TQGx49/fXcAVdUasjF9es3fHzwAADxfvJjbERcnOYWEsOS+fTFg/nzoa2lRqDNj5I17/JjIvq4ujSMrq5q84+3b6T6OH0+GUteu79xeDADl0xYX0/ccP16Tc7t1K+VGJiWRQTVyJBF9b28SbyZPJiEiO5s8pR99ROLH6NHkyef5GgFBeR//ZUiShICAACQmJkIul+NFxwJwHIe2bduioKAAEXv2INPSEtKPP9b57PPnz4WBAwfyxsbG7MKFC2K7du2k4cOHK8NlOYAiYqIvX8bCsDCorVyJUG1t8da5c9yd9u3Re9MmcHv3Ag8fYqeWFtLT0+Hh4YGOHTtC/Y8/iEBu21bnOydNmsTl5eXh2rVr7O+//xbmz5/Po7ISmD8fVb17I7yqCqUch21DhqBnz56S27p1HMvMxOCCAjyZPRu6U6dW59vrAMCCBRimqlp/KsaZMzSPjh0DDAzQDMCsWbPYnj172KZNm4TZs2fzdQTNhw8bTuloCAoFzZ+TJxHw6afCtD//5FFUBKxejadPn4LjuLrVyYOCiOAuXPjKodTU1NA9LQ0qXl44lZKCa9euCe7u7tWihFLMuH37NhWl43lKO5g1i8ik8loYo3E9dy4JaU5ONJf/8x9aq7dvJ0Lw1Vd0Lj170rh3cHil/oKxsTHU1NQQGRnJ+fj41F8Adc4cWrNGjwaqqjDY1FRZXIw9e/YMu3fvlgoLC5l71668ZkYGhczHxtI5DRpEUUL79hGZjo+nubdoER3b3R2wtkZMTAweP37MuC5dUFFRgUQNDTgpa3AsXkwRCh4elKYzaBCJdcOGVRfLE5cuBUdt1FCemoo74eFwj47miv78E5pPnoD76iu6ji1bqPZBaCgRWmXah7Y2iQKdOiFYRwc2trYwq01wFy2i7xoyhELwR4+mtdvPj+6/hgb9eHjgVGqq9CghgT+8fj3GDB5Me6mZGQmdnTuTuDB5MuDkhCKeh23nztIAa2sOurok1lRVkQg5b16d4oYcx0FStiD4808SIWqTfRpkJBBUVNCaWl4OFVVVuLq6ouNvvyE3NhY3J0yAzYoVlJKwYUPNeiaX07hq1YqiLgBa97S1SRS+dYvugygCn3wCw+XLMeTZMxw5cgR9+vSBxsvEt5GYOXOmbO3atWJJScnbGXGHD9M9v3at5p69LbKzXxHMVVVVIQgCwsLC4Orq+upnZswgok+FU+ti2jRaM44do/uqUFAxQR0dlEyahIumpmKpvj5XVlZW//ksXEhOAB+fVwVqJQ4ffn3r2UZi7969AADGWG9Jkh4sW7Ys870O+H8cTWS/CU34d2Gs/nK1338B8fHxuHDhAkaNGgWrN+QxvxHFxWQA3LvXOM9sIzBnzhzu/PnzEASB9/b2RreuXRm+/BJ9NDXRp08f5SZKVj7HsZNHjyJh507RnOPQJSSEU/npJ/KUlJTQhj92LBGyI0deyQOurKxEWloacnNzIUkSeJ6XHj58KJiZmXElJSVSenq6soVMo1y4hYWF2Lx5M+RyuTRlyhQGUF7pqFGjGABeoVAgJiaGy3Z1RZfz5zmzBw9wd9UqmG3cCK2XCNcrFY/HjaNreA+yr62tjbFjxyIgIEDy8vJiWL2aiI6rK+U+fvzx23urFy8mQ3Hq1Lf7rL8/mv3zDwp69ZJu3LjBevfu/ep7oqPJk7ZkCXmmaiMzk8KYk5LIUPzlFwoBfQ/07t0bt2/fxpUrV+C3ZAn0ra3pBWXhwNptznJzyTOXk1MTVp+aWiOaDBpE3pAbN4i8PH5MxpWLC/27bBmdr9K4a0gU0NIio+nJE3rvpk3kpZ4zh87B15cM3QsXSGAIC6OfGzfIE3rlCkU6uLlRmL6yvsH/GBEREdLjx4/Z8OHD8XJtjlu3bknnzp1jYw8dgoWDQ52xX1FRgYKCAt7Gxgba2tqYNm1aHUP6xo0buHXrliA+fcqPycuT1H19GXx84MYYdz0kBCFeXuh8/ToM/P0BNTVUTJgg9u7dm/NUkovWrYm8vASZTAZjY2P4+Phwv/32G4QtW8Dv3g0EB+PAoUNSTkoKmzJlCswzMsAHB3OwtAT69AHXvDksZs161UPn40Pz7Pr1mvZnAIVy//QThXLXqg+hoaGBqVOncgEBAeLGjRvFmTNnctXFU8vLyYvXWGRm0hiRy4EzZ1C+ZQsyjh2Dla0ttZozMZF0dHREjuNoApeVkWf1u+/qFwEFAfjlFzg7OUEjIQGHDh3ig4KCMHHiRLRu3Rra2tpgjNWNYOjfn0KFX17XnJ1p3Bobk1D35Zf0vpgYCmseN47ErFWrcC0kBM3kcjg20FVEpDwKrsHoCaUwV1JC3u1aMDAwwCJfXxa6ZYsoffstl8RxsPvkEyqippybym4gixcTMf7+e/KO79xJxSunTwdvbIyqqip06NABLVu2rBGiASJMQUG0ZrVpQyTfzo6icaZNg+jtjdWhoWCMoUOHDpLWsmWsMDgYqTNm4Mz9+5j99ClMNm6k57h3L0VLREXRtcye/UqNh5LSUrFZs2Y1i/KZMxRi3bEjpR2oqFB7xspKupY//6xTKHH06NEsIiICQUFBOBcSIgwbNozHt9+SADNwIAkNK1cif9kyPA0NRc+yMg4LF5Ioc/58TSHAFSvouletAqjgcI3H+eBB+rK4OLoXtcFYzevK9d/fH6pDh+Kivr7E9PUZRo+mtfSPP2oE527daD7FxNCa3LYtCSMAve/mTSL7a9dSUcb162FjaAgdHR3pl19+YTY2NpKfn99bh1dWVFSgrKyMe+vITFfXmnukrU1i8dtiOEtG/wAAIABJREFU3z4SxWpBmVb0vFaKSDVKSqhGxsupIAkJNJ7XraMOLMprUVMDVq4EBAFPc3Ml9dJSrrO2Nnq/3L5QCQ0NOp/PP38lhQoArSFpaa+2Pn1LJCQkQCk4fP/995ff62BNAKBs+dGEJjThX0FFRcV3Bw8eLLt9+/arlucHQmZmJo4cOYIBAwZIbT5E2O7w4eSV+UBEHyByPHz4cPj5+VGxNI6jsOOKirpvLCiAr709+zI4GP2uXuWSbW25DcOG4XHz5hB//x2Ktm1RtHgxYv/8E1e3bpXW/PMPNmzYIAUEBAjnz5+Xzp07J166dAl79uxBeHi4EBYWJly+fFnS0tKSxcbGStnZ2UxHR4e/detWo9e+w4cPi4aGhuLixYu5+sL41NTU4OLigg7Tp8Po4EF0mDULnaOipLRff5Vw+HC9pKMafn5kFDx82Oh7WR9MTExQUVHBzpw5gy1btwpRgkDG9rlz5N189OjtDmhgQGT7xo23+5ytLTB4MPr06cPCw8OlnPoqr48aRQW+evasyT3PyiJDd/Jk8i4dPUqk+d49ijIpKXm786iF69evo6qqinXt2lW0VhL9hqCmRsZsixY13s9Vq2oEh6Ii8taOHk0eDOU1K9vs/fknea6++67GyHVxoerMz5+T502SSPBITqb86rQ0Ioe7dpEhO2IEeafu3iUCqSxmdu8ekZrERCIVEybU30rpf4SEhAScPn2a9enT5xWiDwD3799nALBv3Djk1srVB4DIyEioqKjU26KvoqICFy5cQHdLS/6ThASY9+vHsGhRtYE6/UX0xqbERBx2c8OeadPg/ddfXKcXRjAAIi3KQoj1QEdTE62fP5eyrl0jb6qqKp7l5opDzM1hsXgx+MuX6fmtW0fjYNQo8gZXVdGYDQ2lA6mo0LO4dIl+FwQS2Dw96W/1FAeTy+UYO3YsZ21tLW3dulXKzMwkorV9ex1h4LVISqJzsrODuHw5Lly7htLSUl5VV5fG16JFKDlyRGzVqlUNKdy8mc6poe4NISG07svlsLe3x3fffQfGGHbv3o3S0lKUlJRAkiSUvDwXlYJTcnLdv1dVUfeFsDA6VxcX+pfngehoFJw8ifhduxB+7Biubd2KK2fP1gkLV2LevHmciYkJdu7ciXo9jgYG9B25uTW5xIWF9Ix8fYEVK9C1b1/O4JtvcNDbGytiY5GmTAECaN3R0KDnmJ9f0yps6lR6lrduwX7vXrTW0UFxcbHYuXNnCnMuKSEhIyuLyLmqKkXoqKkBnTrh2fjxiDx8GCfmzBHV1dUlLy8v3L59mwUHB6NDhw6Cvb09zBUKwSQqiqJ61qwhT35YGM3xKVOA27dRXFyMwMBAHD9+HNevX0dhYSGvLJaHiAj6nJERoKMDhYoKsjt2RFVVFQkqkZH0DGrNjY0bNwpnzpyBTCaTbG1taR+cMYOiGPT0aJybmyP1009xaMwY7PfxEZO2bCFSOG4c3R9l54LiYuqMoakJrTt3YBIfL1V/161bJPrUt//98QfN0YMHaR3Ly4NoZoZUQ0PWo0cPDioq5IUuK6spcMoYiRfLl9ekJygxfTpw8CCk589R9dNPOPn550i+cAEVT59i5syZzMnJCUlJSa+exxtQVVWFDRs2SJIkwaJWfYK3OADt73v2vP1ni4rIQ/9SRXs1NTU4OjqKdepnALR3GBvT/X65KPP69TQnzM3rFe8ljsNfrq4s2dsbffX0oJgwAT8tX46E+mq8eHqSbRgQ8Oprd+7QPveywPMWEEUR+/btA2NsGYBW73ygJtQBv1wZDtOEJjThg6NHjx73g4KCDickJCzw8PB4tRL0eyIzMxO7du2SPDw8pK5du77/wXNyyHs5btz7V3Z/E5S5dxoaVJDt8WMiQzwPbvVqqC5aBEcnJ5itWQPDb75BVEYG4hwdxesTJ+JBfr5YUFAgubu7c61atWJZWVlcamqqlJKSwqWlpcHKykqaPn0617VrV87d3Z3Z2NjAxcWF69y5M7O2tkZwcDBzdXWtv7dwLUiShPPnz7Phw4cz3caGRbdujWM8j2ba2qzFrVuUZ6inRwTyZe8Ax5GXNjycwuneES/SAsTU1FTRysqKv3LlCtx9fMCGDSPSuHYtEQlz88b3Yy8vJ89zY1u7/ec/5JkcOBDGxsZITU1FWFgYOnXqRBW8x40jT86KFTXXWlZGhtD582SQ/vQTGUfKeaKlRUZhYGB1VejGQhRFnDx5EhERERg/fjycnJw+XNEMNbUaMax7dzJ4ZTLy/MrlRDI++YTutYEBGWySRNEEEyfSPQgMpKiLtm2JVF65QveopISO7+dHHiFPTxLGunShsNl3LHr0IVFZWYnDhw+LNjY2rE+fPvW+x9LSEl6LF8PE0FC8WFgouri4cACwfv16MS4ujrVq1Urs0KHDK8+E53lEnTiBbkVF0LO1JQGo1phVU1ODqakpkpKSkKmnB4uwMHSKioJmcjKYsi5CUhIRku++e/XERBHw80PLpCT2l5eX2G3oUMZu34b422+cbWgoZN9/T15ne/u691pbmwxlNTV6vspc83nziCS2bUvP9MABOufX9JdmjMHa2poTBEEKDAxEu6gopmVgUG+ET2lpKTZu3Iiqqiq0NDPDxdmzBf0tW7ikJUtwvLAQl4KCxJSUFNaxY0c4OzuDvRBSIwsKpDaBgZzJkCFEhO/do3NtqBuAUszw9a0+x3bt2uHhw4dSSEgIE0UR6enp4Hke9rXTamQyOr6dHZHOqiqKONi7l0SAuDia50lJRCiNjVH4669ITk9HakYG7ERR6nv3LruZm4s2U6eC+fuD9/Qk4aG8HHeOHoX6uXNo4+uL1mlp4EpL6d4qo2c4ju5bnz5Eji5coDUlNpbmzbx5gJ0dDNq1g5qaGpKSkhAVFYX09HTB0caGw4QJJMZpatJ8jI2tSV0zMqL1KDoalvn5eBAVxYKSk5EQE4OQ27eFyuRk7q+8PFy5dg2Zhw+jMj4eF+Vy6fz589Kt9HRWWloKn4wM5u7lxVr36wdPT094eXjATl2d0125EoYXLnDXVVQEy06dONndu3QPjxwh4WXCBGD/fuy9fVss09GRAIh37tzhRFFE//79aa9OT6eCiF26QKFQYNfPP4ttdu1im0pKkJubK9ovXcqqDh0CRBHsRVG8oKAgThRFyGQyydvDg1OJi6PrTkmh+zhuHBARAZPp02FtbY3yigrpwu3bTCGXo83MmSQMPH5M9VwmTqS9LT4eVTIZuvz+O8f99RdFFRQXk4CpokLzt6iIUieqqmiNtLIiW6N3b2DtWrDERCS2bYvCwkLR1taWQV+fvufwYXq2MhmlXmloQOrfHzA1xf3797F9+3aUlJSgoqICCUuWSFqpqewfBwd0WLdOyt6zh91u3Vri8/PZk/x85uTkhFdqAb0G0dHRuHfvHhs7diyM31SUrj707k37Q14e/f42gsH9+5SKVauTjBI3btwQDQ0NuWrxWhDoeQwbVtdJc/MmPaPdu6meSwN7P2MMVVVVVXFxcVyUiopwx92d00xLg+eyZVDx9KRjK0UCxmhP+uILimyq3aJ3zx5Kx6mvA1MjcfDgQSE3N5cD0IoxltOjR4+Idz5YE6rx/77V0IQm/P8fRtra2iU8zzcQG/VuUBL9bt26SV5eXu9P9I8do9DljIx/n+gDZFQVFpJSv38/FRQ7cYKM9LIyCsn76y+0Hj0alRs2AI6O8OnShXtB0OvI005UaZ0rLCxU5pQ2SOxUVFQgk8mkwsJCVm8OaC08efIEACRzc/O3IorlFRViuaMjhxkzGHJzqeCTQkGbYfPmdYvnjRlDXqjS0lcL6jQSjDH07NmT6/nCSI2MjMSTJ0/IGzFzJhnwv/9OHvPZsxtXuM3ZmYyzESPqhig3hBMnqlsicRyHIUOGsF9++QUBe/eKk6ZNI2+NQkFGmyTRuezfTwW7pkxpuI3egQN0X/LyXvVY1IOEhAQUFBQgPj5efPbsGZs8eTJ7q8JKHwrKZ9ytGxlE9+/XhGnHxBB5Dwuj19q0ofsBkDfY2prI/v+gqOfb4MKFC0JKSgrS09N5ANyM19R0MDAwAFasQHMrKy4nMBD+/v6Cm5sbX1JSwk2cOBEWFhb1rllFkZHwunoVBvPmNeidt7W1ha2tLTIzM6FQKKBZWEge1r59Kc3HyopCV19GbCwJS3PnQqdbN9h/9hkL8/OT2nAcSzU1xQU7O3QtKIDv69Y/ZQ92hYIMYFEk77+FBZHcS5catX4yxtCjRw9OR0dHurN8OSyHDIE9gOzsbCQnJyMnJwdyuRxhYWEAgFsnTyL3119hnZDAbx88GOXR0TA0NISfnx/XqlUr1BaSRQBpMTH8R2fPUsjzt98SkXvdPOB5EqhqwczMDIsWLWKrV6+ubj+oWV8KwA8/0LUfP05hxAsX0ndaWBDZPnOGIiju3IFkbo4APz+0cHKCz969kAcEMGhpoWt8PALd3YWniYm8ePy4ZGdsLBpWVvK2dnZICgmRLt28ydwjImh+jB1LXt6JE0nE2LuXnsPw4bRmDRtGxPAlODk5ISoqCvn5+Xj06BFf8ttv0Fy1qiYiYOjQ6poM1VBVBZYsQbOwMLSfOxfy0lLJ4cQJFrt3Ly/398dMPT08f/4c6mvX4rqFBfT09KTu3btzLVu2xNq1a8E++ghqqanAX3+Bd3CgjiOiCNXvv4e2nh7Mx43jhYMHiZB160Yih0IB6Okhffly9Bk0iGvZpQswahTWrFmDoUOHEplesIDEgRcOu8DAQMlITw8teB7NmzeXCgsLpQORkSKvp8d9NGsWAgoKRBN7e06SJCxcuBAHDx5E5vz5aHf/PkUWpKbS/GnVCjA2BmMMzZs3R/PmzTkdHR1EREQIPj4+tO9evUrvc3enn1WrkBsWhtsFBTBUKETrNWtYs9xcxu7epWMbG9Pcq6wkMviib3w1/voLAODj5wdFbCyX5uQEc3NzcB9/DGRmoujAAaiNG4c4HR0YhYejZOdO7J0wofrj4eHhiLl7V+Lat4fTDz/ge2trYNkyFhMVhfI//hD7bd/Oh379NVKTk2HfCCL6+PFj7N69G5IkoVu3bkK7du3evWrrwoUUZZeYSPeqsUhJaXC/Mzc3Z+np6SKU0dlt2gDffFO3xk5ZGZH9IUMaZVd4e3vLPDw8EBQUxNLS0kT1rl3Zdn19fNa1K0P79iTMKNv0aWtT2su331I0G0B24+7dNB/fA9ra2hWGhoby3Nzc1jzPjwew7Y0fasIb0UT2m9CEfxErVqzQksvlAX369HmHSmkNozbR79mz5/sT/cJCyr+8cuXfJ/qCQKFelpZEfnbvJmKvq1tTeC8+njzSv/0GjBsHOYCubzwwoKOjg16N8JDzPC/l5OSwN6n1ISEhgqWlJfe2ERne3t78kSNH0Lp1a8ozPXWKekqvX08ej2nTyGPEGHnbjx6lvys9k+8JIyMjIT4+nq8OPbSwIKNw507KewwKonN43XUZGpKhGxpKnpXX4cYNMixqQS6XA6KIUZ98wsHCAkcHDxay7t7FRxzHm69ZQ5EO//nPm0OXDQxIHDAzI0/RRx81+NaKigocPXpUEgSBCYLAzZkzB4b1GP0fFJWV5K3KzqbzW7qUCEd5OUUqdOxInkOZjAxqQSDDzMqKSH1aGqVaODlReKuy0J6HB/DrrzRO/j+AmJgYREREcO3bt2fp6enw9fV9fWTMi17TRi1aYLyuLv7++2/+2LFjANBgAdGq6Gjc+u9/Jc7BAWpTp75R6ajTWvTKFRqD/v5kYB88SAaqMqS0ooLCyKdOBQoLwY0aBW83NxbSurUQoKnJjE1MJNVHj/jQ0FD07dsX9c7558+p4Fa/fkTIKiuJ4MbHUw5927ZvvX527tSJZaip4WBMDE6vW1cnTF55f42zsjBZknBPkiTu4EFpbosWnIqKSv0F6wAkJSWhQkdHlGdmcggNpcihF4SqQWzaROP2pWfDcRymT5+OU6dOSU+ePGHKIozVKCigNWXHDhrb16/XJdqhoSRcHT0KjBqFNFVV9I2Nhb6LC+S6ujRP5HLY2NjAxsaGlyQJ2dnZLCEhgQu/f188mZDA8b17M1EUwa5cIW+2hQWJB8nJtI4dOkTfrapKpH/jRhIZXkqjUFFRQe/evREYGCiYaGhwD3ftYg+GDxfLd+3iVFRUoFVRAcPISBTLZOjYsSNMan/e1RVpNjais6srx2dkwNHFpToNycTEBDA0xNgJEwAHh+qBY2lpKURkZPD9IiNrqpgvWUKRPgUFMPrmG8Tq60slKSksS1MTbXiehIqBA4HSUlw+elQy/uor0SIxkc/cvBmVlZXIzs5G69xcaPTrRyLyC2RkZIi9unblo5OTpby8PGnhwoX8unXrMHPzZlQZGWHIxo3ckXnzxBEjRnC6FRUYmpXF/e7oiBnr1sFoxAgSXgFab3fsoNQhUHTbjRs3JEdHxxrC279/tWBcUlKC/Px8VKqoIM3XF7dzcrjz7u7QLi3Fwo4dKX0kL48I/jff0HiRpHqFzBbLl+P0b79JUdu2MaP8fORbWkKjvFzq9ccfLCw4GGmtWmFsTAwsUlLQQl9f8ps0iSkL78lmz2bgeVpTX8CxY0c4/vYbjxUrsExfn4T2n34icfk12L9/PyRJwpw5c2BsbPx+7Vm2baO1JyCAama8JuKnDpR1d+qBkZERFx4eTr9IEjkRaof7BwaScHfv3lsV6VVTU8OAAQM4gFIY1qxZg9TMTFicO0c24rZtJNwdOEDCUEICVegfNIjm47Jl7y1QDxgwQP3PP/+seHEO71DooAn1oSmMvwlN+BcRHBw80MzM7OP+/fu/R/nuulAS/e7du38Yol9SQuGWbm7/LrGQJCK9U6bQxq+rS/nQ1tZkoC1ZQh6aK1coDHbPnvfvGd8AUlJS8OzZM9GhlmH2MjIzMxEUFMSNHz+eqTZQPKohGBoaoqqqCqdOnYK2tjaMTUzAzM1pg5TLKex16VJSyG1sqE3VyZOkwn8ACILARUZGCm5ubjXXx3HkTdbVpVDXs2fJe/861d/amoyjMWMafk94OBl/CxfWCXuWHTgAEx8fnCsrw20NDRRER3OdHj3imq1dC51VqyjCoLGGD2N0Dq6uZHTUQ3Jyc3Oxbds2sXnz5tLMmTM5V1dXKFurvTeUAtXOnUTSN22iXFk/P4p60NSkn3376Bk2a0bn2rEjPWd7e3rOH39c0xtdKWLMn09h4B4e5CUZPrympdbq1fQ+c/P/TbRNAygvL8f+/fslNzc31rdvX/Ts2RPVecP1QRQphPqFh1VfXx8PHz6EQqGAn59fHQGmqqoK27ZtE2L274fKL7+w0hYtYPPjj0yndnhoY+DmRuTn4kUyrG/donXN1pZC7n/9lUJPDxwgL9T69ZANGoTWHh6ca9euzMHBgXN1ckLG+fPS6atXWf62bZLWqVNMx9ubBIOqKkprWbmSwvwfPaLwVjc3Emns7GgOS9Ib1y2FQoGzZ88iMDBQvBYYyExDQxHdqRMYY+jUqZPk7OzMBg0ahBbm5hADAtD68WO0mTQJ5suWMSMjI6aqqvpaoSU4OFjQ1NTkHY2NaTzJ5RTh87pim+XlFJZbz1qnpaUFGxsbFhISgtatW9PzUyhoHvzzD43pL78k0TYrq05BOJiZ0XG9vIDu3VG8Ywey27RBay8vup9JSTSPxowBdHXBGIOWlhYsLS2Zs7Mz69ihA8q2bIEEQCcqCobjx9OcadGC5lrLluRlvHePnomxMf1ra0tpNSUldVKRysrKEB0djVn29pygpgZ4ezMtLS3I5XJR5+FDscPmzdwhU1PExMRIHh4eNcylpAStp0xh9wYPFi19fRl++IHmpaVljcgxYADdv/JyIDkZ5qtXc6YBAdBcs6amICfP01rg6wuoq0PFzg7hEydK50JCmLUkQfvTT4GJEyHp6+OcnR3zGT+e03Z1ReX69WCPHqHq4UOp2aZN2Nuxo3ghOJhFRESIUVFRUkFBAZ8RGYk2YWHos3Ejp6GhgZs3b4oFhYWSzsiRzCQgAE7l5cxwzhzgxAlo/vUXcocNE0t37IBl794ML1rNITeXxsqLYpQVFRW4fPkyGzduHNUqyM2F5O2NIw4O4sWgIAQFBbG4uDjp/v37TBRFSUNDgykUCggqKvAaPJgEl3/+oTV8714Smv/4gzzddnZ1wsCZsTEUFhZM9++/4XvhAgxWrICZlRVr37MnjB89guOIEWi7aBFkY8fCyd2dqerpgeM4EuZKSylsvr51SVkkuX9/Wmd//pm80vWQ/qqqKoSEhKBXr16we4/c82pwXE2HB1FsXLqeKFIax6pV9e51BgYGuHbtGlRWrRJb+PsztmJFzdyOj6cxP2DA67vYvPG0OVy9ehVPnjyR1Js3Z8aOjjSvnzyh1IS5cymcPyiIwvavXaMUkHfpAPQCkiQhNDQUkZGRPADbZcuWvX2hhSbUiyay34Qm/IsIDg7+yN7evl/btm0/SLJ+baLfo0eP9z+mINAm3KULbZT/BiSJiKAy7NLTk76rfXsih0ePktGWlUXK/y+/0Pn8i+A4jt28eZPT0dGRTE1N60jRkiQhKSkJ+/btg7Ozc9381LdAZGSkkJWVxcXHx+Pq1atwcXGhfMF27cjIMTEhD+5ff5ExWllJm/y7FAKqheLiYgQHB0tZWVnVYf11YGBA99/AgDZnVVUiJ/Up8np65C1VktOXUVlJxvz8+XU3+bIyoH9/GE2aBMHCQtI/fVryliRm1qYNttjZwXPyZMotfhs0a0ahoDY2NbnxLyCKIrZt2yba2tpixIgRvEwme6vcTABEXo4codDJoCAiq+PHkzEfGUkGzU8/EXHR1qbrdnIikapHDwprnTCBxJN27YiwM9awp6OykgSP3r0pJDc5mbw5yp7QrVoRAVqzhlIwfH3fOc3jfXHs2DGhoqJCGjlyZOMeWl4eEbBapD46OlrKz89nI0eOrPPWmJgYZJ0+zQ3R0WHGo0bB9quv3p7oK6GjQ0anvz8R765dKaJm7VoiZsXFZOBPm0ZeqS1bKGqla1fg0SPwADqsXctcliyBYVERS759G8aTJ0PWpQt5r1xdycjV1qaQ602bKL9740aaS8nJJND06wcwBgXPo7i4uNoDf+PGDRw4cEAMCQlhT548QUVFBfNIS5NMZDIM9fdnnp6esLa2Zs2bN4dqVRUMT56EQVwcotzdhQ6zZr3x3ldWVuLatWtiZGQk7+3tDcMtW+ic9+2j0OutW2n8voyHD6lA4Gsqhufl5SEiIgLPUlKkLikpDOPH09gdPZqu18iIRJaZM2k8K8c9Y0TsQkOBgQNxOSUFnocOgZ8yhca/igq99vw5kbKWLWnPuHgRWLAA6tOmweyHH/BUVRXXmzeXPE6eZFBXpzmWk0OC5Ndfk8dx6VK6lh9+oOM8e0ZjMSkJ2LAByTo6iEhMxNPHj5lHcDD05syBhbMzWrdujXbt2jFLNzdOtW9f2PXqhbCwMObi4gI5YzRmBg7EL2pqotfIkZyOiwt535cupagmOzsac8OH0z1YvRrgeSQZGUlBfftKTra2DNHRdO+HDydvd0AAsG4dtD/9lN0pLBTLysrQu18/xnfqhGxDQwSUlkr2Pj6irb09VyAI0B0wAK1LS9EqJYUddHJiWTzPzZgxg5mZmXHNmjXjevbsicKcHEHrwQMWWFkpVFZWcj4+PiwuLg43b96EhlwumT17xrBhA43XWbOgr6nJijdvZs1mz8ZTSUJycjJuJyYKeZMmMWNjY8bzPGQyGeLi4sSoqCjGGINRejpK7t/HP5qazMnJifXv3x++vr7Mw8MDnp6ezM3NDV5eXvAMCAC7dYsIK88TyZ41i+6BigqNx0WLqKbD06e0XmpooLS0FMHl5WKvQ4eYaUEBzJcuBf/999CNioJeUhIJqJ07076lbD/4zTc0D99kNxgb19QLaN2a/u3YkYhxs2aIj4/H3bt3kZOTg9GjR+OtK/A3BFNTEoXPnSNB8k3HffiQxIsGothkMhlcXV0R+PAhM+3ZE82cnemF3bvpHi9f/l5580pYWloiLi6ORUZGIjExEZrm5tAfORJM2b6ve3daX69cIbulb993/q6ioiIcO3ZMCA0N5VRVVX8WRbFfcHCw0KNHj/erXtwEAE1h/E1owr8KmUxmoa6u/kHm2Qcn+gB5VNTVSXH/0EhIoI2+e3ci9jNnUr4eQJ4PFxci+EoPv7Y2bfypqbSR6+tTdWKZjAy6/HwikZJExFJZwKeigl4vLCSyXFRExzQwoNDa/HyINjaoyMuDmqYmkJMDBz09VOjqIm7NGtbcwQHGnp5ASQnuP3okPrpyhSvV0JD6d+/OOkkSeQLNzYmcaWqS18jIiL6/sJAIRLNmNeeVng5oaqL45k0Ma9sW+pqaKBMEqN65Q+/LySG138yMjGWZjIyedu3IANy3r/FVuV/g8ePHuH//vpCSksLy8vI4IyMjccSIEQ278XieSMD+/dS+6IsvyHB9OeRdLieD6t69OuGR1Zgyhe7BP//Q7zk5ZPhfvkz/374dXUJDGTw8GAYNQoWeHsTVq2vqCbwtHBzoXNTU6L5raSk9+jAxMUG/fv0aTrkQRSKCVlZ0bj/9VJMWUFVFz3nFCjLEjY2JzEkS5dUbG9MzU6Yq1Pb4vKHuQ4Pn8vHH5OUZMYLGwMCBRChrgzEiEdevkwFnY0Pz6C0jTd4XCQkJ/KRaIcOvRXY2GX6ZmXVyTtu3b89SU1Px66+/CosWLaoem8KDB/C5fBnGv/xCRvf7YuVKEoNsbIhEKGsglJbSeterF5He8nLyglVVEVm0twfatQNLToY6AJmbG7ZzHHLOnoWbmxuavyxAKBS0xoWEkAF/6xalLhQVkWAZHo4jw4dLiTzPunTpgvLyciQmJkpeXl5cTEyM1LdvX2Zqagq1JUsYJk+ue+z4eDrH1q0RNnasoCorR45IAAAgAElEQVSTvTGUuKqqCjt27BDLysqkcePGoVVCAnm3lVE5CgWtrfUhIoJefw1MVFXRq7AQFhcvkjh540bd4lwAiV3KCuy15+GlS5SDPGoU2k2fDv/yckydMgXqY8ZQatOZMyT6enoSKVqzhkhYx46AKCLnn38QtXcv1NXUJMhkNUzJxoYEFk1Nihywt6c1wsWlpj4JgLigIDxNScGd48cx6tAhtDQzQ5GlJZop9yMlVFSA9eth8vXXsLa2FjZv3sw+nzuX4xITEXb2LMqrqjhe6UHV1aX1c98+IjnZ2UQ2W7aktb1HD9h06sQejh5N68iuXSR2V1WRALF1K4m96upQ7NoFGxsbTuXmTSAjA7EqKpBKS1nVpk38z6GhkMlk0Covx5yLF6FiYgKvzEwpwNCQSZJUR4we0rcvrzh0COjeXXbu3Dl06tQJEyZMYGFhYbihqSl1UVen9IbHjwErK5jcv48sKyvxv+fOcVVVVdDQ0BDNzMz4tt98I902N5fUfvyRqampoaCggAMgBgUFIeXePS7D1haOjo7wqSUc1Y404USRxoayfWlttGxJ4vD8+STCrFtHxHHjRsDQEDqjR0MqL68pvqgsKjtvHo2vIUOI2Cv3D0Gg/aeB6DOFQlEn3SU2NhZnz54VKisrOfX4eNFDX59dPHCAuV28iEJVVXbb1RV+fn4fjugDtA5Onkxz5o8/6r8vtZGeTmO/IWRlQcPNDQ6rVwtnnj/HHFHkERBAttaZM6/WnXhHWFpaom/fvjhw4ABUVFTEAwcOcM2bN8fMmTNpvywvp7Sox49J9H4H5OXlYefOnWJJSQmHF7WYysvLl754eTiADxSe938bTWS/CU34F7BixQoOwGC5XD65/dv0Tm4ASqLv7u7+YYrxAWR0fP45baYfEkeOEEH5+Wci+aNH08YvCGQQ37xJpL5FCyL7K1eS9/T58xrFW5KIEFVU0OcqK2ljKS2l8wZIpMjPp5A1U1P6fHk5GVLl5XSstDQUPXyI4JAQiAUFGDJoEJF1c3N0NjODlqYm0o4cgbqODlJiY4Xk9HS+u4oK9GxtGaerS3UDHj0ilVwQyBC9dImIebt2ZDynpZHhIZcTmb98GTA2hmlWFjNWKGAqSSRkZGYSmQ4Opvd260bXn5tLxDsvjwq3/fADGYbNm9O9ys8nz5eyMFg9uHbtmlBQUMC3b98eHh4ekDWCHACoKeyzcycZUMeP099qGzr29vQ8P/ro1TDg77+vaZ+Yn09GzQsvKT75hAyz778nLzWApLg4MMagrgyrfBdYWZEwERgIxMYiNjYWHMdhwoQJnPzxYyLfgkAC0rJlVBfg6lXyzo8ZU5NH36IFjbPffyfjSF+fIgeUUFZBNjV993OtD0+fEun88Ucq2KS817q6VKTSw+PVz3h40Hj78kt6T6tW5N36H0GSJGg0NqrAxIQ8uS8Vl7K1tYWqqiqOHTvGr1u3TpTJZKyjQsFaBAXh6uDBsOzfHx/EvK6qIsKtbPv444+0/jRrRmM5O7uGiI4bR//W40GTy+UYMGAAoqKiRH9/f87ExEQYPXo036xZMyKj5uY0rmJiar5LLieif/w48Pgx2lZWsi4HDyK2WTMhRRB4hULBnJ2d0a1bN7pUZZus2h0vjh0jEaFrVwh+fni8ZQvn+ob0quLiYuzYsUPiOE769NNPea6igozwr7+uEaP696eflStpHn/zTc0BunZtOLKrqAjYvRslDx6gIikJiePHi61mzap/fWGM1q2WLam9pLImysqV1W+xt7dHxrBhCCgqwsRNm8BNmUL7xOzZlM+9aRMRI1VVSpEAEBsbKwLgysrKuPj4eNjY2FC7tbKyGqE6KorWBl9fiip5+BAJpaWIy8hATEwMPJctk2Z06cJUfX2hNmYM7mlrS049ezKN33+n+aSMFMrNBbKy4DdgAF9kaYnfc3IkYdw4sSgxkRvo48Oap6ZSkcfSUkqHcnWlteTJk5rxoK8PtGuHsNOnkRQeLmHePIZ584iUKtuNZmcT0VcoYGVlxd+6dUsclJvLcQUFKDIzk4xyc5lVQgLsN29Gy+bNcezbb4WH7dox+40bOZtz59jis2eh8VK0lZzjIDcxgbOzMxITE4W//vqLzZo1i0s5c0acumMHh+vX6dnMnUuk8/JlOC5axEEux/Hjx+Hr68s5OjpC5DgWmp6Oa9euCSUlJXyrVq0wZswYrqKiAjne3kjo3RueDaWcXb9O3uW7d9+cetSmDYkekkTvDwyE3hdfYJKGBof0dMDbm+oHxMfTHElJoX1q5cqaVq23btGzr0fk/f3335GRkQENDQ1RTU1NAsCKioo4Hx8frkWLFiwvL48v7dkTVikpkv2zZ8zA2hodunVDy02bSPT9kIS/qoqE45wcEslfd28SEupt21kNQ0Ng1iy4Dx3Kh//3v8j6+WeYHjlCqXkfuEaNjY0Nli1bBoVCwa356ScUJiVRiuUPP9B4Hj+eyH5qKtlibxHGr1Ao8NtvvwEvCg22aNGi8smTJ7VvzAfoJd0EoInsN6EJ74QVK1YwAEYALADoA2gpk8kc5HK5nSRJbTmOa9msWbPKgQMHaug3ooL46/CvEP3z52sU2Q/RyqukhIq3qKmRETRuHBlwnTqR8aTcGGbMIGNn4kQyiKZPJ69I165UUEtpfCvxJk+fMuS5HmRmZuJcQYGYUVnJmZmZISMjA4Nnzqyj2LcbORL+/v7CycxM3qh9ewz77jsY1C76VR+mTXv96y/6gN/+6Seuy8yZr26+DVUwlyQKpVUe/7vvyIgMDqZ7N2cOGaWzZpFXZPRo4ORJJEdEID0xkR87bdq7ectlMvI0jBhB3+3kRL8rSa6DAxkfSk+hEn36kKDj7EwGrqsr5e+3bUtpG/7+r+QMqqioQJKk+it6NwbFxUQ+Fi0icefOHXjcu4eOv/yCjTyPT379FSrjxoGbPZsEH0ki0WHWLLrOjIyaYynJ8ruGjL8LcnPJ0J4791VSf/Xq63MsTUwop//0aQoTHj68pgbA/wCNKlIZH0/eN2Uf+lrQ1tZGhw4doKGhgQcPHnAPLl+G7d69uDp+PJK1tFBUVIR3Dt9X4uuvyaMbG0vrUV4ekc/27d8pPcbFxQUuLi5cXFwcLl68yO/Zs0dYsGABX8cYl8nqzmnGqFZBVhasZTI80tZGDwMD3luS8MjLS9kmk/DoEY2JZs1I3Fy3jn4fMwbo3BlnT50SSkpKuBfdRhrEyZMnBU1NTTZ16lSe4zgioV99RWTpZbRoQfOoNr74gtYTP7+av5WWUorRzp3AokWIdndHiKEhHAwM+Pj4eLRr167+MaGnR14+pSirRKdOlBozZQq8vb3xU1gYNs2Ygfn9+4Pz8yORZOlS+pGkOh+1tbXl7ty5A4DqBwCgef30KQRBQFZWFgSeR+X+/dgXHg4VFRWp7bVr6BwSwu5//DF8R4yQunTpQgv/48fQ/uwzZLRuLeUeP868AWhZWhIB++orEmqyssBra0N18mT0c3FhfEgIX3T5Mky1tUmM6dSJ5vCAATSuvvyS1kIVFVTnvgPILy4WGWPs8ePHaCWX09xo3ZoEqG3bIFE0hvTs2TMmSRKXPG4c2jg64tHGjWLPFSv4zMJC8fru3dyYxER0Skjgb8yZU2Wvrc2xAQOgGRZG68A339SIsM2aVe+ZQ4cO5Q8cOCCuWb0aKC/nYh0dYa2rC92EBNr7/fwAe3twzs7QT0sDAGhoaEAURXB+fugWH49uDg7833//LaioqPAArd8thg9Hixfr6f/D3neHRXVu3a/3nJlh6IMgiA0QQcUCghRRASt2gy0ajSUaS2Ks11SN4d58UaPGEjXRRE2sscaClVhQQFAQUVRQVLogvQ0wzDnn98dmABUUveYrv8t6Hh5wnDlzylv2XnvtvbVaLTQaDQRBgCAIEAUBsjt3IL3/PtQ5OQCo6FtOTg6kqmcql8vBGAPP89U/e/bsQWlpKSQA0qJFaJeYiHGSRNc3ezZJ/0+cIEVdx47U+SEykiLl77xD86iOlpLt27dHRkYG1Go1p1arAQATJkxA27ZtGVBT4NPd3Z2hKr2odVQUEQ+MkVPbv//bIXwtLckhPniQ1smXBYH27SPSqy6MHk0qsC++gJifj37Hj6Ni5Uoiy95SRP8ZaDTA2bN4ZG6O+evXw2jCBNrz9+whe+Cf/6T5OmAAFUANCmrwoZVKJT766COYmZmhtLQUhoaG8v3796sTExMNAIxbtmxZ7tu/oP9MNDr7jWjEa6Cquv5XCoViuiRJxsbGxhUGBgaSqampzMrKytDMzAwqlQoWFhZQKpX/ttY2KysL27dvR69evd6eoy9JtNGsW/fvO/opKVT4ato0Yq0XLSKnLzOTnJKICHqPszNt1s9vmj//TEz9/v20qX7xBW2KCxa88qtLS0tx/fp1qbi4WFSpVLxKpUJ5eTkYYygqKkJERAQcHR3ZwoULoVAosGbNGnH//v0YOHAgV7tw2/Tp0/mkpCS0adPm36u6WwtFRUXQarU1hmlDwBj1FA4IIEfi44/p9SlTUC3zDQ0lRUNRUXW9hcpp06QZlZWsSWAgkSYbN1L05tq11yv4Z25OqozVq0mi16YNkSmMkWG9ejVFgwAy5K2tibBZvpxkzEuWUA60mxsRFHVERdpUtde7dOkSBtdF5IhiTZ/5H36glIDsbJJlX7lCY6VZMzLC0tOB0aPB9esH0507McDaGqsrKwEAQ0pKpK47d75WWKasrAxbtmxBr1694PZ31Iy4eZOcnfXrn43kAvRcc3JefL0uDB5MNRZiY+n5rlxZkx7zNyA5ORmiKKJBRSp5nuTUL4mItW3bFm2fPMHg6Gjs/uwzPC4qgkwmw7p16zB+/Hi0adMG/MsKyT0PUaQxN38+kTozZpAi5swZGrMjR9J8+fHHF9MkGogOHTogPj5eVAcHc5g7l9QgOugq/M+fX+uURFzr2hUmEREwKy+XnmRmotOpU8zFyYlIptrFtKysKNo3fz5FpadPr1ZFWFhYcJIkMbVaXW8NioKCAjx8+JCfN28eOd+3blG0VNcS63no2hkOGkTnPmUKRVi9ven13FwinrZto3H211+AqSnctVrc+e03ITU1FXfu3OGnTZtWf5HGRYvI4R8+nKT5AJGXtSqGjxs3Drt27UL0yJFw//13Oq9OnahuRffudB5VxIiDgwO8vb0RHh6OoqIiWC9YAO7bbxFpZCSe+fZbTqFQwIzj0KK4GM7OzmL37t05URDAL12KOYMGwbhLFxqQ5eVAair4mTMxpnVrbjcgrD9wgF988SIUBQWkAlqzht63bBn04+Jgq6cHDBuGbeXleH/iRHLyn4MkSSj96CPojR+Pio8+gqxPHyiVSvj5+XFyuVzct2sXM6moECd6eXEmJSVgAwfSOhcTg9zcXNapUyfcvn0bTceMQd4XX0CtVvPHjh3D7N9+44ydnZGXloYrAwbAy96ebAADAyLQDx+mMb9hA72Wn09r9+TJUCqVmOLnx0lduuDMTz/hlJ4elCkp6Ny5M62dN27Q+gqgadOmUKlU0u7du5mPjw96W1kR6Vtejp49e/J79+6FRqOB4vJl2leqxvqKFSsgCAJ4nocMwLu//YYr/v7Sk9atwXbtksrKyjiFQoHKykoYGxsLGo2GEwSBSZIEhUIhSpIESZKYVqtls2bNgrGxMWQyGY1jjiNF3/XrVANi3DiyI2JiaKxYWxM5GhVVp6MPAL169UKHDh1gZGQEhUKBI0eOSIcPH2b/+Mc/6l9junUjEgGgWh+6VLaiohdbBr4utFoi8oYOJVKpLmRnEwFd35ru6lot8U/fsgWW+fmSTbdu7K3Wc9F1D7CwQOW5c5BFRiJn7lycmz4d83Xt92qDMVLSDRtGROtr1DlqWlXM09TUFIIgoMrR3wDg4tu5mEYAjc5+IxrRYAQGBnrJ5fJjjo6Oxj179tS3srICY+xvTZ5NSUmBVquFqanp29GTaTRkwG3bBjxXKOu1cOkSselZWWS4WlmR9PzRI9qUs7LIWR0+nJz/+qKCcjk5+Zcvk+FhZUXsfVERGRVVkSlJkp6JyD969AgHDx6EsbGxZG5uzmdlZYmlpaViVdSMyWQyNmbMGM7BwaH6Q7Nnz+b2798vbtmyBYsXL66OSnEcV+2Evg2IoojffvtN6Ny5M5RK5esRCJJE116fhK+2cX3mDCoqKrB/zBi2uKpNEnx9ydG/coUiPsOHU45yz57EwH/yCTlACkXdz4TnKbIWHU3OUVYWHaNHD4rwFRTQ+7ZsIYf7yhUyNLOzyQCZM4fk6PWAMQbbVq0QExODwXl5JE03MKCx8uuv9N2xsaQiOH6c0iecnMh50NcnQ083DoKC6H2tWwOiiKSzZyU9PT3WsWNHXLhwAV1fU+aekZGBwsJCREVFiW5ubm83XH79OilXvv76BYdeq9Wi8MABmGdmUpSqIWjZsqbg3L59dI/efffl1dbfAJIk4dSpU5KtrS2USuXL16DUVFIKrV798oOmpQFz54Lbvx+THB2RmpoKQRDw+++/Y+/evWjevLk4fvx47pVEWUwMkSfnz9P4GTy4pgr8rVt0L21syLn+4AMiic6ff3UbyXpgamrKxMxMVmFsjGcW/TNnnhnzSUlJOHjwINRqNVQqlWTSrRvz1GoFzJjBo3dvmo99+lCKya5ddN4LFtA8e06p4eHhwW7cuCFt3ryZff7553VG0lNTU2FkZKQ1MjKSQRSJaJ0+/eUyYICc/U6daO7q6RHB9tNPpH4xNCQZs05yDsrJnj59Og8AgYGB2LZtG5YtW1b/8UtKaA3XOfs6B+fddwEQ8de2bVvhVGIib/bjj2g7fDgRM6tXA0eO4Gl+Pm7duoX09HQhNzeXq6ioYABwYN8+fP70KfRUKtyPjJS6du2K5ORksWPnzqyXTMYwfHjNTfrlFyIKd+2iNSsoiNY+GxswAN6urjw7dw7JwcFw2LeP5o+tLdWKcXGhOdu7N0RbW+RbWkobf/0VrVu3FkeMGMHLZLLqPenSpUvC5cuX+X4lJSjevBkPHj6UPvnkE2ZsbIyBAwdybrt3Q378OJfVvDn+HD9e8nzwgHUwMgLbvh3NXV3F4uJi9O/fH/ciIlhEfDxrYmcnOjs7cwkJCaJzcDC3afp0yMzM0LJly5pr09Oj8XL7Nq3NkycT8aVLKcnIoOs8eBD5ubmwViqlzn/8wfD990QoR0RQvYlLl6D088O8efPY3r17tWVlZTI4OZGygzHY2tpCkiRs3bpVmJOXx+ta7tEjHSpGRESgsLCQTfX1ZZYxMbBbt45VkTTPrxfPL06vXmPl8poicOXlVICuWTNSjRUXU5Q8NZXsmnrIsNqdPzp16sTu3LlTTVC8Erdu0e9//YvW2bt3aX69aaRfJiMbackSOv+6SIoHD4jUfp4wvXiR9sg9e2gf7tMHZTNm4PycOeJsA4M6LyYrKwuCIKB58+YNO79z54BNm1CwciXE5csR3bOnGG5tzRkEBECdkACvlxXg8/CoUZxdvlyTwvMayMvL0/15edmyZU9f+wCNqBeN1fgb0Yg6EBgYqB8SEuIQEhJiEhISUhISEuIsk8kujRo1yszHx0duZGT0dgu41IMWLVogLi5OzMjI4KytrWFsbPzvfa8gkBH27ruvL/8VBDJ+OI5kq05OlBtpaEiGw44dFC0YM4aiOF26kFPyqvPt3p02r7w8Oq8uXSDt2QPtwoXY17SpcPLECe7CxYu4cuUKwsLCEBYWhtu3b8PHxwejRo1inTp1gqurK/Py8uLc3d05d3d3zs3NjZk/l8+oUCjg6urKQkNDpQ4dOrAG5yC/JoqKinDp0iXO3d2da/Amq0NBARmbtVtX1QNJkrBr1y5RoVCI3b296WH27091BTp2JMceIFl9t270+qef1sjaly4lieSkSZRq0KwZGSLm5lRgatAgigCtXk0OecuWFI1KSCAWf9MmIn0++4zkqT4+zxaru3Klptji+PEUPfz1V3T6/HPcHTEC7rt30zm5u5Ox1qMHvW/BAjK6p00jMkClIsNbJntxLJmbAxoNRHNzXDA1ZRMXLEDHjh1x8eJF5unp+fI+8M/BxMQEV65cQUlJCavunPA2cPQoOR0ff1xTB6AW7t+/jx2PHkH5/vsvb2f3PBgjZ83VlRQVO3bQ3HtLsv60tDRs27YN+fn5bNKkSay+nu7V2LaNoqIzZ9b/npMnae2IiKh2Rk1NTaFSqeDn5wdvb2/cvHlTvHjxIufk5PRCnQCNRoOMJUtgkpIC5uREObwDBtAY0qWGlJWRs7tmDTkAQ4fSWLS1JYfIxqbuYpMvQ3ExZFOnsrAePdBr/fqa17OyKMr53nvVL+3YsUMUBIFptVosXLiQOQ8fDiuVisO6dTSH3n2XSJH8fHJCs7OJiOvd+4XxzRiDtbU1u3XrFrKzs1/oDCKKIo4ePSpaW1tzTk5ODLt3E+laK0e+Xnh6kkFub08EW3g4rRMBAXTP6mlbqVNN6evrw8XFpf55MnQoXe+jRxSFLSoi8nbBgmpFWZcuXTiZTIZjUVGwa9VKUl24wODuDnh6IsvHR7rSpAmzsbfnOnXqxEaPHo1bly5JbRIT2d0JE8QzV64gLy+PGz58OO7fvy8+zMjg3LOywD9PmHl40LW1bUvkQ5cupPxITobZ+++j1dOnuFpaCvu0NMj++U9S3nh5Ebloagr4+4MdOACvw4cZPD0Zf/AgdyoqCjHJyZK7uzsDgPj4eMYYw4gNG5ig1aL08mXmMHQoJElCfk4Ozpw/jy6PH8PS0REFEyey4OBgWHp7w+LCBTh88AG7HB3NhLIyqXfr1txljsOCBQtYq2bNYJORwfSaNEH7pUsRGxsr3rlzh1lZWaE6NZDjiDi6eZNSLrp3p/Pu0IHG+ciRKIqLg9X33yNHT491NDWlNX/wYEo96NSJCgx27QoYGyM+Pl7kOI5r164dFStNTwe6dIGenp50+/ZtLu3+fZT0749CrRYZGRmorKxklpaWzGzHDpZ/7hxsT51664RjNTSaajUEZs0ipSBAe0xYGKmjTp2iOW9gQD+15pNGo8H27dslPz8/2NnZvZ4R5etL902tpn1y4kSKvr/JWmtqSnVjTp6su/tFdDSRAM9Hx5OT6Vp9fIC7dyGlpOCIsbFkZ2/POTg4VL+tvLwcISEhOHHihBAaGsrFxsaiZ8+eiIuLQ2RkpGhtbc0UCgXZkaWlZHeNG0cdAAwMIBobY1dSkhTj4cFaDBjA+g8YAHNzc2g0GnH06NEvv29du5IiLzX1jVRU2dnZiI2NrQQwy8/Pr+K1D9CIetEY2W9EI2ohMDBQT09P72ee58cZGBhUCoLAlZeXK3ieF4cPH65oXztn+b8Jo0aN4s6dOyfu3LmTKRQK2Nvbi7a2tryDg8Pr5T5//DFthGvXvt4J5OSQsZSZSdHWwECKkNy5Q46GmxsZu/37v1GxP0mhgMgY8OWXyD94EPGJiVJEXh6Ejz6SOlRW8p999x3EhARomjRBeXk5ysvLYWJi8noS+VpQKBRiQUEBb/GWC9noYGpqiuHDh+P06dMwNTVF29eprP/0KRlYDZDBXb16VXr69ClbtGjRyy2O2rnh96u62Pz8c00ESCYjJz0sjKKLJSXksOkk+jExdE5nz5IB2bcvyY1DQihCMWgQOeYffEDH/Phj+p7vvycjf9UqIh+srICFC3GxSxdUJCeLuHSJA8hheThiBLRZWbC3t4fidQ0oAwPE/vQTSp8+hYWJCSCTwcDAQLh8+TIGDBjQYMszLS0NBgYGolarZYmJicz5ZdWQG4rdu6no2Oef11td+Ul6urjwhx+4bZWVUmFhIXN0dESzZs0aXsRQpSJHOy6Ooqhz574ZmVcLarUa27ZtQ6tWraRhw4YxVT2OXzVEkSKoL0u/iYkhQuLYsXq7CSgUCsyYMYP/9ddfsXnzZrRp00bw9vbmS4uL0XTvXhxt2lTqHBLCKouKJJvJkxm/bt2LBzlxgsZb7e/4xz8oanXyJJGWGzeSCqWhyMwEy8uDfpMmEmpHLDMzyeEHKTQ2bdokFBUV8dOmTYNKparJz+/SheZccDCpPJYsIYcyMZGc8zr6eUuShIiICCk/Px8ajYbFxcXh8ePH0ujRo5ltVcHL1NRUFBYWshkzZjBIEh1/xYqGXZMk0ZwuLqao6fnzNFZfoQgwMTHBvHnzsH79eqxbtw5ffPFF/fUcjh0jIurePVpPCgtfeEvPnj0RFRWFnRzHZn36KQz79MGj/v1F/aIibsawYTCoJWfunp0t2QUHs+3OztywYcPQpk0bKJVKTJ8+nV+3bp1YeeMGp0hKqi4ICoDymNeuJUKzsJCiwo8eAe3bg02dCpPISORYWmJlly742MMDFgA5ze7utN59/TXg7g7us8+Q/vvvaJeXB8+0NFxMTmZX/vgDN7t1Q56xMfOpagPXRqWC5cmT+H75coiShLnr1sHNzU1UDh/OYfx49O7dG1qtFgcPH4Zrq1bigLlzOftp08QnwcGc/K+/KK1CFImEHTYMOHAATdeswYgRI7jTp0/jwYMHor1Ozg/QPJ8xg6LPJ07QHj16NDmoM2bgvKurWOTuzpV7euKRvz/s7OxoADNG5PK2bUSQ/fwz5HI5q6xKhaoujAvA09OTtW3dGiVeXjjWrh2kpCSR4zjwPA9NRQUbkpzMbvr5iWhItP51EB9Pju/48USO6dJntm6lvSk7m0iAsWOJoP7rLyJXL18m5xigeebsjHslJdBoNOzWrVvi+fPnmZ2dnVBYWMh169aNKZVKyGQySnGoDxxHhGJ2NjnsPXsSUfb7769/XX37UuAkK+vF+RYc/KzqUjcW1q2jce3lBfz6KwpWrED2hg1selVl/7Nnz0oPHjwQCwsL+aZNm4o9evTgjYyMcPr0aaxcuRIaKqTLPQgJASeK8IiKgtutWyiKiIDlkLkARKoAACAASURBVCG0ZzRpgls3byL39GksXry4mixv3rw53N3dG/Zso6Nprzt5kmoLvARpaWnIysrCo0ePyu7evavb8OQARgPY3qDva0SD0OjsN6IRtSCXy5e2aNFiXEBAgNLIyEgJECNcnUf2PwBra2tMnjyZE0URd+7cwb179/iQkBAhKCiIb9q0qejs7MzZ29vDwsLi5VH/zp3rNCrrxePHlGM2dixFRX75hdhyXcXhNm0oZ9DWtt7ovSRJyM3NRUZGBtLS0sSsrCypvLwcGo2GaTQaVllZybRaLSBJsHV0hBQYKBV37Cj26dOHd3FxYRzHAXZ24Fq2hGz2bBiMHv3GMlwdlEolEhISYGdn93q5wa+Brl274vbt27h586bYtm3bhg+cLl0aFNW/ffs2QkJCMH78ePY60etqyGRkHAEkAdVBV7hrwAAiACSJnJSwMDIiN22in2+/JWN4/XqqZK6vT06nqytFz8zNayIvwDMOyL20NGi1Wnbq1CkkJCQIZWVlvEwmQ1lZGTp06ICxY8e+1qVkZWUh+OlTcZggMDRvzpCdDW9vb/7cuXPw8/N7ZYRekiSEhoaKFy5c4BQKBfP392cnT54Ex3EvN/5ehY0byVidP7/eVoqSJCH2xg3W8p13MHTKFHby5EkhIiKCb9q0Kdq1ayf5+fmxBo1RjqOxs28fqTf09OhZ1HZ6GghJknD27FnJxMRE/OCDDxo2Qd59l4zSw4fr/v/t20mCe+JEvfm1tTFixAhERESgOCuLC1uxQiq1sRHH/vILXzl+PEv48EOE5eRIxr/8IrVr147TaDTIysqSnjx5wpydnSWnrCzW+vPPaw4mk1EnDFEkWXBaGoStW3FHkmA8dCisrKygVCqRlJSEkpISODk5PasI+fBD4JNPcGPVKiH/9m1+7dq1or6+PmvXrh3r3aMHyWtBc7KgoIAHqIjcC2RkixbkvE2ZUpOb36YNpSKEh79QPyUiIkIKDg5mVlZWcHNzk0xNTVl5eTnbu3cvxo0bhzZt2iA1NVVSqVQix3E8pk4lp6gh+bI5OUTG5eSQ05GcTA5jfj6RtkuWEJFRT96wSqXCggUL8OOPPyI8PBw9evSoe++ZM4ccl6o2mfjlF3ICnstX7tmzJ06ePInNiYkY3rs3LFNTubQ5c2Cvp0dEhFIJ5OTA5JNPuM1WVpALgtS2bVumm9syIviQ064dDFNSnh33gkDrmLU1nceYMXT///oLOHsWMmNjeMTEICgoCM+01bOzI6JizRpSPPj6YsjUqViVk4OZM2eiX0oKuEOH0HX4cBiMHw8uMxNwcoK8Z0+YPXqEJYmJlOO9aRNUs2ZxCAmh4wDo378/unfvjl82b2ZOcXHIDQlhw+fPR/mECUSi3r1b0yqySjXiYGqK+/fvIzIykktJSZFmDBrEoK9Pz/Dzz0nB8F//RQ78lClUW8DfH7KLF5H/8KEglZdj//79XMuWLaWxY8dyenp6pArIzwd+/hm35s0TYi0t+eqAxrff0pypgjnPw3zMGMz9+mtA59Tfv4+CWbOwZ+ZM7ccLFvz7/oQkUeG95GRSkF28SGTLihW0nuXnk5rMyYn2ryZNaDytXk1KttqqooICsmGCg4GgIDiKImZfuABJqeTu+/gABQV8nqkprly5IspkMqm4uJh/8OCBGBAQwL3UjtKl7Bw/TmqViAhSw2RkNLx6/4oV5BDv2/dMrQ9UVlIg5Ycfal5Tq0kJ9PAh2QYffQR4ekJZVgYAuEIKFzx69Ij5+vry7dq1g5mZGQcQAWlhYSEV3rzJxqpUMB0xAmL//iidNw9/9ughRfj6svIjR+Dg4CCOMjXleNBc0mg07I3tXTMzIvzffZeeQT32SWlpKbZt26b7p87R/wbk7NezkTTiTdHo7DeiEbXA87yfq6ursrah9tbkvP8mdM5HlQPCl5eX4+rVq1xUVJRw9uxZ/p133kGd0cioKNoIQ0MbJrG7fZs2sTlzyBD98Ud6zd2dDNSBA2tUAnUgJycHcXFxUkJCgpSdnc3JZDJJX19fsLCwkNnY2MDIyAgGBgbVBrGRkRH1wU1MBD74gOGrr/hnctP9/Oi3Wk1G3+PH5NzUyid9HQwcOJA/ePCgaGhoCD8/v7+NwbGyskJ6err06nfWwr17JIF7SaE2URQRGhoqenh4cLZv4Mw1CKNG1fydmkqO64gRZDj5+pKBwxgZJXFxZMTrDJ1XVARu3ry5dOfOHfbkyROhb9++fIsWLWBubo7IyEhcvXpVwIu5nXVCFEXs2bNHSElJ4V1dXSXHfv049O8PSBK6u7vjypUrYnx8PNelS5c6P19aWgqZTIYLFy6IUVFRHABoNBpmbW2NIUOG4MSJE8jKyhL79OnDvZbhI4oUZWvdmqrDvySVIzY2VuJSU5n9mjXgLCwwb948Pjc3F8HBwQgNDWXt2rV7PWm/rS3EP/6A9OOP4H/+maJfrq4NMkJFUURCQgKSkpKkO3fusEmTJjWcCVu9mgzxunDoEMlPd+9ukKMPAE319THMzw9YsYIhPBzYsoXPmTEDJqdOoV+/frC0tOROnTqFpKQk5OXliSqVihMEAbf/+os5HDmCh76+KIiOlmJjY0VLS0vWtm1bzsbHB5EjRgjZAwZwD4YOZZaxsej6xx/SnoEDmYGhoVReXs5kMpkYFRWFyZMnczzPQ9JooL59GzLGMGzYMN7d3R2PHz/mCgoKxLCwMOby2Wcw694d6uXLkZubKzHGWPfu3UWVSlX3gDEzo3X0zBkiTbdsIYXUmDF0n3geFRUViI6ORnBwMBs0aBCq2u5VP0BDQ0Ps27cPw4YNk2JjYyUnJycecXFELOnWyvpQWUkS9sWLyTGaPLm6zR+aNaOiXMuXkyMzcyYpdaKjyUl9zmg3MTGBk5OTdPHiRebg4ACruhQBjFFXDBcX4MEDiJ07Iyc9Hc9n816/fl0EwLm5uaHrsmXAgQNo8eGHVNdg7Vradzw94TBhAnx698bly5dZRkYGaq9/np6e3NWICCjz8lB9JoJA5z5pEsnVFy0CvvmGrikqqtpxc3Z2Rlpamrhx40ZOpVKJw4YN42xPnaLnFB8PlJej0MUFpqamsLCwEG7fvs3169ePMV1LxMuXkXDqFFLmzRM7hoZyt318RP8TJzjo6dG+FhdH+1XV9x05ckRITU1FUVkZf2rwYIwyNGRWV66gIjERDikplCt+7Bgde+1air6fP48hjx/D78gRHO/Rg1Q0Pj4Ubb5xgyK+X31Fz7dXL6qU/sknGLZmDafrWqNWq7F69WoWGhqKvjrSXE8POHsWbUJD+b6LFqHzwIH0+r17tHZUOZU4fvxFddKZM9BaWUH8dwv9XrtGY2/0aJLLjx5NSqElS2oUSt98Q+958IDIog0bgAsXatpqZmYSEaCbAyoVycqrarfoSxL0c3KAq1dhlZ5OEfrkZODSJQ4BAUhs1Qrn/vqLE/39wTdEMdmkCf00a0bPiDH67vnzG1Z7ZdMmIgg+/LAmBen+fSLddKqk334jQvCXXygXfuvW6ha8SqUS3t7eYnx8PARBYO+99x5r1apVzfFzc5H/9ddgRUWsZ0ICTMzNobd4MZCUBH19fXxYtabk5eVh69atbPXq1TAxMUF2djaMjY0FjuPePBLy6ad0f2fPfraYaS3UFaSQyWRDv/rqK/c3/t5G1ItGZ78RjahCYGBgPwMDg66vJbv+H4RSqUTv3r3h6urKr1u3rn65uG4TqnL0de1ydD+CIEDOcdArLIT+ihXgo6PB1q2jKFRaGslvu3Ylo7QeBz83NxdxcXHSzZs3UVpayszNzUUnJye+Y8eOaNKkCUND1pq2bcn4fPr02UJ0OujkcrNnkzEUFtaAu/Qi2rRpg379+nGXL1+WfH19/7baC0lJSXil/Pl5WFtTFepakCQJly5dEhISEpiJiYmYmZnJS5Ik9dIVvvo7kZ9PRtXGjXTP9fRoLNjYUKRBqyWH1tS0pkJy584vdS5HjRrFAgICwD8XsnZ2dkZ4eDh3+PBhadSoUS99KOXl5di7d69UXFzMzZkzB6ampnSsbt1IiVJcDK5v33oryD98+BB79+6FJEkwNTWVpk6dCj09PYiiCCsrK1hbW6NZs2bYtWsXioqKhICAAL5B40QQyPEtKiJy5BVtN8+cOcOmhoeD+/BDaukFwNzcHOPGjcPKlSulS5cusYl15XU+B1EUcZLatLGSkhKkFxRwDt7eotdvv7EWW7awu8OHw8DBAba2ti/cE0mSEB8fj5CQELGoqAj6+vrS1KlT+RYNTckJDKT7Xpdkc8UKcnTWrm2QYgVaLa1TbduS9P6f/6RoJajQ1qRJk6rfOrym00S1Y50cFITEmBiEHT0KSZKYu7s7n5GRId27d0/sOGkSq2jfns/Ozhade/Rgg7y8wAUEMBsfH9xjjHX39oYoityGDRvE7777DgPu3JHyBQGRgwYx54cP8U7nzrC2tta16+LMzc2F48nJfJvOnaF6+BBhYWEMAMLDwzlHR0fYPE9GpqbS2Ny+nSKxZmbkKPzjHyQJXrQIWLcOhw4dEhMTEzkXFxfJw8PjhUHn7e0NMzMzHDlyhDHGmGfHjhT9PH2aFDb14eZNciAzM0lhoSugNWkSOfsbNpBjpyN4R46keTxmDJ3j2LHkuNdysAMCAlhhYaF45MgRZmtry7KzszFixAg8ffoUBQUFSE5OhlarhZ63Nwp/+03UKJVcYWkprNesERStWqG0tFSaOnWqzN3dnTt58iS6VUW+MXYsrTdVReYAAJGR4E1MYPngAQAq0lrb2e/atSt4Kyvc2roV1m3borVWC2MbG7ARI+jeeHnRNdvYkNLDzIzm6OTJkI0ciZ49e3I3b95EYWEht3fvXvj06AG3adOQ+c9/4kRJidCjTx/+Qp8+4K2t2fXr15mhoaHk7e3NAOB2SQmO5OTAa+pUbqejIwwYg39JCRHUx47RtYSG0jOurERiYiLr1KkTJwgCPDt1guVXX5GCgTF4hoURMZaeTnvchg20rmzdCiQngzM0hHtwMLv87rtSj4ULGW9jU0OiffIJfYe3N+3dJSU0p775BujfH4Vt2kCSpBdqYeDoUZyeO1fyLSlhpqWltJ63a0fOsyTROLhw4dnWjAsXAlOm4ImfH6kRXgdqNaVUBAZS9HfAAJoLtrY0TmtDFCnC//gxrasGBuRMd+9Ofyclkc0wejTdK6Bu0osxWoNqd6gRBDpuZCTaCgKe3LsHcfBg8JaWVDC4XTsaMw4O9adFKZWU8w6QKsbZmciIs2ep4GV9CA0laX5WFjn0AF1L7eJ/wcFkcy1dSutGrZovjDH079+f69+//7PXs24dETM7dqBJfj469+uHo23bovns2air7kqTJk3w+eefs+DgYNy5c0f09/fnPD09/z3JI2NEYvj6EqFZRx2XWgUucyVJ8gOwSRCEOvKyGvE20OjsN6IRAAIDA03lcvm+gIAAgwa1mPpfBLlcDo7jIAgCSkpKkJ+fTz95eZLjggW4PGyYlNKkCav87juSzAPgeR4cx0FZWSnplZdLI3//nUu3skJy69aw1NOD5fTpuOnqilQ7O6ibNYM8J0fS27JF0tPTk5RKJfT19WFgYAC5XM4lJCRIRUVFnLm5uejl5cW7u7vjjVnhDz4go+zbb2njrAs//UQGwJUrtME/efLa+cldu3bFuXPn2NOnT+uOSP2bePLkCXJycjBmzJjXuw/e3nQ9tfDo0SNERERwvXr1YkVFRZyjoyNcXV35vz2tZPp0iuAfO1bT3ujWLYqu2NuTvB8gQzonh4qNLV9OjsH16yRtrEOhoOux/DyUSiUmT57MfvrpJxw+fBj+/v7PSKE1Gg1OnjyJlJQUoaioiG/atKk0ZcoUzvT56v+rVgGMQX7woHTo0CH07t1b8Pb2rv5CtVqN3bt3w8HBAePGjat3rFpZWWHWrFnc5s2bxRUrVqBVq1aCv78/X2+6TFkZRTScncnobkAByIqKCsR8+y0GVrXAqg1fX1929uxZxMTEvLKzwO+//y6lpKTwlpaWor6+PqZNm4a4uDhu/7VrcA0Lg7B7tyjxPDvYvj0zVanE9u3bw8vLixNFEYcOHRJzcnKYk5MTN3369NcqagiAomPP1zKRJHoOzZtTPYeGOPoREWRgp6QQQfAGNTVsNm5E+bx5WNinD3766SfJ1taWDR48mEEXGf+v/wI6deKqiYmQEFgcOoRe+/bRuqNQYO7cudzp06eh/Osv1qFnT2jd3BAdHY1u3brBysoK4eHhkkwmY87OzvzTzExcTEmBXm6uBID17t0b4eHhCAsLQ0ZGBrKyssRhw4ZxfE4OOUvvvFOTSpWQABw5QjUWvvkGCA3F08WLkdKkCfvss89e2v2gQ4cOcHd3l1JSUmCwYQODmVm9BfVQVEQGd0UFFWT7+utnybhr12r+Hj+eSLw1a6jwJsfR8xAEImzWrq1p21bVnnLixInc3r17xWvXrjEAWFdVR8HExEQyMzOTkpOTOTg7Y/aBA9zVHj3EqX/+yd1o3Zo74+vLAGDVqlUix3EMAMvMzEQznbPz7bdUfVzXt76q84udnR3s7e2RmJgo9unTp3oR5DgOLgMHIiMmRtp/+rQ4c9ky/r6NDbLd3SX3UaOYols3MFdXIjt06qMuXcjRio+HkudhYGAAtVoNf39/nDp1CtfHj0dRWhqUBgZ8ZyMjFJuaQuntzYWEhCAvL6/6JlpYWIDnechzcjDi6FGpXUwMh+bNaf1zcSFCdOBAup/t2uEdR0d2x8xMCEhI4OHnR2tlURH4bdtwzt8fE8aPB6fVIm/kSDQzNgbr1IkKmA4fDj1HR5QlJiLk6FFmzhisKipgYWxMe+L586TaAIgwP3iQ5mJVETsLuRxeDx/i0sWL6NixI0xMTOi9CgUe29mxgKVLkRUeLt1asgR6hobolZ/P2NWrNDemTKlxNh88oDSIZcvwJDISgiC8ejPKzqZ7f/gwEZtbttBcCAggFVR9mDuXlBghIZSfDxAR9dVXlGoxYQIFCVavpmtNTm541w0dsdi2LeLj43EpORk9v/yS5oSuu8ju3USOffIJdbqxs6N7W5ey8Kuv6HdcXI3c/6OPiLSsaz2LjSX1QlERjY3UVLoXxcWkRAkMrGk/W0dxV4gifSY/v0ap06oVEXa2tuD37kX4Tz9JHMcxy1dUx+/fvz/69+//VoyKsrIyVFpbo2DcOBRt2ICTjx7Bb+RIeNZqvfntt98CABhjocuWLYsD4Ps2vrsRdaPR2W9EIwAoFIrVHTp0MP6/EtWvDQMDA7Ro0UK7YcMGGWMMCoVC1NPTE015nm+rUDAbb2/m7uhYXdROqVTSprlnD7BmDcN77zH06IFm3brBWaOB2KMHyj090beyEpIkoaKiAsXFxaykpISVlpZCrVZDrVajuLgYGo0G3bp1Y+7u7pDJZP9+AjxjFPU6d65+Zx+gjbF7d3I4OY4c0yVLGpyjzHEcrK2txTNnzmDixInc287dlyRJ1zLx9T6YkUGGSq0WN8YUtWE9axfa+7sgiuQQqVQU9bp4kQzjEyfIOfnzTzK8asscdRETXYG2zEwydrZupdx9IyPKO21AZ4YmTZpg4sSJCAkJEdavX897eXmhb9++UKvV2LRpk2hqagoXFxfm5eUFPT29ug0TGxtAkjB39Wr+zx49cEGSeG9dD3EQqeDk5CQmJCRwhw8fFl5GyBgZGWHhwoXc06dPcf78efbLL7+AMQa5XC61bt1a9PHx4Zs1a0ZRqu3biRCZPLm6P/jLb7UIRXk5nOfNI6nwc/Dy8kJMTAyCg4PrdfbVajUePXqElJQUZm9vj4kTJ1bfk5YtW2LAgAHIzs6GVX4+h1Wr0Dc/H7G+vlzM3bvCtWvXIEkSWrdujUWLFr1Z7Yf798khe554WraMDNhaPePrxaxZVBF6587qnu4NgSiKz9ZRiY8HSkrQbsgQgOchl8uRnJwMnufRTtcfOyeHjGMdGCNFQlAQkWyWllDcuYMRQUEU1WQMNgDy8/OxY8cOdO3aFdHR0QwAIo4dwydnzyKpXz9BkCTm6+vLvLy8UFZWJt6+fRvJyclMo9FwDrm56LhhAxnvuhz427cp+rd0Kc2vBw+gad4c2T/9hHemTHl15wMAarVa0t68yV02MECxkxOsoqLwQgeDoCCK8nXtSqRLXc/igw8oZcvVlaT6n31Ga+mWLfRsGKPXFy8miXJpKTkg27YBLi6QGRpi0qRJ3HfffScZGxuzkSNHIicnR3J2dmYAWHXb1JwcjPDw4LB8Odrm57Mhjx+joqJCePDgAZecnMwAoFOnTs+em50drUmSRMqy06dhsHMnxOXLhQErV/I3IyNFl/XrOUyZQk6ZgQGaP3jAFnzwAY8OHWA9fjxOSJJk7OXFjq9YAVEUYVJWBs0338CoaVNJaWsrFZw/zw3fv19iubmsbPJk9OvXD+7u7nB0dERqSgraBQSgcv16KD7/HH6ZmcCnn6Lp0qU4cOiQpFKpJG9vby4qKgrKigp08fCAurSURVy6BO/kZCJXjhwhabauTWF8PCzS01n65s289vJlyESRxn5QEHjGMD4hAfHdukkZNjbSQ47jPDZvhlettV9dRegzxnDo0CE0a9ZMnDlzJofsbKox8LzjzFh1XRb58ePwj4pCrJ0dLs6cCZfAQFSAOiyUV1Tg12++gd+lS4y7cAEXjYzQMzYWrHNnWsOXLaMUgeBgmkMxMQDPQ6PRCNXKqueRmkrX37MnOeUjRgBTp1IaYNOmRCLUh6Iiup6hQ2mNKSqqcZgliZxagH4vWULFP6dNI2Lqhx9oHdEpRRqA+/fvQxTFGttC51y//z4RCbdukVoiPp6caQMDWuv19akeh5sb3SeAVJHDhtFcCQ+n/eD0aSrG5+pa86VLl1J9hthYmqPr1pHtc+ECkXKOjkSC1iZLRZHWJnt7ut60NHrPihUUSX9uLVapVOB5vsHpcW8Da9euFSorK3moVJhcUoLRBw5gt4EBPDw8wBhDdHS07nweS5I077/rvP6T0ejsN+I/HoGBgT4KhWLigAED/m+F9Gvhgw8+qD2XOfzwAweZDIiMxDNiXI2GpHgJCcSoq1RkAM+ZQ5uVoSE4AM/HJP+O6He9CAigKNQPP5ADWR9kMnqvINAGLJeT82FrW2+6QW2899573Lp166TIyMhqOebbQnBwsNCqVSvG8/zrMeUqVXXF6vz8fHAch5s3b0Iul7/9SsfP4/p1cshv3CApqIcHGWi6iKGDAzkpKhWlUpiZUQuh2mCMpPy6AmmxsaQMuHuX6gCMGEGGnqlpvY6/jY0NJk2axKelpWHfvn2Ij48XHB0deSMjI0yfPr1h+fOMgR06BFlWFsTYWBw9elQaNGgQe/ToEdq0aYOhQ4dyd+/eRVFR0Sufu0wmQ/PmzfH+++9zoigiKysLJSUl7Pr169z27dvRztRUGHTtGm/g7U3RyAYqLpKSkqBXXg59G5t674WHhweCgoJw/fp1wd3d/QVj7fTp02JcXBxnaWmJYVV5ubXBcRzNXSsrYPNmKO/eheekSfD89lv+yYgRKCoqQrt27d5sXElSdWVojBxJrwkCOYteXkRY6SKHz6OkhIzhTZvosyoVyWHdX52umZWVhQMHDiAvLw8qlUrs3Lkz5+PjA1l6Osl4q4g7e3t76dq1aywmJkb68ssv6QavXUvzKyWlxikyMKAUofXryTGeNo1y22s9k/fffx+XL1/GxYsXwXEc3NzcYGVlBe5f/8InenrPPBd/f3/Ov0qpkbBtG8LDw2H44YewbtsW1RtMYiIpk+jgwPHjKFy6VHrUvbs47MEDHtHR1ZHz+uDu6spVrlkjPbCxQYmbmxh18iR/8uRJLFu2jNb5mTOJlFu0iOTI9aG4+JlCbNDXJ6XB5MnkUNTurS2X08/Tp/T8P/mEIq5xcTBLTWUd3n0XLVq0QIsWLapvXrUKZuNGWmPCw2H+6acwv3ABUCp5T09PHD58GBkZGUJBQQFvYmJCHTk+/5zIxR9+oO/6+GMiEL/8Ev5qNZ//+DGuZmZyeuHh6BAbS8997FhyfpYsAR49ggkAy5072dGjR8HzPLy9veE9Zw4e9+6N6zY2LCUlhfE8j6NjxrDK8nL4pqWh/YQJyI2KgrmFBUw7dwbmzoVct/8pFMDDh7DW1wfHcQgNDeVCQ0Ml99hYLPjrL8b/61+4c/w4Qk+eFLvHxHDJvr4oPX4cDh99hOodSalEE3t7NPXwEH+wsuKma7VoMmsWcPIk2KBBMDx6FF0fPmRd27dna9eulTSi+MzicPnyZdy6dQtWVlZCbm4ub2dnR3vD4cM1Pdrrw/DhwPDh6HbkiNRpyxYWWVqK3I4dBcnEBHZ2dvyoUaNg0KsX2vn6Ivn99yHs3w9OLicSrk8feg6ffVbTHhWAIAhMEISa78jKolxzfX0iaGQyWvtv3GiQ2qkaX31FUfoFC2i86daS7GwaE893XPj005oWsMbGREqUlLy6jkUVWrZsiZiYGJSWlr5YXNPYmJQVOkybRkRGWhp1drh0iZQPQ4cSwSCXE+ns5VWTlrBnD+17Li409319SVWydCmRagcPksMfHU2/LS2JyNA5+idO0LrRoQN9ZvlyIhCbNqW1qnfvOq+rsrJSMjc3/29z9Ku+k76PMRju2AHV4sX40NMTjDHk5eUhKChIdz7Dly1blvzfeW7/qWh09hvxH43AwEBPuVx+6t1331X+XX3X/0fw6NGzDPL167RBGBtT9HjsWGKj9+9/o3Z5fztcXel8P/zw1UW9eJ7y3wDKPe3cmRyQV0ChUMDQ0FDUe85Y/3eh0WiQnJzM9+vX7/U/3LIloK8PQRCwoSr/0NjYWHjnnXf+vs1aEMgQGz+eoiM7dpAhFRX1bL/u338H/viDchH79qUc01fB2Zl+JIlyER88IGPxyRMyzhQKcvDqcHZbtmyJruXUXQAAIABJREFUOXPmYO3atXx4eDjGjh37eoXyevTA8MePMXjiRKyeO5dlZmYiKysLjLHqiHB6ejqXnp6OhuanVylCAAAODg6s7M4d3F63jruSmQmnQYPQqoHnV1FRgSNHjoBr0UJUrV1b74fc3Nxw/fp1hIaGcu51OMKdOnXi4uLi4Obm9moVia7ews6dwO7dsM7IgLUu1/RNwBgZ47r5KYoUXZIkkizX1RozMpLG0Jo1FLVSqQAnJ6jVahzauROiKMLOzg6+vr64evUqLly4ALlcDq1WC5lMJpaVlXFmZmbIz8+HgYEBWrVqhStXriDsyhV8dPEizHU5uwDS09MBAG3atBFQ29ZZsIDGoc7Z1mHKFIpWOznVSMdrwcHBARcvXoQoihAEAW7HjlEl+5Ur674/x4+j3fbtKJ45EwcyM6WK779nLVq0kHx8fFjbgAAiKquQ5uqK0716sfeaN+dRUUGRw6Cg+qX5AFqUlQEBAcx2wQKAMf7u3bs4tH8/wr75Bt0PHMBBDw+puEMH8b1WrfiX7mwHD774mrExpeUMGUKEQW1HB6ghtDZvBjQaRBw+jCk7dkB87z1ySJo3r9uxCw4mQqV1a5IeW1tDJpNh8ODB+OGHH/hNmzahhZWVOD0oiKtOGdJFWKOjKUK+ahWs/P1hUVCAh7m5yMrLQ4fSUlrHoqOJ8Bk6lBzNL7/Ee4cOMU1lZY3i4eBBlCcnI+3mTfj6+sLZ2RkmJia4cuWKxHJzWXhGBkzj4uBz7x4RJnPnUupYkybknIWF4d7q1eh9/DhrOngwmpSVMeOdO6kaPwAnJydcungRj9LScDwkBL5Pn0rbIyMl+/JyLiMjQ1Kr1aKtrS3v5ubGGZw+DUXHjrQnZ2aSg3fiBDmteXnQ09OTDAwMmFarra61U15eDhsbG+348eN1Y5p+azTPEjMvQZ+RIxlGjsQwUQTmzuVx5AjdrydPgF69cG/lSnTevx/8tWs0Lz7+mFJQvv2WyJ1ae7Kc5zm98nKaB/v305h48oSqsc+d26DzeQbp6fS5NWuIcN63j85Bhy1baG+q3dGha1ci6x4/JmKra1eqC7BoEa03DVD8ubq6Ijg4WAoJCcGQIUNeTf63akU/uvG5dCnZXdnZdC91HWhcXEih0q8fEREhIURw5uXRfWrWjNbRixdJATF+PAU5YmMpKDNlCqlvjh4lpdz8+bS+NhDNmzdn9+/f/2+N7FtZWSGrqiXp5itX4G5piZ6jR2Pl7Nkof3ZfuI3arUwb8beh0dlvxH8sAgMD/eRy+YnRo0cbttEVSPm/juRkkmH/9BM5wd99R8a9r2+No9W3Lxktf1NhurcCR0eSs+3eXV19tkG4erWmj/auXeRcgAq6FRYWwszMDAqFAikpKTAxMUFZWRmzeIPc4Prw9OlT7N27V1KpVGjVqhUDSNIfGRmJ0NBQdOzYEUZGRnj48KHg4uLCu7i4QKvVIjQ0VHJ1dWVKQYDsyROkpaVBLpejZ8+e8PHx+fs26aAgMqwiIylPsbKSHIw//nixXVzLljVRktGjiUAKC3vREagLjNU4/qNGkUKAMXK8KiuJVNBFdms5zLr8c8YYXpVzWCfs7CA7cQK9jYwQfPYsAGDWrFmIiIjA48ePhYKCAj4pKanBzv4zuH0b+ps3o72LC1vbsiX0k5KQSn2DRa1WKxUWFkIul0sKhQIcxzFRFCVTU1PWvXt3vqCgAKWlpViyaxfJb+tzGAG4uLjg7NmzbOXKlfjoo49gbGyMjIwMJCUlISQkBFZWVnUWcqsXXbvSc1i2jKJBf/31+vnxGk1NAS9jY/r3/Plk+C5c+GKhuP37aU5nZZGByxgZ7VXYsWOHkJOTwzdp0kS6dOkSCw8PB8dxkMvlEEURffr0kZo2bcrt3r0b+fn5sLW1xaRJk8AY4zw8PLD3xx/xoKICIYmJUOXkIDo6WiovL+fs7Ozg7u7+rJ2zcWPd11RURFGyo0epnVdICGBgAFEUIYoitm7dCgAwNzcX+/btyz1fSLMakkSOR69ewPbt6NauHboBrLCwED/++CPbs2cPZv30E/KnT5faf/sty8jIwPHjxyWLnj2ZYadOlPrw0UcU7duxo+6ie2lp5BQcP169jjvxPD4oKpKKzp5lq4YORaWJCbNWKtkPP/yAyZMn45lK3bWhr0/P5XkVhqEhRdb9/Oh3fXukQoHLjx5Jqdu2sTE9e5KjrVbT+p2URIogHT7/nNQAJSXPpGsYGxujU6dOYuWBA9zwlSu5wv79YXjjBsr09JB69y5am5jAyMCASOp33gG+/x5Py8pQKklo5uBAzjJA1fONjGgMbt4MmJtDJpdDduECSnr0QGpqKs5fuCD02bqV7/fjj1J3P7/qeeNX9ffalBR0SkykjhrvvkvrYVAQFU5dsgQA0KFtW2SVlEgJERGwrqyUOjLGcVX3lzGGycOGccVnzmC8mxuaCgK7Z20tpqenCy1btuQMDAz486dP48nJk6js3Fms7N6dQ1oazcvcXFK8ZGYC5eWY8OWX3K4JE3DS0hIcx4ExBsYYXF1dn53vWi0RtnPm1P2M6gPH0XwoL6fUK39/ICgIajc3tNiyReICAhimTiUCIiWFiBwjI3p/eDigrw/vpUtxz8QE4vz54DZvJsL9ZfL8l0EQiKhv3pzGx4MHL6b1jB5NY+x5FBbSOnrsGM2JHj2IjFu2jIIGtVK56oJarUZ5eTmzs7N7s3PnuOr8f3TvTvO4ooLuWV4eEV2//ELrwief0BrxzTekYNixg+y0zp3p2uLjaW3euJGIirZtiYh8A6hUKlZaWsqVlJS8qFh4C1Cr1YiLi4Orq2t1vZdJkyZh1apV1e+57uUF92vX0C06uizMz2+kJEnRANYBeIOISCPeBEySXq8zVCMa8f8DAgMDneVyefi4ceMM/r9x9AEyStavJ8fs/n0ywnv3pvx3P78G5RL/r0FZGTmG8+aREfI6yMxE8alTyPDyQuHkyTg3YAAEhaK6MKEgCOB5HjzPQ6lUSgDEgIAAvmXLlng+evzkyROYm5s/04LxhXxhABcuXEB4eDhatmwpBQQEMFNTU52TIBYWFjILCwuWlpZWXYW2srISEydOxNOnT3Hu3DkAAKfVwiMqChGenmAcB6VSKXl4eFQbom8NERHkrLu5UYRtyBAaK+bmlFtYV32AW7fIMdAZ7599RgZmcPCbn4ckURpJUBDldr73HuWCvvPOK42zhiAzMxMPHz5E099+g+roUQi3blVH5gHgjQ2g8HC6H+bmUA8ZgoMHD0oajUYSRVFijPHm5uZo2rQpNBoNKioqIIoieJ7HnTt3oFarwRiDi4sLhvfqRRFxc/OXfp1Go8Hy5csBAAsXLsTBgwfF1NRUrmPHjhg6dGidVZYbhJQUysXu1IlIn4bWmCgvJyLxm29o3OzYQQbq99/XtI0CiEjo25ee5fvvkxP7HP7880/p1q1brHPnzhg5ciQePHiA69evi927d+dqG966rgGlpaXo2LEj9KucYEEQUDBhApLatxeDGOMAch6Li4upaJpcLn322WfPzp89e4hsuHyZ/j1rFklz3d3peYSEkPy4VSuciY+XIiMjWdVxxYULF9LEj48nmfvza+rBgyQ3/+23Z1RTBQUF2Lx5M1q0aAGDoCCo/P1h0KEDQkJCUNX7nHL1S0vpvt6/Tw74rl0v3v8jR2rI29JSmj+nTgF9++JS69ZiTEwMN3/+fMTHx+PAgQPo378/vOuaT6JIjtywYfWnn+TmEll84gRFKOvA2rVrYWVlJb733nt0kPJyat3m60u/1Wr6rExGUdl+/ej78vLoABoNCnftgvTll4jv2hXnPDxgWlCAtg8fIr5PH2HGP//Jl06ejJwBAyDftElsbmvLGVpYYG/r1qJ+kybcKF2r0BkzSC107RpFSg0NgdJSaK2s8PPkySht1QqeXl5i93nzOL09e2jcP4d9+/Zps7KyZM2aNUPbNm3QbehQctL69iUCXV+fnLK+fSGoVPgrLk5svmwZV9USl5CeTgRXdDSlQg0e/Mx3XB40SHS/c4fTT0nRDQ6SZFfND41Ggz/27hVaHDnCXe3alXWNioLaxUXMbtGiWlkiiiKTJAmiKKJZUhLzuHQJRyZOhO41rVYLnuehUqnEwsJCTqvV6gg0ieM4SRAEThRF1PYB9EpKUKGvj5kbN6LI1layb9WKYdgwUsHMn09rXosWVHBQXx/47Tek3b+PbWFhmDp1Klq/rNDeq3DvHpE5Z8+SkqC0lAij5zFlCkX9n18zJYkCAytWPKuIiYykyHhY2EuVMseOHZNu3rzJvvjii7+33XJRESkQMjNr2tJFRNCYAYjACw8ncnTKFJpLL+uy8QpUVFTg2LFjwsOHD7nZs2ez1+4QVA9KSkqwY8cOqXahSgBYvHgxCgsLq8lRAM0BXJvx88/drTMzLwP4JyTpt7qOWVUoe5Wenp6pWq1OF0Vx17Jly2Leygn/h6Mxst+I/0jo6ekt9fHx0f//ytEfMoRy21q0IENn5UqSo9aXN/u/Hfr6VI22vJwY8gZ0SYiNjUWHDh2gaNYMvxYWCuKvv/ITUlMhMYYlkyejzMICgiDAxMQEmZmZUKvVSE9PZzExMfyuKqPaz88PN2/eFJs3b86lpaUhLy8PRkZGwqJFi3gA2L59u5CamspzHIdhw4bBxcUFGzdulHJzcxkA+Pv7s2jq8Y2ysjImk8nY4sWLWW1y4MSJE7hx4wb27NkDc3NztG/fHgUFBdqcnBxZv7AweP76KxKfPMHDhw9ZSEgIysrK0KtXL+zbt0+wtLRkI0aMeLM86/JyioCsWEHGxCef0OshIRSNSUiovy/8mjXk3Hz9Nf27qpouysspKv8m0BX3mzqVfvLzKWq5cSMZQKWlFF1zcHgjJUpUVJQQHR3NKyws0OH994XBTZo8o5J4I0c/LIwcxQkTAH9/GACYPHlyTcX3l8DBwQF79+6Fm5sbhnTuTC3OdPfzJVAoFBg1ahQOHz6MY8eOoWPHjlxqairUarX0sqrtr0Tr1hQxCgwkw9rMjByxl0GrpUJSy5YRIffFFzQu1qwhZ04UayL448aREX/1ap2HCg8Px61bt5hcLodflWrEwcEBDg4OL4xvxhg66CrZ1wKv1cL8xg2Yr13LJV+9KhgaGsLf35/XtaysKqj37D3q2bPGuBYEikDrxjDHEUG6fDm027cjfuZMBlDFdUdHR3qPJFEE886dmjahGg2RBpMmAYcOVRMnoiji5s2bOH36NJo2bSpNHj6cnbp3TwxPT+eQng6FQiFNmjSp5vwMDcmZ+uADGvdffvlsbYxTp6ii+Z499MyCguj+r1oFWFrCD+B097KiogIAkFq7KGEtiFX1QV6aHmNuTgTGxIkU4a9bYSNlZ2fXHESppEh1Vhat4127UuX7zZuppsf27TU5xqII+PjA9O5d4M8/0W3lShTIZCjIzUX3hAQMOXmSXy+KQolGw3f5+We437jBrXN3x6S8PMn52DEu6J138Gt+vlhaWip1Gj2a69u/P8Pdu+Qw9e+P2MREnPjsM/Tu0wc9Zs8GtFoON2/SudUBDw8PWWJiovj06VMWGh4udtu7l4eHB6lhystpXTp5EmjZEvzatVCq1ewF5/D2bXKQi4ufldbv3w/ExkI9dy636upV2O/ZI7i4uPAmWVnQk8tRnpICjuNQVFSE5NRU3m7xYnhXVqLzX3+hpLycy+/cGZxMBt7ICDKZDDKZDDzPQ5GcDPmAAZhMhXLB8zwEQcCjR4+gUCg4pVKJsLAwcByHPn36MKVSyfT09KCnp1etFtDVVmCMgU2fDvOYGIaMDBqHAEWrz5+n8X3xYvV8adm6NQxiYqi43ZsiM5NI3lmzSOm1f39N5f3aKCqie19X73bGiOyZO5ei5Dp4etJYGDiQ1ts6ivZlZWUhLi6OTZ069e919AGyx3QqN3t7OifdWgSQMjMzk9bhQYNIUXP0KKlXNm8mIuu77yg9oE8fqofTpQutvXVAT08PY8eO5Xfu3Cns37+fTZs2jXujYqzP4eHDh3jO0U8F0GrVqlXw8fGp/dZMAP23zprV6tPlyw/qV1SsBGO7IUnaOg47rrKy8kMvLy/k5OSI9+7dm//dd989EUWxiUwmu1tRUbEEQPCyZcvq+mwjXoJGZ78R/3EIDAw04Xl+iIuLy/9iHftrYu9eMgINDKji87RpFE37P9ZG8AW4u5Nc9fr1eov1rVixQqqKvLOkpCSEhobC0dERRUVF/MLAQBj/8AOWAkDTpjBaubLaeNFFeO3t7ZGbm4tbt27B3v7/sffeYVGdzfv4/ZyzLCBVunQQUUDFioKKLfZesJdgjN3EksSoSZA3mlhiSTGxxRohauwFxYINAbGDCNKRjlSBXWD3nN8fw7KggJry+X3fN851cdHO7p7zlHnmnrlnprl49+5dURRFrqioSOns7MyHh4fXtCi6d+8eMjMz+ZkzZ+LgwYO4c+cOTp8+DUEQGMdxEAQBu3fvhkQigZ2dHWvTpg3Mzc3Zy8b0sGHDMGTIEISGhiI1NRUDBw6EgYEB6ePjx2GoVKJTp05wc3NDbGwsbt++jdu3b8PZ2Zk9fvyYMzU1rT9S15i8eEHjOWkSGe0q8CyKBMp++KFuH+WXZf78utEUDQ0CqrduUQT375CmTdWto54+pShHSgoVlho6lGi0eno1xaFeJz179uTv3r2LVh4eypGjRvHo3p2Mv40b/9z9nThBuZSLFxOAeQsRBAFHqvOj27ZtS88XFPRGYB+gSuVxcXGIjo5GYmIiAKBLly5/XYfp6hJQDAkhJ0t+Po117Y4LteXRI4pcz5lDtGmeJ/owYwTcfHwI6N+6VdMurSF59OiR6OLiIo4bN+7PF5+MiqL7adYMo0ePrvkwxhgePnzI9axu8VZH7OzIuTR2LNFqz59/5ZL8WbOw7/lztLpyBZUuLorBy5dLpFIp3acoUsVsFdCXychhVl5O66tWJC44OBgREREwMzMT33//fYajRzH4t9+4grVrlampqdygQYNevb+mTWmPLlhA7AMbG4paiiI5Zr7+mvajvT1FQ+th4hQXF+NmdS2T+uqHpKSk4NqaNRj9++/4fdMm4cMPP+SKiooQGhoKLy8v6OnpITw8HDo6OtQNYvNmKtq3ezcB9loiCIJYUlLCiouLoa+vry7KpxqHu3cJKF+9Ss67jAxq1+jqSs6V1FRyUvftC8mZMzBu1kyMEEVmv3AhugJYuHQpX1JSgu0SiRjTvbtoVFmJvSYmXEtXV0w4eBCHfHw4UVcX3YcNw8bPPhO7M4Yut26xOFtbnDhxAk2aNKGo8969VKzyhx8opeDyZQJJGRkEptq3R/ODB9E8PZ27a2Mj6IeHc/D0JKr1s2cERA8fpig3xyFz4kTcLC9nyz/7jJxfqjo5KSnqfvAqYKVQ0OurqqCppSWKPM+USiUfHBys7HDpErNNSOCOFhcL1Z1cOIlEgh49etBr+/SBKQCHjz+me46OrjuZn3xC6/mleTGtVcX94cOH0NPTU9rb29MeqaqivXn4MOny1q3Jbli+nPbD8ePqtowaGjT3H374yjoCgL/EEL5+nWojnDlDgF+VztAQ6M7IaJih6OJCtkLtApwAOd62bqU9ExT0SoT/2LFjSicnJ87a2vr/xiYsL6f15uVFOf7OzjT+lpY0Hmlp5BT46SdiJri4UEtMVSHEhAQ6ixMTifV45Qo5bW/dojmbNIlYAR060HoZNQqjR43if/7lF6xfvx6LFi3CX61R5e7ujjZt2mDr1q2q6P5CALcYY8tu3LjhC0DV+qPGC7R+2TJ8+fXXgZwo7gEwtfb7+fv7jwHwi6enp7xPnz5aALjCwkLk5uZampqaIjk5uUNQUNBppVLJ+/v7fwvgpJ+fX8Rfeoh/kbyj8b+Tf534+/uPtrW13ePr6/tfGvJ+SW7domjL1atk/BUWEkCePJmMUFWxpCFDiH743xbpT06m4nBffPGK9zoqKgrHjh0DQMb9mDFjcPPmTTE7O5u1b98ew4cPV19cUkJAceFCihqoaWZQKBQICAgQnj17xtXuy15RUYG11YV2WrVqBT09PRQUFCinTJnCX7x4UXHv3j2JVCqFj48PrKys6u+//rYSEEApF7Ui7KIoory8HDo6OggPDxcvXLjANKoNnnbt2onVvcTrl6wsAgrLlqkjbirZsYOiA/b2DUYGauSTTyhyoopuAmSk37lD6Rb/pMTGEmB4+pRSB2bPpjXfsWODYLKsrAwBAQECAPHDDz+ki0JDKf/RzOztmQLXrxNb5rvv1L3S30L8/f0BAIsXL1b3t/4TEhAQgKSkJAwcOBCd3qK11BtJURFFJLdtIzCkAhsqEUVi2chkVGfByIgKU8lkBKBVOan6+q9fT6AxMTAwwKJFi/78PS9cSJ85YgTt6/R02uva2ji3fbvQwtiYa9GsGd23mRk5bHJzyfl17x4xS3JzgZgYCM7OuHL1qmhpaclOnTqFyspK9Hv6VPCMi+Nw+7Z6zVy8SIyFjz4iY33KFAISw4bVWVfXrl3D1atX0b17d8rzV4kgYMPGjRg0aNCr7eZqiyCQ8ysvj6jgCQk0tgcP0n4cMqTBCucRERE4f/48mjZtKmhpaXEGBgaws7PD9evXYW1tjfj4eLRo0QJyuRzPnj2DylkJkC5V2YY8z2PYsGFwd3enCP/VqzT3tRx/q1evhlQqhVwuR5MmTTBnzpyGWTNlZXTPKgeooyM5qsvK6hSV3b17tyiVSjFu3Di2b98+MTMzkwHA3OnTYdqqFc7+5z94pFDAIj4eQ4KCoBEUBMmePQjq1g3PkpPFqUZG7FhlpZBfVMQtWLAAdejLLi6kU1q2pPQSfX0CUj170t8NDHAkOVlhpqcn6Tl6NDk4bt+m9b9/PxWOa9EClfv3Y926dRhx7pwY3b493OfPh5ubG8OJE8S6mDKFAN2ECbQmz50DoNYFK1eupDxnmYwAYPWYbtq0SXRzc8OAAQPqKikVa6a8nBxVt26pa51culQ/TT0+HkhLw8mMDHTYsUO0WbyYITub9u2DBwTubW3pfDh9mqLJUik5xfftI/06YwZ95r599ab6rF+/HhMmTHh7Gn9oKAH3oiKaExsbsl+aNq3/+g8+oOfdurXh90xOJsZNQ3n9Xl5UF6C6sF5aWhr27NmDXr16oWfPf7jVuyiS08fUlAIxbm7kZDUwINDOccRcsLGh6/LyyGH2yy/q9n4Niao7gKcnpYNMmEDzOHEi6bkxY5Cbno5tEyfi02PHoL19O9Vq+eMP0vXPn9P6eQtmw5UrV3CDCp1uAzAPgD2ApJcuGwLgmp+fX5m/v3/PL/7zn1gmCPGhXl6nbg4d2kYQBEMAgra2ttmIESOaNG/evMHPO3fuHCIjI9GiRYuq+Ph4DQ0NjcyqqqrJfn5+V9/4pv+l8i6y/07+jaL4n3FyxccTANu5kwrCeHqSh//FCzokxo+nA338eDoAVNRJHR0C/l260MHyN9C6/jFxcCDK2rRpBIRBUdKioiKcPHkSAOWJqTzVbm5urLKy8lU6ngpgTZhAuaLFxeQ5rza4pk2bxgUEBOD27ducKmpeWYtK+PTpU2hqaor21ZV9+/XrJ+nXr9/f/7zh4QS+a4F9xhh0qiOtXbt2ZV26dEFhYSFu3LiB6OhosaysjPXt2xdGtftoV1TQQd6hAxlz7u6vAoP9++lwf7kYX33yxx+0jmqLnR1FKNavp+r6/5S0akVfAKUaMEZRprw8itbJ5UC3bqhUKhEREQGe53Ht2jWYmpqKM2bMUHsDunUjQGhqSrmhr2lvBoAMtN27KcKyd2/dnsevkejoaERHRyMpKUkEwAYPHqwG+m3bUsTw5TFtRORyOeLj4wGQ8+lvF0NDAqxSKYGeq1cJBKj20k8/UQrIpk1kkLduTYCpmoINT883bj2oklcMbIWC9qZCQcAmM5PWbW4uGfrnz5PTrmVLSg84dYpor2fP0no8eZLWfL9+0ExO5rQ4DoKrKzgdHYrEr11LhvM33xB46NWLDOUePSB88w1io6KYJCoKTUaPVn7++ec8AA6VlXTt4MEEsqKiiOGRmkqf7en5CtAHgPz8fFhYWNQF+tOnA6NGoaKiAkePHoWjo2PDUTaOIxbKRx+RnmeMKnqfP98wIKqWFi1a4MKFCygsLOQAqj0SGxsLAIiPj4e+vj58GAMXGorYJUvw4sULuLm5QU9PrybvmzGGTZs24fr16wT2fXzw/OlTFHzwAaJGjQLT00N8fLzYpEkTNnfuXCQkJODYsWONOz2LimhN2dpSBHfSJFpnwcG0ruzsAAB5eXmsffv2+Pbbb6Grq8v69++P4OBg5MtkMIuNhasgIPbYMaHZuHHcMRMTcebo0Uxj9Wo4OTkhNjaWPfn9d7gqFFzr48cJ6CuV5DgZOZLA3qVLarYSY0hJSUFgYCC46lopRUVFEkNnZ3J+RUYSy6JrV1orcXHAxo2QPniAz3fsQMLJkyz/+HHRatIkhtBQilBHRdHzxsYSE6MWy87JyUmhr68vqaFTL19OYHf2bACAiYkJy8/PF/By+gnHUfQ+L4+ctFpa5HiZMIEA45dfkjO3aVN1q8KdO4GUFPAff4zSpk1FODkxDBhAdkKTJuQ4UsnUqeRQKCigeRIEshVGjKD9EhhIjJ6XRBTFxlNB6hMVq2n/fnp2MzMas8bOokGDiPremOjoEFOpS5dXdbWBAUXAt2+n89XOrsbB1bKx9pR/hzx5Qh04hg6leSsuppSC5s3p906diLExeTLp2VWrqEBx69Y0xw8fkjPGzY1stpdF1R0AILq/SpKT6fvZsyh9+BDaV66I2uPGMZib0/9OnKD1N2AA6ccdO8h5euQI6dzgYNJBYWFki1lY1Ly1o6OjCuzP8fPzm+vv759V+5YkEsnmlStXnvP39+f8/f2tAci/WbVqZ+v797UATAhRAAAgAElEQVS7x8ZO1O3YkSuUSGBoaAh3d3fwr2HsDR48GNHR0ULXrl01hg8fjmfPnlkePnw4xN/f38PPzy/y7Sfl3yP/D1v47+Sd/GNyLSMjQ1tVpO2/VlJT6cDYv18dEVFF2VT0yUOH6Ht2NhlSK1ZQMa38fGpXd/EiHRDFxWRAjx1LRtjfVMTlb5P+/cnYSE8HrK2xb98+ZVpaGu/g4CBMnDiR03iJ1tdo3p2K8nr5MuW+rlhBz29oCG9vb+zdu5dVt/qCnp4eZsyYAblcDkNDQ6SkpLB27dr9s4vG0LBu3+t6hDEGIyMj8DyvlMlkfExMDGJiYtC7d2/Kl5PLKaf+6lWKJtVqSQaAnrltW3XLwjeRx4/rjyIWFVHBsH8S7NcWlVF27RoZvTdv0jqPioIyLg6JJSVItbODnYOD+P777786V1IpGTTt2xOQbwyYKJW0To4do0JptZ0pbyCnTp1CVVUV9PT0WMuWLZWdOnVS38/y5W/WyaBa4uLiEKUCEABiYmLg4eHxVvfzxjJgAM3r+vUEYg8donU5ahStqQ0bCCx06EAGO8+/+iyCQE7H588JpOTkkG569qwmutXn4kU4Xb5MYCIlhaq0X71KkdMePchRmZ9PrapkMgIEHToQILSxIabH1Km01jU0aC5rtYss1tJSHnz6lLeKiBCmnjrF4dQpAuw7dxJwW7eOjPDVq4HUVEi0tTHi11+hPHcOLcaO5dGvHwGp6dPJKXD6NIHFxYsJxE2ZQut+1ap6h1GpVOLFixecKIpqAGxkBBgbw9fXF7t27UJxcXHjlFpBoPGVyWjcFi8mPb10KTlvtbTqXcOVlZUQRRFTpkxB8+bNUVFRAblcXrdFY1AQYGEBNze3Oq9ljNWcjd7e3ggKCoK/vz/09fWVJVVVfJ/8fNiEhIh327cX33vvPda+fXtwHAdLS0toa2sLu3btYnPnzmUaGhp1gb8oUiTf0JDWVI8eBGLCwwmcaWrS/p4zBx6dOyuv37jBOzo6iuPHj2dyuRzBwcE4c+aM4PLpp5zjpEn4xNycO+HkBNHBAZyHB7BkCToeOoTCbt2gKCzEeyUlBOYjImjdxMRA3LkTLDycaPcVFYCxMZTBwfjj6lVwHIcRI0bg6dOn7OHDh2hy+zbyEhNh+t57lEqUm0vrLj+f5uKrr6CxYgWSs7Mx5PBhpmdkRPMUGkrXffEF6dktW+qMryiKdfP8tbXrnLnW1ta4ceMGFxkZCZ7nYWNjA1NdXTrHIyJoTbRsSaltW7bQ/M+cSXuoZUtiKOzcSQCy+ryTBgfjzrhxoou7e8Nr7dEjWuepqXVTs7p1I/ZWixbkHJg8uc7LqqqqcPjwYUFHR0d0dnbmezfQ871GduygCPuBAwTAdXTobG+sUGlVFe3317HIzMyIwl5aWr9jtmtXcphMmACsW4f46roW5ubmjb/vn5Vr18gR2r8/jevVq8QSad68JtiAlSspmDF9OgVejh8nwO7nR+OzcSM5qO7eJV05bBjNr6HhmzPUtLXxrKJC5DQ1RSxdSi9q3lxdo+X+fTVzy9+fdGxqKulvgJyNw4dDMXQohMGDcXTJEoXhrVuSQfn5uDxq1AIwNnOMq2vkcR+fG1AqvxYkEmOFQnHG39/fHcADAOA4TrCyspL3WbBAYuDjA9MvvlCniryh2NnZsRs3biinT5/O16rhctvf31/Lz8+v4q3e7F8k72j87+RfKWvXrn32/vvvW1vU8lL+V0llJUWTJkxQ5zirRFW06WWAp5I1a0ihL1tGB9D+/WSUh4URoFMoKK+xuJgO+W7d6Pf/vx0jpaXAwoUo/+47bPjpJ0ycOFFdMOuvSGUlRf3v3gXc3LBp0yZlz549+Y5vEvX9J2TrVoo61OrD3ZCoijCdPXsWxcXFMDAwwKQLF2BWVkaR6waAAJYuJUD1plHl4mK6p9LS+t9PqaRcyr9SjfmvikyGsk2bkLFvH2JcXGBTUSF0XLuWg7t7/fd85QoBxbS0+td2RQXtoehocpC9ReRKoVBg8+bNYnl5OXNychImTZrE1QE96enkqHiLvH8V9bdz587o378//o4iS28kWVmkJ7S0KKK5YAGBDlXBMoWConExMWQcqopp2ttTC0cTEwLFmZk0zjo6gJkZBHt7HPrlF1g4OqLHzJn0PAYG5HR8UwO2Z08C6i+nG6hk4UIU3r4t7uzVi/UVRbTv1Anc6NG0Vu3siDG0ahU5IhhD5uDB2LNvHxQKBTp27IihGRnE/iguJgM7P5+eOz2dnKdWVvT3l0TVrSMxMRGHDx8Wvb290a1bNwalksZMRwdVVVXYtWuXyHGcMHv27FcXYHExgYD8fDK0rawoZaZLF9LZvXtThP/QIQKAFy/SeFTXEThx4oT48OFD5ufn94YT/ark5+dj586dkEqlePHiBXr27Cnq6+szWxsbmHz5JQHomTPr7A1BELBhwwZRLpcznucxb948Yhz9+CMBGE1NumeV0y40lKL7cXG0xq5frymEJ169CrZ/P0UTJRLExcXh999/x5dffgnu3DnA1BS/xcdDIpGIgzw9mX5VFdjSpXjasiWut2ghzjQ3Z+A4ckzduYOdwcFKnZAQPtHFBT179oS3tzfy9+7F/vx8yCsqxClTpzIbGxsIgoDDmzYJ3r/8wp1+7z3M3rKFoqCururBefYM6N8fpefP4/sDB7CwqAj6U6aQA2XFCtLfhw4RQDU0BJo1Q2BAgOjs4oLHjx8rmzVrpmaGxceT7pRKgWfPUJmdjUsBAYJRcjL00tK4F5qacHd3h3ZREQHYPn3oe3g4fT9zhpxQU6Y0OJchISFITk5WDho0iH/06JFQXl4uDhw4kNfW1lZ3oPD2JudwPWsaH39Mjos1a4jpUAuYx8fHo6ioCE+fPkVeXp5i0aJFDSun8+fJIRcQQDqieXMCuq9bp1evEqugmp3SqOTmqp2FDVWyv3EDQmgoDubkIMnQEL6+vjAxMYEoipBKpVAoFDUdP/6UxMbSuJ48SRF6c3PSo2vX0vMnJBCwv3yZHF6jRxOzY+dOAvQTJ1JKw507tJ7atKF90LYtOZLGjSPdm5z8xqmZcrkc69atg6OjI6ZOnfr6F9QjGSkpOLdmDbItLNAiPh5G+fm416fPH5+vWOEs09RcH9qr1/hely4N2bJ8eW6fc+fMFDzPzg8cyJbm5kJ72TJwRkb0XKWl5AxbtEjd0vclEQQB+/btU7x48QKMMUgkEmZqasrHxMRg2bJl0NTUxIEDB5CUlAQAzf38/F5OIXgn1fIusv9O/q3y3+vlksvJ675rV/1gwcGBcvkqK+vPv1q5kr6XlJCn3sqKaKKq3tcq+uyDB0SRvXOH8vV0dcloGTCADmg9vX/2OV8WXV1AIkHVli2ARIKEhIS/B+xLpUBSEoFZHx8MsbbmjwQFwczMrOHe1P+kMKb2pr9GeJ5HixYtsOjjj5G+dKnwrLQUl5o25QasXQvj+gyVuXPJwPjxx7e7J0Ego74hEPbHH+Q8Sk7+U1Xz/xbR1kbpzJkIVCjgYWGBVsXFHDIzySjq148MLH19dXEnb28CbDz/aoS/tJSiuElJROF/S4rqzp07leXl5XyrVq0wcuRI7hVa8++/kwPh8eM3er+MjAzwPI9PPvnkz7fZa0wUCnVV5717CbDPmkXG+KFDBESq841RXk6ALCaGjNdjx4imrCq29uGHNMZGRg1GvAGAA2BSUYGwyEhEnT4tTp8+nRm8TS2D5GQyFF8uVJmZSU6sr74CBg5EpKkpk4kicpOSxOK5c1lhhw5wVFGFjx4lA1pDA+KCBeDj46HQ1QXHcejfv39d/ZmQQMBBR4eit19/Ddy9i+LiYhQXF+Px48eIiYlRyuVyXsUM4nlerKysZJcuXUK3bt0o1eD994GCAlRWVoLneVZRUVH3LMrLI0bF4MEEEL76itauQkG1FKKjKXd6zBhiO02bRut61y4gLAz5Xbrg2datSOrWjbXs0EGoHur6ZdAgAt8nTtT774sXL4oVFRXs888/V/1JvZB//pn2lqUl1Q6oXuMcx2HOnDns4cOHiI6OFn7++WfOqqQE0zZtQrGFBaS3bkG3dgpCt240tocOUSRaVcm7Z08we3tyANjaAosXw3n+fEAU8csvvwjz58/n8OQJeh0+jP1du7LiTz9Fwo4dYsd9+5jO3Ll4LyiInDKLFqH44UOUd+oERxcX3uvMGZw8eVJ57do1vqqqSghNS+Nck5Mx5vJlxpYvp2fIysKE0FBOOHcO2b//TilwtRgjAAhwPXmCzHPn4Pvrr9CPiaH1sWYN/f/qVQBA7qBByNHXR3j37piybx87OWIEbLOzJZ6PH9Nce3urKdIyGeDlBamXFwa3bs2hdWuUODpi79WrovaoUcy99nl//Dg5qDdvJqdlWBgBxAMH6k3Lk8lkePbsGb9nzx5YWFhwWVlZ8PT0JEB75Qq9NiOjfqAPkA49e5YisadOkTOjmo3Qorodq7a2Nq5cuVL/6wWBWCljxpBzQleXzrmIiDdjTPXooW6V+ToxMyN9FBHRMJDs1g3BN24IXS5c4LR79xbOnTvH5dTq0CCVSjF+/Hi8dcemsjJas/37k5Pp9m1iSc2YQb/v309npbs7OehU9thnn9E6nzuX3kMioTlRFessKiLmpoEB6b4zZygXf+xYmvvduxsvsAuqzG9jYyOkpaVx4eHh6Nq169s9GwAre3t8uHMnsrKykJ2djVOnTgGVlf0higbr/f0/AjAsc9gwDOjRw6KZszOM9PTgoWLG5OfTM3/yCTkzHzwgx1Xv3uQke6m98fbt25VyuZzv27cvEwQBcrkcT58+VYqiWOMc7dixo5iWliYAuAHA6tU7fifAO7D/Tv6F4u/v30pTU9PU9C1yb/+fkpkzCcirKPovS4sWlGf4008E4huKAOrrk2EPkLFQXEwg39lZTecbNIgM+KIiMqL/+IOMPHNz8s5qaVFLG2dniii9bd7e28qaNdCLjITBxYt/rm1aQ6LKj/f2RsvOneESEiLGfPutaPPzz//wA9UjHTuSQ+dN5ckTwMgI1rdvc9bffYfEhATlTydO8K0TEsQRI0awmgiwUkmOmj/jpCkrI2OvIfHxqT+P8P9Yrl27JhgYGLCeU6eyGmq0iwsVQTp8mAD8hAlkCLq7EyhcuFBtPAGUr+rnR2v7l1/e+h7y8/ORm5vLSyQSjG+IOfHJJ/T1hhIXF4cmTZr8eaCvVBIw6NiRxuDRIwKRrVvTfTg70/wWF1PEsrKSwNv48cQUGjWKoo/p6fT7ixcEkv38CCi2a0dOwVOn6G+tWhGI27mT9MKTJ2R4h4fT50ZEAA4O6NevH3r37o01a9awp0+fonPnzm/+TEeP0n2qGDC7d1NO8alTZGh7egK6ukgNCcHIK1fE6CVL8KubGwxCQgRHJyeu5jXu7sC4cYiaMAEZ69fD1cpKKPHyYhKJpK6HxtKSAMv166SDr1/Hxf37hbbffceF9eqFPG9vsV+/fnyTJk1gbm4OjuMgl8uZXC5HTZrRgAE1tNV79+4hKysLkydPpg2am0v61diY5qtVK3WNFVdX9c+tW1O00MKCHDCqQmQhIQCAR9u2CVqMceYWFooJX34pqWF5PXlClO7aOnrPHqJHNyAGBgYNe+44js6gQYNorQwZUvt18Pb2hnePHpysTRvwKSlInTIFgU5OUPzwA+zs7IQxY8ZweipdpKFBDuoTJ2gMAHJCTJtGP1+5QkD4yy8xOyAAB6ZM4SpzcyGVSGBdXIwVS5ageP9+BKemCk6xsXy5mxuKkpMZr68vhuTkiKm7dnHWAwag+6xZ0NbWRq9evfi4uDg8evRInDp1KhysrNQdSpRK0mcrVkBo3hxMqYQiPBySegrTAQDXrBnyTE1heeuWuuK7hwexpzgOR5YtEzp16sRNdXcHt3kzRgoCyjMyoFFYSG8wdixFyp2cSEc5OJDDzN0dyM6GVsuWKLp5k8kqajGUHz2itfjZZ+oK/J06kZPywQMkGRoiv/r9pVIpJBIJCgsLYWFhoVSxSL755hucW78ePW7eFE0vXGCGmZkNV7kHaH63baN1Gh5OoK26ho5KFApF/fUalEra8zExRBE3NCRQGx5O9PE3kSFDyFE2YcKbXX/gANHfe/as1wF97tw55WOe57qvXw+Nhw+5sIcPBbvhw1lVVZVQ3c6U+/333zFx4kTY29sjMzMTOjo60NfXb7g+QXQ07fGjR8lZt2ULsRFOnSI9qEqnvHiRxkDFPgAo0DJ8OOmz0aOJ+XLmDAHg7GwKsEillAaTk0O6a8wYsvM2biTHkYcH6ana3XZqCWMMM2bM4M6dO6e8cOECn5mZKY4ePbrOhbm5udDV1X1ttf5mzZqhWbNmBPYBVXGjLACYNHs2MbXatlW/QOUE6tSJHMmiSPeamkqsEkGguVq4EBg7FuHh4SgrK+MWLlzINGvVu0hNTeVsbGwEVWcUV1dXdu/ePZaYmGjp7+/vCeDeOzr/q/IO7L+Tf51IpdIlnTp1kvxX5usfOUKULkfHxiOompp0EFtavtnhqKLBiiIZcDY2dLhWVJCSTksjxa1qE6ZQ0N8eP6YDqTr3EQUFdG/Dh9Nn/0VALpfLUV5eDi0tLWzYsAEmJiaC+/nzrG9ODnP9s+3TGpPqvvM9Tpxg8qAgVn0Tf76P/J+RhAQCBK+rDKxq/zV7Ns1Zdf79lK5d+dzcXAQGBmLNmjVwd3cXRwYHMzx+TIfqn5HLlwlI1VfhGCDDX0eH/n/27J/7jL8oL168wJMnTzhfX9+6hoqDA30BZIBVVdGYpaSQcd2mjToPNCODoqaurvUWompM0tLScOTIEaG0tJQDgIXVa6le6duXANhLudL1SV5eHu7evYtG00oEgcBSx460do4cISPQ25sA3vz5FEF5+pScdKoI1urV9BobG3LoABQ9ys8nYH/qFLV3GjyY9n9yMo1RWRmxHp4/p5/19cnYVFFDY2IIiAsCfbaeHv0/LY3+//77BJjHjIGkVSuYbtwoYv16EVZWHLZsIYN45EgykOXyV2mqokjApE8fooCPHk2gx8eH9uqXX1ZfJsJcU1NsCrCqqirR2NRUHDFihNpSLyoinQXA3M0Nt1q2xMz8fE7SqlX9jsuRI8mJsHo1kJ8PuwULuKQWLTDc1xda168ztmULOYiqjVOdl9sX7tlDbCwnJxgbG0MikaCpVErzMm8epRb8+GPd9JrjxymaV7sDhLs7UX/nzSOnQK2iZtZ9+3IBOTn4culSCaZMoTmKjSUa9ldfqVt4LVtGOqORbgBGRkbQ1NQU8XKhOJXwPK01VQSyNsuishLYvBnaGRnA3Llw3LABywUBOTk5+P3337Fp0ybY29uLPM+LjDFM3rqVQ2kpAcpZs+qOf3UxymRdXVzPz8fQwYMhbd+emB1HjgAnTkCxeTNybt3iM/74A5Xt2glWAQGcnr8/m/rLL0zQ1cWL1FQYbt8OJCTAuG9fjA8MRKsDB3iEhVEUfuRI0hMlJRRl9PCABEBLW1th3eTJ3MD4eLFjx46Mlk0RAgMDFQCYVCrlK8eMEd0jIhguXCDHV7t2tA6uXIHh6NFiQUFBHUedloqRdv8+RbVlMtpbBQX0PF26kB5auxY5N26gT3AwnFW59rm5xOgYNapO9wJoaQGnTiF60SJU3riByA8+EMAYlEollEolq6ioYO618vXHjx0LWXg4lBcvoqS4GIavKfgIxmjfnj5Nuis5mSj5AwfWXKJUKsFxXN21IpORXvDxodQyjiPw+tNPtP/eVFq0eCN9WSM6OlDcuYMnGzbAYd68muBAeXk5KisrkZSUxNvY2EB36FDoGhjAYetWDrq6QI8eNYZhWVmZcPDgQY4xBsYYBEGAgYGBOH/+/LrtdI8epec5e5YYID//TDbS9u3EhHr0iM6crVspGt+pEznJqotRAiBdp9JztrbqekJKJT17cDA5wqKjgW+/Jafq4cM07z//TGN56xatpw8/JOfswYPq9qC1ZNCgQby2tjauX7/O2rRpU8PM2Lp1q/D8+XNOQ0MDdnZ2YqdOnVh9hQufP3+OoKAgAFDR60O++eabFTzPx3EcF3f8+PEWY8eOfZXRVltu3KBzZ8IESnPYupV0k64u0v384LRtGwyDgqBZ6z3y8/ORkJDAZs2axWq/t7OzM1fdjvYWY6zU399/EoDLABQAeD8/P1nDN/LvkHdg/538q8Tf399MIpFM6dKly3/f2v/1V6JqBgW9HnxyHB2s5eVk7JmYNHipKIrqarqMqQ/v06fptbm5ZOBGRRFI0NQkI8PRkb5UtL+iIjJaz5yhey0vJwBYVkaGSevWlF/4FjTvH374QZTJZDUvaNu2LVdmba3skJ7O81lZ9R5kf4eUz5mDg3p6WBETA9axo5rF8H8hRkYERBuTEyfosA8JoUPzpf7KZmZm+Pjjj1l2ZiYObt7M5IsWQaviLzi7Bw2qa1jWJ3Z26l7SjUWI/iHR09NDq1athD179nDTp0+HqmvCK/cIkPPi+XMywm7dItbKsGFEw506lSKKiYk0F02bvtGa3bNnDwBwH3zwAQwMDKDXGIPC0rJOVeOXRRRFyGQyaGlpITAwULS3t0cfiYTh+XMCzatWkYNn7Fga6wMHaI6uXaM5UBnRq1bRM1tZUdQPICqpry/9PHLkqx9+5w4Zpt26kWFZUkLOQKtqhqSxMQHFFi3oc5KS6G9yOe318nJqBXb+PBlzKprq5Mnqwl5PntD3qipkBgSgOC4OTTt3ZjXG7sGDBJhiY8kRI5OpAeXPPxOoTEggh4ShIYGAl9shXrwIua8vHs+ZA+tdu/B+hw6vTuJ339VEto2MjJBnYgKhXz/6XEtLtZNIJb16UT7tli3A48ew2bkTOsOHo8rZGdq2tpSe8ewZgdBvvqkb2QJIp0okQJcucHF0xD0AYrduNC7nztWfdrV1a/1FydzdgQcPICQnI/2jj3CvTx88efKkxtGVlpZGe0ClG1QFuH79lXT5gwf0uS1bEmugb186N3R1ScdbW6M8NxeVFRWNL34DA4oyfvABgZNu3Wi+jI1J/1+6VNP1guM4NGvWDIsXL+Z+++03JCYmMl1dXVZaWgr///wHdmZmwtSffuJ4ExNa2y+JrYMDNPr1w+Hr1+G1caPQr2tXDqtXAz/+CGMAyzp2RIW9PbQOHeIqL12CFmNgAPjSUhja2dF5YW4O7sEDNE9MpLFVsQqUSlpPCkWdLh3jd+7kCjw88Mv58ywpKUl0dXVlQUFBor29PWdpacnpfvml2Co9neHJE3K6qIpAWlgAHAcjIyNWqIriAzXV3zmOA777DoKBAdK6d4fFZ59Bq6wMOHcOoiiiZOJECOPHQ/78OZqWlICTyZDy22+w+ugjZCxZgiJ9fVSGh0MpilAqlRAEAUqlEnEWFhghlWLe8OEcrK1f1l0EZHftQvPVq4HkZKzLyoJtWBiSU1MbnWZjY2O09vJS56I3aUJFRvX1AS8vVFVVoby8vO6LSkooctu0KTnkOI4o5++9R7qjsYJ8AIKDg5GVlQV9hQLt2reHQ5s2AKj4ZG5uLqwbOf9LXrzAYUtL8M+e4dT332PkyJEICQlR5ufn8zzPg+M4uLq6Un0NVbAjLY0cP9XU/1GjRnEjRoxAXl4eDAwMIJVKsWbNGpaXl0cF/Y4fpzNDS4t0aXQ05aE3a0bA38KCHDddupA+ePSIHJ9jxhDTqrr7AgDSYSr99/XXdB9KJTnUUlPJhispIef0p5/SZwwfTvqrc2eyDX/7jfTw8uVkt125Qp/Tpw/prWphjMHe3h7Xr1/Hw4cPceHCBWVBQQHPcRw3ffp0cByHs2fPst9//x3a2tpi3759ma6uLtLS0qCvr4+bN28Kenp6HMdxoiiKrKqqygeADwAolcrusbGx52/evNmkR48e9VMggoKIUebuTuzTnBxg82bkjBmDw/fuKa2jovjOS5fCtV07BlNTYrDMno2SlBRIJBKYvGTPenh4oE2bNpBKpTh79qzm/fv3TzHGlKIo8hzHVa5Zs+aLlStXbmh0sf2Py7sCfe/kXyXffvvtr23atJk8dOhQzddf/f+QXLigbtHyNgB39mwCB9W96F8WmUyGn376CTKZDM7OzsoxY8bwL1e2B6A+dObMIWB0/Dgp4K++qrfvLgCK7GRnEyCNjCSj/PlzMq46dqQDysGhwT7RCoUC3333nejr68sMDAxQXl6ubi136xYdaKoidH+zKBQKbNiwQfT19WUWRUUUWRo0iICLqpr/PyUZGWQgT5/+6v8ePCAQynHEpngNa0NYuRIF27bh6vbtGFuP8fzG8v33NE8fftj4deXlRM3s0+fPf9afkLCwMNHW1pbl5+fj+PHjb94zWRBqCjNCFYXt1ImM0cREMkKsrQkAeHsTu8HZmcb98WNyBjRrBjCGLWfPwsrQUPSZO5cMlIaonnI5gamXHQg3b9awYTL79RN3Dx/OhoSEiGbp6TBPSGASOzuKeHfoQMbe8eME4Jo0Ubcl/Cty7x5V9/7lF3IMDBtGn+HoSMamhwdFkz/+mMakpISA/pEjBLxVTj+5nBxR/v4UvS8qIgdgcfEruuLKlSsIDw9H7969BU9Pz/oHTBBoLG/eJB3UtSulEVVW0r2OG/dqgcXqaH3Mf/4jnLG0ZNOnT2f1VttetIjmODAQpaWl2LJlC1asWAFuxw6a3zVryAB/+pTW/qVLpL8qKwm0cxy2/vijcuq2bbz+ypXEMigtpTzqPn0I+JmaEqW79nyfPw98/TVCvL3xpLQUc77/vn5qcHY2AXRT0wbTsaoeP0Zxz57Y6+uLMl1dGBkZKadNm8YbNKSXa49r586kl8ePp88oLFT3g7e1RZogoDIiAk5yOa15Q0Maj+Rkeq2NDc2NtjalduzcSU4a1Xzv30/7pQFJTk7G/v374eLiIvA8z0VHR8OQ5zGwe3e0lDNC7rYAACAASURBVMuBgQNRUlKCsrIySKVSxMfHizdu3GC6urpQxMRgso0NjP74g9auUkngqlMnlD59CllhIWT9+sHs/n1IIyLAff45sV5u3kQFqDf8l9UMEEyaBPGzz5AqlaLsyhXoDx8OG1Wx0YgIlJuZIb2qCoGBgdDU1BRFUWQTXV1hzxixgHR0SA9cu0Zr//59OncVCmT6+mJf27aito6OUFlZyaqqqjiO48QhxsbsvkKhSMvNlQiMQaOyEmNHj8bRc+dQJYqoBqRitY3OOMbEnidPMuu8PPHkokXihHXruDxbW/H61KmC59Gj7I6Pj8ikUnAcBy8vL77F5s2kZzZtUq+98nIaKzc3AqY9eiA4OBjp6emv0O9rYwOZTIaKigpxyZIlDMuWkTOjZ096Ti0twMgIPx4+LBYUFDCO4+Dt7Y2erq60ZsaPJ6YGQADUzIz23Guq38vlcqxfvx6enp4wPXZMMAwO5kK++ELw8fHhdu7cKZSUlHCmpqZKLy8v3tnZGVpaWigoKMChQ4eUBgYG4ujRoyXfrVuHFYGBiFu1Cheys5UKhYL179+fs7W1RXR0tBAWFsbZ2Nhg3LhxRDsPCSFH3qpV9dZDio+PR0BAAL6cPBmctTXt8YkTCXSPHk37Z/t2Son66ivS5126kCPNy4vO9rNnyeEWEaFOHQPIgdq6tZodNWgQFUNVpcecOkU2QUEBzWdaGjnEZs+ms2nGDBrnwYPVTpS9e0nHTZ5MDr3CwpraOzKZDIGBgUJeXh7n7OwsOjg4MFNTU1hZqdPelUolLl26JNy7d4+rrKyEvr6+qKGhIZaUlHCjRo2Ci4sLTp8+XXXv3r0ao5ExVsrz/NcKhWKdl5eXsk+fPnwdFm1KCjmMPv8clZs24b6ODgry8+E1ZQrCvb1hOnmy2P6zzxg7dIjOnOxsel1wMMQFC/Dd0qXiTCcn1nTw4Abbj6qc5QUFBWCMYf/+/ZWMsaOCIBRKJBLPqqoqTYVCMdjPz69xD9f/kLwD++/kXyP+/v6eWlpalz/66CPtv1Rl9f9aYmKIAqeKdtUjoigiIyMDMpkM5ubm6l7epaUEZrp2rdPnVyUPHz7ElStXlLNnz+Z37NghODg4iCNGjHh9fkNBAR0eFy+SsV9aSofV6+T5c1L2R49SFNDIiA5AXV2qJGxlBZibQ6FUYk11oaOVK1fWX3n844/poKtdIflvlHXr1ok+Pj6spkDPrFkEYJKTyTCupr797ZKQQCCDIsUklZUE7nv3JkPi228bf4/KSqpy3b077l25gksPHwqfffZZHTShUCggk8kaj0CrZOFCmht1oa76JT2dDJbU1AadQFlZWcjKyoKlpSUa64ZRUFCApKQkWFhYNBrBqaqqwjfffFPzO8dxaiO+IVG1hbt2jaLcSUn0jM+fEzC7eJEMeF1dMr4YI1ATF0cGk5UVOV6USuD5c1RkZuJkRga8HzyAhVxORlp4OEVjKisJJPXrRwbeb7+R0ZuQQD9v20Y/t2tHxvGsWUjp10+MmDePuRgawtXJCZLG2mX9VcnKIqYDQEAvKoqiUyqjr29fAgiFhWRc3rpFwHP+fIqA+fjQHr5x49Vieenp9OXmRmMRGUl6iOdRbGqKLVu2YOzYsa+0fmtUrl0jML1/P+kAKyuaM5Xhd/Ik0Y3z8qAAaozVmTNnwszMrO573b1LuqxfPxQWFuKHH36Ar68vbG1sKA/WyoqcCZGRtB+3b6fXVVWRIRoRgZDQUDw9exazs7Jo39ZmlBw4QNG88ePpns+fJ0fn6tVAeTn2JCeL2dnZWLZsGasX7M+YQfto8+ZGh6S4sBCX5s2DfXw8zgwdCl09PWXz5s3ZyJEjG685cuMGReVVucIvyYEDB5ScUslN7t+f4cULAvAKBa1tgPR3WhqtCQ0NWiOhobRf4uKIim5pSXvozh1ypNXSN+Xl5diwYQNUTJzCwkIcO3YM4q1bmHzsGHKuXsXvQUEQRRGVlZVo0qSJ0OPFC65zSgri4uOFPImE8751C0zVwSQ4mO5l1iwk3b4Nq99+wy0vL7Q7fhxN9fSo3gLHQXHyJNYZGGDl8uWApiYqJk5EkK2t8MTQkDXPzhZRVMT57N0LduMGwg4cEIOtrZmGhgakUqnwySefcEeOHIHnxo2idZs2DDt3qgfsu+/obBg4kBwgx49DuW4dor7/HkkvXiAxMRFz5szB6d27MXzlSuybNg0a7dqhe/fuOHLkCFyjo9Hz+nUgKgomJiZ1HEC5hw8j6sAB9A0MJL0kCDQXubm0R2NjyQkoirR2ExNp3fj5qVvQffUVgUZVnvgbSmxsLIKCgsTFixcznD5N868qRPjVV0BkJE7PmqW49+iRRCKRoMnz5+jm5gaPigrKzec4uldDQ9oDDTjMq9MjlHZ2dpylpSU7d+4cVqxYAWRnoyw1FYFRUUJWVhbn5OSkHDBgAP/48WPxypUrDAAMDAzE0tJS5uzsLKSkpHAymQwcx2Gljg4qjI2xPiUFPM/Dx8cHKmp6VlYWjhw5IhYWFrKatrX371MQoVu3V7p8nDtzBsWRkeLEbdsYjh8nxuPGjbTmbG1J77RrR3OwcCHppEWLiOIfF0fMne3b6dyQSus68EJCyBGi0oXnztHrPT3V1yQn0+cIAu233FzSXxs20NfmzcQsWrCA9hpA16psyPx80vUpKeSoeDnNqAGRy+WQyWRo2gC4PnPmDO7evYuJEyciMDAQjLF0URQ3aGhozDYyMnLo3r27dsuWLaEhkwHTp0NwcsJ9DQ0E6+qKmlpa0NbWFts2bw6vMWM4duYMOUjkchr/X38lXQsApaXY/ttvyuGrVvHc0KF4MXIk7J8+hWThwkbZhMXFxYiLi0NVVRU4jkNwcDAAbPbz81vyRgPwPyD/fVTmd/JO/oT4+/tLpVLpwSFDhvz3AX1VH/N6cqdUEhYWJly7do1pamoKMpmM19XVFUeMGMHs7e3JIGvbloz4l2iimZmZgpmZGd+kSRP4+vpyP//8s2htbV2Tm9igGBlRlA8gw66ykqIGXl5EVW2oWJuJCX2pDiK5nIDhzZvAH38gLzkZLxQKVGVkiB3t7FibOXMgUSjqj2pt3kxGw969jUaP3lSKi4tx8eJF5OfnC3p6ekz1txrZsYO+L11Kh3lgoJrx8HeKsXHdgysnhwqOzZhBYPFNPm//fjLGkpJg1a4d5BER3Jo1a+Di4iK0a9eO09TUxLFjx8SCggKmra2NcePGwc7OruZQr6qqwuPHj6GlpQUPDw9IVqx4s4rJ1tZk1FQ7m9LT01FQUABnZ2dIJBKEh4cLISEhnKGhobKgoIBfsmTJK84GQRCwe/duITs7mzM0NFQWFxfzenp6oo6OjtilSxfWunVrBlAu+/3793Hv3j0YGRkpJ02axMtfV9hQFSXu3p2A3KFDlH86fjzRw69dozXcty+ty6AgAulz5pABX7t6cS2Kdsz9+3hy6hSeuLnBz8+P1seLFwQKMzIIBOnqkoMrJYX2oSiSg6t/f3qTagM8PT0dB0ePZqM8PeH6DzmyasaipIQiUm5u6vX93nt0zyqw/+mn6ujKZ5/RdYzR+n/vPaKv2tkRuFiwgHrXq4o5WlurmUhZWWTsL1kC3LoFvfBwDLl7V7jJ86xFixZ1+443JBUVFM3/6Sd1Bfrt22lvrF5NgGfUKALxEgkkALp06cJFRERAqVS++n5Nm6IqMRHyFy+wvRrIa6pYF0uWkCPo4EGip6uAPkD709YWJRkZuH79Opra2tJ+8/QkI1+VJqGK0iUkEC23qorAT+fO+HX3bjE9PZ3Z2tqKYWFhKC8vR05ODoYOHQpDQ0NkZWXhkUIhKFxc2JCGcuar5eLly3hmYYGBOTlwnT0b0Wlp/Lnz5xEbGyu2b9+eubi4wLa+tpguLgQONm9+BeyXlpYiKSmJnzJlirqAqUpeduoAdL54ehKAMDGhKKSeHq3vlBSqxK6Krh89Cjx9iiazZsFdLociPR148ABN+/TB1ClTcNrQEL80awb9H39Eu27dxIE+Pky4cQOcry+HceMAxuBaVcXdMDISb8+fL3ZZtYqDhgZFOLOyABsb2HbsCMXBgyLz9haaTpzIY8ECqimSlgYWHQ1DV1eIhoYI+vRTRLZqBXt7e/bp5MmMLVnCYh49EqOiouBy5QrTj4hgw+bORQdKY+IwZw7aZ2bi4ocfCr4ffFBXGWtrE0AxN6+ptM6npKBdRgakyclIT09X6OnqSsaOH48MV1d0NTJCenq64siRIxIA0Bg5EsbduoF/Od0tOBg6P/+Mp927i311dVVtD0iPqHQuQAC1qoqAdatWlLfdvz852Lp3py4PjXTIaEgEQVBH/ocNo7Xu64tyS0vc9PQUmgGMz8hgAKBZWIhpJ04gIjUVhydMEMdxHEN+Pu39+PhXUs5qy/bt20UHBwcWFxeHO3fuwNvbWwmAx8KF0PnmG0yfPp3Ly8uDpaUlDwA9evRgVlZWCAgIQHFxMWvatKk4btw4TiaT4cKFC2JGRga4efOY9gcfwHfOHBi7udWpo9GsWTN89NFHbPXq1UhOTha9vb0Z2rcn3b10Ka1TlS2zfz8GrFyJtb6+7Mr33wuebm6c9vr1pI9ULfW0tKiORkUFnSe2tsQQGjeO5mDZMnKOXL1KjrbaEhJCc6kC+wMG0Hlz8qR6/zk40N/19SnIYmZG4yqRkH764gs6R377jUC9ry9d07o1OR3lcjrbHj8mvT5rFumy1xSr1tLSarQ47NChQzG0up7P3LlzcfnyZaOEhIQtVVVVLDc3d+/x48eHWZiZ6b7furWmhpcXEo8fF5Pd3TFx1ixWnW7Hql9MTInMTBrLGTPo2UJDyQGgq4vOHh78jrlzAVGE7R9/QPf8eRxjTBgbFsYZTJ0KzXq6SRgYGMCj2mFQXFysAvuL/f399/n5+T1s9OH/R+Qd2H8n/wqRSCSfW1pamr9VBOn/b6moIG/sRx/Vze2qRx49egRvb2/WrVs3XhAEhISEsICAAIwZMwYt3dzIkCsoqMkTLikpwd27d4X79+9zA6tz9A0MDODj48MOHz6MqqoqsWvXrm+WXD9vHn2XySjSZ2xM+ZulpQSmVACrHolLTcXt27fh2bMnnD74AD+vWgUtmQyu1tbiQFFkGlevUhEaxujQ6t+fgL2xMb3nyJFEHd3w19KxwsPDceHCBTg7OyudnJz43NxcZUVFBd+sPsNEVYF43z5KJcjM/Euf/YoYGFB0ISeHIperV5OR1q/f67sdlJZSga/lyynKwBjMzc2xfPly5ObmYteuXVxUVBQAwM3NDbNnz0ZQUBD27dtX79tpaWmJOTk5wqi1a3l8+WXDBfpqi4YGAcWnT/Hrr7/W/JnneWhpacHHxwc6Ojr8gQMH6hTSy83NRV5eHiIiIoTi4mLxs88+g1Qq5UtLSxEZGcmePXvGjh49ivv37wvPnj3jxOpcVVEUMXPmTN74NfmfyM+nnNrQUCp0VJ1TC46jyOann1KOo7U1jbWdHYH8mTMpYrdgAe2j5s0JVNQyxs+fPy8CYP3796diZoyp8y+NjSn6uXgxGVU//khGzcGDFPWubvelkqLqfPt/FOg/f05GlasrGYVNmhBIWbFCXTUZIIP044/VYKJjRwJ106bROvX1paj32bOUk5qcTMZ8Tg5eSWVQOYu2bAFEEVxFBTomJnIPXVyEpDVr0EomY1i/vvH7VlXPVzkQeJ70j4cHUVXT02mN1mqXJZFIoKGhgQcPHkC1nxMTE3Ht2jWlc2Qkmp86xe948gRaWlqin5+felI5jkCwqysB1JcBbkAArlWnR82bN4+M0sOH6evWLfX1CgWBwC5dyOg2MAAYg4eHB9PV1RVevHiBS5cuMR0dHZSVleHHH3+Erq6u4HLlCqdnbMwuZWWxx+vXiwMGDKhTYE09lc/x+PFjwNAQWhcvgl+7Fp0jItB0/Xpk5uaKERERLDw8HAYGBujVqxecnZ3V+87AgOonHD5M814r/SYiIgI8zyMpKQnNmzdvfF527iQnz9dfUyTz2TOij1tZ0VyFhZEDhueJljxpEiCVIkdXFxVVVXh09KjoFBbGYGoK6Zo1GBMTA+HxY6BlS3AHDzKsXQuub18CXgsWkOPsq69QznEsvVMn1iUnhxx18+cTO0Yuh/zWLUR0787uNGnCt3dygkJfH1r79kEnIABKT08oiopQoaeH0thYWPTti6lTpxK74ocfEH/sGIs6fhwP7e3FZxMmYEWHDgzFxRAqKhDHcbjdrBl69elTF+jn5lKah6qwZ79+NA6PHgF9+sBy1ChUubgw+PtDeu4cHG7fhgOAy5cv19jhDxMS4NyvH1ynTKHzRSIhR1FeHvI++ADy17Vk7dNH7YTv14+clSYmdF+RkaR3jh6l/aGqA/EG9Uiqwb4IgCkUCmSNG4eCTz8VTrRrxxkZGbFsW1s2ws+P954+HbcEAZeHDxf7rVrF9u/fj23btiln79zJs44dgR07IAgCdu7cqaysrET//v355s2bQyKRoKioCJWVlWz48OEMIDZBmzZteAgCAVgjI2hoaMDyJceTo6MjfHx8kJGRgdDQUHb9+nV4e3tj5MiR6gczMYHtmTPqCPFLoqOjI7Zq1Up9vbc3jdPKleSwatkS6NUL/IEDmGxvj6hlyxg3YwbKjY2R8scfaNmpE3Jzc7F761b0AISuXl6cNCqKxn3iRNIjCxfSWPv41F8rpaKibsFCnidbJyREXesEIOeCoaHarlKxBfLzSb98/z0x/3bsoH3ZsqW6touqPkVsLOl9Ly8K0uTkkH1obAxRFCEIAnieh1wuR2RkJNq2bQt9ff36Oy3UkiNHjihjYmL4tm3bavfv35+dP38eoii+L4oiWgUGZueXlZklzJnDlRkasiEbN0L75RTOb74h9tD06bT+Fy+m5+zYkWzLzZtravFMf/996OrqonzlSrRJSuKeHzwoPNm4kXNMS4PN5s2kb+phF8bHx9caYv7Tb7/91rCysnKxn59f/CsX/w8Jv+pPePneyTv5bxJ/f397nucDp06d2uS/JqpfUkIR8iVL1JG/RiQ5OVl4/vw52rZtyxhjcHR0hCAICA8PFzy6dGF47z0yii0skFBRgd27d6OsrEwYOHAg17ZWhNLIyAh2dnY4deoUysrKRCMjI6alpfVaJQ+ADpKBA+l78+Z0UDVtSkb/mDF00EmlNQAgMTERAQEBKCwsRFRUFEpKSpCdnY0PFixAx7FjGT9oECn43r3JwI+PJ4PlwQM6CM6coUgGQPmRfyG6HxERAalUKkybNo13dHREmzZtuJ49ezbe3q9tWzIKLCzoud9778+1tXtZlEqiDDs4UHR5zBgCHG8yB2FhZHTPnl2HDcHzPPT19eHm5oYOHTrgyZMnMDQ0hJ2dHXN3d4e3tzc6d+4MFxcXWFtbw9zcHNra2igoKADHcejQogVD//5v9nza2rR+O3ZEYUWF0tjYmJs8eTI8PDzQp08fZmJigoKCAty/fx9lZWVKZ2dnDgAOHz4shoWFMTMzM+br68upIr1SqRQODg5wd3dHUVERYmNjmSAImDRpEnr27AmFQgF3d/eG1+hPP1ExoPnzyWjo2pWegzECDoMHE0AcP54YJ25udZ9TxQQYPZoiPhcvEujU0CCjmedx8+ZN9OjRg3l6etalY6siPDduUI5zaCiBXY4jI/76dXIg1Lr30NBQ5fPnz7keL1FI/xYpLianhokJ7ZfFi+k5GCOgPGBAXQNp1y4Cgar0DY4jA7iqiubZxYWo04sWEdBXteKbNo0irIMG1X8fjAESCdj8+dCxtWVP/viDGcpkot6IEQytW6tbSNWe05wcAjKjRtVlmaSlkXEbEEBj+vw5AczqOTxw4IBQXFzM3NzcYFMdpbt69aoyMTGRT5VKuRg3N2ibmGDQoEGsDs2/pIQYVWvWkDFtaVm3evaUKXCIjsbNZs3QunVrihgaGak7OchkpCNGjKipTA9BIPDXtSvMzc3RunVr1qFDB9arVy94eXmhV69e0NLSUiqVSrgdOcIVOjig+7x57N69eyw2NhYymaymcjZAQH/btm0QRRErVqygdCcXFyArC0be3rBr3px18/aGlZUVUlJSxLi4OBYeHi62aNGC6erqEqAYO5aYHKtWEQivZhUFBgZCqVTi2bNn8PDwQL21XESRQNHs2cT0mDSJIvszZqjz9V1dCYB4elJEs107cgIwhodNm+L2ixfgHRxYh59/BrO1pfvx8QHT0wOrqqL11akTjd8HHxDQP38e0NPDc29vaG7fjgIbG8F0wQLGSySkiyMiIP34YzRzdMQ1S0vc1tPDvfR0JMTGws3GBpqBgbB/8ACXBg4Usp2cxKlHjzItc/Ma9lzL4cNRJpUKwzZv5toFBDBtLS3AzQ0Pw8KEy507Y/Ds2aqIpFpu36ZxrNWCsGZfxcfjxQ8/4G5kJOs+dCjDiBE1jvfU1FSxqqqKaWlpoaKiAm7t2sF09271ub9iBa4kJyuDJBJOR0cHHh4etCkiImi9KxQEIE1NifK8cSPpusREcuAtW0YgctAgcr7/9pu6/k/HjnS+PnpEc9NAEdZqFhWLjIwUr127xp6VlyudCwv5PitWoOd77zH3Dh2g1bYtpP7+sBwzBqcEgfXu3Rvt3d3Z7fPnuZsODuj67bdgGhrYs2ePsrKyktPR0WGhoaEsMjJSlMvlLDg4WNmmTRvRxcWFk0gksLCwoDSGwkKa90aKDJuYmMDBwQEWFhY4c+YM0tPTUduugbs76SsLi3rp3nl5ecL9+/fRqVMnVpNffuMG7d9Vq4jNMHAgwBgMd++GdWYme+jiIl4dNUqISk8XQ0NDOdMvvoBXeDiuDhsm2G/ZwrSePmW8uTmdHbNnkyPm2DGyX0aPfvUhLC1p79Z+zgEDaI7d3NS6sGlTdTTe21vNPGjShPbbixeku8aNI10eEkLsgG7diF3AcRQ46dKFmAeffkpr4KuvgO7dcerOHfHw0aNMJpOJFy5cQGxsLAsPD0d2djYcHR1r9IBSqUR8fDzkcjmioqKEiIgIISYmhgeAnJwclpCQAKlUCisrK6UiPZ2zefZMN7hHj8rOJ05IYq2t0WbUKLzSEUvV1Wf1ahonLy8KdEycCGhrQxgzBg8uXED/q1fR7OxZ6Lq5wWDSJNiZm8PUxoaZxMQgMjsbThERYLq6ND4viUQiQWlpqdzGxkYhCEK74uLilgA29OrVq6TBBfY/IO/A/jv5n5ewsLDNHh4e7VxdXf97eu1NmkQR4+ro7OvEwMCACw0NRffu3Wsutra2xuXLl5mbmxtFcq5fBwoLcVdLSwTAPvzwQ860HvqWgYEBnJycWFhYmHDz5k3uwYMHYuvWrevQbEVRRHl5OTiOq7+wlJkZGRTa2gSmXF2B99+H4rvvsKW0VJm2dy+upaQwEcCSJUsQFhaGoqIi9OnTR3Bxcan7wBoadMB160YGUM+eBAZMTcnguX2b8p4jIykC2bQpGbGv6RNbW86fPy9YWlqKLi4urwmd1xLGyGgtL1cXz7l1i+7rz1ajVyopAvDoERkZEyfWW2vhFcnNpWuXLKHXN8AA0NHRga7u/8fed4dFdW5fr/ecgaFJFxDpShFFEVQUFUuwoWKvwd5iNMYkappXo4lJLNGrxsReoiB2RcWuAQsQFamCgCgYmlKHNgxzzvn+2Ayggpp7f8/v++79sp/HR8XxzDnnbXutvfbeBnB3d8etW7fw+++/s5SUFLFbt25MW1sbRkZGMDMzQ3BwMIqKijB8+HDWs2dPJl67hpKuXRGfmIiSkhI8ffoURkZGkDd3b76+wC+/IMPCQqpVqzlvb++XZIAmJibIzs7Gw4cPOQsLC5iYmODcuXOM53ksXLjwdSegzuLi4oTi4mJOJpPhvffeg5GREVxdXV8H+pJEJImJCc09R0eKejSOUJaVETidP58AxE8/UV5xamrTbQ9lMrpO//40/7ZtA7ZsQbmZGWIfPWIunTu/XFsgPp6ijXfvksNdXk6RPo1c2t2dnD5N+7ARI1BSUoKwsDBu4sSJeKtS4a+YKKL6xAlc3LcPypgY6aKJCcuytJTc3N0ZXF3pfS1b9nokRBSJrGg8n8aNI8DWpg2tsWfPaJ3PmUME5e+/E7Hx2WcEwNPSyNluxszNzVFmY4OTCgXLefZMsDU25nSGDaP5v2wZAecXLyj6XF3dUAhQY9nZ5MzOnEljHhlJaUHa2oCdHWJiYqBUKllAQAA0ZK+1tTWXmpoqaRUUsPHHjiHdzw9+fn4vz+ddu4jsWLqUQEJcHK1tDdHg4wNVnz64nZyMe/fuIScnB0qlEmeuXIH2wIGwYozG3tCQwJdcTmTBhg0EspoZXxsbG66Dri4nGz4cxwoKWL9+/TB48GBYWlri8uXLUKlU9ZH2W7duIbuunWHfvn1pHejr0/z94gtSPE2bBjNzc3Tr1o317NkT+fn5SExMZF4aYLd0KYGDcePo2epIkvv370s1NTXMzMxM+v3339kff/wh3r9/nxUUFEiurq4MogjMnAlh/35cmT0bwX/+idu3b4P39YXdsGG079va0rz/5puG9VZQQCDD0BB2dnZQKpViamoqe/DgAXr06EHrTCNNtrSk+bR9O6XbLFtG4K+4GFi2DNpz58IyPh76T5+yq6IouX73HbvXty9a+fuD7dkDrfffh9PQofDt3x/m2dnwW78e4rFj0FqyBPcuXULLadPY6OpqJr97l4BWnQqD6evDZepUJuvRA7pXr9LYLVyIQ5WV0tChQzknJyeUlZUhIyMDSUlJSEtLE7U2bkR8x47i3bw8JCYminFxcVJsbKx0Py9PuuviIpkvWYKRhw5xzNyczvdNm4D27XEjLIy1k8lg160bHO3t4entDe6DD6iAXloaIAhIy8mBb7du7L0WLRg/fjwB988+I4Jt5Ehav/37E1Gi2f/79iXSi+NoifHmGgAAIABJREFUHJydifAfOJDGedEikn337Us56teu0bU0aoy6Vn7o0AG1goDk5GRp7NixrGfPnugzdChnlpgIXQMD2hMPH6azd8wYaO3ZgxRPT+FxVhbKli1jg8+cQezAgVI3X1928eJFKSMjg5s9ezbr3r0769OnD/T09Nj169ehra3NJk+ezL3mT6xYQftjUx0pmthLSkpKpEePHrGXCrTq69OzVlQ0SWi0adOGu3nzJisrK4ObpSXN0TFjiLRcs4b2aHd3OuOvXYP2rFmwWb+ede7Zk/P18eFaVlTAoG9f2M+bB6+qKm6foyM6XLvGdHR1SUU2bRrtA8HBtNY0aU6Nbd8+Onsa1zOQyWg83d1fLszMcbSHvKIwQ9u2NB5Tp9J4TJlCfpOuLt2DpSURAozRL3d3IhesretJn9bffMNsMjNx3cyM6erpserqamhra+P58+e4c+cOfH19kZOTg0OHDklxcXEsMTFR+vPPP1FSUsLr6OiIAJim20FtbS2G2dlxXb//HuEBAdBWKmWOiYm41a8fcnNzoaur+/o5Fx5O+3liIpHRmzbR/ffrh2epqShUKtFh/XpwU6fSObxoEb2H996DtkIB44sXIQgC5MePN+mH6evro0OHDjIrKyvZzZs3lYIgjF+5cuUfb51c/+H2t4z/b/uvtlWrVrWWyWQTe/To8b/fC+xfMVGkqOGPP9Km/Y5t6nR1dfFqsU2ZTAZLS0vx7t27GDx4MIeNG4HERLS9c4clK5WUC9eMtWrVCh9++CEPALt27ZKOHDkizZgxg6usrERERIQQHx/PS3UVg+fNm9ds4RYADVVtjx1DdHg4DJOT2diQEK7g1CmYiiJ0oqKwYsUKDWB7O9hmjA4na+uG6Mf165QXWlBAB0VdJWRUV5MD1L49OTFN5P4/e/YM5eXl/3ok1cCAvhMg4Dh5Mkmz/0KLQYgiSaKrqiiKmJNDkdG3VCyuN7WarvGO9QNMTEzw8ccfs0ePHiE0NJRLSUlBu7rWZdra2pg4cSLOnTsnhIeH86yqCgu2bMFuXV1IoMJ++vr64t27d9mCBQtYkxF1bW3g119hvHgxql7N962zzp0748mTJzh27Bg8PT0lAKz/W6r419bWamT7TasusrIaIrGOjgQaOnV6HWxmZ5PEsi6lAQDNlYoKUke8qcAfY4CdHUo3b0b8iRMQ9u2ThpeXw87cnEFfn3JlDxyg6OPs2QRU4uMJGDcuuqixoCAgLg5CWRnS09JgYGAgOjs7vzvp1IRpinWmpaWhr68vtJcvR/GlS0gZNQoJI0YwWwsLKSMykhV07QrLXbsoyvOqRUfT+iosfDmSfuYMOc537pAjvnAhve/u3QlMqFRE9pw6RcB2ypQGGSrHQaVSoaSkBOfOnUN+fn49UaNWq8FpafHbDA1hdfq0qLawQKepU7nc48eFEe+/zyu9vcFt2QLdqCiKEkdH01pLTSW5ssaWLKFoVlgY8OgR5s2axbbv3i1t27aNWVpaij179uQKCgpQVVXFXNu1E3QMDfmioiJs3boVY8aMgYuLC7ikJCIP5syh8e7blyK0GzcC336LKh0d3PzjDzgFB4Pz8sLAgQOl1NRU6cKFCxwAhOXlwfnMGehWVYEtW9agFOF5Inh++eXNRfe+/BJG7u5o16GDePjwYWn+/Pm8Zn1GRUXB3d0dNjY2KC8vBwAMGDDgddJ1wwYimxITiWQwNgYAODk5sVu3bgnZ2dl8YWEhPIcPB/fsGRE0ffrQuJqbo6auVefChQtZfn4+MjIyOIVCIcXGxrKS/HxpSlISY9eu4dfAQFS2aIHRAQEoKSlB7rZt+DMzE5U8j8Rdu8RBJ05wLSIjCYhcvdqQ7mVqioqjR/HkyRNOM/4HDx4E0FAJ3iwzE7YODqiOiAA3aRJsbG1hGRsL6cIFKI4cwalZs6R8Pz82c9IktMjOZmtat4Z04QLsPv5YsvLwYKiogN2aNcD8+XjYti0i+/QBi4qSZDIZYvr0YStHjaK1aWxM67BlSyKq4+MpuvjRRzROPXoAdnZwd3fnTpw4AY7jIIoi9PT0BCMjI16H4zhWWIhUSeIL09LQqVMnaGlpQSaTQU+hACwsGtqFPX9O4HzDBmD0aHRMSRF73L7NyXNziUDr14/kzJqo5Jo16HLjBqe2s4P2nDk0B21sSPGgsbrUgaqqqvq1HxMTIyqVSgiCwAyLizFixw528IsvJFDPeMm6d28onjzBcFdX7mm7dlL08OEStm+H1eTJqHj8mDOPjBR7nTrFHS0vF4dv3sz52dgwg7FjYR4RQeoFHx+SSnfrRmqyrVuBnj1x97ffJLGggHuWn8/0FizAlexsiQmCdOPGDfbgwQM2btw4aDpFMMbg5eWFdu3aQUtLizVZiDcw8C8R976+viwhIQFqtfrlwr4ffUTqQEl67WyWyWSwtbUVzE+f5jB7NkNWFhEpHEd1ViSJQPi4cRRcaHzdpUvhcuUKrbMff4Ts+HG0cXJC0f79MOI4irBbW9O4L1rU/JluZ0dKsMbGcUTgN1Xs1t+fyNWFC8n30TyTnh6pz54+pRSsjz6iPP0jR8ivjI4mgk/jszHWQEDfuAGt6GjEGxlhyMmT8K6qgurqVcjq6iI8fvwYeXl52L9/Pzw9PZmOjg4SExOlyspKzt7eXnB1deUdHR1haWmJO3fuiJHnz3MJhw/jvW++waCePdFy+nQcCQyEKEkwMTERjx07xpmamqrnzp0r49LS6Mx0daVn8/en99a+PaWG2dqiVXw8DkydCt8zZ6B99SqlIGmeOzQU4vLlSO/aFW67d791zpw6dUpVW1t7cOXKlaff+MH/Evsb7P9t/7W2atWqNtra2ld79OjB6b9j1dH/67ZtG8kiJ01qttVSU1ZdXQ2e5ylfuJH5+/tzwcHBKCsrE9zd3fkOz57BevVqiIsXv/O1Z8yYwW3atEncuXOnWFRUxJmZmWHKlCnQ0dHB7t27pefPn7M3gX2VSoVjx46JCoVCYozxOi1bSrxCAWvGKPqUng7m70/FYr7//q3FYpo0FxeKHu3ZQxEMUSSQcuMGRfkePCBZo1pNh7a3N9CmDR7m5uL06dPw8/MTzczMOLVajdjYWIkxJnbt2vWvK0ESEujw+egjisz8/vubPy9JlFvXsSPdV//+DcCqqOjt3/f8OQGrW7debuPzjubq6gp9fX08ePCgHuxrfu7q6sqnpqaiVcuWMJw0CV+1bw+1Wg2VSgUdHR3uhx9+wLZt26TZs2ez14r3MAY8foyqU6cgNVUYDYCHhwc8PDyQmJiIc3X3HhMTI/r6+jYLdLt3787n5+dLlpaWL3trkZHkKNnbk0NXU0OR+uZs40YCbzNnNvxs+XKaNwUF71R4saCgAL//+Sfg6cmWzZwJ3YwMmsOPHxNQWLu2Qfa9ZAlJkev6N79kXbsCXbsi3c0NhgA6bt36LwF9pVIJhUIBU1NTHDhwALU1NRhy4QKKX7zA43XrEGFmBonjMGzwYMnb25sVmpsjJyUFluHhTV/Q2poczVcLM/bvT8BeS4sczZgYkpseOEBk16efUu52VBRFsoyMyGHPz8fmKVOk0tLS+rGbMGECTE1NYWxsDI1yqKCgALGxsZxoZYWEnBxRKizk4z09kW1hAbO1a9ErIQEsOprme1BQ073p+/WjqNX27eBWr4aRoaGEuhSls2fPQqlUIjAwEJ07d+bRty8CKytxJypKOnLkCOPUany6aRPyvvsO0ebmkpaWljhhwgQeQUGoSE7G7c8/FxMcHZmujg56Xb3K0L49Ll68yObPn88sLCyQl5KCqKNHxTB3d842IAA9rayI8NHkck+eTO8qNbXZlomxnp7izZoazrC8nON5XtT8fP78+bh79664f/9+ztDQENXV1ejWrZvk6+v7OuMmlxNZ88EHtP9FRwOMoW3btjh79iwfHBwMlUqFW3I5AvPyYGViAp2JE4GnT6EyNERNTU199N/KykrTOYN5ubiA8/Njz/T0pMuzZknlcjk3d/bs+ghdTWAgDpqYIN/GBk7e3tzx2lp0u3QJ7SdMoOimvj4RCgkJeDh1quSXns6effKJxNnb1xM/mt/NsrOZRVmZVHL8OJ5fvQpFRga74ukJX3NzxI4dKw64cQM2WlpMe/Ro2A4ahF6HD6PKwQFVOTkszsJCuNuqFbpFRLAOgYFc76IirI6MhENREeN5Hp6azjYaMlCtJuWAmxuBi/Jykr/HxNS/0oCAAJSWliI9PR3t27cXRowYwWtpaeHWvn2It7REjZ6e2NvTU/Lz8+PrQaWJCY1/eDgQGwtxyRIU5ObixJdfCjh7Vqrs0kXGFi5EH4D2rtpa2tP19IiglssR17On0Dkvj8cnn9D7S0wksC2T0f2amCAnJwe7d++GgYGBIEkSjI2NWa9evTi5XA6IIvSPHMGQLl2YmtYzk957DwCgcHeHVXY2G11UxHQTE5H/0Uc4HhmJTrNnc0/nzEFXSeJKOQ5J8fFwevqU6no4OREw++UXUo/k50NcvhyxO3eK1/v355Z8+y24ykqUbN0KfTc3djU8HMVJSRg3apTkqq3NkJ9P0doWLQCOQ7PplaJIaUGayv/vYJaWljAzMxPv3LnD+TWWcffoQaklRkYv9ZwHACxciL5PnvDhPj5Cz/BwHteukYLIyIj29AEDKIAwZUqDX1ZVRYqIb76hLj0HDgCfforU0lL4HDzIzNzdiQw5e5Y+r1FcHD7c9I23bNn0md+/P/kr9+69nkY3aBC9/1cJd319Uqro69O97d1L5Pe2beQjDRxIqqWOHV/+v/36QadfP7xYtAgd4+MBPz9oR0fj+RdfQK9unezfvx+Ojo6StrY2oqOj2ZAhQzg3NzcYGhq+dGD29PHhPDdswDVRxF6lUrRdu5Zp6+uj09ChYm8/Pz43N5d79uyZWJCfL1MVFkJnxgwiJT7+mN7FzJmAhwfNMQAoLgYLCoKukRHKT56EmbMzkRq//kpntqMjwhcvlrwjImDatu0bIy337t0Ts7KytAH89qbP/TfZ3633/rb/eFu1apW5XC7fCOA9QRCMGGO1oijqSpIkGzhwIPPx8fm3omT/a3b0KMljNXnuf8FycnIQHBz8Wns1AMjOzkZsbCzS0tJEURQ5eVkZArt3R5tXD7w3WFVVFSIiItChQ4f6vNddu3aJZmZmbNSoUU1Hd+vs6dOn9QXgLC0txYCAAO61ytAKBUkTT5wgBjovj1jov2KHD1NkpGvXpqPq5eXE1p8/DygUUGtp4dGpU7B0dobx4sXIqKzEsZgYMJkMgiDgq6++ajpP9V2ssJBkdO3bU77h0aOvg8dnzwhUjhxJgL9x8aBTp0h6qela0JQJApEF335L8ti3Fe9rxu7fvy+dO3eOTZ48+aV84HqLiCBwrFEv1Flubi4OHjwoOTs7S6NHj379y0URNSYmuLl4MfxXrXrjPVRUVGDXrl1S27Zt2fAmqulqLCUlBadPn8aUKVNIMh8RQTLFoCCKmGze/PYH1kh2tbReTpEYOJAcohs3yClsXHm/GduwYYPk7Owsjhg+nMeFC5STaWlJrfwcHMh5cXSkn+nqvpHAO7N7t5R77x7TMjAQZ69YwdUX+HtHO3jwoJSZmcnk2tqSV2IiKxUE6FVWIqNtW5Q1IuP+0acPOAcHnL91S4x78oQbNGQIurw6z0SR0h6Cg5vsN43vvydnd/VqkhMPHkzqmqAgctAkieSrOjoAx0FauBBHevfGE2trBBkZwXTRIujp6b1bLZDEROCjj5CxYweCQ0Mx28UFrefNozFct45A2t69dK+vmigCoaFQRkYiXBSlFuPGMV9fX9y+fVvq3bs309XVpb02ORmwsMCD2FhcPXwYvCii3NAQzs7OYnp6+ktze+KlS5D7+KD12rXgeB6FhYVIS0tD586dYaCvD3TvDqlrV6xu2RKWlpb4YOhQiuhNmEDF4wBSIty8Se+xkUmShKzJk6WUkhKWP2ECsrOz0a1bNwx5pfZB4z212XXbcFFSvNy5Q+eLuzsUCgX09fXx5MkThBw8iHnbt+PA1KkQTEyk0UePImPaNHZPocD06dNh37hOQW4uMGkSVByHjT4+qNHVxZQpU+DUqCBibW0t9uzZIymVSvbBBx/gwYMH0ProI5gJAk4GBYnjxo2r3/+T7t1Dztdfo83ChWgbHEzApHHXmeXLCbDwPKmdLl7Es969ccDBARNGj4bz8uVE2n31FQHkw4eB2looHj1Cpp4eLNPTET9/PszWrIGdgwPO+vuLyqoq6f2+fXkTPT3a0woKCDCfO0fPp+lhnptLJJ1SSWTq/fv0LnkeFRUV2LNnj6Cnp8emTZvGpS9bhmepqYjr2xdjxoyBc14eRUtfvKBzx8gIqKpC8bBh+ENLC5UGBkjq2BGBgYEIDw8Hx3GSXC4XHdLS8N7Ro7ziu+9gO3w43cPTp6iZPh2nd+2CuaUlDDMzwWVlwcPbG9oREZDOngUbPx7Pq6txs7AQY8aOpb1LU4BUY5GR9GzNKdjy84G1a1GzYAHSR41Ch/37CWQCyMzMxMngYGnJmDEMp08TAeLmRuuP5yFWVSFi3DhRMjaG1+bNnLGjI6mk9u5FdW0typOTURQeDvvAQOjp69NYnjxJ6gUXFyKt798nxYCmsGdaGp2jYWE0NnI5nXm2tgR69fVpT23CYmJipMjISOmzzz57OS3g0CEa82PH6Frr1gEjR0J99SoK1q5F8d698EhKonm0fz+N4Y4dRB6+aj/9RK01HzwgYn/QIODYMcQ8f46YyEj0lyTJcvJkVtiiBdq2bQutnBzaD5trN7trF63T7757/d8CAoiIaoosBmjfNTRsAMaNTaUi32L+/IZCz3/+SakJPj60JzXqnlRdXY1169ZBR0dH+nzpUobx41EZHY1zPXvClOMkb6WSPfnyS5y7cAHjx49/KUjwkj18CKxfj8p//hMP4uOlVmfOwGnOHMbqCM6QkBChurCQn3DpEgzMzen5NcTtkCFERPTu/VJRYLVajdDQUNQWFWHGyJFErL/3Hs2Zs2fxtLQUD3fswIAjR5r13dLT03Hs2LGy2tpar5UrV2Y2ffP/ffZ3ZP9v+4+2VatWGWppaSV7enoad+7cWdvAwABqtRpyuRxyufzdnMn/Fyw+nhydU6feGehXVFTgypUrQnFxMSorKzmZTNYkc2dnZwc7OzuIosg9fvwYjubmkHXuTLlamgJ3bzE9Pb3XHE5LS0suNzdXlCTpjWDfwcGhXvb4wQcfNI1IDQ2peBlAz19TQ3JPT0866N+lp/2kSeQ8fPbZ68w9QA5Cx44NLdNqanBZoYDz8+eS/po1TE+plIYKAnPgedwxNYUsPZ2im3Xy179kmhaDKSn0HBxHvco1+YJnztBhe/EiOQuvvr/MTHIymwP7VVUU9YmIoHnzb5i3tzfLz8+XTp48iTlz5jDTVyO5KlWTMkJra2tMnjyZ7d27lw0cOPB1WT3HIW7JElHRsuVbWQgDAwN88sknb1ysarUaSUlJAIDQf/4T7by9xYB58zgWGQmEhr7tK8hKSylic+bM69L1tWvJefTweKcxV6lUqKysZAP69eMxbhwB+T17KK1Dkmg+p6QQmTN+/Mut216xyspKxOXkMJmtLaaHhjI8fkx7wVvs0aNHaN26NXJyciCXy5nZixcICAhgjmfOQFi3Dnzv3lAoFFAoFMjJyZHKy8tFbvVqHl26IGDtWs40Olo6f/48y8rKwpjGObHPn9fnCzdpFy7Qs61aRcDi/HlSply/ThF1nifJ68qVEK9exfqgIDg+eoQlV69Cq7ycFD3vsjer1bSeDx2Ck5UVer94Ie6WJG766dOw16R8REQ0qA+8vQn4jR5N1+c4YPJkVJiawnz9euZw7Bj0/f0xcODAhi/fuJHGDEDns2fhGR6O82vXSh07dmR2dnZcXl4e9uzZA7lcDldXV9FuwQJO9/PPac/euBGWrVvDcsMGks1euADs3w/m5gasXo0XL16QI71tGykdNm4k5YOvL0Xas7JeKvp38+ZN0TQlhevyySdoOW0aRFFssiaKZo0OHDjw7SkfjBHxtGULpZFcuQLDOiKpbdu2WLFqFWp9fWH77Jmklsshc3GB+ZkzMB83TrK2tm54Tzk5RF5OmgTtzZvhceUK7t27h5s3b9bL742NjaWhv/7KtP39WUnr1tLatWvZsGHDgK1bURITg3alpdyRI0ekjz76iBUXF+NSRIRY4evLWZiYiHBz43D9OkUwvb0JTD5/TrL6n34i4H3lClrb2MAzPFw6euoU+/r4cbq3oCD6TF29CMOyMnju3g2cOIFWenr488MPUbh+vTTpxg0uwckJT377Der33oOZXA6uZ086X1q2pLlTU0P73eXLJK0eNYqAZmkpPf+iRTBYsAAfDRzIb7t6VTh27Jjwfno6b7d0Kdr9+ityzp+HtGsXnA4ehIzj6vdOUamEkJaGzMBATNfSQu/p02Fhbw9XV1cUFxYy3L3LG4aHQ9DWRkZNDZHqM2YA3bohJSQEQlERzLdtwzlvb6jlclzNyJC0HBxQPWsW6+3gIOXfucN4U1MBJ0/y2LiR1DR5efRcnTrROUNKJFpX5eVEeGpSwIqKgLlzUZObixpdXYpUnzkDFBXB1t8f4w4cYI/Pn5fa/PADw7hxNHenTAEuXEDN06d44OrKffDNN9ATBFoLdQUgzx49KqQYGvLGH3wgzJs3j4dGBbZjB32vUknn2fPnDe1Ajx2jGg8nTtDP1q4lwHvrFgFma2uS11+8SGRBz54AY5BycvBCJoOjszPLePCAVezfD0N7e0p70NUlYGhsTHMlKIiKpZ48ifs//wwjc3PJw96ewdSUwH5JCa1xDaHQowftaUFBRBL8+COReGfO0B6YkgJ06wafFSvgGR+Py66u0vkbNyCKIsbGxkrOXbpw+Pzz5tepn9/L1fgbW0gIkR7N2ZQpzRcw1NYmZcmtW0R0e3nR+9C0nQ0OJqXG2LEAx6G4uBgAoFQq2a07d6Rex48zfZUKY3fuBP/jj0zo2RO3T5+WFiQnM/NZs5r+zuBgIkIuXoQ+gF6VlQzFxfVEXk1NDWRhYbxPz54wGDqU0rwaK7RMTSmy/8svBPx5Hjdv3sTNmzdRW1sLCwsL2ldv3KC1uWoV0KULHPr2xc1u3YRbt27x9TVMGllhYSGOHTtWXVtbG/D/E9AH/gb7f9t/uPE8v9DFxaXF4MGD36FJc/MmSRIyMjJgYGCAVq1aQZIkpKWlQalUwt3dvZ4llCQJSUlJiIqKEtRqNTMzM5N69OjBN9nD+F0tJoYOu4sXm+9P/4ppoie6urrMzc2Nk8vl6NSp0xt1xxzHNUSANBV5/40+8QEBAdi0aRNOnz4tBgQEcM31Ya2oqECbNm3w5MmTZp3Xl2zyZPpdpaKD1dqanJ78fHKma2qaL1r3j38Q8HgH1YJMLkev99+HoaEhMzAwQOvWrRkqK3F29WrB4ckTxs6d4/DsGR3AdnaUQ+bsTPfzrlH0du1IvimKFB1YvJic/t9+I5DS3Lxxcmo2aoG8PIoOhIa+1Ov93zF/f3/29OlTbN26lfrENzZ399cikBrTtDLbvHkzxo4dC0NDQ9TJ+wSe51lV+/as49at9OyNI3b/gsXev4+UxET0jYpCpz/+wD9btOBc791D23ftwiBJNKdu3aL84VdNpSIHtVcviko0I7EGgJKSEuzauVPsXVgI3QkTOHzxBf0/zVpijP7evTt9r7Y2AZh584hsaBwtBRAdHa2WyWQySZKQtHYta92jBzmcnp40h5qwffv2CdnZ2bxcLpdqlErmnZkpzbl/n8mnTQOioiCrc3SMjIxgZGQE2wsXGExMeE1rPQagR48eLDU1VUpKSmIZGRnSwIEDWefOnQkUFBY2T3ps3Upy4+pqiryUlxMxtXo1AX5NAapvvkG6qyu89u3DQ1dXaOnrk+z1+nV6F8nJby5AuXMn5ZHb2IC7eRP9T5zgYubNw+XHjzFHA/b79GkoqDh7Nr3n7dspQpaTAzx7hnwbGzzs21fwMzfnMX48SVg1BFZVFTn2WlrA3LlgEyZgWKM2XK1atYKjoyPMzc3FQYMG0cLfsIH2mCFDGlrsTZ9O4zVuHADqTa1UKunfrK0h+fhA2r4dlW3boszLC1oyGaoPHcKfffqgvLxcLC8vF0uuX5dZjBiBDtOmAUCze+Xt27dhZ2cn9OjR442btyRJKCoqwosXL6Dz0UdwbNWKAMqIEQR86kwrKQmTKisZVqwAxo1Dm6go+FhZsfoCV9evU2Rw4UJSEjGG9u3b4969e/UFAl1dXWFjY8MMXFwwfd48cB4e7NixY9K5c+fYihUrwNq1g+jnB8HLi/3zn/+UWrduzSoqKrgFCxbA3Nycqy9MtnQpdVe4eJEid4JAgHTQIEBLC9y9e7B6+pQVZ2QQcRISQoW8WrcmEunBA1pvGzZQ9PfGDdj06gXj2bNZ3o4dksLUlOWNGyeczcri27Vti/GOjlRrokMHmjdfftkg154xg+oMVFWRMsPVlQqd3boFbsIEvJ+WxieMHQsxMxMtunVDi+fPUZCUJIWdOydVV1dz4t27kMvlkkwmk2pqaph6zhzm6ekp6iUnc3rx8YC9PfTkcuh99RWpCRYvxsWsLHWNkxP55nWyc099fXhmZADr1qHFypU4GBaG4cOHM0EQoKuri2vXromOI0fy/v7+fP3ZpFAQaZyXR1Ln27epsGFqKqmNNFJ1S0v6bGQk4OcHZmCAKiMjCdnZDMnJwM2bkFlYwPzGDWwNDmajrK3hWltLa+3YMSA+HroZGZh08aKUERTEOu7eTQq6zp1RkZyMPD8/3sLCQpw/f/7rc5XjKF1BT4/W4JYtBDoPHKCx0NKiaH+bNqSU27v3ZSm7UknPVFODfT//LJoATMjJYbUFBejo4gLDP/8kBU3btrRf3b/fkO7m6kqDQHVKAAAgAElEQVTvoLYWFcXFwo3AQH5hcDAMRo8mgrFxoTyAiCBnZyKj7t2jPV4Uae7s30+EWkgI0LIl5GFhGL51KzdcJsPRo0elqpgYBkfHNy1VAuI3bzZdP0VXl/bCnj1fLjKrsUGDaI24u5OKsEOHl/+9e3e67tChRJacPEln1Sef0FmnSSuaOhXW9vbo06cPIiIiEBMTw7KystCtWzc4L1wIjB6N0H37pKnr1zNDGxuas/fv0zUHDaLvUqmIpNG0Q9YQSVOm0DurrER+ZCT63LiB87q66NBUHRtXV/KNEhKgDA/HgdxcoaysjB89ejROnDgBWxsbUsAGBtJ7a9+eFGByOXovXMgfOXpUysvLk8aNG8dpfHelUolDhw5VC4Lw1cqVK++8eTD+++xvsP+3/Uebtrb2BE9Pz9dQkVqtxuPHj/H48WOIoohOnTrVy8+bsjt37oiRkZFMFEW2cOFCPHv2DGFhYdDR0RHCwsJ4HR0dSRAEJooiZDKZ2KVLF75FixbIzMxEcHAwvvjii3dWEZSXl+PatWuCubk5Z9uyJbN9/31w337btFQMQFlZGVJSUlBdXQ1DQ0NYWFggKipKBCDNnj2bfyt4bsp69SKnxdqaHKt/wWQyGebMmcOFhIQImzdvxqhRo+DSCHiFhYVJycnJUKlUDADc3d1FSZLe/Wa1tRsKpa1eTdGC8vKGKvwtW9LB3/jwHzCAIgKrV1PxsLdY165dX/p7TmkpYvX0eOfVq1FiaQkZgBbV1ZQ3GBFB0bj4eDrAJk8mUO7o+PaWdJmZdI3kZJJmrl375gJdFRV0iA4e/PLPBYFA6NGjDYfr/4DJ5XIMHz4c+/btQ0REBF6qZLxuHQHWLVte+39lZWXQ0tJCbW0tQkNDoa2tLUmSxIyNjSFJklRWVsb51tSQQ/Fvgn3vSZMguLmJEd27c/f798c/Pv/87cRRY1u5ksiiu3eb/vdlywiwdu0KYds2sJEjm73+uV270DohgfPLywP79demny0jg6KC9+/TXB4zhpzV/fsJJPfvj+IuXVBUVIRbt27Vn8WJDx+KgwICOJw+DdX161D88ANKS0tRUFCAyMhISZIkJggCRFHkXVxcJK0TJ1i/P/6ASUQE4zTtpZqytLQmK8BPnDiRVVdX4+DBgywsLAweHTpA1qcPRVa2bm36WlVVFI2ZOJH2j8pKku2vWEG5qV27AsbGKCwqQmh6OvpIEuZGRZGTfOECgbTRownoN1a8NLbCQgIhgwZRdem9e4GcHHSPiEBkZCSUSiVeIxjnz6ff58xpuGbXrtAdOVLSdXZmsLYmkmHIEFp/Pj70jEZG1FLwwIHXnXwAVVVVor6+fsNkMDEhMBkaSuTR+fO0vhuRI3PnzsWWLVvw/fffo7a2Ftra2uC7dUOXX34Bk8mk9C5dxH6nTnHphoaStqkp16JFC27sgwfQbty6rQkTRRHx8fGSnZ0dd/v2baSnp0v6+vrs4cOHcHR0FJ2dnTm1Wi2VlpaKsbGx9QCL53l0795d8Le05HHmDOUCN27npek/raNDnQeiomif0RRk27yZ8pfrzMHBAUFBQXj+/DmuXbuGfv36wVLTaqwuPXTo0KHs4cOHSEhIQKdOncDt34+BAPQTEtitJ08AALt375b69+/PumnSmNavpzm1ahWRDG5uFOlbtgxYtAjSjRuoTUiArYUFAfyvv6ZzwcGB7hsg2fKRIzRn5s0D5HIYDB4Mu8BAlrxypegZH8/pVVWhy4ULEqZOZZg1i8Dc8uV0zSFD6D0oFIAkoay2FmcCAkSzxER0OnSIs/nzT0SOHy/mf/IJN/bOHSqUk5AATJqEbgDrBrDHjx/j0KFDqKmpYZMmTWLXfv5ZCtq5E9plZRxcXaklqKkprYfRo4lEKSpCuY0N5JpxsbZGiZsbbk+bhuq2baG1bh30k5OxeNMmiKNHw8TDAwBgY2PD16l30Lp1a9q3FAqKNq9dS+qiyEiojY2R2asXWrq6wuSTT5oki0uysxFjYCD1XrKE4dkzKD08kHrqFIpraiQfPz9cu3ZNdJ0yheaQhwcFKFavRlxoKJOdPClIo0bxz2pqUJSUJGVwHCstLYW7uzuTJOl1H0kQCCBLEpCbiydRUZLo7c3azJxJ9/zwIUnXjY1pfK5eJbm3xuqi/Dk5Ocg2NOSq27RBlaOjOHXqVO6lNpoAgf0lS2iemJrSNVu0AOzt8V5VFW+/bZuUk5EB58WLGaep59DY9PWJ/LlyhVQG9+5R4CErq97fUO3YAdm8eeDOn68PCLR68YLFurtLncaPf/2ajU2SaMyaMrmc5n9T9Uk0JpORgqy5AAJjpEJISCDyftAgIkbd3akmwpUrwPLlYH5+aBsQgIiICNTW1iIjIwMZGRn4+uuvIbO2RqYoMnVEBDgdHSILnjyha/ToQWtu61a6lqYQ4fXrFOW/dIn2+g8/hP2aNahJT8ezTZuQl5cHS0tLnDlzRlQqlax/v37M4MQJRHl5ARMmIOX2bamlpyemTp0KxhhYeTnMQkJEMSCA4zStAy9eJDXB3r1wsLND79692ZUrV5hCoYCZmRlEUURoaGhVdXV1qCiK75Dr999nf+fs/23/sbZq1SodjuMUy5Yt05LL5cjLy0N8fDySk5OFqqoqXldXV7KyshI5jsPTp095R0dHYdKkSU1GQiIjI8UHDx5IWlpaUnl5uUwQBAwePBheXl6oqKjA8+fPoaurC47j0LJly5dAwPfff4958+a9U6sshUKBo0ePilVVVcxEpRItoqO5FEdHxtnaik5OTpK3tzeviZaqVCrcuXNHvHPnDmdkZCTo6enxFRUVglKpZHp6etK0adP4N/aBf5vFxJAjt2zZv36NOrt79y6uXLmC2bNnw8LCAklJSThx4gTat2+Pfv36wdjYuNl2an/Znj4lB2PePDpw4+IIaIwYQZGAZ88oCh8V9XpxsXewPXv2CEVFRUwQBE6lUmHSpEkvkRgoLaUD848/6M+SRASAlxcxzZaWJJNjjNh2tZqY5ylTKKp59y4dzHI5RW6aqk0QFkaRlg0bGn4WGUkgqqSESJr/SZMkoLQUR+fNQ3n79phlaEgHaEgIRaH19EiK7O9PDlJd7nlYWJhQUlLCTZkyhanVamg354ykp9OYNaP+aNYSEsixSk0lx7VzZ5RVVuKXX36RbGxspMDAQM6oqUrFr5ogoOLuXdSo1TBrAsy9ZJWV2Pz112BOTmKvXr24Nm3aoKSkBDk5ObCwsIBzaSlSpk9Hibs7fEJDm5/Xd+8SGHy1UKBKBURGouLOHZTu2oWI3r3x1MkJNs7OcHR0REFBAXJzc9UqlYpTKZXcoDNnkNquHbLbtcOYMWPQqlUrZGdno+j6ddFbT4/Tq64Gc3ICaw4kfv45kUfbtr3xsUtKSrBlyxZYmJmJAy5c4CxXrUKL5tJIMjOpxsH8+RQFKymhCNeBA0RmPH4M/Pgj8vLzsXPnTgDARF9fyfXgQYZVq8hBdHKi4lWff07zo3Xrl79j82ZaO8OH0/dcvAhoaUGtVmPNmjUwNzfHggUL3vhMAFBbXY1joaFSq8RE1u/4cXLOly0j4m7ixIYif9u3U3GoxgSPJAGVlTiwaZO6u4ODzNXOjn6WnEz3nJZGYK1LF1orcnlDuzMAcXFxuHHjRn0B1c8//5whN5ec8u3bKe3D05OIV0GgqLSmsFYzJooifvzxR9TW1kImk0EURRgbGws1NTW8jY0N8vPzBblcDmNjY15LSwsBAQHgOA4KhQK7d+/G4MGDJS9PT4ZevWjsxoyh726syKipIRl7ZCQ58L/88lLurMbOnz8vxMbG8lZWVuK0adM4bW1tIpvWrKFaJQDCw8Nx9+5dLF++nNbK8eOUznDhArJKS7F//34AwJAhQ9Ctcd2SWbOIKNu3r6G4YV2xvCdPnuDQoUPwzssTi4yNJZcRI3gfHx+qSzB9Oo1LWRmB2StXUPznn9B2coKBgwOKt2+HfOlSRHfpgj/t7CB06CDK5XLONDpadGjblrMyN4fRwoV0xksSirOysPvoUdHe3h6G9+9zrKhI6B4dzeulpUEYOhS6I0cS8RwZSRHVKVMgiiIiIiJw584dDBs2TOrUqRPbsX69elBVlcxBo5wKDKTI8sKFtDf26we0b4+jR4+qdXR0ZIGBgYiOjobs449RO2mSWNimjVRTUyOplEpYhITIuMWLYV1WhixDQyk2NpYxxqSa6mq2wMYG5k+eoLCoCArGUDN2LHQvXECmi4sY8+IF16KgACNOnkS1h4dkHhLyWtpWWloazp07J4wYMYLPz8tD0m+/ocDKCsPOnUNrIyPcMjHBiIcPIUtJQZlCgeoxY3C3bVsxrnVr7uNff5V4S0u2cfRotGzZUuispcW3aNkS5x89Eg0NDeHu7s61atUKbQwMwH75hcZqxgxgwQLkhoeDv3ABO+fOhbGFhegEcH3v3YN+XW0KCALtM19/Ta0sGxEVV65cQVJSkrRo0SK2Y8cO0dzcnI0fP76BWcjIIMXAoEFEIlhbU/R5+3aSv5eWQoiJwY7ffpMU5eVYsmTJy50BJImIwbIyOosYg+Dvj2wDA5zu0EEyKClhNbq68IqKQq1cDrfDh4n4AlDp4YEkGxvJ58KFN0eDcnJIUdVUZB8gv2bQIDoT31S8+eZN8jOuXm0+VWrzZlKO3br18rUyMyGdOwfh2jUot27Fk7IynDx5Eowx6OvrS7Nnz2Y7d+4UW7VqJQUFBfHIzqY53LIlkVe3b9NePXEijY9MRkTW3Lm0t9Wd5dWBgfWdeCZOnIhLly4JADgrKysx49EjvvP9+ygYOVJoUVSEwC1beK3Hj+lakgTRzAzPzM2ljBUrWD9TU3DFxfRd334LBAfjj7g4XL16FePGjatXsl69erX23r17D2pqanquXLlS/cZx+C+1v8H+3/Yfa6tWreoJ4JadnZ1UUFAASZKYhYWF0L17d75NmzYvRX0UCgV+/vlnzJgxA1ZWVnj8+DFycnLA8zw6duwIXV1d/PTTTxg2bBhUKhXc3NyoN/072J49e4SamhpuwIABzMnJ6TXnv6KiAnFxcVJCQoJUXFzMWVlZCVOnTuW1R40CnJ2h/PFHPHz4EImJiWJOTg5nbGws2traIikpidPX1xdGjhz576UJvMmSkwmM7N37b18qLCxMysjIwMyZM1leXh5OnjwJPT09QRRF7pNPPmGNCZLa2lpUVlbC0NDwr0VnXzWVin61aUPMcVER5f716kUSw08++Wst8F6xtWvXgud5LFmypPkP1dYSgAgPJ4ckN5cKMxUVEUCdO5eipK/m1J0+TeDo1CkCT42KXOHJEyIQRo6kv0sSMfbffUfA4F8xUSQn2NiYCgodPkw5i15elPf42WfImjsXRQsXwsvVlZyPGTPo/cbGkhO/YweBuWfPgEuXcBkQ4lJTOWNjYwwcOJA5ODg0/d3e3uTcvpoi0JytWEHR4m+/pZQTTQu0OquoqMDevXuF8vJyHiCFhq2tLVxcXF4H32o14OmJYwMGiA+NjTknJyd4e3vD3d29/iM//fST2P/UKZS4uUltV6zg5V264M7HH0tP9fSgUCiYrq4uWnKc6HLyJMc5OSHdzAythg2TBgwY0PTkunOHxlDTcu61oRDxw/ffo5eZmdDm6FEuUxBYsakpMtu0QbmhIQICAmBpaQkDAwPorV4NmYsLuHnzwPE8vZeKCprj8+ZRtKo5E0WKOqtU79SnOisrCzqzZ+OpkZEY1auXtHjx4uYZuoQEWmOff07pD9u307xYtYoUDV9+Cfj6Ij09HSEhIXBwcJCm5OYyLjaWIsZ1fbmxezc5uMOHE7nVrh05vStXUoQoNfW1NkrHjh3Dw4cPMW7cuJfGUWOCICAzMxMPHjwQ0tLSeLlcLs6ZNYsz1hR769uXanzcuEGSVgsLWluaopdnztCfO3cGiorw9NYtydjTkxl3705kXlERfa6ggJ5l9uwGMKGrC+zbh5rjx7FHoQDn5iZV1dbCyMhImDVrlqzuBmlfcHSkd3j3LoE+R0d6b28wTcTY2toac+bMeeuYNraoqChcvnwZS5cuhd7x47R3TZhA5IKHBxEqNjb0bO+/T4AoLKxZFdHFixeFuLg47osvvmhYB6mpdI06IloURWzatEk0NTXF9OnTOcYYnTd9+gCOjsj+808cOHAAoijCwMAA8+fPh15MDOWZ//orAECqqQF7/Bg4eBBVn3+O6H79UKpUwvuTT5Du7Iz4IUPEz6ZM4dCxI6lGGhHYt2/fhvnMmeAFAWlubnDIykKmnR1kajVqZTIMiYjA7cOHUV1aCuOff0Z0jx7wnTwZHTt2RM7UqTC+ehVPvb0ll0OH2Ivu3aE0NIRJURHkc+bANDSU5u6mTfXdPVK/+w7nExNFMMbGjh3LNAUOt//0k7q/ubnMRbN/r1mDvAMHJL6yklWYmkolrVpJsQEBUpFSyavVaujo6IhKpZIbPXw43IqKcDgvT3zx4oWoVCp5lUrFDDhOWvjdd+y3KVNQY2mJD9q0QeVXXyGxRw9Jy88Pl4qKmLxFC8n26VNx3PbtfOKYMTD4/ns4FxRAnDgRh1atEp1++41zLyiAQUJCPVGr6Y6iUqlgYmIiTtuyhSvduROhMTFwiItDu0ePoHRxkWo//phdv34d/vHxoqWREXfQzg6j792TKp8/ZyaBgXD98kugb18IHh64Mnw47t+7B6fUVBgoFOjXpw8MkpMpIr5rF/DoEU4NGYLEx48xbdYs5OTkIO+339BeoYBbSEjDhJMkiuTKZBSdriOxtm7diqlTp8LW1hZFRUXYsWMHxowZA1dXV/JxkpJoLk2YQGA0JYVy5L/7jvbIx4+Bzp3xfMAA/Fo350aOHIlOnTpRcKF3b0Rt2IDLDx/CiDHRJSUF8e3bc7KKCnwUEgKcOgUxNRUyCwtcU6mExJQUzs7OjpmbmSEzNlZsYWEhTZox483RjrAwIj8bKxdetT59aJ9trigeQP7Hjz8SoH+T76NZ+x070l5b99n01FREf/cdBl2+jLi5cxHN85A4DjzP49NPP4VKpcKWLVswffp02NraklqjrIyIwhEjyBe6fJn2c19fkvqXl9N+v2MHKuVybNiwAYwxeHh4IC0tTXJ0dBRHjRrFa2lpofbpU3ATJoDXdMGYNYv8gJoaIgrT0pA6dap4LiaGtY2OZtLo0ehrYACTFi0QVl4uJSUlsQkTJqBNXbpDXUG+4tra2nYrV658/sYx+C+2v2X8f9t/stkCQKtWrSR/f3/OxsYGjLEmN1RDQ0N07NhR2L9/P8dxHKutrYUgCGCM4caNG3B0dBQEQeANDQ3xV4H1jBkz+LNnz+LUqVOiSqXiWrZsKTo6OsLExITLyMgQMjMzeWNjY7FTp058t27doA3w2LqVIm12dtDhOHh5ecHLy4tTq9WIjIzk8vLyMHbsWDg7O/8PhcObMXt7ilDn5zcv/31HCwwMZEeOHBF//vlnBgA+Pj4YMGAA/8MPP0iZmZmaaIdYVFTEqVQqcBwHNzc3YezYsf/6M2pr06+CAvr7998TSB49moBDYSEdFtra5CAYGBBweEeVQbt27fDgwQMUFRU1r9zQ0qKcwEWL6O9FRUQyjB1LQIsxclBKSigy7ulJnx8xgsD88+d0eOfkNBACJSV0sI0cSdG/Hj3I6XjbfQsC5THm5hKZEBREYCw3l6JpY8ZQXqu5ObHxkkRkg4MDYGCAe2vXCgUFBfAaMqThi3R1Gwo5rltHzrRSCfzjH3hv5EieqdVQRUQgy9ERzYL9EyealJC/ZDU1RIqsX0+5kTxPY9VIOqwxAwMDLFq0iE9NTcWNGzeQnp4u3Lt3j5fJZGjXrp0wfPjwhvuvqoI4bBjS9fS4Af7+KCsrE0+dOsXV1NSgXbt20NHRQUVFBWfm4IASXV0xJCQEg62t4e/rywz69kVVVRX0IyOBx4+5fB8f7NHXh1pLC+1NTZv3pH7+maJHr4B9URShVqsRHR0NtSDAKyiIbzF/PuRRUUj+6SfJ88EDZlBRAbehQ9FCsw/98580Tl260PiFhdGcfvgQeFO3iA8/JCc3MvLN772R2dvbA/HxMHB15SJUKvGNH/7uO7q+pyfd17hxVD3588/JsZ44EbhyBc7OzvDz80NkZCT7FsAHX38Ny969SdXyxx9EQA0bRqoPExOSsm7eTE5ohw4NQF+pJKLDzAxjtLWRXVGBW4cPo21VFbTXrYO4YQNKCwoQ6esr+S5cyP4YNUqSFRfzn549C22FgpN17kwgNCSEvtPLiyJbkkT7RIsW9P0mJvRv9vakDNLSQuiPP2L27NkN6/PpU4qeubgQWO/UiX6eng6UlUHKyUH5ixcwVasx8eRJhhcvgEuXZNiyhRQRbm60V02fTlH+kBAaS01k/Q2mUChEAK93NHkH8/HxweXLl7F+/Xr06dNH7Ovry8HZmZzpRYtoj1Sr6R5zc2lc6iqyN2VWVlacJEkv12JJSCBlQ50aiuM4fPzxx9yaNWsQHx9PLe9mziQw0L497H78EcuXL8fp06fFhIQEbscPP2Dx7t1gFy9StHv5cuz09IRNRQUKN24Uh+3bx90HYKRS4eCMGRA5DqMGDuSe790L07IypISESCerqxlHLd1EFBRwRr17Y3ZMDBxsbMBdv44Wp07B5uxZsJAQ4MwZ9HnvPeD8eSj8/HDJwAA3btyQXnz7LZPV1iJn9Gj4X7rEzi9ejG48j2etWuHGnDmSlra21MvUlFUUFkpt2rfnntvYiKdHjcKQr7/mJrVtyyz372d8o4CDVWYmnFatIrL2xAnA2xtxt28z+6AgcGo1a7NzJxM7doTRF18gwdsb7RYu5MrKyqR2Li5MbW2Nyg8/ZAPff19mYWEBU1NTcJLE4OoK75AQqfWZM+xp166wv3wZ+RERkuX165hrZsa4wkKmf/48z+npofPUqbTPOzuDe/IEQTdvcs83bcLl7dtFx9u3mU98PMPixSgvL4cgCJg4cSJcXV05ZGfDyN4eS/v2RdnWrSivrobu77+zg46O6DN0qLrHlCky8d49OBUUIGPAAFQbGAiTV6/m03V0cGrIEEmqqmJ+e/ZIvd57T+qRmclFm5tLP1VUsOVLloAvK6M15euLF1lZYvtOnWBvb8/Z29sjbcECcJozVWOM0bmuUgGenqhavhx7c3NhYmIi2tracgBgZmaGgQMHSqdOnUL7R48kn2vXmN6HHzKDwEAiR0WR9mYTEyLlly+nM+ePP2ARGIj5c+fi1507ER8fL3VydGQwNweWLkVVaCi6KZXw7NiRM01Lg/fGjTCsrYWOmxvN9enTgb174e/lxfNyObKyssTOK1Zwhl27so579rw9otG69cuEf1MWGkqE3JvAvrU1pdytXEnv9qOPmv6clhat+717iRBp0wbQ1UUbFxeEODtjp709JoeHo72rK/Dpp2jl7Q2O46CnpwcPDw8xODiY2dnZie+//z6P3FzyE+bPJ7927FgiwebOJfVjURGgqwu1lhYO7dlTX7A5ISEBAwYMkHr06MFrUjy0SkpoD9LYp5+Sj/LTT/QdUVFwMzTk3FxdoV63DsFduwqV27bxuydORJW+Pps2bVq9H9KoIF/g/89AH/g7sv+3/QfbqlWrWvE8n7V8+fJ36o+mVCqRlJQExhiKi4slbW1tlpubi7S0NHh5ecHDw6N5sPKOplAoEB8fj8zMTKmyslKwtLSU+fv74yWp8YYNJLEKC3tzDtb/lokibfgTJ9ZHY/4dq6qqqo/SAEBwcLA6OztbxvO86OHhwXXq1AlWVlaIi4vD9evXMXToUOjo6MDBweF/rntCVRVF4CwtST4vCBRtLS6mfE6ZjA642lqK8unrU2SmooIOKV1doKICokKBs5mZKKutRdCkSeCUSnKY5HIaO0miA1VDOqSmkrN76VJDLjDQkNt35QrdA9CQZjBzJn2uQweK1i5eTIz49OmUZtG/PzHwmrY5AAGi338nUHL2LM2lw4fp3oKCKNc/OJgO8+xsep4ePd762srLy7FlyxZMmTLlnUgvURBwdOpUDIqLg8ndu3TIL1hAOb6v2vTpVChII8nVWEYGkSILF9L/27KlHij8FauqqkJ4eDiSk5PRs2dPdOjQAVZRUSjevx8H+vYV5HI59+GHHzIAuH//vnj9+nVWU1PDhLqK8yOGDYOnlxckAMqMDOhWVhLg/Mc/6B1++SXg7o64uDjExMRIRUVF+Oqrr16fsJrIpq7ua+TMkSNHpNTUVMbzPNq2bStMnDix/gMqlQpMoYDWrVtEqgwbRmPfrRspP8aPJyCtr9+kpLre1Goi7xgjEKsBou9iWVkAgBJ9ffz866/4h6ZmRlMWEUHFv/z9G0DwjRt0jenTaf4lJdXXBPn555+l8vJytnTpUsi2bCEHUBNRmj+ffpmaUv6nUknOXa9eBDxTUmheZWTQ+nJ0RHJQkBRVWMgCLlxA3MaNAn/gAM/UakR17Yoet28jx89PUvK8NK1LF05vwADaAzSSVYWCAFfXrkSydelCBFtgIEnFG9XgqKiowKZNm/D1118ToM3KIumqXE4yc6WyvuVVbW0trl27JsTHx/MAJA8PDwQMGECFzszMiCBwcqLvr2tNhVGjaB/ZsOHN4woquLd161apQ4cOrHv37rhz5w6Kiorw9OlTycLCQpzxtugh6Bz89ddfoVAoMHPmTNg+e0aOf0wM/R4eTmOzfz8BomnTGtooNnE/W7ZskczMzKSgoCACND4+pMSZPfulz65atQomJiZYpAFwubnkxL//fn2tg7LSUgSvWwdVVRVmf/cdDORyqHfuREhMDMYlJiJm0yZUVVXBysoK7mPHQquwEGd27xYeZWTwNjk5KJMkmJaVIbNdO8hEEa6pqXCNj0emuzuK+/VTT/3wQxlKS2netm9PqhiFgubWxInA8eMQli5F0Q8/wHz/fjxnDKVRUfkv6HAAACAASURBVKJRZiZ3q39/WA0eDNR1l+GUSkBPDxzHQbuyEkaPHyP7zBk4tGgBB3NzUo506ABNC82ft25V9+7ZU9apc2ciewYORPrFi3CMiYFMI6WvrUXKqFFStasr8/LxofX0009IDg/HiYQE9B84EHxpKcwjItA6NBQxbdqgnbk59O/fRxEALUHA1ffeQ5u0NOTb2aFdaqpklpfHjo8ZAwtTU3FwaChXsno1LikU0vBvvmEP3d1xy88Pbf/8E4PPnMG+JUvEWrWas7WzQ1BQEN1TaGh9S1tp6FBc1NGR5JMns97BwdDy9yeib/ZsAqBxccDly4iJiMDD/8Ped4dFdW5fr/ecYegdpCtSBCkqICioiA272Bt2jbHEnkSjJkhijD0aY41RY2/YsASxoNhAUBErIE2aCNLrzJzz/bEZsGDLzf3d3O+6n4dHKTNzznvestfaa++9bRv8UlLQ8Nkz8EZGVGDO2RlRN27g3JkzmL52LfD119CePx/x8fE4duwYevToAQ8PD8jKyvCkZUtYR0ZC7W1V5vftw9nTp8U8Nzd0HjGCvZyjLyoUyPzmGzy3tUXZtWui0Z07zCQkBPra2qRWa9uW9tOWLWlvV7Y5nTkTuHQJz8PCsGflSkxavx4JO3bAMSAAiZ99Bu7GDTSNi6N9ZMYM2lM2baLzy9a2tqhrVVUV7ty5I5Z8+y1zDwqCwYd0Pbp/n1RG79pzX7wgKfzp0+9PUVy1iv5m7NhXfiyXyxEZGSmYmZlxjsoitJMn0+eHhwOqqsjNzSWFgyhiYGmp6FxUxGpTIGr20MrKSvz888+id0WF2PLuXU4zJASM5ymKL4oUTKiupkDBiRMQGzXCiaFDxRQnJ6Glpyd//vz5N9p2AqAzKzm5rhXxyZNUs6V/fyK+lT6qXA48eYKShASk/PKLGOrnx/T09BQvXrzg/fz8hJYtW3JbtmwpKykpmb1w4cIt738A/3/bJ7D/yf4rLTg42FUqlR5wcHBo1L9//w/T29djSUlJOHjwIKRSqWhubi62atWKO3/+PEpKSgR3d3fO29sbUqn0X5Oav2y//UbRL3NzfGwf7X+r9ehBEZwffvg/+0i5XI7t27crysrKxMrKSt7d3V309/f/ewa6rIycOC2tN4vniSIdFBUVJD9TVmkvKSGQpKlJvy8qAhISEJ2ZKT7NyGBaFRXwEgSoe3qiCoBuZSWB7DZtCOwcPEjAYehQcugrKqimQOvWlJOpUJC0296eSIjycsobVijqPv/mTXL+9fQoOjp9Or1+z5468GNlRTLV774jsFRZSZHGSZPoPd9XLPA9duLECfm9e/cks2fPfrMA2msmCAJ++eUX0cHBgXXv1IkAS7NmFOE8eJAOaqmUrumXX8gBGDaMXhwdTfLpyEiSckdEvFN2mJqaiqioKLi7u7+zr/iePXuE1NRUTi6XY6GODi6fPg2VoCDRy8uLvV5ToKKiAo8ePYKlpSWM2rUDGzGCIj1bt1KucHU1KSJatKgd14sXL8rT09P5tLQ09t3rRSBlsrr+0y/J5rOzsxEVFYWUlBQUFxfD3t5eGDBgAKf6rkr0hw7R+DFGY2hmRqoMOzuSyr8Gpmpt9mySUda0Kfwoa9UKyMyEkJ6OJUuWYPLkyW9XtGRnk4Ll/n2qhAzQ/A4Kws1Ro4SkxERx8PPnPN+5M+Djg61btyIzM7OuL3xiIpFYISE0348dIzWCVEprZ9w4kkc/eUJAoh5Vy9OnT7Fnzx7R3Nxc9PHx4fbs2YN27dohMTERHMdhzJgx9fdbnjGDZKUDBxKgHTCA1s6SJbQHhocTicFxiIuLw6VLl4Tp06dzyM0lx7hLF1pv9++T8+vggNLSUuzevVuoqqoSu3Xrxju8qyBlYWFdDQ43tzpl0jffUJQ/O5tIDUdHAqXDhwMLF6Ji7VpUfvcd1Csq8Ou0aZi9ciUeOTqCd3WFzZEjODV2rNAzPJxTEQS6Nh0dmrd79lCus7ExgeuFC3F1zBhR6+RJ5qqjAy4oiM4AuZyi6SdO1DnVPXtShO4tHU7i4uJw6tQpcd68eexd52RwcDDs7OwQ+LLaJT+fxuDoUSKlVq+GsG0bdsyaJb4oKBCnT5/OiVOn4lBlJdz8/eE8cmTda589I/LE2pqUNBkZEL77DmUyGdRtbKBYuxZ58+ZBr3lzPK6uRmhoKAxVVRU+ERFcamAg63r/PjT79aPCbxcuEPA7cYK+X7GC5nLNeVhuaopDbdoIpaWl4tSpU2kiNmlC8+elTiW7Fi6U94qKkuhv3Eh7dHk5kbD6+tj/5ZfyLomJEsPgYNrnXVywKiQEs5Yvf8W/2Ldvn1xXV1fSw8yMFC6//gp5mzaoTkpCiYmJUKWhwYyTk1m1RILDgwbBs7hYdP78c8aaN4fg4YGKL76A6syZKEhLg8ngwagaMgTizJm4cuUKhAMHhILKSqZRWMh0hw6FibMzVEpKoOvkBJlMBll2Noy9vXF771549+9PFzRnDpGXrVpBsLXF4k2bMH/BAkjy82kNzJpFe/vXX9PZGRuLVE1N4KuvYPb0KWTTp0Nr9Gg6F3JzgQEDIMydizW3boklosiUUV4TExNx0KBBzNDQEMU3b+JKUBDi27cnwqxHj9qDYfPmzWJOTg7T0dFRlL14wX+1fTukX30FNmNG3dz4+Wd6psHBkIWH4/SLF4Lk3j2O9/MTu6mrM0yaROs2IoLOb+UeUV1NueWZmXgYFoZrcjlKXF3F0tJSZpKfLw7+/Xemk5ICZmBAdSkGDSKCY+NGirirqSEtLQ179uyB88OHgsvAgZztB3QGAkDn4IYNNF/eZadO0VxVFsB7l8nltN7Xr68lZDdt2iQ+e/asdjwbNmyIEYGBUImKojlvaQl07Ijk5OTalprmVVXi6OfPmdTVlbp4ODsDAF7k50PWsiUudOwoyr28xBHl5RxbvJgI7/Dw2i4WYkoKFB4eOLhokWLYpUs8AMhOnqy/xs/x43Qm7NxJ54C/P5G88fGvpEKKEycitUEDEfv3s5hvvhH6jR7NSSQSxMfH4/Tp00JlZSWnoqJyfP78+X3fP1D//9snGf8n+6+z77//vrOKisrxLl26qHt4ePxLoeDGjRujWbNmitjYWD4xMZEl1lQkNjMz4y5fvozLly9DIpGAMYb27dujzQf2pa/XYmPpUOze/Z8F9AHKixYEim5bWv6ffCTHcZDL5aJCoeC0tbXZ9evXWZcuXf716P6WLeQEZmbWDx4Zo8NdReWDnoMXwLQePMDhw4dx4yVyNGjxYnL0pkyhQzUykoCDXE6R/OrqOideFOv6NytBC8/T9xxHB3dpKYGA8+cJ4JSVkbPHcZTbP3EikUTKCsX375Oj0bIlOaUDBxJQzcoih8DRkZxWAwMCN5GRBBIFgRyVvn3rchZXrSJAsG4dumlqSuLLy8EpK6uXldHBPW0ava+ZGUVfw8PBdegAU8YEjYQEHt27k4pCV5cILTU1AgwWFhRdmDmTZNPnzhGQGj2a5Ohffkmve4/t379frKqqYsnJyTAxMRF69erFyWQyGBsbv+I0BAYGcgBwsXNnJMyahcvFxZjfqhWrD/Spq6vDzc2Nvjl8uI6E4XmaJ2vW1KUw1FhycjKXkZHBvOtTSjBGa+m13506dUosKChgGhoagqGhIRs4cCD31mKGSuvRg5xIiYTA5ZkzNJYHDxL4vX6dwLkSKLx4QQWSVq4k4uiv2GefAaWlqKysrM17fyvY19MjB9fBgcZMQwNo3Bh3NDTEOwcOcNlWVjhfUiJ0OnqU41u2hIuLCzIzMyEINdkB9vZEbO3aRaRGu3YE+gSB5klcHM3ToKC3pq9YWVmhJl+chYSEKADwkZGRtb9fvnw5vvjiizpl1cGDROIcPEhzc84c2gMGDKDrX7yYyLNhw0gx4+ODtLQ0GBoaivL0dEh+/x0YPx6ZzZvjyeXLou/WrQxLluDZs2fYvn07TE1NMXHixHd3SCkvJ7CnTIlZsoRA0KVL9DynTiXCw8CA1rqODl1rq1Y49eSJIm/wYL6ttTWmTp0KzsYGTm5ugIEB8qysoOXkxM4UFoomlZWiXnIy56CvT4SatTW9t6srvZeVFVr17s0ehIYiLSMDxnl50FLubfHxNAYnTtCecugQOd+lpfUqv86dOyd6e3vXAf2RI0mR8lpEkeM4JCUlvfpipdqhoIDev1s3cJ06YbiDA9u8eTN++ukndNfSgoW+Poy/+oqIEWVbMZ6nsdPUpP3o0SNwixdDW0UFmD8fEn19WOSSctfN3x9WISFQWbGC1zl3DpednSELDaU5mJ1N7/fgAalxgoNpHW3ZAowfj3J/f2zfulWUvXjBFRUXQy6XQyKRkBLitfPlmZ4eV7x1K/SLiog4btuWyBsfH/AKBVhhIYS+fcFpaKBg0yaUvk7MVldDNz0dehxHZwdjQEAAJGpqkJSXQ6OggMOBA0CHDlDfuhWDjY1RMnYstnTsKI7OzGQaM2ZAe8wY4NQpmHz5JTBlClTnzAEAdO7cGejcmavMz0dKp04it3o1s5w2DZpBQZTWoqoKmJoieu5c+cVHj3in4GCmO20aPUdBINXLzp3geB6VlZXQMjGh9Tp7Np0t168TqNy6FQ+9vMR7kyezipISzAgIoD2xaVNa7x07gvP3B0tMFAZ368bb2NhAJpNBS0urdjB1kpLQ1d8fpebm7ObNm8jKyhJLSkqEqqoqThRFNnbsWBQVFfH37t0Tfxs0iA1ydITJiRMUDR4/nnLWx4wBfvoJKubmCPD15aqvXMH2rCyWOmMGrJUKn9at6SwKDaV1JpXSdXbqBDsDAxwZORJjAgKY4eXLUNy/z9SaNQMrKKDc+agoQC6HzNISV3v1EnHjBsvJyVGkpKTwurq6YkB0NIc+fd6+D7xuTk71pqy9YQ0a0Nl9/fr7/5bjKGjx4kUtUDY1NX0F7Kenp2PV6tWYPXs2Sh8/hsGkSUBMzCsR9yxVVZYyZw4cHj2igJWTEzBkCAxGjQIiIjDU15ddS05G1urVsBg1ivbtykqgWzcoKipwKS9PjFm0CDO/+opnp04BWlqQ3rlDZElk5KsdBPT0aJ+KiaE90s2NiMavvqK9u8ayc3LEzMREuLi7Y9D48bUbrqurKzQ0NLjdu3dDJpN99f5B+t+wT2D/k/1XWXBwMJNKpTsHDx6sYVtfv9GPNJ7n0atXL14mk4l3795lmpqatOmVliIqKgoaGhpC48aNue3bt+PcuXOIj4/HkCFDoK+vX9v66YN6x4eH04F58eKbhdr+CWZgQCDh2DHafP8uOf077Pnz58jNzZX07t0bz58/F/z8/LjMzExEREQoHBwcOE9Pz4+/iKqqOpne33gPTk5OmD9/PkJDQ3H37l364Z495ECbmhJwrU/2/vrP2rV7+4cIAj2Ds2cJMOflkTMaEkLOiJcX/VtVRX8fHU2ROp4nh9zQkKTwpaX0+y+/pGgZY+S0q6iQo6wEWxYWtekKUCjo7zIyAB0d8AoFSk+fhsHw4RSB3b2bwP6vv9J7TpkCfPEFSnbuROMLFziX69eJUPD1pUigEsS3bk25ubt30/UPHUqf3akTgbyJE+kwv3+fqn5fuULX6u8PuY8Pkr74Qrzk6QmT/HzRKz2d012+XHAJD+fC0tOxc/ly2ObkINHaGpaqqoKTtTVX2qgR0q9dk+cWFPBjY2LYjitX0LJtW4WKisr7izQkJBBR8+WXFLVr1KjedIJhw4ZxK1aswPXr1+Hr64vMzEwcOHAAbkZG6B4cDDx+DEEQEBERgYKCAsjlcmRlZTE/Pz/R19f3/cqVoiJyVPX1SdapbOc2dSqB0d27KaI2eza11VIW/Nq1i5yh3r3r0kc+xg4coKjKiRMUUQHwTElW1WMyiQT3Dx9GZVwcDI4dg93QoSgsLMRViYT1u3wZRjduYPOOHaLuuXOi3urV7IaamgIAr6GhQff4xx9EgHp5ERk2ZQqtKY4jUiknh4iEUaMIML1nPVdVVUFXVxeampqCjY0N5+Pjg40bNwpr1qzhhg0digbV1dBLSYFi8GDIpVKoAqTaeN3U1Ah88zzg6wuJmZmYYm/PZyxciCw/P7GodWsxeutWDoLAWoaE4JSPjyjT0WFyuRxjxoyp//mWltI9DhxYV0/j++8piq4scGVjQ2syIIBSgLy9X83N7dQJWffvi76TJ8NF2RpM2WoQgNGqVegMsKT27XHz5k1WfOoU7H/4AZyXFznPLxf+GjwYEgAZy5bhzo0baL1nD9o5OIDbvBn8tGkkbd66tQ4k7NhB0bXg4DduzdraWrh8+TKvr69P+fguLvXuhVKpFJWVlW+OzahRFMUbOJDue9gwqAGYMWMGe/DgAcI3b0afQ4eQZ2SEU+vXI9vKSnR1dWU9t28Hp6w5MnUqzf2qKiK6Ro+mNeDsDNjbg509C+MlS4i8s7UF++UXkenrU2eIw4dpT8vMpGjwxIm0tk6dAgCcPHhQMW7hQv7OZ58Jj5o1EzmO4zF2LKlSXmuNWl1dzenp6dHeERFBRGnNHpI3YwY7amMD56oqPBs0SHgSEcE5PH0qcqGhDBkZNN83boS9mxtf0qwZKbhGjKB5oKFR13rO2ZnSWgwNoZ2dDc2hQ1lhYSFS9+0TnXx8GPT0SPIMEEEYGEik7/jxgKkp1KRSOMTGss0//aQY+fPPPDp1qjsTAHgFB0vyTp0SFJ99xuDrS3Pg6FHg+HFEZmfDMTdX1NTUZLVpNytW1LWRDQuDvGlTWJw7xzrn5kJFWVBu61aa5+3akZpjzBjIWrRgdn37QmX9eqhqahLRGB9P5/eRI+B790a/fv3gbWmJR1IpM27UiDdv1gwampq1KYKurq5sSUoK1Jo3pxQYY2NKbXN2pvGPj6e1dvYspBERUPz2m5CXl8fVpmuqqdE9ZGcT2D90CGjfHjf27cOF+Hj0NDISzNu355hMRgDW2ZlUdAEBRDJ9/jkUmpq4pKvLcOkSXFxc+BYtWsCjSROGzz77uDTNlBRSSSjbR77N3Nxoj3z+nO73XcZxRMimpgJz56Jg3jzExcVxALBgwQJs3rxZzMvLY1VVVfipJt0qKD6e1nlJCaYuWIDnBQU4ePAg9h84gKCgIMDdHfLwcMDcHHxFBZiWFtigQcgpKBD5igpmsW8f7Vv+/hB9fHB97FgxSlMTwwIDSVl37RrthdHRNLc0NYlQ79KFiL/KSiLdly6lwsDJyfT18GHtbaXdv49zVlasb9Om0HutzklBQQEOHz5cDqBfUFBQ4oc/gP+/7RPY/2T/bebE87zuG3k+/6L169eP9erVqzaKr6Ojgy60idRujM+ePcPmzZuxceNGqKioCOXl5ZxUKhWVfeSnT58OfX39N9+8vJzyrX/99Z8J9JU2cyY5nHL5uwt//U1mbGyMRo0aKcLCwvgJEyZwxsbGCAsLE7Kzs/m0tDTY2tri9bZA77SCAnIy79wh5vlvNolEAicnJyRERaG9jQ0qgoKA7duhvnjxv/bG27ZREb6rV6navbJljZLMunePAHfHjvRclA7Ey2SXkkR4OT/7ZZn3vHn0rzIPE6DIldIOHKB/ly/H88xMVG3diu1jx4pzWrRgaNGCGHiAnEdQvt7N3bvFyMhIZtyrl9B01y4C0zW9swGQowuQs1dZSc539+4Eqn/7jYgBxuiaDQzI8WKM+txbWWHfoUOim0SCPgEBjIuIYAaVlVBxc+MwZw76BAZyQqNG4BYuRPGkSSgLDua4jRtxeNo0cfz330uSHBxwxccHUzdvBj98OC926ABWXk5gtkMHyn1XVyelzZEjBDTPnCFnbv16AqBubuQsduz4yuPS0NDA8OHDsXfvXkgkEty+fRtSqRSpjx4hoWtXUfH0KTtx4oQokUigpaWFnJwcBgAXL15k1dXVFGGrzyorKVLZsSNF9YcNezWSqqFBvy8qIvVH//4kOT1yhMDFL78Q4fJX7cwZIiMZg1Lh9La2gk+fPsW2bdsQEBoK44IClGhp4ZS2Ntq0aYM8Y2NIrawgjY3F1C++4A9WVQkOe/cyu/Hj+XaTJkF38WJyQA8eJMBkYkJOa1YWzZ9OnYj0SUmhOTxrFjnX+/a9syVdy5Yt+ZCQEHHYsGGcsu3V7NmzudDQULFqwABWWFKCvXPnCi8yMznF0qXofOECXNLTofrw4ZvpKjX3HdO0qZipULDB+/cjb+RIpDo6supnz5iDg4PYxsODJXTsiMKEBDE/PR0KhYI9f/4cxkoHXKEggPz4MeXhLlpEX87OBCxeXr9lZZS2UFRESgZRJFJn+PBa5UZRURFKSkoklu9RXtnZ2UFTIoHxyJFItraG6Zo1qK8SS3l5ORqZm6NjZCQq4uKwZPp0dF+wAC1/+AHc3LkEdtXUiBApKSHCYPJkIsNeuvb+/fvzHMcJN2/eZC1atGCYObNeYqZeoK+0gAAirl7rb+7k5ASn1ashxsaiLCgIDaRSxMnluH//vvirm5vYtVMnzuzuXejk5lJkfvhwmjOqqpS+0Lo1vZG9fa0yoWDyZJgWFTG+qAglCxdCe+tWAk4ASYabNYNsyBAkXr2KuPR0RWpqKieEh8Pb3Z3zVqbdqKi8UXA0OjoajDFoK6P1yjout24BcXGYMHQoLykrQ5Kjo6h24wZre+cOeCsrBoWCrq9DB+C773D3xAkhOTmZiykuFu1NTFgHDQ0azEaNCPC3bo3qX39Fpa4uYtLSEGNgIBgbGMB8924OQUG01/v60j5rZUWgt6CA7nH3bmDtWnB5eei9axef3by5YK+vz6FhQ8phHzQIaNUKzWNiuJM9eqBDfj6sxo2j59+7N0rj4tBn2zYmrlkD5udH87iigkDyunXAhg1I9/MT7zo7s6aXL5O6LSyMCJU+fajbxNChQFkZ5LGxnHzCBKg0aULrrWtX2oeTksgHKSuDSmIicO2amKepyVwvX4ZqeTkeDhiAhqWl0PP3Bysrg31cHLQjIgg4rllD5PjWraR227uX1k8NuBdF8c3AzJEjQHg4snkeDaZPx8VRo4QYfX1u2LBhaJyTw2HkSEqvWbuWiNDPPiPgX10NqKhAbdEiTK6sREhIiJCYmMgGDhzItLt2RcH06dB/vcDgu0xd/dW2n28ziYSIrdBQ2jM+xHJygGvXcL8mtatRo0aQSCTo378/27LltXR2VVU6RxYsgFFREQxq9jNNTU0BAIeGDXHPzg7NysuRY2MjaquqMq0XL2AikyHr8WMBs2Zx2L8f+PVXCFIpzquosJmrV0NaVUXP192dyIe7d2k/MTQk/0Zbm+bJ2LE0FtOn0/cA+aXdugE3bqDE2Rn3goIw+PZtaKenv0J4yuVy7Nmzp0wmk30XFBR09sMG53/DPuXsf7L/GgsODuZVVVUv+fj4tPL19f2PEFXx8fE4cuQIdGraY5WUlKCyshLnz59HixYtEPB6flZyMh0QI0e+vxr5P8EKCsjhunGD5Nr/ZktJScG+ffswePBg2NnZKfNj5TzPMw8PD7610ll7n8nldAhevfqG7Ppvtf37UfT559j62Wco09SEyHHEdv8VUzo3Li4Ebt7XUm/mTFJdxMb+tc/7CNu0aZNgZGTEDRw48I3fVVRUYMOGDaJEIhF69erFf7DCpqKCDnGlrVxJ39vbEwnw+DE5p6qqCAkJQWJiIqZMmQKdj015mTAB8uxs/Nq5s1Can88peB6O+vrikL59GczNaQybNiUS7qefSMo9diytVScnklMDBL4rKijC/prl5eVh/fr1YIzB2NgYGjduoJOmJvY0aiTKZDLWunVrsX379iwzMxMnT54UAwIC2NmzZ8WMjAw2ZcqUOkCotKtXKSq5cSONS027rreaKNL1rl9PUTV1dYpM1kc2fohVVRGx4eqKF2VlCA0NRUZGBnr06FGX5vCSxcbG4uTJkxhpbg6bsjLsvH0bKTUELM/zmD95MrhRo4Djx3Hz9m2UfvUVWlVVQaNlS6oN0r//myk0W7fS1+7dVJegspLIu7FjyVk/fZpAxVvqSFRXV2Pjxo3gOE6YNm0aec3R0QQe7OyQpKqKpy9eQEtLC02bNkVRZiau/v674om+Pt+xY0exZcuWTEluCIKATZs2yYsKCiSzQkPBKxRQMTUlB1tp27aR0x0ZCblcjl9++QUlJSWY6OMD06ZNwXr2JILm5Emq5fC+bidFRXWKjIwMUnf07ElkB4D169crzMzM0L9//w9qJXJu925khYWh9+LF0K9nPq1ZtUqwuHqV87t6FSGjRgG2tsKQVas4/f37ifQpKqIInxKATJ1K+9SPP9J8Bej/HIdjx44JcXFxXFBQEKUVeXgQcfmS7d+/X3z8+DH77rvvXk3VSkujSPqBAwT6+/enKPTL9uefpHgqKwM2b4ZCocDddu1wzscH+i9eQLC2hl9YGPjSUiT36KGQaWqKnVatkqgmJADduqH6+++RqK4OfXV16HTujCe2tjg2YACsnz5F99BQCEOGwHTECMDLC9XV1di5ZIk4fOVKduObb9B80iQYqqhQjZQ1ayi9xNX1DWC2Zs0aRZs2bXhPT8+6ejBpaTRuW7cSiVdQQCRrdDTJkutRDmVlZSE1NRUvXrzAw4cPRV9fXwYABhcuQCcnB4qmTZG9cyfOdOoEhUQCCAIcRVFw6taNufbtyzB+PAEnZ2c6K06eJDK5eXOA41BeXIzfd+xQ2F2+zLv17w9TKysCUpWVdD1Xr0IYMQJnOA6mXbrAY9s2IlJiY3H0yRPx7t27TENDA7169ULTpk2JzL14EVi5EqcOHhQsjh1jNrNnM50WLQBVVRSXlqLg4UOYOjpCNSIC+PxzyOVyLFmyBAsWLAD/9Cmtq6Qkat1pZ4dL/v6Kuw8fMq+oKMS4uHAmdnZITEwU+epq5tawoVB66xbyFArOLjERFhkZaDJoEJEKokgkR1ER3f+yZRRoefIECAxEQnKyWLVhA3MdNAjYtg1XQ0MFHuKfWwAAIABJREFU1x07OBW5HBWqqki3sUHcsGHCyJ9/5riDB0lBlZ5OrzcxIQVEbCyBzw4diCCtWdeiKCIsLAwxN2/CJTYWGDIEfZX1aT7ESkpIWfIhOf5PnhAZfPnyW/fD1y07OxsRs2ahWlUVdhMn1qakZmRkYMeOHVAoFPDy8hK6d+9eN7F/+QUZy5fjwNChqNDTw5AhQ3D69GlFYUEBr1dYCGl1NZxFUfTduJGVlpZiW3Awupw9C37/ftg7OoItXIg8mQzRZmbCo9xczsrBAbanT+PZ2LFonZoK/cJCIlI6dqSaD5cv05nMGD1HO7u6G1i+HOLDh9jq4yPoFReLg3ieh4EBKYNq7NSpU1V37949V11d3TsoKOgTuH3J+EWLFv2nr+GTfbL3WnBwsIaKispvDRo06BQQEKD6t1Vt/0gzMTFBw4YN0bFjR5iamsLc3Bw6OjqIiopCTk4OtLW1YW5uXveCwYMpatWjx3/kej/a1NUpb7xxY8oN+zfb9u3bFc2bN+datGgBuVyO+Ph4MTc3FwYGBrwoioK5uTmrrq6uv5DLy+buTuz1Sxv/32qHDpGjN3gwSvv2xeOqKpRXVMDb21uwtbX98Ml47x6Bl8BAimS6uxPAfC2iVa/5+VExK4WCoii+vn/9ft5jDRs2ZKdPn0Z0dLTo7OzMVFVV8fz5cxQUFGDv3r2iQqEQZ82axX+U8qJ5c3J+lbI7Hx+KoFdWkrRz4kTA2holmzbhlKUlhnToALOXD/sPsYQEYOBAcIMHw6ttW9bU1RUigCfPnrE2PXtSBEmhIDmslRVqW6EtWkQRm8BAimwAtcWxMGQIzp8/rzhy5AhnbW2Na9euKY4ePcppa2tDIpHA1NRU0fzqVWZlaMiSbG1FBwcHwd/fn+N5Hnp6evDy8mK6urpwc3Nj9+7dEyMjI5mdnR2RGIJAgGrdOopkjBtXJ9uvzyorKcK9YQNJT/X1CRhpahL4t7X96AKNoiiiaO1aSIcPR7itrRASFsZ4nhcVCgVMTExq+4QDBILT0tIQGRmJ0tJSNGrTBmYJCbC9cweOPXsiizGhW7duzKSmhR+iomB28iTu6umJprGxTHPePMqPr68w4cqVdH+tWkEoLUUux+G+rq6YpavLDL7/Hmk+PpAsXIgHpqbIKC1FTk4O7t27h7179+LGjRu4cuUKJBKJ0KNHD87Q0JDGtn9/ctKHDYOBqSkaN24MCwsLSKurofPrr3BeupQzNDTEhQsXhKioKKanp8fCw8Nx9OhR6AgCm3b2LJOuXw/+228pIrl5MwHTsWMpstekCeDiAi4zEw7PnkEtKUk0WrKE3SguFhtv3MjYzJkE+D+ky8miRSRxbd+eiBDltY8YgXg9PdxNT+dG1xSheqdFRgK9eiHU3Byjf/sN2suXvxFpl1dXg589m3W8fh3aGRlo2asXWrZsydSnT6e6IC1bEoBLTq5rvefhQetrzpy6oqA1znaCTCZYentzTZo0IbDSvfsbIERXV5fdvn0bjo6OtTJsAARwHj4klYe5OX1u9+6vXvOVK0RmdesGODiAYwymK1fC57ff4D5yJPiiImTo60MuihB8fbkCS0vutJUVUq9dE8yuXcMmXV3WZ9IkXC4tFR64uLAWS5eiY34+3LKz8dDAQDzcpAmLTE6Gp6cnHjx4gMfZ2aLvt9+yxr17Q2P9etqf582j5+7mRs/9pRSLZ8+e4eGff3K9EhLA+/rSOkxOptxqU1NSXrm5EQD196e1kZRE0fZ79+gMqLnfmnmtePbsGSsqKmIlJSWKJ0+e4GlRkWh3+DDb16KFUG1hIUwJC+NUBg5Eo5MnxY6hoVxhRATLHjFCMFqwgHErVqA2Ir1oEQr37MGdlStxrbpaYengwF2/fp1zHjFCdOzenSEhge7H25uKOFpZIapJE+G6TMb6JidDMmYMzU1zczR1c2N+fn5ITk4Wr1y5wvz8/OjZ9OoFWUgI1LduZUbnzzN9Dw8iMxYsQO7hw+JuMzOWGBYG+zVrcMTcXIyOiQGXns58TEwo4m9rS36HtTWweDFCjh9nDg4OnMemTUywsYFjnz5ISUkReTU11jswkJm3acNa9+sHg7Q0GKWnQ7J0KaXeuLqS3xIXRyrKyEiaj127Ara2CCsrE03c3ZlBq1bYm5wsPOU45jRsGJOmpkJ16lRYfPklWvTsyVjDhkRw/PgjPS9nZyKbqqvpZ2vXkq80fHjtHHj06BHOnj2LLhcvorRNG7HK0JC5KOtLfIhlZ9NZ8LL67m1mYEBjZWDwTrXTy3b16lWx8f79zKNRIzhOnQqA8vW3bdsGZdDX3d2dlZeXY8uWLWjatCmempvjSmYmzNXUYPr0KcIzM1FZWcm1j4hACx8ftPX2hv3KlYx98QWkBQVw27QJ16ZPFy9eucIaN24M3awsaFhYwH7yZKZtaoqC0lKFrFUrlpWVJUYWFKAt1VshX+aHH+hehg6lc9jHh1JElGeaoyOuFRUJyUVFGBcby7PQUNqPa0i3hw8fIiIiolAmk3UKCgqq+PCB/9+wTzL+T/aPtuDgYEcVFZUZKioqw62trSUDBgzQ+Nsq4/9Fez2FQE9PDwsWLMCPP/6I+/fvw8PDgySDy5ZRXur/QYT8b7XgYMoNTkykgjr/RrO1teWio6MRHR0NANDQ0BCHDBnCnz9/XoiJieFu3boFnucxZcoU6L0NBAkCgZ9/g3QfWVkUjYmOJrBqawsjOztM9vbGDz/8AHd39w+bjGvWkLKjd29yEgSBpOQfY2pqBI6vXiWp4tdf1xUb/JutQYMG8PDwQGxsLEtISEBiYqKQlpbGSSQSwdjYuLYI3kdZRET9hdacnQnAKhSAry9u29mhbU6OwrZNGx4ZGeRgGRi8v5hifj4RIseOAV5e4Gruo3PnzoiNiUHuunVo4OdHDkJGBgHrl/Mj9fUJ3MfFUZpBr14oKimBWFiI69ev8zY2NuKOHTuYKIp8x44dcf36daFVq1Zcey0tHtu3AyYmGM/YW8eFMYYvvviCHTp0SDx44ABmFRQwnD9PRNK8eW+P0AgCAavt2ynqvWIFERPu7uToVFbSa+3tyXEODv4ocjE+Ph5XExPh27SpeD8/XwwMDMTFixdFnudZs2bNav+usrISO3bsEJ49e8YBQGBgIOxsbYHx46FlawutsjJMnjyZgygSACgpAW7dAjdhAqwbN2Z7LCwwU5mTWt+c/eknQFUV+QcOQL5uHfb26YNSfX3Wb/9+JDVvjiQjI7GRpaWosXw5i+3RQyg0NIQoimLTpk15AwMDFhkZiQkTJnDampoUTVUqfer7rIcPSaa+ZAlJxZ2c+MjISBw7dkysrq5mTKHA+NhYxgcG1qXGcByNK89TpP7AAVJgxMcD48bBoFEjdNi9m2XMmYNrf/zBUkJDxYkTJ344EWhn90ruNLS0qGaBnx9Kfv1VVHVxYZs3bxZUVFTQu3dvzsLCov5ipra2wNix4JOTUWhkhNCtW0V1dXVWUlIilJSUQCGXcw63b6NVUZEo+/13JnkZeA8fTuB09WoiNQYNIhDo6ko/nzCBop2bN1OOdEUFFEOHojo1lfkGBVGUd/Rocs5fy2dXFkm8dOmSMGTIEFon585RnQJlGlGHDrSPe3pS1FSpgPH2ptSVgwdpjjOGrPPnUZWXB3HsWFRlZAjuM2dyKUFBiE1OhlhYKEzetIkr8fPjDIqKMLBBA8h8fNB7wQIOgkCAYtw4oH17eC5ezFwPHMCyZcvwc03uuUwm454YGsKW4yhibGFByiPGqHCeREI1VbS0gN69kWVpCQ89PUElMZFDSQmRIkoQNmIEEXKTJxP4HjeOQLWdHd3Pzz9T7Zc9e4ApU5CQkKDIysrijY2N4eLigoCAAF4ikdD+mJuLLydM4KCnB+zZg2arVmFX+/asTcOGsGrUCFslEvH06tWYIgg4GxWl8Dp3jo+NiREfN2jAOmRkQBIZyYXcuQOZmRnOnz/PdIuL4fj770QszZ8P3LqFShMThFlZcf1cXKB64gTlTo8fTyRtTVQ+JSWFNW/eXIFbt3g8fw506IAqBweEFhcjkOexc+dORYWnJ9poavL5Dx/iy+3bwd+7h6gRIyDftInpVFWh/Z07uFBYKKZOnix6njjBmgQGMtUJEyAXBJSVlbFOnTpBmpICX4UC+OknTJk3j1u5cqW4evVqplJVhe5XrkBn/HhYK2t+xMfTM5oyhVJhPDxobLW0qHBtkybIbdCA3bx1C3/m5wt6enqYEBPDVPT1qWCmjw+dzS4uRByEhNAaUNafWLaMyJkLF2hM9u9/ZX7n5ORAR0tL9M7JYcnu7mzPrVtITU398HbOurof58OUlRH5dPLkW/8kNTUVOTk5SEpKQlpaGgvYvRvGLi6kCPv8cxQUFLzy96EvKZc2b94MjuPEKhsbZv70Kfr++ScMVqzA+dRUmJeVoYm5OZFyiYm030dFQeroiP5Dh7Kna9fK8/PzJQ2/+IL2SgAuLi5wcXHhAUAul7Nly5Yh4sIF+FlZ0X6Rmkpn2sSJRJDK5aTmsrAABg7E47w8WCxbxo2fNw/cqVO0D9X4Ey9evMCxY8cqZDJZz6CgoBcfPoj/O/YJ7H+yf6QFBwfbq6qqrlFVVe3g5eUlbd68Of/WqtD/AIuOjhYAUGQDINBw7x5FZv5DKoR/yTQ0CDT9m8F+QEAA69SpEzRq+hWjpkbCyJEjuZycHBgZGWHDhg2KzMxMvl6wrzx031fU5mNNEGqjjJg2jQDWS8ZxHMzMzBQnTpxgw4YN49RflqcrraKCQNzPP5PzwBhFbZV5aH/V2rShXO3kZIrA3b37b+mgYG5ujtjYWISFhcHCwgLTp0+HlpbWX2Pavv6aiia+qzoxzwN796LwxAlI9+zhhREjwJmYkANkYkISvzNnKErzOuEnihQtPnKkrj8vAOTkQC0kBAaCILLgYJZnYADDdeve3vHB0REoLoYoirgvkyH72jVEyeXQMjJSDB8+nAdQW5CzXbt2BBzs7Skq8VKU513WPD2dKWJikGVpCfNNm8iZqc/y8siRu3qVlDaWllTIUOO1TqOVlaQgKimhuZaVRcX6Rox4596jUCiwZ88eZN+/j8kXL0InMpI5N2jAh4aGioWFhdzkyZNficAeP35cIZPJ8O23376a97pnT921KR3PZcsI3JSVASYmaNSkCYrU1SF+/z3Y9OmUrvCybd4M3L2LiwMHyi8XFkqadO+O3oaGMO/UCceTkzHM3ByuX37J4O/P4OYGxxs3+NrcZBARERkZibLMTGhraBAxNHLk24kwT08idV6ydu3awdvbmx3cuBFea9bgzODBCo/u3Xnzl/+oYUMCPrt2EYFnZERR36io2jlpaW0NGxsbJCcns/Lycmi8/rxesoqKClRUVEBLSwuVAwdC/fFjZKenIyMjA/n5+Yr8/HwUqqlxVR4ebPru3XgxfDh3tkkTcceOHVBRUYGjo6M8ICCgzo87dozWwuzZwLRpOOnvD4lEAiMjI6Fhw4aclZUVGmzbBvXz58EdPcrQvv2rFzRiRJ2yxMiISLjBgwmUmprWFT5Tdm1RV8dBTU1Fhq4u67Z3L82B336j8di2jdaiiQnA89DR0YGWlpb46NEjThRFMIBImfnzaZ9VmokJgfurVykyDhDpIZXS/RUVAZs3Q1i3DhrV1ci2tRWMtLRYg27dYLRiBfQ8PSExMuKutmqF5u3bQxIRARsNDVIGLFxIkdroaAIYogj07Ak1NTUEBQUhIyMD586dQ1paGs1xDQ1K6xEEWqc5OURMxMaSND8nB+jeHbdycxVtxozhlX3WXzG5nFqRGRrSeiwpIXBkZwdx0CDENG4M/u5dNIyMREVeHjTKyzlTURRLNDXFrKwsrkGDBmjXrh3tjw4OFPU8cADYuBGa4eEYvmEDHs+dC6e5czGbMf5GaCiiL13Cg+RkPvHpU/TdtYu1qKrC3nHjYHf/PvO9dAkPOncWH+vrs+zlyyHt2xc27dtTgOKPP8DHxsL32DFRtmQJKw4Ph46ubp16CEBxzf7Ypk0bHt99V3v2lDCG5nFxiB4yBLn+/nzf5GQxQyoVnnTvDh+eZy/y82E+bBi8srORNnAg9E+fRtqTJ+j7ww/cNT093ABgdvo0NDQ0IJFIRKlUSptXbi6wbRskkydj9uzZLOHRIzT+5RfkZmWJ186eZQaZmdCvribCPzyciJbRo+nMzs6mOi1LlwLr18PA2JjZ3LolqkycyNx9fJhKSgrtBQApq2xsiOiaNIlIA+X+eecO1aqorqZ5uGEDAd0OHYCxY1E2YABiYmLQQktLxL17zIbn0VoqFXbu3MmJoog5c+a8qmapzyQSWlcfal26kDJNSfa+ZBUVFXjw4AFOnz4NdXV1saysjA0YMAAuLi40H5cvB7y80Pil9qC9evWCpaUljh49Kjg7O3Pt2rVDdXU127NnD9IBbJk4EQGPH6N/aCjsrlyp2ydUVWkdt25N4wLAwMAAly5dElvcuMHY99/XdbyovVUJmjVrBsmPP4pIS2PYsIEKdI4dW3e+SSR05gOQtWqFqupqqAYGQreigkizGnWCQqHA/v37yxQKxcKgoKDoDx/A/y37BPY/2T/KgoODOYlEMl9FRWV+mzZtVFu1avX+FlX/AEtLS2Pq6upi69atGZYuJenYjBlvbRn1j7dZswg0HD36bwf89R2CHMfVpkNUV1ezzMxMXLhwQezWrRur7bEuihQledlR/DssKYmAwrffEqh+S1HFMWPG8OvWrRPPnDkj9O/fvw793LtHzl1AAEWucnJe6cX8t5mNDTl95uYENqdNe7cE/CNMFEU8rKl+O2HCBJiZmf1rcpqPaAXXrVs3LL97F97TpkG3qIicid27CXiMG0fzMi6OAJ27O73o++/J0btyhebFqVMk5wwLAy5dgsc337ANPA8kJcHn3DmxS5cu9aPgzp0hc3BA1NKliATEL9LTmdiqFVqPG1e7kF8BuuXlJO/8kLoFGRlAVRXst29HXKtW2GVkJM5t1uzV66iuplSH5csJVK1fT/vIu+Sgeno0vioqRKjk5NBcePjwrfOupKQE169fx9OnT9HHygo6KSkov3oV65OSBMYYGz169BvrMi0tjR86dOibBa5u3CCQf+YMkSWbN0Nx8SLOhocLoqYmGoWEsIYeHkxFRQXnVVTQJDsbxseP42R1tWBvb8+lp6crdC9c4CoLC9mNy5clDg4O6DVnDrSOHoVi3DhkDhpEMuidO0niXVhIgOfQIaCiAkWtW2Pr1q2iqa6uYNq3L4/Ro0kl8DaTywl43b37Rm0ESXk5huflQfb554izseF2/PEH7O3tFf379+d5nicQGxJCc7JHD/peX5/A4Evj0r59eyQnJ2PFihXo2rWr2KJFC/bkyRMUFhYKhYWFnJaWFrKyspCSkgJBEKBQKMAEAV8uX45jM2eKqtbWgp6eHm9paQlPT09YWVlBfexYWDx+jLFPnzJh2jQ8yszEoUOHJL169aorpHj1Kjn//fqhaVoaNCoqRO+tWxlA2Bq7dtE8nDQJbwB9unDKm1aaqSmtrSFDaOy1tCjV4PhxYOxYKAQBCQkJvLe3N7QcHAiM9u9PEVZtbVICPHlC4Do1Ff369WO7du3C2rVrxane3kwlOrr+zhHr1tHeNmcOtQUFiGj59lua5337opwxWC9YAKP8fE5S05KL+/xzOHz5JWBmBsPHjyFOn06vqWlXh8mTX011adeOOg3UBBIsLS2RlZWFgIAANDYwoP1ECSKVr4mNJYLixx8BiQSPe/ZEzuHD9dYuKS4uhuLPP/Fs40Y8z8iAJCcHmt9+C1dRBMvNRZFUitOnT8PU1FQRFRAAURTh9uefbHBCAqf29dfsytKlQnXLlkQqxsTQ3paeTs+wQQNwGhoo09PDo4oK0anmGbc2NkaplRXcpk7F+vXrcbpHDwSMHIlxDRogJiZGIevTh+v2/DlruXIlyj08sK+gAD5378J2+nRkJyZCRyZDuy1b2Plu3eChTNNq0QJFwcHYcfu2orq6mjczMxON1NUZRo0CmjZFZWUldu7cKXR3cIC7iQnXdfZswMWF2W7ezBpraSF5+XJBdfVqzqCoCDhyBLbt2wMyGbqsXcvE4GA0NjWFRm6umJOTo4iNjZVoamqKtXPWzIyI7YwMSL/9Fi6XLgEWFmjs4sJOeHoqIoyNuR7u7izqyBGoNW+ORufPQwHAfMcOAuuJiQQM169HxcaNsMnJYdrjxon56uo4OW6c4G9uzjUESO2xZg0RlS+DToD2ZCsrUmOMHo1aUmfoUJSamGDf/PmwsLSUd/nhBwmaNQPatEHHjh05PT09RERE4PLly+jxPrWVKFJ0+0NNU5P294MHUT10KIqLi/HixQtERkYKOTk5HMdxYqtWrZitrS0LCQkRXFxcaIOSSOh+KiuhdeoUvLy8wHEc3NzcwHEcJk2aVLuR3blzB+np6QCA1h07Il8uh/0ff0D09CSFg5UVjbGREZ3FRUWAujpGjhwpWbx4MYoHDYJuPfddOWECdB8/huG6dQxSKREsn39O7/eayeVy7OzTRzRTU0MPZ2eGoUOJeJs/HwBw6dIleXFx8S2FQrH2wwfvf88+gf1P9o+x4OBgE1VV1X36+vpeQ4cOVdf9K+2j/kOWm5vLKioqIFy/Du7AAXJy6ov2/reYMgIxbRpFz/5DqgpBEFBRUcHdvHkTgiCw4uJi+kV6Osn0Hj8mJ+7vsPx8yhueNo2K33Tr9s7quFKpFEOGDGG///47CwgIAH/6NLHthw+TQzhwIEW6/p3WpQs590ePkuPati0d5v+CVVRU4NixY0hKSoK5uTmUlc3/sj19SqD1Pek3crm89l9RFKGurk5RFGWrw2+/rcup//57cv63b6eft2tH83TtWlp7s2fTz2u+fAD4dOqEtWvXiteuXWNt2rSpN+Kal5eH+Fmz0PzSJTSMjWXa/fvD38rqzWg6QKC6WTPK7XyfnTlDzsmaNWB378Lm9m08OHmSPXnyBLa2tkQwXblCYM3KiqKPGzZ8eIpGUBCBprlzCaDt2EFzr29fep8a4iw7Oxt5eXk4cuQIACJWXHkeyM1FZm4uyu/e5QIDA9GgnnodPM+LxcXFb5IkjRvTnKtp/Vjl5AR5gwZImjkTFl26cFpff42jPA+ZgQHiEhOFRFNTzvOHH5DYtSuXmZkpN+J5zs7fn5U1a4YZ9vZ16TojR6K0eXN4z5xJOcXK9AUTE4oYl5YCe/fi4bFjgk9ZGfMePZrHoUMkOX+XcRxFnV8vWvfiBbWu7NcPKgMHYgBjrLi4GL/88gv/+NIlWP3xBzRbtADXrh0VzpPJ6OvQIcpp3rGjNtWk4Uut5y5fviyGhYUpx43T0dERpFIp09DQYH5+fmjdujUKCgpgaGgIoWdPTG/enEFV9U2WWEeH5vzEieDOnoVTSAhUVVXF/Px81qBBAwIKL+XnP9fQAGdmxtwqK3H79m0ULF2K1leuoLJnT5xq3Fho8+AB5/S6bHjHDgIQmZl1P/PzI2XOxIkUzdbRIfLNxAR8z55wdXWtbUOppqZGEVCFglQmJ08SME1IAMaNg82cOZhga4trR48yfuXKd++PbdvSM3/xgtJ4+vYlkkJVFXBxQSM7O9zp2VPUl0pZEwcHeg5DhgDdu0O0skJ2YSHYli1Qb9YManPn0n5+9CilH6Sl0ZzV0alTRZWVAbduIeDkScFy716utiZDYSGNSb9+VFzv1CmS8teo+M6cOaPw9fXlVFRUXlkbjx8/xtlNmzB+yxaEzZ0rqJmYMIVCIT5//pzDkSPgJBJcGD1aVFdXFz///PO65z1lCv0bF4fG0dHshb4+kca//UZfLVrQ89m3D6lt2mDvZ59h5q1bDKtXEzkSHQ0tY2NoGRlh4sSJ2LJlC4oiImC/bx/6REXxACDbvRsix8Haxwf+9vYIj46G3W+/IaKqSvQ/cYKd6doVL5o1ozHR1AS0tKB28CBKp0zhBVVVyOVydnLUKNgmJODw4MHgeR62trai69df80zZIeTgQdydP198IpEww/x8zvTnn6Hj5ET7hYYGgdvvvgPbtQvOZWVwHjeO4fJlyVNBQOmDBwxXr1INnkWLgOJiWq+XLtHaO34c4HkMvnOHf5SdjRs6Onjy9KmoePZMwbKz+dNHjrC59vZQKyigNJwdO4BRo1DctStCWrYULA0M4PHgARuwdi23LzMTzu3awejGDRjExIgyT088jomBgYEBc3Z2pjltZkZE89ixVCi3xlL8/XHo0CH0jIiAtbq6BAcO1BYI5nkenp6eUFNTQ3h4uKJHjx7vjvxoaJDy5GOM44D163GY44TEJ084VVVVsWHDhtyYMWNgYWHBACAtLQ2VlZXcyZMn0atXr7rXhoWBmz0b3VNT36oA8/LygqOjI2JjY3G5Jsp+Z/Ro2N+5A19/f2jt30/r6Mcf6Qzr0oW6T6ioQCKRiA/T0ljrP/+kZ8hxRGB7eKDaxQWZcjkenTuncExP59mAAXUKi9csNDRUUaqlhW6BgTy2bSNCoaa7UHJyMm7cuFEik8mGfCrI9277BPY/2X/cgoODmYqKSpBEIvna3d2d79Spk/RtLZ/+qaapqQmzq1dx4PFjNF6+HC319P77F5ejI0XtCgr+Y2Cf4ziMGzcO+vr6iIyMFMPCwpidnR10LSzIEfyYAnFvM1Ekh3TvXopCaWmRpO8dlp2djQMHDijKSkp482fPKLI2eTLJkf+vi56qqdEBC9AzGzv24+sB1Jgoili+fDk4joO/vz+8vb3/9etr354qi3/33Vv/RBAErFq1SpTL5UwqlYrGxsaiVCp9lR344w/6NzqaCICTJ8nxXraMAHJkJCkxAgMJXNRjvXv3Zrt27UJubu4buZQhISHyhw8fSix79hTb7drFDNTUiEy4epWqWb9ujFEE+V3tNMPCKId+506SQteoUqQuL6VzAAAgAElEQVRSKVSqqvDnqlWYmpFBUtWlS4m0+NDuBi+bpeWrUk5NTXKefH1p3FesQHZlJbZs2QKe56GtrS1OmjSJaVRW0tgtXAj7b75Bu3btcPr0aXHatGns9VQHOzs74c6dO5yLi0vdL6qqaL6PG0dOeIcOCDlyRDD18OA+nzePkw4bhufa2qLHuXMsZdAgzJkzhztz5gwqi4rQr7BQbPrjjxIsXEgR8tcrsANQWFoi19gY1T/8AOmVK/SMO3WicZfLAVtbWJiYMKPERIZp094P9AFy/F9rp4jCQqoI7uBAJF3NveuoqMAvM1OhMW4cH966NWS6usLgXr04xhhEqRTlvr5ItbERNAHWKCWFMUNDwNISCoUCANC6dWt07dqVk8vlSEpKgq6ubr0qGWWKGpebS8TY7Nn1X7tUSnPy2TPA3x/OjRsLqampfIMGDSilZ82a2gJfbcrLxROGhmzZsmVo/uAB2lpboyA/XzzYsCFTKSrirl27Jjo5Ob36kKdMqQObL1uXLpTXrMzlX76crkUQ0LZtW8THx+P69evo0KEDgZ2a+wfHEUGhbIkqk8F4yhR0jIhA9ooVsNi9m1RU9dXjsLCgz5w8mda0jQ0RskZGQGAg1HJy0EJNjYWvWoUmABE1Eglw8ybYrFlw3LIF4VZWSIqJQa+0NJJda2qSQqiykvaPBQsIID94QPUBLl6EtbY2F9Gli9Bz9mwOTZrUAaGqKqq5Mm8eEcyjRytbn4lGRkZMEATk5OQgLy8Pt2/fFlJTUzl9S0tRIzmZzTAxUT5zBgDlY8Yg/+lTtGKM6Roa1o+0mjdHlZ6e2CAigsHFhQoCWlhQhN/dHRg9GveLi9FYTU2hERjI1xb4BEhdAUCZXmbVsycpokQRuH0bhQcP4s8+fTDJxQWemzfDc+ZMIDERc7W1WZG1NU40a4b2ERHI790b8r17YWhkhPKLF8EOHYKrq6toYGAgehobc3kBARBTU9GoUSMMHjyYZ4wR2Xr3LoRx41CVnc38k5MhiY+HmjKtJzyc9riEBIjnz+Nx+/bCi/JyNDIw4CyGD0fKo0dCkaMj17RbN7rfiopacglPntDc4nng8WOYtW0Ls5QUoHt3tAcYwsMlivv3cYYxqKqqEkiPiiJStnNnTDczA5ydOdXbt2mcSkvRfcECaMydC628PNwMDGSZLVtCkpSEB9XVij///JNvYmmp6DNvHp8+aRLsKipQpauLguxs3LlzR3H79m2+bdu2uGtlBZ1Fi0TNCxcYli2jvaRm3jg4OODEiRP8s2fP3k2ccxylghUVvZUYVxbSq+2i1rIl7o0ahez4eO6Lr7+GYT1zycTEBO7u7kJsbCwniiJ69+5NvwgIoLS6pCQild9SW0BHRwcdOnRQng3QXbUKke3aocTaWhxSXMwwciSdw23bksqspu6Ik5MTCwsPR8tNmyCZNYt+N3w4sHYtdGbOxMCqKtzr1o2/Zm4u3n/6FNnBwaxHjx6ip6dn7T3cuXNHfHz/PjdTRYVxbdvWFc2dOhWV1O6wXC6XDw0KCsqu9+I/Wa391+ORT/bfb1KpdIWOjs7kwMBA9bcWYfuH2/A+fcAvWoToKVPEsGvXWNi1awAAd3f3us31v9HMzUlC/PXXBNj+A6arq4vjx4+LmZmZoiAITKNdO3I4/67rCQig/OirVz+4vsKFEydQ8ewZP0Aigf3BgxQ9/Zh8u3+X7d1LBMipU0Ra1CfVfYeVl5cDAGbMmPHxLe/eZg8evHVcCwoKcOrUKSErK4tpamrC2dlZcfnyZb68vJytW7dOcHFx4Tq8rtzw8qJCSQoFSS/lcpJ5CgJF9rS1KXqnlFu/ZDY2NpBKpWJcXBwzMjICx3FQVVXF3r17FWlpaZKZM2dCS0uL4cgRAgJr19afihMWRuC9PhIAoOu5c4cUKFOmkHOrHIObN+H64AHs09MR9fQpFN99B97P719L+Zk8mZz5l40xYPZsRBw+rHBv1oy/4eMD+4AAcejQoYzjOLoYmYxysn18AABt27ZFVFQUEhIS4PBSPicAtGrViv/999+RmZkJC2WdgYoKIjB+/x3Q0kJhdTUSnz/nuPHjKec2OBjGhYVMOzwc3/74I/Dll+jeoQMB03XrGOLjqWq3UrHzmqmrqyPHz09c6+CAL8ePZyzp/7H33mFRndv3+HrPmRl6r4LSmyggiNhAY48SY2+xl6DGHqOJJtFYYmJLjC3GxNiIXVTEXhAVQVSaoiCIhQ7S28DMnPP9Y1MV1Hvv55b8fq7n4VHgzDDnPW/Ze+21906hsXdwAIqKoNLXR4GaGjgXF1hevdpsdKgRtm0j57LWuC0qqi+YVttGUxCo4NfixfB1dOSFhw9hLAjYtm0bW7lyJYyNjQVDQ0OuqnVrGJuYcPe0tTHo2DHR4+JFxvbtw+Mag7dDzeeRSCRwaSqf+1VkZpIz9yYwRuqNuXPR8ddf+ZDTp8UO3t6MPXnSSBLfKjOTTfz+e6QfPw6bZ8+g/vw5DG/dYp+VlmLTpk1oWHyxDqJIayc4uLFCSCajOVYb2fb3B3r3Bj75BIU1kczq6mq6tm9fWpOvgucBnodEFPGiVSuo6enB8uRJIpJzcuizT5zYeK9gjBy1X34hxZSeHl377BkweTKeqKkJ1idPcjh5kvKXo6KI+IyJASstRcy2behSVkZ/Q6UiR9TNjZz90FBycnr0oFSwUaOAvXtxNiQESqVSxCvzH3FxdG15OakI5s+H4OaGkpISydGjR8HzPCQSiaihoaHS1tbmRmprw3zVKlY5cyZe1fhpWltD89gxtAoPpyj4q89gwgRg2TIk9+8vyjQ0YNamDa2zDh3orLp2DUhNhe+DB9jfoQOfn5gIo9oaFm3b1pFZCQkJMDExEcwcHTn8+COd4/b20B03Di/j43H2xQthwNy5HG7eJPVAnz7Q27cPy3V0EBsWhkerVuH65s1QaWhg4IkTGObsLDqsWMH4Bw+YcPMm9tjbw8jISDVw4ECeY4wc1fx8QKUCl5SEqs8/x7ljxyBcuSKMOnWKAwDx66/x+KuvxIeFhUJpXBxvfP8+S2/XjoXfuAEHBwdVRnU15+DqSufYkiWkoFiwgJ7btm14fu8ehC++gDhjBlrcvo3QO3eQkZEhmpiYMN8LFxArkYiiKNaTle7u1AHExASnBg9Gv9JSqL14QQSUtjZshw8ntUS7dvhg8mRaf1pawNWrfH5+PsLOnOGem5sLqoMHuZULFoBbvx4ymUzU0tJCQEAAjI2NUZKVhXyFguX5+cFEKiVi6N49oGtXyGQyODo6qq5du8aNGjWqWQMj7MYNlRfA//zddxD/gbOgQ2QkPi4rQ3M1rdTV1eHv78/du3cP0dHRje1RxkgtY21Naqc3QCKR4KNOnaB8+BBRAwYg08hIhFzOwPNk+7i6kvrG1RXYsAFdunRBTEwMLq9di35t2iDlwAHE//KLqkqhEKt27+Zcr17litTVEe3kxKprcvpr1QgAkPv8OSQTJ7LZ2tpQ37GD9uv584GYGIiiiJCQELlSqTy2bNmyi+88WP8/xntn/z3+q/j+++/namlpzZw8ebLmmwoZ/U8jNhaaZ88CiYnw09ZmXVQqJCUlITc3F7du3YKPj8+/LoX+b4HjKKKqq1vPqP8HkZKSgsOHD0MQBNauXTvWp08fSFu0eHOht3dBVRU5GTY2JNFsGMF5A4SKCkTGxuLDb77BYxcXOIaGgv9fal9am8O+aRMZxX5+dF/vSGLIZDJoampi06ZN0NTUFObPn//2Vl9vwrBhlBIxfHijHyuVSmzdulVVVlbGOzo6it27d+c8PT0hk8l4Nzc3pKamorq6mrtx4wY0NTXRsWFdhqoqIjW2biV5vJoapXR4eNB93rwJPH1KDtsXX1BEsEG0smvXriw0NBSxsbHgOA4ymQzV1dV8QEBAfZ56795EKPTpQ2vg1bmfktK02kWhIHn5hx/SvdfmjhcUUFTq888pMvnFF1Dv0wdJISHC7Xv32BArK2Zvb/96Pvy7oqSkzgFuSHBkZGQgLCGBzx47Fj0lEpjWFr2qRa00tYYUkslkYIwhKCgIAQEBjQxIc3NzeHh4qIKCgjB16lRec8IEkjbv3Ut90KuqoO/hgU9lMhw4cABXr15FzxqnQ/3FC5oH2toU+bW0pOjj6tX1Fa6bgIaGBoYPH862b9+Oex4e8C4uBiQSVN+6hVtpaYLU0pI99PcXph06xOPkSVIhrV795lSWe/caj9vVq+RY1Mpzo6PJASsooAi2hwc4ANoAvvzyS1ZQUID79+9zt27dEqttbZlTfLw4Y948tiM0lCU4O8MiJESF9HSeMzTEP9SaEiCp/Pjxr9UAaBIDB+KWUqnqNW8ejw0baBxroVAAa9dC+/FjuOjokKP0xRfgOK5OdRAREcF69uyJRuub4yh9q6TkddWUmRlFtlevBlxcoFq6FFkhITiUlobu3bujW20r0IAASt2pkf2+iuqOHXFdVxdDfXxojQC0X128SO3pfvmFnNJacuSzz2i/nz6dugNs3EjpORYWUN+wgeOnT4eYlQWWlITK779HXs+esPL3R3Z6OmwePACTy1GQnQ3DP/8kJ7+sjOZtTX4xfvkFDQvrPXv2TPjoo49eP+h8fMjRB6geyL59KPD0RFdra5FfuJC5e3jA0NCQodauTkrCsdu34VdaCo2mbJshQ0jR0xDXr5PDXl4ObN8ONQMD2J89S0Uwf/uNVCllZURYrV0LvQcP0LqqCmnr10OZkiKa+fkx/PEH7f1du8Ln2jVYP3/OFWpqwuDnnyltQhShdvAg/O7eRed16zhUVVFOe0YGqg4eROC9ezD28xM5iUSM6dqVm/Xbb5Bu2YKqmTNholCQc7d/P7hWrSCVSjFo0CBej+dpfTNGJOivv0JYuhQG33wjtgkNZSe7d2elhYXYvWEDPvntN5z/9FO4GxryXrm5MHd1ZZJz5xC5cSOysrP58txcqLKzUfnZZyibMQMa48dDOzCQ0qDu3EH44cOq0du380dKSsTHLVsymUyG1q1bIy8vT3iQmsolOjkxANi4caOooaGBvLw8Nik2FlpyOR4FBOB5WRkm+voiYdQolPr5ofP69WD29jCcOBHc+fOkGlu6FPjsMxj9+COGPn7M0KcPKxo1Css6doRKLodEImEA6uaI7qNHOLJggfAyKor7YvFiSG7fprXy9Cmgp4f27dvzx48fF1Cj7Dh79ixKS0upDahMhrt374pFRUV822++wdI5c4hcQ+P6MM2dDT8tXYpOd+4QSdTEOa9QKLBr1y4BANeyZUtVw88NgNYdz9N9N0UANgBnagpZXh76xMbi8e+/izhwgEiwR4/ozAsMhGrpUkQnJeFmZKToHRPDHP76Cw/MzXHi2jXY2Nnxurq64E+fBnJyEN++PQaPHAmVSoXjx4/j4cOHokV+PlOtWoU7WlqihZ8ftJctYzAwoNSbDRsAdXXcvXNHSE5Ozqqurm5ChvQeTeG9s/8e/zWsWLHCT01N7ceJEydq/G0dfYAMeH//ul7KPM/XtnNCcXGxuGPHDvZaBeu/Ezp0oE02NpbkdP9BREVFwcLCQkxLS2NGW7cKL5Ys4e59/bVSeeYM09DQgJmZGefj48PUmurb3RyCg+meSkvpQK4t+PcmCAJFaR0dcXXxYuiHhKCTj0/zVd3/29i0if79/nuKcN+7904Ov1Qqxbx581BUVISdO3dye/fuFaZOnfrPT9zWrVFtZYX79+4hLi5OdHBwYN26dUN8fDxEUeQWL14MmUzWyPgwNjaGsbExKioqcP369cZEWVgYFVyKjCSppEWDWukPHpCTExlJ0f2cHHL8y8pw5cABsf3ixUz/+XN069YNhYWFKCgoUPXq1YuvqqqCtbU1GhUC1dWlufHDDyT73b+foj8AGeTdu79eNO/JE5Kif/wxrRUNDWoXlpZGUTM7O2pN1qCn9uTJk7kzZ86ojhw5wmtrawvdu3fn3N3d//G9Qk+Popo1jltpaSkuXryoSkxM5Dt37oy+ffvWt2o6c4ak4HI5RcnLyiiaWwNra2v2+PFj/P777+JXtX2Qa9C3b19+/fr1WL9uHT6pqoKjtzfy8/NhZGBA6Qrt2sFizRp4enoiLi5O7NmzJ71+0CCK/mRlUUS1sJCKWB45Qrmqs2ZRtFoU6fm1bk1qiIoKmKSkYEhBgVisqckwcSJgawteTQ0pY8dyLkuXYmqXLjybPp0ImLFjyVH9+efXVB0AyMGysiIHr7SUnEZtbVonaWkoXLkSMbm5Qqm+PlLathXFS5eYcOECY4yJoijC0NBQGDlypCQiIkJUV1eHUqmE1dOnMIuIwOTJk5Geno6CCxc47wMHkDJsWF3nhn8IdnZEZr2lFokgCHiUmMh5h4SAbd5M0eYuXSgVISGBao/Y25MRHxtLhQRBlbINDQ0FGxubpom8Gzfq/ptb44yqqalBEARkSCQQevSA3pw5ONGxI1pnZIiTVCpm/cEH9a/fubNxC8FaKBSAnx8kgYEoyslBQkICWtUW5KolWrKzaR4UFFB0W1+f9jJzczL2DQwoCpmTA6Snw27YMFRYWuLChx+Cd3BA3smTsH7+HNmrV4ued++yjyUS3O3cGY+rq6E+ahTaLVpU50hhwQKaky4uRIqeO4eMjAwoFAruVVULAJqv69fXqXmepafj1KBBGJyTw6yLiurGFwDllD97BrXx48WdO3eyESNGvK7ssLOj/aI24v7oEaki/PzImf/iC/A+Prg9ezZaDRxIZMOCBfQaIyN63t9+i14ADvE8okpKxIBPP2UwMqJ57ugI6YIFiD5xQnxZXi5OvnyZY998Q3toixaI7d8fDwYORJ/kZDgtXQosXIjsyZPRc+FCcMePs0PjxjFzKytRvmgRMyovJxLqjz9o3+jbF+jcGapffgEfGEhEa8+ewJgxuL17t5LLy+Mrvv4are7eZTGLFqEwPZ1xLVuim7Mz/vrqK+GzefM46cOHRLRt3Ajk5qLrwoVQ+fri0YkTYGZm2D13rrJCqeTKt27lbIuLRcN+/QTLBQvYC21tvuzoUYz28WGipSXAGBhjDEolQ3w8Pli9GkWCgKioKNy/cIH5V1RAPH0aWQ8fYkpgIG6NGYMntrZoefOmiM2bxeDx48WM7Gx+7NOnVD/F3JxImG3bSHZ+5gywahX0PT2BceMgeXU9v3wJDB+OcbGx3Nrdu/HkyRM4d+1KKp3SUsDNDbZBQVAqldyKFSsgk8lEmUzGzM3NhdDQUM7Q0FBlZGTEZsyYwbjevakuyTvYw0qlEqGhoShVU0PhgAEwPHKE1ClNXJeTk8NNnjwZVlZWr5NYPE9KnC5daG9+kzqqY0dg0iQ4TZyI4keP+IqJE6GprU1BBnd3IC4OgU+fqvQzM7mAmBimKZejcto0xGto4Kvp0yGTyVB64wbuvHwJ73Xr0MbFpY5gb/v4MfD77wzz5uGBjo7w3NVV7L9gAQ+Oo/PB3h74/HM8ffoUly5dKlMoFP2WL19e/taBeg8A75399/gvYeXKlcOkUunuYcOGaRg0PCT/Tnj5kqqgHznSbN5up06dWGxsLJ4/fw5bW9v/8Af8P8SQISRNboY9/nfByckJZ86cYVKpFF1WruRSw8Kgo6MjkclkKC8vR0xMjHDnzh3Mnj2bvbVrg1wOREQQax8YSA7Pu2D8eDq4r1zBpS1b0EpDQ+XasePfo6jEnDl0CBcXU4vCGTPe+hKZTAZTU1O0adNGfP78Oc6ePSvq6uoyxhiioqKE1q1b48MPP3y7BxMejuu+vgg9dw6amppwcXHBzZs3ERcXp6qoqODd3Nzq2ys1QG5uLi5fvqzKzc3l9PX1BRsbGx7PnlHuZe09TJvW9N+USgE/PyTs2oWHd+6gS4cOsGzdGiVHjzJWXEwO4fz58La3xx8mJvydO3dUQ4cO5ZskbSoqyLjduJFyPwGa/59+SvLSWmc/O5uM9YULabw7d6aK5V9+SXL1SZNI3thEipJUKsXgwYP5fv36ISoqCpcvX8b58+ehrq4uAGAcx6Fnz56sTZs2byeWHj4kh2TECJw5c0b1/PlzvqZQE/1eS4vmfUwM5XVPmEAO1Cvrpri4WADAVVVVsaysLLSovXfQ3Pi8ogKJZ88ieNw4iKdPCxUVFZxNfr7wye3bnKSmPZeFhQULDw+vf1MtLdo39uyhsbp8meoYqKtTNHf+fPq9IFBOvlRKn0suR66BAe6HhrKWhoZUm0BNDZy+PuTt2ommhw4xDqB8URcXIhXOnKH3W7v29VzwRYvIuC0tJbKoRQu6dvt24Pp1ZDk4ILl1a9Zn8GDmTk5ErbPOJBIJgoODsX37drRo0UKYOHEi7QFffcVQVgYrfX0qzNelC0sfPBj6mzbhYd++QtsLF7h/SBG1fXtd8bc34dGjR7BKT4dlcHD9PB08mBz7iAga206d6Dm/csZWV1ezZtMK2rdHdf/+OOvtrYqLi+MB1BJholKpZOrq6uikry+MjI7mLL75hnJ2GypfIiPprPj008bvW9OuT2Jnh5YtW+Lu3bv48MMPG19jbl7fQaKqilIpLl2igpzffUckwG+/0Xlrbw/cvAlNd3f43r8PzbNnIe/RA+qGhihwc2OxEybAdfRodNHVxZ49e5Ceno6qmBjUKIjob7RsSWP3+DFw8CBCi4pEe3t7geO41x9YZWVdJD4/Px8HDx6EVF9fPCAIbMnBgzTuK1bQtRERgFKJgfPmsYqKCsTFxalcXFzq37Oigsbs6FEqyvb110QE7thBc9/BAQgORtHp0xBLSoD79yH8+Se42raiXboQoRAUBAwdCiMjI5SWlopgjMjGc+fqVF4DJk5k69atY8/Ly2FTUgIcP46S2Fi4nTyJGx98gOO7d6MnY+gQFATrdu0gDB6MkNWrxa4REfBNTGRYvryeEMzKos994wbg4QEPpVIl27ePx6FDwIABUKlUiEtIkHRJT0fa1KmCr48Ps/viC3gVFUF1/jxMnZzQY98+TnLjBrVRPHuWSMjcXCA7G8KGDYjv1k38ZNcu1qbGP6k6eBAlN26w+L59efvRo2E5ciS0Bw8GOnQAmz27vk5Bbi7ZZLq60AfQt29fZrhzp2CXksIZbt9ORGh+PkaNGEEKlqIihg0bmOPYsVgJ4OWpU7AfOZLm7qxZROhevIi6MeU4IoCVysZ7ppEREBsLdSsrGBkZqQoLC+k5q6vTdR99BM7YGFMdHJDn5AQzS0umr6+PuLg4lpmZKcyaNat+XnTu/Np+3BTS09Nx4MABiKIoenl5MXuJhEijJpz9mqCIkJ6ezjUsHNoINWMDNTU6E14tXlqLBQsAb29oHjgAiYeHcNrEhBsF0Npfvx7CgwcY8eOPvJqFBfiaOaypUqGTXE73lZcHnZAQlFlYCNGiyDqoqzPs2UOE6+3bQN++iNfQwFkHBzbr0085juNo3T1+DHz9NUpLS3H48OFKpVI5dPny5clvHaj3qMN7Z/89/qNYsWKFtkwm26Ojo9N/2LBhms1uPn8H7NhBh8sbiteZmprC2tpaDAwMZO3atfv75u/b25MhM2ECOcn/YsX3d4W3tzdaVlTA5NNPgc8/h13HjrBrfAm3ceNGVUJCAu/m5oZmJee1VdsTEqjo09s6JahU5AhcvUqGWI2jFpWXhwEDBvx9JBq1EeqoKDIGxo+nqME7EDZ9+/Zl27dvZ3fu3Gn4Yy4pKUl4zUhvAiWDBkHu54ehK1eibdu2YIwxPz8/xMfHc/fv3xfbtGnT5DgeP35cUFNT49u3b4+OPj48duwgo2v6dIqyv9JTuCmcPHkSBgYG+MPYGK4mJnjs6gomCHh24IAwJTKSk6akwMrXF/1//JEXSkrASySvj4mDAxl+x46RUT1zJjn2EREkca6qoihZVhY5H0lJZMTPmUNEQHAwydXfARoaGujevTvn5+eHHTt2iDzPc76+vnj8+DFOnz4tnjt3jgUEBOCNHUpqpZwjRqC6upqTy+WvR5VlMooQdutGBqy9/WsV0cvKymBnZyfq6+sL+/btYw4ODpx/TS9yAFB3cgLHmEpbW5vz9vbm3N3dcejgQfYbY2gBqHJ+/ZXPy8uDRCJBUVFRfXX9GTPobz94QGqTuDhytqZOpZ/Vtvh8xdG9nJoqKnR0WLddu4hAmTQJrH17eLVpIyp27GBnMjPBJyeLH8bEMGzeTGSenR09u8BAKrwGUOS0ooIcpblzyQGeMoWM+l69gJ07kRsdDWlqqmBnZ9ekdz59+nTu8OHDyM3NrZ8sUind148/1snSW3p6IsPGBu3CwzkhJgZcmzbv3p3Fw4Pqh4wc2eSvo6OjkZSUhJSUFLhlZLDStDToAkQ2TZ1K5FJYGBEsPj6UivIKqqqqWFJSEkpKSqCpqQlDQ0OYmZmRWmDGDPHKkydMLScH8+bNQ4M6OvX3XF3NYe9ecuzPnCHHrVaSHxdHSqKGzn5kJK2bY8cAAL169cKRI0fePA49etCXSkUGv50dkXxFRfSVmUnrzNER2k5OwMSJ0HR2BhiDMYCG9PvUqVMRFBQknj9/nl26dAljx46tJ99HjwZiYlD9wQfooafHdB48eO3ZV1RUQGlvjytTpkB+8KCQmprKWVpaCrq6utz98nIotmyB9OpVUpT4+xOhZWgICAK0SkshLyxkWLWKiNfgYFL8nDlDkVSA0gL8/GgfaRA4kEgkzGvnTqQWFoqBw4ezXgoFunbtSnv4lCnkIGVlIT4+XujSpQstdi0tUh8sXQowhuPHj6uUSiVf8PIlbJ4+BZyd8SItDa0TE+G3cyeefP21WJ2YyLJ378bZYcPE/Jp6CjEdOzIPa2volJcTIaFQ0HtqaBCJ6e8P24AAfn9AgDDUyIjTKyqCXC6Hrbe3qIqMZAozM/bM2xv2ffvCwMgI2LEDWbq6SPvhB5W7jw+P4GAiHWUyqpUxcSKSXF3Ra/Bg6rtek3qllq3e+GMAACAASURBVJgIk4QE9Jo8GQe2bYORgYHA8TyHzZvJQa0NQJw9W6/0SkwEfvwREV27QvrNNzBkjPaVGzco5Sg8nFK89PSAXbvga2cH1/Pn6d5MTUkZFhBAZNOECUSsuLsTWdi+PSpMTcFxHNQFgZQ0sbEAgPz8fN7c3Lx+4nAcqcNUKpgtWQKz+fOBOXPw/PlzXLx4kQ0bNqzxoZOYSORHE+2Ia5GcnIwDBw7AzMwMM2bMoNerVDTfcnPp878COzs7REVF1c+RpqCmRoGrGTNoXF89D1NSSBXVsiUUq1cj0d+fs2+gulOuWIFL1dVC1ZgxbPDo0QwPHtB8ycig10ZEkELOygr2I0Zw6StXomThQugGBtL8Wr8e+fn5CPntN3z88cdMV1eX7OuJE4ETJyBqaeHE/v0VgiBsXrZs2ZVm7+M9msR7Z/89/mNYsWKFRCaThdjb23ccMmSIuvRd20r9r0EUqSLvxIkkAX+D48QYw9ixY1l4eDjCwsKQmJgoTpgwgf0tc/iNjIhhjYl5t0JY/0cwd3Mjw7cZJ69Tp078hQsXxDNnzrCWLVuqfH19eQcHB/rlyZMU8ezThw7st7Vz3LWLHITQUDLcnJwaMe0SiQS2trb/o9r9N8DHh/IHc3LIaL5x463RQy0tLSxatAgA5f0plUoEBwerlEplI4NBqVTi7t274DgO3t7euH//PuLi4oSMBQu4efPnQ7Mm2gsA+vr66NatG6vL720CRUVFnLm5ucpPEHj06EGGwE8/NVstuCmIoojx48fj6dOnOHHiBNp37qzq/tVX/Pbt27lfZs2Ct4WFyiY7m0m1tTk+LIwcJD8/kk8rlfUt71JTySD19iZnpl07cqq1tSmK8vIlkRDh4TRPhg2jn/+TbTc5joOjo6N469Yt5uzsjDZt2kAQBLZ582ZVeHg43ti+acMGCIKAkOBgVXp6Om9vb98oKl8Hxsgp/P13cnJfgbq6OpeamoqFCxfyDg4OiIyMFDZv3owpDg6c8apVYHfvwoPneQ8QMbBnzx4hLy+Pm3XlCtQKCviwP/8Uhw0bxqKiooS9e/eKc+bM4Tm5nJ6jUklR9SdPUKKjgwIfHzGzc2f4bN/OJLXOfkPcuAHvbduQtHAh2Lx5lDc+ahRgZIQu7u6c/N498M+e4fZPPzGkpNBrVqyg6PC5c1ShfdUqmuvBwfVOqY0NkTUrVlA+dM1+UVfluhkwxuDg4IDMzMzGF/78M62rBhg2bRr+ZAzDg4PRZskSMnQbOgLN4f59IjWacfZv3Lih0tbW5vvb26PIy4vmbS1ycmh8CwrIaejdu8n3UCgUyMjIEF68eIGqqipWUlLCZDKZqFQqmX5hIRvo4QHbWuVCU5DJSEWxbh3tlTt3korA0rLpTgK//95I2WJhYQG5XP5uaQ48T3UCPviA5lBAAP3c0rJOOozVq+vy0dG6dZNvM3ToUNalSxcEBgZi3759GDRoENrVpuZ4euLYyJGib7t2THfFCiJIa1ITSktLsW3bNtjdu4feV67g4vbt3KxZs6Cvr8+tW7dObN26tSg1M+PQvz8RLsuWAW3akAx82DD4VVYiee1aDomJ5Mj/8AOdQzIZzdFLl0gC/+235Gw9eUL3zBgMUlK4G+3aIVNLi/Xr1w+XLl2CnZ0dpTZ5eIALDUXud9+hysqKa1urNHJ1Bc6dQ8nz59gTHFwXaS5ITqbPJZHg1L17cP/1Vww8eBAuZmbs2cyZKJ0xA3KAVVVVwdDQUCguLmbntLUx0seHiJusLCLJSkqIPO7VC9qmpijZs4fbs2dP3ThrlZSwbmpqSExMZElJSVhmZ0fqiZs3Efnllxhw8SIPd3faCyoqSDWQkgLo60Ny544YO3w465eVRc9TW5tqAYSHAy9forCoSOXk7Ezz0tcXOHyY9ue//qLUoL596UOkpgJyOcoqKznTWlurupqc7wEDaJ44ORFZ5OoKszt3xAxTU9ht2cJkV64QWbZ4MdXBGD+eFGUAsHs3zty7h7sPHoDneZiIosq3bVsu7c4dVlvfJCcn57VOL7XdAwAAI0fipVIpuIwb93q6SH4+jW8z9uGDBw9w/PhxuLi4YMSIEY3fPySExnPjxtde165dOy4iIgIrVqyArq6uOGfOHNZkYGTkSBrDyko6JxqeY7t301qfOxe7Ro+Gy4cfQk9PD8q8PMDAAKlBQSLv5cW6//QTg1JJZ3ZGBpEle/fSHpGSAowciTaBgdDJzxcPXLqEUUePMgMDAyiVShw4cEB0dnZGXceXQ4doLLS1EX7zpjIjI+O5QqFY3uTgvMcbwX/3v1Rc6j3+P41bt259b25uPnTMmDEa/1LRr/82bt2ijWvWrHfKreJ5HjY2NpBIJHj8+DG7e/cuOnXq1HwU+n8VtU5CTAwZK29gn/9PIIpkcLVpQ7nGzcDKygq+vr7Mw8MDBQUF3JUrV5B5/74qLzERBrt2MZmzM9jw4Y3zu1/FgAFEZri7k1Fam4PWQH4rl8tx8+ZN9O7d++9Zf4Exembm5uQg7N1LZNU7yAZ5nodUKoVCoeAiIiKYrq5unSMZEhKCmzdv4uXLl+K1a9fYkydP8MnGjazzxx9D658ghSxFESW7d3P2t29T8cNevZqUwL8Jd+/eFTQ1NZmXlxd8fX3h7OzMqampwc3NDe5eXvDs0YOz7dGD8YsWUd/nxERykKqqKC9xxAgaL0tLMsRnzSLDx8mJCgNu2kRzJiuLxnT7doroWVrWEwX/JOzs7Fh0dDRSUlLEdu3asRopORcREcF16tQJCQkJUKlU0NDQaDwPKyog6OvjpK0tJ3AclEqlysfHh2tS/n/vHjm8n3/eiKyMjo5GbGwsPDw8RDc3N2ZiYoJ27doxpUIh3rxwgVUzJqSYmzMzMzNERUXhyJEjsLCwEMaNG8fpmptDkp8Ph2++YVra2rCzs2OxsbEsZ9cuwXnXLg4KBTnVhYXA8OE4eemSaHX1Kov08WHPysqQeOeOEJGeztTU1JCfkQFjhQJ4/Bjljx7hnoWF0KF/f7rZAwfIcHd3h0QiQUxMjJgpkcBn2za6kU2bKFrfvz858ydO0BwaNIgM4thYisY5OVFEsYEy69mzZyguLhY9PT2bXeChoaEqS0tL3qkhWeboSFLzTp3qDGQ9PT2UlZWJiRwHLzMzhlatyJivVRo0BycnUoc0s8cUFRVxpaWlqo9++omzA6BWW6y0tJSKZE2dSvfavTuRVAUFjc4puVyOW7du4fPPP2c+Pj6sc+fOzN3dHe7u7iwrK0vwDA1lrS5dwl03N7x8+bJpwgigCLKREa0dPz9q4WhgQOvj22/JSQIoij1hAilJauYaz/MIDw+Hh4dHnWKkDtXVlHIVHEyFN2u7YrRpQ47fnTtE4vTrR/UI0tLI8fv1VyJ0dXWpBoOODjk/PF93/9ra2ujSpQuKi4uFsLAwplKpYFdD0oRnZqrS797lHA4fFrnkZMZNmABRFHHy5ElBKpWKY+fMYZpdu6LtkCFQV1dHWVkZrl+/zjp27MjMTE3B1Sp7Tp+ms2vOHGDhQuwxMhLKtbREtwULGKysaNwkEop67txJqqGsLGDPHrw4fRoat26BnzkT4HkYfP89rnl4QNPCQhw6dChLSkoSwsLC2I0bNxAZGSma9O/Pio4dEzXMzeHWr1/dQn45dy4eBgaKuW3bsmnTpjETExPxwbVropeTE2M+PkhKShJMzc1hFx3NEBQEvVWrUCwIqLSxESwdHYUxY8bwz58+FWRlZWhz9iyDvj4RxFFRlGqzbh1gZwd9fX04OTkhKSkJUqlU0NTUFKuqqph5djY6L1mChw8fotPkyZDo6AC//YZSdXWcsLCA35IlpOoZN47W5rVrwLRpSLp1S/S6epWpGxvT3/j+e6q7cuMG4OiI69evo3379qwu9dPIiEi04cPpsxkYACNGIGfuXFw0MFBphodzFdra0FyzBmrz56OkvBwaYWG0tnR1gZEjIeTkIDY7m5mYmCBdLmfBWloqk/R0Tnj2DBqnTtF5eeAAzfENG3C9uFjoNmgQ+/ijj2B99SqX/PHHQn5JiZCUlMTkcjnr27cvtBoQ3HXgOChUKty8eVNIU6lY9969mVZVVeNCmNbWtJc0UW8kMzMTgYGBMDAwEKdOnfpaa1TY2pKCpgnV3bNnz/Dw4UMAgCiKzM/Pr/m0MHV1eiahoY0L6/bqRZ/thx8Q2batmFNUxB5ERaHr8OE4kJMjpg0fLn789declpYWzfERI+iMXLKE5rlMRmoWpRLYtAl606ax54WFuHDhAjMxMUFkZKSqoKAAkyZNojPr6lVat/PmIa+wECdOnKhUKBSdli9fXtj0B3+PN+Fv5m28x98VK1ascFdTU5s3cuRIDf4/XNH9/xQ7d5Kxdu3aO8mJG6JLly64du0aJBLJ38/RrwXHkUEVGEis+r8Tokj5vO/SsgpkXA/o3x8dHRyg4evLPxgwAL/16iU62toKQ1+tQAuQdHjZMjK2OnWi5+ri0uzfS05Oho6OjlhTiffvi/Hj6cDduJEO01Gj3rkOg4eHB27duoUbN26IXl5eTBAEpKamClKplJs9ezbLycmBoaEh1HV0yBj/RyCXAw8ewG7RIlQ4Ows/ODhwmhERgi/Pc506dfqH3kpfX5979OiRysfHh2+41vT09BpL4Ws7Ffz+O32fm0vEklJJhpeFBRmbZmY0P4YPp9ZMQ4aQMzV79r/s3L8KxhgGDBiAw4cPM7lcjtzcXISGhorV1dVsTW0+cw1sbW1VLVq04IyNjZmxsTEyR4wQTU1NWY/+/fHXX3/xJ0+eFIcOHfr6w120iCTAEyY0+nFycjLU1NTg5ORUZ0yy4mJ8MGMG53bwIB5VVLDYO3eE8PBwTiKRYNSoUbC3t6e11a0bjWNODmBuDklFBQIePmQVBw7wRT4+0D9zhv7IuXPA7dt48eyZ2GHfPvZJ27a4/tlnolN8PDtkYICjR49iwr59yNTXR9H+/YgdO1bMS0nh5XI5OYbm5o0cdBsbGxYVFYXffvtNNXjwYN4sOJh+cfYskYWdOpGhXlRE30+YQNJtHZ1G915dXY30d2ifmZGRwXt6er760MgJvXmzUaeQZ8+eic7Ozhw+/ZTkw998Q+ohD4/m/wDHEXE0ejSpx16Br68vNv38M59y+DDs7e1JW5+XR3NSLqfo2erVdPHu3aQSaFD1vbCwsK7rQi1quwZ4enqK0aKoSuA4CI8eITMzk3dxcUGzBXTbt6dIdFgYKShOnKBuC7VrrKCAHLoLF16r7i+TyYSioiJOT0+PnOTQULpvc3OS7y9eTGoJpZLUWQC9z7RpVI9h6FAiVtavp+gwx5Fqw82NXmNiQlH0S5eoRsTWrfRsunbFwP79uaKiIsTFxYm9evViADBjxgyJfNIknDMxEcTCQq5nhw6ssH17pFpbc9OnTwenUDSad9XV1dDQ0BDPnD7NHJYvh35uLhXvfPaMntvTp8CxY7Bt25ZLS0tTvTZ2XbrQHhIXB0yciL0cp3p2+jTPq1SYbW8PfQ8PaAweDHNHR5GpqwuMMX7SpElcYmIiHB0dERERwYJOnxZ7T5jAnJcvR/XYsZDVEFAvunZFeXAw++STT2BgYABPT092f/NmFh8aCo0+fdC+fXvu2rVrYk8dHbCjR8FmzoR9XBzs58zh4OICzJmDMfv2cfsXLFAhLY3Hw4dEuOjqkgM3ZgzVG9DUhIWFBcaPH4/du3ezRYsWMVRVkbrC2Rk6OjpixRdfMNmoUVCNHYsO588jLCwMhSEhMBg+nPaM8+eB5GQIYWEItbPjTJcsgZ5USs9qyBBKnZo0CcjIgKGjI2exeTMRsv7+tIZPnyYy9uVLeo2jI8o3bkSaqSk/PSgIF6ysxPNt26qcs7I4jVOnOM34eKhZWFBKib8/xPR05A4ahH5r1jDF/PmQxMSwolu3cMbXF58UFUG/Y0cIAQF4Eh4Oo8uXgd69uYqKCmimpkJz715YrF7Nv60mR0VFBSIjI8VHjx6JCgcHMSAggNNcvZpsqYZpVN9+S/O0VnHSAPn5+QCAwsJCdu/ePbRv377xBba2NO7Bwa91K3J0dISpqamYm5vL1NTUxLrWq83h6FEi2CsraY1VVFDw48ABYN06tElIEFquW8cfHT8eIevWiR8MHsysrKzqCYiyMkq5c3EhOy4hgcjXBw8aqSuHDRvGoqOjcezYMahUKl5DQ0PYvHmzUsYYRq1bJ4keNgx5paXIysqqVqlUi5cvX572xs/9Hs3ib+pxvMffDRKJZJKPj4+a9r87GvzvREkJGRaHD//Djj4AZGdnQ6VSYerUqX9fZx+gQ7+sjKrT/7tqLqxaRYZrbVX5d0FyMjBlCox++gm4fRs+trZ4cvAgUygUja/bsoWct549KddNEMjpbwLl5eVISEiAmpoa4uLiUFxczA4fPqzq1asXb9xMUUaADve8vDwYGBigqKgIurq6DXNf//uQSOjgZYyM875963uMvwGlpaUoKCiArq4uVqxYAYlEAqVSyS1duhQ8z8PCwoIKrw0b1qwUsUncvElSTzc3IDgYbc3MOJuyMly9epW7fPkybt++rezZs6fEzc3ttZeePn1ajI+PZ+rq6oKpqSkrKCgQKisr+X4NIl3vDFNTcliVSprn589TYTBBICe2oIAMl39zCpKLiws4jkN+fj5KSkogl8sZANja2mL06NEQBAHPnj3Dixcv+KysLDExMVEll8uZhrY210EqhZ2dHXr37o27d+8KaIro2riRDOVXosdeXl5ITExERESE4OrqykEU6Zrhw2Hg7o7EPXtUFRUVEi8vL6Fr165cI+JEIiG5bVwcOZe9eoGfPRsHx4xBrqkpPIKDxZYtWzJDNTVUfP21aNipE2fbrx9YYSE+3LGDYfdufHX+PCoGDkTFqVPYGRQEtTNnBCsrK27ChAn1EeDycopi18DKygq9evVCdnY2++OPP7BkyRJSPAwYQF8ArW9BIEXD0qVkTDs7k1w7MhIYORK3N28WLRUKpj17NhGADg71aiBDw7qxsrOzU126dAmurq6NxzUiguZIA1hYWIgFBQX0zYcfkrNYXU1zvbkikwCtx2aKZGlLpfhy40b8WVAgHjc3Z1Xl5fjq2DHIhg8nIqM2hQkg4qpPHxqv4GBg7FhoaGhAqVRCFMXXonvt27fn21tY0Pq9dQsrV658+1k1ciQpFl6+JNnuBx+Qoy2K5CRERjZ5LzKZTJBt3Mhh4kRaU9On0/X+/vSZO3Z8rZ4EUlLo/jZsIAXEvXtE4nToUE80+fsTudO/PzknKhWpSdq1o/dfsQJcaCjsJ08WHI4f586npKg+3LKFf/DoEUJDQ/HZmjV8zNq1QFCQmKmjA15fn4VduyYMyc7msGkTpbIBMFRTw+InT9ije/fErGXLmP6AAbQGxowhpysqCjhyBI9VKrGsrIw/c+YM+vTpQ8UBFy4k0rVdOyA2FkVVVchmjJ+zdSsivvxSVXX+PH9XW1vwjo3lhjg5se1Pn/JpaWlo1aoV3Gvao/Xo0QOVlZXChZgY3sfVFalffSXe79hRZBKJqFQque4AM6g5+ziOwydt2yJdLsf+Q4fg4OAAq1u3mHLiREi7dCFlweHDFE03NwcCApD88ceoiI+nCO3IkZS6qK9PX35+RCJt2QKAao5UVVWx/Px8atdZ02u+hYmJoBEezl+fMgXG+flI27sXEEVUenrCYNUqIjs4Dhg/HoU//ACzqiqqpSCRkPKoplI/li1DYUQE8kNCUFxeDs3r16Ell4Pt3Elz9cQJmgf9+gEeHtB68kQsMzdnT+/cwaDWrRk2bJCIWVl4rFSC19auJwh++gmhjx8LbUpLgaAgTrp1K9zmzuVEMzOEtGiB38+fR1cvL6EkJoYzvXQJiRs2qLq6uPCOrVtTDYPalIu3IDg4WJWZmcl5enpyfn5+tKbWrKF96dw5+v/ly5Tm0cz7ubm5wcnJCevWrUNiYmK9s19ZSQqXjh3p359+ovmnVBKZ36oVVcEvLWW1z+qtMDOjfcrEhEg4OzuaF999B6xfjw8GDuRTtm8X27ZpIw786COO3bxJz3z9+vpaFMeO0RhfuUJFNWfNajKN0tPTE6dPn665lUpOoVBwnkVFSF27FtKWLZEcFgae58sFQdjx9g/+Hs3hb+xxvMffCYyxqsrKSgWAf6BH2v8Qrl+nCEFCwjvJnpuCSY18MzIyEkOayk/9u0BLi8Zj4ULqSf1PEB9vhbn5uztU+flk1PXpQ8a9l1fdgVlZWanMysqSvExLg/HWrVRE69kzMgCNjYlZbwbV1dXYsGEDtLW1BZlMJigUCubq6sorFApu586dGDlyJBwaGtY1yMnJwe7du8HzvFBVVcWpqakJ1dXVnLu7u2rgwIH/O7KWWkN/zRpy/O7eJQO9Gen98+fPsW/fPqipqQkVFRWse/fusLKygpaWFhrV3/j+exrbWkfrTXj2jIidvn2pzVFtziVIcvvxxx+jS5cuePLkieTkyZPIyMhA37596+TrxcXFiI+PZ61btxbNzc253NxclY2NDevYsSNkMtnbcy0EgYy2I0eIwDI1JYJpyBByWpOSqN7BmDH1jt+XX1LVZH//d0rj+Wdw6tQpURAEpqGhAUtLS7i6ukKpVDZqD+ji4lLbzqu+5/OECWRsBQTA3t4eoaGh/C+//KL69NNP+bro7KFDJDGOjHzt7547d05lb2/PDx06lIMgkFH/2WfA998jKjISGRkZkpqiba+PrakpGf8nTlA0ztYWrFs3dNDTg0qlwtmzZ9mDBw+gUCjwga4uY5WVKNy4EYYApQaVlIDLzIR2x47QdHWF6vhxSKVSTkNDAw0LuRZkZEAiCNAFkU9//PGHWFlZyRQKBaejoyMAaPzZsrMp6r5/PznkN29SxLd3b3rmDg5Q2tigSCZjvnZ2MLC357FpEz1vUaS9bu5ckqNqa2PAzz/zievWIauiAi1at6ao+oABdDaMGkXGbU0ldC8vL/6vv/7Cs2fPKI+3QweSve/YQcSWj0/TqpqAADLcm4JMBumWLfh07Fh278oVmE2ZAl5Tk86lJvYjtGxJBRFXrAA++QT6+vrgOA7FxcVNE5B6enWFJRlj2LRpk8BxHPr06cN5NKdImDaNCiCuW0ekwvnzNGZ799I6aojQUOCXX6D50Ue87smT5KwsW0YkgVxOz6kpCALtUYMH0341cyZd+/vvdBZt20bOc0wMOXOrV1MXkqlTKZ1h1ix6n1GjgIIC+HIcV/biBeLu3OHP+/vDJTERJp064eajR3Dv2RPaYWHMdt8+uBw+jJwLFxhiYmgtKJXA5s2kGLGwwCUDA+ZtbFxftHbYMHJ0uneHEBEBgwkT2JRLl3BKT0/YGB/PFi1YwCTXriHO2xsXL10Spv70EzuQn8/07O1FcdAg5t+jB59lYIAz6emcTVAQjA0N8am5OQru3xdx+nTdZGGMwd/fn+/evTuysrKgN2cOsywtZbKa9AP76GiqUVFT40BmYwO7jh1hnZqKF8+f47Nbt1AyfDgMRREsI4McPH9/2tvMzaEREoIJP/zAIyGBSDwbG3ovR0eat6dOARs2oGrOHGzevBn29vYqIyMj2ofGjgWqqmCnrc3vCgjAy4QE6A0ciH5//CH6PH3KUoOD8cDYGJkmJmJbjmMmJiYotbeH1/79KMvJgX5tYdOePUnh8eOPSPX3R7W+Pg5YWiqLi4sl4/z8YD9uHKVeffcdkQYbNgCMwUxHh/kbGiJ69Wo42ttDUlGBkl9/hWL2bEj696c5YmmJOFHE3fJybm7XrqS6adEC0NAA09dH2+RkxNvaQn3pUs5r926oZ2fDa+1aHgsX0rP29aW95S1ISUlBcnIyP23atNdTYtTVaa/o1o3e082N7CuASAAnJ0pNmDkTqsBApE6dKg6Kj2eSQ4dov/3hByItBwygYFR0NAU9oqNJfZmQAOzaBfmsWeipqQmjXr1gHR/PcOcO7f9qaqRWe/qUnq+hYf1+JJPRNW3b0tru04fIvEGDwBISUKmmhq4nT3JMJqMzf80aWlvjxtHeeeFC/X0uW0b7ma8vpVHVpClUVVUhsKad8/Lly5GVlYXULVtgc/So+JeaGjNVKgWe55Uqlarj8uXLm+jn+R7vivfO/nv8R6BQKPY/evRotr+//9/T2V++nAz+f9LRB1DnoCQnJwvFxcXcGytr/6+jf3+Kcr6loNU/jKQkau8SEtJszmojFBbSQZOcTAbnkiWNfj2la1fJpS1bhF9/+437OigI3IIFTRawaQpyuRwAMG7cOM7MzKzhh2F3797FkSNHMHz4cDg5OaG8vBznzp1TlZWVIScnh3d3d29YtZ8rLi7G1q1beS0tLRQUFKg6duzI1/WY/m+je3f694svyJgODW3kgBQVFSE7OxsnT54UBUFgALjevXuLXl5eeC0lRxTrCxG9CXI5OYWXL5MBMHhw033RARgbG8PY2BgWFhb4888/cffuXVhbW2PUqFEIDw+HVCrFkCFDaiWEzZMpCgVFOIOCyKiJj6fP8Msv9LOOHcnwMTcnh9jfn1QPkyaRIfbhh1QIKjaWnBhRpCjf6NFNO1lvgSiKEAQBT548QXp6OiQSCRwcHHDmzBlkZmYya2vrOnk1x3F4a2tJAPjzzzqiy9TUFPPmzcPRo0fZ/v37VdOnT6df1HYQaWL+OTg48E+fPhU0NTXJ2R8woC4dw9nZGTdu3BCuXbuGQYMGNa4FUFlJbfW++oqMznv3aG2amsKrdWuoFArIZDI4Ojri5cuXuCqVYsQvvyBaR0fsnpnJ4O9PTuKpU4CLC+7fvw+AyJyYmBikpKSIdnZ2LDs7W9AsLmbVZWXMPjQUiYmJora2tjh9+nR248YN9OnTh3utnsaSJWTEm5lR8bKDB4HSUhz69ltVYWWlKKqpsbKYGK7S25v1XryYZKtNteXs2hUoKICmkRGkDWfHRAAAIABJREFUffsiPDNTNbxlS5I4t2tHBm1REa2nkhIgKws2NjawtLQULl68yE2bNo3OABcXSgMLCyNy5o8/Xp/7aWkkxc3NbUwGvHhBOez79oGTy9H2u+/wTFOT1u0raQmNMGwYfUVHAytXQqNbN1Vubi7fpLOvqUlRXkHAnDlzUFFRwaWkpODKlSsqDw+PpteXVErO0uTJRGY8ekREXp8+tO5kMnJkvvqK1GB378Jw1Cj2olMnoXWXLhxatSLn5k24f5/2eUtLWnu3b1Okf/p0ci6OHqV7tLSkNTlsGDm7eXn0TKZNq09bqVlX2j//DKe8PMRERyP1yROkp6aiVUQESk+fxvkBA8SeISHQKClh6qNGMXz+OUVyZ84Erl7FXRMTXJBIoNTQaFyQLTQUsLZGRUUF9u3bh2ofH1FrxAg2pmdP7tLQoahs1Qrhq1YhJi4O3bp1Y1mbNrGhXbuihZUVY2FhwGefocXmzbAUReHQ4cPi7Nmz+YKTJ3Fl/35munYtdBmjNJyaeaGtrQ1HR0fgr79g2r07zXctLSK2G+7PT58CRkYYM2YMLm/ZgqMBAUJGUhI33t4eie3bo9OdOzC8cgXYvRsqOzvEqVSCU8uWnHqfPqiKigKXnw8hPx9p+floY25O+3ZAAGSdO0NTU1O0tbWt/2M5OUBZGezOnQNLSBAtjxxhBvr6UL9/n8HfHwYxMUjz8sLTqirx2rVroiAIqKys5LxatIBnSAg9U4DqNCiVwIEDKO7SBRYWFuLkyZMlP/74o6inp8fw8CE57nfukPNraEgO7pYtMExOFodcvcokLVoAqanQvHABUd7euGJiIiq3bRNcXFx4/Q0bxMlubkzTz4+e28yZRNZt3Qq9rVvFgenprN3SpTRvhg+n+iweHqRu2LLlrQGJ4uJi/PXXX+jWrdvrjn6t7RQSUtdqEatX01dlJUn6J04kEjw7G3t+/12U8DzrPGwYnFxdaf+wtqb1WlJC7+XlRfPcwIAILwCx0dHiJX9/1r1LF9g6OtL5ZWxMe8zLl6QC+PFH2hvT02ndbthANq+zM63Xr76iKP/s2US6PXkChZMTrshkEMrLVT2Dg3nTJroANELr1qQSkUgQFhYm3r9/H/n5+YzjOAyoCQy00NREi1GjgMGD2RQ7O2zbto3jOO7X9232/nW8d/bf49+KFStWcAAcAXR7a57Q/yLS08m4qi388y+A53l8++23CAoKwqFDh+qN778rRo8m1nfvXmL6/y+gVNKh/TZHXxTrI8enT7/eCvDSJYoU7d6Nnk+ecLc6dYLw6BG4fyB94vbt24K5ubloZmb22nPy9vYGx3E4evQoWrVqpcrLy+N0dXWZvb0917ZtW3h7eze6Xk9PD56enmJiYqKgr6/P79+/H0uXLn3nz/IfwYYNNK579lCULCoKFXI5tm3bBqVSCU9PT7F///6M53k0u5YtLUmy96YWk7m55Mh4eFB+4jtWrm/VqhWWLVuGtLQ07N69G2vXroUgCDA1NRVfq1ZUXU3GzNmzFNVbu5aKPF29SpHdAQOoddVnn9F8++ADctRiYuja3r3pmoZpR0ZGZJjVSqPT06n91549ZGwNHUoRmmbmbllZGQIDA4XS0lImkUggl8tZdXV13e81NTWFsLAwDgCsra0xadKkdxqXRhAEyqO+cweQyaClpYWRI0dyP//8M86fPw81mQwWyclwrvl9LZ4+fYrbt2/X5YVi5sx6B74GBgYGGDp0KBcYGIjU1FRxzJgxrEWLFrTWoqPJwK+sJAPY3R3o1w+ioyOuu7qqOn35Jf904kShNDOTOcXEsLLFiwVpURHnu2ULw5o1NJaamsB336F6zRqcBJELPM/j5cuXUFdXR2JiIpRKJTcwN1do0bYtOxgfr2rVqhX/8ccfM4lEgn5N1YhQKsnJDAigOfHFF/RZg4LQbs0a3rqoCImBgVBoa8PY2PjNEldLy7qId1a3buKLBw+ox7yDA0UWJ04kp9PNjeTiLi7A/v3o5+XFHQwOxpkzZ+pbr2prU9TywAEinRwcyECvRS0h8CrS0iiNoaQECAhA8cuXqPbzE3kdnXc7W2UywMgI2jo6LDcnB07NdeQwMwPWroX+lCnQ19eHqakpIiIi+L1796J9+/aoq/zeEKamNA5ffknkyubNRK716UNzw8WFSKCavHkTfX3c6tdPbP2G4quNEB5e7wQyRnn8mZn0/cCB5HxNmkRntaYmzcMRI2hP09Gh18+aRcTMyJF1kmITExP0rZk7nSoqUF5eju3bt8PdyYmZjRkDqFSwW7SIyAZBIHLw9GnkX7wIZWoqJBIJfv/9d0ilUlEqlYof377N2S9ejN/CwwWpVMo++eQTBmNjsMxMdI2NBYuMRNyiReKYCROYjY0Nw7hxlFL1/Dk5dn/8Ady4gQlz53Lr16/Hzp07kZeXB2WLFijQ0YHu5ctEtBcWNiYZjYyI8Bg0iKKqurq0DlNTiUwqLwdMTKAmkcD/6FFg1SpO6NULil9+QVZ6Orbs2oXlX30FeHigiueR6e/PCiZPRnhFhSrr5595y7Q0eJSU4HxQEJydnXEqIkJMd3BgAzZvRteBA9mNiAiha9eutPkVFgJyOVjbtkjgeXi3aEHy8rIywNgYbMMGWDk6YnoNM7dt2zZVZWUlHnt5odXevWLK/ftCvpsbLCwseE8/P2ipVCi7elUw7tyZq66uhkKhoCJ9u3aRSmbNGgrGAEQQ/PorMsePR5mjo+gaH88AQDp8OAbs3AndggJWvGABn7N+vaijri6aGRvT2rl1i0joixeB6mr45uWx5JISlIWEQDsujlQrCgWt7a1b6esNKC4uxq5du0QrKyuxxwcfcKiqorPRw4P2u8WL6Ty6fZsc6tGj6R4iIui6AwfqO+aEhSF9xQqm7uoKpy+/pJ+92nVixgz6kstpLfTpAzAGXX19JtfVhcTamuy12rW7bl39a2s7eiiVdD7r6ADz59P3tWeCREIkoKcn8PIlPD/8kGloaiKuspL7448/8NFHH8HNza35wn9SKaq+/hoPJ08WTKOiOMyejYCAgMYkyKJFNG83bEDeo0eQSqUZCoVi8RsH+j3eCe+d/ff4t2HlypVjpVLpTzKZTMvExETl6+vbRInS/3Hs2kVSq3/R0a8Fx3GQSqWilpbW37Cc+yvgeXJ8Cv8PiqMKAknA1q1r5GC8hupqYrzbtye22cur3tEXBIootWlDUrI9e4Aff8TVS5egl5BQV1ivNldVoVDg+vXrQnR0NDM1NRUGDhzIGzYoIiWXyyGTyZolZLy8vODk5ITLly/zrVq1Qo8ePd5ocA8YMIAB4AsLC7Ft27Ymc2abQ0lJCbZu3Qqe54UxY8ZwVv+uWgmMkbGoUABKJUr37oVUKsUXX3wBmUzWdGX3hti1i4prNYW0NKqYnZpKz+YdCy82/ngMVlZWmDt3LjZv3gwA8HZzY7h9myIyI0aQMyGTkdOemkrO/oYN5MDo6Lw+v6qrKZoxdixFq86ebdph37q1rp8yAJJHz59P8+7gQUpHCAggR2zYsLrooVKpRFBQkOrx48e8TCZjI0aMYGVlZdDT04OxsTHU1dVrVT//+p4gk9G4lpXV/X1NTU0MHToUwcHBaF1UpHLYupWPqKpSddi6lT916pT46NEjxhhDmzZtVGpqaqxTx44MLVqQw/YK7O3t8fXXX+PixYts1/btWFpWBi4ujtZdVla9aubyZYgch+DevVWPnz5lxuHhcOR5ThYfD4lCgY+KijjR1BRCRQVJ0GvGu7BFC1Tu3Qv9SZPEjz76iDWo8cIEQcDu3btRWVzMTHV0MG/evDeTpaJIqoTVq+tJm169qKbE9OnI3L8fjtXV8LS0pFzTmvn0NqhUKqSmpjLbFy9E9OlDVfgXLCCCaObM+guzswGeR4v58zElKAh/fvklqh89gqzWSNfQIKXIqVP0+r17AXv7+teHhJAjMGUKfZ+YSLmz+/eTUxsbiyvffguJmproVPn/2PvusKiu7e13nxmGNkMHBSkCIkWKglhQEbBj773XGDUaE/UaEzUaTWIsMYktlsREjZrYKypgL4AIKh2V3otIZ+ac74/FMFTF3OT+bu7n+zw+KE45Z5+9117rXe9au4xpaGi82Z44OyNrwwZYfPYZ575iBWX2GntPSEidYwLFYjFGjx6Nhw8f8mfOnOEcHBwar+X39KRse1ERBTSTJ5NNyMuj8dHQoDV49CiMY2IQEh3d/DlfWlr3mMGQEDoS7ulTuoeFCykQWbmS9ghlMz3G6H09elBJwa5dtDYePyaJfy2Fi5aWFq5evaowNjbG8PHjVfNr7VoiChij+1m7Fv369YODgwN++uknzJ49G1lZWSwvL49J9u3DiW+/BdepE5s7dy5TljiVamqi6P59HNuxA/O2bmU6Xl4knRaLSVm0bh0RP4MHAwoFkm/cAGMM2dnZ8PX15bW1tdlvly5hwcGDTHrrFs2LO3cou6t8hg4O1PhvyxYKnHx8aB5aWZHK4f33SfY+eTKQmwvuww+hHhiI8Bs30PvoUVJOHDmC8o8+wozvvmO7Vq+GZ69eookdOuDlzZvQGzAAF548wddffw1NTU0U6esjIjUVHVavRuWUKVxN4ziJBMjKguT6dbxo144urn9/srXLllGZQy0yq6SkhE2fPh0ymQwVzs6s5b17osCyMjx58gSlubmK9levcr1evOCyOnRAWloaJK9eIX7YMEXaBx+IXNu3h66BAWqoS0EAvvsO1klJCJw5kzkNHw6Ym4MXBOSdOQORnp5gumwZM9XXZ+jUiSEjgzL1pqakzpFIABsbFI0Zg4Tr12H9889UlnLiBCkm0tPpOb0uIVFQgOiFCwVjGxtMzs7mYGJC6+HECSIE+/al52RtTU2flVi5kj53xw4izv74g0hBAD4+PvyDBw+AxvaJxEQisZVNd0+doj1AJoONjQ2kUqmQmprKjI2N8VpFoVisKlcbNIj8scpKItYcHEjGn5kJcBy4yEg4pabCSVubZRcXIyApSUgAUOLiwqtVE6eampqcpqYmU1dXh0QiwZ07dwRNQ0M2bu5cLFiwoO53l5WRemDFClRVVeHcuXOlVVVVk1avXl3Z4Drf4a3xLth/h78F69atm6ylpbVrzJgxWn9bYPJ3gueJJV28+E8FJa9DcXExeJ4XQLW2/2wsW0aS5x9/JMfrz0IpsX5dZu3GDaoXjIoiqZqdHf2+tJQ2+OPH6Xqys+s0ykpLS4NEImFPnjzBvXv3+LS0NE5dXR1yuRxSqVQYNGgQFxYWxnbs2IERI0ZAIpFAJBIhKSmJq6qqalgDXAtSqRTDhg17q1vV1dWFmpoaf+XKFdarVy/W1OkU1TJQRWlpKTiOY1VVVVyPHj1w6NAhYcmSJazBkVVvgaysLCgUCpiZmYHneeTl5UEmk0FDQwNpZWU4/PIlP+TMGa7NqlUQquXHbwwkVq0iB7T+dZWVUaZCV5cc8NWrm5TsvxbK+vqLF6F/7x7e9/MDmz8fSadPI3/ECBgUF5OjduIEBU0SSaPHENVBUBAF8X37Utai3lnpdaCjQxLZn3+um1XhOCIKJk4kJ/DYMXLgcnKAmTNxPCKCT05O5kaMGIG2bds2fr7xX4kDB2jMa8HR0RGOjo5AdrboVnm5ECiTia5u3AiZTIbx48fD2NgYOjo6Ihw7RlnPqKgmT2gQcxzYyZP8h8eOcWzOHApYlWfcK9/Trh2SNDT42Ph4bt6ECUznyRMiWebPBxwdYTBqFAVkBQUQlixB3PTpuP3woSIjI0PkPmIEv9DXl+PqNXMtKytDamoqRi5ezPCa5pg1SKlu3Fy7B4WlJQXWc+fiTo8e6Pr999B87z1yjOPi6Bm/bg4AKLh5E5Znz0K9vJy7ZGHBx967xxcWFYk9Kyvhv2MHEZFr16r6OezcCfnHH0Pz55/BPDyIlDIzI8dWS4vItbw8emZ371LNNEB2rXbDv88+oyDawYGyd+vXw8/bG4cPH8bmzZshFovRu3dvwcPDo+GxXLVw4cIFJLdoAens2Xx3gM5/r7/HJSZStnnQoJpf2djYwMbGhtuwYQMKCgpqetAAINs9eDBlpjdupMA1IYGCpA4diBhWZuWrYWZmhpKSEtYs0rOkhMgOZd09QMHS7NmqMgGASi1CQ4k4vnKl4Rx2cyPCMT2d7nHHDnoGI0eSjBlAZGSkaE51nXsNBg8mssLXl57J1q3A0qWwsLCAmpoaKisroTyhQYiOhk5+PqRSKavdyyR10CBByM1lhRMm4Om0afCytCRV2rp1ZE8OH66xnXdGjIDj9evQWrNGmDBhAjMxMeEA4NmzZ4r9+/djwYIFIu7hQ+o94+ZGa97Dg+53yRJSH9y+TcHjgwcUyJqbU1Dr50eE0enT9L4ZM2DDmKJQT08UYGOD/NOneROZjJN16iQs+vBDJqoeW+2QEMDYGIsXLwYAyGQyplAoIJfL8fLUKXjt2YMQY2MK9q2tgdBQqKemQty2LfhOncCdPElk2IkTRHL07EkKMldXyOVyrqaJ7ZgxQFwcfDIzcVBXVxi6fr1Io2NHoH172Dg4gOc4DLS1hcnp06K4GzeEA3Z2bGSbNrAFyA84fBgID4fOo0dM08cHsLBAZWUl9u/fz78cM4abOnUqg1RKiYpNm8huv3xJiYNp04iM+vpraG3bhjIvLzC5nJQSS5fSfJkxg/o1KJGWRuTFzJnU60UQgG+/hdG9e8ywf3+ap3Pm0J5XW63T2BGcvXqRnP+DD4iUycwk+7B6Nbp27coFBwfjt99+48eMGaMqVyotpRKYsDDVvurgQPZi61YAQEVFBQsPD0dERAR0dHQUgiBg3rx5otf6EDk5RDb06kXEw/79pCSJjCTFQXVfEmRlweThQ0wwNGQFn3wC7RMnRNGTJkGSloZ0a2uk6ekJhTIZXyUIQmlpqZi3tVWoz58vgr8/le/NmaMqtQkKAmQy3Lh2rUqhUFxdvXp1cNMX+A5vA9GaNWv+r6/hHf7HsHbt2pYikejqjBkztMxed7b5fzNu3iRDt3DhX955W19fnwsKCmIdOnRoeMbwPxEJCZQVmzWr2Ue41cHmzZQV3LixrmxaCYVClf0aNowaPxkakpMnElEmPzubNuMPP2zAuMvlcjx+/Bjx8fGClZUVN2HCBDg5OaFbt27w8fHhjI2N4erqypKTk/k7d+6wxMREPjo6WigvL0fnzp05qya6Yv9ZMMZga2vLrl27xsfGxqJDhw6NDtqTJ0/w8OFDbsSIEZyxsTFr0aIF7+vry924cYO1b9++eV11G0FUVBR+/fVXREZG4t69e/z169dZWFgY7ty5gxcvXvBhYWFCSUkJ96y4GEHu7ujo5qZoO2wYh169SKrbGASBMkmDB9d9zdWr5HwVFZETN2BAw5KLxqA8a/vAAQqA4uKIfOM4cjbEYmiNGoVgbW3FAwcHdP3gA6Y2YAA5s8bGb+6QfOMGBQpdu5LjNmpUXRl1YxCJyBaYmTU9DspTHjw8UBUfj+KlS/EiP5+N7NCBWfn4gPubu/gDoHX488+qc85rw80Nph4ezG7OHPj4+KBnz57MwMAA6urqRKaoq5NDV93xuwFevEDO+++Dj4hgki5dwKysIPH3b9htXSbDgadP2bzoaCZbvJgyqV27UvA4cCBgbIzi4mLcCw8X5N99x148fSqod+tGa9PUlLFNm8hxrvUc1dTUEBYWJlhGRDBxQQEED4+a7HJeXh7y8vJUxyqWlVEQ9dNPdfusWFrioUKBBzdvIrOyEj0GDoTYzY3m6YABRPpoajbepDIjA0hNhdbEiZB5e+OknR1KbWyYr58fFxMTg/T0dPj4+ZETXI/g1tLXR1ZJCR/WvTtzHTSIntH336tq3Pv2pTm+aBHJzM3NKbB0cKBsoiCQ0x8YSKRUWBjg6gqZTAYvLy/m7e0NXV1dXLx4kenp6aHFa07CEIvFiI6NxbjPPmOic+dICbNsWV3bvX07rbN6R3gBwPXr1xEaGorbt2+j4skTwWbDBoaRIykI3rOHMuhyOQUJ331H675z5wZ7g7q6Om7cuIHg4GD06NEDDXot1MKru3eRe/o0fiwsRGxsLLKzs1FZWQkjmQzs8mVVGRlj9F3OzkTUDxjQeJ8dmYyIAV9fKutYuZLI45QUhOfnC2pqaqyB3b9yBbh4EakFBUJkeroQdfWq8LCykhUUFMDR0bGmvwbr1w9amZkQ9+pV89aqqipcfPKEmcyciR7DhqHNkCEQGRmR1PrAASJLfHzAFxXh+59/5p/q6rKOO3bAz9+f1T6zvU2bNlxoaChLT0+Ho6cng0xG+6O1NQWkhoZkgwSB1ExOTpSdHT6cCC1jY8r6RkYS+eLsTHZVJGJX3NxYJcfxE7/+mnu1ciVc4+OZ2MZGpXzYtAnw94eGkxOUKhKRSAQ1NTX8GhgotH74kPWxsIBaz56klGrTBqL583E/IgJu6elQ//RTIkvHj0fVjh0IHjwY0jVr8OT2bSSpq8OhfXvoKBWU3bpBumMH0mQy4ZWODrO6coV8g7lzwXbuhMmWLdBcuhT206axXE1NtJswAeoSCZVArFkD7NuHLUZGaNWxI6ysrPDTTz/xjDE2Y8YMZmhoSPvI0KFE9Pj50Th5e6tKH9LSIL53D5aJiRDFxUFcVUXzJDOTbMpHH5GNyMigveroUVIReXpCPmECdl29Kty3s2O9p06FesuWb95blBg4kPwZExMigJQqNBMTiKRSWLm6IuzhQ+Tk5MDe3p4W1KefkrplzBjV5xga0lgvWABwHLS0tHie5wWxWCyYmpqiqqqKS0lJYe3atWv8OnbvJgXMxYtERLZvT+MyaxbZemW5FkDPxc4OrFUraE2ZAvFHH8G0bVuYyGSwdXCA844drOODB1znsWO5LllZyE5Nxb2kJKF927YMnp60n964QbZ+xAjk5eXh1KlTFVVVVf19fHxeNX6B7/C2eJfZf4e/HGKxeJmLiwv3xoYd/6346ivKDF650rzA5C2Qn5+PK1euCAAaHgn3T8WwYeQ0/fEHBU1vixcvmu5qvns3OS1hYSTbVJIBiYm0QRcVkdRVuZk24jB27NgR7u7u4Hm+Jquq00hZxqRJk2oa6r39TbwdTE1N8cEHH4i+/vprFBYWNuiKHRUVhTNnzsDGxkaws7NjSpm3IAgQi8UICAgQRo0a9VZZ4uzsbPz++++KnJwc0YABAwQXFxcWExPDtWnTBjKZDPn5+QgMDBQkEglmz54NTU1N5ObmwtjYWFRzzOLFi/Ss65NU5eXkDClRVUWOQWkprafXZUtLS8nZPX6cpMP37pGUft8+Yvq9vckJ6tevQZAdXVEhUtfQEJo8B7w+YmIoYIqPJye3V6/mNYJUYtAgKhV4g20oKC/H9pcvgYkTMc7ICIZ379IY5eZSBujvJEE3baJgqz5KSoC8PKhZWzeUcqakUJAUHk7Z2fooL6fnsmoVDEJDcWviRMUNV1cUFxeLOl25Itjb27MaBVf1UUsmLVogLS8Pdnv3ghs0CDh+HIJEguSkJNy9e1eRkJAg0tfX5/X37BH1FYkYBIHsgLs7BS8ZGXVIBMYYBgwYgEcbN0LIyUHsN9+gVatWiqlTp4r279/Pl5aWcoMHD4a7uzvNnZSUhgoSxpAfECC0KyuDbPlySCQSBg8Panbl708BwKBB1JCrd2/6WV5OWdJ16yg4j4qCCccB69bB3t4erq6uSElJUeTk5HBo25ahiSM2Y2NjOZlMRk7tH3/QvE9IIBIkNJSaZu3bR470+vVEXFpbU+awXTvK3CoUREw0Qhq5uLjg/Pnzgo6OzmsZV2VQ/ccff/C9e/fmjFNTqV/Fd9+pjiB9zZGny5Ytgzw4GLG3buFFbCyPjAwRhg6lNaE8otLJiUqpJk2iN/XuTcHCli11PsvOzg6xsbH46quv4OzsjD59+jQgMWNiYviCFSu4DGtrSCQSlJaWCiEhIezevXtwTk7GiJAQsNoZf8ZoDnl6kpLk55+bJqFFIhrnJUtIhbB/P8a2acPu/vijAC8vVmeNm5oisW1bXHBxYXP37mWFgiA8iYlR2A4cyNna2qq+YP78Bs0vK/z8AEdH2PbvjxpbpVBQ1vf8eSIpX75E5fDhmJGezr3cvx9GW7eSaiYoiAg4qRRqamqYMGEC27NnD54+fYp27dpRQkIQSE0SFETZcmUPkthYUlwlJZFaR12d5tjAgfRMvv0WePAA5ZmZrMX+/cKszz/nuNmz0cHUlIgeT0/6zBYt6O/dujU6jPotWwrJkyezjiYmVPMeE0MkvrMzhuvr8zv69WNLFi9m4Y8eISUlBSaMQX7rFi4tWaLwCgripgcFMWm/ftQTgzFAJALbvRt+np5cmIMD3U9sLJH6OTlk3wQB+Zcv48nvv2OIVEplL+fOAQ4OiImLQ3l5OV68eIGNGzeC4ziO53kEBAQII0eOrDsZzMzIJgOk8FDis8/w6zffoPOVK3DX0CA/Z+VKem4aGrRGu3UjInP0aACAvGVLHD16VCgoKGDa2tqKsLAwUefOnWuXar0eW7eqyons7EgF9+GHNJ8mTYK1pSXGbN3KDhw4gKKiIvRp2xYtZsxAA5tjYUEKlgcPgK5d4e7uzrlXZ+IrKipw5swZoaye+qsGJSW0/65dS88iLU1VStSyJc2vjRupLKExcBz5z8qSJH9/Igzy8iBOSEB/HR0uZetWFFhZQd/UlPbgOXOAzZshCALOnTtXIgjC+tWrV6e9ecDeobl4F+y/w1+KtWvXdldTU3vPx8fnn9l1v6CAnIOTJ//SQL+yshIXLlxQPH36VNSiRQssWrQI+s1le/8J4HnKDtnZkaywOUhMpA1p+/aGzlhAADmNlpbE1iuD8+paQ1y8SPWX6urNkoRzHNe8zfY/CI7jwPN8o13WlRuxo6Mjq33djDFMnDgRR44cYXv27FHMnz+/WU0eeZ7H4cNFsHv8AAAgAElEQVSH+ZYtW3JSqZR3c3Pj1NXVa6SnAGBgYIBRo0bV+bwawm7pUnIoP/yQNuYlS1QvEgTKGJ0/TwHjwYOUFdi5kzICtZ9PSQmRO+fPUwbwX/+i2tngYKr7tram71qzhogdpaS5EVRUVKCkpATe3t5vlpNkZNCfiRMpyK+WNzYXlZWVUFNTAzM0BF9cjJKbN6Hl7Q2RSIScnBzExcUJqampGDx4MCsrK8PRo0fBGMOqVatU8y4nh+byqFEkR7a1bTTj+W/DyIiydjt31rVhT5+SYql+czWFghzWzz4jp74+7tyhLPSZM0B0NEQtW2K4mpoIoMZ+165dEyKuX2dzOA5SQcArhQJFjo7oP3MmDp8+LcRqabH+8fHAsmU4kJEhFHAcWrduzb3//vvQ19en+XbyJH3/gweUWZ89m9b69et1xsfJyYk59egBKBQonjwZv/zyC9u8eTNfUVHBde/eHVevXuUdjI05rS5d6ma6aiHK3V3onJnJtfH1VX02YyTF/fZbul9lE62vvqL5/OuvtC9Ukw8vCwrAcRy8vb1RXl6OR48eiXop5a7t21Mdfz0UFxfXzbhraVG36+xsWiN+fjTnt2yh8fDxoe/mOGr6FxhIr21C0ZOTk4OKigpWu+9IY2jXrh1kMhl+/fVXbvfu3Vi4cCF0lSdTfPopjcXt26QyCAur++boaEhatIDa1q1wCApC9tKlImzfTsQKYxSc/PBDw+Bj40aai5GRtA569UJSUhISEhLQrVs3ZGRkIDw8HOHh4ZgyZQqdtQ6yW0d/+40bw3HovHEjOBp/BgAZGRnYs3s3uO7dMbywsO53MkZ25M4dWm+//PL6YzIZIxVAv35okZqKtkOHsrIOHaB5+DDZJKkU8jZtcN3Ghvfs14+TuLjA5PJl5vfqlQh6enXXsIND3X9XVYHT00Omnh42bdqETz75BOLhw6lM4vlzes0nn4A/cADbZ8wQDLS1hVldunAoLKSmbZs3Exm0ezewdy+MunfH8M6dEXDokGCxYgXT0dGh7ztxgtby7NlEZp49S3vytWs0r9LTaV91d6e1ERhIpIyxMWw1NdF6715WaGoKg2XV/dC0tYn0mT+fFBtPnzZ5zK5cLuel1tYc9PXJturr02urqmC7dy8nX7EC38bF8eWRkRzP88jv0QO9z5xBv6lTRUoCDVu2EHE/fDitixYtULFwIQx37MCxIUPkY27eFGP6dMqi6+sD7u7InjYN+np6PPvlFw7z5lGG2NMTpQ8fCgBYXl4ePD090bZtWxw6dAjVp8k0jfXrEcVxuJmejhm7d6Nq6VK0mj6d7iUxkVQRRkbUjHPdupq+KErk5eUhISGBjRkzBuXl5aK7d+/yN2/e5Bhj0NTU5AcPHszZ29s3/f3nz9ftHWJtDWzfDsXYsXg4dSocevSA6W+/YXpGBn6srESXNWuQ1asXnH74oWEwV1BAQXutPfT06dPyR48eiUUiEVMoFDh8+DCfm5vLnJ2dmaenJ2SXLlGzw7AwsjulpbSPzJ+v+ty5c4koUijerKBTwtCQ/rRtCwmA7D59hLvnz/OT2rQRoaKCSn0AhIWFITk5med5fsvrP/Ad3hbvgv13+EtQ3XV/jJqa2r6xY8dqNJY5/a/HuXPkXD5+3Hwj1gzI5XJs3rwZlZWVolmzZqFVq1b//Fr9+tDXp4yTujqx7s0hSp4+pQCvtmNUVESbyKefUmfayZPp3y1b0ka+fLnKqfuLeyn8p1FQUACe5xEVFQV1dXWIRCJUVFQgISFBERUVJQKAxs61Njc3h5+fH86dOyfasmWLYtGiRaLGMvzPnz/HoUOHYGFhIWRmZsLQ0BAjR45kampqf27+MUbPDCBn0d6eHB7GyDlISqKA6NEjImO0tUmCf+UKZUj9/ek5rlpFjoiGBjnhLVtSpvKHH97qcu7fv68QBEHk4eHR9IsqKihj9+OPVMcbHt6kw9oYIiIicP36dRQUFIAxBkEQoN2zJ4wPHkTyrVvw9vYWgoODmVQq5UtLS0WbNm0CQESOubl53VpkY2MiN1asoPv+4gsiH0pKaDxfd3Ta24DjKKhPT68rJx89miTN8bVOMaqqosB23ToiQWojN5dkoFVVlNnp27dBxtI6LQ2zrl/nLltbC88uX2ah7u7Ia91akMvlbDIALy8vFhAQgMePH0P7X/9SdLewEHls2wZ24UJNN3QA5OC3aUPzxdeXakI1NSno7N697nVVVQEVFZBKpZg9ezaXkJAAXV1dtGjRAs+fP2cvZs4UnGxtGXbubDA0eXl5KBaLOd7KioKSDz9U/ae2NmXuVq+mPiQ2NjRXCgooK11rTwgNDeWNjY0FTU1NUXx8vLJUSNF+0yaRRF8fHChQrU8w5ubmNuwBoiTDAgNJEvzwIWX8U1IoezhtGpWaREe/tqdJSEgIAFKPvWn/tbS0xIoVK7B+/Xrs3LkTK1asoLVx/z4RUSdO1JXwv3pFdc2enoCJCRIDAhC1ZAl85s6lOVb7NJZWrRoqV5RlEevWkdy8Vy8Uv3oFbW1tRe/evWsGdu3atTh48CAWLVqEsLAwREdHC8ZyuWDfqxfH1SuNMDU1hUxHB623b0f53bvQqN3oDKB14OVFtmjLFlp3b9qXOA7M0hLpX3/Nhz56JEz95RcRIiOROWsWQs+d40efP89pf/klfXa7dtQTJD2dbJeSvN+wgfasQ4dIFbJlC7ROnsTMwkKcWrECtw4cgM/48USgCQLZz5UrkTFlCjTT0tiYL75g0NVV9ThYtoyCbWdnyoJWVMAxMhLGp07hfnIy35sxjllaUp13URERVnfv0nwpLqbrysggxc7WrbS+du3C87lzoaOjA+34eNy5coWPW7ZMmL9sWV3Hp08fsvlbttAaaIKY1NXV5XJycngMHMihqIiIifR0Iu/KyqC9Zw9evnzJ9ejRAzExMTxEIpZgasoC58yBzYQJ8PPzo/f8+iupXnR1gVmzYLF0Kcru3UPfLVtEMDcnIm35ckou9OmDOF1dtD5/nqssKYFk+3agQwcUFhaivLycAbQGS0pKBDMzM+bu7s4/fvyY27RpE9/Z05Nrcfo0rmtp8R3lcs79xx+BvDxUvXiBuNxcZLm5Ie7ePcxydCQlxuef0/w/cYIavnboQFL+33+vMyYmJibQ1NREcXExPD090aFDBw4g8j4iIoL9/vvv0NbWVnTp0kXUpXbdvxLK0yWqIZfLcSgwkC/p25cbvnYtfh4xAobFxXCLjhYMfX2RZm/Pot3c+IubN7Nu3bqx7rVt5cCBpLCorAQkEuTm5iIiIkI8YcIE6OvrIzIyEunp6eB5Xrh9+zYrTk5WDImNFeH771VqN7GY9qrae6ZYTHu/hwcRlNV73tvAwsqK3dDV5aCtTbauVSvI5XIEBATIBUGY8a4p31+PdzX77/BvY+3atWYSieS+oaHhpFGjRmkrWfl/FASBnJyBA5uuV/2TKCkpwa1bt/Dxxx/DUNkh+H8R+vokg33+vKaDbJP4+GNyYmsfu5SURNneli1JUhoVRc73lCn02d27kyP5TySSGoGWlhZyc3OF2NhY/tmzZ3xiYiKfkpIiaGhoiEpKSgS5XM5evXqlcHBwaCBJMDExgYODAxITE9m9e/eE+Ph4lpqaiqqqKhgZGeHixYu4ePEiBEGAhYWF4O7uzg0cOLDJZoDNBmP0R1OTspxqajXdo/Hdd3Qk1Lx5JN999ozWVXk5ZRcmT6Y62rZtKTNgakpO3Z+4ptLSUhw6dIjT0dGBl5dX4y/au5eyXOPHU6Dv7f1Wap2rV68KV65cYRzHYfLkyTAyMkJOTg4Gdu8OvyNH8MjJiU9MTub69u2L0aNHcz169IBUKkXPnj1hZ2eHkJAQISYmRjAwMGB1VDyMUYA9fjwFelevkhICoOzjGzKzzcKCBXWDaYDW0McfqxpD8Tz9VFen8VE+B0GgQGXbNhovjiOSon17+v+SEso+HTlC/2duDrMpU9iLjh3hM348evfuzXJzc4XLly+zuLg4GBoaCmPHjmV9+/XjzGxtwe7fpyxqRUVd1YeBAdmDsjIKHr29SUJc3ykWi8kOmJuD4zgYGRlBJpOBMYbrly/DxtSUmSxfTsF7PezatUthaWnJPJydGfvqqwZN41BZSQ0W792judy/P5FToaEUdPn7IzU3FxcvXmTDhw/n9PT0YGhoCA8PD0RGRqJ40yYWcv06TsXE4NatW9DV1UXL6q72bdq0wd27d5m9vT1kTRE7IhHV6/ftSz/XrqVrcnYmyXD1kYbYt48I0WnTyObyPKzd3NDiiy+EU/n5rE1aGrTv30eliwvKDxyAxMiIxu3JEyqFUShQJZfj5q1bcHFx4R0cHFjNXMjNpWMkW7em+bhrFzXPcnIiIqRnTxQaGeFybi46eXs37B2ydy8RAI2V7vTsSc/45Enoz5yJYEdHrqOnJ5SN7DQ0NJCYmIj79+8jMzNT0NTUxBxXV06ck0PzoR4cHBxwKTYWKYWFMPHxgXb9Z84YKSSUTfWqe4aUlZXhl19+EdLT03kzMzMuJiYG6urqNT10TExM2NW7d7lwIyPEGxkhISQEvmFh0PHxYaJevWicjIxoHmZmUpKgTx96fr6+ZBPV1YnY2LoV+ePHY8+PP2L0H3+gbXAwxN99R83qqgPFE+fOCZcYY3OCgqBbVlZXLq8kRD09aQ16eABdu0Jt9mx2KTkZjDG0kskY1NRov3z0iNQTd++S9F0mI6L8xAm6zqNHkbJwIQ4dPozoq1dhtno1DEJDhc7Ll1PDtitX6D2xsZQAGTWKSrISE2ktpqeT7H3oUCIYjh1DcefOzHvKFCaxtiZy5dAhIojGjwdr2RJt7Oxgb2+P27dvK9zc3LgBAwYw7dJSVD5+jII2bagcgePo/lq3JoJh504gNBSZVlZQj4pi0g0bSM330Uc0zlOmQOfyZbTfvRsH/fwQ7+go3A8J4QMDA7mEhAQ4OjoiJycHEydMYLLISNh7e7NuN26g3dmz7FrLlrznDz+wF4aGrKh9e7T79FOgZUtcYAyPAEycNAkOzs40L5Unx0yfTnbB3p7UbT160Fr09a2x2Tdu3EBCQgI8PT3r+HpqamowNzdn7u7ukEql3KVLl6Cjo6Ns1ksvSksjtVe1sqKoqAhnzpxBTk4OFBoaLMXTU5hz9iyzWLcO+Z06sQGrVrHW2dnouHs3M2zVigUFBQlXrlxhJiYm1DxTIgEuXEBFVBT2hIfzN2/eZIIgYMSIEdDS0oK1tTVcXV1Zly5dWN6xY4peO3aIynfuhIaLCwA6tYhfvx5cdDSRTPXRsSOVPaipvbU67d69ezwrKIDbe+8xTJwIGBggJCRESEpKuvHJJ58sf6sPe4dm4V1m/x3+LVQH+je6dOli5ePjI27uUWL/VUhIIAN79myzz/x+W4jF4saPKvpfw65dlEXg+aZroQsKSK720UfkVMTHk0xs1y6S6H36qSpbVFFB71HW1P2Pobp+sLFol506dQrFxcWNvk8sFsPMzAwzZsxg9+7dQ3l5uZCXl6c4d+6c+MSJE9DV1RXGjx/PjI2Noa+v3/BBKAMtZRf1Nm0ogJs8GUhOpszmxo2URbGxIefG1pYyf8eP07OKjKypNUWHDkTwyGQUmFy61Hi34b8AoaGhQkxMDGxtbVliYiIqKytVpRCCQM7myZOqkoLmlpUAiI6ORlBQEK+lpcVSU1NZz5494ePjAwCwsLBQEQuTJmHxuHFc7R4CHMfBs1Zjt48++ohdvXqVHTlyBJaWlopx48bVVWAwRsTHV1+RGubLLykg+fxzIk8GDPjzCqOPPqKszrlz9O/t20nd8Pix6jUjR5K0cu9e1e/Ky2kOXL5M2fzatdshIZRhHDuWmslNnVoTlGgB6FHrqLYRI0aw1NRUvnXr1tyQIUNUm4KGBnV1TkkhafqDB6qzpNXU6BrLyymgMDOj46R69FB1fgZIml1URM+3Hgb/+ivTnju3ybknlUpFIpFIwbp1E+G77yj4dXam9TBkCAXYGzbQcygtpT3hX/+ie9XWhsDziPj8c9550CCudevWNZ8rk8kwd+5cjr9/H7yrK0pnzMCTJ0/4c+fOcZcvX+Z79uzJOVaf4MArSZb6ePCAlAw2NtRUbeFCeo5JSUScmZuTjNjOjoJJpRy4c2egdWuIRSK0a9uWvfL2xpPt29EiNxd/ZGZi/g8/4PGjR3z7AQM4zalT6dmNGoWK5GSwSZMwZPJkDvv2kdR7wQIiWQcPprmjtBFSKQV92tqAiwusBQEAcPXqVYyurleuQVgYKTWaAmMo6tIFoV26CIwxJjpypMa+d+nSBV26dEFKSgpatWpFJUxz5lAg3Qj09fUxaOVKPJ83D8fWrIGel5cwZsyYOl3wIRLRXA8MBE6fhmLwYOzbt08oLCxkOTk53MOHD8HzPJycnPjRo0dzyuc5dOhQnDp1CpyhoTBwyhRmJJczbNhAhEWnTkTEjBpFa0i5P23fTuTd06f0/Dw98eL0aZR7eaG9l5fCLDRUhPHjIVcocOr334WYmBimra2NoqIiNm3aNOjNnEm2NSlJ1a/i4EGa7+HhNXJnAFCTSDBuyhT2448/QjZ8OJ220bs32ZIHDyjYnzePrk15VvqOHQAAw8BA+F27BufHjxH3669w+9e/uBcffIDHQ4ag2/nzYMuXU7CvbND28iXt20VFRHA4OdH+PnIkwPPQ4jg87dSJ7/TwIYeqKirJyc+nZ9epE4ymTIGRiwsEQYBEImGampqwmDIFakeO4FhCAiIiIlQqNgsLIhEePwYGDYKRpqZwceRI1nflSnDl5UKSrS1cPviAPd+2DaUaGjj18cfI1tKCXkaG0Lp1a1GvLl3ApFKYffstrkdHQ/7iBSVxHjwA17cv9F1d8f6wYdwzf3+8OHQISydPRjHPQ0MuR2JioqJPnz6iNm3aqObywYOkOtDTo3mtrEU3MyPC9scfgTVrUKJQIDg4GJaWlrBTnhRUD1KpFO7u7nj58qXixo0b3NmzZ5mmpiZvbW2NUX37cs8HDsTdw4eFyspK5ObmstLSUowaNUpwcnJiABimT4dev37Q++ADIoumTweysuC4Zg2i/f35xyUlopMnTwrR0dH8kCFDRJW9eqFi2TKUTZmCFStWNF7KmJQE77ZtRRf69+fjDh7kJBIJdHR0+JKSEuYZGMjaDx0K3YbvItKpoIDmf0REA9VXU1AoFAgPD+dGeHuT0sfWFlVVVQgODi6vqKj48M2f8A5/Bv8fRB/v8Hfh888/H6CmpnbUy8tLw9vb+58Z6APULdzW9m8L9GUyGVq0aMEfOXKETZ48mf231Y7/pbC3p+C9f3+qD6yPn34iRjgqihoInThBm4WNDfDJJxRkurnVOJWoZpn/f8SzZ88U/fr1U0V7aWnkdGtoUPZx8mSo37qFnikpDNOmAXPniqsmTQJvYAD1adMYFi2iutvcXJrjxsaUEVQoyEkpLyenSkeHsrRbt5Ijm5dHmzdA2WCplALT8ePpuwcOVAUaV66QZPzD/9weff78eQYQ4eHm5iZIJBIyPHfvkmz1m29Istunz2szDnK5HCKRqEZqn5iYiGPHjsHGxoarqqrCtGnTYG5u3vibvbwoMDp2rMnPl0gk8Pf3h5+fH3bt2sWOHj3Kjx8/nmt0/YvFlEFetoyc+p9+omDLx4eyR2/b32P8eHLElAgOJiJEicpKCgSUTmlFBc2R996j4H/PHvrOykpSbISGUra3fXtav717v/ESSktLOT09vUbl7LCwIPtgY0PdyKdOpeDBwYGygosXE+EwZUqDYwRrrr/+92Vlga+sxDWxGN2eP0d9hZlcLkdJSQnfunVrBsZojt+/T+OyYAFdg78/OfVyOWUYHz4klcq5c4CBAbIWLYLXhQuc1N+/UUKT27MHHGPQEYng5eXFdenSBVFRUdyFCxcQHBwscBxXV+Xx7Bndf6dOFDS0bk3PZfBgWp/KzFl+PimbvvmG1mBt27hyperzjhxBFwA3dXTwkuMwx8YG4kWL8Oi333ArOhqtd+3i7VJSOLOjR6GoqICwbx8UwcEQ29nROK9ZQ9/XoQOpKkaMIJJh6tQ698kYg6GhITIyMho+mx49VPahEQiCgF9OnhQq3N2xpF8/qPv6EtFSi6CpaSBZWUlKsaFDm/w8CwsLWMhkcFFTw67kZGzYsAE+1Vn+3NxcIS8vj8/Pz2et+vYVvIKCRK8OHxaK3N1ZvwEDcO3aNcyYMQOBgYFCRUUFS01NhYmJCSQSCdq1a4dnz57xGRkZgrW1tQiJiURivnhB+9Rvv9EcmjqVCKLAQCrNMTOjbH/1nBZ99x3SzczgFhTE5T16BMPLl3HhzBkhOjqade3aFXFxcQIAZqw8inH5clJCbdigKqX44gtaD48e1bl3Y2Nj+Pv7C6dPn4aFhQWTSqVkS7y86A9AdnHIEJprISHA4cPQ8vYGbt8WinV02KXoaARMny6YmpoiNTWVFS1fDn9/f7KdkZGU1Z00iQgMZZ+LzZvps62sgH37IKbOsaQ0MTUlorFzZ2p2GREBBAUh+bPPoNOqlch6/Hh6r44OZC4uaB8fL5w+fZrVKVkbP5660UdFofirrzDk6FG88vBAy2vXGHr3htzdHU47dwIXLsCzZ0/wK1aA8/fnkJNDc7eoCDA3hyI/n7+bmioMKixswJpaWFhAU1MTZ8+eRUxMjLJMS+SgLA+Mi6Px2rFDZSd/+okCfuX8XLSI/J2uXVG+ezcAYGq9tdIYfH19Rb6+vkhMTERGRgZ3584dISw8HJEaGtBRV+elUimXlJSE+fPnw9jYWGVkTEzIVq1eTURkmzZAURHyc3KQGREh+nDqVDBbW3bgwAF8+eWXYIKADs7OfFcDg8aTTeHhwMyZMDp4EGM/+IArKipCeno6cnNzOalUioSnT/nMfv24RoN9gPaIXbvIRjQToaGhgllWFm/30Uci3LwJALh//z4vCELQ6tWrH73h7e/wJ/FOxv8Ofwrr1q2bJJFIfp00aZK2q6ur6B8Z6FdWUgOchQtpc/kb78HKyoo9evRICAkJ4Tt16vQ/HO2DNqRr18hxrt81eulSCh5dXIj1P3SIpIGTJ1PGeMIEci5atfq/ufa/CmVlFAi8fEnZAUtLanCWnU0OkrLb99WrxG6PGEFOREYGBVQGBgjv0YPvePIkJ/3oIwrKXV0pCHFxoazvsmVUM3j/Pr3/2DGIOnSA2NqaHJCBAynT7upKQZWfH0lBXVyIWGGMasaVJygsXkxyUWtr+j1AAYayrEUpX9XTU0l0jx2j2lVlJuQ/AHV1dSExMZFNmzYNnTt3Znj+nBzhH34gR++LL4i8q7WeCwoKkJaWBm1tbYSGhiI0NFTx+++/c5GRkUJGRga0tLTYwYMHoaamhgULFqBDhw6vr3vW0aGMr7J502sgFovRvn17dv78eebm5vb6IxOVMu5BgyjQ37ePnH93d5LmNreLv6kpOXIODqoGil99RXPyu+8oa791K8lPz54loiEri9bs3LkUYH3+OdXHR0TQfBg4kILSZvY80NDQEAIDA1liYiLf6PGSrVoRITFuHAWIyjXv7EwElZ0d/b1fPwpWlL065HKSUNfOnlVVoXDSJPzm7Y0qqRRhYWG4desWUlNTFS4uLhwAHDp0SAGADR06lBMXFND4VFXR+IwZU/feOI5+7+hI3+XoCPj64m5cHK+fmMj0SkupJMLIqC4h6e9Pa6+6jIkxBhMTE7i7u+PFixessKAAndu3h/pnn1Fg3aULBRV+frQPDRigksUuXkyB/Pz5RER7e9Ozs7SkefCa/crKygqWlpaQyWTQ1NSEh4cHKyoqQk5ODouMjBTu37/PeACZmZkQt2oFq7ZtiWB1cyM7fOIE1ZSbmTVJuN66dQsvX75EgyNkf/mF7qOJeZKfn4+bN2+ypUuXMvWWLVWy7DZtaDxqBw6PHtEz8vVt8l4BAAMHQrNrVzzLzBSKiopYYWEhn5qayufn57MWLVpwTk5OLCsri93lecHm/n3mOWAAc+jTB7wgCOfOncOIESPYo0eP+JCQEBYZGQkDAwOWn58Pe3t7dv36da5jx45Qa9GCrlUsJhvt6UnPqrKS1paBAdWbe3nRc/P1BZYvh2779pAtW4aiS5dworKSxWZkIDY2lg0ZMgReXl7w9PRkt27dgq2tLZ3Koq5OdiwtjeyMvj7Z3tmzaU7WI5hatmzJsrKy+Js3bwqenp5cA1/s4kUi8WbMIBJ+wgTg3j2YHjnCJPPmwahlS6G0tJQfN24cl5KSgqQnTwQvY2OGr74i0mnAACoJkslIJTBqFJFghw4B+/ej0tMTR8rLmcW8eaxV+/ZEXq1YQYHw0KGAqysqCgsRmJyMwQYGMFA2CZTJIOnQAWbff89u2tqivKJCsDE3Z08fP8btq1fx0skJRh07wqRPH6Y5cCD0fvsN4levID1xAup2dmCDB4N98QWwcCHY9u1EMPXpQ+tSUxPo2hWPFApWVlYmKG1AbVQ3V1U8efKEAwAvLy+0aNFC4erqyrHKSupx0rFjXVVJTg5du5GR6neGhoAgQPPVK0Tn5QmadEzu6+drNQwMDFBZWYmHDx8y+dWrGH/+PFz27+fs7e1Zz549G5alALTvT5xICqm2bQFra+zIzYWTkxMcJ0+GpHVrdJ45k3N1dUUPb2+0S0tjFkVFrEHvk/h48k/c3YnkBx2HaWRkBEtLS8gzM2H76afsJ21tRDx+rFBXV+dMTEzQYH61a0fKh4ULqdzjNeB5HkePHkU/bW1OX0cHGDAAr169wvHjx8srKytH+vj45DZr4N7hrfEus/8Ob4W1a9dyampq6zU0NBZPnTpV8x97vB5AksnSUnIy/maywtDQEFOmTOE2b96Mffv28dOnT288w/e/AD09kr7Nn09OkKEhyRJv3qSgzN+f2PL792njSkqiDNaFC/+3152fT52xLV4AACAASURBVHWGVlYkl3V3J4f1m29IVrt7NwUnK1ZQcPLVV5QlnzqVsiYDB1Kd3MmT5KRdu0YdvVesIGn8oUMUoPToQRLJkhJyoJSOwfDhtHlraAA//QT13FxR/IQJaKHszvvihepaCwvp5/Ja5W2//KL6u7LZXe0NvmPHv3zIcPw4yVn/g4iPj2cAsH/vXvg/eCBYxsWxzDVr4Pzbb+CqzyTPyspCWFgYEhISBJ7nUVRUxJQN9gBqcjhp0iQ8ffqUPXv2jI+IiGAAsHjx4uZdhFRK2fKoKFUG7TV49uwZNDQ0BD09veYbGqmUnmNxMc2lo0cpGLO3Jwf8dadQMEbOvaMjBUyTJ5Otk8vJgXd1pYD6t98oa52QQEHn9u10xJSyt4KPT93jqN4CHTt2ZKWlpUJkZGTTLzI0JGKhrExFbtjaUlDl7k4kxLhxpCBROpLx8USaDRig+pxLl6Cbnw8LNzdFr+qGbw8ePEBycnLNSziOY/LSUqZ4/pzKEzIzKWAzNm68T8LQoVRGoFQIaGlBrUcP7phYLCy2t2d4+JD2kOJimgPOztT3pT4ho1BAMzUV3YuK4Pvzz9BRyqBHjaLgtkePxsdm+3Z6Rko4O5NdHTiQgsGNG5t9bCTHcZStJbCjR48iPDwcYrEYsbGxcHNzg66uLpU1/PYbkXhGRhQ49e1bN7iphrq6Ol69eoXo6GjUNBsTBArcX0OUKQOYuLg4ODk50VzV0CBb1q4d7QPdu9NnpKXVJXWagoYGqlq3hmLMGO6DL76Ajo5Og4Hx8PAgKbSSpHv2DD1XreJiYmL4sLAw9v7774sqKytx/Phx4ciRIwCAfv36wcDAgA8PD+e6ubrSXFA+E5GISDlBIIL7jz9oXX35JQXXly5RNvyDD2BUWAj94GDmduuWUF5eDqlUKtTuxaKhocEXFxerrrlrV9pLJk+moM7enux/+/Y0JvV6PmhrayM/P18UHx+POt3eIyMpK+/iQut48WJS7owdC1HfvhB5ecFlwwbm4uIiAoDylBRhzqFDDAoFcPp0/QdH0vr9+2l+jBmDooMHsX37dsgMDHgPDw+6/vnzVb14qs9gFxYtgo6REaSff07j1KsX7akdOkBt7Fi837o19j56xFxmzkS5qSkiBw/Gk+xs3P7kE3Szt+e7XLvGYcoUlcKkd28ivwYNon+fOaO6zlp2sXv37ti1a5eovLy8LiFVjQEDBog6duwIIyMjqNP7RKiqoiaHmzY1LBWKiWn8+MH33gO7dQsj163DhaoqvjFyoSkYGxvDyclJ6DZlClPbsKHm940m0I4cIT/E1pbGYPt2xHp7CxUVFczEwYEITIkEmDIF+lOn0jgPG0Z7Ve3u+c+e0f6wYgUlChrBk6goaA8fLixasoSFhIQgMDBQCAgIEAYMGMC51CcABw1SHYv8GsTGxsIwLU2w6dGDKXsTBAQEVAiCsG/16tUxzRqwd/hTeBfsv0OzsXbt2hYSieSQoaFhlwkTJmhKm7G4/2uhbDh17tzfHugroa2tjcWLF2Pbtm1cVlYWTE1N/yPf+38CiYSckkuXiIU+dowc7Oxscj5WrSIn+fvv/9znl5eTjFZLizIXfn7UQOjOHQoKNm4kB6dvX3Kmr1+nQOLcOXq9mxtdx5QplAWtqqKN7+FDkiyvWkVzRNnN+euvKVBSnl/eowc5wPr6qrOpf/hBpWSoqFA54spzy48eVV3//fv0s2VLVeOpKVNU/z9yJIS9e6HQ1Gx4jNV/CyorSXrcHGf8L0BhYSHS09ORHBeHTqGh6JmVhedz5rDbHCfEpKSwU9XSUsYYRCIRpFKpok2bNiIjIyPo6enBwsICJ0+ehIODAzw8PEQAYEMKBS42NhbHjx9HRkYGbJU1mW9CUhLNiwsX3mhD1NTUUFlZyf6UAkoqVZ3/nplJQdGyZdS5umXLuh33ayM/n7KQCgXJbhMTaa4lJtL8Gz+e5vD+/UQU7dtHJRwffkjZrP793/5a60FdXZ0VFBS8/qZFIgok7OwocCopoX9/8QWRYqtXU1Zz+HAiB6ys6gY7JSUAx0Fy7hzG6+mJ5HI5goKC+NTUVFZVVUWvEQSMHjKEK7a1RXZAgGB97hyDSET24sMPaa3XR0EBqW4mT675la2tLa5fv84uaGjA//ZtGruffiLJ9YULZA9kMhrzGzfoWv39AR0dvPrkE9zv1w+zpk2DuL7iqT4eP6YO6AcO1P29mhoFS0eOUDAyb17DRozNwNixY1FaWorg4GA8efJE2LZtG+ujri54nTnDcPYsjTNARMzRo0Ri1EJAQAByc3NhY2PDd+nSRRXYZGeTrX0NCaGhoYEhQ4bg999/x+LFi1UKmvfeo5+rVlFg+sknZHtrjX9TkCsUiJ88GUwkEnR0dN68yHbuBBYsQN7ZsygsKOCUEnKJRIKJEycynufxxx9/ICUlRcHzPFNXV6dscWO9CBgjVUinThQMKu351q30nLy8AA8PiEQi9OzZU3ltNdf4yy+/KCorK0UNssEeHhQ4Z2UR8WFjQ0RMPb+rsLAQ4eHhonHjxtUN9AWB9sCsLCKap0yhuTpiBNmuBw/o5/XrQEYG5AEBaFVWxh5/+CG8lM8CoPV16hSVdQweTOv14kU6ueDVKygUCkyaNImSFzxPBNqlS6qySD09SP74AynffMPn7N7NtViyhGzPli1kd+ztYRQfj2kTJyIuI4Nvn57OecybB7i6IqdVKwTk53NdAgJoLgYG0roKCaF5oexr0ASMq0tDcnNzGy3JkkgkaFVfRbhyJZUBLF3a8AMfP6b/awzdu0MxYwZDXBxDfHyz90VdXV2MHj2a4fZtUll9+WXjL3z2jGzixYv07/btUT5lCgqXL2f9J09W9TwQBCKlnj6la7CyogSEpSXZ9aQkIqyWLiXisB7S09MREBAgmJ4/D7m+PvT09NCnTx9R7969cfv2bRYQEKBQkkM1MDcnf6p/f1JENNFj6ebNm/ywmzc56OgAI0YgPz8fMTExcrlcvqpZg/UOfxrvgv13eCPWrl3LGGMTxGLxzo4dO2r4+vqq/aObzeXlUaZo/vz/WKCvhFLC21yZ1z8aZ89SZmH4cNqktm2juuDQ0Jp6PJiYUEO+qVMp4F69mogBpVzyyy9VjaliYykzkZNDmQ97e3J+xowhqXF4OB39NmsWbWgtWpBjYmVFG2DnzipH6YcfaEM0NiZniOOoTlmJJ09Uf1c2Navt8NZi4DFtGv2s1bCruRm3pvDkyRNkZWWxnj17QhAEPH78GHfu3OF5nkfv3r25tsqmZv+XCAoiqfft23/r11RVVeHevXsIunIFbtHRQjddXdZKEKBx/DjatWmDdtWOc3x8PBQKBQoLC+Hq6gotLa0GdZoTleUJ9WBvbw8/Pz8cPXoUCxcubLpbem307ElOp1zesFylHu7fv09HOP07EIlI6v7rr+SsHT1KSpnx42mu+/jUnXd795LDFxBAc9vWloJ+Ozt6z7hxNUdjwcKCMkB/sVKL4zgIglC3AVdjYEzVnK9VK1rHgwZR4KzsFXDgANmFlBQiLJQZqS+/pKznwIEoKSnBpUuXhMTERObo6Mi8vLxEiI4GZs2CZOVKxG3ahOCMDPYxqrtidu1KxGBYGAVXtdGlCznWtTJiylryxMREAf7+1Bdj6lSyTzNmkA3q3p1s3vnzRMoEBQGmpnDjeZx59AhBwcHo00TDuRrk5TXalwCASk79+edEAl279qcaOWppacHf3x/9+/dnOxctAsLCGH74QRXoA2Qn612H8nm2b98eQ4cOrWvommic2BgEQUB2dnbDcpmwMPo5YgSN/8aNdf47MTERwcHBfLt27TgjIyOEhoYKiYmJTEcmE4bVVj+9Dhoa4HfvRl67dujr7IwOtRVSoHlbrQjicnNzWWpqKmQyGSxGjYLW65rP2tpSjXxmJhFFw4cT8atUc9SzAbt371aUlZVxCxYsaLxsaOJEyuRu3kyqDn9/IkKWLQM6d0ZmZiZ2794NfX19hZ2dXd1JsH07lX0IAql7ysuJ1HJ3JwVCt25ERCxdChw7hvLevRFjbo6uynWalETKtFmziEzfvBnlYjE4ExPkaGig1bhxKCoqgkQiUdnLsjIiJeqdOsSZmUHX1JSJv/8eChcXiHr3pnvIzCSV365daHnxIlp+/z2HGzdIhbRqFbR37IBYR4eHpSWH2FgiEjp2pOD12rXGu8TXwtPqo2KbnZg6coTKhjp1anxNrV9Pvks97NmzR8jPz2dyuRzD7OyIhPvhh7c7Hjg7m9RVjUEQaG0dPVrTLyAzMxOHwsKE1p068cNSUkS4c4eeJ2Mqtd3QoSTVnz6dSEJ3dyJJxo5tQOABQHl5Ofbv348OHToIndPTOUktFQNjDPr6+hAEoWmneeDAhqenVCMyMhIV8fGc3okTRFIDCAwMLAOwbfXq1S+bMULv8G/gHxyxvcPfjbVr1zIAdhKJZLOWlpbv6NGjtc2aWzP634rDhymrFRLyHw/0AarfVVdXR0xMDEkY/6ngedp8IiLIcQgMJHnt7Nn0Z+BAes2iReRkhIWRU7FiBQUox49T5szHR3VsUcuWquPAOnZUbbYbNpADYW+vkqKHh6uu5dUr+mljo6o1Vx5lBqiaqHXsqHp/bXn739Q1/t9BcnIyxGIxbt68KZw6dYrxPC9IpVIuLy8PYWFhiuTkZDx//hz9+vUTWTaV2f27IRKR0/A34/mzZ0jatQteEgnvIxJx4vfeaxiYAU12QG4uvLy8cPPmTeHly5esWcE+x1G2ZNkyyuK9BhYWFnjx4gW2bdsmGBkZ8cOGDRMVFBRAT09PeUa74OzszAyae+yekRE5a9OmUaC7Zg0Ff9u20TrQ0SEC4PlzCozHjiUHNiGBHHGOI0XLqlXk9DclJf830aFDB8jlcpw6dQpqampvtnkaGmQfHB2pH0X//uT4+/qSUqG8nBxfhYJe/+oVOefVDvDFixcVqampbOrUqVyLlBSyOevXU9ZpwABYZWWBHTwobNiwgSm74vd5/lzoqqbG2I8/1r0Wxihgs7OjLLPqnvgXL14IUJ6ioaurau7n7U1jP38+NdKq83G038TExLw52Pf0JNvYFEQicuijoqic4Ztv/vSRsVxMDPxu3MDtTp3g0a4d6hSHyGR0/+HhNUQQz/MoLS2Fb2N19BzXrOaNTk5OCA4OxsWLF7Fw4cK6/8kYPeP8fJoPEREoMjfH/ZgYxD5/LuTn5zNnZ2d2+fJlSCQSWFlZ8bNmzRK1MDBgsLQkRVkzer6cv3BBkThuHLeoqorh8mWaR7V8gqysLEVBQYFIJpMhKSlJ/vz5czZv5UrRkW++UQybMUPUoPdGVRVl0vfsoXmwdi1di6UlKd38/GhuHD0KaGjgxMWLQk5OjmjJkiWN12YrMXs2zfuoKArWzMxqCBgDAwNoaGigd+/eogZlgdOn0/1kZxPx5OxM16N8nVxO2fWICCA4GNrJyZg7fjzOJyXh4qZNgl1GBtrMnMlw6xbkurqIi4vDzZs3hcLFi1lFbCyGP36MZ8+eCSYmJoJEIqEPzcsjoq4RMqTP7Nns6MuXvHNoKLwKCznm6krk/vr1lACYOpV6RaSlEfF46hQyFAq4/fwzqU2kUhVZb2lJe3ynTg1KGmrD0dER6urqQlJSEtN7k0IuMBCFP/wgXBs2jGdFRfD29hYZGhoiJiYGz549U/Tp00ekNm0acOIEqmxsUFVVhfT0dMjlcujq6goFBQVs1KhRcHBwoHKUnBzVnGgOhg9v+hSLPXuI7Ll1CwqFAlevXlXcu3dP5ObmhiFLloi4a9dITcFxdYPtEydoD7hzh4jfy5cpudKE/VGSXP369ePETk4NSpLMzc1RXl7OyeXyxhv+LVxI861LF7z84w+cunoVMpkMr169QtLz55h55AiupafzpSNGcHp6eoiNja2Uy+VfNW+A3uHfwbtg//9DrF27tgWAIWKx2EUulz8HEAfgGYBsANoA/DQ0NMaKxeJuampqnJubm9jPz09d7U3Sw/92CALJxv4PMvpKMMZgYGAghISEsP+qYF+hoOZwZmbEmhsbk3O3cycxwZcuqc6fNjWlrNuwYZRx2LKFsu5JSZS56N6dgrFWrSgrfvs2BfkGBlTnvmMHyeirqoAlSyjDHhVFjt2KFZRpHzdOdW215e2v6fL8v4T+/fsjOzsbSUlJrHPnzujfvz9bv349zM3NYWhoKLpz5w7s7Oxw+vRpYf78+UxUTYzwPI/s7GzI5XJIpVK8evUKqampYIzBycnp9U3n3hZRUa/tkv3v4tmzZ8hPSIDo00/RQ6HgrQ4d4tC27d+6dnV0dPjIyEhmbm7ePGmGiws5rFu2vPa6evbsCTMzM5SXl7OgoCC2efNmiMViKBQKiMViaGlpCUFBQWzOnDlvV96jrU2O5bFjlIXbvp3W3NKlVHOvrU1rdcYMKmE5d46c++nTa7IrfycKCwsRUH0qR0hISPMIzo4dKRD57DMiBAMCSGofE0NBjru7qo5+0SLKni1fjlevXuHFixecj7k5axEXRw6uqSnZsWpZsqmpKT7++GOWk5ODBw8eIDw8HLctLJheRQWcKispKKuNPn2o3KgaZWVliI2N5aysrBqen2dsTJk1B4fXKnvatWv3+vt/8oTsZ2npmzP2Tk5kM2fOpIDubZUZKSlAcDBM5s5FWm4usrOzVZ3wAbLns2bRc6j+7OzsbAA0Fg3sSXIyPac3QCwWw9LSEunp6TyAhoNVUkIk1PnzOHDsmLz7nDliJ5FISP34Y37ChAkiAwMDZm9vDxsbG2hqaqoGKSamWaoquVyOiIgI0XsLF4LT0iKly8OHdU42mDVrliglJUUpjRcDQL6TE57fvy9KSUlBA3VVZSXtlamp9Fyiour+/9WrNCdv3wa/di0EKys2f80aaL9J8cNx1KB15kz6+65dNZJ2NV9fVFRU4MmTJ1AoFLC2tkZQUBDUfvqJb52RAYNevTiT9etpTc2bRwE/QGqBbdsoO/7BB4BYDKamBnGrVvB8+P/Yu+6wKM7t/X4zS1+qgjQRsYOAHURFxZIbe2+ILbZcNWp6NIkxxfiLudeCJWqMJZYYuwJ2LCBGxEIxKCoICkgVlrIsuzPz++OwLEi1JDG5vs/Dswq7M7MzXznnPe855zqMDAxYkJ8fHAMCYGBggJ82bxbz8/NhaWmJeYsXM3WnTrh48yZutmvHBg8ezPLz82FsbAzWrx/SevXCqc6dxb59+3J2dnbaXHhYWFig/ZAhXPQPP6DTqlUwmDSJ6iU1bkwO+//9n47w37MHaNoUTteuQYyPZ4mPHsGlYm2UXr3oPoeG1rgHiaKII0eOQJIk8HXNo99/hyY/H796eDArZ2e+uKhIXLduHaytraWCggLwPM/Fx8djtFKJAz/9hCJTUzDGYGRkJAiCwExMTJggCLo8+yFDKKDx8ceUQlFR9VcTFi+mQNSZM5V/r1LRfVq7FmAMly5dkq5cucKPGDEC7u7udMJ+/WjNPH6c1gxtC1ieJ2LYzIwUJ0ZG1XdJKoO+vj4MDAykzMhIZj9+fOU6QaDOUqIo1tw+FCA7r3VrRFy5ggcPHsDNzU2wsbFh/Xv14hpYW8OxWzcuLj5eCA8P5xljXy1ZsqSg7pvzGi+K187+/xi+/PLLN2Qy2YFmzZrB0dHRJD8/vzQjI0OZl5fHKZVKfZ7nRScnJ8HV1VXetGlTKtrzT0BMDBmMwcG1F7b6E9CkSRPpzp07Iqrvr/5yIEm0+MfFkZGWnU0bwaxZFM0zNKRo11tvkREQHU1OfnQ0OQzdu9Pf9fVpgxgwgKS0hoaUO2ZpSYaHtsdyxY1Y24ZtyxaKeGo32saNSYavLfyjUpE6IDycIgKPHtG/w8Mpsmdrq4tGdOxI/zY3ryKF/CeC4ziMGjUKGzduRHx8vPSvf/2LeXh4SImJiWJycjLXu3dv1rVrV6xZs0YMDAzkTE1NRYVCwRUVFTE9PT2J4zhJo9FwPM+LZmZmUklJCbt8+TKzsbER8/PzmY+PD2vXrt3ze82iSPnKw4a9xG+tw73oaDyZPh2ODx8iNTAQTYYP5/AnpA717duX3717N/71r39V35P4abi5kWEaE0MEVi3QKg/c3d257OxsWFlZ4e7duygsLETHjh25n3/+Wdq6dSuztrYWhw4dyj1T8dPUVIqErlhBjn5aGkXMLl6kv8+aRc5/8+Z0zRcuUPqLNh/4Jc8pjUaDx48fY8uWLQCA3r17w1eby1wfyGR0TzmOCtk5OlIU//59Wtdu3SIJviAQkQEgNjwcqtxc1mLZMpxv1w4OGzdWq/bgOA6NGjXCkydPRA8PD8nGxobP+fhjiN99B+7Tp1JHJ0ygPGdRhAggIiICgiBIY8aMqX5wfPZZVcKgDNrikBpt3Y+a0LYtKTDqK8338yNC1dubSI3p0+skxERRhCYjAxkLFuCJvT2yhg2D8fXrVfOXAbq/v/xSXgy0pKSk/B5WQXo6kbj1gJeXFzZv3szl5OSgQUXZd2QkEbwxMYC+PkRR5E7NnSv17NCBTS4t5TlPT4CciKoHvXyZHKynWtRVhCRJOHHihGhsbCw1aNCAbvLmzVTkbdeucnWYsbFxpRz44uJiPPj8c7jPmiU0a9as8sP5+Weq2bBrF5FDFdtcaiGXUw0ZAHf19PDwxAlYBASQPXLsGI31p+TvlbBuHaXmXL1K57l/H8zPDwMHDpSioqKkU6dOscLCQmZubi6Nd3TkTC5dwk19fcRNnSr0unKF53geiI8nlZ1GQ+Pa3JyOt20bUFoKw02b4OLqCnz4IdoC4p6PPkJps2ZcZn4+98knn+iiuZ98gjaWloiNiZGOHTtWPthMR44EJ5cLJpLE7969GxqNBmZmZpK/vz+ztrZG4r17+Nfp03hgagp1cTFcBQFc165ka4gijTOASP2cHOiHhiLc318Iu3CBC3ByYpXy7gcOJDVAo0bVSsf37dsnpqens4EDB7K2WpKjGgjZ2WALFuBm69ZSQbNm4sxRo/jExEQuMTER9vb2rH///jA0NMSlS5egr1Ri6owZ2HPwoJCXl8czxtChQwfut99+gyAI+OWXX7B48WK6T6NHk80TEUH2TTVqtEoYM6Z6hdX06YC3N7LHjsU6kuczY2PjqkUA33yTxt3+/bR+urmRimT1aiKjDx8mhUBhYY3F9BQKBTQaDTPg+WrXEY7jYGdnJx46dIgbW6bqCwwMFAoKCnhDQ0OhpKSEU6vVzKB1a7Q4fBhv3r+PLkuW8FAqy+sfudvawtzKik9KSspSq9WBtd+U13hZeO3s/w/hq6++CtDT09vo7+9vVEH6q1/288/G4cPEBv/Fjj4A5OfnS5V6p9YXRUW0iN+5Q8bgG2+QdLdrV/r96tUk55w/n/5+4QIZq2+/TY5zTAxFi9zdyVlv0YKi7K6uJBXUVnC/cEF3zhUrdP/u0IFeazNIKl7rokWUU6dltcPDiWX++WeqJt22LUXDKkrXtHm4ubkUJRJFclx27iSZ6o0bFEGxsSFCwNOT3uPsTBvr37EFZA2Qy+UYOnQodu3axVQqFYYMGcLwFEG0YMECPioqCsXFxbyNjQ0cHR1RVqBKeyM4gIz7Q4cOSTzP840bN0ZISAjs7Oyev3aERkOqjpedQpCTA3HDBiiuX5ce29uz9mfOwO5PJBybNWsGExMT8cSJExgwYED95mhkJP389FO9z9OwrLp5RWciICCAPXjwAMcOHWKbVq+Go4OD0CY+HnazZvGmN2/C4uZNsO+/J0n7mDFkPPbrR47NV19RVDMigoz5Pn0ot1fr7M+fTyqawkKSzH7xBUn7+/Sh+f/NN0TwHT5Mx/vlF/rs7NnkTPbuTY7G7Nk0N7UtmypWeC5DQUEBVq5cWe7cTp48Gc71iWw9Da1j0bQpXefMmURaeHvTOSdPJqm0tTVw7Rq83nkHFrNmYdtHH0FRWoqZtahYSktL8fDhQ27mzJmIj4+XHnfuDC48vOriwRiwZg1iVCpcUKul3Nxc1rVr15oXmQ0baG39+OMqf+I4DhzHITo6Wurfv3/Nxxg3jgjXZ4Aok+HW8uXQW7EC8ZcviymurpKDszPn7u7OrK2tERsbi+joaKG0tJQZGBhIyuxs3iUuDpb5+Qj38KC1GVScq0ohM1NTiia//TZgZobY2FjI5XIJFYrMlUPb470esLW1RevWrcWNGzeyRYsW6Y51+zYpNspIE39/f+706dMIDg+XMtq2lfosX86B52kOLF5cmWTr3ZvSCKoZl1qEhYWJ0dHRXEDFwn/W1lR8bsECkiEvXFjlc5mZmWiSmIj2Pj48e/rY2q4+DRoQaV1DbRCAxt7+qCgMmDRJ4r7/nuH336lTzfLlRNRpZeBPk5uGhjT++/envT8wECCikHXs2JGJoog7d+6gpSgy/sYNYPFieC9Zgvi4OG7vnj3i+H/9i8PQoeTEzZ9P9sKXX9I8mjaN7Ajt/rl2LbxEkWvr5YWcs2exfdQo7Nu3Txw/fjytiQEBaH7oED728GCFvr4wNjaG7NgxWlsWLSq/OaIoYvfu3dLOdetYn2PHYCeXI2jQILjdvYsGYWEoSkwEt20bRAcHGKhU0Od52lsWLaJn8csvaOfpyZ8tLUVhBYUNAJpnM2ZQQMPTEzAyQmFhIeLj43H9+nUxKyuLkyQJJ0+elMLCwiS5XC6ampoyc3NzXi6Xw8TEBJJKhbvffINiGxs8dnKSAiZO5MsUAZKHhwcbVoHM7tGjB/Dhh3g4ejSysrL4YcOGgTHGnzlzRjKiczMAyM/P15FX3t40HiZPpjlWWyqBgUHVgoMqFY2tkSPx5MmTimOIy83NRZW0rwEDyOGfMIHuY0gIKWS0rXKVSrIDa5ijarUakiTBKjW1nJh6Gj169OD27duHwMBAwczMjHvy5Ak/fvx4cBzH79y5s+yyVYC+Plpqz3v/Pq3jZWqyM2fOPqn+oAAAIABJREFUFGk0msVLliypoTDJa7xsvHb2/wewdOlSpqen94WRkdH7kyZN+nu3y3tWFBeTM6ntw/oKIC8vD61ataJd9cEDWpyNjamAip8fyQkPHKD6Ap06USGwbt1oA1yzhmReUVGUz5qdTUZNq1a0YTs5EZtrYkLsbXy87sRjxtDr7Nm639VQTOWFUFpKG01GRuXfazeyQ4eoEE0tbDusrHTtsLQkA0BGXF4eOSSZmeR4nDlDaQbaNjzOzhQF7NiRHBlz8+eqWP0qQBsFVKlU5XLIiuA4Dl26dKnzOBzHYeTIkeUGdUxMjHDy5Ene3NxcM2TIEFl+fj40Gk25E1onNmyg6GodBZIAXUSTMYaCggKUlJSUV0kuh1IJrF+PAhsbRJ84gd+6dmX/XroUsj9ZxcFxHCZPnsz9+OOPklwuF3x9fesOr44bR3NQkmomm5RKcmLatyd5pzaHd+xYqugfFQV89RWc79/HvDVrmNrLC1dcXflWe/ZglyTBJiMDA42MYAxQFKxTJ3IKoqNpzlckGo4e1aUWBARQpFWtpvdmZJAhqO0QUVbAChoNSXqbNSPnTpuPbGpK15qbS9HHceOIIDx7luagXE5Fv3r2pNSA8HColy/HkMhIqd3lywyzZxMxkJpKRVH9/SmX1dCw+nZ31eH77+neNm9Ocz8vj45z5gwRGyNHAmfOgP/1V7i2b4/gFSugp6cnhYSESCNGjOCqU6elpaVBT08P1tbWSEhIYNnNmgno2VNX5KoCilauRMiJE4CFBSwsLKQePXrU7KiXOR01YdCgQTh69ChLSUlBtbU2lEpKh6pnB46srCwcOXJEys3NBc/zaP3OO2KfLVt44fx5hIwaJRw7dowrKipi+vr66NmzJ9+wYUMU5Oai5d690Le1hcGBA+ip0eDUqVO4evVquRJjyJAhaN++PZ3EyopyfQUBarUacXFx8PLyqv4e5OTUO5WAMYbRo0dzX3/9NRQKBaUEzJ5NDkuF1C1DQ0MMHjwYLVq0YAcPHmSuU6fCThRpTFtYkKNsakrKMwMDXXHEIUOqPe+FCxe40aNHV73/NjZEbl+5QsTWUz3DnZyc8N1770kT5XLWsKQE165dg5mZGdw3baJc5ZYtST5dW/49gKKiImg0Gri6ulJHCHd3+undm/a3YcNo/zp6lPbSiuoUPT2K6kdE0JyfN49SLPT1wXEc2rRpQ6S3QgFMmADZunUwDQ9nnWfOREFcHExPnCAlUseOVPhw7NgaK9pzHAfTyEhE7Ngh9vzpJ67pyZMMI0fqlCunT4PT14eZdt998oTsrYrHYAwTi4u5+PbtIY+MhJiZCSaK6N6kCbI++wyBJ06g34oVuN26NZrfuYPiS5dE7/PnWeS4cSjZtYt55OTAdvlyNOjTB0baOh0VMXgw1DNmIO3+fZxycREyMjJ4MzMzoW3btvykSZOgVquRk5PDcnJy2JMnTziFQoFHjx5BqVQKKpUKvvv2cR0MDVnSnDmY0Ls3x3Eczpw5IwqCgMGDB1cd4wMGoHGLFmjcuDGuXr0qBQQEMA8PDwYAOTk5yMrKqqxSAUiZ5OVF6/ygQTWTYdqiemVtH1FURGv9li2AlRVa2NpiyZIlUCgU2LdvnxQYGMgAoEuXLnjjjTfAJSQQadupEwVNtCktWocboPVp/nw6RzVrTIMGDcAYg2bDBuhNm1Ztsc3WrVtj6NChKCws5JOSkiRJkiBJEpo1a4bFixfj+++/l3r16sXK23HOm0dj5sABAEBSUhIeP35cKEnStupvxGv8EXjt7P/DsXTpUjcDA4NAU1NTr0mTJhnXq/DUPwWSRBu3ldWf0x5MFMlofvKEjNAePSgirVKR4VHWcqbV/v28T0wMXZufHzkAn31GxqurKzHWWsnXypV07Y6OZGgzRhEILcqMMwB/Wgu0OvHNN/S979+v/u8HD9LrxIn0XQOfQcnF8xQ9qehkao26wkJi0dVqilCePUtkyvnzpBLo2ZNyeF1dyYhydSXD6DkqWf8ZEEURISEhopeXF6tXO6lngImJCUtKSgIAWUJCAtRqNdRqdf2jsAUFdcrWBUHAzz//LCUnJzOe56Gvrw+lUgkA8PPzg0ajkWJv3mSmCQnwiY6GS8eOSGzVCmfLige9cPX654S1tTXGjx/PduzYwbdt27Zq9KQiBIGMpl9/JSIuMpKi7I8fk8NgZUXOsZ4eRaGyssjptbAgss7RkRzmvn11TtLdu9CTyZAXFCQe/e9/peykJP6NBQtg3Lw5/b1iW6PqnlVyMjlAGg3Nr927Sb4ZFETjf/ZsOt+oUbrPyGS6QlJa5wOorOyJiKDXshaHAMipEEVa49asARo2RKKZmaho2hQQBIbHj+k9WVnkXIwZo4t67t9P5MKOHfT5pUup3sD775OBOmkSOfqzZ9Oc/uILcqjee49k1++9R6TBp59SZLaMQJo7dy7S09NZVFSUuHbtWlhZWQl+fn58RRVFbGwsGjRoIALgbGxsUFhYyITHj8EfOlTFGC/My8OwQ4fgEBXFfv75Z/HEiRPi8OHDeUBHZGVmZuLs2bMCO32atzQ1FW2bNuUSExOF/v378xUrgbdv3x4nT57E9u3bsXjx4qqpIpJEUvR6Ijc3F6mpqWzQoEHw8PCAnp4ejzffBIKD4X/hAo+FC1HaqBF4nqe8ZVEko9vQsPzZymQyDBgwAL6+vggMDERpaSmOHz+uc/a1z/7AAaj27IFarca1a9fQpzqir0GD8mKJdeH333/Hvn37ABABbqZSEen19dfVvr9169YwMzOTdu3axYYMGYIWBw9SjvTXXxOhtHcvkVL37lF+czXOfnJyMjiO07bcrAoHB3KWFi3SpbqVgeM4zFm5kh1PSZGSmzZlMplMZFlZrOmRI8xk2zawM2dqJBgqwtLSEjKZDIWFhZUJXEtLeg0Pp/UjPJzG/4cfUjDAx4dSbuzt6RoDAugZVkwb0UZzw8Npn/3ySzgNGIAkNzcp/uJFdLGwYDA0pDFWH1uQMfTx9+eum5hIyRs2sEYPH8Lw0iWam+vX0/qXnU2KvVGjylNqANDvw8OBdevQZvBgoE8fPDp+XGzZpw/DqFGsEcdhUc+ewOrV6HzyJESlEhkLF3J8XBws3NykW/n5wu6sLF41ejQ6REZCGjKE1rA2bVBcXIzbt2/jxo0bQq6NDR+wcydcAgN5f3//Sl1YjIyMYGZmhqbaGh868Dh6FPjgA6BPHziXzdF79+4hMjKSe+utt6oWoFOpqEbAZ59h0KBB+PHHH7Fv3z5x3LhxnEwmQ4MGDao6+lo0bkyO88yZFMypLtXnp590BYoBIthKS3XjogxmZmbw9/dn9+7dg0KhkJIDA1nxl19Cvn49neOtt4hwvHCB1BEbNtA+A9D66elJ9SSqIR1CQ0NhZGgoSStWMNTSgtajrBhox44d2fLly7Fnzx58/vnnuHv3LlQqFStPnyoooPoQPXsCjGnrKBRpNJq3lyxZUr98n9d4KXjt7P+D8eWXXw7Q09Pb7+vra9ClSxfub90u71khSVSIr2dPHVP6PCgupqiUszMdp0ULMox//JEW0lWrKMK1fz9FoKdMoSj71q3kiKekkKFvYUERi44dkZ6TIwQNGsQNc3RkSEzUnUvrBAOUfwXUq7LxK4elS+ne14Xp06nKcFnBpxdu+yWX61rdVKyAO2sWRQMTEiglQEsGLFpExX2ys2lDtbSkZ9eqFSkBrK3/krSA1NRUnD9/HikpKSgtLeW6VWh/87Lg7+/PxcXFQalUQl9fHx07dsSWLVtw6tQpaerUqazOYpzNmulSLkBOT3Z2Nsk5yzpO7N27V0hPT+c6dOgAT09PpKamQiaTITk5GefPn4epIGD4zp0oZQy/jhkDmZkZ9BISBBcXFzZw4MAX6134gtDT06MIhza/uqSEopZGRhTJfustMqaWLKGxFRlJTm1yMqlwCgspqnLhAhlYRka6+hYVWzxW/HeZQfZ7QgJu3LiBlJQUTq1WQyaTobnW0a8N2dkU5Q4KIqdJC19fGvsdO+p6MCckkOrH0FBX7O75bhS9GhiUK2tuOjvDol07qrGgrc8BUPoRQK3oADJso6KIgMjKovWUMZp3ZmYU2Tp/vjxyj/XrqeOHttUjY9UW5zIyMoKLiwtcXFz4J0+eIDo6mjtw4AD69euHzmWFq5KSkjQ9e/aUAYCLiwtsbGywMikJ7S0sxPYpKZxVhajvgatXMaKwEKZyOcaPH8+tX78eKpVKtLS0RH5+PouPj2c8z6NJkybcwAYNkJ6YyIJPnRKVSiXfoUOHKm2/3nvvPSxbtgxBQUEY8rRzaGdH5Ec9C1+2aNECMpkMLi4uKJ+zMhl9PjcXGDQI+r/9pnMuVq/W5Wg/ZQ/I5XJ88skn2LRpE9LT0yufaNAg4Nw5mBgbg+M4KJVKVFuRe/t2kuDXA9rI+syZM2GXn08F2iIjay2wN2nSJHb69Gns27cPXbp0kfr27avronDqFK1J2dlEiKtUVdL2cnJyIEkSSkpKoF9DbQU4ORFhd+UK7eNTp5b/yeTDD9G4cWPWvHlztDMx4RRnzuDHhQsF8/h4vujqVbH5kyfw8PDgautaVFhYCI1Gg7y8vJqdQ1tbcp4HD6a1Z9w4IrV++onmhbc3EQEqFUn+t22j+W1lRXMyNJSe+U8/gTt+HE1mzOBuXLiAS4Dk7unJvBlDPZvRQZIkdBoxgq1//Fi0iIjgPJYtI1vH2Zme2YEDtOa0bUvOHc9TkGLZMiJBZTIigRYuRKKtLe7Fx7Owr77CJ598Qs9g/nwgIQHc8eOw+/RTIDER7Rlj7ctS1nJycrBWFGHh4YGSyEioFy4Ug7y8OGMrK02bNm1k48ePh/HEibCdO1dnN9WFY8coNWXTpvL8dYVCgf3798PPz6/69LbiYrIfANjY2OCtt95iu3btkv773//C19cXrVq1guVTjnklDB1K9tzw4UQyPN1t4//+j+xLf38KlIgiqSCrsUEMGUPbS5cApZKJJSXSKTs7Zl9cDO+KHUB69qR7P348rcNa0vqLL0iBEhZWJbp/7do1sZ+dHdOfMKFqgclqYGBggKlTpyIqKkqSJIk1KVOJpP/6KxpcuULjctu28oLL0dHRKCkpuS1J0uE6D/4aLxX/Q97f/xaWLl3qraenty8gIMCocT2Z9n8UsrLImP3yy8q/F0XaPK9fp+hRYiIxqJ9+StJWT09d79lPPyUH/Nw5ihBv3EiLVrduZJAaGZHRr+0NnZKik3BqJYAVewTPmgUA8DE05H/++WcMe8Fe7K8k2rUjo13be742aDe72bPJ6K/ooLxMMEaOfEVJmtYoUKloA1coyDGLjiby4ehRUmf8+99kNDVvTlETT09i6f+g2g/FxcX48ccf4ebmJvr4+HDNmzevX8/3Z4S+vj46VEyPADB+/HisXLmSHTlyRBo5ciRj1RgZarUaEYcPix6ffspibW0lkTFERkZylpaWSCszhLTgeZ6fOnVqedEvrXHf2dycVBdGRgy7d6PE3R0eZ87A2dkZ7u7uf63MQpIgXrqEk8ePC/1tbZmNvz+H7dvJiZDJSB5cXExO8vTpNP/19Wm9KSkhJ3XSJJ0ksw71w9O4efMmgoOD0bJlS8Hf3583MTGpu5K0FoaG5Cw+PTYdHUlKuXQpkRPanuIrVpDzl5hIDtZLIoNbtmzJzp07h5ycHM2sWbNqPijH0bwCSPqsXTMr5rtr64d4eFDhz/Bwimq++SaRAGq1jnCoBpaWlujVqxczNTWVQkJCWEhICJycnESlUslrDXOe5zFlyhQuKysLeVOmsOjp01E4bx7efPNNaDQaZOnrg9u7F3j4EJZOTujUqZOYnp6OlJQUKTs7m7m7u8PLywsODg4MXl6w0miYm6sr++qrr5CcnAyNRoOCggJkZmZKlpaWTOtIlClrKiM2tkq7q9oQFBQkmZmZwdzcvOpknTqVnPS+fem5K5XkjK1dW2MRQQAwNzdHeno6IiIiIJPJ4OrqCnnDhsDo0WAXLuDDDz/E8uXLERYWVrX9noFBvSP7crkcFhYWUnp6OrNbv54KrdWxJ5qZmcHHxwcZGRliZGQk5+TkpKt70b8/OUn6+uTENGhABJOeHv1wHNq3b48zZ84gIyOj9s4kTZvSev/uu+TUln1PzscHXVu0oEi2vz8sjh7FgkWL+LzvvsPdu3e5W7duSdevX8fo0aNrbAUql8vh7u4u7d27l02YMAFOTk41FwM1MKCf48fp+YWEkCO9aBHtWyYm5Pzn51MUeMQIem///pQn3rw5MHcuZJ06wbNnTxRFRODu3bvi5cuXOZlMJpmYmIhDhgzha1JzKZVK/Pe//4WhoSFKSkq4RqNHk52Ul0ck5nffUQpdo0Y0V3/+mWymjh2JhNDXp300MxM4dQrdunXjWq9ejYf29oj4z3+kHv/5D+PmzQNTqeiEkZG0X69eTc6xszNCQ0MlmUzGQnkeDVNShEEaDb+wUSMYDhwoK09B0NY52LqVoue1IS6O7umXX5YTrKIo4pdffhHt7e3h7e1d/cMwNqbjl6FRo0ZYsGABd+HCBYSFhYlnz57lBg4cKNVa+NbEhGyK//s/qpFQca0uKCB7BCDCzNu7svoKoOe8fj2tf8eOAe+/j+4LFrCzZ8/iQni41LxVK1YpFa9bN0rneuMN2nPNzGifGDuWFJWffQaA0gW3b98uAOA9nJyeKb3TyckJTk5ODABKL15Eo/R0lNraErGsrR8AUvqdPXu2WKVSzV+yZEk1FSxf448Ek6qrGvoaf2ssXbrURiaTJYwZM8b8RXtP/+2g0VDk7cgRkpVmZBB7u3s3Sb/lcpKAvv02saslJbQIrl1LDKSbGxmTKSnEshoavvRLLC0txcqVK9G9e3f8EVHbvxR79tB9ftYofUEBETAnTlQmSP5KKBQ0Dh4+JCN0+3babH18KDKqr08pGPb2NFbkcooKvYAaQKPR4JtvvoGvr2/1faz/YMTGxiIoKEgyNTXF2LFjmbW1NZRKJQwNDXH+/Hnx2rVrnKlKJbROTuYvu7hIHMdJtra2XGZmpti8eXPGcRzLzc2FnZ0d3NzcKhf7SkmhIlQDB1K6xbRptTpqfzgUCko3GTSIIlA7dgDR0Si1t8fFDh3Qa8UKyI4cIeNMLq853eOdd8ixWLKE/v/NN0RgJSRUKkpUHyxfvlzq3r07unfvXv9BVFBA69aZM2SA1/Rd3dyIzKqYllBYSJHeuXNpzayPgqAOpKen49ChQ8jNzcWnT1e3f15IEhnHAEUM/fwoAqbNba4HioqKkJSUhMOHD8PExERasGBBVUIrKgpF336L7X36SABENzc3LiIiAp+kpVF+9apVtZ/khx+IGF6+HMHBwfj9999FnuclPT09ydzcXJaVlSUWFxdz2tZVS7RjBqBWg92711gY62mcO3cOly9fxvTp01FrHZ7ff6f0CWdnIqzr6EGvUCiwc+dOCIKgAcAKCwt5V1dXsc2ZM6xlaioT9+/H+vXrkZOTgwEDBpSrJQDQ/Zk0CXkch1u3bqGwsBCJiYlSSUkJFAoFMzc3l9RqNTM0NBTNzMzw4MEDbjoAh7FjaexW4/Rev34dCQkJMDExQVJSklBQUMC7ubkJt2/f5lu0aCGMHDlSNzFLS4mA27uXiCCNhvb6sDAgPh7S+PHYbmyMHu+9h2ZmZjp5c01ITqY9rWVLcqQ9PMhucHAg9VhuLqmcKhBl169fx8mTJzFnzpwaCQVRFPHDDz8IWVlZPAAsWrQI9W5tLIo07v/9b1Ix9OpF+dk7dxLJMX06yeunTqU5Xw1UKhVSU1Nx79498erVq9y0adNQWFiI0NBQoaymANPT05NkMhnLy8vjeJ5HyxYtMGrECNrfJIkUjebmtO4dP05ryPr1tC+++y6NuV69UPD111BGR8Nk5058P2MG/M6exSNHR2h69ZJabt+OTr/9xoTISOgrlbSPNmpUXlMgU6NBwooVyP/gA/To0YPupyQR0dG/PwVQtEqS/HxaGwICaq4HlJFB6VT+/uTwliEuLg7Hjx8X33vvPa5G4uXePRoDMTHV/vnGjRs4evQoWrZsKQwfPpw3rM12LCmh77h6tU69qVbTOIqPp3Hbpo1uf0xKIiLk/n3696efVqq1UFhYiJCQEPH+/ftsyJAhrGKnipycHNzavh09du8GO3+e9jKFgtaCiRMBOzucPn0acXFx0syZM5nJzZt07LrmRkXk5wPm5lD36IErkoSz/fohICCgUrpMTEwMQkJCoj7++OPOtRzpNf4gvI7s/wNhYGCwrUOHDkb/U46+JNECumgRFbDJz6cou5eXTpIdGUnMpkxWOYo8eTK9VpQfVpSBv2To6+tj7Nix2L17Nx49eoROnTqhWS35UX8LKBS0ye7f/3wOnKkpPTNtWkMt1ZT/NJiZkdGgNRzeeINeBYFyKjMyKEqQlETff/t2cqY+/5ycKHt7Mr5atqTNs47CTQDlz7q5uYkXL17kvLy8/vS8dXd3d5iYmLBdu3bhl19+QZ8+fbBv3z7o6+ujtLSU69+/P7qeO8fDzw89x42rUvW/WuTlkRzx9m0y5nr0oHv7Z0BbnC4xkbpNrFxJZJSxMeUy7tpFksY33iDjCsDub78VTU1NJZmrK4/69IX38KBInxaLF9PrkiVE/vz4Y70uVesA6uvr19/RV6vJeFuwoHZH3cyMyJbk5MrOvlxOzsIHH9AaOXs25QjXlNNcD9jZ2aFPnz4IDg4W8DLaiwoCOXGtW9O99vOj32/cSGt6YiKRKnWQbCYmJmjbti2aNWsGRqj6pk6dYDJsGN6ysWFr4+L48+fP0+/nzCHHqi6UlpIjBmDgwIGoJh2FKykpwZEjR3D79m2EhoaKfn5+9J7k5GdSgkRERCAgIKB2Rx+gdnizZ9NY/+EHWp9qWaPNzMzwb0rDkgHA3bt3sXv3bu53uRwfL1sGThDQrVs36ejRo6yKQxMejtLJk7Fz505JpVKBMSbp6+szT09PBgAymYw1btwY6enpXFpaGhwVCqnhkSMM06dXcvRLS0sRHByMBw8eCGq1mm/Tpo1YUFAgdenShWvXrh1iY2P5W7duoUOHDjS+ioqo8OWmTRSxXblSp87atKn8mTC5HLYuLsLtTZuYy+bNHCsqon2/USOat6GhtD5p70+TJiSlnzyZns2xY3Su9u3JttB2u6iADh06IDIyUrhy5Qrr169ftesix3EYP348r1Vy3UtIQOvWrcGUStpDunUjaby+PqXhzJlD13fnDkVqT5+m8ejqSte+aBEdWE+P7KATJ4i8GzGCouqJibS/uroCTZvCICQELo8ewWXiRK5NbKxUuG0bs8nOxqA2bTiZmxszjYqCUVwcMoYMgVhcDCE3Fw1jY2mPa9+eUhzCw8mhj4ujOkVffUWRYq1EfsAAKO3sELl9O9JathQd2rdHW47jUj098S8HB1j+8APTBAUheP58qW+vXizhwAG0Pn2aBt3165AkCbHz5knNCgtZ94EDSY6+YAHddwcH+o7JyUTmzJxJ19W5M43v/furEkclJURQjB9fydEHiOAyNzevvd2qnl7NZCqoHodGo0FISAgfGxtbmQR7GoaGRIydOkVrmo0NpUZMmEDE86ZNdD6tCmHAAPpZtaradU4ul2P06NHclStXcPjwYURERAgjR47k9fX1sWXLFkmpVLLU7t3xry5dYHT2LB6rVEiNiJCML19mzbZtQ0ZGhmRrayuamJjw+Ooruqf1dfaVSlKUXboEvbAwtMjIwNkffsDVq1dFFxcXDqBUkHPnzhWqVKqXxP6+xrPitbP/D8OXX345wszMrKefn98/v52eFoJADtnAgbTh/Pe/ZHQpFBQ9PHiQFs5XqD+7s7MzJk6ciKioKOHXX3/ljY2NBQcHB75379415/G9ysjMJDb6RSK1Q4bQz65dZLwkJdUp6/xLwPNkbDg4VO4UMGkSGYIZGXTtpaVkdAgCRVjCwigqM2oUjcXmzem1RYtyYuPOnTuIj4/nGjRoIMlksr+kj6CLiwvee+89bN68Wdy3bx/HGEPv3r3Rrl07GBoaksz63XfrPpBKRRH8QYOoRdx//vPHRfIFgdoytm5NEfqoKJIp2tiQ8d++Pa0HJSWk7LG1JadXm/8NlBN8mZmZOieiLty8SeRBdXnvp04RCfnNN5R7fvp0jYcpLCzEhg0bRD09PVZbvm+V72xrS8ZhfZ6HJJGhvGFDpXoLYIzSbkpKKEXh7Fkau87Oz6VsUqvVsLKyQkFBAV9cXPzihJU23adZs8rfUy4neXX79mQIL1tWr8MZ1VItHwAgCDDYvh0DPvsMR44cwcyZMykN6NNPqZ7H050kKmL0aCK3aoGhoSHGjh2LFStWICwsjPPz86N7v23bM6mCOI6DSV0E4m+/kaptxgx6xmvWkNR6xIh6V/xv0aIFHB0d8ejRI0jz54ONG4ejKSkMIHJQC1VBAaT4eOwPCpIEQZAWLlzIcRxX7Rdq2rQpkJuLoLAwKea771jnCmqD0tJSrFu3TjQ1NYWvry9fVniw0kYQHh4u+Pr6ck2dnRmOHyen7+ZNcnCtrYls/eILSim4dElXjG7zZvgoFPzKlSvx6PvvhVkAD09PuheiSGvVvXtU0+XYMYpY371LufKff05zrkcPIhEqpitoc9UlCTh9GgP69OHDly1DQVwcjObNgzhxIvJGjgTfoAFM3n4bu+fOFTtt2cKZFBcDEyaglbs7Hn71FZzc3Mhmyc6mvcPcnMZ/ejrNSTs7ncT6/fdpfXNzo+eqUFCKzs2btPbY2tL+WbFLiPZVm2bEGBqXKXwZx8FckhgYK3+fbdl7du7cKejp6XFjx46tfoB++ind51mziFQYPBiws0Na9+5QP3kiThw1imPHjtF32bcPCAyElJ6OjN9/x6DNm9nNjz5CaGysqDx9mjk1bsxsJk5EQkICrjo6onOxv871AAAgAElEQVRoKH0HgEjLvXtJbXH4MO3B1O6PyL9hw+i9hw9XXuMkie5NUVG15GtRUZFkZGRUu7Ghr6/r+FMDOnfujLi4OCQmJgqdO3eufQ/p14/Wrh49iJxauZLGoZ0d2QVBQWTPLlpE6pw69k7GGLy9veHu7o7g4GCsX78eACRXV1fR09OTf/DgAY4XF6Ozry8ODxuGJn36wPbqVenHZctYgZERGzBgAF3vpElV6wlUh8OHidC+eZOI/LI0PW2a0u3bt7m1a9eKTZs2lQRB4JVKZTKAU3Uf+DX+CLx29v9BWLp0qbOent7WkSNHGv9PFOO7c4cY2n37qBhely46OZ2BAS3sjNEmXFpaa57iX4GyXCdepVIhLi6Ov3//vrBx40Z+xIgRaK0tNPd3wNWrZEwFB7+c440dS5FStZrY+3oWq3olYGJCUVFtZFRbG0CSyIhLSiIJYloabeCrVtE4nTMHyMyEmVKJVpmZGL1gAWNFRbTB/wVFAo2NjTF//nzu8uXLcHd31xUZKy2lwlAVK3U/DVEkA+Drr8n5vnSp/m3W6oOHD8lxnjaNjC8PDzKcpk2jtaBhQ4rSm5gQCaV1iLQR4RqcnNLSUmzevFngeZ5rVd82nZ98QsZZxdZ3FcEYRZJatqTxvHt3uZKoLC9ays3NFfPy8liTJk0wevTo6iPOT+PRIzJ0jxwh6Xd9wHFEONVUkM/QkIgSgO5rfj5FLuu4HkmSUFpaCqVSieDgYPHevXvlRnN8fDw6ajuLPCu0PaZnzSKypGJnAC0YI4dMoaAoWG3tPOuL0aOBJk2gevwYcrlcsLKyIiM4LY1SjbQKn+oQHEzr4caNdZ6mVatWuHHjBrZu3YrJ27aBa9SIiJt6wsjISEhPT+drJIfj46kGwJgxOgfxk08oQjxqFDmzdREfZXj06BEAgJs4kUjdpyCKIvZv3Ci56+mxEpVKmjJlSs1yaC1mzUKznBzE+PhIHUWRXbt2DU+ePEFcXJxobW2NCRMmcDXVq1AoFLw8JYUIvZgYIjIqtpQ1NibHvGFDcsQr1D25efOmyPM818DamgZ2xe4W2tZx3t66e/PllySZHzOGnMm9e4kQ+L//o+d17x6t9zNm0FyfOxdOkZFwKymRkrZvZ4cLCjD43j3Enzsn5lpZMQ8XF8m+SROu9bZt0Od5jACwQpLg3r695DRgAIO2t/u2bbrrCgnR/btdO3rt14/UOqtXU6R9xQpalx8/JjIiN5fuSz0I1tpmeGFhIZKTk/n58+fX/KZFi2idDw+n19WrgaIiXO/USYyPj+eunD9Pz+DcORg6OmJAnz4iHxPDnT5xAm++8w6uvvOOiKIidsrXl0GSIP/+e+QrlbC1tZXKO9FoCy3n5xNpKUk03wMDqcjf6NG0P33zDT0bDw+d2ik8nFQNFVo6VkRBQQFFtWvD/fvkgNdRj8jR0RF37typX5SiYUNSQSQn0zM8c4YCCNqo/7lzzxykMjExwZgxY/iytAI2bNgwnuM4NGvWDGLv3tAcO4Z3d+8Gv3Ahw5Mn6KxSIaxrV6lFixYMsbG01mpbs1aHdevounv2pLWZsXJHX4tp06bB0tISv//+O3fnzh08fPgQarV6yetc/b8O/wMe4f8ODAwM9vn6+pr84wvyHT5MrYDef58WpaZNq2875+xMUr6MDHpPYuIz5c/+WTAwMEDHjh3RsWNHfv/+/eK1a9e4v5Wzv349bcAVuwm8CGQyMqivXKH8w/79622UvrJgjPK6nzbMJ04kAyUrC6E//SQWPXwIu8RETtyyBbyLCxmTPE8F1tRqkpVaW5Nx+QcVCayIrto8aS0uX6YoTlhY9R+4eJHIgOnT6Zqft+6AINA9O3SIit8NG0Zy1kWLyAncvFknx2zThupsaAuedeqkO049UicAcvRXr14tNmrUiE2fPp0Z1PfehoRU6/xUgpb8OX8eJR98gM15eYJaEKBUKnlra2tJJpMxe3t7adiwYXy9HH2A8j2XLavsqNQHLVtSvqqnJ8n1a8KxY7Rurl1LBu7+/ZUcJq2DHxgYiKKiIgDUwcDExET64IMPcPv2bRw/flwKCQlhjx8/hp+fn7bug1BUVARTU1POx8en9q4Pw4ZRxFutpmh0TZWu7exoffD0pAjni5KDJiaQDh6EJi1NtB0/XucAnDtHjlRtcHOrNzk3aNAgaDQaxMbGYnm3bvh3QADqF2sniKJYc/HGR49oHvbuXZmcYIzGzZUr5BwvXKhzHmuBkZGRpFQq2dL799E9PBwyb29YOThIKPMTb926hcJHj9C6e3d4TJ9et6MTHQ188AGsbG2521u34ttvv4VcLpcsLS1FDw8P1rt37xodfYgi/MLCpCZhYQyff06O+NPBDY6jLjpffUXkxpo15X/Kz89HkyZNMGrUqJqvs0MHnWrr+nV6zcykgEHPnhRRnz9f12ouK0v32TJixHPPHgYAHgDw+edor0t1Kh8giYmJOBcUJMjMzDgfH59nZ3WPHiVCfMECeq5BQaTmSE2lSHZkJJEA5ubPfGgt0tPTYWRkJMjl8pqdYWNjIl3u36dIe1ERRCsrPJ4zh5v27ruwt7cvT1NKSEjAbQcHznnuXMxLSgJbtQoKY2Ou1NMTYWFhGPXjjxAYw96AABgYGKCgoKBykVpvb/qRJJKbt2tHxHJiIqkvfvuNric6mtbdQ4doHdu3r0Y7QqPRICMjo3w8VwtnZyJ86kBqaqpoamLCUFREY0atpj0+L48CVA0a0P+fPKGihi1akJJj/Xra60NCKF3i7l2qU6JQPFfaW5s2bRAcHFwpNYHjOOgPHUp76LJlwNy5MJozB/2XLGHQ06N7lZFR/QHPnycVwt27dP22tjV2XdL6IF26dAHP80hNTY1YsmTJgWf+Eq/x0vDa2f+HYOnSpU319fXbent7v5pNw18GgoNpwb1/nzZzG5vaDVYtGjUiJ8TWlhb9mTNfuSi/FiqVSlIqlbVvOq8SFIpKFWpfKry8aOPJyCCj9cSJektP/1bQ18ePx48LGRzHd58yBY2bNAGvrY48YwYVeisoIGf23j3qFGFsTNG5xEQyYHr3JoNASwb8UfUOjIwq9Z4uR3w8ycM9PXVVwOuTgqHNp2/Zkgw3Pz/6blOmkHFx9So5fA0bUkShWzf6e1lnCwQEvPBXEkURW7duFRo2bMgCAgK4ejvcEyfS2lKx73xt6NULe1esEEru3eMXrlmDkogIyN3cni1PJSKC1BJxcbXLyWtDv341O85aMEbr5cSJROSV9blXf/ghUtLTcezYMSk/P58BQN++faFQKPAmqVh4gPKWO3TowEJDQxEVFSVev36dAwCO4/hmzZrh2rVrCA8Ph4GBAWbNmlXZmFcoaKyvXUtrvqlp3e0BLSxI7dGwIUU1n1dNUIasIUMgLl3KVWqNFxVFY7SGAl0AKIpaWlqvc3AchxEjRsCvuBhRO3Yg2M1N8m/Tpt7rvkajqZ6Uys0lkrBfv/KWV1Xg5UX32d+f5lkdY2nixIlsx44dUKlUaJmZidzbt/G7nl75taampopGZmZM/6kIX7WIjaXzBgWhkZMTPvzwQ6jVapRFcGteuEQROHkS4scfI6NjR7DBg9Hd17fm83TqRGunk1MlKbubmxu3d+9eSRRFVqf6QIvISAouGBrStZua0k91LdrqAVEUsWXLFiErK4v39vZm3bp1qz/BqMW+fbROzplD3y0igtJMAFL97NhBJISPD6U4fvvtc+0L6enpYo1tCiti1iwq0qfRIPrePUTMnSu1HTSIOZYpSbjBgwEArq6ucJ0/nyLtM2YAubnoZGICLF6Mrl98ge2lpaK9pyc3z9cXW7dulQIDAzF48GC4ublVzqlnjAhlgJzOrl1p/5DLyU7UKlvc3WmNrlhXRRRpfypb2wYMGMDvX7QI29auxcRx4yCLjKTUIC2p3aMHEUeJiaRSKyqiNSori+aOJNFe9eABultacjlZWcAvv9Ac69uXHPycHNrHu3alfdTenjqKGBuTGsLdnQim4GBS/XXoQN/B05MI5c8+o8+vWkVkwMCBlb9TBTx8+BA3b96URFGsfj0ZM4ZULNu2kT08bx4pDPr0qdoBQK2m+zV0KCkPailSqtFocO7cORQVFYl6enoSQO321Gp1PQz11/gj8drZ/+fA28nJSc1x3MsvH/9X484dcmLmzCGW+r33nv0YnTqREbZiBS3cz9gS68/CwIED+R9//FEKDQ2Fn1Z2/KpCoyGH4MIFKozzR4DjKCrh5kYbZG7uy5WEvwIQRRHZ2dmcv78/qrRAMjXVOS7aPLpp0yjynZtLxseDB2TUZGfT5r9qFTmE06ZR7qqtLeU7OzpWis4+F0JDqa6CFqmpZPTMn0+G26RJNctGb9ygiIK9PUX+P/uMDNZff6WcVJ6n6+vZk6IHlpZUvV+Lfv1e7NprQEhICBQKBT937lxU5+gfPnxYksvlrK+2arIW48Y98/0MCAjgV6xYIT3+/HPm6OZG0ZwRI+qvOHr7bTLGylomPRemTKE0i19/rTtSVZarfnDNGqnT1q3sYkoKFLa2omuvXlzfvn1rL2gFwM/PD9oCdPfu3YMkSWjRogVSUlKQlpaG+Ph4YfXq1byrq6uglZvigw9oPPv5ESlbz77taNmSvtewYeTAvkDR0xRLS6hsbUX98+e58ur43t70rGorHpqURJLht9+u97ksiorgZmKCG2lpz0TwGhoaSg8fPiwvggWAiLEPPqB7UZOjr0W/fkRgvPEGpZZMm1ajKsHe3h4fa1sijh2L0KNHAaUSKpUKBgYGMDc355CRISItjZW3UKwOSiU90xUryCED1VCos45CXBw5XmfP4uRbbyFbXx9vPD0fn8aGDbQmKpVUqb6MGHRxcUFpaSn77bff4OPjU/sxtDh1ihxoT8/yQp4vglu3biEvL49/9913YWho+OyFafLyaIxduqRz8JctI+d15Ehy4DiOyIjz50mZs3IlRbqHD3+m1LDs7GyptLSUCw0NRa9evWqe83I5jaN//xtPJkyQ9Nq0oY4yBw/S+paURHuDoyOtX2vWULAmJISc2OPHwSZPhteoUdzj998XzXJyuIULF/JRUVEICgqSrl69Kk2bNq36kzdoQE51aSmN/48+IpsxPJyk/HfvklO+dCmle3p50TyeMgXIzoY8LAyTdu3Cr/36Ic/ODg3nzCEVz5YtdM09elAKVoMGur3KxISIJDs7+u79+gEWFrh96RIe5+eLXjNn1v1cHz+m5/jmm5SOFB1Nzn6HDuRcM0ZzGqDfadNMPv+c9vgTJyg15+FDSjdp1QoYOxbR+/YJ8aWlfKdOnWoOHE2ZQikQt26ReuXuXSLqv/hC1yFg/34icbKzSYlQx3ofEhKCGzduwMLCgmvUqBFSU1Oh0WieLFmy5FKtH3yNPxyvnf1/DvJUKpX4V1/ES4U2Z3v6dDLikpJeLH9ZX59yoySJNu1vvyX29hWChYUFRo8ezXbu3AlfX1+80rUXZLJKhVn+MBgb06b75AkVRYqMrLGl0N8N2hZMcrmcc3qW+8jzZLxYW5PhUhFz5tBzKS0loiwpiar7chxFxm/dorkwYQL9rkkTcsDryu2UJCqeOGIERSxiY0kiO2QIOQ3alkxqNZ3Px4fIgIULyVB//30y9FavJuLCxYX+rZXYrlunO9efXEzT3t5eMDIyquLBhYSESPHx8Uyj0eDx48cYNWoUFSk8e5aMvGeMIHMcB0dHR+x69AhTMjLQaPNmciIGD67dkDpwgJ71jRsvp2hlRARF/uohS7148SJinzxhsVOnwsLUVJwfGEgXUM8WcVo0r9AtoKxeCby9vXmFQoGNGzeyiwcPij2Liji2Zg2ptxYsqHdbvXK0a0fRJwMDGufPuU4oFArILCw4bNqk+548T3nAZ8/W/N179dI5X/WBKAJvvQV++HAUb9iAlJQU1LQOpKenA6ACfyYmJujVqxcfFBQEa2tr6OnpgWk0aLZ/P5ivb/0VL0ZGRPosXEjkSLduda8DdnYY9fXXWDVvHo4dOyaMGjWK12g0EsvKYnWS6PPn09qzdm39ri87mxzaTZsoZWf/fiSuWye5NGlSWQ1SHRo1ov3+4EGK8E+YAPA8MspkynZ2dnWfX5IoajxrFu13jx6RNPsFoVAoYGpqKj6Xo5+aSqRpWlplhaKBAREoT38va2td+8FFi2itt7Gpd8eN/v3781euXJFiYmKkmzdvin369OE9a3rOHToAs2fDYuRIVlJSogEgQ2Ag/W3aNJrXFy7QXr50qU4ZYWpKipnCQrT28kKJuTlLjotDUwCdOnWCi4sLW7duHRMEQZe6olDQ2HjzTSK2nJ3pmBs2UHqToSEFBjZvpvdr247q69MeBZBsvQzXTpyQUs6dk6yGD+cwciT9smLdhKNHaY+rpXjdnTt3EHP/PiZPnlz3c713j0ivd94hZd4PP1C60vHjRKpPmkR7olbCP3y47rPJyfTapo2O1FQoSHGgVmPA++/zjufPo11UFMPGjVTbZdMmSoWrmCI6bx6pHrp2pXvRuTP9e/58eiaffkrPq0LRxuqgUCgQHR2NGzduoE2bNhgzZgxEUcTKlSuLJEkaXuMHX+NPwyvsSbzGMyIhKytLT5KkaqNTfztMmkQbw9mztCi+aESyIrTVp729ySmqob/vX4UmTZrAyMhIOnLkiDRy5MhX58IqYu9e4LvvSDL7Z8HSkjbsZs2IxZ4//4VyEf9qlJSU4Ndff5UEQeCmT59ef0lpXTAw0ClXtIqLefPIcNVKpOPiyGBISSHj59tvdRK+rCwyijp1okhGw4Y0Z1QqMn6uXiXyZfZsGgM7dtAxV6wggyglhWSGdnZ0/lWr6Hhnz+quUdsq6hXA/fv3BR8fnyqO/tmzZ3Ht2jU2efJkCIKA48ePS1u2bBEDAgJ4+YYNVFDtGZz94uJi7N+/X0xLS2OCIGDTpk1os3ixOGLwYI7r04fGdU1t+g4cICl7bbLlZ4HWgXn8uFZVQUlJCc6dOwcbGxu4u7tLv/32G5E8T55QBE2lIsLmBfYcMzMzTJw4kYubNUvKjouDpacnZFOm0Dh7nu4NrVrR+Pv8c3LynqO2hYmJCWLc3QXfjh35cqkuQLLaa9dqdvavXaMI6smT9TvRpk3A0qWwSU+Hqakptm7diunTp0NfXx+ZmZlwc3NDfn4+fv75Z6mgoIAxxiRBEJhGo4Genh54nheDgoKYTCYTux0+zOcbGEjtjh1j/LOsJba2VPxs8mSKgK9eXXutC3NzZLVrh2YGBkhNTeUkSYKpqSkeGBszZZcuqDFGr1LRuWor9KaFJJEM+vhxUh7s2lUxhUu0sLCoW49+6hRFLgsKyKFJTgZcXJCfnw8TExOxadOmdd+k+Hgil5ctozHv4vJS6se4u7vjwoUL3N27d/HMLZKnTiVnfefOyr9ftYrUdsnJ1atPevSgdMbgYJobb79NKpg65q5cLkefPn2Yr68vrl27xp08eRLnzp0T5s6dy1cJRpibAydPwmrPHhTzPKfRaHQBi59+Kk/FwLBhtN799htdryjS+mZiAmnIEJySJNapQwc0Levfjvx8NExPh0KhgOXgwaQM4HkiENLTqX6LjQ3N9eXLKSq+di3tOxER5KDX0eXk/PnzzMfHp/p9OCaGxmQdNWhCQkKEXr16cQ4ODrXf1Lw8Kii4bJnumOPHU7FVMzNKg4uPp3353XdrTrMxMyPnHKAaHaB6Ksu+/BL/btuWCA/tZ7dto/uhUND9KC6m/Rug9wQG0qsgUKHHBg3o87UUPS0uLkZqaioOHz6M4uJiuLq6YmQZURIbGwu1Wn1nyZIlF2q9F6/xp+C1s//PQaIgCKV5eXnGlnXlY76qUCiIoZ0xg5wTW1tabJ6j/VOdWLiQXr28KAfviy9e/jleAOPGjWM7tJWxX0X4+pJE/M9G8+YUsT54kJzTbt3+/Gt4AaSkpODIkSOCKIqcUqmEsbEx/P39WZ0y1pcBxshwateualGud9+ldAClkgiwpCSKBJWUkFF2+TIZVTExVATq1i16Bt98Q4aLJFEUYOlSMsIiI3XHfoULhl64cEHMz8/nKxrcGo0Ghw4dwr179zBlypTyYkPTpk1jO3bsYCv/8x/w7dph8KBBeDq+JYoioqOjERcXB41GI3l5eTFnZ2fs2rVLTEtL45o0aQJvb28mk8mQkpIiJiQkcEFBQdKQn35i0GhIwXT+PEW1AYpKZWaShPRlIyqKlE2pqZXW2NOnT0vR0dGSj48Pd/78eVhbW0vjxo1j6enpDIBYnq88fDg5VA8ekAxUGw17VqSlwe7rr2G9bx9bu26dOGbGDGb33XeMPeXoPxORPXkyGdGRkTR+69vOsAwcx6FUJiOSxcaGpLIAPReVqnI7s4owNHw2Z3DGjHJj/91338XXX3+NO3fu4OrVqygpKUF8fLz46NEjZmVlJc2ePZtp23GKoqiVU5Nn8p//8OJbb2FtWpqUHBIijhgx4tmTs3/6iYi7desoit6kSY1vdd61C9YhIfj+8WMWExOD4OBg9qa+PoyUyuo/cPcujbWoqLoJ2qgoau85cybJvJ9yNjiOYzExMVLXrl0rPQBBEMAY08nMp09HeUrBnj10rP37ERoaKjo7O7O0tDTU2uYyLIzWu8hIWu+iosheKCvA9yIwMzNDv379sH//fixcuJDUQvVBYiJJq6tTPi1dSuv1kSPk2Gk7wVQEY+RItm1L64qPDzmU9Wi1pqenB29vb9a5c2ds3ryZ7dy5U5o0aVJV59jSEo6nTsGsQwcuODgYQysWzNSqy6yt6fyXLtF+Eh5OBHSjRoj395eaKJWS39ixHIyMgIwMPJw2TRqXnMws168nJZmTE0W1y9Qu5UU5BYH2JbmcxtutW0QaffhhnaRG06ZNpdu3b0vdu3ev6u3v2UPPv5bUyp07d4pqtZpvV1fBy99/p7F96FB5KgsAmhdTp5LT7eBAc+DCBVrLli2rVyFNgLonMMZgZWVFKQtdutAfIiLoVdumFqBxJElkb3/2GY3t8HC6r1u3kuJMSwr16EH3QduNgOdx//59HDx4EPb29sJ7773Ha8eCKIoIDQ0tUqlUr3P1XxG8dvb/IViyZIn03XffJefl5Vn87Zz9Bw+oVcrKlbSA+/g8d+GbZ0ZMDLHB335LG4i//59z3jpgY2MDsawd0XO3rvqjsGQJLfzPWgn8ZUFfn5wiSSKZ7hdfEEv+N8Cvv/4qNm/enOc4TnJ3d2fOzs6vhhJHT0/X0cLDo/LflEoyMnv1IoOpcWOKxmgN1KcjTH8w8vPzwfO8rh3gM0Ababp06RKuXLkilJaW8jzPY8OGDZKrqytzdXXF2bNnpcLCQubv74+KnU0MDQ0xc+ZMThw8GFkyGTYDCD13TpAkCTzPgzHGFAoFp6+vj3bt2kkqlUoKCgpiKpUKLVq0kObPnw8LC4tyQ1KSJC46OhrHjx9nfn5+9H22bKGq7wsWEKmllZv+EfDyosjpU5Hv69evs5KSEnb69Gm4u7tLI0aMYABw+fLlyv3OfXzoJzyc6qh06UIG67NWjk5IABISION5/PvyZW6fp6f0ODZWchUElpmZKXTq1IlPSEgQ4+LiOAMDA1hZWQkuLi7w8/PjASCvrK+9xdPFO52cSG1y82bN3SNqgJ2dHfLy8vitHCe2vHgRSY0bszZt2rCOHTuSo7Rnj66dXUV4eBBxVh9o2wpu317+KwcHB4SFhcHBwUEYOnQov2fPHsna2pobP348e7qqdjl++AFISQE3eTIcL17kiouLny+dj+fJ2di8mVJ1QkNrdsw1GhiuWgVu1CgEBwfDw8ND6iBJrMZnHx9Px67N0c/Kohoe586R8qd372odtNGjR3Pr1q3DzZs3AQBRUVGCQqHgioqKGGMMjo6OQteuXXlnZ2cYeHuTo/fBB1D17g11djaKioq47OxsxMfHQy6XC40bN+aHDRtWOWVOkoB334U0ezbi79xB0507YTRuHBHcL4mY7dy5My5fvixERUVx3bt3r3sTCA2lfe7Ro6rdBwBgyhRI+flInz0b9woKpPS9e8WSkhLI5XIIgoDu3bvz5eSGszOROYsWUWeG27eJvKuH3cXzPCZMmMBt27ZN2rJlC/T09KBWq8XWrVtzNjY2sLGxQd7w4eASE5GWliZC14WAIJeTc+7gQHO/f38ac5KExzt24FRYGBs/ahRjp08DDx4gMyYGh3v1Yh999BF9vqaizBs2UFX+VatIDaKnRwq3H36gWgZ1FPflOE7ka2oB8e23NCZqQGZmJpKTk7l33nkHxrWloGVmUkDr558rO/pa5OTo2qpqUwYKC+nZ5+bWSjboDpEDAwODqvddC57XpRrNnUsE0apVpMITBCKJXFx0doAkEUmTnk5pe5MnkwLw4UO4X7sG+zfewMUhQ1hR584wDQwEtmzBrVu3oFKpEgGE1nnBr/Gn4LWz/8/C3ytnPz6epHFZWfQjCPWvbP2yoN24FQr60WhoYfuLZf0ymQwDBw6UgoKCmEKhoEI3rwoePKjqEP4VYIw2/m7dSFrcpk31RtArgtTUVKhUKm7QoEHQRuj+FmCMHMLMTIpqAlQAacWKP7WrRWFhIYKDg6W7d+8yxhgaNmwo9urVi2tVS4705cuX8ejRIxQVFUnZ2dlSUVERZ2BgIKnVajZw4EBeJpPBwcEBycnJ7Pz589KdO3eYra2tOG7cOL6K81gG7vPP0cjAAO84OyM5OZnneR4FBQUQBAFOTk5wdHQEqCgSGzhwIIqLi1Fd2yrGGDw9PREZGSmdPHmSjRw5kgi0t94i5VFgIN3vP6qzAkDGcLt2VCTLwQEpKSkoKSlBu3btxKFDh3KoUNzJ0dERMTExqCTNBUh6ev8+reEtW5I0vWIRx5qQlkYR5JAQyrPfvx/6Bgbw37CBXY6KQlhYmChJEr9//34A4Pr27YsGDRogMeJ8S+0AACAASURBVDGRDwsLQ3Z2ttCqVSv+8OHDkMlkMDExkdzd3Vnr1q1hb29PJNqaNZT3vXMnRanqmfbj6OiIefPmIT8/n1N+9BGSg4NxKTdX7NixI1dtqzct4uOJuK5PukVyMilo/p+97w6L6uq+XufemWHoIIggVYqiooICdrEkInajsWB/1fyM6TFNjRqSaKrRqMlrYo1Go7H3GmxYwQrYsICA0jsDzMy95/tjg4AUQbHk/VzPwzMKc/u55+yy9tpl1poRI0YgJSUFDg4OoiAIePfdd6t/+OvX0/iYOhWwtkZcXBwaNGjwZHPLpEkkNlYyFivLEDdqBPG33zDT378k6MewbRsphD+Mzz6jOuGqSne0Wpq/J0+mDOLff1ebhbW2toafnx/279/PBUHg3t7eYsOGDWFqaorQ0FApLi5OTEpKgomJCZ/Srh0T/P1x78MPcfDqVXgOGIDmM2fKzZo1E2xsbHD8+HHxZHHGc8iQIeCcI+bqVcjz5vE7774rs/r1xTMbN2JkfDx3f/NNhqtX67R0rFWrVmJUVJT8SGc/O5uES8PDH9gsnHPk5eUhLS0NGo0Gmps3kbt5M7/i6orXtmxB9o8/ihYWFsjPz4csy3zVqlVo1aqV1LlzZ9HMzIzucb9+9MxmzKDgyj//kMP/CPvHzMwMw4cPZ3v27JEcHBwEQRCE0FDy6xhjsDI2lkesWSNsGD++8lKF996jcStJFOCMiwM++gjb4+NlxzZtBFsvLwoqb9qEep06wX3kyOrZDykptC8PDwrClQSdGKPSqGbNStmcVcDV1VXYt29fxS4Nq1eTM1zSgrGK+yFJUvVCk8ePU5Y8LKzqwMOhQxUZk337UlLqu+9ovnhEkiU9PR2GhoY162cfH0+lEDNn0jNZvZrW9u+/L63tX7Kk9PslrUe3bHkgFmj8ySdgCgUO/fyzNGjHDpH//juOHj2aV1RUNG327Nk1O4+XeOp4cS3jl6g1OOfGoig+yHQUFBTAysoKNWqb8iyRnk41gf/5Dwm6/PLLk/dGflJ88w19BgeTcXjgwPM9HwCtWrViVlZWWLlyJdzc3KoUbnqm2LWrXCbquWPsWPp89VVaFL/77vmeTzU4ffo0XF1dJYVC8e9qj/njj0QLvXmTDPusLKKa379fLdW3LlBYWIiIiAicPXtWysvLExUKBXvzzTeh0+kQFRUlbN68GZMnTybKYjH0ej3u3buH2NhYHD9+HI0bN5asra2Zj4+P4OnpiezsbKZWq2FWJgtpZWWF1q1blxjcVT+fDRvIkAwKghmo9rY6CIJQLQOhOBOJtLS00l9yTlRJE5PSutTvvnv8VnvVwcCAWDrFQRxdMZOgV69eFaz9Fi1a4MCBA4iMjISPj0/5P4oilV398w/VhU6YQM5DZW0aAbpGWSaKvbExZXNPniTDUqlE+/bt0b59e6GwsBAJCQlQqVQP5j9PT080a9YMGzduFK5evQqAnOSTJ0+yqKgo6ezZs4KtrS0fO3asIAgC1Z6uWUPU1VoEk83MzGBiYoJ9soyusbGwXbuW7sno0bQ++PpW3MjJicqLagIPDzL8y0CtVtd8nj9+nOqvP/vsgUhqcSb3yQOJJWJn48ZRLXWTJhUd8Js3qZvE+vX0f4WioraORkMOzKRJlR/n9GkKxFhYEP28huUWvXv3Ru/evRmKg1FarRa//PILt7KyEj08PPidO3dYTk4OW+7tzbXbtnExJkbobm+PRvv3Y3V0NL906RLGjBmD06dPw9bWFjdu3EBeXh4uX74s537/PWsZE8OyAgLE7NhYybigQERWFovOyYHdqVPQWlribHq6ZGFhIfj4+LBHCgVWA39/f4SFhQmhoaGoX78+dDodMjMzkZaWJqWnp7PCwkImMsbHzZ0rXO/bV77Tq5eQfegQcnNzuUajYYIgwMDAQFYqldz17l32yokTQtfVqyGcP4+Gr7xSloXAMjMzsXbtWly8eBH16tWTR48eLZiYmJBj/803NI6mT6cEzLffViu8K0kSsrKy4O/vL0qShAsXLshqtZp17tyZ+fv7Q6FQCHJeHtpkZ/MDBw7IHh4e5efUrVvJOf/iCzrmnj3AG28g38FB6Nq1K9X1jx0LtGmDnN690XP3bspAV+bwL11KZTYLF5LexMNlY4MHU4nAI9CqVSu2Y8cOHD16tHxypVOnRwZc1Wo1zM3NpR9++EFs166d1K1bt/IbXL5MwfGtW6tnGHz9Nel+7NpV/vctW1LrvzNn6J7NmlVlQCYlJUU2Nzd/tI1x8yaVCfTvT8HJL7+kgEZNyjMFgdYnAOr33kPH778XMk6eRM6NG8hKTERubm4OgL2P3tFLPCu8dPb/hyBJUv34+HgcOnQIoihCoVBwzjkbO3Zs9bVpzwqyTPWhrVtTDWpY2NPNWj0OFi8mJyY2libommSoniIcHBzQuXNnac2aNWKTJk3kIUOGPD/KQVwclTkkJNStYGJdoKQG7euvyTh9QcoxSiDLMm7fvv3oDM6LhsxMqsUv2+7SwoKEEpOSiNJ86FDNW8c9AlqtFv/88w+ys7ORmZmJlJQUGBsbw8fHBwEBAeUyyra2tkhISJC2bt0qduzYEWfPnpWTk5NRVFQkKBQKWFhYyIGBgfD19S03ydjY2Dz+CR48SDXclWU7HwOyLCM8PJw1a9aMfrFiBY3h27cp667RUI2nKBLzqLYU+Zpg8WJg/Xrs2b9fikhNFRs2bCgbGBhUmGcYY2jXrh0OHz4s+/j4VD4PNW9e2u3k3j0yspXK8gr1qalEGT18mIJIBQVUtvD77w8MyBKo1epyKv4lcHFxwdSpU1lqaipyc3Ph6uoKV1IXF4tVoPmqVat4QEAA02g0MJw/H+52dsBPP9GxasjckmUZ593d0WX0aAhJSeSMarVkbAcHV8zwM0Zr3KOg0ZDgaGxsRfX0muDcOXrvpk59uOMAd3FxqZs5pnlzci4GDKDAxvTp5QUTO3QgB70Enp7l+37fvUsBg1OnKgotxsaS89O6NWWWe/V6IpHHK1euQK/X8zFjxjAArLCwEMeOHUPrDz5gorU1Y15esIiIAP75BxMSE8U9Gg3WrFkDWZbRvXt3bNmyBX/++SdvmZXFM1q2hN3y5WyElRUAiFfWrkXWpUv8xJEjUtsTJ8QsAwOWZGIiJiYmSsePHxdbtWole3t7C3l5ebh9+7Z85coVptPpmCzLEEURSqWSGxsbo0mTJiwnJwdpaWnczc2NCYKA8+fPSwYGBuL169elqKgoXhwcVNSrV0/09fWFubk54mJi2Oa+fRHv6Cjg2jVYWlqiT58+zMnJqYQyToO5pBe7gQEJpSYllQvGWlpa4u233xZlWcbq1auxdOlSPmHCBPYg6GluTmyiVatoPV26lLK8xe8k5xzx8fG4cOGCdOXKFVGhUMiMMSZJElxdXYV33nmnHIVdmD0bLSdMYGdjYysaeQEBNJ8BkK2scN7DA+rTp9F9+3acVathEhsL++IAkebHHxE/bhzqu7uTzVhMf9cVFeHeX38hkTH4NG0KQzOzci2VJUkCAIiBgRSc02iq7fKi1+sBoDwLobCQKPQ1KFl87733xIsXL2L79u2iv78/jEtELtevpyDmli2Pbhs8Zgy9E5XB1ZXW3nPnaE3+6qtK7efk5GRub29f/XGOH6d1ZtasUt0jV1c6vx496Bg1KR/lHLlHjiBz+XKEjhmDSebm2LV/f75er/929uzZ/y6m8f84Xjr7/yMICQkxAmB57Ngx+Pn54ZVXXoFKpWK7d+/Gpk2b+OTJk9lzzfD/8QdNULdu0UTyImSpK0O9evQzfz5l8Z6zsw8AXbt2FT08PLBs2TLB19e3Yi/2Z4GiImqblpX1ZO0PnxZKxnZREVH6dDoyxF+Qc42NjUVhYaHQrrI63xcVGg05NxcvVt5OzMaGjHRTU3LYnrCWNTQ0FMePHy8RF+I5OTksKCgI/iQwVGlU0M/Pj4WGhsp79uxh9vb2fNiwYaKlpWVJW666DYwVFJABXIdjijEGe3t7XLlyBVuWLeMDhw9nQtm50ciIsp8AOYUzZ5KSfh1iz549vOm0aUzdqJEYMHs2AgICqrxv7dq1Y6GhoSw8PBx+JZ0eHgZj1E4KIPrrDz9Q8EIQKJtnbk7tIZ2d6T19910K/tayTZ4gCGjQoAEaPFRnLAgCRo8eLSxduhR/ltGTMFco5BG//CKEXbjArzRuzIyMjCS1Wi3k5ORAEAQwxriRkRG3trYWLS0tERgYiPv370NSKnFp7lx07N2b6M5OTsC2bZWPg6ys0udVHQwNSfjtcRz9+/cpC/vZZxVEuwwNDeW0tDSGuhr7gkDr4MyZwM6dxNYo0QTy9KTAyaVLQIsWJOj11lul2/72GzmeZR39oiKyBSIiKGM6dGidCPAmJCRwKyurB9esVqvRs2dPEoAzNCzVpbh6FfjiC/Tetw+CIECpVMLFxQVarRZCVhZv/dtvYnKvXjLI0QcANDt6FBg9mvkGByvg7Ez7CwwEADE5ORk7duzgV65ckZVKJbewsBDat2/PkpOT4evri5SUFBw5cgSpqalMo9HA3t5eatSokXjt2jUZANq2bSv4+vpCqVRWnvX4/ns4r1yJ74YPR8+ePdG+RHm9MogilbLFxBAde/58+vdDEAQB48aNE9atWycvX74c7777LntQqi4IxCRKSSEnd+1awMMD+W3bYs2aNXJWVhazt7cXRo4cCScnJyErKwv//e9/wRjjKpWqwgth4OyMjocOYdGiRRAEQerVq5eYl5cHo7t3IR45guPp6UhISIAkSTBr3Ji3tLPjvVauZNmcs/nu7pLu4EGhSZMmLMbXF61u3MC5MWNwvHNnNPf3h/zXX+ixdy+iOnTAZmdnFCUnS/e//lr08/OTY2JiWHp6OlMoFJgxYwYlKkJDif1XBXJycqBQKErKsAinTlHGu0TosRqkpqZi7969vG3btrKRkRHd0E2bqESlRAn/UXB1pTKWPn0qLxWqV49EcUNDibHw228VdBbS09OFasfJjh00Vj76qLzAcYcO9HnoELBxI7S7d+PixYsl629FyDLuv/cez9u/n/0VHIz+ffogLy8Pd+7cYbIsr3r0xb7EswTj1YhOvMS/ByEhIT0B7Hd2dpbGjRv3YOEo6eOdmpoqtm3bVurVq9ezS6VzTgIgTk7kNKelEWX034Q9e0iQ7uzZ5+44Llq0SPbz83s+DuPo0WSwnzjx7I/9OBg+nDIHe/Y87zMBAKxatYqbmJjw58rMqA30ejIIEhIeraafmEg1kZcuVS469AgUFhZi7969uHr1KhwdHTFkyJDqax+fF3r2JMNqzZo63a0sy7j5yy9w+vhjfPfpp5gdElL5F+/eJeGm+fMpCFAHTr9er8fcuXMxsG9fFBUVoZWHB1Rls7MPITU1Fb/++ivefvttWJVxiKpFQQHNnxMnkhOxa1fpOjBjBjG+5s594vlVq9VCoVBg27ZtiIqKgqenp9S7d29xzZo13M7Ojpmbm8seDg6CkJICs9BQ3B08GKmpqZxzzps2bSpotVpERETg8uXLAABDQ0MUFBTAxMQETRnjvY2NGf7v/+hgc+bQejZ/fsVrvXaNWldVh48/pvtRjd5EpUhOpmzrW2+VttUsg/Pnz+PAgQOYMGEC6td12ceMGRUdl6+/Ls3Se3rS+QEUvGnWjH5UKrIFEhNJ+K9zZ6Ii1xE7TJZlLFq0iLdo0YJ1f1jALDaWzveLL8hBDwigTPWIEQ/KYhISEvDXqlVoEBeHQmNj2Hbvzvv378+Kd04lYhs30jWvWEGBg0qYY8nJyVhSXN9cv359np6ezkRRhJ+fn9yxY0ehWuG2ysA5Cdjdv4+LFhbYvn07AgIC0LU65fyBA6lG3cSEgkKNGlV7iHnz5skdOnRgD3c2AID8/HzcO3sWlh9/jDhRROQbb0hjxo8XH1bfT05OxpYtW7goivIbb7xR3r7MzETm0aOIyMmRi+rVY+fOnWOWlpay05Ur8D1xgp2cOZMLgsC6d+/OHpRiTZmCoqgo3AsMxBa1GnnFtHKjvDwM/+svFKlUSGnUiKu++IL5/vIL9I0b4+QrryA7Oxs3b96EsbGxnJ2djaKiIoExBhcXFz7Sy4vB3Lza9Sk5ORnLli3DtGnTygtgVtV5oxg6nQ537tzB4cOHYWxsLI8aNYo2/v576gbw3Xe1Y77Z21NgraoMf8k5LVlCNfxTpjy4rujoaL5p0yb26aefVq5xsHEjlc189VVF3aV33qHr/OEHyMeOYVFUFM/KyWHe3t4IDAwsvz+9HtixA+eWLOGxwcFs8LhxSElJwaZNm+TMzMxfZ8yY8U7NL/glngVeZvb/R6BSqaZ17NiRd+nSpdxkKwgCpkyZIu7YsQNXr14VAgMDn776d1ERGQHvvFPar7tp06d7zKcFb2/KPjBGrAQ3t+d2Ks7Ozvzo0aP8zJkzcoMGDYQhQ4awCn1unxaWLSNa7r8FCxfS+d66RUZmXfUnf0zk5+fLTZs2fcFqVqpBr15koNREad/enlTdnZyoBjAgoMaHycrKwi+//AK9Xg9nZ2dp4MCB4gvp6ANEM38KEMLD0fjtt5Ho6wscOICNGzeiYcOGKCgoQL169dC6dWtq6ZeejgYKBUwyMhB77RpOLV4sN7axEe4WFPA2bdowr+IWZXfv3gVACtGtW7dGhdZYINrzrVu3EBkZCc45PL28oHrrLTIeDx2q8lxL1o5aPSNDQxoTFhbkDP/5JwWS4uLI4AwMfCJHf9u2bfzmzZs8Pz9fMDMz4zk5OaxNmzZy3759RQB48803S3ZON0KtBlauRLMxY4BmzRgAptPpcOnSJVy9ehUuLi7o1asXcnJyYGxsXFICx/Dee5SpGzKklOL+MJKTKSv3qLkyLKy0hVVNIUnkZI4bV6mjDwDe3t4IDQ3lv/76Kxs1ahTc3NwgSVIJc6F2x3sYc+YQHfrHH8lp9/WlgEVCAq35H39M37t3j5zr7dvJ0Y+Lo/Xj8mXqYlDHa2hhYSGysrJYpUHwzEzKZH7xBekGNG5MGdNBg4jKzBju3buH3vv2cSe1mmWuWAEnJ6fSG1XSMrDEEa1Xr2JJQjEOHTrEbW1t0b17d+bu7s6ysrJgbGwMlUpV+wBvfj69G/v2AV27ol7xO/1IfYCvvqJ3Sa0mPQfGyrMtHsKAAQOEDRs2IC0tTXZzcxNsi53Sc+fOyeHh4YKhoaFkOWmS0MPVlY2bPl1Ebi4lcMrYHQ0aNMC4cePYL7/8Ihw4cIAYFSWwtITlmTN4VRQFfP01AgMDqaNHXh4QG4uhXl7lB2VODnD0KAy2b0ejBQvQJyGBnxk0iI0YMQJxcXFwbN0a+OADuN+8yXD2LPDaa1AMHowu5enswr59+xAfHy8PHjxYWL58OTtTWIi2ixYRS60KWFtbw9TUlK9bt46PGjVKQGYmjZe4uHL0f1mWkZCQgMOHD8v3799nOp2OMcbg6uoqBQYG0onMnUvMtx9+oM/a4OrVR5drMUZif2fOAFOmIO/NN/F3aqp07949sU+fPhUdfc5pbLRuTWyryoJAEyYAggC9KOLs6tX81Rs3mGLNGuzbt4//8MMPzNDQUB4wYIDg4eoK/tZbKMzKwoEuXZiVVov58+dLOTk5ImiO/aV2F/wSzwIvnf3/AXz55Zf9DA0N23bo0KHK1bx379748ccfcfv2bbg9LYdVoyGRJScnMhj/8x+aYP7NaNiQjJjTp6mWKSurysX+aaNv375ikyZNkJWVJZ46dYrPnz9ftrOzEwYOHPhYbchqBM4p4LFgwYN+0P8K2NjQz9y51Cv73LnndiqnT59GWlqaWOeZtqeJ5ctr9/0OHUjZt39/yv49okzn/v372LFjh5yRkcHc3Nx4r169BAsLixc3GLJ4MRlgY8bU7X6jo4FXXgGSk9GwXTt0KSxEVFQUT0pKgrGxsXzixAlx586dAChwK8syFMbGaNCundzjxAnBevt2xC9YgM2bN2P37t0oLCwEQE455xw3btxAcHAwMjIyHogY/vbbbzwpKYmJoghjY2O8//77JOL61VeUea8G1tbWMDEx4ZGRkaxt27Y1v86iIqKo7t1Ldfz79hGdOziYAku1hCzLyM3NxZEjR3D58mXWr18/1rBhQ5w8eVJWqVQICgqqeiw5OgLXr5NmwMGDSB0wAJs2beK5ubm8ZcuW6Nu3rwCgQnkA2rQhiu2QIZRBVSgq1gEbGz9atFKSiB5cG0gSsas+/7zaYFqxgj/buXMn/vzzT3Ts2BEnT56ElZWV3LJlS+bl5cWeqDVviSM3fjyJqDVsSOt8z54U6NBoaK4tadv3009EDbe1JYbcUwhOlwSecnNzK7Y98/EpVVEfPJie38CBpLsQEwM0boycU6eknL59xeaTJ8P0YfG06Ojy5UlXr5KjVUnXAc45jI2Nubu7O2OM4YnusyzT83ZzQ3p6Ov766y+0a9eu+ja8OTnUqs3bm4QyCwooaFAN3N3doVAo+LVr19itW7f0BQUFCs45LC0teXBwMFxcXErfIxcXEmTcsoUCvGUo4IaGhggODmYrV65Eq1atyr87JSrvkgRlie2UnU3vfUJC+RPavp1U893dgblzkfrpp7znihVMNXQoPGxtqazgp59IkG/ZMnJ2ix39nJwcREdHIycnB+fOncOrr74q1KtXD0OHDsXa1avho1RClZ1dZTcFURQxduxYtmjRInbp0iW0cnNDwccf4+atW7h//z5SU1ORlZUl5eTkiMXOPR83bpyQkJCAQ4cO8eDgYDqR6dMp8/3mm6UlL7XBokW0lpZVwa8Kbdsi8803EbF8OdydnNjwb7+t+A5IEt23q1fpnKqyQ65fRzZjWHbwoOzs6gq/vDymbNwYjRs3ZjqdDhcuXGBb165Fh1OneLKpKbvZqhVMzM1hZWUl+fn5iWlpaTh37tz2zz777FrtL/olnjZeOvv/coSEhDRXKpXrR4wYYVhdllehUMDf359t2rQJH374YemkWxfQ62lRmTmTaN7h4bU3Zl50tGtHgjeyTBTA5curFXt5GhAEASVtxvz8/Ni5c+dYaGgofvrpJ9jb2+snTJjwdN7noUOrzCS98Jg+nQyD7dtp8dyz55mWY6SmpiI0NBTDhw8vERB7sXHmDGW97t6tvWHu6EgGvyRRHfZPP1W5j+PHjyMvL0/o1KkT79ixo1BZ9vmFwuMKqVWHhQspS5aeDqhUYAC6deuGbt26PegKIMsy8vPzkZ2dDTs7uwdZesaYgIkTgcxMjCkqYnm9e+OnPn1gbG4Of39/dO7cGefPn8euXbsQUlwWYG1tzfV6Pc/KyhLGjRsH54edUltbcoD696dsaCVISUlBQUEBq6DGXx30eqKaLl5MAm6+vqX0VlNTmluGD6d7UYMsWGxsLP4o7gjSsGFDedCgQUJJV4RBgwbVLGCkVJKTMG8eNubn84zcXPbZZ59Vz5QaMYLO/+5dCmb98AM5t0OHln7H3Jzq2KtDkyaURZs2rUanCoDuX5s2xFB6xPylUqlgXVyKce7cOT5ixAiWmJgoREdHy8ePH2cDBgxA81rqI5RDz56UFZ84kYQqO3Qg0UVTU7r2vDwSNisRZ5w4sc4EPCtDse6FfO7cOaF3794Vv+DlRc8qKIjYhiU06W3bAK0W/t9/L4bPmlW5SvrZsxSMK0GDBqQzUQl69OjBfv/9d6bVamFQohHwOJg6FahXD3kffYSIY8f4qVOnWP369RFIOgFV4+23yeGPjKT/f/wxMRu02ipbpJ44cQKCILCPPvoIjLGyg7/ie+ThQWUr27Y9aA0qu7pi85EjsrW1ta5bt24GrVu3ljZv3owpU6aUbm9rS2UFn31GzwEgh9PWtjxFnnNi4g0aRP83M0P6K69wlUoFuz59qJOGLAMxMdBnZiJNocDeL76Qk6ytmYFaLWs0GtHKykpWKpW8X79+YgnTydnZGe06dpTX37vHmvz6K2s8eXKVgZiUlBQolUrs3bsXseHhuN6sGVT//MMtLS1lGxsb1rhxY9HFxQXW1tZgjIkACR/u2bOH5WVlwWTmTCpTCQp6/DKVFi1qrGMRFxeHv6Kj0TYoiHc5c0bAkiXAhx+WfiEvj5gdfftWa7NqNBqkLVqEREFA088+44GBgaJ48SIF7bp3h1KphL+fH2s2fTruWVmhzbJlMCy9vhJR1PyioqIfHu+iX+Jp46Wz/y9ESEgIA+DGGOujVCpn9OrVy7CcqEgV6N69O6KioqRly5axAQMGCE+s0F/SPsnDgzI0P/74TPtuP3OYmlLmqyQaLUnPrZuAIAjw8/ODr68v0tPTsXTpUkVkZOQjW4HVCklJpKb83//W3T6fBxgjA7ukBi4trbxq9FPE2bNnoVKpUF0v+BcKPj7khD1uBk6tpvt77Bg5AJU4yNnZ2bh7967s6urKO3fu/OJm80uQkUEU5icx4B9GairVdA4ZUm27MUEQYGpqWjV919ISuHsX+XZ2UJua4qPevalOGkTpViqVqF+/PlJTU7F//35Wv359dOvWraKjXwI3N5rDZbmCYr1Wq8XGjRu5h4cHKhPjqhJhYeTcW1nRmvH552R0ltCLe/SgEomZM2m8vPIKOZCVBIA0Gg3Wr1/PFQoFe+utt2BhYfH4UaIePXB48WK9+7ffKup16MAVCkX116RUUjD73Dk61++/J8exLAoKaB0cNqzq/Rw8WHNHgHPgk0+A7t3JCaphUKxjx46wsLBAixYtmCAI8PDwQNeuXYWoqChs374dGRkZcqdOnYTHpvZbWFDwZuJEcuJWraIxM24cXf/hwyQA9owCnIIgICMjo/I/fvBBqfhjUhLdw/x8yjZ7eODC6NFygb19xRubm0uO7Zw5pb9zc6vS2T9w4IDcvHlzVNbJolawsECirS3WLF4Mc3NzHhgYyFpXUr+t0Wjw999/o1FKCg9YvJhh5kzKCpubU6nMKvLT5gAAIABJREFUqFFA27YUBCgRzCyD1NRUHD16FK1atZIZYzU/54EDKeDzzz8o+OAD6Bo1Eo41bmzg4uICLy8v8dy5c9BoNOUzzH37UrnO3Ln0HqlUlPHXaIgNA5A+QUbGg1pynU6H23FxgnmnThR8HDIEGD0ahTduYMn48Wju4MCDlywRtCNH4v6QIaKDgwOMjIwqvY5u3boJCeHhKNq+Xf5FkgS1Wi03aNCAeXt7s+bNm+Ps2bM4efKkpNVqRX9/f+7h7Mwcvv0WWLAAzNGRoZp2rAYGBjBUKlHw2WcwqV8f6NfvycRq+/Sh9bMayLKMI0eOyKdPnxY6d+6Mzp07MwwcSEG4d9+ldzA7m8rqLC1p7qhkTZdlGadOncKxY8e4/cSJ8quvvCK2d3Cga42JIUbn6dO0r4kTYRISgsbt27OH56GrV69Cp9Pdmj179r9E1On/P7x09v9FCAkJcVMqlVNUKtUoQRBM3d3d4ePjY9joESIsZfH222+LS5cuxdKlSzF16lSoVCo8lkp/ZCTR4nbtomxpkyY1NkT+1bCxoQm1oIAm0bCwikInzxCMMVhbWyMoKIjv2LGDZWZmoktd1afHxFAv1v8FeHqS0bZ7N9W9pqY+9XKM9PR0REREwN/fX49/w1zbuTNlBUaPrtVmixYtkj09PQVRFNGlSxcorK2pNjI+nrJqR4+irLr1pk2buKGhoTBw4MC6voKngyFDKKP3119Pvi9ZJgr0vHkVKayPiVOJiTjg749OXl6UNT97FvDygiiKaFk8N9nZ2ZX8u3rvrmFDchTWrSNnoQz2798v63Q6vP766zWf6PPz6efwYVof9u+n+XLEiNLvqNVkoOp0VBNerJiOkSMhjxqFQp0Ox48fR3h4OCRJgru7O3/ttdfYk2o75OTk4NSZM4rXmzSBx5UrNfN6x48nWrgsU2byzTcpS1wCI6PqO7isWkXOWEn28lFYtowcoj59ahVIVygUaFWmDVlhYSFyc3Ph6ekJS0tL/PnnnywuLk4eOnSo8Nhdemxtaf2fNInai2m1tDZu3kzO9TMMhDdv3lw4fvy4hMqcskGDKMMN0Jo2cCC1syzuNHCva1fZvDJq0ZkzNBeWvY7YWBrPZbP9xdDpdIJCoXj8dmN37wLvv4+omTOxY+9euLm5YdiwYZW+a+Hh4di/fz+E/Hy4HTvGsg0MIAYGwsTcnK519GgaZ9u2VQi4ajQaJCYmYsuWLdzJyQn+/v61N9yMjIB+/RCXkQHDgwePjF29usWe5GSr1GL6fgWGjJMTlVD88Uepsv3KlRSALwnE/PMP2ZHFAai0tDQUpqczYx8fEklMSQH27oX6ww+huXkTjfz9mcGqVTC4fh2molgt05IxBsdJk4CmTYXPgoIQGxcnXL9+XTp48KCwdetWZmpqygMCAsSWLVtCqVTSCWRm1owFmJ+PIQcP8hP16jHzQYPQ7Uk1Zxij+fHy5SqZTtu3b5diYmLY+PHjYVfyfBs0IH2JyEjg//6PGGMjR5LDXgnOnDmDY8eOyaIoskGDBjHPmTNFJCVR8A4AXn+dnk1uLq0FJSyeSu7J5cuX84qKiio/0Eu8EHjxDdCXQEhIiKhQKD5XKpWftmnTRtGqVStlgwYNHktwRxAE9O/fH2vWrOHz5s1jarUawcHBcHyU4nYJVq+m7MbcuTQpeHg8d5X65wJDQ6KGt2hBTsCgQXXSQuhx4e3tzQwNDbFp0yYUFBQ8mvL3KERE0LUdPFg3J/iioE8fWkSLiqjH7Jw5Ty1Idfv2bSgUCgQFBdXJPKvVah8vMFdTBAVRJqgWOHz4MDIyMoTLly9znU7HoqOj4eHhgYiICJgZGWFcx47ITEsDUlJgZG2NFStW8MLCQubo6Ci/+Nz9YmzZQs5dXUCnI4chJ6fO2CWHDx/mvr6+vHtQkICMDJqH+vYlfYGyFPOaQpaJjt2+/QMxtbi4OERGRgpTpkypVPCvSnz1FYn+9elDztPvv1NGvDKDWKmk73EOfbt2SPrmG+T/9BOiPTyQ7OXFO3brxry8vGBtbf34Geli3L59G3/99ReMjY1l+++/F6BSkUE7dWr1Svru7tSKS5ap/3xkZPm6fVGsvvXehQsU+KqJs79yJZXFfPnlg17ntYVer8e33377oOc4naIIlUrFb926JWzatEkODg5+vPfw1i3q0LJgAQUlAAqGjBtHzvAnn1BQ68MP6f4YGj6VuZZzjosXL8pmZmaVt5b64AM617AwGs89e1IGuWdPYPlyiG3agBVT+PV6PSIiIhAVFcX7FxQwm4fL1/LyaFuQyOW1a9fg7e0NV1dXZGZmyu3bt3/8C0xIQEZWFnbs3QsvLy9ER0fzXbt28d69e1eYKo8ePco9IiPZ6zt34sz48dIyU1PR7fx5DHRyoiREfj7d86wsyuyvWAGoVLh+/TrWr18PAwMD+Pj48B49eghPIvKbYGcnRbu5hXU8cGD/q6Gh/znj5+cR5+hY+Tplbk7BroEDae4bO7a0flyjoWz0lSsPvm5nYID3Fy1C1OnTHEOGMHh4YHtiouzyww9Cd4UCBX36UGBz504qb5k3j8qBqkK9esDSpVAoFHDv3Rvu7u5inz59UFRUBJVKxcrNKZ6eVLIQFFT9DcjOBpYuRaNOndiNdu1wJzGRd3tUQPVREAQSAq2C/ZOamorLly+Lr732WqmjX4LiIAwOHaLAShVt806cOIGjR4+iX79+QvPmzWlODwggQcISiCIF7hYvpoB9FaU/ubm5uHPnjghg/+Nc7ks8G7x09l9whISEGBsYGOy0trZu+/rrrxuaVyEuUhvY2dnho48+Yvfv38eVK1ewZs0atG/fXg4ICKjc/uacnPyWLWlSdnUlg+U//3nic/lXo1s3ujfTp9PEXE0P12eBxo0b4/XXX8fGjRvh6OiIZsV03sfC1KkUZX9KCuTPFU5OxFjYuZMCVmZmdR6wkmUZUVFRMDEx4ajh4i/L8gNHSq/X4969e3BwcIBGo8GqVauk9PR0cdq0aXXv8O/YAWzdSs5FLXHjxg04OzvzcePGsaSkJISFhUlXr14V1Go1y8zNxWJnZ27622/sjV9/xS/vvINWPXrI/v7+opmZ2b/D0Q8JofHxwQdPth/OyZiaM4cMpzrC/PnzuU6nY4GBgWSslgQc/fxovr5+nYzs2tRMGxlRB4sydOVr167BwMBAqpWIYk4OBRzMzKi04+5dqlWvQiBWq9Xi7NmzSExMxO3bt7mBry+6DRqEgTduMEGtZggNpX09odClLMs4dOiQLAiC8P7775eOQysrejaP0iN45RUypocPJ2cjNbVUlE8QKACg01VkDkkSOcY1mWvOnydRrZUry7FiaotNmzZBoVBg4sSJsLCwgE6nw/379wFAuHjxIq91O7gS1f05c4Cff6Z59NVXydGKj6dgyJ07JMA4ejQJMk6cSO0CDxwgNku3bkThbtuWGB9DhjxR+R/nHKmpqUKVQYtVq0rvuUJBDCYfHwoA3LsH84QEdluSsHjxYik7O1s0MzOTCzQaQRceTtdWFq6uKFSrsWTBAqmwsFC0s7OT16xZIzg4OKCoqEh4bF2WOXNw3tlZ3v/qq8KwoUPh5uaGLl26sF9//ZU1JpG00u9qtfiPhQUL02hQ1K0b2n/+uVhw9aocHh7O9u3bx7p27Qq1kRF0Dg6QMzKQa22No/PnQ+fsjNu3byMoKIj7+/szlHSneAKYmJgIsii+99+33nJWiGJg0ObNHt3/+QdrnZz0GTpd0fDhw40fCNM6OVHwLymJnP2YGHpvbGyISfTJJ6Xz1/XrgLU1Yvz8uEVREUNQEODigls//YScN97ACIUCiu+/J8FAX1/a7vp1+qmuZK5FC2qNWUbboVJ9hbfeKu07XxXS0qgkqXVr4MMPoTp6VE5NTWWRkZEocaCvX7+OmJgYBAYGQqFQ1DxBd/Mm/VTSsUOtVkMUReTk5FTc7uRJejffeYfu7dKlwIgR0DZpgl9//VUqLCwURFHksiwLI0eOLF/O1bZtxXXi5EmgRQvcs7SENjYWzs7OFa4hMjKSC4Kwbfbs2f+idk3//+Gls/8CIyQkRG1gYHDQw8PDZ+DAgWqxDmlxgiDA3t4e9vb28PLywrp163Dx4kXu5+fHO3XqVLoInDoFtGpF2ZjvvgMmT66zc/ifAGNk3ACUKRgzpgL99dmdCkPjxo3h4OAg37p1S6ips5+SkoLMzMzSunKdjozeuspmvohwdycBqaQkagt55syj+8nXAtu2beOJiYls0KBBj3T2ExIS8Oeff3KtVsssLCx406ZN2fnz57kkSawkAKDT6USAggB17uyr1Y8loHXhwgWkp6dj9OjRDABsbW0xZMgQEQAOHjyIkydPomvXrszFxQXKwYPxtq8vVKdPiw/aWP0boFJVLtxVG5SIUPn711nbsYyMDKxYsULOz88Xxo4dW5E2O3s2fb7+OgVod++u3QEMDMho/uILxPfogTNnzqB37961W4AmTKCgw9SpZMibmxObBiSyt2XLFolzznQ6HQNo/lKpVLC3t5cHDBggenp6lrIIsrJILOr334ku/uabJFhXyzVRq9Xi559/hkajEVq3bl3+3fz5Z6IK9+xJlOOqnvvIkeQ03rkDrFlDtcZlW1Ru2VL5eb35Js05J09Wf5Lh4cC33xJj7AkCGzk5Obh16xYCAwNR0lJNrVY/0H9o3LgxQ02zkIsXU7Bm7lxi9iUnk8AkQAGJjh0pIRATQ/XG339PmfSYGJpb+valDD/n5EA7O9PfZs8mxyswkNgLf/9N42bWLHIIs7LonanGSRIEAaIolmMvlENGBjEOduwgscjt2+lTqQTmzUPT118XEgYMkFq0aSM2adIE5ubmwrI5c+R6kZFCBccxPx+XT5zglgEBbMSIEVCpVMLFixelixcvIiAgAIaGhrU20rhOh7xly3Cxd282eto0lOgvWVhYoEGDBvKNGzeYo6Pjg7KVqJkz4fLLL3AaPVo2nD5dgJ0dujZoINSvXx+nT5+W582bJ9SvXx/KPn3g2LIlDFq25PWysliKRiONGjVKLNda8AlhaWnJOOemgiD8lwOhewYPbmaekmLjt2qVwquwMG11XJzxyI8+ejD+4OFRmnm+d49KdgICyLEt7nQi5+WB+/khq1Ej3HJ3Z9eaNUOnu3dhp9PBwMBA0HAuK8aPF2BuTt0HQkPpHXz3XVL4X7u2akd95kwKbFeH7dtpvFaXWLt/v7Td7KRJAGPo0qWLoFQq5S1btrCsrCzEx8fLMTExAgCcL+4IIYoilEollEolV6lUXKVScbVaDbVazdVqNTM0NBQMDAxYo7AwGOTlIa1tWxgYGEClUpX7dHR05KdOnWIdy3REwNq1xJ6ZNauUode8OTBjBu527AgYGAjjx49n+fn5zNHRsZxI97lz57j1hAmoP3o0MyppoQlAu307fv7uO+hWrYJOp4OxsTGmTp36wOHnnOPs2bP5RUVF/4NZof8tvHT2X1CEhIQwlUq13sXFxXvQoEHqp8l4tbOzwwcffCCEh4fj4MGDzMrKCiaMwfTkSVjMmkWU7ujop3b8/xkEBlKUOTGR6qeeQpuhmkBFdD3ep08f9qhxc+zYMRw+fBgAMGPGDChyc6lu9+bNiuJT/4uwtSUDoGFDot9W1qu5lkhNTcWVK1fYoEGD0Lx580e+uHv27JGaNGnCevTowbZs2cJPnz7NZFlms2bNQlJSEtLS0nDt2jWelJTEap2Jqw6yTFm3efNKW2rVECkpKdizZw+GDBlSaQlQjx49cPLkSTRp0gRWVlZAw4ZQ3bxJ1OcbN2rfe/h5IC6Oah+fNDjh40P7+fHHujkvkLOcn58vfPrppxV7KpfFxo30nNetoyxYWFjND7J2LeDujssREbIoioK3t3fNt5UkwMEBmpEjcXPtWrBLl6BcsACexX/eu3cvb9iwodCoUSNmb2+PyMhI2cHBQWjWrBnEyqLaFhbU233gQApcfPUVzbc2NuQs1oDmzjnH5cuXwRiT33//fcHc3Lyi01O/Pj3v6OhyrcXKQRQpO3j9OjmRD7f17NOH/v6w4vcPP5DDXB1ycmifT+joZ2dnY8mSJdzDw4O3bt269sYD53Qu3t40ZszN6V4rFBWvd/t2csoPHCDmxYwZFAS5fp3YD8uXU4ZxyBDAwYGU+r29yYGPiaF9rF1LtcE6Hd1frZbuwaxZ5Kx36ULP+403gN9+o+4EJiaASgW9Xg9JkmBWVW9yExPah1ZLY+WTT0pZTIaGcFIq2QRra7Es5dnh0iWWHxwMw4eCDDlqNe5oNKx58+asJOjq7e0t1urdKHubr1/HhRUr5IOTJ7Px48czm4fmxR49egh///23fOHCBdY4O1vudvGicM7eHlbNmvFWH30klASoBUFAixYt0KJFCyE5ORlHjhyRXSdOZL5KJWNt2jBYWADp6U+cLdLr9bh8+TKysrJw+/ZtJCYm0nVwXl+WZXMANhlWVgjr3v3Lqd98o49p1Wq84tdfG2HWLBo7Dg6kaREbS7ocokjUfc6Bpk1xa/58XD99Wla3bSvobW15lLs7s3dwQHh4OC8sLGQqlQpdunRhYIw0o/z9aWwsWkTvzbFjFESIiaHAwsNQqShw1blz1cH9r76iwEMlooYA6Nx//JH0aKZPf/BrURTRqVMnISYmRg4NDRUaNGgAR0dHWafTCa6urpBlGX5+fsjLy0N+fj7Lz89nGo0GhYWFKCgogEajQWZmJrRaLY9q00YW8vN5wf79kGWZFQf+Sz4hSRJTKBSQJAmiIFDA448/iDlUNsnTsiWkL75A8sKFvK0so8FDnUKSkpJw7Ngx+datW6xxUBDS8/L4eJ2Opaenw7RDBxwMCIDGxQVvTpyIM2fO4Pz58zh27BgPCAhgAJCcnIyCggINgOoVBV/iuYNxXnmZ00s8X8yZM+dLS0vLqZMmTTKq0zZ5j8DBgwfh/OGH3DA7m62ZMAGNXFykoaNGVWp/vUQV8PenhWDFimd+6PPnz0v79u0T9Xo9zM3NpUmTJolVOYhLly6VMzMzhUGDBuH48eOyVquVJ0+erMDFi2SMPQYKCwuhUqlqV9f7IkCjIYd/716qVX5MHD16FCdOnIC/v7/co0ePR9YWZ2ZmYvHixXj//fcfZNwKCwuRn59PTnIxbt++jfXr12PChAkV+3/XAnfv3sWuXbvkbt26CU0dHIiSvHt3revH//zzTxgaGkqDBw+ucmJYsmSJPj09XTF58uTSaykqop8ZMyiT+iKPk+7dSdxq7drH276wkIzLrVtJcf5JGQJlkJycjCVLluDzzz9HjebmO3dobE+ZQudTU4G4uXOhMzDAGktLOTs7G//3f/8nPDLgJMvAwIHInTMHW3/+Gb0OHMC5BQv4+atXmUqlkouKigRJkjB8+PAn61Jx7hxlCO/epfH74YfVZuNOnjzJDx8+zDp06IBu3bpVv+9TpyiLvW1b5Vn62Fhy6Hv0oLE8aVKpc9G1K21X9nlfvQps2EAOTlVITqaM4rZtTxxoXbBgARdFkb311ls1n4uTkihIPW4c1eIfO0YBihLHujI83JFGr6fPsoFujYacp3v3qAQgJIQEPL/+mhy1mgjK7thB87OFBZ3f6tXkaIWHY+2XX8odvvhCcF64EELr1lRaERRUMdh+9y5ts2oVlRVYWdH/Y2IoWFFcn3/v3j3cCA5G608/hdlDNdv6hQsRuWEDPz5sGIKDg5n1Y+puZGdnIzIykht+/jnMUlNhHRbGqmoHBwD6oiKc/vFHNFyxAvdsbWHz1Vdo3L17zQ7WvTvRugcOfKJytby8PPz8889Qq9XcwsJCliSJ3b9/XxAEYZ8sy73KfHXp7Nmz3wgJCWnRICfn7ISkJLXSx4eO7+5OQZeePSn7XlhItpIsA2PHQmthgQRbWzhv3Aixkg4ElSI5mcbE5MkUaOvQoZTNVFnXkdWr6Z5U18GqbEvAsrh+nYJfkkSBp0ogSRLS09NRv359JCUl4ffiUkiFQoEZM2bU7JpycmgOyMysNGmk0+mwcOFC2dXFhQ+8eFFkdnbE4nooQKjT6fD7779zRXIyb3PggGBkb88Lpk9nRkZGSE9Px9GjR2Fvb88HDhzILBYtwl8ZGdLNevVEQRDQKSpKvtG6tXBPo8G0adOgUCjw7bffonv37rxdu3YMANasWVMQHx//6/Tp0z+q2YW9xPPCy8z+C4gvv/xyhJGR0dQxY8Y8O0c/Kwvo2xevvvMOsGEDQ8OGeJNzLFy4UNRqtXhS5eP/r3DkCDkx69aRav+ECc/ksLdu3cLevXtFHx8fvPLKK9i6dSsWL14sjx8/XqhfZhHIycnBihUrJM65MGXKFJiYmMDOzk44NmyYkLN5M8weQ5QvKioKYWFhSE5ORtu2bdGrV69Hb/SCICUlBefPn0ev+/eJvjxiBBmBxW0MZVlGTk4Ojh8/DicnJ7Ro0QIZGRkwMTEpl1WNjo7GiRMnMGzYMLi5uVWwsPV6PRISEpCdnf1AKTsvLw+yLJej1BXT+spt6+rqirZt28rr1q3jH3zwwWNF3kr6k1taWgpRX3+NKDs7KfDgQbHKjFg1yMjI0Hfq1Kna9WPy5MmKJUuWyJGRkULXrl3plwYGlGULC6PPZ9QC8bGwf3+VbbZqhA4dKDu8aFHdnVMxQkNDOQCm0+lq5uw3akROW1QUzUe9e9eslaCZGZS5uRg7dqywadMmafHixfLEiROFetWxHaKigNRU7Dp6VPZLTWU269axoE6dmMfNm0hOTha8vLxgaGj45OUobdrQT2YmZZLbtKF6VS+vcmJSGo0Ge/bskaOjo4XXXnutZu1JW7YkIzs1lRzghw1/FxcSMczOpszkoUOlzv748RXr9a9fr164T6+neefrr+uEUcU5ZxkZGcjPz6+6bSNATn1aGunwODsT62bGjFIdk08+qf5AnTvTfV+0iN5nW1sSN7t8ufQ7RkYkOJaRQeUJFhZ0Py5dolKRmBiqfd6woerjlO1wUMJOWbcOUkYGbi5aJPTq3h2CjQ3pJbz1FjEzBg0ih37FCnKC3NxKe9A3aVIawGjUiBz9ZctQ2Lw51q5Ygb62ttys2KEpC4WdHVoFBbE7Dg78999/R79+/Wrc7raoqAhXrlxBRESEnJKSIrRKSOCquXMFNz8/CJXYeWlpadiyZQuahIXxzmFhLGH8eLlRQYFwuU0bjK9NQDo0lALY8+c/sqVbVZBlGStXrpQcHR0xZswYEYB48eJF7N69O1mv149njE3knC+cPXv2g0JylUr1SdP+/ZXKLl0o0NOvH5VwfPcdvZ+pqfTOzJlDz6pXL2h+/hmbr19HD4C3rmmJSYMGpL/zn//Q9X35JQWprlyhsfcwQ8bJib5TmR7Ra6/Ru1AZC+vqVTr37t2rtelEUUQJQ8POzg6zZ89Geno6lixZgrS0NNQoQGRmRoFBrbZSZ1+pVGLSmDHCrmnTePqNG9x6xw5WWTA5Pj4eWVlZbNoXX7DcSZNw8eefYTt5Mj80ZIhUqFCwoKAgsXXr1nSf9+9H0KhR4j9WVhh08CCEFSuEgGK7/9tvv+VFRUUMAHx9fRlAdtPdu3e1er1+5qMv6CWeN146+y8YQkJCrBQKxe8jR440MnlMBd5a4coVmvj++IOi4UFBNNEAMNZqIYoi5Cpqt7VaLTIyMvBwZwDOORhj0Ol0yM7OhqWlZc0M0uJtdTrd01Udf9ooyXzFxZGBU8KeeUpdC7RaLWJjY/H333+jffv26NGjBwBg6NCh4qFDh+SlS5fC3t6e5+fny3l5eUyr1QrNmjVD7969WYlTaWJigsajRuHE+vXIXr8e+fn58quvvio4OTmVO1ZJX9ZmzZrB0tIS6enpSElJwbZt2+Du7i4lJyeLWVlZT+U66xparRaHDh1CeHg4AMDJyQnNPD0pyyBJgFaLS1evYu/evVyr1TJLS0t+48YN7Ny5k0mSBMYYGGNQKBRcFEUuSZLQu3dv2c3NTbh79y62bt0qGRsbs2KKHpMkiUmSBFmWERYWJpuamrL79+/DwcGBq9XqR6bf2rdvL5w+fRoZGRmo1tkqA1mWodFokJ2djQ0bNnA/Pz8EBQUx6dQp3Llxg82fPx/m5uZyOaGyGty3/Px8hb4ki1cN2rRpIxw4cAAODg5wd3enX9rZkSr5zZuUBT1xovr6yOeBd94hR6G6TGxVSE2ld/7vv59aKUxiYiIfMWIEq5bCXxm8vGhO0uuJxrptGzlrVeHtt4GkJIhhYRg6dKi4Y8cOed26ddLbb79d+YSu0UAOC8PBTz5Biy++EBw++ADo1AkA4O7uXjoG6hKWlkS5nTyZWBjz55MOh7s70L8/IiIiEB0dLQQHB8OjMmpvZTA2JgbEwoWUha6MpTV0KLELNm4kCnoJVqygbHXZlrj9+1NmszLk5pKT8c03te6GURUmTJiAZcuW8QULFrCZMx+yxfPzKbv+zTeUaVepiDKfkVHa87ym+OMPSIxBBMAtLXFl5EhccnRE62vXEB8fL9vY2AgPWgDWq0e1/CdOUKlbcjLVGGdmljJ8goOJ+l9d+8ISCAJi0tKgUKlgumhRqchfSanEkiUUbN+xgz6jo0sztm+8QfNPYSFplrz9NpCZiSNHjkj2BQVoKopihTIMAHB2hqBS4bUBA1h0dDR27NjBb926Jffp00esLjETExODrVu3QqFQSC1atBBHd+oEdceOAmbPrhAY2rt3L4+MjOQF+fmCW0EBLjk4MI2HB9pv2CAU7dqFkW5utUu+hIeXBpp27qRrdXAAPvqIxm6PHlSDnppK79Dff9Pc4O9P9mGrVgg/fBjWcXHCkM8/Z7h/H7CwQExMjF6SpOuzZ89OAvB12UOGhIRMADDKz8+P7re9PQXELl6kco4+fei5R0RQkGv5cmDwYFiMGwfNnDnYuXMna968eeXieZVBoaD3bulSusZly+iofmShAAAgAElEQVRdcnWljkJlA16NGlHWX5YrMssmT35g/5bDuXPEjBo+nHQBagkrKyvY29tL58+fF3vWtGTO25uCb5WxLLOyYPbZZwhq0ID9t1EjvJ6aCo8yzj7nHFu2bJGuXbsmmpqackEQmLmjIwK++YZhwQI0uXNHgW++Kb/uHj4MC4UCgxMTKehYPC71ej1KHP0JEyY80Ic5e/ZsEYD/zp49u6DWN+QlnjleOvsvHrra29vLFVpq1DVOnqRFX5Ypws05RfTLQKVSwdTUVIqMjBTaPRTljouLw4YNG7QFBQWqQYMGPejnfODAAe2pU6dUjDEOQFIqlZmSJFmMGTNGWdZxzMnJQUZGBmxsbGBoaAjGGG7fvo0///yTc86Zvb29VFBQkM85h62trejq6mrctGlTGNfWGHmemDaNPmfMoCxhRMQT7/LevXuIiorieXl5ckpKCsvKyhKKW7Lxbt26lRNsYYzh1VdfFTw9PXH+/HnZ0dFRrFevHlxdXWFqaiqWo5h/9RXcX38dzN8fp06dkurXry+sWbMGPXv2RFpaGmJiYvQ6nY7p9XpBkiR29OhRMMa4TqdjgiAgMDBQ8vPzE+fOnYt2dVD3/rSh1+uxcOFC2cjIiAUHB7PIyEi+ceNGZmpqKtn06yfKly9jQPfuSO3QAT2//BI+Pj5gjDHOOeLj41GvXj0YGxtDq9VCo9Gw/Px8tm7dOuzfv58dP35cys/PF3x9fUVZlmXGGDw9PZlSqYStrS1SU1Pxzz//8JLevg4ODjWKAhkZGcHExIQnJiaymjj79+/fx9q1a+X8/HyBMYYmTZrI3bt2FdmWLVD89Rc8AOG9rCwsXrxYSElJQVpaGkRRhIeHR5XU35ycHPzxxx+StbW1UCzwVS38/PyQkpKCvXv38ilTprByQT8nJ8owGxqWb1/2IsDb+/FZB6NHkwOxbVvdnhPoma5evZrr9XrBuTKKak2hUNC85ONDBn/nzlWLNB44AMyaBRYbi549ewrz58/Hjh07wDlHXl4emjVrhlatWiEpKQnJb7wBg7g4FHTtKrt4egomY8c+/jnWFioVZdVHj0buyZNImj+fW3zwAbsVEACvrl25h4dH7aOtPXtSllqrragYHxxMDnJ4ODks8fHkPIwcWV7n4cIFcv5zcioGfHU6MqyDgqpsk/U4MDMzg5OTE4suq7Xz/fdEuZ84Edi1ixz9zZtL/17N2pqeng5jY2Pk5OQgLCxMsrGxEa22beN38/L4aTs7wcHBQdZoNEy0tGQtw8JwPzycn+/alRUWFsLBwaFcSdIDLQTOyf745hsKdsgyUfVtbSkbPWvWIzUm8vLyoFarZZVKVXHC2riRnNytW8lBO3iwVJgPoGfy9deUEf7Pf6Dt1QvXvb3FCQCJEleGpCQq3xgwAM2bN4ejoyNbuXIllixZwoODg5nVQ50TJEnCvn37pEuXLolt27ZFjx49RMTH070u+XwIUVFR3MvLS+h87BhMt2wBP3MGhW3bQvfnnzCrKbUdoFKFNWuAPXuIyWBnR5nvU6doPBsaApaWyDMzw+lr12AvilAmJKCRXg8xM5NKVY4dw/mLF7nhnj2svygyZf/+xGipVw9NjI1Fv0uXuvDZs8cxIBiAGsCHHJjSz8fHWd+jh9bop59U6N+fSisYozKVTp3ovHJyyIm2tQWOH6fgHIDevXvj8OHDNXf0S6BQkAjmli0UiFu0iBz/3buJOVCyP2dn+n1CAq1BJYiIoHvysP1y8ybZch99VGttm7JwcnISYmNja9yd50H52MOBxnv3KHDVoAEsv/oKgRcvYtOmTZgwYQJsbGyQm5uLiIgIxMTECLIsY+zYsaXHUyrpOs6epYDaokXEYgJIb2r6dGKBXLr0YBNBEFCvXj05JydH2LZtm+zj48OaNGnCLl++zPV6/ZLHviEv8Uzxsmb/BcOcOXMWd+nSZUrnzp2fThr4zh0S2unTh6hrP/xQ7devXLmC7du34913333gaKelpeG3334r0uv1hwD0cXZ21nTq1MnI2NgYy5Yt08my3BBANgB59uzZUkhIyFAAG8zNzXPd3d0N0tLSChMTE5UKhSJOp9O5ODk58ZEjRxru3r1be+nSpZ8EQUgURdG7qKjoNwASAG8DA4P+jLFeEydONFAqlVWL8byIyMmhydPHh1oN9etXq80557hx4wZOnTolJyYmCvb29mCMoWHDhmjSpAmUSmXFfqu1RZcupIxczAoAgLNnz/KwsDCYmZlxX19fwdTUFCqVCra2tkhLS4NGo0GjRo3KtYubM2cOunfvjs6dOz/Z+VSC6OhoMMbg7u7+xMyPVatWcb1ez8eOHSsolUpwzpGZmYmoqCg5IyODm5iYCI5ZWcylUycYREQQpf8RzpVOp0NGRgaWLFkCQRDw+eef17zVTg2xbt06SZIkNnr06Goz8enp6fj9999569ateUBAgFBYWAgLCwvqsjBsGGXWih3vffv2SREREaJSqYQoirywsJAplUquVqt58+bNBU9PT9jY2GDDhg08NjaWubi4SMOGDRNr+gxkWca8efNkJycnDBgwQKiQjY6OJsr77dtP1GasznDhAmU8attGKy6OrqF9ezI861igMzo6Gjt37uQODg7o168fq4s2rAAoAxYcTO3QqkJ+Po0XtRqXL1+WIyIiuKmpKYyNjdmVK1dYQUEBM9Jo4GBhwXsaGzPLffvIoH5KbKbqkJmZiVWrVvH8/HzmZ2+P5hs3wt7cHGz4cHLiXFxqv9MhQ6jFVhlBLgCUIS8qIsd12jTKCo4cSdTkkuPo9dTt42HBP0kiw7tpU3LA61i/YsGCBXIbW1uh86xZNKZ//ZUCam+9VeN9FBQUYPPmzfKtW7cET09PqX79+sLx48cZAAw5doyrnZxYg0WLcPToURgZGSHgzh0IM2eSc718OZYuXcrNzMz4sGHDKr84zskZ3byZxDt1OnL8r18nJ336dGKefPopOXAPIT4+HqtXr8a4ceNgX8Ki2b2bsrdJSZQ9Hjy49FhqNc1/q1fT3ywsHozRaz168AIbG/iYmjLMnFm5gNuWLfQsv/vuwa9kWcbWrVv59evXWf/+/eHl5fXgbxs2bJDi4+PZmDFjhAfie97etM7Om1dh9xqNBn98/DHesLeH+PHH5Ay/8QYFPWpi82Rnk8PbuDGxGcLCqA2iQkGMij59KNHTpg20Wi3+/vtvOS4uTmCMwcbm/7F33WFRXdt3nXtnBhw60hVsiIgFFSuoqMFeYuwtsUSjJj59ecYkGvMmY/QZW4zGHms09hqNJQpWFAui2EBEqdJ7nXbv74/tCMLQFEt+n+v7+GJgyr3nnnvuWXuvvbadLisriysoKGAWFhY6lUrF1Go1J4oiJkyYUGqPkZWainVLlqBReLjLwCNHTABYHxkwQCg0Nr5SWKMGun/wAZz03S02b6ZykcmTqZRDraZjKyggkrlkCa2fnTohQqfDkSNHxK+++urlF4+YGOqKNGUKfae3N2Xm9ffYnDk0F551BwFA6qCYmBeDtIGBZAg5Zw6Vp7wC7t+/j1OnTukqXYaXlUUBiuLPy8hIWjN69aLzeoY///xTvH//PnN0dNTFxcXxPM+LNjY2LC8vT5gxY4bhe+/ECQqGde9OAZiFC+k7d+2ia1ECWq0WQUFBuH37ti4jI4OXSCR3vv322+ZVG4X3eFt4T/bfISiVSk+pVHp58uTJ8pIR4leGWk1SLS8vinh36VLpjdiGDRt0JiYmbMiQIZxMJsPmzZu1cXFxMQB8OY6bIghCPM/zSziO0/A8v+6bb76ZbeDcagNwBNAFQBSAcwqFIkWpVLYFcPVZD9JUjUbjoVAoUgwdx08//XRQpVJ9xHGc8PXXX3NVjvy+bfzxB6BQQIyIQFpaWqmabz1EUURycjJMTU3x9OlTnD59WszMzGQODg66YcOG8dVe3nHtWrVklURRxLx58+Dh4YGhQ4dWw4EVQR9IAAATExPhs88+41424BMXF4fNmzdj2rRplZPD9+pFDrc//1ypzz9z5ozWysqKeXl5VburZUxMDLZv344hQ4aUaW6Wn5+P5cuXw8PDQ/vRRx8VMc7QUJJxM1bq3s/JyYGxsTGkUilyc3Px9OlTxMfH49GjR7rU1FReq9XCzs5OGDp0aPn12mXgmSJAUKlUzNjYWGSMwcPDQ+jatateE0hr08WLtDa9TfTpQ9mmqhps/uc/VBP8Ep4XFSE/Px9LliyBo6OjMGrUKO61lHiNGkVka9++0n978oSuT1xcKQWGKIp4/PgxnGbNgnG9emDnzgG7dxt2w37NSElJwZo1a+Dg4CCOHz/+uWM6oqOJpJ05Q9nUadOq1gbR358kyDNmvBjEiYujAI9OB+TmUiC3TRuSkOvLI776ijp+FA/OiCKN84kTRCaqq2wtK4u+p39/hMXEiKFff41hYWEMc+dWzqOhBCIjI7Fjxw40btwYWVlZQps2bbhjx44BKhWGjh6NRiUJkCAUrS05OcjlOPz666/i6NGjWcmSsFI4e5aI4KxZpPTp358+a+NGcuI/dYrWYL17O2PPfUh69uyJ9l5elLn08gLGjjXspj5rFv2tSRMqn+jfHzh7FhGRkTi6Y4f4L2dnJg0JIfNQQ8G6c+eAmzfpXi+BO3fu4NixY6KHh4fQt29f/vHjx9i1axdmzpyJ5/drYiL9187OYHBHEASc6N8fvSQS8Fu2UGBi4UIixOXh0SMqx5w9m1QiXbqQESFAvzt3jjL6u3YBubkQhg3Dis2bddbW1qx3795c8S4A2dnZuHfvnmhmZsacnZ1hZGRkcJ9y6dIlnDt37vbcuXOf68yVSuVwALtHjhwJNzc3+mV6On2/XE7X18IC+PJLulZyOY1zjRoUQLl3DzlDhuDOgQPQ9u6t6/TxxzxzcXm5oGF6Osnuvb3p/qxZk+5fxiiIcvs2qTqKo7gxX1QUBaC2by/Kfr8C9AH42bNnV+5kYmPpWaT3mdCXv0ilpQxWBUHApk2bdHZ2dryvry8sLS2xYcMGsXbt2ujTp0/Z3xcWRn4ZvXrRM69DB1onKni+rF69Ojc1NXWCQqEw8LB4j3cR72X87wCUSiXP8/x0qVS6YMCAAcbVTvTXraPa09hYMsMpx/XVEEaNGsWvXLlS/Omnn/S/kgCor1Ao4gDMBQClUrlep9OJc+bMMRg9evbaOADXS/wpjjF2ThCExoIgdC6L6AOASqUaDaCukZHR7tjY2Oavpf6zmiCKIuLi4qDT6XDlyhVdSkoKy8vL42rOmiVIv/qK9dq9my2fMgXenTtDFEWYmJggKytLvHbtGpPL5WJ+fj4TBAEymUxo0qQJN27cOMjl8upviRAYSJuDzMxXziwxxlC3bl0hPT292i3WDx48CACYPn06Dh8+zJYvXw4fHx/4+flV+bOMjIyej3mlcPIkbQK++IJq/4ruA4Pw8/N7beuqi4sL3NzcxLNnz4qNGjUyOM6BgYGws7MTXiD6AEXwlyx53s+4OIqbeJmamsLNzQ1ubm7o2rUrLwgCUlJSYGdnV2F3gbJgbm6OqVOnclevXoVMJmPXrl3DhQsXOF9fX1KGtG1LGf6BA4k8vWq7u1fBX3/R5rCyuHuXstg//1zkz1GNyM7Oxvbt2wEAw4cPfz1EH6BsdHIyyUQPHCDfAj3q1QNWrzboTM8YQ4N69YiQHDtGZmzF69XfEFQqFTZu3Ah3d3dx+PDhL07UOnXop3dvIosjRlCmfto0yqxXpML44APqB96kCcnhP/yQfl+7NmUPa9cmA6/+/amtmz6rn5tLmcL581/8vK1bKcO6YUNpM7+q4skTCuaLIikXUlIAhQI2Mhl7cOgQAnv1gs9LBsb1bTWbNGkCf39/MSAgQOfp6cl3XbIEpqGh1HavODiOxjYyEigshOmdO7CyshLDwsJQYX/3rl2JpD5+TKTs9Gki559+SgRs0KCiUhN7e2DVKtw3MoK9ra3QvnFjDg4OFDy5caNscrhkCbBjBwVk4uMBExPo0tNx7NgxsWWXLky6YEFRi0FD0GiKOg6UQLNmzWBsbMx27tzJ165dG+Hh4YKbmxszNTWlg9m+nQwP4+MNP2vXrEHetm240acP2nbuDNsPPqB1pTzX+HPnaI5dukREfuxYIqnF8dlnwMiRSElJwYNatdChZ0/Er1wJYdw4bsyYMaykn5K5uTk6dOhQ4UIfEhKi0el0fwOAUqnsCcAXgCUAJNy+Dbfr16nmPCSE7rFhwygIaG9P995///siaf3tNwCAWUwMWlpYYOfly3zLzp1hJpPR2IWGUrlR48YVHRrB2poCRFOnkjfD8uW0Vm/cSAGhxYvpfrW1JW+OPXtoPwRQcO+//6XgczWpSK2srKDRaFhSUlLlOuo4OFDphVZL4/jtt6QwKNEhAiCp/aRJk55fyMzMTCQkJLD69esLKK9soGZNmpM3bpACZuDA8o0yQcZ8WVlZWgCHKj6J93hX8J7sv2UolcrmMplsl42NTZ1BgwbVqDaiL4pUO1qvHtUx+vrSpqKKRB+gzb+np6f2xo0bhTzPb+U4rrtWq51a/DUKhcKwi18FUCgUTwFU0Afp+WsLADz46aefdu7cudPDzMys0Nvb26hdu3ZvrjdhJbFv3z7to0ePJFKpVLC3t2e+vr6cra0twsPDOUcPD9gD+HDwYAQdPqwT7Ox4tVqt5XmeDRw4kM/Ly2Oenp56qfrr602m05G0tLhB0ivC2tqae/jwoYBqPu7U1FQBAJeRkYEhQ4awK1eu4MaNG8jKyoKfnx+qImkODQ2FVCp9bjRTKTBGZLmwkMoyOK5Svb1fB6KioljTpk1LPcCfPHmChIQE3Lx5U+zdu3fR+Gu1lMWKjn5RElhJcBz3Su3+9JBIJPDx8YEgCDh+/DgAvFjm0KQJmXbl5RHRfBut+UaPps1oJVUcAGgTevky/fs1yNY3bdokZmdnsw8//FA02Bu+ulCvHv3s3UsqpH/960UTq+HDSc7+yy8v1rqKIpHhxo1JsvsWiD4A7N+/X2CMsVJEvzjMzKhs4do1IlIHDxI57tiRNv7lBQAlEsqempgUGbsB9Hy9e5fKoASBuh7o28qZmFDWtTju3SNDsr/+enmin5FBsvzvvqM526IFBWMSEoictG4NGwA4dAjh4eHwKVlCUAk8k6cLUqmU1alTh02fPr2IFXbqRCoCQxg0iM7rWUlYZmYmq6wvCRgjxcWff9I5DhlCn3XgAO1d+vWj1508CTRqhFoffih0v3SJw5QpNKaVUai5uNBaY2UFHDuGe/7+EARB8PX15bFlC3l1lNV6zcamTPK9detWXWxsLO/r6ys0aNCAO3HiBPeFvmQiP5/OpU2b0muaINC5ennhwvnzgo+zM2dz5AgFlQ19lyhSAKldOwqs5ObS+j5vXmmFSGgoBQEWLsSWxYtFjUbD8hYsEFpv2MCNHjKkFNGvChwcHDTp6elRAMADy41ycxu3CglB7ZgYPGzeXBuh1YoNJ0+W4ocfXhxLjYbaxPXsafiDXVxQ49NPkZOTI57s1QtDfXwYUlMpWfXnn6SUcXIi74CcHCLuZd1HjAFr11JtukpFpRmLFxPB5TgqIRk7lo5FX6Zw7x5luw8cqDaiD9Bz9JnJL6vU81QqpXt87Vo6z23bqLRMEGgPYmJC5S75+aSiOnyYgn0ZGXj8v/8J3uPGwW/nTg5HjtA5zppFpQ137tAaHxREr+/YkcZQraa1pAIEBwerRVH8TaFQVOzQ+x7vDN6T/bcEpVIplUql82Qy2YyePXsat2zZklVLfW9ODtW3zZ1LG4AuXapee1oChYWF8Pb2lt64cUMqiiLmzJlTydDq68G33367SKlULs3Ozv7A39//aLtqcjA2BFEUERQUJMbHxwsDBgwot05Zq9UiLS0NERERePjwoWT69OkwNzd/4cnu5ORE/+jUCR7R0fCYN49HYiJgafnm78WePSl6vGNHtX2kpaUlcnNzufXr14t9+vRhzobqHl8CU6ZM4S5duoQ9e/Zg2rRp6NGjB5o1a4ZDhw4Jq1at4kaPHo26lazFTU5ORp06dQSe56vGJPVu2pMmkZQzOLiKZ1E96N27N44fPy60a9eOCwgIwNOnT7UqlYpTq9WctbW10K5dOzRr1qxoMZk9m4jF/ftv5XiLIzk5Gb/99hscHByEjz/+uLRSwMiICH9gIK1lb9qlf/ToygdxgoKI1B09ShL414QePXqw/fv3w1CA57Vg2DD6efSIniFJSbSx1JOUmJgXyX5UFGUrBw+me+MNQ6vV4saNG3j06BH38ccfV+5NjJFB1YABRIgiIkjCOnQoSYzLmgN6vws3N8r+NWxI5x0aSvXQ+pad+qC6jQ1trPVeKJcuEUm5cuXliL5SSd/drh1t/r/8ku4V/X1UTBFTWFgIAHBzc3veIaeyEAQBR48eFaKjo/H555+zF9Qk27cTOTUkkwdoDPWBlLAwuDRvLh48eJBdu3ZN6NevH1ey9VhhYSEeP36MrKws1KhRA3Xr1oWFhQVYzZpUdnHpEhH5K1dofD09SVYdHQ3TL77g4h4/RtqVK2j98cf0LPPxIeKif9aWROfOFOzp3RtISUHDR48Qt2sXPQyuXSMFyJkzFNwtiSdPaC0tcb8nJCQgPj6enzlzJuRyOZeVlQVBEBATEwMruZwM8jZsMJiVxX/+Q3Ppzh0UNG/ONVm+HGz9epKfF0deHmV4AwNJqTl0KM3bhAS6/ob2JnfvQhUSglXLlunUajX/fE/CcXRMei+Ol0BmYqKRa0TE6hRb28y5qamhINXm6VwTk/A/Bw7MvGliEm4fHZ37YWKi6fN6f39/yrBXzs9D1Ol0TGdvD97JqUhKP24czYn8fAqI5OTQWKjVFAyqVevFkhXGaK7Wq0cBubAwCtQtXkyKxqwsmlvjxtH8Wb2ajAxfQ9trY2NjgTFWNOCCQNdAo6H9hIsLKYSuXCHVUdu2dK/9+itJ+nv3prVl+3ZSBykUlLTZuJECIcbGgKkpGGPQarUifHzo9a6uFBhs2pTWq7lzKaufkUHHcegQfX4FflJarRa3bt0S3hvz/fPwnuy/BSiVykYymeyQk5NTnUGDBtUotw9uZZGSQgtUy5a0SRMEioC+8sdSDaSVlVWBRCKBVqtd+eoH++p4Zvxn4+joqAJQLQWPGo0GoaGhiI2NFQoLC0U7Ozs+JiZGSEpKgkwmYxs3bhT79u3L6tSpg+zsbKSkpMDe3h6xsbE4ffq0mJGRwWQymWhubi707Nmz4v7ldepQtNrCgrJB//sfDPVKfW3Yvp0eNNWI1q1bw8HBAdeuXcPWrVthZmYmDBw4kKssES8LHMehc+fOiIyMFPbv34+xY8dyjo6O+Pzzz7kzZ86IO3bsYDKZTBw0aBCzsbGBubm5QUf5oKAgPHnyBIMGDXr5lPH69SR3vnmTXKOr4T6rCho3boyjR49yq1atgrOzs9C5c2eJpaUlHB0dYWRk9OJ5aTRUC2mgxvRtIC4uDlqtFhMmTODKbFXl4kJje+8eZRAvX34zKorTp0nCW1F9rB6WlpR5e80mdOfPnxcsLS25KilRqgOuriSLNjGhAPKXXxKBu32bCIajI60fP/9MY9Gv30vVhb8sUlNTcfHiRSE0NJSTyWTo1q0b6r9MYLt5c/rp1o18GsaPJzLdvTv9vuT1rVWLavBlMiIaZmZEmCwsqAa5c+ei+bpv3/PWg0hKonHcv79qROLePcrIBQdTFrewkAL4Dx+W+zZjY2N4enqK/v7+zMrKCk2aNKn0V966dQvh4eEYP348Z1nymZSYSCSpLOhb2332GcAYRo0axT0zg8OGDRswZcoUREZG6q5evcqysrI4nU4HExMTwcjISMzMzOR1z0poevXqJbZr147B1xfPSUt+Ps0zUQQSE9EgOBihDRrgzPHjYovYWCYxM6Pn6JYtVA5w+jSVBxi6d8LCgOHDseejj4T6pqYcHjygGm6ZjOTfhsi+mZlBdWRSUhJMTExEuVzOAMDCwgIffviheOzYMRbz5An6r1pVOpP95AkFYL//nojYkydwePAAwQ0bQla3Lp6HKtLTaUw7dKCMbmgo3W8eHnQ8ZewfBZ0Ol01McKFzZzRzc2N+fn5FLfs+/7woIFMVf53UVODiRagzMzFo3jw+tWbNGJO8vAgA30EUIwHAFMAsAEql0jgpKWnU77//vnbmzJnGEomE5q+he8oABg0axG3fvh0nTpzQ9evXr4gg29sXmS4ePkzPuCtXqKQhKorut2bN6LmXnk5qCjMzIrKNG1NZSHAw/e3PP0muP38+yfkDAmhcXoXoCwKNk6kpBYRTU4m0r1+PBqmpzOn2bSLpS5aQ4tbZGVi1igj90KH0fmNjWktHjqTARmxskYpj0qQiY8EzZ4q+91CRqv5mcjIgCAyfflr092Ilj+np6VAnJcHBwYECmN7elfLxevDgATiOC1UoFI9ffoDe423gPdl/g1AqlbWlUuk3Uqn0Uz8/P6PWrVu/dA1sKcyfT7VR589Tq6Rqwq1bt7QSiWRdRkbGdQCRCoXiUYVvekMwNjYe7+npWQ2REto47ty5U9RoNKK9vT0zMzPjnjx5Ipqbm3NffvklJBIJDh06JP7xxx/w8fERr1+/zkRRFFQqFQcAXbt2ZfXq1YOTkxMDUPlQua0tbWCuXqWNs4XF63ewFgR6+PzxB0X3qxE1atRAw4YN0bBhQ6ZWq3Hq1Cls27YNjRs3xjADbspVha2tLRccHIzExMTnKgk/Pz/m7u6Ox48fY/fu3RAEATzPo2bNmoKjoyNr27YtMzExwcqVKyGVStG7d2+xUaNGLz/IHEeKiLNnaTP51Vdlyz5fA3iex8yZM5GYmAhnZ+ey15DMTCIm9+9X2EngdSMmJgbHjx8Xk5KSmImJCcrrSf0cDRpQtsHYmDY5r5vw//Yb3Y8Vkf0bN2hT9vAh+aG8ZhQUFKzfPNwAACAASURBVLyW7haVQqdOtF78/TeRYCsrksA6O1M2adEi2hxfvGjYvfw1IT8/H6tXr4axsTFzdnZGdna2+ModbKysgJkzaa79+ScFz5csofr8koRo0iSSAM+aRZnWyZOpZVdcHI2ViQllgL29iTyGhdFm/eTJslsc6lFQQIZlvr40F7//nsojdLoKu+eUhIWFBTM2NkbjytY5P0NcXBysrKxga2v74h/y8qieviJDwYcPSQKtVgOxsZA5O2PMmDHczp07hWPHjolPnjzhmzZtiuHDh0MURURERHD+/v4obhj97FlKkEhIijxgAI1tnTr078BANPP2xtGjR1lEQgIaW1rSeM2ZQ2vyyJEUXLGxIS8Kfes0jqNgQG4uRri7c/cDAgRMmcLBxoa+R+9IXnLddHIqnXEHYGdnh4KCghfmn6enJ5MrFBC3bTMcmFm2jMhp376klpk3D959+mBRdLTYKD2dOcnllOX9+OPnRoIYO5bGdMyYcod/+/btOt7fnx+4fz9qhYaiXv36LwaBZTKSqXt6ElkuT5mUn0+qhJMnqRQhPBwPLC11f3/++YF8jhuhUCjK8mlSA9i6cOHCxZmZmcY269ZRjb7e76ICuLi4wNTUVFdQUMCVq0yRSinA1rkz/X94ON1vsbFEgG/dovWpaVPy19i8mVR6u3aR4sbHh8Z161ZSyxhqAfssuAStlsbrwgUKvvz1F6lB9C0cmzaljPnx4+SBsmULvb59e8DYGPnm5shs1YoIdqNGFAjQB0i7dSv9vYsWkbpqwQI6r02bgLQ0mvsTJlBArYQyIygoCHFxcdy4ceNe+H1qaiouXLigS0xMZCkpKRwAjB40CPUzMoCnT8FVwoTw6tWrOYWFhaXbSLzHO4/3ZP8NQKlUehgZGX0vkUgGtmzZkvP29pZVW9skPZYvr/b61idPnuD69etqrVa7SqFQhFfrh1cDtFrt2aCgIO9Hjx4hPj5eaNeunbxFixacvIr9ulUqFbZs2YK6deti8ODBXLGM8AtPl8GDB7OYmBjs3LkTFhYW2qlTp1bP/SOXU6RZ32d427ZX6udaIXQ6ina/5tpamUyG/v37cxYWFjh79iyCg4Ph9cyhOjc3F3K5vMx+7mUhLi4OAF4g+wBQu3Zt1K5dm3Xo0AEcx+nLKbgHDx4IGzduZDKZTLSwsMAXX3zBOI6rHlY+ciT97N1LsriwsDdWYy6TyVCuu7UoUvbn7Nm3TvQBMg1MTk5mnTp1Qs2aNSvXa9jYmGSaN25QViI6+vXJ+nU6uo4VGexpNLSh07tJl4AoitDpdFXzgygDgiBg8+bNKCgo4MrqvPBGwHEUSAZogzpwIG0+4+Np3Zo69Y0S/dzcXCxbtgxyuVz48ssvuXv37uH06dMQBKHK64lBmJoS+dGvk4cPU6u2CRMoS6zPdPfqReReFClzuHIlbfz1vat//bVI/bF0KZG7soh+dDTNp4cPSaqbk0PZO3d3+oxird6qgoiICMHd3R1cFQYmKioKISEh8PPzK/2eL74gAnr1avkf8ugRlSu4u9MceVbyNHDgQO6XX34BALi6uj4PJuzZs0eoVasWN2zYMDDGUMqE8vffKeDi50cZyObNifhMmQL2xx+ok5qKR48eiY0bN6Z1RU+AUlPpvwsXkkqlRw/696efkorn558hy8iAmJ3N5T98CHnXrvTe8HDyYShpxpqebrAcytzcHFqtFlevXhXbtGnDOI5DVFQUrtrYoHPx9m4AKcPu36f5wRgFIQIDgbZtUThwIMQlS5jtokUkeb98mUqLTp0iJU0lEjn5+fmIjo7mJ3/3HWp89hnqlaV2sbSkcfz9d3qO6cm0Tkf3e1QUkVZrawqwzJlDpFUmQ9D69Xn5iYlbyiL6eixYsGCsIAjWljVq0PeUcJGvCB999BG/Y8cOMSgoCB06dKjcm8zM6L4FKEgiihQ0u3SJzuvnn4lY16hB89jOjvwOfHxI6eDmRnOrRw/KnPv7U2CkVy8KwI0YQUm1evXovR070n9/+okC1HZ2wI8/0vf36lV0XAoFEn77TbSsU6dI7VMRTE1pvQ0JoXP6+WfaJ86fTyqPr7+mubpsGWBvD9HCAqdOnQIAbNu2DTzPQyKRQBAE6HQ6uLi4cI0bN2afffYZbq9bh5gZM7DT1xcTfvsN111d0augoEj9UQLp6elISkoCgCMGX/Ae7zTek/1XhFKptATQFkABgDC9m7xSqTQG0MfY2Hi6kZFR2w4dOsjatm3Ll3UjvTKqmWSIoohDhw7lazSaie8i0QcArVb7U1paWlpKSgoDcOfChQtzAgICujk5OWl8fX3NnJycoFarKzRvO3z4sE4ul2Po0KEVZuRdXFzw7bffMryOe4fjKILepQs91Dt2NBxlfhU8ekRZq7Vrq/dzy4G3tzcKCwuFU6dOcefPn9dxHIfs7GxeKpWKarWaDRw4EJ6enuV+RlRUFA4fPizm5eWx3r17o0EZbbP0GWM7OzvY2dnBx8eHy8zMxOPHj5mbm1v1kIGS6NePzH8EgWR7BjI/bxz6doHLl7/tIwFAXhWPHj1CN8peVC3Y0ro1KShMTCh40bVSfp5Vw0cfERHbsKHs10RFEdGPjS1Vr5yfn4/g4GCEhoYKqamp3PTp02H1EmaoxbF3717Ex8dj7NixVTKgfK04eZKypMOHU0a/Y0cKfGg0r6XGtSTy8/Oxd+9eAQA3YcIETiKRwNraGiqVqvrbCPM8kZv27al0Yds2ygYDlJ10daXM2uzZRMq++opkwoGBRU7giYkUDPn886K6fT2Sk4lETJ1KkvGRIyloGBVFmeySr38J5OTksFq1alXpfvv777/FmjVrCj4+PqWfh7/9RoS3ItSrR+R0xYoX5oVcLsfEiRNx5swZNGvW7PnveZ6Hk5MTSpU0arWUWf72WyKmxe+7Tz8ltcm5c/A9fhzxublUxmjI1G72bPoRBMrsDhtGAYiaNcHFxSF9+XKdTKnk8c039PrJkyl4W9yIESBCXMyYUBAE3LlzB9euXRNr1qzJTp48yVQqldjU3p6ZduwI161b4dK3b9H79fdJnTr0WcnJVH/v7g6MGQN5377ozRjCBg7U2Z8/zwubNyNv1ixwX3+N9NhY5OXlwb0S/d6ZRgPLuXPBnnXxKBOHD1PQ4eOP6Ucmo3N3cqIA1fTplP0vkVXPy8vjADRSKpXB5XVQ4jiuFp+Tw/OnThEpraL6zcXFBfXr10dkZKSuQ4cOL2cuwNiLmf+ePWkf1KQJ3XsAzbNLl2iOtWtHzxwPDzKu+/prKi2Ljy/6zAEDSn9PJZ77HMdBEKroZe3rW9SykT6kqCTkww+pA4qREdCsGdjAgfh2xgzsOXVKSFWp8Mknn3AqlQoymQxmZmYwNjZ+fgG8kpIAd3d0++QTZDx+jMjMTHH16tXo2rWrYKhtcHBwsIYxtk2hUKiqdgLv8S7gPdl/Bfz444/DJBLJFltbW61OpxPT09NrzJ8/XyeRSDJ5nrdycHDQeHl5mTVt2rRystV3BFqtFsePH1erVKqHAA687eMpC886AKwv9qu+SqXSIjY2ts+ePXvWCIJgotPppLNnz4YhYz2dToekpCSEhYXxX3755Rs77nKhN0iZPp0MWqZNq97Pv3qVovVvsIZbIpGgR48eXMeOHRETE8Pn5+fD1dUVGRkZLCQkRAwODhY9PT3LZeGZmZnIyspiAHD69OnnCoHKwNLSEq1atXrFsygHcjltlK5cIdl5QgJlDd4mfvjhzZvblYHTp0/j2rVr6Nu378t3aWjThjbngwaR5LU6fE6K47//LV+aHBtL7dROnjRYs3v9+nWcO3cO3t7eHM/z4po1a1jt2rV17dq149zd3V9KSfKsFEWsW7fum6kPMQRBoI2xkxNlj9LSaDP8rBUmbtygDFOzZpQRW7qUMpELF1K2escOui9Gj6bAQJ8+RC6++ILuk9BQkoUfPEif4ehI2fL69YnwFgvOiaKI27dv4+nTp9yYMWNQs2ZNaLVa7Nq1S/Dx8UGVDTerAk9Pyqo9fUqBpxUriITOmkWy8ePHiRisXElZ2zNnaJxataKMYXHi/t13lKGWSCgYN3nyi0SoGjpf6GFlZcUSExMrp6R5hoSEBGZos499+yiYuawSKl4rK6pDTkkhQnnvHmW0QYHYUSVk4z179uT27NkDU1NT0cfHh3EcR4G9wYOJZMXHGyaKHIcLEonu8ogR/PiBAxn8/GierV9v2HiO48jUDqBrdvs2MHo0/BYs4DUcB+HOHXB161I9/ebNpNQYP75IkWFs/AL537Bhgy4tLY338PBAVlaWzsvLi9na2nL7du0Su3p7o33fvkUHPWEC3RP+/vT/6elFHRm2bQP694emXz80nj0bJ0eM4M+sXInw+Hgx9eefGc/z0AfHJ0yYgFq1apU59KmpqbBISwN7+LDicguep+M5eZKeFwMGkES9glKTbt261Th58uRSlUr1CwzMLaVSyQMYCcC4c1AQyegHDSr/WMqAhYUFu3btGr9x40Zh+PDhnFQqBWMMRi/jD5KdTc8Pb2+S96ek0I+TExn2/f03PQsaNnypY60IHMdBW0brxjJha0uBVUPmeTJZ0bjeuQM8fQqj/fvx8Y4d3K4+fcSETZvQbMaM0l14NmygPaClJRAYCCtfX3w1YQI7efIkzpw5w5fcX+l0OgQHB2s1Gs3qqh38e7wreE/2XwE8z680NTU1Tk9PVwmCwDk4OBRyHCd1c3NzbNmyJeRyedX7XL0DuHv3Lu7cufNUq9V2fVZ39Y+BQqHIArBLqVSeBfCBTCbbLJVKZXoZk1Qq1ctjhYSEBE4mk4m1atXSmZubv1v3woMHtLkZP56izPoWPq+Ce/dIglaJ9iqvA3K5/IWsxDMTPbZz584K39uiRQvk5+fjzJkzcHNzE3mef3sEqCx06ECZmpwcyhTv3//m2/Ndu0YZr9DQN+YhUB6ePn2Ka9euYfz48XBycno1MublRRmOrCwiTCtWVM857tpFG90+fQz/PSeHiGxoaCn5pSiKuHXrFiKeEYju3bujU6dO7OLFiygoKOD379+PGjVqiA4ODhg1alSVOq6Ym5vj/v37LCQkBC1btnzp06s0UlKIvLdtSxLsJk2I7O/bRwT9xg0iBufOkXIkKorIuY0NkTGtliSzBw5QJky/iZbJaNwaNaLrpdPRz717tLn+178oODVsGGXW/vMfIlp6H5rHjyG6u+NG+/ZitEzGZjx4ALNhw4A5cxB986Zo3q0b892/n0EioesYEEDEKiSEgm6ennSszs606X2VOePkRPW9I0eSQmr8eAr0NWhA62pcHJG3deuKDFC//ZbIjkJBxxYXR/Jyve/Da4SzszPu3LnDMjMzUcporwx06tQJFy9eRF5envjhhx8yYz1R0Gqrpt744Qd6js2aVWF5TIMGDTBo0CDs2bOHtUxMhGlYGCklDh+uMHAaHh7OajdsCIvGjYEbN6C7eRP5I0YgT6eDzcqVkBTP9Ofk0Bqdm0vzY9Cg5/XqEkFA9syZsOzeneb8+PEUsFixggJednZEhgsKgEaNEPb99/BZt453NzODdOpUhkGDeN2ECYidM0cckJ8Px/PnGZYto+/s04c8DP7zHwrsnDlDgSF9+YdKBcyZA+nevQiXSBCamAiWlIRWrVqxMWPGgDEGc3Nztn37dt0ff/zBDx482KC6Ta1WY/v27WjRurVOsmpVxZlwUSQ1BM/TMZbVDq8EWrRowQcHB6vj4uJ0ZbykP4Dt1qmpuOLrK2S4uhZYnztnUqdOHdSrYvlgz5490aFDBxw8eJCtXbsWKpUKPM/Dy8tL8Pb25io0uFapKLA2dCitU1euFF1PoKiDxRdf0DM8P5+CdCdPUoD3FZGVlYXk5GQ4ODiA53lRp9MhOzsbKpWqtCeGIbRsSQHB//63fANUS8vnxo1s4kS0evCAGY8bh6xTp2ChVJJK5YMPKGCpUFB5AGNkhvssuNOtWzdcu3atVEnUw4cPwRgLVygUYa86Hu/xdsD/8MMPb/sY/rG4ePGiTqvVpqpUqiGCICzNzs6+kpWVdTE+Pr7J/fv3ZRYWFrKaNWtWqeXN28ajR49w4MABLcdx33///fcX3/bxvCy6dOmSe/78+Uc8z3+Un59vc/ToUU1gYCBSUlLUZ86cYVlZWdy///1v1rVrV9aqVas33My7EtDPmagokvjZ2FBW4hX64qJDB9p86uVs7wDMzMwQGBjIatasWe6DLzw8HH/++Sf8/PzQq1evd/eG4nkyUDp2jLJSOt0bkTc/h7ExbW7egWssCAK2bt0qmpubi127dq2eayaRUEb4l1+IXFWUuaoMVq6kFkSGDJJOnSKSaqAuXaVSYcOGDQgJCUFhYSHq1Kkjenp6MolEggYNGqBRo0Zo3rw55HI5u379Ojt//jyCg4PRoEGD0jXJBuDi4oJLly4hPDwc7du3rxYfAAC0wQ8IoAxnWhptJBkjYnPoEJl/xcdTuUTPnsDu3URQbW0p4x4TQ7L1adPod4cPE5nnebo+9vY0D62tqeyBMZLCN2xI5lV9+9JGu21buoaM0fh27kxjPX06yZxHjwb+9S9EJiTgcH4+4uvWFYfPmMFM6tUDWraEkJ2NGw8fot2ECczq2jV6b1oaBW/69KGAUGAgBYl69aLA28GDZDL26aeU3btwgdbXIUNI/n3lCrW3GzSIZN8ZGbSB3raNzC6fPqWMYMOGNPemTqX7/fx5ymY7O9Oafe1aUY21Wk0B25gYqgP+6CMKpLwBODs748GDB8K5c+dY/fr1UWGHGACOjo4wMTFBWFgYS0xMhIeHBxHWevUqbM31Anx8aA309KRgWVhYUS9zA5Cr1bgZGAhfUQQXG0sS5Qr8RgRBwOnTp1lWVhYuXbqEwOvXcSk6GvdsbQWjR49w5/p12C9bxoz/+ovmQYsWRPL79QOysyF27ozEwYORZWSEWy1aoN6RI5C0akVkv107Iujjx9Mc+fZboFkzPE1NxUE3N11IXh7nOWwYbPr0AerWhcgYzqSlCRYhIcy5XTvG+vQhNdL27fSdKhUFs/bto5ru1FSaU4MH0/hYWACtW8OufXvEx8eLNjY2wqBBgzhjY+PnWWxPT09Oq9Xi2LFjcHV1fX49k5KScPbsWZw/f16sKZOJQ2bO5NnEiVT6VBYmTyZTunXr6H6Miqp0JxKVSoXjx4/zAGp36dIlt+Tfz58/H26ak3P38zVreplnZiov2tsfiImJuXvv3r1m5ubmRg4ODpV+HjDG9J0lmImJCTp37gwPDw/cuHFDOHPmDJecnCw0adKk9OdpNHT/1qlD1/Ljj6mcRio1PC6mpnRfiyIFhAYMoLKau3dp/XoJnD9/Xr13715dWFjY48uXL5tlZGRI09PTxQsXLrDr16+jRYsWMC6RdRcEAdnZ2UW/l0iok0duLh7LZFCr1ZBIJNi7dy8SExMNlzTK5bCpUwdPu3fH1qwsZJ85Izr8/jsT7ewg3bCB1DlubvTaSZPImNTKCjzPIzAwEC1atHhBOfHXX3/lpqWlze3SpUvoSw3Ee7x1VH+d23tAqVRyjLEPpVLpMlNTU9tu3bqZVqXtzdtEUFAQAgIC/p4zZ07lQrzvOJRKZVMAd6RS6VKdTpcnCEIqz/MjdTqdd9OmTQsHDx78z1Bf9OtHmZWTJ1/u/YJA7y8hjX0XcOHCBfHmzZviv//97zIPLDY2Flu2bIGFhYXo6+vLGjRoULq+811DZiZt/oOC3szmfuBAyoZV1vznNSM5ORlr167FF198gZK9tasFwcGUwQ0Kevmyifx8eq+hgKxWSxmPgwdfCJ5kZmYiLi4OBw4cAGMMTZs2xaAKJKqZmZk4cuQI4uPjRY1Gw/r27Su2atWKMcbKDQbHxcVh06ZNkMlkaNSoEQoKCsShQ4cyQ2VJpaDv4bx3L2WoIiJI3rxpE2XumzUj062gIKoL1V8jtZpUKXPmFJmELVtGRK9zZ8rWTp9OY2djQ5+9Ywdlw6oBoiji0aNHUKvVsLS0xPbt2yGXyzFt2rQXsk3btm3TqdVqNnHixMp3tRFFGhMTEyKfUimdw/Hj1HkgJobWWKWSghleXvTz3Xck1z92jAIid+5QoGPkSAoafP01BaAWLKBggH78Dx4kolCO7Pp1QxAELFq0SGzcuDEbMGBApX1Ltm3bpuN5nh8zZgyd++7dRRL4ymLSJCJZf/xB5Q0Xy84f5Do64mGzZmKrv/+uNBEURRFLliyBjYWF2K9HD2YUEACj06dhvHAhxI4dkdShAxIfP0YTFxfkODvjrL29Llou52rXri3Y29vzt2/fFpsfPYpHnTvrCszN8fHKlbyluTnD2LE0x3fuBPbsAY4eRVpaGk4pFELrs2e5tI0bxZYtW7LiRC3e3x+Jc+agcUAA5CYmdM4qFc0RY2MKUi5aRCT0/n3K2OpVMjNnFt1/APz9/fHgwQNh2rRpBi/W1q1bRa1Wiw4dOjALCwts375ddHJyEjMyMtjIwYOZfWQkef8Ygk5Hz6bgYApQtWlD90XTphTcNOR5UALXr1+Hv7//X99++22/Ml/EmCkAZ4jiA/2v5s2bt7dZs2Yf9evXT/Kqpa0RERHYuXMn2rVrJz5PAIgi3XdKJRkCRkWRguhln78rVlDAp18/CvasX2+4jaMBqFQqLF68WC0IQl2FQpGgVCodAHwBQArgoEwmm926deu+3bt3f2EgVq5cqcvIyOD1XkaCICB63TrEnzolBHh5cXrOZmRkBFEUIQgCWrZsCZ7n4ebmBmdnZ4SEhCAjIwNhYWG67OxsvnXr1nj8+LHQd9EizlitFhM8PCC6uzPnrCxYcxy4bduePwOXLFkijBw5kqv9bB5kZWVh1apV+Vqt1kahUBS83EC+x9vGe7L/GqFUKjkA3aVS6c4RI0ZYv1QP4DeMO3fu4CDVY5opFIpSEdt/IpRKpZHeVGThwoVz1Gr1AgAYPnx4pcxu3gkUFpL0MDycNpNVkfWHh9MDPSnp7deSG0B2djaWL1+O77//vsyNqFarRWFhIfz9/cXHjx8L2dnZ/IwZMyotTX1ruH6dsiXr1wPjxpWunasuiCIwcSJlIl5zl4XKorCwEIsXL8awYcPQqFGj6lc45ecTufrxRyJwLxP86dGDslo7drz4+2XLaJPu4ABwHAoLC7F//34xMjLy+UnopcdV7f5x+/ZtnDx5UiwsLGQAoFAoSr1GEATcv38f9+/fx4MHtFeWyWSQyWTQ6XTClClTuOdZWkEokifv3EmkfPFiIq137lA2a/RoWgP09fUlN6xaLZGA7t2JdCxcSJ+3dy9tmJcvJ5f48+dJyq5HfDwFD69fpyCTXhL7CoiIiMC+fftgZGSkU6vVHM/z4ujRo7mSdcrLli0TunXrxr2REofyIIo0/nl59OPtTTX5lShPehM4cuQI7ty5A51OBy8vL6Ffv36VYvs3b97E2bNnhZkzZ3IQRZo7VfUBmTiRiFL//jRPSq4BubmkINm0CeuPHRPqtW7N9aioE42+XGTtWkCjQY6LC3QzZiCwTRuY1qgh+DZtymHmTLovTEywYcMGbVpSkqSjvz+ax8UhbfFiPEhKwlOJRGzi5sY6jB0Ldu4cBa3y8oiQL1pEJNHFhcpX6tXD8ZAQ5Pj7i8MiIhj7889Sh5WyejXS168XG4WGMogieVHY2BCRv3KFArGffUb3ob4MxtSU1CEhIfSaZ8+/ZcuWCe7u7lynTp0MqjGys7Nx4MABISMjQ8zJyeEtLS0xY8YM+uOUKRR8Kmu/OXIkKXVKBl7WriVvkv/9r9Rbisu6dTod5s+fD4lE8ut33303vdSLAYCxfwOYBFF8gWXPnz8/TqfT1ZJKperPPvtM9jJB4MzMTAQEBCAsLAzdu3cX27RpQ+Ot1dI5z51L6iGgUoGLSuH2bTIi9fcH1qyhz69A4p+amooNGzakz5kzp6ahvyuVyvZyudx/+vTp8uJZ9J9++kl0dXVlkZGRorW1tZCUlMTbFBSIHyQni7VXrOAkUikkEgkYY8jPz8fFixfFtLQ0XUREhASg54RcLhfNzMyEZs2a8a6urmQWGxkJrakpEgsLEZ+YiMyzZ3Vtli7lI+vXx43x43UdO3bkmzVrhhUrVmi7d+8u8fDwAAAEBATorl69unX27NkTq2cw3+Nt4N2qU/5/hmcGcqcWLlx4IDk5edI/gezXrPl8XaoL4O7bO5LqQ3H3UI7jWgGARCJJi46ONnF3d/9nZPb1xkC7d9ND+osvKt/b3c2NMkzvINEH8Nyw5vbt25BKpfDw8MDDhw+RmJgIrVaLe/fu6XJycnidTgcjIyOYmprypqamMClPoviuoE0bypQuXUoSwWpw2C6FM2co+7ppU/V/9ivA2NgY7du3x4EDB9CuXTudn5/fK9SgGIBcTmT//HmSRsfFVb17xW+/lf6dKAK7d0NwdcW+wkIhLCxMT46Yu7s7OnXq9ELbx6rC09MTzZo1Y+vXr0dycjK2bNmia9OmDd+oUaPnRq6rV6/WFRQU8PXq1RMaNmyIIUOGcDKZDLqnT3H82DEc/9e/0ObxY7HB3r0MTZtSQOm//yVpMM9TG6i1aylzd/Ro2Qej0dD8mTmT5s/s2URWT56krGS9evRZmZlEEkqed24ubYJdXSkD+scfLz0uegQFBenc3Ny4IUOG6OdLqUXur7/+QmFhIefq6vrK3/fKYIzucXd3kmg3bEjBlvbtaWzftG9HMWRnZ+Phw4di165dkZeXx0JDQ7l+/cpOxhaHsbEx9b0/dQrYuJHOrarYuJEy2jxPQbm7d2meaLX035EjSVXi4gLR2poFBQWhW7duRSUrgkBBvd9/p7kXHQ2sXk3y87AwoEEDmPXtC/TsiRY5Odi2bRvnO2fOC4cwceJESUhICBp9+SVM5XJYbNiA+lu2AL/+ymBhQaRbDxMTUiOsWUMmZn37AufPozAh1AGz0gAAIABJREFUAbecneHXvj2YXv5cHEuXQujeHUfy8sSvx45lMDKiAO+lS3Rf8jzdSzt2kAJLKqW1ijGS0ael0ffa2wM//oi+ffty+/fvR0xMjDB16tRSwRlzc3OMHz+eA4CEhARs2LCBCLkg0HfOm1f6GFNSKPC/dKnhOTl8OPDjj8hKSUGBTgdRFGFsbIzExETs3bsX1tbWQr169cSEhAReKpWmaDSa7wxec4rqngBQqj+jTqdzASBjjJ2JjY31qSrZT0hIwJYtW0RHR0dx2LBhnGuDBgx79pAKIy6OxtfHp9LZ90rD05NKnwAqy7C1LWqbWEZLwJiYGHAcd72sj1QoFEELFiyIOnHihOvAgQOfS7W0Wi3r3bs3Vq9ezczNzTFs2DCYm5kxNnAgQ3r6CwEMuVyOnj17MgCS4OBg8eHDh/Dz82M2NjaMMVb0vL10CRg0CJJHj1Db3h61TU2BAwd4BAVBYm2NvNBQ7vDhw/j7778FU1NTFhUVBXd3dwiCgGvXrqnVanUlXDnf413Gu6Xn/X8KnuebVqZW7l2Ao6MjWrVqpeZ5/tIzZcL/K3zzzTdDFAoF02q1rYODg5GQkPC2D6lqmDaNNkmbNlFrmIqwcCFF+f38Xv+xvSSsra0xYMAA8c8//8Rff/2FhQsX4siRIwgPDxfCwsLE1q1b85aWlkK3bt0wdOhQptVqxcGDB/9zOlzIZCR/7daNCICBrNArISaGNjrvIHr06AGe50V7e/vqJfrF4etLDukSCTl4VxarVpGMtnhd8PTp1I/7+nXcdnFBZGQk16dPH7i7u2Ps2LEYPnz4KxF9PTiOw+jRo+Hs7AxjY2Pu+PHjwsaNG8WCAlJJFmZmckOcnDC0a1duVHg4JxsxArh5E3ynTuiflcX5duiAWLmcrVi3Ttw1b56gPnqUNrm//kob07p1DXYNAEAESqOhjGuXLrSObNlCm9bmzanO/fffSdY7fTrN2+vXDRMIR0dSBPzvf7Q23bv30mOSn5+P48eP66KionhPT88yo5gBAQG4desWPvnkk7dfyqPveW1mRmN07x7VQteqRaZ9Dx5U/BmvEefOnYOVlZXYvn171qJFCxQWFuLBgweVknPevXtXZ2JiQkHmlw2qZGfTe7Ozaa4NGULz5cIFKhMpLCTyaWmJcePGMQu1WkxdvJhMw6ZNI9VNRgbd33pJ/OXLFJBas4aCVHI5BFNTnD59WjA2Ni7V14zjOHh5eZFPBsdR5vvoUVJjeHjQ3C3eDs3ZGbhxA4X79kHVvz+W5uUhNCQEdevW1XnWr88QXqITcW4u8OuvkObkQJabyzBwIAUJZs2iY/3jD7q3Nm2i9cbICFiy5EX/nZo1gW++IfPRe/fgXqMG/Pz8kJ2dXeEezN7eHhKJhPYyaWlkJKo3nyuO2bPJNLFWLcMKDWtrCHI5jn3zDX7//Xdh+/btwpo1a3DkyBHRy8sLLVq04KKiopCQkACNRmMLIFupVPZSKpXivHnzyLiNiP4VAE4QxSsGDtcMQIFarfaRyWRISEioUiu6PXv26Nq2bSuOHz+ecx0zhuZQ587kGyKV0rOguol+SQQFkZno3r2k1AAM3ufJyckaQRDKbVut1WpH3L59W/bwmVGnVquFIAiQy+X4+uuvMXz4cN7CwgKM4yhYdPp0mZ/l5eXFRo4cyWxtbV9U0eXmUjA4IIBKEgAKRiYlAfXqwdzaGl26dGGtWrVCbm4u16pVK/7u3bvCokWLsHbtWhHATYVC8XYXsvd4ZbzP7L9mKJXKFkZGRi3K6gv+riE8PBy3bt2SSCSS43Pnzq1iQ9B/DhQKRdSPP/44ccuWLWvat28v79at2z/rXhg+nCSCOh0RnLLIfP36ZW/63yG0bNmStWjRAgCQk5MDuVwOiUTyPHORmZmJc+fOwdzcXBwyZAirXV3yvDcF/cN3yBCqH4yOpk3lq/onKJW04Zkw4dWP8TVArVZDpVKx177+eXlR9kLfqqsyKpbo6NItpjQagDEIgvC8F3ibNm3Qpk2baj9kc3NzTJgwAYiKYjq1mv3y+LGY3KYNLLy80Dgzkzn/9RfNETc3yhZ7elLQiOPgCMBh8mTUjoxkAQEBWLFihdCpUyeubdu2L5TChISEICcnB2ZmZrCzskKtxETg88+RPHkyrjVqJDp88AFrXacOBTwOHKAs4zff0OZZIiEy1qMH/Rg+CSJOT59StnDMGKprr2KNekJCArZv3w4zMzNMnDgRjmUYuQmCgCtXrqB9+/ZwLmGY+FYQHU2BkUmT6DotW0aqK8aI5G3dSmZ91dFN5SWQm5uLwsJCxvM87Ozs0L59exw6dIiZmJjAxcWl3PcyxjgznmdwcKCg8cvA3JxMCo2NyRNhyhSqfY6MJCK8dy+Vh4waBeOsLNi1by+K588D7dszTJ9OXgmOjuSTUAZ0Oh22bdsmJCcns+nTp1euVsjengjxiROUpfX2pmDEvHlISEvD9dBQ5LZvj+F79qCXubnO4/PP+bYJCTy8vIg86XH3LgUyoqJg3q4dPlCpGKys6Nzu36e6eFdXOkd9CZe/v+H7w82NVAubNyNXqcSVQYPg3qVLhW0Tc3NzodPpSKrt4UHXauTIohdcv14kP6+ICHfsiBqbNmH69OlcMT+C59/fqVMnXhAE3L17F8ePHxeMjIz2Z2dnA8BmpVLJhjZuLPd48OAagKAyvqERAHAcF3j06FEXURQlPM9bT5061cjMzAzp6elISUlBamqqePbsWSaTyfLlcrm2adOmcqlUKrGMiOA/WLqUAhpz55Lxnq1tucaPrw2zZlFpRk4OPX+CgynrbmoKMIaIiIgCjUZTbi2PQqG4s2DBgr27du0a9vXXX0On06FMH5dJk2g9qQpEkfaGffuS70Z6OhlOrlhBJSoch6SkJOzatUvUtzZ+9rzjoqKisG3bNgZgQ9W+9D3eRfyzCM4/EEZGRks7d+5s9FI9QV8C+sWisiY8xd934cIF7eXLlwEgSK1Wj30tB/gOQRCEeEEQdly+fHmyr68v+Fdxun/TMDUlt+KAAGqnl5xcmjguXUo1k+96Xfsz6B9wxVUwKSkp2LBhA6RSKScIAjIzM1m1uZK/DXz1Ff3X3Z2u36JFL/9ZaWlENKZMqdbe3NWJQ4cOwdraWpTL5a+/g0LHjtSaLzmZMme//FJ2mUtaGmVk9evyJ58Q4V27FgCQk5WF/Px8dOrUqXqOTRTp5+hR2nC1aEEmeQMGAKmp4G/fRruJE9nt27cRY2oK6549ddJRo8pdkBhjcHV1Rf369dmFCxfEwMBA8fTp08zZ2Vno3r07BwDHjh6FrbW10HHnTlbj4UO29auvdG6DB/PnUlOhMTdn9VJT0ToqirJ+48cTWW3enL5gzBhaO1atKv/ctm6lsYyJoQ1wTk7lS4wAREZGYs+ePWjdujV69OhR7jlHRERAq9XC29u7Up/92vDgAdWh37hR1D4vOZkUFcUVV46OJOP+/PO30gozKytLqFev3vMHw7NsMS5cuKAbM2ZMuWNtZmYmWh44IEKh4PAqCjiplIh0+/Z036WnU9a+WTPKVLZtS6qRunURs2MHix83jjmWcIVPSUmBpaVlKTVXVlYWduzYgczMTO6zzz6rvH9GcjK1YvP3JwK8cyewezfuzZ2LpBs38KBtW7gNGybyP/zAmjZpwmPAALrmfftSXb8eCgWR/fnzof35Zzh8+CEFd77/nsi1VEoByOJYt47WfkPdPwBgwgSomjSB48qVaLtxI4OfX7mu+idPnoSrq6sgl8s5/P47BS6KIyCASh5kMmg0GmhVKty6dQuxsbFalUrF2draMgcHB8YYQ4N27eA7dizSIyLg1KyZwe/jOA7NmzdH8+bNOQAmZ86c0QYGBi5yefJkkcrIKB+iWF593Q0Adb///vtoAFAqlVIA6pycHMTFxWHfvn1aqVT6SK1WuwNAQUGBZ0FBgb3j1KlH8oyNa7b99VcwHx9KYFSyHOW1gjFS9WRk0LOkc2cKPhw4gMz0dFMA8RV9hFarncDzvMuvv/7qWVBQUAOg/Xip/aiLCwWaCgoqX5IpCBRc8/Ojf+/fT+Uwz4g+QIFWPdGXSqXPg0s2Njbgeb5Qp9PtrfR4vMc7i3/wrvmfAcaYcWxsrCYzM9OoLDMxrVYLlUqFvLw8SKVSitC+BARBwC+//FIolUqFSZMmyWsUWxD0RoyGIoYZGRnYv39/fmpqaphWq/0UwB2FQlFW/9T/NzAyMpqlUqn69O7dGydPntR269ZNUuMdrWsvE9260cYlLY2Iw+nTFAgQBKo57Nat2lyy3wY4joNEIoG3tzfat29fqk3NPxY3bpCMc80aIpl6Q6HK4tw5kglHRr6Ww9NqtdBqta803sHBwYiMjMTEiRPfHMuRyUgKe/UqyX7LOv6hQymzt3s3EdNevV6Q8+tJhUqlMvz+8pCTQxupdeso05OTQwZ3K1ZQ3bOlJXkMKBTk6WBmhtzcXFxYuRKali3Rs2dPoV27dpWOPHIchy5dunC+vr5ISUnBxYsXxe2bN8M0KQkz/P1hPn06h8WLUWBnB5uHDxGZkaEb1KYNf/3qVV2d1FQes2dToKRbt6LMn1ZLktjKdHYYP75o/o4aRSS4SxeSWJcDURRx9uxZ4fLly5yfnx/aV6K9VcOGDVGjRg3h/v37zMvL6+204IyIIEXIp5++GEi9epU248WDkT17EgH4/nsqp3qD5XxBQUFIS0vjfH19X/i9s7MzTp06xefm5pbbAtLV1ZXb06wZulc1m1gS27aR+VxUFLB5M/DXXxQA+eknIh4eHsCoURDmzoUsIYHVPnwYaN0aiUFBeBAdLcap1Sw6OhqiKKJx48a6wYMH8/p9THh4OFJTUzFmzJjK9SzXIyODVDP6a1W/PjBnDkLmz0dLUYSPTCa2uXWLoWtXKsvYto3UBQ8eFF3zCxeozWO3bsC0aTAC8NDRETXr1gXXvDnd/4Zw4kSFgR+rNm2Q6O4u8leuMNy9S/OmcWODrzU1NcX169e56HHj4DRsGKT6c9qzhwJxx4/jz6NHtXcWLJBotVpIJBKYm5vrnJ2dJTqdDvfu3RNCQkKgVquZlZWV2NzDg7U+fJiCMRVAEATcuXNHA0DikJqa6fbwYdkSDDz3sdIT/TYA/gDIzPXEiRP5oij2nz17dsC8efNWmGZmTp++cuUxiU7Xr1Amm/z7+PF7hnh48O9Kt5kXoA8anzlDc+vSJXz100/cin//uweAzeW9VaFQ5CmVSu+CgoLWAOrIZLI1T548sS3lR2JuTs+omBhqM1oRTp2ioFp4OO0Pu3enPeGkSS/Mv9u3bwsAOD9Shz7/w82bN3USieTw3LlzCys3CO/xLuM92X/NKCws7B8REfFDamrqp5MmTTIp2TIpJSUFv/32m1oURQ3P81mCIFiNHDmyhq2tLfQLc8kHsiiKePDgAZ48eaLu2LGjzNzcHPHx8bh37x7UanWKWq0+7e/vP6pfv37GAGVOdu/erXFxcdGMHj1aXjLrf/LkybzExMT1giB8o1AotK95SN4ZqFSq0UZGRjv//vvvNlqtNovn+dq9evV6MxKM6gTH0abF3Z1Mf9LTifDoM07/YNSsWRMfffQRDh8+jJycHF2/fv34and1fxvQ39Ph4VQ716dP1TJ/8+dTTfUvv1TbId29exdHjx4Fz/OCRqPhnhkiijzPi4IgwMjISHR3d+f17X04jitTQZSdnQ1/f3+xQ4cOzM5Q/ejrRJMmVFcZGEibnaCgos2YHocOUUBs3DgKlh0//sKfGWOQyWS4cOGCOHjwYGbwPPPyyBBPraaNfe/etLk+cYIkvNeuUQalf3/aaLm4vFhuUyyzd//+fWg0Gjxrt/RStR2MMdhZWWFwaCgvbtyIyEOHYNqjB30/Y6gBoJ+bGwURNBrUGDGCkzJGMt/iBHX1ajJWu3mzcnNSKiWp9qNHZJi4YEFREKWc9/v7+4uBgYFcjx49KkX0AQps2NnZcWlpaW+njdChQ7RZjo8nNUTJv330Uen3GBtTcO/332k+vgGEh4cjICAAo0aNQklj4DZt2uDEiRPIzMwsl+yL169j7Lp10H37LV5a8xYWRufcoAGpG3Q6mo+ffEKlDRoNvS43FxzHoZWJiYiNG9lSS0sMWbUKzra2uNS3L+YuWICs8+dxdskSPu+HH2B69y6EadNgZGQEczs7ocHatRyUSrofk5MpiCYIhsukCgrIrK5EB46goCBEAbD55hv0at2aQaGgY542jYIBPXpQ8GvECJLp9+hBAfYOHYBffwXz98eRgAA4TJ6MMle8sDAKoiUllTtsN27cQJYgsIzly2Gn9ypQKAzOrz59+sDW1haqceOwT6UCy8pCG09PuJibQ+vjg12bNwtxcXGSESNGQKPRwNzcHC4uLsUvKScIAnJzc7Fjxw7hWtu2fJfYWLpWFagd09LSUFhYmP29UvkfThRPQBSjy31DMUil0hYajaYhYyxw7969DiqVimq9GJv9Hcc5b/7000YSnW4wgNhFc+Z0BcAfP368IC4uDnXq1BG7du0qdyhZhvW2IZORys7WFnfmzdPo1OpWYGw6gJ8hir+X9TaFQiECuA7g+vz58zs/ffr0XwbNRzmOEjqVIfv29lTqkJtLXVk6d6Y9Q4k12dXVlcvIyND5+Pg8v9gajQaXL19Wq1SqBZU99fd4t/Ge7L9mKBSKDKVS+e+cnBy7pUuXDmzZsiXXsWNHmampKRhjOH36dJ4gCP+bO3fu/wBg3rx5fXfu3LkbABhjGkEQjE1NTdnUqVON9X01Dx48WPDw4cMEjUYTn5WV1SktLS0vNzc3WxCEvVqtdjuA5NDQ0JGdOnWChYUFLl68mK3Vav+Pve+Oj6Lsvj/PzG42nUBCCgkhlBB6aIYO0psUKRY6CqIIFnhVVGDfBRUVAUVBEBAEFBSp0rv0lgYJIZQUQiA9pG+beX5/3CzZkN004it8fzmfTz6BzcxOfWaec++5534VExPzWX5+frEXfEZGBmJiYkRZlpf8/0T0AUCtVj8EMAigNig3b9489EySfYBkbevXUxbRw4Ne1O+8Q7XcJ09Sza+NDblqd+hAgYAaNWgSlpVFLbNUKpq4P2VkulmzZkhMTMSFCxfEkJAQNGrUSBo7duwzVHNRCr77jn5PmEAvZWp7aR2yTG2ajhyp8uu0d+9ertfr2ZAhQwQ3NzfIsozMzEymUqmYra0tEhMT+Y0bN+TQ0FBBp9NBqVSidu3a3GAwSIGBgYouXboAADZt2iTdvXtXbNCggWw+gfifIzCQiIVSSePCZOb23/9SlmTSJJoMaUsmLuzs7DBlyhRs3LgRp06exPMeHjR+oqOJtH32GdUgt2hBMneVipQCy5fTdysUlFkrJ4KCgnDy5El+4sQJ1rRpUzweFC4VRiMRnFGjKKgweDDYuHFo5O9fcllJAtatw80//8SFwEDmNmoU6pgTfb2elEBffVWx+8vWltYFqAxAEKjzxOHDFuuEs7KyEBcXBw8PD3Sy4mZtDV5eXkhISJCBynPQCuPWLcqKLVpE98DjwSNTgNWSQocxCgQkJtK47dv3H9/dCxcuwNfXV2rQoEGJc2Q0GsE5t9oK06QCzAVwv0ED7F61io8bN47VqGjbvcREIqlLl5KR2bBhdB4+/pgc9s3l5oWmpT0+/5ylz5qFdlevouDAATRt2pTN4xwYOxYufn4wtG8vnXNyEp7LzGRpmZk8SpJYvZYtaUzOnUvBtl276Bnp6Ult7aZMoZ729+6RkmrPHsqOjhpF+9ewIbBrFw7HxcFRktA9KIjehytW0HiZMYN8cRo3pmv/yy/0PvX1pW1FRNB4EQS4hITwkJAQNmDAAMvnRKGgfSoFer0eR48e5S4uLuR1olDQe0Gno9Kar74qUfP/XP36QHAweHw8Uhcu5G7Tp7NF774LJggQHjwQTO1PrUEQBDg7O2P69OmiVqulwML582Uqe/R6PWwMBqPA+TwAFXBHBT755JM1ANYAQLKnZw3nrKzjWltbDiBMlOWYqT/9dBM//URmERrNFQDy3bt3IwwGwyu3bt16MTY29rPXXnvN9n9B+I1GI0RRLH/7WEFA0zffVJ5YufK1682aLW52/foJMDYWwChwbiEiSNBoNKJSqeyvVCplWDJQHzaMlFRlBQ0HDSIlUd++pC767DOrJYNRUVFy/fr1iz0nrl69CsbYJbVa/X+iI1c1qsn+/wSFUbtXNRpN/ZCQkFlXrlx5k3MuOjg4FOTn5ytlWV5hWnb+/Pn7QI6lAIDPPvvsPQCLTJmliIgI3Lx584Fer2/BGOsbGxvbzGg0zgSwtXA7AIDPP//8qz/++OPDHj162N+9e9cBQLgoirqTJ08KsixLAJCfny9HR0c7qFSqfZ9++un9/83ZePqg0WicFArFGEmSVLIs4/bt27hz546hVatWysd7Oz/1cHKiycyECTQZ4ZwykBkZVM8cG0vBgK+/JpIweTKRElM21FTL/OmnNOGZPJkmOt27k9O0TkcBhF276Htat6aJcNu2ZNIFkFlNQgI5DNesSRMmEwGqBEJDQ1HoJQEvLy/cvn1bXLJkiTxt2jShtMzUMwWNhiag9+9TdspUN/049u8HJk6kZaoYbdq0QXh4OM/KyuJt27YVAMDPrJdwgwYNWLdu3RjnHLIsIzU1FTdu3GAGg0Fx6tQpeHl54dixY3JOTo4wbdo0uLm5/bsBGUdHqgU+cAAYP57Ih0pF9Y6HDpGkOOKxuUxWFslzW7ZE7Q0b8Oa2bWzr0KHS89u3i3jtNXK879WLzDETE4vuaQu9qSuKGTNmsMWLF2P9+vV82rRpZc8qjUZqHfj555SFnzWL2npZG2dRUUBSEqS9e3GwSRPkeXmhr3ltdHg4lTOYS5XLi1dfJWVDZiaN+WbN6PyHhlKW1Qycc3xLihQWFBRUse2A1D43b97830UkZZkMwaKiKIjhaqFt9rlzFES15pVjZ0f3y+uv03P0H+4i8PDhQ2NQUJDFG0GhUMDNzU2Kj48XvL29i53H/Px8LF68GCpRhG9cHHf9+GOmjYzEpUuXHvlAlAtaLWXQ//tfoGdP+kyS6P3TujWZaW7bRuU0j8HV1RU9TesAFCwpDFyN+Ogjcc2aNTxk9Wr0nTWLRe/di3kTJgiYNImWVavpByByb/LK+O47GvsNG9I2J0+m35mZKIiIAH/3XfD33sP4/fthf+wY7Z+rK70bX3mFiO+779L1S02lIOJPP9G9LggU6KL+5ywkJAT9+vWzrHq6f58Ieym4efMmDAYDy87ORn5+PnnYNGhAKog6dail31tvFTele+UVoGFDBMyejYCvvmKYPh3vt2gBe3t7LF26FJcvX+ZNmzYt15ixtbUl9UFSUpnLOnAO14SE2gAcwHnFk0WMjQAwwQMYAeCknVZ7A5yXMIhQq9WhGo1GaTAYTKUASxYsWBC4e/ful6ZNm/aPJmhyc3OxbNky2dXVVd+pUydbNzc3eHt7l+mLlZSUBKVSKex49VVds7lzE8DYTQDnwZgAYCeAdywoIVRGo9E/KCjI8rUyte+9f79kG1QTtFqab9WsSc/jl16y2vLXYDAgMTFRCAwMfPQZ5xynTp3K02q1/y31AKvxTKGa7P8PoVarYwHM1Gg0/wEg5+bmPgdAVqvVWdbWUSgUQQ0aNLC9desWfHx8sG/fPq1erx+jVqsLAOwBYLFRqdFo/Cw9Pb3OH3/8MR7AJLVavU+j0XQKDg7uCcBUiKoFsGvOnDkZVXqgzxgUCsU3RqPxjezsbCxatMggimKCTqdL5Zy38fb2rkCK7SnBwIE0IUlKoglocDCRE3McPFj077Fji/5tNNLkqF07+rdSSS8YT0+qcUxJIUVA7dqU6czMpAmcyTE5PZ2yfN9+Sy8cb2+SsL7yCrnGq1Qkef7xR5p4ubuTo/XYsaRMcHCgLNCxY4/UCPViYuCUlYXGkoTunTohqVUrHPjtNyEzNhaOjRrRPj7Lpn0AtdWpX59I/7ZtJUkoQNfzhReob/U/oL7o378/8/X1xfbt25mnpyeaWqkRZYxBFEV4enrC09MTnHOkpKTImzZtEurUqYM33niDPVVBmIEDidzLMkl327WjifulS5SJHz+ezmvt2jSZ/+EHMprr0gW6Ro2QnpAgFCuJqSrTvsdgb2+Pjh074sqVK2z16tV88uTJrESG32gkEjVwIAXo3nqLghnu7pSptARZpuNfvhx86lSc/c9/kHniBNTmMnStlsb44sWVN/Q0+SD8+isRoN27iXjpdMUyhJxzCIIAWZYREhKCTp06wZqfjSXY2dmhoKBAKKvm/HFotVps376dA+CvvPKKUC5D1m+/paDQ1asljdbMkZNDz9rS0KMHBQWuXiVTugq2Ds3Pzy+3AZ1erxdKMwWuW7euePXqVd6hQ4diRmB2dnYQBAHDa9ZEwLJljK1ZA0mWWXx8PC9NDVAMnNMzXBTpmW7CkSOk9AgIoKDl3bsWyX5pUCgUeOutt9jSpUulgoICsfBYLXuLmI8d0zvu+nXaj7ffJu8AACf278fl995D79694TxnTpFqY9cuCkykplIwa+xYCqzduUPLpKcT8c7PJxXd5s0YptMhSa/HjT175GZz5wrYtYsCO+PGUbDo66+BESNIjm8KpDo7A4whOzsbUVFROFj4bmaMYdmyZfD19eUdOnTgzZo1E/D11xRYMKmWvv6avmPFCnr/9upF59XbGyZ3CMYY0tLSKvbC6NKFSo769y81MOW8ZAl6Hz6s1Pz3vzXVQKqlZQpbOA8QBKHuvHnzVoP6v28GsBFAOoBgABycl2ryUUjyH4Fz/lFaWtrLFTquSiAqKgpKpfJgWlpasz179vjZ2Ng8kCSptp2dXYGLiwsaNGjgpNfrpYyMDK1WqzU6Ozsr8/LypISEBFmSpJmc818Ld/gygMtgzBaUtc8GY+MA5INzk6QfLavMAAAgAElEQVSvgDFmMBqNNhafT6JIJP7aNctk/9gxeh988w09r2bPBt5/3+qxKZVKPPfcc9L+/fvF8+fPSy1bthR9fX2h0+kyAfz9ZGeuGk8TmEmyVY2nE1988cWbgiB8whiLNRgMHQEUzJ0799mwV39GoNFouqpUqmV6vf4DzvltAIlKpXK1t7f3xBdffNHGyckJBQUF5Xf6fVogyzQZmDOHsu+WZL3/S+h0JFVXqSjrYmNDxOXePSIuhw8T6ejWjYIRPj5Aairk27ex38kJTf78E5AkeH78MVKWL0eiszO8k5LgLYpQffklHWfNmjTRPHqU1AhRUbSNKVOotZiHB5G96Gj6nZhIxPm558hAytWVfgwGIj3/RlmD0Qj8/Tdlbbdsoe1zTkqLdetosvgPIjw8HPv27UO3bt3kbt26lSubxzmHJEmoVKcEvZ6Oz8aGJuNNmlBQ6e5dIlAHDhQFQ77+mmTAp07RsjNmkFzxhRfoHnrlFZrML19ONeTLl9N98PHH9H1vvknbnDGD7ruEBJrUL11KapimTSkDWTjWs7OzsWzZMnz66aeVO7YKorBuFsnJyZg1a1ZRH3mjsUgCvX8/BYP69y/VpRsAEcuPPqJJX6NG2BUWJkVFRQmdO3dmj4zbsrNJ5rxuHRnrVRbJyXTezMnB2rXkdH78eInjvHPnDnbt2oUmTZrg5ZfLP2eXZRlLlizhHh4e8oQJE8qtHgkODsb+/fvBOUePHj3QsWNHWCXE2dlATAwFLu/ds97aFKD7t18/crp+PKhqCf360X1mKuEpB44ePYqzZ8+aPB3KXH7JkiVy586dBWslEtnZ2Vi+fDm6dOnCe/bsWewBt2zZMt6vXz/WvEkTQBSh1+uxbNky3qpVK2ngwIFlD4IHD+j5PXp0kTcJQGO8VSsi2qZxWI66cEs4fvw4Ll26BJ1OhxYtWsgjR44sn+ogPJzIutkzNC0tDStWrMBbb70Fq/4iskyKN87pHbZiBV33OXOofMDWFuHBwbh46hSU2dnceP8+C+zbF0GSRM+y1q2B06dpnXv3KDg0ciSwcCG94z78EBGbNuGBuzv8RZH7Nm/ODIMHI2H7dtxMT4euSRN5RO/eAvPzo/Ol11MpXng4BR1iYqiUISenhPLk22+/lRs2bIghQ4ZUzAtk+nQK0o0ZY/nv9+8DNWti759/FgTHxNgJgnBbluUNgiBMFwThmNFonAGgkY2NzR96vb6h5/378rSfftoDYCSA5QA2gPMrFdonM2g0muaOjo4XZs+e/Y9GltevX59z9+7d1wEcAmADClA0A2AAECgIQmtZlnWMsRTO+V0APgAyAJxWq9WlmzMw9mXhv/4LYPLnGg1cXF0XT58+3cFqYG3vXkqyjB9f8m9ffUVzm/ffp/efJQ8RCygoKMC1a9cQGhoqJyUlCaIoLpk7d+5/yrVyNZ4JPOPpsP/7+OSTT1YBWAUAGo3GHYD+392j/3tQq9VnABTTmmo0mvcTExNzVq5cOd3b21uMiYlRvvHGG1b7Pz+VEASajOTn0yQrJMSqo+//BCpVUdakSZOiz5s3p9/mveLNnIAFAK3u3sUme3s0btxYHj58uNDg9dexSaMBAIx59VX4N2xINaAGA2X5mzenTG3jxpSZqVWLnGxtbKis4cED+vzQIZLEOztTFs/JiRQMV65QpvSjj2iff/oJ+P57klPWqUNqhvHjKetnZ0cZ1iNHKKBia0tlE127UgS+Rg2SNaek0D6pVLSPtraWAwkKBQUaTDWyOTm0bFRUyb7wFUVeHn2/QkH7FhhIE8WMDAp4/PEHAoOC4DZkCG6++66wZepU6RUbG5FnZkKYMoXMyWbOpPXnzKGSkblzwRiDYuFCus82bqTz+5//kGR5yJAi+am9PRnCHT1Kk+fUVFqnY0f6e5s2pPTYtIl+rl2jbNqwYeSKvWYNEdfoaJLWzphBk86sLLrfbWxoQu7tTb8Bql+sV48CBx98QMR58WK6RwSBll23jiZGGzfSfmdlAX36wDkwEKratSG1bg3F339T0OzsWdqH4GBatwprRh0dHdG9e3ds27YNq1euxH/ef5/238GBJnJbttA93bhx6V+k09H5y8ujjGTv3gBjyD93DrIssw6mLLROR+fs008pKPIk8PCg++PVV4vMB6dMIRn3Tz9REM7sOE1dZzjnlutTrUAQBDRv3pzFxMRUiLykpaXBw8ODu7q6spMnT+LkyZPw8vLCG2b79QgzZ9IYP3Wq+LPKEi5epOtTHqIPkPIhK4vG3WPmedYQGRnJAbD8/PxyLV+vXj3h5s2bUqdOnSwyaWdnZ7Rv3x7nz59nzz//fLGMvSIhgTUeNIiOH4CNjQ2aNm3KIiIiFAMHDix9w3/9RUTj2rWS7cEYoyCAmxuR57feomfaqVPlOiZz9OrVC9euXZN0Op0YEREhtGjRotSadAAUJDMYSgRLU1JSIIoirHoScE7vichIqtd/8026bpGRgEoFqVMnXHvxRewufN44ODhwp7Zt2cHr1xE0f37R9zg7k7qtUFEAAHjpJSTfu4cta9fyGv36sZcnTYJ9fDxDRgYULi5o7OMDX3t7HLt8Wci7cweOXbtSYNJgINXMjz9S8MLOjkoOHguarVu3zpiVlaVwd3eHLMsVa8k8dy4FF199teR7KjcXaN8e+O03DBo71q7zw4eIiopqmJOTo7a3t1dGRka+kp6e3o4xVu+12FgHZatW2JecfB9ElJXgvCqcKrv4+PhUwdcQDAYDRFEscY4SEhLsARxSq9XZZh9HFv6+CWBbpTfK+RwAAGOBkiDMUwA1xtSrZ89K6yQTFERznXHjil+XL7+kMq6XXqL5y+TJ5d4NOzs7BAUFoUWLFsI333wjS5L0BD2Bq/E0oprsP0NQq9Up//Y+/P8CtVqdB2D2F198ce/+/fvDVSpVjaysrMBniuybYG9P0X97e5qofPQRZUmfIezZs0f28/Njo0ePFgAgOTkZKpUKLi4u8DcRH/OsjKnvvPlxmhsjmSat/fsXfWaJ7EyeXESQmzShTL9WS4qAxo3JAKegoMjc0GAguf3t2zQhXLuWPps8mYha06ZUx/zgAbXjmj2b1Ahvv03Khm7dyLG5oIDI0YgRJIdWqeizadNIBvvuuxRYuHCBMtPr1hHp6NiR9umDDyiwkJRE2aOdO2ny7u9PhGzaNCK/ubkkWw8JITXB558DH30E7w4d4BkXhyUJCezCqVNgaWk4m5XFp8XFMceCAsoembJ25sRz1CjarpsbkWaA2myZVDEnTgCNGlEJh6l29caNovVNJm8ffkg/ANXPmnD3btG1NF1Pc1dt00TaXHI9h+ZTWL2aJq8ff0wT+Bs3KNCTk0MBHldXCoyZnOHfeQdo2BD6P/9Emrs7vB0c6LqePk3X7bXX6Pq88w4dr15PE64rV+h8T5tGx9i6NRmHzZxJBpm2ttYncgCaNW6Md5o2hX7mTKQFBMDt3XdJVlurltV1ikGrpeBI3bpEDMzavY0ZM0ZctWqVvGbNGsHJ0RG9Fy7kcd7e7OakSXi9IkTAGpRKyoqbo2ZNIvstWhQzZXMrJMcVJfsABQsyMzPZgQMH0KRJE/j5+ZVqOJecnIzU1FSuVCoxcuRIDBs2DOvXr8d9k8+ICatW0f6vWlXShM8azpyhYEl5Ubs2PT9GjSKia632thAnT57kpj7Yzz3mf2ANPj4+OHPmTKkp8zZt2uDixYvIycmhuvBCCE5OPGPECOZhdj9kZGTIPj4+HKWZIj58SM+En36y3gfc25uUDX360PiuRFbfhKZNm4rnz58HQIS9XGRflmlsmOHy5cto3LixrFKpLN+DW7cSkd6xg4KD/frR2BowAPj6azCDAbZ5eRgeEMAD161jcHcX9u/fz5OSktg333wj9+jRQ2jTpg0UqaklJPH5+flYv3kzb9qmDR86dChjjBUPyLdujYRbtxCxYwcG/Oc/dL6mTqX7Zs0aeq989x0FAi9fpmOsXRvo1g05RiMexMYqoFTi4MGDEEUR7c09OsqClxeN3ZAQUsGZw8aG3mc9ekAAUKtWLXTp0oUBUAJAfmys2HnVqmZJGo3R48EDpAK4X6+eFpxPKf8OWIZGo/ECkABAbG5KFJQDmZmZOH78eMGdO3dkg8GgdHZ21ur1ekGv1ys458xoNCrs7e31HTt2VDVr1kyoVfi8VSgUktFovKjRaL4DsNrcG6uC+10TQG21Wl2yTRLn4Z9pNB/WcHZeU2PWLHq3zJhBwdjHPULc3ekddeVKkR9KYiIlK3x8KCDVpk1ldhFRUVFQqVSHPvroI4slGdV4dlFN9qtRjVLwySefLNNoNMsFQfgrMjIyoEmTJs9mo3d7e5roREcTKbHWlugphSRJ8PT0fDSb37Nnj6zT6YTk5GQcPHgQVt2PnxSiWESWzFvhmCaWEyYUfdasWcn1d+0q+vfjNdWSRLJpvZ6206YNvdgDA0kF4O5OpFSppL/LMhHT+vXp2o0dS9e1Z8+iCcGyZTRJc3Sk+mBnZyLwhSoImJMbUw/5ZcuKPgsPLzr0mBj479wpHC4ogI2NDYdez87Mni0P6NCBbpzffit5DswzWabMgjlBMa9rLoXwVjk4pzKOhQuJkO/ZQ+fHFLwzeSTo9XTuOCe3/oUL4avTIYsxeNvYEHk3BSlM58o0rkSRSIwp+KHV0t8SEkhJMHMmnZPkZNp2nToUBKhZkwIjx4/T+cnORs0jR3C+Wzf5THi4MOWddx5lwUuFTkfX8q+/aCJet65F5UivXr1YaEiI5KpSMfb++8JtoxGJiYlPdHofYeVKOl7ztnu1ahFhSk4mQlhYn3/v3j0wxvDiiy9WeB7SvXt3eHl54ejRo1J4eLhQs2ZN3r9/f8HcUNJUAx0WFianpKQIbm5u3BQslGUZDx48QO3atTkABs4pKFcoTbZKVh+HJFGG3nwMlAetWwNLltA985iUPSYmBiEhIUhPT5cfPnwoGI1G1rZtW4SFhUEQBGi1Wss16ma4ffs2Lzw2qw/5Bw/IB+3x8rSm9+/zqyNHMvOeAdnZ2bxr167WmXluLpHfBQuIDJeGt9+msd+wIbBzJ1J//RX3Bg3ibdq0qVC9VJs2bZCfn4+UlBScO3eOd+vWzfr6WVlU0vPYO+/bb7+Vs7KyhEmTJlk+T9euUZBw376iddu1I2Lt4AA0bw7hyhWEvfGG1Pann8TcwEDYHz6M/r17syZNmmDHjh3C/v37sX//fjSQJNmmb19hcG4ujh49Kt++fRt5eXmCIAhs8ODBrDQ/BK1WC8Y5BYR/+IEy+MOHkw+EyUh38mS6lyIigLw82K1ejXd37sT1V17hrq6u7OzGjWjTqhXE8nb6YIyeZ4mJxcn+0qXkK1MYaCmGzZuBggLU9/ER7GVZqhcYqMDw4bDPy4Nh2TJvjUYjPF57XwnkgvwBPMtL9pOTk7F+/foCo9G4WJKkjQAyMzIy/EFy+1xQf/mUvLy8XmfOnHn91KlT/d3d3RWdO3d2YIwpOedNAPwIyuQft74ly9BoNCKADMZYAQBr9aBb8vLy+h/67rvRA/v3V+GbbyiQk5hIz3bz4OPLLxe9y6OjSSHn5ETvr0oSfQAIDQ3N0Wq1ayv9BdV4alFN9qtRjTKgUqkuiqLYrFmzZs9mWz4TBIEyqwARxvnzKyT1+jchSRI3N/EaPXq0cO/ePej1evz111/Izc2VR40a9exEL4Aisx0TTDJgX18iHlu2UMZw5Upye9+6lbLK8+bRhG72bCKm/v5FfgzmNbqmCVp5iYsFvPjii2jUqBHs7e3Z5s2bcenSJaFZs2bw9fWt9Hf+K7hxg+71556j89y2reXlWremH4Cy/rIM3y+/lGqlpYkQBDq/vXvTNTh3joI1glAUCOrQoSig8csvRd9rUiTs3Fn02S+/0H4cP04Tth07iKA3aADUq4eOR44I4XXqIObtt+V2x48LSEqikohOnUid0LcvqT7Cw0nZ0acP7fP27aWWFjRu3Jg1Xr1axLlzNGFfv57z7GyWmZlZvqBCaeCcglW//168xVyjRkQS8vOBDRtw7tw56cSJE2Lfvn3LJK7W4O/vD39/f9FoNOLAgQNsy5Yt3N3dnfv4+DAnJyd26tQpODo6SvXq1RMnT54MGxubR88HU/u5GjVqIDY2FvVff52eievWVWwn7t6l9SrTtWXYMODVV5HKOda1bs2VSiVv1KgRDwsLEwGgXr168PPzg4+PDw8KCmJhYWH46quvuMFgYPb29vL48eMFD5OCyQxxcXG4c+cO69WrV6nk+dKlS1wQBHb58mW5U6dOdG6io9H511+Fcy+9VGzZWrVqiXfu3JHatm1bkvDLMpGNQYNK9zYwP+49e6DfsgX3Tp7kqWFh7KDRyBo2bFhMYVAWateujWHDhuHLL78EiKxZR9++NG7MfBJu3bqFnJwcYfr06ahdu3bJdY4fJ4XUuXPFiZazM5XyzJhB//7uO7zSo4dY4O+PM76+6LpoEezc3NDg7bcxa9Ys6PV63L59G3VHjRLOd+vGv0tKYkajUejfvz/q16+PmjVrWvUDiYiIwI5t29D45k0KDB44QIqm/v3puTN3Lql+TBBFGn8AFJ07w2ntWnS4do3JV67g1l9/gdetSzLvV18lcmgqZbKGdu3oudmnT5E6KyioqPQOIMWZWk1KjbAwwMkJAVOnAgMHPrpXHBwcYGNjwwsKChoDuIFKQqPRONvY2CzV6/Weo0ePLpdhJOcc27dvz9Xr9e/Mnz/fzDESFy0sfhjAYY1Go0hMTBy/d+/eNzjnfqIoZkmStBKAhQjHo32rC8CoVqtLdBMA0AkAbG1trbayU6vVkkaj2RsXFzccgqDChx/StdZqKaBz+jS9Lxijd9jRo4+eIVAo6D61dB+XE9nZ2UhKSlIA2F/pL6nGU4tqsl+NapSNrHr16pW7dc0zgbVraZLw9980OaisA/f/AMnJycjJyRGvX78ut2vXTgAAFxeXRw7e+fn5OG8py/AsY/58kk/u2EEZpOnTadJ1+zZNPAcPLuq/nJlZ/nrhSqBloX/CvHnzsH37dr5hwwbWt2/fIoLwLGDnTlI/CAJlFLVaciz+TykeRIKAm7dv44wsi6mffIKXgSJZfFwcSfijo6nOv6CAAgDmGe3SIElE1KdPJxn4+vWUGTVzJ486exZpW7fC87XXBAQEkKrD05OIhiSRlPeHH2gf1q+nANAPP5TtIZCZSaqQQpM0E8EKDg5Gn/KQtdLAGHU5MMuwP8LixcCJE8iKiMDff/8tvvDCC+UymysLCoUCQ4YMQf/+/dnevXvZ7du3ZVmW5d69e4vPPfecxWy0vb09Ro8ejcvff8/2XLqEdxYuBKuMn8mBA0+28198gZD33oO+oIDpdDp29epVCIKAl19+GY0bNzaNLwYAr732GhhjzNnZGfv27cPOnTvlN998s9gY3L59O4+IiGA9evTgVtt3FWLMmDFs3bp1OH78uNCxY0ciTgEBOLB5szHiwgXFldBQPnHiRObh4QGtVst9fHwsZ/Y/+YRUG+bO+2Xhxg2k//EH3/HKK9y5bVvukZvLNm/ezKdPn16hZ0pqair0ej2GDx9e+oJbtxZ5oBTizJkzaNq0qVy7du2S27x5k5QA27eXLOfw8iK/kU6dKMDx6qtAjRqwy8lB8JAhaP/HH7Dr0gU4cgTCzp2wfftttGjRApg/HwNeeIEFGY3IyspC/TJK6Yz5+bg1bx6aCwL6GwwQ6ten/THHtm2U4bcGpRJo2xZyq1a49OABEnv3hktICOzXreOu164xl9xc5NatCykoiDedMIE5NWpU/Pnl5UVE89w5CnL26UPjuGtXKhsLCaEs84kTVLb0zTdWd6VFixaK0NDQiQA+trpQITQajQKAqFardYX/9xAE4QelUtnJycnJc9CgQWhQTr+Le/fuISsrK5dz/kvZSxPUarURwPrCn7L2tYMoih8DGAaAazSatmq1OuyxxZROTk7agoKCFhqNxvmx+n9zRBYUFBSVCZjKPkJDKaA/YgQFXdauJcXe5cv0zpk584mIPgAEBwcbRVH8Y+7cudon+qJqPJWoJvvVqEYZ0Ol030RFRe1ftWpVliiK8PX1VfXr18+2XG2InlaY+q7OmkXEccGCf3d/SsGGDRu4jY0Ns0QuOee4c+eO7O7u/gxfDDOkp1M2/6OPaKJlyno2a0Y9q1esoGu2bx8RvjNnaMKZnl5kvPcPQRAEjB49mh06dAhHjx4tIghPOySJpJBTpxZ9Fh9PAYBSyL7BYMCWLVvg7e2N0SYSbq6cyMyk387ORS7d7u408XV0JDWBuXeAJJGZ1qRJ5HDdsyeVdtjbk7lj8+bUOmnVKuDiRQT07o0Bvr6I9/eH144dECZNoon97dt0ncPDiVSrVGSKFhVFTt9//EGZf0s1/nv3UnvB+PhH95aPjw+LiIiApSxxZcBr14Z+wADcWroULVq1KvqDgwPg7w9jz57wnzNHDgwMrNJgkY2NDUaQ+Vq5vrdZ06bw3L4dCQMHckb1xhXH2rV0viuJB7a2CG/SBB/8/DNWjh6NgF695MGDBwuWxlUds9r+wYMHC6tWreKrVq2CIAiyLMvc1dVVvHHjBhs6dCjKI4l3dHTE66+/jqVLl2LDhg3y2IEDBTRtivyvvlIEBgYiNDSURUZGwsPDA82bN2enTp2CjY0NBEEAY4x+jEbUTUhA6siRMISEgDEGSxn6+/fvIy4uDqdOnYJCoYBCqeS6IUPYG336sJqLF8MYG4svBw1ikZGRqEgddmhoKFxdXaXAwEDrJQaTJhEhN/dnAZCWliZbJIzBwaSa2rDBctAKILVVbi6VBM2YASQmIvLll+X3liwR+MqVpPaws6Ng0HffERF7+BBwdkYtUI27VRQUACEhyPrkE/jq9Wi8ciUcW7cuGURMSqJnWDmCVAqFAk2aNJESEhKE52bPZomJiazuwoXIT0+HfvVqGE6eZOn5+XCKjSUz0/Hj6berK5U+qdWkWKpVCzh5kn4fPkwmhW+9RaSzDLRv394mNDT0bY1Gs1StVherCddoNPaCIExTqVTDOOc1GWPNOefiggULJs6fP38jgMmyLI+SZRlGo1FrNfBkAeHh4Tqj0fhDFZQPlIBGo1Eolcq1Xl5ezTt06CDn5+cLBw8ePK/RaFqo1eo7ZotGFhQUwMfHhyUkJHwEoITJh0ajYYyx1zw9PUs+v0xlg0uXkoomMZHeGYcOkf/PEwb7JUnCpUuX9Hq93nq0phrPNKrJfjWqUTZOAXgjOTk5HoAqPT39s1u3bjWcOHGig1MpPWifCVy+TNnO2bNJijpr1r+9RyUgSRJeeuklNDKvmTf7W3x8vAAAy5cvl/r27Sta6w//1INzqg/V6UjO/Thxf+45ygaHhZHUXBSpZvPuXSJ8Xl4UEDC1tfoHEBcXh7t37z6a7D8TWLeOMiTmmY9Bg+gnO7uYgZ051q5dy21tbfHKK6+wUl2szd3cr1wpkoNv3kxkv1cvmpClp9PEPzKSsmBduxKZWLOGrmleXjF/A/HuXdw/dIiHhoayFI0Gw3x9werVK9pW06aUVb16lUh8y5Z0POHhpAJZtIiWMV2ntDQKVuzcWcwv4eDBg7Czs3uk4KgodDod7t27h4SEBB4TEyMn3b8vjr11C/s3b0bzr74qdp+cz8iQMtu3F4d37y6UWwVR1ZBlykZOmoTNc+bwhgEBqJS+4MYN6uDQsGGldyUtLQ0F9vZ40L07Zo4YAWWXLhaJ/uNwcHDApEmTWHBwMHd0dBS0Wi1Onz6Nli1bSm3atCk3EXJ0dMR7772HlStXslW//IKGnTvjXmYmXAWBd+rUifUq7KrQqVMnZGRk8IiICJlzDs45XOPi0Gf9evGPjz82Gh88YHjwgOfm5op16tSRx48fLwJULnHo0CEpJCRErFWrlqTX60VHR0feuXNnFnj2LMTx44EjR6BwcECHCxfw559/4sCBAxg3bhw8y1CoGI1GXLhwAWPGjCn9eCWpyLDVDAqFgjs6OhZf9+ZNCt4sWGCd6NMJofE8bBjg5YWU33/HnsaNhY9kGcK5c8DEiRTM8/Ehv5Rx4+gZMGsWZdstISeHnuWvvw74++OXXr14/VateLs2bSw/fFavpjH9/felHr4JL7/88qNjfaSoqVMHjX74Ad99953RtXdvBZycyKfg118pcNi1K6k2rl8Hhg6lbgpt25K8f968cm3XBHd3d3h7eyvi4+PHAvjW9LlGo2muVCoP16tXz6VJkyb2zs7OqF+/PiIiInD48OGXAWwE8BWAZQDE7OzshJMnTwr9+vUrl/nA3bt3tbIsn67QzpYTKpVqrZ2dnf+YMWOYSqViAJCXl6c4d+7cdo1G089kqq1Wq1O+/vrrmLZt2zZLTk5+T6PRHFOr1Y/X/rfknL/fs2dP6xs0taBNTaVAzMyZVaLqi4qKAoAbarXaaplBNZ5tVJP9alSjDBQ6868x/V+j0eyVZTkhNTX12Sf7JhLj50cTIq32H88QVwIsLCxMbtiwYYmJsEKhwLx585Cfn4/t27eLx44dk5o2bSpmZ2cjISEBKpUKDRo0qFjLoX8DMTFEQHbtIuM2SxN+NzeacF25Qu3qTMdkMuc7c4b+/dlnRP4uXKjy3dy5c6ecnZ0teHp6ypzzchGTfx2bNlFG5HHs308Z9szMEuebc46srCw2cOBAODpWoI2zyaRxxgz6AaiLQ2gokfoePagfuyiSDNYE8z70LVrQb5UKQ4cOZQ0aNMCuXbtQr149tHncfGno0OJdJJydKeCj05Fip2ZN8gbIzKQJ+pEjxRzxeWG7sMrI6e/cuYO9e/fy7OxsZmdnJ7u4uMDPz08cPHgwbKZPh2LRIsiyDLHQfM5oNOLy5ctC05kzofjmG9qf99+v8HafCFlZFPhxdYVcrx7yrl5lsbGxlXLXxpUrpOR4gjGQk5MDAMJX37oAACAASURBVLg3bRoaREdTMG/x4nKt6+rqin79+j3aeIcOHWBvb19he3tnZ2c0aNBAdtu6lfl/+60wmPw/ShzU4MGDGUxu/JyTQef8+Zj29tuPXhZxcXHYvHmz+Oeff8opKSl4+PChYGdnxyZNmoT09HRx//79/I033mA2Njb0DGvVit47a9agb3o6Go4fjwMHDmDbtm185syZpZ7Yw4cPS3Z2dkLDhg2tL3fuHI07C74QTk5OYmJi4qPSMNy5Q9LosWPLbkM5bhxlVUUR6aNG4fb8+QhasACCRkM+Ho0aUeDg4UMa7+++S14srVtTidaoUUWmjFotXfctW2g8b9yIGIUCOZs2MT8/P5adnQ1bW1vYPG6s17gxjfEnhCzL0Gq1gpOzM+1jvXrACy/QM8MUKA0NpYUVCgpWVhJdunSxu3///scajeY3AG5KpXKmUqmc2K9fP1X79u0fvaSPHDliOHfunFIQhIcAUOiAr9NoNE0457Xc3d3LPWYzMjIcADwuq68SMMZqde7cWaUyK/Xo1q2bwmAwNLt48WK0RqPprVarQxYsWDCQc96sfv36GDFihP0ff/zxu0ajaaRWq7NM66lUqh8CAwN1Xl5eZXtDRUZS556Py6yIKBeuXr2aq9Vqyxc1qsYziadqRl+NajwLUKvV/Msvv7y9Y8eOWhMnTrTTarX4+++/8+Lj423Gjx+vfObMywCKEANUM5yeXpx8/IuQZRm+vr6IjIwUOnfuXEzKagJjDCqVCrGxsWCMiV9++SWXZZnZ2tpynU7HRFGU69atK+Tl5cmcc3nq1KlP13MvK4uI+fDhZRt9DRhAslQvr5ITPZPyYcoUyvLm55OZ0q5dxTsJPAFME866desKer0eqvK2J/u3cPUqKR0stZwaMIDOuwWydu/ePRiNRlSJSmTGDDLFev55+r+5cV050KJFC4SFhfFLly7xNuZZvtGjSV5rahVoDpWKyMiBA9R60MuLaqpbtgTnHDdv3sS+ffsgSRIAVOg4ZVnG9u3bpevXr4vdu3dnXbp0KWZ+BwC3fvkFb33/PfjnnwOiCFmW8eOPP3JJkuQOHTqIqFGDMpP/S2i1NA7WrqVSCVmGfvt2DB8+vHJsPSeHxtcToH379jhy5AgSEhI42rVj2LoVMBorFWx1cHCo9H681K+fiBkzirpTlAZJooz2rFlEjM3g5+eHqVOnYu/evfDz8xMCAgJQv359QRAEpKSkwGAwsEdmdAoFBaN69CCZvcGABg0aoHnz5vj777/LvCbXr18Xnn/+eeuqG0miFquHDlkcI7m5uVJQUBAx7gcPSJbevXuZ3QSSk5Nx68QJNFi6FBtTUqArKEBPhQJdDAZqSadW03YPHKDzlJlJpGzXLvps3jwgI4Oy5n/+SUGTjRuBr79+1Mnj2BrKLezZswcAlVDNM8+kP3hAgbtXXy3rNJWA0WjEpk2bpLS0NGY0Gpler2e1a9dmderUITf3LVuolCAtjWryExNJFfXLL+QXcv48lZlVAo0aNUKnTp1qnj17Nk4QBKF9+/Zihw4dFDXM/BTCw8Nx8eJFnSAI5xhjIabPNRpNTxQ64Z87dy7/4sWLRi8vL1WDBg1sAwICoLSgmJBlGZIkiQByKrXDZUCr1S4+efJk75YtW9qbjEYFQUCfPn2UXl5eLnv27DmzYMGCFZzz/wBAWFgYunbtihYtWjhev379J4CsYBYsWPCio6Nju969e5f9Qk1Lo/aWv/5aJccgyzJiY2OVAA5WyRdW46nE0zXprUY1nhHMmTPn+YULF8759ddfF+bl5UlGo3EWALuDBw8ufOONN57ddP8vv9BEJCqKpMWVmExUBMePH8e1a9ckQRC4k5OT0K9fPyExMRFubm7w8PDAypUreX5+PuvVq9ejvtyWoFAoMHPmTGRkZODhw4esZs2aaNiwIZNlGWfOnOEpKSmyn58fu3DhguLs2bPoYu5g/G/i/Hlq23X0KGWZy4IgUDb0119pYmpJWeLpSZNMg4Hc203yfhcX4L33nmh3x48fL1y6dAlnz56Fn58fmllqN/g0Yc8eOn5L2VdBoMm5aWJuhvT0dDg5OUk2NjaVbwRuwqlTFNAxkf1KYOjQoWzZsmXs3Llz6Ny5M03Ks7Mps2wNokjH9t57RKpat0b2779j9d270Ov1kGUZffv2Rb169eBVSPIuX74sRUdHY/To0aK1QM7x48fl2NhYNnv2bKuqB/8JE7AmOJjf/+ILNnLUKNy7dw9arZZ/8MEHdD6DgkiFMmQIlRX800qilStpnB0+DDkwEBs3bJDS09MBQLSrTLeKzExqc3ij0sbiAIgYKJVKXrduXY7WrRkOHKCykPnzS5eRVzVq1KB2n+VBbCxJ0bt2tfhnDw8PvP766yUY+KlTp7idnR0EQSgajI0b0705YQJ9Z1ISVCoVRFGEXq8vmc02Q15eHjMYDNb3UxCoPVlhECQ7Oxv37t1DUlISUlNTkZubKzZs2LDoWtapQ/XnpeD69et827ZtTGAMkr8/r1unDnP38kL3Hj1I/t6/P/1otaRYaNeOnu3JycDPP1OpzooVNCY/+4wCdnv3FtVkF6Jjx47YsWMHBgwYgKZNm2L58uXYs2cPGGMQRRG+Bw7A9fZtRBw5AkEQHvkoCIIAURTBGIO/v3+JLgOhoaE4duyY7ODgIAwZMoQlJibygoICPsjZmQkTJ1JgcMsWUi5MmEBlSLNmUdmCry89y3buJKWCKFovSbACxhh69uypbNWqldLBwaFEJ4579+5h3759WZIkdVer1VcfWz1MFMUUURRj09LSfuCc309KSmoZFRU1evfu3e3btm3LunXrZmP+TJJlGYwx2aRgqmqo1erTixYt2rJ79+4xL730kp250q158+bw8PCwW7FixSNjmGPHjqFr165o2bKlbVhY2GiNRrNVrVbvVKlUEzt06GBf2v3+CIsWkYKsip6ZCQkJUCgU9z799NOkKvnCajyVqCb71ahGJSHL8o/5+fm+jLFQtVq9RqPR1ExNTf0iJiam3E6xTx3s7elnyRKqz/sHyb5er8fZs2fRt29f0dbWFtevX5fXrFkDpVIJzjlkWYa9vT2bNWtWuaTUtWrVKmF8JAgCunfvLpovc/DgQURFRcHJyQn+/v7w8/Mr3TDpn0JICL2wFy8m6WR50aYNTRBXrKDJmTUolTQxAGhCbWNDtX4aDU1uKzhRA0jy26dPH8TGxvIbN26wpk2bPr21+zodBTyGDrW+jKcnkQK9ns5PIerWrYv8/HzxwIEDGDhw4JPth6Njxa6vBTg7O8PW1hZpaWmU1du3jzKWpcFgIJXOhg1A587IPHIEyQsXokdgIG+9fDmzMZV/mOHixYtieno69u/fjxdffLHE33U6HaKjo1mLFi1YqWOSMYwbNIiFLliA7YzBwcFBHjlyZHECWL8+7eOZM08UCCkTmZlkpNajB9CmDcJCQhAfHy92794dzZo1g6uF81Amfv+diNoTlgdlZ2dDlmX2qEe8QkGZ/Z07/3clDno9BY3Cw8u+T3/8kQwizVtIlgOccxiNRlZQUICQkBC0NbW+tLUlp/ytW+mZlpGBDseO4e+//+YXL15k3bp1s/qd7u7uPCEhwfLDp6AAcr16+O2DD6QHANPr9YIsy3B0dOQuLi6ym5sbGzZsmODAGPDXX1T+UkYgND4+Hn/99RdzdHTEW2+9BfuZMxlq1yalDud0bjp0IBWBjQ3dHxs2UMebQYNIbfPNN9RBxcuLxu+ZM9RWdeJE8vYoxPnz52UvLy8hMDAQCoUCrVq1krVarcw5Z7Is8xhfX1xv0oRpHzzghZ89emfKsozc3FwhIiKCv/HGG49u0OzsbOzZswft2rVjA3r3ZgqdDk2++IJBECg4/Nxz5DFw8CAFJydOpMDTpUuk9Fu9mgLMFy6QSuHjj6lMopztOk0tCLVaLRQKBVxcXODh4VFMHZaamgoAsRaIPtRqdSaAx80XjgP4TqPR+ISFhX0aEhIyqW3btkLPnj1tbG1toVAoIIqi0Wg0ugFIffw7qwJ6vX5mTExM/+joaJ8mTZoU+5ubmxveffdd3LlzB1lZWbxmzZps7dq1uYmJiY4KhSLbaDQWAIBWqw3LzMwcjLI42Y0b9BwrZVxUFJcuXSowGAwV7DlajWcN1WS/GtWoJArrraab/T9To9G8uWnTpo1z5859VKv6TGL2bPr5/Xeqd75oqSVtxREdHY3o6GhTloX7+fnJHTt2FAGgdevWgk6ng0qlQkZGBuLj4xEYGFil9fZt2rSBo6MjYmJieFpaGj916hTbv38/UyqVXBAErlAo0KNHD6GttT7sVYUDB0gKuX17MVO2cuODD2hiOWlS2a3WAMrEANSeLSSEMt3r1lEWysenwpt//vnn2W+//YbU1FS4urpKvXv3Fp+4R3tVY+tWCm6U1pLI3p5IxuXLxSTZrq6ueO211/Dzzz8DwJMR/lOnis7/E0ChUEhubm4iduwgZceUKaWv8OqrVMqxfz/1mk5I4MoZMzCxWzeGbt2ovGD69GKriKLIAbCrV68iKCgI3o+Vlezfv1+SZZmZ14pbg51Khc6enmg1ezbs7e2FEuNYECho8eOPFBCxVGrxJEhNJQK1dy91HygMSrVo0QJ//fUXQkNDUaoZVmnIzKTs5xPClMn7/vvv+bhx41itWrWo3OLGDfo9efITb6NMiCIpH8oi+pwTMS6tXaUVMMYwefJkrFixAo0LperFtv/JJ1S33rYtBEFA8+bN+fHjx1mHDh2sZvdbtGjBrl69KsHkI1AIWZZxYO9eqNq1g1PjxujRtq1Qs2ZNODg4gFFkkpY3GMhpPieHgp9l4PLly1ySJPbBBx/QO8nDg3wbBg6ke2vWLOCrr4jMM0ZSa7WaMuKOjjReBwwg47s9e2ibLVpQVj8xkUw7NRrA0xP5+fno0qXLo8z30KFDBZi6TBQUkNfB+fNWzdn27duH8PBw7N+/Hzk5OcjIyJCyMzOFVm5ufFBCgiC0b0+lA23bUjs389LD9HQKIg8fTj8ZGUU+IiYMHUp+BDY2NL5eeMHqeZMkCaGhoThz5ky+Tqe7BuAeY8yBc95Ar9f71a5dWzd8+HAnT09PRERE6GRZrmH1y6xArVbfA/CWRqNZGBYWtigiImL0yJEj7Ro0aIC6desaYmNjB4KM/qocarW6QKPRTD148OCfAQEBDubBb51Oh+3bt+clJSVJsiwfkGX5ZQC/AVjw6aefJpp9zbWUlJR8AJbdYgEaf8uWUbC/it61siwjOjpaIUnST1XyhdV4alFN9qtRjSqCRqNhAH5xc3PjxaSKzzK6dYOcno7M9HQYo6Nx4u5dnpeXx/v27StkZWXh1q1baNq0Kfz9/aGwIivT6/W4fv06EhIScPXqVfj4+EgODg5s5MiRQqNGjYpN1ExRfktZ+qoAYwyNGzdG48aNGQpNqLKzsxETE8NcXV1ZZGQkDh06hL///lt66aWXxMfJTpXg558pQ7JlC/XOrQxsbanH8uTJZDRX3ux6ixaUjTE5/wM0AU1LAypg0ubv74+2bdvKCQkJPC4uTly+fDnmzZv3dBkhrl1r2ZjvcWRkFHU1MAsMeHh4YMKECdi8eTM8PT1LmuOVF3fuWC63qAD0ej0UCoWgjYyUMHWq+DhJL4G4OJIJF3pc/Pzzz3JaWhp7+eWXGerXJ0Jy+jQF9MaMAdq1Q3JyMlJSUhgAuLm58bVr17Ju3brxRo0aMW9vb0iShJs3b4pDhw61OtaLoWdPoGtXOObmWs+AiyIRhnfeofuyqpCQQGUCAweSD4aF8TFkyJDKfffDh3R+q8CbRafTQZIkZGZmFknSRZHO17x5RKoqozyoCL78suwOHrGxwNtvU3CyMmUPwKPgt729ffE/2NhQcEMUSeWUlYXBX3wh3Lx5U166dKnQp08f3q5dO/a4gsjT0xOnT58WHzx48KgMJTIyEvv37JGfP3mS1Vm9mnn7+VmOuMsyPX85L7chYmRkJGvUqFHRu33mTFI5mNCxI3Vm2Lq1SBHn7U1qjexsGmfnz1OHjOBgCviaMvsFBST9nz4dp5o141miKAQ8Ju1/hIwMUg2UUtaWn58Pg8HA7t+7JzVJS0OjVq3EVl99BcXzzzP24YcUBAsIoDIDc6Sn03MjKIj2NyODzGNff734coJAgebISGppeuaMxa4UGRkZ2LhxY75Wq43S6XRfANhZaLYHANBoNKrk5OS3fv7556/ffvttZVxcnCjLcq8SX1ROqNXq+wAmLliw4LetW7f+FhgY6ODv7+/44MGDF/EPkf1CHNJqtfeio6MDzLP7oaGhSElJOWM0Gkeo1ep8jUYzRa1W51pY38vV1bV0Df/9+3SOH78WT4Dw8HAoFIqwuXPnplfZl1bjqQT7p2pZqlGN/x+h0Wj6KpXKLU2aNHGytbUVkpKS9CNGjLB3cXH5t3etBLKyshAVFYVWrVqVmIBlZWXhyJEjSEtLk7KysgSfiAg2cts27Fy3TnKpVYtdvnxZKCTOUmxsrKjT6WBra8udnJxkW1tbITc3V9bpdEyWZSZJErO1teX29vZ80KBBwtNuYGg0GrF7924pMjJSHDduXNWWZOzbR22dtm17crLAOdX2ens/Wbu9xYspC3XrFmVAKyg53717N8LCwuDi4oJ3qyCDXSUIDibPiddeK18gRKu16NgNAOfPn+fnz5+XZ82aVXGpjsFAJlwvvVTkvl1BFGbouIe7O580b54gqNWUBbSGH38kAhcTA63BgODgYJw4cQJz5swpTtI5J2Ly+efApk3IdnXFsvXr4ejoiNmzZ+PixYuIiIiQ09PTYTAYBJVKxW1tbeUZM2aU/0CmTKFgx4kT1pfhnJYJDqaOFE+K4GAiMzExJYhycHAwjh49yl1cXPi0adMqF5mKiCAZ89y5T7yr165dw44dO9CvXz/eqVOn4jdqdjb1NO/Rg2rq/wkYjWRaeO7co8CQRXz7LRH+776r9KYSExOxdu1a9O/fHx0fN8zjnNqNjh1L5R2Fz7Pw8HDs2rULU6dOLWHOyjnH0aNH5ZCQEPbmm2+yrVu3ShkZGeKQevV48//+l7HoaMtjn3PKwN+6RYqGcpqMbtiwgcfHx7N27dphwIABUNy5Q+qYI0eKFoqOpgz/zp1FZUEREXTejhwhyX9AAAW3fHwo+LpnDy1rYwPk5eHhsGFIun8fnocPw8WS6ur77ymwYE0RxjlOfvYZbPR6uXN+voBLl0jFpVAApb3LTK1B3dwokMEYBUz37KEfaygoIKXLK6+QErAw8GI0GrFx40bt/fv3V0iS9IE5yX8cX3zxxW0/P7+Gt27dAoAgtVp92foGyweNRlNTpVKt1ul0o0CB/bcBbFKr1f+IWZ9Go5kRGBj49fDhwx9Fw/bs2aMNDQ2dp1arS+1fv2jRos3PP//82E6dOllewGAg9cTcuVUm4eecY8WKFTnp6ekvq9XqA2WvUY1nGdWZ/WpUowqhVquPaDSaNteuXRulVCrbSpLU+erVq37du3d/alKesizj6NGjuHz5MhwcHPixY8eYnZ2dZGdnh4KCAmi1WtFoNKJx48ZS8+bNBV9fX+br6wusXIlXRVHEW2+h54oVMHAOJycnkXMOnU6HzMxMdvfuXbGgoIA7OjqK7u7usLGxgdFohLe3NyuRmnlKoVAoMHLkSDE+Ph7BwcFVQ/YliSZ4U6ZQRqcCqgVZlnHixAnEx8fLer2e5ebmckEQmIuLCxs3cSJstmyhOu7HnLRlWca1a9cQEBBQwgipGD74gDK82dlk/HP2LLWLK20dMwwbNgxhYWHIzbWUsPiX8NdfZHBW3ltOECj4cuZMiSBM+/bt2fHjx8W4uDj4VdQ0zUQoKuF9kZycjF27dvH09HQ2dOhQ1tzfn7HBg0s35bt5k7Y1cCAgivh982YeHx/Phg0bVjIbzxgt+9JLwJIlcP77b3Tq0kVO9fBgAFiHDh3QoUMHAQBSUlIQGxvLnnvuuYpFLBYtokBKaWCMzCOXLCHCWdnJbGYmkbjPP6eM42NEX5ZlHD58mAcEBLBKO/ADwPLlQO/elV7dhIcPH2LHjh2oUaMGOnbsWHJ/nJ2JPP3+e5U5b5cAY6RSKA2zZ9M98gSBPJ1Oh23btgEgVZDF/fjxR8p616xJpDkgAC1btsSxY8ek9evXixMmTECNGjUgyzIKCgpMKjCm1WrZt99+i5YtW2Lc2LFwMBpZqWanv/5KhH/JknITfQCYNGkSu3v3LtavXw9ZljH0hRfomWswFPmfBAQAL75I0vYRI+izc+dIfdWtG6mH5s6l98GMGRSsbdcO/MYNhBw4gJTNm6XI7t2F2nfusEFjxlB2ffz4RyaD4Jw6SVgaI9evU+nHlClos2YNYvv0oWdPeZ7jGRnUotDBoYjoAyTjHzSo9HXt7ChQ0awZGRAmJkL28sLOnTt1ycnJlyRJ+qQ0og8AkiTNunXr1m5BEHbJsnyl7B0uG4U1/i9pNJouAM4AWAFghUajAYA2arW6qtvxnb5z545s/kH9+vVtw8PD5wAolezr9frrDx8+NMIaJ7t+nZ5nVkwxK4P79+8jJyenAEAZ5i/V+L+AarJfjWpUMdRqdQKAZQCg0WganD59+tKJEydcS3Ov/qchyzLCw8Nhb2+PvXv3SgqFQhg/fjyrW7cuy8rKQkpKivjw4UPY2Nigfv36cHR0hPi46YCTE2XgYmJga2sL20JpLmMMtra28PLyMskpnwlSXxY6dOiAU6dOcb1ez8rlkmsNskwE+vZtyqKVQ9ItyzLu37+PixcvIjY2Vs7LyxMCAgLg4+ODnJwcoWbNmoiKiuJL//wT/RIS0HrVKibQJOYRVq9eLaekpAg9e/ZE97L6RgsCkYukJKovff55yvBs304TzFJIs16vB0CZnLy8vCdqAVYlyMujTGgpdaQlYGNDk28L10apVKJHjx78zz//5LNmzSpZe14akpMrreCIj49HUlIS6927N1qkp5Ms/sED65L469cpCxwcDPj5ITU1FXFxcWzKlCklau+LQRSBDz+EoVMnZP7wgxD4xx8k4zWrrXZ3d4d7aUEGa6hdm0zJ6tUj6bE1uLkR2WCMgk7O1ktXLYJzckM/eZLIl4WMaGJiIvR6PWvevHnly020WjIoK0eNd1kwqamGDRtm3eRy7Voqsblypeo9DTin875vH9C5s+Vlbt4Ejh0jglrJWO2dO3dw4sQJ5OTk4IMPPigp4zdhyBCq3T99mq7/vn0QBAGzZs0SDxw4wDds2MBkWX7kPC9JEtzd3eHk5CTn5OQIfn5+osPevRSUSEqyvL/r1tH1++wzCjBVEL6+vhg2bBh2796NF154AYJJkm+uVGjfntrpDRxIRDghgX4vXEiS93HjyJ9g/nxa/uxZXJ42jZ8+fJi9u3Gj2PbECdg3agSn0FBqHWoy9OvTh8bG778DzZvTullZpMyysyOizjng4oJTK1YgLS0N/pKEMp/GGRkUJDAai6tVjEagdWsy6CsLokhBiOxsoFEjPJg3D1GZmQrO+TC1Wq0va3VZlu8U/p5fVmCgolCr1WcBMI1G0xDA+6AMf0FVbqMQVwsKCsT8/PxH93idOnUgy7KrRqNpo1arQ62tqFQqm9WoUcMyH8vIIPPIgwcrPQYt4cKFCwVGo3GZWq2Wy166Gs86qsl+NarxD0KtVsd8+eWXK4xG43xLfWD/KciyjL179+LatWsQRZEbjUZWmAnhLVu2RL9+/R71J3ZxcUG5ywwaNqTJWEoKkYGbN0vPND7D6NixI27cuMF/+OEH3q1bN+G5yhjp5eQAo0aRqVU5X9ZHjhyRQ0JCmF6vZz4+PnKTJk14//79oVQqizGUnj17sri4OOzZsgUsNBRtrl0DWrYEAERERCAjI0Nwc3NDTEyMZN6RoFSYyO6+fUQyzpyh/Y+NtVqra2Njg27duuH06dP45ptv4OXlJY8dO1b410j/7t2U2S2lptUiPviAJLJTppBxnxk6d+7Mbty4wZctWyZPmjRJKLeDuyQBU6ciPz8fa9as4UFBQcyqVPMxBAUFITMzE8eOHcNz06dDtXGj9XZLd+6QkuH06UfBhYsXL8q1a9dm3t7e5Zoh5jRvjuiAANSSJLQ4fpzcwqdOLbfCwyqSk8s3SQ0MJPm20Ugkt7zYtYuu3Y0bROSs4OHDhwCAHTt28I8//rhys+bwcJp4V8G9bVJa5OSUoiq2syO3/JdfJrVKVbe63LbNYg96AETyr12jQMMTtPk6duwYHjx4gDFjxlgn+iZkZwODB5fo4z5w4EDWt+//Y++8w6I4uzZ+P7PL0gQURJoFe4UoaixYsBt710Q0mmKvidFY4oao0WjU+BqNSey9xRZ7EkSMYldQwQYiIkXpnd2deb4/Dr3uwmrUb3/X5ZUAs7Oz03bOOfe5T7ecJE1KSgrUajVsbGwYALZjxw4cP34c7335JWSNGhV9vh0+TMmaefPIXK+MWFpa5iZnUlOpcp93HzZtSq07166RN8t331ECIiGBxvC1bUtB9cqVdHxNTBAxcCCrd+WKKLe0lNnVqUPfq+npVJmvWZMUA/fukQojIwNwd6d71aZNpGjJdtPPwt3dHWvXrhXWrFmDefPmFf9h4uNpHenpucmHbOLigO7dS27vKLxzwC9fxvmzZ6UPjh173PLGDQsolQlavHJM1n/vav9muqFUKoMBTMn69yrWz5cvX/7k5cuXDWtktcLZ2NigXr16GSEhISu9vLy6FhVYe3l52clksgHVqlUresWrVpGSQwcVSmkkJSXh/v37kCRJhxutgbcZ2bfffvtfb4MBA+80Fy9e/KVq1aqVXV1dX5lDvyRJWL9+vfjXX38JN2/eFH18fFhGRgZGjBjBWrRowdq3b49OnTrB3d2d1alTRyi3ot7cnCSXzZtTUFCnjn4+yBtElis0yxoRyB49esTr1q2rfZU/gEadEAAAIABJREFUNpacl0NDaX6zFtXEa9eu4cKFC6x///5s8ODBaNasGatXr55Q1HnDGEOlSpVgYW0tBV66xMQ9e6SKgwaxKzdu4PTp0+jUqZMUFxfHTU1NmYuLi24HXKGgypejIx1bV1eatWxmlpNQyEvNmjVRv359ZGRkICQkhFlYWKBqGVz+9cKsWfRP1/dnjCSzLi6FzKYYY2jatClLTk6WTpw4wapUqcIqa5NM2LkTALDx+nUeGxvLnj59inbt2mk9rrBWrVqwnDULpnFxMBs3ruiFMjIowKhZM2eEnSiKOHnyJNzc3Ji2HhmmpqYIDQuTNE2bssb9+lEguHYtyXhLC9JKont3qkTKZKX7Fnh4ULXS2bl0IziNhoLRWrXoeJVgMLl//37xwoULAgAwxphKpSpbe86xY6QaKehOXgYYY7h48SIEQUCjkoJ4a2sKJrPHRJZHZZSXBQtILVJU4opzUmJ066aTcWde1Go1Nm/ezCMjI5mnpyfqaPMd0asX9e5//TUlHPOoc7Ir+owxGBsb50scVKpUCeLhw5J6+XKmHjMGVgU9Dk6fJin90KGFZtrrQkBAAPbt24datWppmjZtKqBGDfJMKTgRxcGBgufBg2mE4nffAX//jYv162OfQsHb7tnD2K1bwMCBSEpJQWhoKIJSUoR2u3dTIv3nn8lHJXsU4/z59PPmzZQQGTGCEgmtWtE+KqDckclkuHjxIubMmVP8M0d8PCUTRJHMIAvy119k3qrFtJfIyEhcu3aNzHgjIzX3goIe9j9w4LlcFBm8vK7j22+LrdZ7eXkJyJKSK5XKb0t9szeYCxcutLO3t2+S11+iQYMG8uDgYLuMjIwR3t7eRzw8PPL1u50/f/6zqlWr9vTw8Ch8oO7fp2TfmDHlT7rm4cSJE+mxsbHrvvnmm6N6W6mBNxpDZd+AgVeMSqVaGxoauu7x48do2LDhK3mPtWvXiomJibKRI0ciJSVFZmtrW8jQSO/0759bdfL1pYDwHcPY2BhdunRhbm5uOHLkCF+7di2rX78+HzBgACtRChwWRg+WX39NAZMWbN++XXr27JkwfPhw7R6Ms2jcuLFQ49df8bxXL2HnrFl4XrUqXFxc0LRpU8Hb27t8pnlyeW7v6ccf06imgwepmpoVyGbj4OBAc+CBVzJJQSuuXKGAIc8YPZ14+JAerotoXRAEAT179pTZ2dnxP/74A61bt0bnPLOxi0KqUwfHgoPxknP24Ycf4uTJk3zfvn38ww8/1FpHnlSxIoyKk3DHxdHD//nzeGZiggu7d4smJiZISkpiGo0Gbdu21SnJ8/777wunTp0SUamSDD//TOPrBg6kcU9LlpR9qkCzZhT0TJ1a8nIVKlA/fNu2JMkvKdD47juSNN+/jxJ7tAGEhIQIXbt2hZubG2JjY7F9+3bUq1cPOpmFShJ5MJRnDGMBGGOIjo4ufcFWrUhxkpQE7N+vnzc/c6ZoL4mkJDJ4/Pvvco34unjxIo+IiGCjR49GzZo1tX/hsmVUFS8qAC2G6tWro3qfPsKTtDRs374dZmZmSEpKwsSJE1Hl8WM6bh9/XO4kTWBgoFitWjXZqFGj6Nk5NZXUL9cK+Mk1bEjJt8OHgVGjIHXogPN37/LLvr5MJUnszsGDaDBgAG4PGcJPvfceA2OkrjM3p0SBJFEwbmGRO+pw5Urye3FwKNUzQqFQwNjYmMfExDCHAl4uAEhlsGIFJa5mzwZABQMAuS0uP/5IKogCyZ6YmBgEBgYiNDSUx8XFiWlpaXIAsLOzEy9fvixTq9VyACONMzNvZWU1r4OxfeB8eTGbOyzrv9NK/FBvAZmZmdeio6MHAcjJyBkZGeGTTz4x8/HxqXfp0qWH33333aiFCxceyfMyjZGRkSrva3JYuZK+c/Vo0BkdHY2goCCNRqNZrLeVGnjjMQT7Bgy8Yr755pv133//vdvJkydHW1lZGTk6OkIURQAoV6U/IyMDJ0+exNOnT8XU1FTZjBkzYKlrr2t5USgo4BAEegj+7ruyzY1/w6lUqRLGjBkjhIeH4+jRo1i1apU0ZcoUoUjju3v3aL9MmkSBkhb4+voiKipKmDBhArSWiOehQoUKqH/yJOq6uUHj4wOFoyNWrFgBCwsLydLSUj/mkNmO/9l96JJEo/+WLcsxB+zWrRt27tyJc+fOFZ6n/To4dozMBcujXKlTB5g7t1jH+2bNmrEqVapg+/btMDIyQvsSDOXSv/8eId27Y/S0aXB2doatrS3bsGEDu3jxItzd3UveDkmC8OWXuNWxI78fEcHb3L4tVKhQAaamprC3t0dUVBSqDBoEoyZNcGPSJH7mwAFWs2ZNITo6Wnr58qXQoUMHSZfe9Bs3bkjnz59nnPPcnWdrS0Hhpk3A1q0UjI8erftkgePHtVdaODvTefXsGcmtCx7LU6dIrj9vHv3T4ljb2dnh/v37kru7u1C1alW4urryAwcOYPr06UyrMYIAcOsWyfh1CVxLwcrKiqtUKu1O1lWr6LOnppa/jSAzk+T5RfG//1FwXI4JMr/99psUGRkp1KpVi9esWVO3i/GHHyjhkJJCybtWrUp/zZMnQLNmqDl4MIY8eIB9+/YBAA5//z0+j4uD4OlZfLuCDiQlJTErKyuObF+ahg1JWaNSFVZcLF0K9O6NzB9/xLErV8Sa/v6ySYsXY/25cwiJjMTpkSMxbcMGZm1khMq//ZarRrCwoFakkBBS7KxeTW0qT5+Sr0Xt2qTKcHUl48RiMDU1FaOjo+WFgv2kJECppPVMnQqJc/hdugRfX1/OOWcVKlQQ5YyxPjNmCFbvv49APz+EhIQgJiZGk5aWJpMkidna2oo1atRgzZs3lzs6OqJixYpgjMnOnz8PPz+/u19//TX1p3POwdhMAABjzQGEgPP4vJsjk8mWZD0PvQuz3u9FRkamo0DgzhhDp06dFHXr1lXs3Llzz/fff79NrVYfBAX6s1xcXAqbOQUHU9Jz5Ei9buCpU6dSJUn6RqlUJup1xQbeaAzBvgEDrwG1Wv2lWq3+9Pfff8fMmTOxOsvgaeLEiWUyvtq+fbv4/PlzwdzcHB4eHrK6dev+Z+Z/EAQK/OztSU6YllY+2e8bCmMM1apVw+TJk9nGjRv56dOnMWDAgPwLhYSQ0mHpUqoklUJgYCB8fHyk2NhYYejQoToH+hqNBrGxsTA3N0daWhps586FsGgRTvXrJ6WlpQmdOnXS/xSIjh3pX0oKKRgkiSr9VlawbtoUANC2OMOvV0lSEgVi5a287tlTqkrFyckJI0eOxK5duxAfH4+ePXuiYHtH5NOnUERGosb770vOzs4CQEmjFi1a8KCgILi7u5ccBIWEAGfOYNqNG+wfX1/m6+ur0Wg0TK1WC6rUVFY9Lo4ndujAnN3dcef0aTZ48GA0aNCAAZCtXLmSX7t2TejQoYNWZnQvXrzAyZMnhWbNmsHDwyP/dpmZUUU+MJCkyZUrU3tHwRndJdGwIRmTrVunXRA5Zw71OV+6lN8FXqMBgoJI6q+DrHXw4MFs9erV7OXLl7C1tUWrVq3YjRs3EB4erv2EhZMnaZSjHrGwsOAqlYoDKP0gWVqSaqVBA0qelFFeD4Ck8mvWFK7sb99OCcovvihXwiwuLk6oUqWKNGrUKN3vP5aWpB6aP5/aOvbsKf018+aRP8rx46hfvz4WLlyI6MuXcX/2bJxt2VLq2b17ue+DYWFhiIyMFEaMGJH7SyMjCpxDQui4FPgccX37ImHkSN7OzEyoYmsLWXAwRFGEkZERuK0tTK5fR51u3WhCwOTJ+V9fqxaZ3nXtCnh70/ds5cpk9qrR0P23BKytreWRkZFS06ZNcz57+KNHqPTNN8h47z2cc3DAi19+EZOTkwW5XI6BAwcye3t7PHr0SBa7YAHioqOx/f592NjYSNWrV+cuLi5yR0dH2NjYgDFWKNsniiKuXr2alpmZOSnfHzj3BQAw9gcAMwA5N2gvLy9nALUUCsWfc+fOzSzxA70dBMbExCgyM4v+KLa2tvj0009Nrl+//tnDhw9HCYIg1atXT9GwYcMco1sAgEYD2VdfQRo9GhygZJKWlDRO/enTp4iMjEySJOkXrVdo4J3AEOwbMPAaUCqViV5eXi1kMtnfP/30kyXo4S78r7/+sh84cKC8NOOijIwMrFu3TqpUqZIQFxcnZWZmyrp27Yr69etrb673KhEEcvQFKOCfN6/ww8s7AmMMjRo1Ery9vaFWq9GhQwfY2tpCOHKEKpG7dhX7IC5JEv755x/cuXNHVKlUAuecVa1aFYMGDYK9Fr2ReXn27Bl2kpQ+pzpoV6kSb/X8OVL37WMfzZ+P2gV6z/VKhQo589NfzJyJsJAQnO7ZE3VDQuDv78919gkoLydOkJz2s8/Kt542bahy5uFBD9rFUL16dYwdOxYHDhzgK1asYDVr1uQDBgxgZmZmUKlU2Ld5M7fr1o31KBBouLm5MT8/v5K34ckT6qUNDIQcQI8ePdCjR4+c7+vMWbNgfPEi89+yBX8ePw6FQsGzAn0AZGh24sQJacuWLRgzZkyRng/ZqFQq7Nixg7/33nvo06dP8cesUSPq4798mQKcHj1IvaJNlZ8x8q8ICSFZqjYMG0ZJs2nT6PVjxpCq5JTuI6EtLS1hZGSEoKAg2Nra4sWLFzm/1wrOqaWlY0ed37s4njx5gidPngiltYLkw8IC8PKic0OStPIBKRIfn0K+FHj0CPj+e9q/5UzWWlhYICkpqewBdufO5J+xvDjldx44p3tu3gArIQF2y5bB+rPP8P2TJ4LdrVuQy+XgnKNu3bowLc0PogiioqI4AJYtd8/h5k1qdykQ7F++fBnXY2LQr00b2C9YwFi9ekBKCroFBvLTp08zJycnjgYNGDZuBD79lF6U9Z0piiKSL1yA1ciRYI8fA+fPU1tFRgYdu6NH6XP36EHftQXOy/T0dMjlcjx79izndyeOHuU1589nNxs2RIBGg4aCIDZr1kzm5OQER0fHHMPIli1b4mXTppDb2WHejBnQdvyIv78/JEm6rVQqLxSzyBAAFmBsNgAjcL4EAJPJZFEqlWqlNu/xFhAuiqLxihUrCv2hQBAuAyU+cPXqVVwtMPGgYlwc3MPCcCIggHxJyklejxhRFCdrMyHBwLuFIdg3YOA1oVQqb3h5eVkDsAEgAeBPnz7dsGrVqkGTJ0+WVyqhP/Lo0aNcJpMJL1++RMuWLYU2bdqU6YHlteDtTQ+S+/bRg31Rc5Xfctq0aQMLCwvcvXtX/PXXX2UVU1Px8ZYtCFEq4TJ+PFR5xu9kI0kSNmzYIKlUKta+fXuZJElwcXGBmZlZmR6KNRoNNBoNRowYwW7cuIHmzZvjwoUL0sP69THw9m2ZomrVsgcDOnDnzh0catwYaNwYQ2vVQoP165H2008M9+/TxIbXsA0A6AG4tJ5wbXnxAoiIKHUxe3t7TJ06lb18+RJHjhzB77//Lk6dOlW2YcMG7hgdzXpLEswL+BeEhITwrMkcxQfWs2dT9e7w4cJ/8/GBsVIJfPMN3rOygoOjIzZt2pRvXY0aNUK9evWEFStW8JCQENStWxeccyQlJYFznj1aE8HBwfDx8eFGRkZSv379So/aGaNkyLZtJCtu1owSIyXIiXM4f556hbXF3R349VeqNH/3HSUWypHYrFatmvT48WPeoUMHWUZGBiwsLCRra2vtTs7QUAqG9Wg6+ccff/CKFSsynVUwn3xCRm0rVmhX9S7I7Nm0T/O6ewcH02z70nwStCAzMxMxMTHQuj2iKJydaRSmuzu1DJX0OQcOJAPIJUvo5+RkUoZMnAijHj3Q5uxZHDt2LGdxuVyOcePGwdbWVqdNatmyJbt37x7fuXMnnzJlSu5507cvJV6ykCQJBw8e5MHBwWzY+PGovngxw4wZdJ14euK9oCB2+vRpdOzYka7ZHj2odeGnnwBra6T07QvfL77g15ycWJWZM1Hj9m3pg7t3BaZW07IzZtAbMUaf29YWoaGhOHfunCiXyzFs2DDZ2bNn8eDBAwAQfvjhB0gaDQbv2sWMx45Fz2nT0CE9HRUrViz6etdoYFuvHp1nWqo7OOfw8fFJzcjI+LrEhYAkMHYfQA8wVkEJPAfnRZgKvJ0olUq+bNmyl59//rldWdrxANA90sMD8PWFmx7bMi9duiT5+vp6L1iwoIgvFQPvOoZg34CB10jWDNmY7J+9vLxGAlDHx8ejUqVK4Jzj4sWLuHLlimb8+PFyAPD29sajR4/Y559/DrtyjAx6bWS7HW/eTBXKr4v//n9bEQQBrq6ucHV1lfHFi5Hq6IiAHTtw+d49/uf33zPGGBQKBZfL5dzOzg7m5ubCo0ePJFNTU/b5558zfYylq1mzJvr06cMPHDjARo0ahWrVqqFu3br0AHfwIFVhR48u9/uURmxsLACS7jfq1g3w9EQFxkjmPXkyPZzKZCR5fVVcukTnnb7aB377jYKG+HitTMpsbW1RuXJlHhMTI/zwww/czMwMvTt3hnlwcKFlHz58yIyNjSUUF+wnJFBwk+XrkQ9fXzKju3sXsLZGWFgYdu/eDSsrKw0KfJ/L5XK0adOG7d27F6ampjnqD8YY1Go1AMDY2JhnZGSwTp066daEb2ND/37/nVo4YmPJdb8kJUlMDAVu0dHaG/3Z25N6ZO5cUm6UgbCwMBw8eFAEVREFgAzM1Gq19sqTR4/Iy0FPc67v3LmD1NRU1qtXr7L5tnTrRpXezEzdR3I9eJC/Cs459QUPHJjP/b4saDQabNmyRTI2Nmb9+vUr387inFpHli4tebnRo3PGTYJz8nvo3JnORwDdu3eHh4dHTvJh37592Lp1K8aMGaNTwM8Yg0wm46Io5v9clSuTSZ+PD9LS0rBp0yYRgDBhwgRUqlSJPGzWrKH70yefwMTYOOe6E0URoigitGVL2LRrB/OFCxHk7S113rVL6BAaiq3794vXrl2TaTQaqW+fPgJr0QIYPx6RtWsjVqFAox9/xKPbt1G5QwfYK5WyEEEQly1bBmNjY96tWzf2/vvvIzI8HOYff4zzzZqh38yZkMnlUJR0znh7Azt25KoNtODJkydQqVQvAPxb6sKcHwNwDIx5ARgCxlzBeRE3u7cTQRDiUlNTyx7sb9lCijI9BvoxMTHw8fHJUKvVesqGG3jbYCX1dxgwYODVs3jx4v+Joji1SpUqqZxzHhMTo+CcKxhj4JzD1tZWql+/vtSlS5e3Mzk3ejTJ24uQtr3VcA5ERdF4pe3bgTp1wDmHRqMB5xzx8fFISEjA3r17UaVKFd62bVvm4uKiVQ+1LmzevBkZGRnSpEmTclccEUFS61mzyjVqSluOHDnC/f392ezZs3MVJ6JI/5YupcTP06dFutzrha++IjMrfZoZtWsH1KhBEuFSSEhIwNq1a9GoUSPcvXsXs2fPhunOnaRqyRqHB5A8d/Hixfjggw/wflETA1JSqHpc1HSLf/+l9pD0dKBKFURGRmLr1q1wd3dHhw4dit22jIwMPH36FBYWFjkTOiRJgkajQXp6On766Sd069atfD4Lq1dTFf7YMdpnxQUTfn4U/GhT9Z0+HWjRAujXj0anNWyo88QPjUaDFStW8AYNGsDR0ZHVqFED9vb2iI6OxoYNGwAATZs25f379y/5pOzcmSqvepo4snLlSrFhw4ayLl26wLis87MliQL0BQu0N0VNTKQgIvsa5Jzc/Zs3p0RNOa/NHTt2SCEhIcL8+fPLV9nPRq0mdYulJY2BK8ivv1L1v0kT2h8TJlDCok+fEhVFR44c4UFBQWz48OFwdnbW+p4cEhKCPXv2YO7cubmvSU8HatTAs4sXsfvQIV6jRg1p0KBBshwPD7WajpGzM/1zcMD6S5fw8uXLfOuWZ2bi899+Q4K1NRw3bECFzp0hSRIWLVoEIyMjfPTRR3B2dkZ6hw4Qb97Euc6dEdCqFTjn+DAoiNf+/XcGU1MEh4TA1taWWlQyM4HRo3G9Rg08cHXVjPT0LP2gREZSkl6H+8HevXvTHj169PU333yj3egZIFtb3gpAAoBW4Hyb1q99g1m+fLlvv3792jco6OGgDY8ekUJt0iS9+R5xzrFt27bU8PBw5YIFC96VdgkDOvJ2Bg8GDLxDiKI4E8DuFy9eVAWQCsBHLpeHazQa66FDh/JGjRoJ0MbA6U3lww/JTCsujn7+r8ay6RONhnrDq1cnw6Ssh2TGGLIk2rCzs4OdnR2USiVQkmS7nKjVal6hQoX854ejI83QvnWLpPSvIsDOQ58+fZi/vz9iY2NRNVvqnD1X/ZtvyKwwO5D18aHAXF8kJJCcVY8j0QCQCZqWppcWFhYQBAF3795Fq1atuKmpKcPt27kVxyzCwsIAAKdPn8b58+el6tWrC9HR0RpTU1OhZcuWQtP33iP3+4JBZWIiBXaHDwPt2uHhw4c4duwYqlevXmKgDwAmJiaoXyDhIwgCFAoFEhPJkDkmJibXYbwszJxJ18PPPwO3b1MlvqhjbGNDMvJVq4pfV2YmnTeiSFMerKxIYTF+PCk4dDiXBUGAXC7naWlpaNGiBcuuotva2qJLly786tWr7Pbt2+zevXt83rx5Ra84PJzuWY0aaf2+JZGSkoL09HRZixYtyh7oAxTMNmpE9x9tg/333gPGjaM+b4ASsKdOUTKlnPeIzMxMhISECB999JF+An2ATDdHjaIxpkUF+5s3U2tHkyaU8Ms26CwleB8wYACzt7fHnj17wBiDp6enVmMYq1atCo1Ggx07dkgff/wxvYmpKe4uXox/Nm2Ce58+3N3dXZa3RxpbttA1nZ5OI0EVCgxYtAj79u2TevbsKdSuXRsKhQJSZCTYuXOobGMDYc4cSsLUqAHGGCpXroy9e/eiffv2iKhZE6Zubvhg1iy02LYNlTw9YeLszBAQAPTsidrBwYCpKU1tmDoVoY0a4axMhkEtWmh3UIYOpckbWpKamorg4GBBkqSdpS+dB6o0XgZjHgAWgrGDANJKdJh7O1AV8nXQlqVLKcGpR4PjgIAAHhkZ+UIUxf/pbaUG3joMwb4BA/8xSqVSBHA57++8vLwmmZiYbKtevbqxRqPR38PTf0F2EObpSb2v/5au9HujycigynnFirnmYf8R4eHhiIqKYp06dSr8xxEjqJ/U3j5fdflVoNFoAABFznQWBKpoAcAff1BgPnIkBXHr15f/zU+eJJOsMWPKv668VKxI6ojk5JKDU9AIzdmzZyM9PR0WFhZ0QnTtWijgrVq1Kj799FPY29vjwIEDPDk5WWrVqpU8LS2Nv/Ty4mH+/tD8/TdzlqTcymFQEO3D+/cBGxsEBATg+PHjaNu2bamBfmnY2tqif//+OHr0KOvTp0/5VCcWFhTkHz0KPH9OVddvvyVVTzYyGcmEi1N4SBJV8KdOpcRBNuPHkwnZX3/lyLO1QRAETJ06VVixYgWCgoLQJGvOuiAIaNeuHatevTp27NgBtVrNNmzYoJkwYULhG+2jR+RJoKd7cEBAAExMTHTuGS+SpUvJwOubb4BFi0pf/vr13CkGfn7AoEEUTJcj6aDRaBAfH4+0tDQA9Pnq6sunxcYG+PNPqjIXNCRMTKTRfJzTderiQsdJy3ah1q1bo3Xr1jh58iQOHTrEp0+fzlgp9/IzZ86IxsbGgru7uwCQQubAgQO81tatbETfvrBr167wBdS9O10DCgUF/cuXw1GhwMyZM2nZiAigY0cIfn6Anx9l3AYMAL74AsJvv4Exht69e+PWrVu4ffu22CEiQmjQrBmTOznBwdeXpt8sWUIJDy8vCvQTEwGlElKLFtiflCT1/uADQatKc1ISmQ1Wq6bVPgQAf39/LpPJTsyfPz++9KWLgHMfMFYHQHsAq8BYd3AeV6Z1vRlkZH8f6sS9e6RiKiqpVUaSkpJw4sSJDLVaPVCpVKr1tmIDbx1vcQRhwMC7i1Kp3LdkyZIfVq5cWQMAxowZgxo1avzXm1U+tm+naoOfHz20L1z4X2+R7qSn0xeyqyvJev9jLl+mHFGRknBBoGDr55/pYbngHGg9YmJiArlcjoSEhJLHB3bpQv+dNIkq/SEhlAT6+++yVzMuXaJxh68CF5dSR1xlY2RklKPqgChS73B0dKFlspUPH374Yd5mbSaZm+Ph0aPSob17GeccZmZmosAY91y+XP7Q1VV69NFHrFmzZuzEiRPo1asXmupJHZE9Jkpv7SX9+9M+u3OHkjnNm+fKqmvXJrVJSkrhvv0DB0guv2tX4dnqjFFv9OjRFMy0b6/15sTHx0MQhCID0OrVq+Orr75CbGwsNm/eLA8NDS08iu/CBb3MaM/Gzc0N3t7eiI+Ph7U+VE52dsDevcDEiaToKY5Zs+g+MGgQXXfjx5PnQp06ZX7r5ORkrF27Nqd1yc7Ojrdv316/2c+uXSlh6eIC/PMP/U6S6FzauZOusZcvSV1ShntI165dcevWLbZv3z5pyJAhQkmJ9aioKObs7Iw6derk68/vPWECKhR3f1UoKCHRqhW1uVStSklvMzMaqWZvT+q3vOfCoUN0zg0cCFmXLjA1NUUf8lOQoVkzWidjpMiQJErq9uxJHinr15NyY/58eNepA9MHD5irtu0nT55QQkLL5A/nHFeuXEnNzMxco90blLAixi4D+BNAOhhzA+c3y7XO/whRFF9kZGTo+iKahDFokE4jRUuCc47jx4+nA/hZqVT662WlBt5a3l5psAED7ziMsbVyudwLwPd//vmndhHHm4wg0AN+tvPz20ZkJFWQP/+c3JP/YyRJQkJCAjc1NeUmxT0gtGxJD8mvwS/ByMhICggIgFYSRnd3cpY2NaXqt6kpVXO9vXV703//pYdeHYI/nRgyhMzQfH11e93z54CtrfYV00mTIMjlaLBkiTB37lxMmTIFH7RsKettZCS/smKFeLZNG+Hly5fs+PHjsLKyEvUV6AM0eq9MJnElUaEnjXSoAAAgAElEQVQCGXN++SU59/ftm2sK9+OPhYPnzEwK1m7dIrf/ohIPtrZkdGZjQ2oLLYiJicHjx4+h0WgQHh5e5DIKhQIODg7o2LEj37VrF+Li8hQVRZECTH0ZP4ISY8bGxlJx26MzVaqQ+uOvvyiIL47MTFInJCTQ/vv118JJFR1JTEyEWq3GF198gZkzZ2LChAmsSpUq5VpnIQSB9v/48fl/d/IkmT4+ekRJzTJOalAoFBg9ejSCg4OFJUuW4PHjx8Uu6+bmJoSHh/PHjx9j7dq1vEqVKhg/fjyr0KkTtVMUxcWLpHixtqbERZ06uRX0ihUpWfHdd/nPeUEA/v0XCampGLhvH0ILGn1m+U2AMVLLDB9ORqKPHtF6BwwAZszAnZs3xU6dOpWqWMhh0SI6j7QkLi4O6enpKmhjzFcanKvAuReAagBOgTGXcq/zP0Cj0USlp6fr9qKICGpZGjRIb9vh4+Ojfvr0abBarVbqbaUG3loMwb4BA28o8+bNWzl//vxvjY2NW9ra2lZYvXp12uLFizWHDx9Wpaam/tebV3Y8Pal6t21buapKr5XssUd//61XSW95CAgIwPPnz9mQIUNKfpIbN47k8/oKLorBw8ND8PX1LTQzuEQcHKgSxRgFICoV9Xyv0bJQtG8fBYevkv/9L7fHWVs0GmCtll5VkkQS/azEAGMMVlZWaLB9O+ocP45eI0fK5s6dC1dXV0mlUmHQoEF6i8x9fX2lc+fOoUqVKq/GDdvSkir2P/5I1f3Fi6mKuX07/T0tjRI/9+8DYWEUDJVE27a0X7/6Squ337lzp+jj45OruCiBdu3aMZlMho0bN/KcytzBg/SeWno3aINKpUJmZqag19GpcjkpKaZPL/rvUVFkoti3L6kjNm7Uy3WjUtG47rVr1/J169bxFC1VMDpz5Aglgn7/na6X7t0p0N+2jZKv5UwwVKtWDfPnz0fDhg2xp4Qxfw0bNkRqaqqwa9cuMMbYsGHDyIivYkVSGKmLUEoPGABkKbDQrRvg5ETTNmxtSTVSVOsTACgUODhsmFgxIQEuXl65vzc1pffKi6cnKWp69yYn/c2bkfTRRxi6fr2soF9HiQwZolPAGR0dDblcHpA1ZUg/cP4QQBMAYWBsHxh7q0x+JEmKTUtL014yn5hIzxZffaW3lsDHjx/Dz88vWaVSdVUqlTpmHgy8ixiCfQMG3nBEUTS+f/8+UlJSVkmS9GFAQIDixo0bb7uJDVUj/vc/enjToZrw2rl0iUaxHTpEvaFvCNmy5B07duDgwYPFL2hpSQ+ACxbkmwetb7KlokFBQWU7N7duJSnqvXvUpwtQUJgVUBQiLo4k4r16lenttGbpUnoo18U3ys9PO2+KtDQ6Nv/8Q14GAB2jbdsoOPvzT8THxyM8PBxXr14VPDw8YF/OOejZXL58GefOnRNat26NcePG6bm0nwdBoD78PXvIaO/yZTIfW7OG+qubNiUHf23bCJYto+W1qJ4pFApmZ2fH582bh9oljQXM4rPPPgNjjHlnK0xu36bWAj2yZ88e0cbGhmuzPTqxfDkF8cePF/5bz540tz4wkFpoSvGg0BYnJyf07t0bI0eOZJaWlli5ciWWLFmS016kV/bupWA/NZUSg+vXU9JYT+1tISEhePLkCa9du3aRiS9JknDx4kUJoKBfkiTkVMwtLEjtleVbkI87d3KnhFhaUpLiiy/oeDRtWvSIzSxa9uol2z98OKTExFxPEldX2g95X5eaSkaAvXsDZ84gaedOnFEo+IvVqyWjxERKPpbG6dPAjRuknNGShIQEaDSaQK1foC2cvwSQAWo1rgfGyj+r9vURn5aWVsyXVhEcP05munoaq5yamoo//vgjXa1WD1EqldGlv8LA/wcMwb4BA284Go1mgkwmWylJ0kqFQjECAKpXr/7fucLpCxMTCtTOnaNq3ysMRMuMKNI4JxOTN06FYG5ujnlZFedSzb4aNqR+3p26GSbrgm+W1L1JkyYsKCioRDlsiYwcSQqK1FSSv965Azx8SPLjvJw6RYmBMsp3tUYQSPKsi3Te3Jycz0vj2DEKXvNy6BAlGAQBt+/e5evWrcOuXbvg4eGBjh076rbtxRAQEIAzZ87A1dVV6q6D4V25qFyZZMIODpTImDEDuHoVWLdOt2NoZUWBT9OmVLEugT59+giRkZHs0aNHWm5iZfTr1w/Xrl3DvRs3SHrdvLn221YKly5dwvPnz2UfffQR0/cITggCVQa/+IKSTXm5coVcvocPJ6NDLU3sSsPY2BgtWrRA9erVMXnyZDZw4EDeqFEjnDlzBsuWLcORI0e0a+vRhps3gfPnSb6fnEzJDT21DEiShIMHD3I7OzsMHz68UOJLrVZj586dkr+/PyZMmIAhQ4YgMzMTXl5eyFHZbdtG125BjIzyt/NMnkwJpAYNKCFYvz7dB65eBfzzt1Y/evQICdbWkC9fTomnL78k2f706dRfD9B9ctMm+nn1aqB2bQTt3y91DAqC26BBAnr0oPcsjYsXS0w8FEV6ejpXq9WROr1IWzjPBOeDAfgDCAZjQ1/J++if+LS0NO12ZHAwcO0aFT30AOccf/zxR5ooiuuVSuU5vazUwDvBf69FNWDAQIkolcogALMAwMvL6ytBEDJ9fHwGdu3a1TQ0NBTx8fGZDRs2NK7zhgWjWtOlC/DiBVVqBw+mIE6Po2fKzNat9DB27Vq53KpfJdny5FKDfUEg+e7p01RZqlxZ79vy/vvv4+rVqzh58iQUCgVXqVTs66+/RmZmJoKDg+Hg4ABbW1vt+8PNzan3HaCxcykpwNmzVB3O7k8dOFDvn6NI+vUr2fysIBcukCS2JCIjafuHDs2Vb+7cSdW5Xr2QKQg4d+4c3N3d0bFjR70Y6CUnJ+PevXs4c+YM2rdvj86dO7/6hP/69fSZrlwBPvmEjqOHByV0PvuMAhxdzSMdHGj/BgWRwVkxVK9eHXK5HLt378bChQuhTe9yvXr1YGRkhMdHjqBhdDSEMpjoRUdH48CBA6IkSVySJKjVaqFevXpCYGAghgwZAisrK53XqRVVqlAwbGxMveB2djTq0NycJPw7d5IM/BXh6urKXF1d0bRpU5w/f577+/szf39/yOVytG3bFkVODclGFCmIl8mo5UilovaEJ0/IHd7PjxJEmZnkTVCzpt62W5IkZGZmssTERH79+nWpVatWOddFZmYmduzYIaWlpfFp06aRbB9k7Oft7Y2cdozWrYHY2MIrb9gw/2SJQYPy3xvOnqWK//Ll1DZy9Sr5V0ydCve2bREYGAhV06YwXbqUTGG//ZbaXSSJlATr11Of/o8/5qzyfIcOcPrwQ4b582nfrVlDSdPGjYtX0PTrp12CMv9+kwCUwXpeBzhPB2O9AESBsVEAToLzInb0G0N8WlqadjKwRYtoHKOePFMuXLigef78+RO1Wj1XLys08M5gqOwbMPAWoVQqn0iSNCUqKipo586dT319fTfcvHlz/v79+2MPHTqkyp6b/dYhCPTw4uREVXRd3Wz1TWoqcOIEBWJvaKAPANlyY63GKjVoQA/K27a9km2pWLEiWrZsyWvVqoU5c+YwAFi3bh22bt2KY8eOYdu2bXzp0qX45ZdfpJMnT0ohISHI61ocHh6OjRs34s8//5TOnj2Lc+fOIT09HbGxsbi1cCFS9u+nB+GqVantIyhIr8ZpJeLoSA/tixdrt/zjx6X3eXfuTCOzsh/0oqLIMT02FpGJifjll1+4XC6X9BXoA8CdO3f4mTNnoFAoeGc9y9MBUMAmSdR+kR3QbN5MVdn+/Sng6NgR2L2belTnz6epBT/8oHNVEUuWUDLul19KXMzc3FwEgL1793Jvb2/ExMRotXqTa9fg8+IFj4/XfaLY9evXER8fL/Pw8JB3795d3rVrVyEiIkLy8PCQ6tWrp/P6dKJOHVJLjBhBrSdmZiTxjo/XTZ2iDZxTO0VyMgXo/v5ARARqBgVhjIkJm9q+PXo+e4bad+5As3QpYj/9lFpWRoyg1oKff6YE79dfU6DZsyclJGfOpDFyV65Q4uzxY7o+suXoe/fSPVpPyOVyTJ8+Hba2tuzs2bNC9qj39PR0bN68matUKj5p0qScQB+gey5jDIsWLcKGDRukiA4dkF6UYsLfn1QV2fTuDXz6ae7PtWpR8nX5ckpiCALd42JiYL9sGSZs2oTfVqwAt7Kia+rAAfrsDx7Qa5KSSB2UlchSqVRQq9WCVcWKlOD18KDj06ULtQwVRVAQLfsGeNEUCTnzRwEYC2Dmf7w1pZGsUqlKzyreukVKm7Fj9fKmgYGB+PfffxNVKlV3w5g9AwV5Q69sAwYMFIdSqYwHkE9bumjRIvWdO3fW1K5dG+/pmJ1/Y6hShYKAuDgK+oODdaum6gulktzXz73ZKjhJknDhwgVYWVlpHwxOmEAP0U+e6LUyBgApKSm4c+cO2rRpA0EQIJPJkJzlmj558mRUrlyZJSUl4d69e0JgYCD8/f25JEmsSZMmPDY2lj979kwwMjKCXC4Xnj59CiC3NUChUPCLFhbo3bs3q/nkCfjChdCcPo3QyZMRPmQIf/78ueTh4SGLiIhAixYt9DdGLi9xcSTTXbCg5OU4Bz76CChp1rgoUkUv25zrxAmgenXg6VPA2Bhntm6VOOfCxIkTZfr6LHFxcahcuTKjtxf11wZ07RqpRbp3pwry+fMUcGYbwF2/nrtsWhoFMhYW1F/u6EjX/IoVtFyNGiVW6gvRqRMlSMaPL7ZiOW3aNNmGDRvw8OFD9vDhQ3DOeZcuXYr9/IwxzJ0zB/yvv/Bb584sYNs2PmXKFFbSSLaCSJIEMzMz5B151qxZs9dXXFm8mO5hly+TQVyNGrljL2kDKQAUBFLPaDR03oaFUfD5zz90rDp0IKVV9qi3J08oIJ8zhxKyXl50/BwcKCmakUGB/I4dgEIB63Hj0KpBA7SqXRvXr1yR/CIihJ7VqkE+fjydA7VrU6W7YkVqXclWXgwtoNiWJEoqjBxJn23kSHqP06fputEDlpaW4JzD0tISjDGkpKRg8+bN3MzMTPrkk08KXYc2NjaYPXs2oqOjcfToUb591y6MPXqUm06ZwvJVauvXzz+mdenSktUV1ta0DADWoQPCKlWCyDmpYjw8qKq/dSuZFk6cSMciz7ZdvnwZlSpVkiwsLAQ0aEBJ3h9/pOPj6Un3nYKtOwoFKUB0vNcoFAoZY0x/7pUlwbkExroAkIGxYwDOgfPVr+W9dcNCoVCUXNkXRWDlSlJT6EFpEx0djSNHjqSp1eruSqUyotwrNPDOYQj2DRh4B2CMedWvXx9az9N9k7G2pgd/R0dy3h4//pXOiM+Bc3IFt7LKHW30BnMxa9TTyGzzJ22wsqIxdcuWUfVPT5Wc9PR07N+/X7KysoK7uzsDgPHjx2P9+vUAqBcaoAfqNm3aoA0Fgiw0NBQ+Pj7M1taWDRs2DBXyVMMzMjJw4cIF1K1bF/b29mzPnj3Yvn073nNykqxSUvBg+HDBok4dXuOXX3gXPz/ZpvHjIQgCwsLCpN69e+vX7RygMWU3b1IlzdKy+OWiouhhffjwov9+/z7Qrh0FVnI5BTLTp9P4LReaNtWlSxdh+/btyMjIyLdPysqzZ8+wefPmnJ9LbfsoCc4p8dGjB/X5bt9O8uUPPqBqY7ZhWkHVxZgxVMXatYt+Xr2aKranT9M6/vc/6jffsYMCTm1o1476nb/8khIGRZzPgiBg0qRJ2LZtmxQaGipER0dLMTExssoltLKwW7fA3Nww7LPPsHPnTuzYsQOjRo2CtgF/3bp1ERiof98yrZHL6Tzt0oWUI336UELmyhWq7m/cSAH2/Pmk9LG0pOMVFkbHNzycfmdmRokbOzv6l5ZGAXq29NzaOn+VOpu+fXP/v0MHAIBpvXrCjYMHce/wYZ6t/AFALTmlsW0bfQ9cvEhBv0pF55mnJ51HevJV6NmzJzZs2AA/Pz/4+fnxypUrc09Pz2ITbgqFAtWqVcOUKVNkd+/exc2AANYzMxMsqw3tzp07/PzJk+geEYEa/foxY2Nj2rctW2q3QRUqwNfKSmzRooWMKZWUlLl8mdQsyck0GWbqVKBePerL5xw3btwQ27dvn18XPmsWLXvpEgWYt26RUimb33/PNQAsQFJSEp48eYKkpCQIggAHBwfUrFkTjDEYGxtDLpdr7+hXXkhyoQFj2wAowJgzgEhwnvnatqF0rM3MzEpOpj5/DjRqVDipVQZUKhX27NmTJoriBKVSebPcKzTwTmII9g0YeDf4/PHjxxv37dtnNHz4cDOt5+q+qTRuTA90K1eS7Pd1JDE+/ZQqV97eehuB8ypxdHQEYwwvXryAlZUVFNomRAYMoGrctWt6Gb8VEBDAjx8/zmxsbPjYsWNzHjJtbW1hbm4upaamCr6+vrxDhw6FdqqzszPGFPOQaWJigm7duuX8PHbsWDx79gzhS5cKVUQRDby84ODgwDBiBMP581gwcCDE99/Hnt69+aoHD9C7d2/etGlT/R7I69fpfExMLD5REhVF1evicHKiwNbMjCS+9++TS3rW8eOc49mzZ5IoioLWx7QU8t4PHB0d8fHHH2v/4oQEcoz29KTg2smJAnYXFxo1lnfEYHHO6JmZtF+qVcv9XXQ0PeyePUt/nzaNAk4/Pwr458/XLhllY0NGjQcOkNFnMYwaNUoICgrC4cOHZevXr0evXr3QIq+8Oi8vXgAdO8La2hojR45kmzZtwpIlS9C0aVP07t271KBfrVbrz5hOF+LjqdI7dmyu2ZuTE1XeXVxIBm5nR/u2uCo6QMmBbIq695bBGK9x48ZITU3FqVOnWEJCAipqa8qYnEwtMWvXkhw+MxNwdib/gQkTaJzdzz/rZSSqjY0NOnTogLNnz8LW1hajR4/WutTdpEkTJCUk4ODo0Yj28MDEiRNx8uRJ1tDMDM4bNmClvT06duzI20yezNiPP2oV6Pn6+iIlJUUWExMjApBBLqd7dqtWpLCoXZuUA+bmwJUrSO/bF/aDB8veq1GDWmbySsSrV6dEQ8OGdE5s3EieGSoVtdrMmJHvvTnn8PPzE8+dO6eSy+XearX6viAIZoIg9HR0dLQbMWKEmampKWQymZPWO1hfcP4HAICxgwBsAejHuVQ/WJubmxffhJ+cTF4t+/aV+zmDc45jx45lpKenH/3mm2+K6dEwYMDQs2/AwDvBggULDoqi2Ozhw4cmmZlvUpK7HCgUQGgoPWw2a/bqxvMlJ1MP6Mcf08i3tyDQB4DatWujTZs24uHDh7Fq1Sr+PNvMrjQYo0rZuHFU/SsHKSkpOHbsGGvZsiXGjx8vKxicjhs3TgCAc+fO6WWnVqtaFW3q10ftmTPhkC2Bd3Ag6bAgQNa9Ozxnz5YNCwvDy3nz2LNnz/Txtrm0aEHV/ZKCirQ0ktcWhVJJQctHH9HPy5ZRu0jWfrtx44a0du1afuHCBda3b1/tEzil4JjVDsMYQ48ePUpeb/aIwZEjqWr++DEFkNkjAbdto8+/ZYt28+e3bKGe/NOn81fsN26ktoXQUGpjAGj/du1KgaqvLxChhSJVJqMH5ypVKGlSDIIgoHHjxujcuTM45ziR/Z5Fff7Dh3MSEzY2Nvjyyy/RvXt3hISE8OXLl2PTpk0lmpL5+/tDpVKB6zKusTxs2UK97zIZJaJsbKjdZPduMuxbu5YC4kGDKEGjqz+CnnByorhQ69YUUaTre/duSgQxRp4u2cnKDRvoc+3ZQ8qOyPIbw5uZmcHIyIhPmDBB53tWYw8PuGk0iI2NxfLlyyGKIvpNmQJFcjL69++Pq1evSismT8Z1Z2culnIMIiMjce7cOTRs2JC3aNGCgkeNhkzdTp2i5BtjpAr67DPEN26M9RMnose338IoJAQ4epTUHHXrAn/8QdeZmRndv3bsoHtUVBSdL/7+hdpnHjx4gPPnz7/QaDQN5syZ02fBggWz5s2bNykzM7Pe8+fPj+/cuTPVhsb0NSy08a+PYQBGgrHhYKyYm+5rp5KZmVnxRj9+fmTKpwdDZX9/f/7o0aNolUr1eblXZuCdxhDsGzDw7tC3bt26KhMTk/96O/TPsGEkfXz6VP8j+saOpQej9u21C17eILp16yabNWsWMjMz2YMHD7R/oZkZSTvnzCnze1+9epWvWbMGVapU0eStwOfF0tIScrk8px+23Fy9SsFLq1aF/2ZkRA/8FSuibuPGMGKMh925QxUrlfZjj0vF0pLM9Yo7D69epQfrojAzo+p3QgIZzG3dmmMwFxcXh9OnTwsuLi5s5syZrFmzZnrbZFXW5582bRqqF+xx5pzO/6Qk4LffqOoHUCWwQgUKwJ8/p37e2rUp2NKFO3dI7l3U7/v0oQpnRkZuksHOjoITSaIkjo9P6e9RqRKZjI0bV+r9oW3btjkjDIusvkdF5crds5DJZGjTpg1mzJjBPD098fz58xJLyNnmh6+0uh8TQ1XtQ4fonGzfnvrg9+2jUZWOjhQcajSUnDl+nP79/judv/fu5e7zcnDixAnu5eWFDRs2iEuXLsWyZcvg6+srpaWlFfr8Dg4OsLCwwI0bN0pfsSTRObdmDW1vVosLALq+unShZMBHH1G1e/VqYNUquv7KQbbqoCxeGVYzZ6L2zJkYOnQonJycMGrUKEr+NWmCRo0aYca0abIpGzfiwt9/86VLl6I488fExERs2rQJzZs3FwcPHsxyrllvbzre6emUOMuzf/38/GBTr55oXbUq3duPHKFWjf/9j8wPs3v1U1LomhoyhFz8O3emlq4C+Pj4JKlUqilKpTIs7++VSqVGpVLNiYyMNLKxsYFKpapW6MWvC84lcB4OgAHoC8bkYEw/1vZlRCaT2Zqbmxd9f3j6lBJURexvXXn58iVOnjyZrlKpeiuVSv25VRp4JzHI+A0YeHc49eTJkx+Sk5NhYWHxX2+LfpmbNUnG1ZWCty++KP8679+nL93VqynAeRWmbq+BwMBAGBkZcQ8PD90qUUOHUsDg7U0PfDqQlJSEs2fPMk9PTzg7Oxf7PaJSqVCjRg0EBwdDrVaXv1L9+++kwCiNadMQV7Uqe37yJJqdOwczzqn61759yRJ7bbC1JdlsSkrRvfvZPc4FWbSIpOpWViSbPX2azussJcmff/4p1qpVS+jUqZPepSXGWRMloqOjc+XT27dTRW/lSmDSJNqmIUOoTQHIMQkrM8+ekcv65s1FT7T47DMK4L76CnB3p/32/vv0N8aowq9QULVaqSTpeUnnz+TJlAS6fj13PcXAOYexsXHRAd2xY8C8eUUqfBhjcHR0hLGxMX755RexcuXKsmfPnokWFhaCXC5narVa6tatm3D9+nXdjDO1RZIoePvtN+q7bteOzumCHgxdu9L5/tNPFGxmm7Y6OVEg2LQpfb6WLWnf5u2x1xE3Nzd2/fp1uLi4yBQKBUxMTODt7c3PnTuH9957jw8YMCBnRzLGIJfLeYUKFUo/x0eNokq9XF7YRb5WrdwxfQAdL09PSgysWkVJpJEjdVJp+fv780uXLiEmJoYxxtiTJ09QU1cTU86BefPQ6N9/0ahRI/pdZmauGaoowqxOHcycO1dYvHgxilPhnThxglerVo336dMnN3CNjaX1XL1KCbcCyoDAwEDpgw8+yB/oyuXkpQHQ9TVuHG3je++RnH/uXODuXVJK5CE1NRXR0dGWAIqTRtWytLTMNDExUXDOFV5eXgqlUqnHjKqOcL4XwF4w9iWAj8BYG3D+n2yPXC53KtYvZtEiur+W876gVquxZ8+eVFEUpyuVynvlWpmB/xe8nU+3BgwYKIRSqXwE4IctW7akPX/+vNgHibeagAAK9leupCC1rHBOY4sqVKDg7y0N9AH64ler1ezUqVO6lenMzMjYassWeiDVgbS0NADUc18cN2/exNKlSxEcHIw6depI5Q70Y2KAJk1ohJsWDBo0CBVbtcKKYcOwaPlyxCiVXLN3L/Vj371b9u2QyykgDAoq+u/Z/fgFt33jRqqyLlxIn8HHJ+e8E0URz549k/Xq1euV9JCwp09hGxWF04cOUfU3JIQChuztfP6cDPesrakHWB/cvUuBZnGjK1u1ypWyTp5MSYGCdOhAbuJhYeTCnp5e/PsxRsHQuHE0kq8YUlJScPXqVVhbWxd9vdy/T4ZnxSCXyzF58mTUrVuXRUVF8Xbt2skiIiJYXFwcOOfCrl27EBgYCHNzc+jFOyUjgwwRGzakqqC7O51jxsYUqBcM9Ddtontb586kGinKx6BrV1rfwoUk6//6a2rPKIMSwcHBAdbW1hJjDC1btoSLiwumT58u+/jjjxEYGMju5rnWEhISEB8fz+qWNKkim5Ur6Rzp3r3o5Fl0NPXuZ6t2qlendq+AAODGDXq9DqNoz5w5w5KTk9mkSZPg7u4u7tq1C7t27dJth1SpQtdP1hQSAHScVq/OVVHs3YsXL16Ac44sGTxUKlWO+iYmJgbBwcGsdevW+b+Uxo8nE89sZc3MmaSOAXDnzh1IkiRoNYKVMTreSUmUHBkyJL9qAjQG1dTU9KpSqbxWzFpi09PT5YwxmJqapgF4/X37RfMzgOUAKoKxouVmrxhBEBpZF6VkunaNkmqfl19xf+LEiYzU1NTTkiQVcdM0YKAwhsq+AQPvEGq12is5Odlo48aN8wRBkGbNmqV/V/L/kuyqZEAABeplmRV+4QJVt7y9qUL7luPm5gZTU1P8+eefLDAwkI8dO5aV5DSeDw8PGnF4+rTWQTQAnDhxQqpF/dfFZkn8/PwAAAsXLgRjrPzZlOPHSf6uwzEbNWoUYmJikJiYiHWSxPp16YJm+/aR3D8sjHrCyzLeMSODzr2AAJK2Z8M5Bc7ZfgIABWqxsSQ9fvQIfO9ePOrTB85Nm0KRVZmMjY2FXC7nVlZW+gv2IyKoL/fIEWSMH492ERG4Mm0ax5EjDDVqUHV02CMTaroAACAASURBVDC9vV0+pk4lFcPhw8UvM3BgbjA2dCidhw8fFg60bWwogH3+nIK5JUuoP70oKlemIM/CghINBZMuAHx8fJCRkVH0iNL4eGoJKBD8FKRChQro2rWr0LVrVwBA8+bNIZPJ8PfffyMqKgrm5ub4KNuXoSxkZtK/tWupOh8RQf4OvXpRu0pJqNW5ycs5cyiJM2pU4eUYI2d2gM7b7dvJGPXJEwoAdUhUNG/enF29elVq27ZtznXu7OyMzp0749ChQwgPD0eDBg2Q3WL222+/Yfbs2UWv7PFjUiscOULtFP/8U/Ryjo7UgpW3FcHTk1o/pk8n5/7wcFpGi3G0vXv3lo4dOyaEhoaiU6dOMhcXF6xbt07QyUyQdgapS/J+N7VpQ8mJP/8EZsyA9dOnqFChgrhs2TKZpaUlT05OZqIoomrVqpKNjY0gSRLq5b0O0tPpvM/bVx8SQklEAH5+flKLFi2YTCbT7qDt2UPj+I4eBQ4eLPTn6OhoqFSqkvohLFQqlUIURVhaWmrS0tKcATzR6r1fJeTKvw+MdQKwA4w1AOcJr+vtvby8mFwur13o+1eSKOHTv3+R9yRdCAgIQFBQUIxKpRqrVCpfkymIgbedt7ecZcCAgUIolUqu0Wh+NTIyirK3t8/QZTb0W0X2KKYBA4odGVQkCQk0fmjChHci0AcAIyMjuLq64pNPPkFaWhrTeeRXly7UB1pcn3kBUlJSEB4eLrRp06bE74/WrVsDAJYtW4bU1HK2FHJOD0zZwYkOVK5cGbVr14aHhwdOnDiBiMGD6bOmpZF51cWLuvf0m5pSEJ830AeA1FTg22/z96jPnQvpk0+g+fFH3LtyBSs+/RT7z57Fxo0b+bNnz+Dt7S3t3r2bM8bK/uCmUpHxE0CB0ldf0UNlVtCYvncvDg8ZAicnJ5Yzju1VERtL5noljScE6BrODviMjCio37On6GUFgQzzNm+mPuPduynhUhRdutC6v/yyyD/36tULCoUCp0+fZv7+/vn3+eXLtP2lBdQFkGXtz+yHfGNjY8lc1/uLJJGqIDmZ1EbbtwOjR5NCwsiIAoXStuvSJZKvL1hAP9vaaudDMngwBX4qFbB+PRkmXryodaW/efPmLDExUchW/GTTunVruLq6irdu3eLbtm3Dr7/+mvVRpeLPdWdnuoa+/ZYq2SUlHebOpf2UF7mcAn4rK1IGHD5Mzv2l0LhxY8Hd3Z1fvnxZBOhYVq1aVfrjjz90uy5TUuj8z8u2bXTsuncHjh+HXC7H9OnTZRMmTED79u3ZjBkzMHfuXIiiyPz9/dG3b1+eowrRaAA3N0oWWFnlrvPoUaBTJwBAXFwca9CgQemB/qlT5MExZAjtW7W6SLPRiIiIFFEUi6vqA8AlURRZREQEbGxs5ACcS33v1wnn50DbVB2M/QPGSrkZ6Q0nQRCMCrVRPn5M8v1yjtqLiYnB8ePH01UqVR+lUplc+isMGCAMwb4BA+8eteRyufWnn35qZqTjQ+tbx5Il1L8fFla8rDqbPXvooWnKlPwjid4RKmXNqy5JWl8kzs70UFyKsdWzZ8/wyy+/SGvWrIGxsTEvUqoIICMjA0ePHsXTp08hCIJ+XMmvXyczOze3Mq+iY8eOsLKyEk+dOgWRcwqGIyLI5btfP937lhUKqo7nbQm4fx/Yvx8JiYkICgrCrX//xS9Nmkgr2rdH/PLl8L92TXJv1w7z5s2Do6Mj27p1K65fvw5XV1fWq1cv3b+PJ04kd+1jx3KVGUuWkMS3YkVSbJiYIFvdU9wx0xvbttF0AX//oqXXeRk1CvDyyv150CA6F0uSXrdtC3zyCQUt/fsXbzA3bx7JndXqQn/KPiez/j//CnbsINO7MlIhK7AWRVFQaZtAevCAjLu+/Zbk9cbG1I8/ZQolOErbj3n55JMcw0cAlBBt21b717dtS5X01q0pWfLZZ6R2KOX6zU4qv3jxotDfBgwYIJs7dy5TKpVo27YtBEFAgwYNil5hnz4UmNvakvKjtG3PzKSAPzY2/+/bt6f7xf79dC4+fkyeD6U44Ds5ObG4uDhZnp+F8PBw3cxPhw/PP7oQAG7fpm0NCCCFCug8tLW1hZubGypUqACFQoH27dszY2NjuLm55QbuGRm5Yy/zMnIk8PHHCA4OBgDmkFdNVBCNhiT/kkRtLsnJpD46frzIxaOjoyUAxfY6KZVKCYBgZGQEGxsbM8aYjuYGrwHOMwA8BBAKwAiMldOsRSvcHBwcMvO176SmUnHh/ffL1S4oiiL27t2bKknSLKVS6a+HbTXw/whDsG/AwLvHc7VaHfP9999LDx8+/K+35dXSuDGZ9i1bRg8xxXH1KgU/u3a9MxX9gly5ckWSyWSF3da1YeJE6t8sJuB/8eIFdu/eDScnJ2H06NH4+uuvmVXeKlMWx44dww8//IDbt29n95His88+ywmCysyWLRR4lJMRI0bIwsPDERUVRb+wsqLK4cGDZOx16xY9BCdrUTRhjOTqeXum09MRU6kS1q1bh7MnToj1P/gAnf79V/iqdm1o/P0x4qefBHd3dwiCgAEDBmDOnDmYNWuW0LlzZ7iUIh3HvXtUeV2zJjfpkZhIwdiQIeRFAFCfe57WhIcPH+LHH38EkDv67JWxezepZ7RBowEOHMj92d6e+lpLkv4DlGTZvp2C2r59i1YDVK5M1e1mzagiWoChWRW2fO0liYm07p49tdv+IqhTpw48PT2RmJiIFStWFL9gUhKN+0xLox78s2dJch8WRttQFhNJSaLE01df5f5u4cL8+1gbBIH238WL5JMwaRIlQIpxjgcAX19f0dzcXCot0ditWzcwxlCpUiUhLCys8AIeHuTLceoUyeFLC44sLEjKXlwSa906CryzZ9IPGVLsOMfY2FjEx8fDzMwsJyPQpUsXVKxYEQcOHNB+soJMRj4JeRMkq1aREujo0cJmg3lITU2FQqHIfeGdO6RSmDu38L6YNg3hgwfj0KFDUsuWLaUS/SHGjqVe8V696Hty1iy6fop4TVpaGhITE80A3C/pYyoUivP//vtvpqWlJTM2Ni7/HLlXAecZ4PxTABYAboKxFq/y7eRy+fuVK1fOP64kMJDO6XJOV7l8+bKYkpJyWxTFX0pf2oCB/BiCfQMG3jGUSuUjjUZTVRTFCXv27EFGcXLXd4n164Hz56lSUVDW//PP9IDTpg39e0dJS0tjoigiKSmp0N845+Cc48WLF7h69So2bNgg7d27V7x9+zYSExPpoe+nn6jSmuchlXMOf39//P7776hdu7bUr18/VKtW/KSl0NBQDgCff/45Fi5ciIULF5Y/wHz5koyvhg8v33oA2NrawsbGhp89e1YCSIWw8f/YO++oqM6tjT/vmWEoUkWQomJDsLdYsULsGkvsRhNjicbExGtyY2KZO9HYElM0xsQSu9GoaFTsBUTB3kGUjggq0tvU835/bBCQNsAQTb75rcUSmZkzp82Zs/d+9rM3buQJGRkk6W/ZsqDn28eHqoNlMWcOBad5vbNibCzOqdUYOHAgPvnsM4mFry88dToIGRlwdnEp5s4uk8nKdmzfvZvM2HQ6ck6/eZOCl5Ur6fFdu2g9yyAuLg46nQ7Tpk0r89hViehoMos7dkz/pMzz57R9hZk+nUYrlgdjpKpYsICC2Vu3ipv32dtTpTy/vSGPsLAw7MvrUy7Si33pEpmrVbH1qVGjRjAzM4NWqy36AOdUab52ja5XK1fSdjx5QoFYjRqVr/zl5lLAGx1dNIB7990XUu8KI5FQ0mjrVuqBDwwkBczNm8WeGhsbC3d3d71WvkePHrh3755ux44duHDhAkXQFy9SUPvZZ/R5b9uWgn19yMqipF0JSR24uABTplC/9J49pHSYObOIgePjx4+xY8cO/Pzzz/Dz8ytyTpiYmGDs2LEVM1p0daXWicJJr4wMSuB89x2tRym4u7sjKyurQElw/z4lH186Ly5evIgf/fz42WPH0L59e/Tu3bvkfb9lCyVsVq6kbWaMEkwrVlDSsAQePnwImUx2VS6X55T4hDzUavWg8PDwp2FhYeCvyPlebziPAeAFIASMfVtdsn6JRDK5Xbt2BY6k8fGUEP7++yotNy0tDQEBAWqVSvWusU/fSGUwBvtGjPwLyftCCJFKpVqVSoWwsDCk6Vtx+6ciCNRL7ehI/8/KokDfx4cCiIqYLP0D6dGjBwOAH374Ab/++qsYGBiI27dv4/r161i9ejX/+uuvsW7dOvj7+4sNGzYURFGUnDt3TrdmzRp888032BMVpbvh6ipGTZnC09LSyNRu7Vp+/Phx/tZbb2HkyJHlfl+MHz+eAcDevXvBGDOMG/mhQxSAlebqXkGsra1ZrVq1GACEh4fj8ePHbNu2bdi/f79u1U8/cV8zM/HKlStcM3QojSg7cYJmeZfGunUvZsFnXLgAmU4ntn30iF575AgFeKX0jxchK4tGjSUnk3Q7I4Mkv3FxFHhlZ1O7RaNGFMTqSffu3WFmZvbCMLFaOHSIAu6KBKtvvEEmY4Vp1YqSGi8nAUqjc2fym9i0iWT9L1eff/yR9unmzQCArVu3avfs2QPOOYYPHy7WKVxBT0+ndTIAzZs35wCwYcMG8fmVK1S1V6moT/rhQ/r/jRt0vTKEr4qZGQXlL7vcP39O51FVkMlIQTFwICWacnOpUlzIOC87O1uw0NN4rEePHpg1a5akd+/eOHPmjMA5p0SIvT2pU7Zvr5i6wtKSgto8Z/sS2bWLAt7nzylBt3YttMuX487t29ixYwcSEhL4xIkTIZfLMWXKlCKGFikpKZBKpVzvMYqCQK00hZULTZvScX/7bZrKUQpWVlYwMTGhYO7cOUocbNhQ5Dm3b99GQEAAxspkbOKJE/D29haKrZtOR8f9/Hm6ljg7F5xnw4bRNakUNURmZiZ0Ol3ZPV0A5HJ5tlqtXhoREQG1Wh1V3vNfOZyHA2AA2gPoAcYMalyiUCi66XQ6B6fCJorff09qkip8xjnn+Ouvv3I45yvlcnmkAVbVyP9D/qXuXUaMGAHwTKvVSjdu3KjKzc19ZmtrW3PWrFk1DBKAva74+BQYdH34ITl7jx1LstR/ORcvXhQBCFOnTsXNmzeFkJAQMScnhwNAkyZNJG5ubrCyskL9+vUL3xlKRFFEeHg4wsLCJI87d0bt5cuxY/FipNnZwc3NTfzwww8l+t7o3rp1C0AlfANKQxQpkKmEMV9pvPHGGzhw4ACLiYkRU1NThd69eyMnJ4enp6dLevfujZCQEBYYGKg7p9VKJru4wDEzE3BwgFajgfTjj6n3t3CF/PZturkWRSS3aIFniYkcdetSUJ6cXHYAHBdHVccffiAJc7NmdO7K5bTdhZMElfzc7t+/X9RqtULbKspIS0QUqXL40Ufkvl8ROKdgNymJlBT5dOhAN8ljxui/zatXA6dOUdXUwoKM7fJp0YIquhMn4unTp5LGjRvz4cOHMwsLi4IDo9VSMOjnV7FtKIWB/fqxTn5+uJ6YyAKOH4d3SgrstNqqjXwsjfh4qryX4KqOw4epTcAQiiaplJQXWi21W+zdS7/XqIGcnBxWJMjRg5YtW8Lf35/HDhwIt61bGVu7lrbBw4NUGxVh0CDybvnxx5I/bxIJeKtWiFq0SLSJjBRufPmlKNm6VXDav583/fxzNnjkSFbaNS41NRUqlYolJye/GJVXLjdvUttN/hSA7t0pKeHlVeZoy5ycHKjVaubm5kZmbh99RK/JIyYmBn5+fhg+fDicmjYtMGIsjE5HXgedOhUfZ8k59f6/806p6xATE5Oh1WqD9NtQ7ALwK+e8Gh0/DQjnOQC8wZgJgAgwNg+cly61qACCIEyyt7cvSLxcuUIJ3yqa8gUGBmoSEhJitVrtUgOsppH/pxiDfSNG/qXI5fKIJUuWfJCdna3jnG9NSUnJunjxorZ58+bS/fv3Z9eqVUsYPHiw+b/SsX/iRApEcnIoeJg6lYKHBg2q14n8FRIcHCyYm5vD1dU1XzqvV4QuCAI8PDzgkX8T2qIFZu3fD90XX0BqYlKhneXt7Y2LFy8iL8nANBoNJBJJ2VL1srh2Dfjtt+Lu1lWgWbNmsLKyQkJCgtC6dev8cWAvosp21A8v2bBhA9+8eTNr06YNf/bGGzxOoRCmnD0LybvvwiE0lCqe+RLpVq2AcePQcP16pNarJ6SdOQPbo0eLV8+ePKHe9F696Hzs14/ktTodycjzP4sffmiQbU1MTER4eLgwceJENKxoAKUPERHUP//JJxVPRjBGkuqXX9ejB+2n0FDy5NB3WX37kgHaBx/Q8XB3J2l89+6Avz9y//c/aGQyNmzYMBSrQl+8SNXPipjhlcS1a4BcDmHfPjg8f45uI0eyVWFhsO3WDT5V9a0ojcRECnBL2v/r1xtMEfMCqZSONwDs2gX+yScw7dMHDSqoHLO0tMSM999nOWvX4szhw6J3nz6CoFCQQqSimJjQKNWYmFITBVFRUdjZvr3g0ru32OW335jp8OFo7OrKmq9YQedcKcmKFi1a4OLFi1i7di2mTJmiX1tS//7Uo5/PRx+RsmzYsKKJwpe4ceMGHBwcRNPISEHn748siQTPIyOh1WqRnJyMM2fOQBRFajXQamm8n79/QYJj925KcC9bVtzQDyADR7m8TBVEngJQrzF6crk8U0Emm630ef5rA+caMDYTQDwY6wHgKjjPLe9lZSGTyRp37dpVkrd8Gu86YgQlNCvJ06dPERgYqNVqtX3lcvnr3Sph5LXGKOM3YuRfzIIFC9YvWrRok1wu13LOB164cEGzadOm3MTExG9DQ0Pj71VHpel1QBBIajprFt08WluTlHPWLDJtCg0t12H6n8T9vEkE77//ftUX1q4dmFYLaSlOzWUhCALs7Ozw8OFDtm/fPr506VKsXLmy8m78vr4lzwivInXr1kWnTp1ezP0uiSlTpjBvb288evSIm5qaCu/NnIlTCxfyX06exOONG/FkyRKkJSWRzH/LFmDyZLCcHNSLjwd7+rRg9Nz8+STH//lnqjLTwingb9iQqqQSiWHk3C+R7whfko9Dldm3j5JpDx8WHQlWEQYPLj5CTxDobzt3Vnx5rVpR8uTGDWD06IIJHTVrQnfuHNrdu8dLHIl35w6ZoFUGUaQ2j1WraH80a0bXlr174atSia6urqJPOb4KlSYmhgK30kz4Pv6YWhyqi/HjEXnwIMy0WpjnyeP1Nmg8dQp2YWHA5cu4lpTEsj74gIxWCyVjr169Ku7Zs0e3bt06vnr1ajEgIEBb4rIEgVQTZTjS37hxQ3R1deVTP/1UaD5+PGt8+zYFY3v2UFvMqVMlfidYW1tj2rRpcHd35xs3bsTzPH+OMnF1pYkQ+YwYAVy+TD4Ed++W+rI6depAFxkp5Hbvjl+//RY//vgj/vzzT/7XX3/xc+fOwcLCQqxTpw7funUrduzerUtTq5GblkbnYGYmXWtSUigJIJMVXXh8PCUUy3LtB5CbmysBoMdGFqFjBZ//6uH8OIAQAMsBrKrKohQKxWDGWKcXCfO7d+n6UwWfGa1Wi127duXodLoP5HJ5fFXWz4gRY7BvxMj/E+Ry+VmVSjU0Ozt74sKFCxUajca92kdxvQ7Y2NBN76JFNNe7WTOqcAwZQlWRaL2KGK81Z8+e5Q4ODi/mfFcJqZSClydPyh6DVgrDhg0DQJJTb29vqNVqbNmyRQwICKhY0PnsGfWxGyKBUQkEQUCHDh0wdepUYfTo0XB1dcW4ceOYq6uruL97d76hVy/sWrQImrffhujuDvF//0M25/zIgAHMfPp06s8FqPc2IoIqzvmO+RMnUh9vNePm5oY333xT99dff+GoPsZ3+iKKFFhERlZpnBS++qpI7/cLRo0i13R9x9eBKpInTpygYPH99+lGOyWFeqQlEoi//444Ozume3lEpyhSUqDQBINy4ZyuHc2b03t4epKCoEcPquhZWIBzjujoaKFx48bVd5+1fHlxQ9LCNG1aZiXZEBw/fZprWrTQSc6fp+Pm5UVu9OW51/v6Atu2wdXVFb1ycliImRnXFkqKREdH4+jRo4JWq5XUrl2b1axZU7h27Zpk165d4q+//ioW86DRaklJc+dOsbfKysrC/fv3BR8fH5I/zJhBPg7du5OfS3AwJeN++63ESRy2trbo06cPA1BcFVISjo70Wc8fCbh9O/lBBAdTQqoUGjZsiFoeHvyvMWO415gxWLhwIebNm8fc3NzEGjVqiHPmzBGmTJnCevTogRo1aki2jhunW79qFVStWwNBQUB4eMl+HqJIrQX37pWr9DA3N9cBKDsjUJTTACrw4XmNoCx0NwCfg7HVYOyDii5CoVA0AHB4yJAhFqamppTwW7CgRGPFiuDv769RqVQXFy1aVPr4BiNG9ORfqN81YsRIacjl8lP5v5uamt738/NraGdnxywtLXmfPn1MTQ0t+XzdaNiQfoKDSXJ79y6ZFVlaUi/lmDH0+z+M5s2bs6Agfdss9aB9e6rc/vEH3RhXgHr16kEulwN50vhmzZph7dq1QlxcHPz9/TFs2DDUq1cPdnZ24JxDFEVISmqtOHCAArDXqO1CKpVi6tSpL+7gnj59iu/d3Ljt2rWYunEjswDYcB8fyFxdgfwRiIY8LpXAy8tLEh4eLmZmZha58wwMDERERASePn3Ku3Tpwnr27KnfAqOiqB81JKTqaoTff6cq6Mvky+8XLIC4fDlCQkKQmJiI9PR0+Pj4QKvV4sSJEzAxMYGXlxeePXuGY8eOQafTQalUYsiQIRAmTQLCw6FbuhTn/f3FwIYNhaEajSiZNUvAyZMF6/74MUmsy/OZ0GrpXMz3VvjkE3KPt7WlROJLMMZgb2+PwMBA9OrVq2r7qSQ4B379FdBoSn/OW29VqzGpVqtFWloa69ChgwQWFuSXcPEiqVWWL6dk0NdfFz3Gokgj6NblTRDTaNAxOhq7XV35wz17+NixYwVTU1Ps3bsX1tbWfMKECQwAVqxYwZVKJYuIiGAuLi78p59+wuzZs2FnZ0fLkUpJ0eHpWWw9w8LCYG5uLhbxK2GMfBru3KGEzYEDFKTNnUv/vjTC9PDhw6KJiQmzsLAov19FEOj6mT8h4uzZgpGRpbjgAwB++QXj9uxhCAh48aeTJ0+KsbGxbPbs2S/6wbt27UoPOjtL7r35Jq7Vq8dbd+7MLEsLLrdupfcdNKjcVbe0tERKSkqpWWOFQmELQJDL5SkAYGJiotRoNFAoFHZyubz0+YyvK5yLALLB2F0ADmCsJoC0vL/rwzhzc3Pu6elJ50VsLCm4Smqj0JPY2FhcuXIlR6PRlG6uYMRIBTAG+0aM/D9FpVINe/bs2ZvJyckeAMYkJyc7dO/eXaiW3t7XDcaol79DBzLzioujys4bb9CNnr09fVkXNg57TcnOzsbFixchkUg4CvWeV5nPPiPTtbffLjpLvoLY29tj0aJF+OGHH8SMjAzh3LlzuqysLIm7uzsSEhJ4VlYW8/Dw0PXv319inS99F0VSZPToYaCNqR5qCwLmODiwG46OiPXw4A4uLsxu5Eh68DUa82hqalpEn6xUKnH+/HnUq1ePe3h4MH9/f8TGxqJPnz5wLkfmi5UrKTgaO7bqK3b2LGBnV7Jh2JAhyFq4ED+ZmEBbSJIcGhpa5Gn5Y8oGDx4MZ2dn7Nq1C6tWreJ16tRhaWlpuuzOnQWH1FRh3uHDkG3YICApidQ8+c71Bw4UlzznwzlNQQgMpAr6tWvk5t6pE1XuSggsC9OiRQsEBATg/v37aGpoJUfbtrTfPvus9Od8+y1Vkj//3LDvnUd++1CRkY62tkCfPrSPvv+eJiQsWEA/jRpRW9W0aRR4ymTA6dMQvLwwbNIkYe3ateLNmzdRv3595ObmYsaMGS+uZ9bW1lwmk/GJEycKfn5+cHZ25lZWVkWvd56epNjatu2FX0ZWVhZO7t8PU4lEQHIysH8/TW44eZLUGRs2UJJi3DhKQJw6RQH/7NlA9+5IT0+Hr6+vGBcXJ0wqbPxYHgcOUIX/008p8HdwoPcsi9q1yWgwj2vXrvHr16+zadOmsWItRxcvAoyhyUcfYfu9e/z8L7+wUaNGoXHjl0bea7XURtCzZ0UqzaV+8THG3uOc/6BQKEQTExM/c3Nzbycnp5xHjx4NBvDPrUJzTmMPGNsJoA6AcrOfCoWipomJySfDhw9njDFSI40YQUmnSqJUKrF3794crVb7jlwuf1bpBRkxUghW6V5KI0aM/GtQKBTtAUwD8MFXX30FExOTV71Krwalkm6igoNJxq5UkgN127ZkAvUa8ueff+qSkpKEiRMnshfBsqE4dIj6gbdurZpcG1QFVKvVsLCwwI0bN+Dv7y927dpVsLGxwbFjx+Ds7MzHjBlDrtiXL1O19PjxSrvQVytaLY22WruWevYDAqjqK4p0zug5huzv4sKFC+KZM2eEBg0a6EaPHi3ZvXs3B8AnTZokMMZw6tQp3L9/n6elpbG5c+fCsiR1iyhSJf6ddyhIq+L5AICCKisr4H//K/ZQWFgYLi1fDveaNXmnlSuZRqOBmZkZ7t27hyZNmiBfhSSKItRq9Qv/hezsbISFhSEyMlJnb28vNGjQgNWpUwcyX19qC8l/v02bClzLd+woOrYuIYGC+ZYtqUr3009khNemTYU2Lzk5GT///DOcnZ359OnTDXsinztHwW1ZyZmAAAoymzUz6FvnExwczK9evSrOnj27dPlNRgbNl7e0pOTJ4MG0PoxRIuCrr8iQsmVLnDlzBhcuXICHhweSkpL4xx9/XOI+O3LkCDKTk3XjOnSQwNOTrlFmZpSs7diRkhxJScDKldj0v/+J4+bMETBoECy+/JLM8tasIYXKjRs0Jm/XLvq/ry/J+jMygE8/hWriRKyLi+MWdnbc29tbKBZIl8Xx48CjR5TY0If//pcSIHkKm7CwMPj6+mLs1xIkDQAAIABJREFU2LFFzTUjI8lwdu9eUiUIAtCrF65cuYJTp06hRo0afOzYsQXTERYsIPn+wYN6rYa/vz+/ePHi2vnz539c2nMUCsUsAD8DgL29fa69vb15XFyc3xdffDFYv419jWHMFIAnKOHhCM59S3qaQqGQmJqanmvTpk2n/v37U7Zw+XJS2ixcWOm337dvX254ePieL7/8cnKlF2LEyEsYg30jRowAABQKxQjG2N63336bNW/e/DWMsP5mcnLoxm/TpoIqf9euBpvFbSh++OEH7uLiwsZUwQyoVESR5gR/+mm1VtlTU1Oxbt06aDQaDB48GO1PnaKK7wcVbqH8e8ifB79xY9FkxIgR5HNQUh/6K+bZs2fYs2cPT0lJYQAwdOhQtCkUvHLOceDAAd2DBw+EcePGsWLjE8+epcTX7dskszcEOh0lR15a3oEDB3Dnzh3UTkzE+8nJkO3aZZhkW2oqMGECBZ2LFpF65NAhCrTS06nH+v59MlAMDqYb98aNK92uEBMTg61bt2L69OnlKyYqwvjxwIoV5ffj//47ydFL6uM2ADt37tTFxMRIRo8eDffCyZLSsLamoPzqVQpSw8JINfH11/Q459jw6ac8XSZjrRo1Qt+kJPJbWbWKgvfFi4EOHRDy1lvIePZM7OLvLyAkhK5PLi50HFeuBAYOBNzckBYSgp+uXMGc//wH1vqYSCYkkO/AW28Bkybh6Zw5eJiRIXZft06Am1vFdk5KCpk+/vZbwci96GhK0ryMRkPfKzt3Ai1aIDQ0FAcPHsSgQYPQOn98H0DJg8hIOme/+44MZ9PTKVkBSqj6+fnxkJAQ5uXlpevZs6cEu3fTOZAv/S93FyRg69atiWq12lUul5cZICgUipoAfADsAcDkcvm/576BsYkAPgPQFgB/2WV2yZIlcicnp/++//77FoIgkOrnzBlSZlTyWvXgwQP4+vomqNXqJnK5PLvqG2HECGE06DNixEg+BznnC/bt21d59/R/ExYWFOgeO0bVzFq1aARcmzZ0A/fs9VDY1alTh4WFhVXPwgWhYO57Jcz69MXOzg6f5cmRbxw/zlPPnkWGIWTihuTZM6oaBgVRBXDDhuKqg19/pX7k1xBHR0fMmDGDff7555g7d26RQB+gHvPhw4dLPDw8+MmTJ8Xz58/j4sWL9ODx41ThvnfPcIE+AKxeTZXeQiQnJ+POnTvo2bMnRi9dClmnThTkGAI7O5JXr1wJvPtuQQuPRgN07gwsWQL4+FBQ1qgRVc4rGeiLoohTp05BEATDBvpKJe0PfYLXU6fIgb2a8PHxkWi1Wvj7+5f9hSGKlEhJSqKA+soVGpU4YAAFxZMnA25ugE6HqTt2sPdMTdG3WTNS+GRnkxKgc2c6frt3QztmDE43by7kRkdTy9X27ZT8sLen6urgwUB4OO5aW4tSmQyW+rZjubiQtD8nB9ixA5IhQ5AJCNfmzBFLDNLLwsaGWhbS0ykJ2K9fyWajokjKkitXwJs3x82bN3Hw4EEMGTKkaKD/7beUdO7aldojBIHaDvICfYA8RYYOHcomT54Mf39/iahQ0D7RM9AHAGdnZ0gkEhsA5coY8vr2Axljj/V+g38KnG8H0AbARAABYOzFDD2FQjGKc75w5MiRFOhzTteOunUrHeir1WocPnw4R61WTzIG+kYMjTHYN2LECABALpeLANQAWEJCwqtendcLNzeqps2ZQ3LIR48oYPjsMzKxS0p6ZavWsGFD2NjY6KrtDaysqBpagtTakMhkMnz55ZfoGBfH7ggCP/jXX9W3TRUhOhr44guqSvbvD7RrR9XekmTsjo5001eFns3qxMTEBBYWFiXL9EEBv4+Pj/Ds2TPh3LlzuHLligilkgLje/eoKmtIBgygKnohNm3axAHA3d0dNWvWBFq3pp5zQyUgTU1Jnt+nD3D9Oo1NjIujwGzLFkryGSChoVQqkZCQAKlUarjMqSjSuRUYWDDasSx+/52q3dWEk5MTZs+ejYSEBFbmGNclS0gJY2pKyZPhw8n13sqKDFLfeYe27ZtvwPbvRy1PT0qqHjlC5n7jxpFnglQKdO6M1l5esLCwEOPjS5hIxhi1XPTpg4iICObg4AChIi0nJiaAQgF064Zahw+j9/DhiJDJhMwdO+j80Ol5WZJIKPGg1dK51qABjcR7mUOHwL/9FpExMfjll1/EkydP8mHDhqFly5b0eHAw7b9x4+h8LewvERhIy34JCwsLgHOo//ijwucyYwzm5uYaAHo5OzLG7nPO65iamn5XoTf6J0BVjwMAjgEQbrZpM2DZsmW/mpqabh05cqRgm29+eeUKqZ6qoK47evSoUqPRHJHL5a+fLMzIPx5jsG/EiJHCbASw4ujRo1mvekUqi0qlqj5lAmPk2r1kCVWSxo6lm6lu3ahqc+MGSYX/Rpo2bYr09HSJugJjyirM6NEU4FZjlRAAZFIpWnfrBuspU1hMTIyk2Hitv5PUVBplFRQEhIbSsf/66/ID3ogICh7/odjY2GD+/PkAAPPnzxnu3iXpcEmBSlVxcio2bSHf1Toufx96e1NyzVAjMr/6ihJ0b79NwePSpdSaoFQaZvl5WFhYYNCgQVCr1ezs2bOGWeiZM2RAp+/1bcoUYNkyw7x3KdjZ2cHS0hIXLlwo2b08v4c5fypFVha1Sly8SJ+x+/cp4O/Xj4L+pCT6f3w8BcgzZtCxP3KkyFi8/MkLJWJpCd61K7TXrzOrypqsdukCbN2K5JwcNL1/H3GWlqRKWLAAeK7nGPp9+0h1MGsWqUhe7uXOzERCw4bYOW2a+KevL2/cuLHw+eefs2b5HgtKJVXunz+npMfLo1Vr1y7RR8LGxgb9TUzwx0cfiRWp6udjb28vAaCXoyTnvAMA93nz5lWPC+QrRKFQCF8rFH1XLF/ecs/kyXc9wsOPNrO3f3fGjBnmTZs2JVmXUkmJfwuLSk+OCQsLQ2hoaJpardbT4MGIkYphDPaNGDHyArlcng5gbUJCgqVO3wrGK0Sj0SA1L7gWRRHHjx/ny5cvx7Vr16r/zSUS6rN86y0KBocPp37ML7+kG+wjR6iqU808ffoUpqamXFaao7ghsLamvs/t26t3my5fBnx9Ud/HB5xzbNiwATk5OdX3fiUhivTTpw8F9xMmAIcPlzuf+gX79lFA9g+GMYZ58+ah/7597P4nn/DY5GRcvnwZBk8oJSYWqTzn5OS8qMLWyx99JpFQRXXTpsq/j1pd0BcOUHW2a1cgJoaSdH/8QaZnBqZdu3YAgKioqKovjHM6JxMT9Tet9PIic9FqZuDAgXj69KkQ/XJCJjub3PkfPqTEDgBMnEhBb34PvL099dzb29NxataMetKbNgX8/ChIjooCfvmloKVq9GiY5OQw5dmz4CpVieuU06EDVABcXFzwrAItV0qlEiqVCmq1GhkqFVxnz0bY4MFIzMjguHOH5PnffkvXqvLo1IkC9U2byMhz9eoXD2VmZiKqXz8xdeJE1KhfX/j8889Zv379ClQI48eTf8CaNcCPP5Z8zJs0oUDz5eRPXBw6rluH5Oho4ebNm3pvez7u7u6WpqamepntyeXyCLlcHlHhN3mNUSgUDRcvXvyZTCZ7XKtWrc0+Pj7jOixY0EAWFYWh/fqZ2X7wQUFyMD6eVCuVHK+ZkZGBgwcP5mo0mhFyuTzDcFthxEgBxtF7RowYeZlEU1PT82vWrOkwdepU89Ikv6+S6OhonD9/PvP58+dmWVlZJg0aNODp6emq9PT0LABmR48etZTJZGLr1q3/noSmRFIQ4KWl0azdb78F5s2jyqGTE82ur4aZ8VFRUVCpVNVvjDR4MBlqXbz4wjHa4Ny5A7z1FqysreHh4cEfPHjAzp49Kw4ePPjvOY7JydQb/O23lLipTFUwJ4fGfj1+TAHMPxFRhMm5c6h55gx+3rKFabZsAWMMgiCgQ4cOhnufJk2KGJYdO3YM+XLwItLrevWABw8o6KvIaFClkhJxzZqRpH3KFPo8pqZSf+2AAXScTp+mz+3EiWRm9+67Btm8R3leA96GUEV8+ilVwcsb31aYLl0M67FQCh4eHrCxscG+ffv43Llz2Ys+5ho1qAfew4OeePkyTbB4+XPRtCkppfbupZaNoCCaMlB4ioCPD/3bsCFw+zZ6W1iwmvPmIfXmTdRs357OjwULgNxcXIyPFy+6ugoO9+/j3qVLusDAQEmTJk340KFDmWkZSbvNmzeLcXFxgiAIEEURjDG4ubmJMTKZULt9e7zp4EDnUd++wO7dpAiZPr30HTN8OCVIjx6l/bBwIX0PALgcHMyTW7cWhsybh+aFzf9u3CA1xPjxZARaHlIpfS4KL8PeHuzECXRJS8Px48d5eno679mzp8D0TBK5u7vj5MmTAxUKRY3/b/3jCoXCAkCkh4dHTpcuXSzq1KmDIvstI4OSWAkJlDQcPLjSijeVSoVt27Zl63S6b+RyebBhtsCIkeIYK/tGjBgpglwu16pUql45OTlR1Wb8VgVSUlKwfft2XWxs7JKsrKyPAXjEx8efS01NXabT6ZzkcrkVgLkHDx4UXonRoK0t9Rnv2EEO5hoNVXv/8x9g/nySpBpwvfKrh0H5MtnqgjGaT71mDY0lNDRPnwJ79gDvvQepVIqxY8eyDh064M6dO9X/PRUaCgwbRuPBFi+mG7jKyn8tLCh4tNWr5fW1g3OOY2PGIGXCBPyyeTN0nEMmk3FHR0fx5cp+eHg49/f3F0WxZAV3uUgkVLlNTgZA6hwA6NWrV1FTO0tLCtRjY/VbrlJJCpSvv6bA3cyMqviurvR4Tg75b6xYUTBRwc6OVDpXr9L5XcltunDhgrhx40bx4cOH2LVrFzw9PYuOTqssn35K14+K8Ouv9JmqZgRBwJQpUyAIAjt+/Dj9cfBgkuDnJ4e2bKG+c3v70lUyo0aRq/nDhyTrf1yC79sbbwBTpqDNuHG4s3YtdrZrxzUdO9KIQVEEeveG03vvCc5hYZi0dy9myWSS6e+8g/v377Ply5cjPc9oNC0tDceOHRM3btwoBgQE4Pvvv+dxcXHC6NGj8cknn8DHxweffPIJGGOscePGGD9pEsOYMeTZcvkyteukpNC0gNIUL6amlBS4cIFagrLyuuNEEV1nz2a5gsA1ha8TOh21TAUH0/7LV7eURVJS0UDf35+SJE2bwsvLC++99x67fPkyCw4O1vtLx9bWFvXq1eOMsXf0fc0/HYVC4bF48eJFgiAk29jYKEePHm1Rt25dFEuQWFuTas/cnJIxb71F144KIooidu/enZOZmblfq9UuN9BmGDFSIsbKvhEjRoohl8u5QqHwTU5O9gRg+HJ0Jbl7967O19dXYmpqen3evHkrCz3k89JTTwEo/kX9d+PoSL3Bb79NAc2ePeTwP3Ei3fR260Z9qVUgXzpboRnQlaVJEzKo8/cnvwJDsns3VVULHbPIyEidRqORhIWF4fHjx7xWrVpo3bp1iQc1JyeHjKkqQng4yTBlMup/BQyzXY6OJNmdM6fqy6pmOOfw8/PTNW3aVOLq6oqQTZv4NQ8P9uiNN3ivnj2ZqakpHBwc2I4dO5CdnY3Y2FgkJycjODhYTE9PFzQaDWvUqBHqljcGrjQYoyDI3h4uLi4IDQ1FnTp1ij+vZUsyaWvXrnwnend3YPZs8tZYsqT445s2UfCsUgH795PRJkDB5qhR5J6uUtFNfQWvIWfOnBEAwNfXl+t0OtalS5cKvb5E5HJqO+jXr2Kvmz6dEiV/A5aWlnB0dOTPnj2jHbZkScEkg5s3ab/27Vt+O0ytWnRdfOMNcrK/dYtG6ZVwHPr3749169aJ6y5fFhq0a8fbA4JLTAxubtsGzY0bXPLhhwzdu8Nx2DB8+uQJNo0bhxpr1iCyVSv8ee8e7GrWhL29vXD79m1dixYtJG+++eYLRUm3bt0AAJMmTSr6xubmdK06ehTYvJnWd8QIYP16cvMvjExGCY5x44om/9LSYO7lBdvevfm2bdv4x9OmCRg7lpKpISH6twwBpIZo164gqVKjBiUs87bD2dkZ/fr1Y6dPn+YdO3aEVM/pEt27d7d89OjR1wqF4k+5XP73GtH8jSgUChOZTLZKJpNNbdWqlaRt27YyR0fH8l9oaUkKt0oaYJ45c0adkJBwS61WTy1vxKERI1XFGOwbMWKkGAqFoqmJicnsxo0bvzaBvlKphK+vrwSAr0qlWlTO0yMBYN26dapp06aZ6nuDU63Y2wMffgjMnEk3sMHBVP0PDKR58v37V0pye+nSJe7m5sb0ukExBF9+SYFHs2b6yUz1QRSpIj5sWJE/q9VqBgCHDh0S7e3tWXBwMHN0dISjoyM459DpdAgNDcXjx49x/fp1WFlZYcyYMXDNr+CWhkpF6oqPP6bAfNs26m82FDExZKz1Ggf7nHM8ePAAly5dEmNjYyU3b96ERXY2Plyzhrns3w/n/v1fBDk7d+6ESqViwcHBuH37tmhmZiY6OztLmzVrhvPnz8Pl5SCnIvj6vlBR5Pfpl5g4qFOHzrl790o+VvfvU9/so0c0ItPNreSJCWFhFJjNn08V/J9+Kgj289mxg9pVjh6linHHjnptyuO8SnTNmjX5xx9/bLhMY3R05T5rt2/TdcfT02CrUhqxsbGIj4/HjA4dSLYfGkrKjceP6dp28iQpnvQh3zgxMZESo9HRZHL3UsAvlUoxc+ZMSVBQEMLCwtimTZswdOhQbuPszELs7BjkcgqEP/8c6iZNYOXrK4acOCFEX7+OiZmZqJOTI2DPHuDwYQnq1i35fCkJQaDKe+vWZPjYsSO1cS1dWjwhk5xM5+W9eyQBT0wEVq0C27gR/ZRKYfO8ebhz/Tpa1a8PDBpUsUAfIH8DiYSC/QMHyEzzpfO5VatWOHXqFP/mm2/YF198gRs3bojnz58XOOcQRVHj7u4u1q9f39Tc3BwuLi4wMTGBm5sb3NzcakZGRj5SKBQOcrk8t2Ir9vqjUCjMZDLZH7Vr1+47ZswY8xr6fv/u3Enf4fkqlgoSERGBq1evZmk0mmFyuVxTqYUYMVIBXoM7YCNGjLxumJiYzO3YsaNVo0aNXvWqvEAmk6Fhw4aauLg4j/nz54eU9Vy5XJ6jUCjMk5OTn0RHR5u6u7v/XatZPoyRaVbbtiQ17tePgo+LF6li2bkzVQzKcX3XaDS4evUqUlNT2YQJE/6mlQet/08/AZ98ggrPni6NS5doWS+ZpM2dO1dISUmBra2tIAgCTp06hU2bNkGn06Fu3bqiubm5EBERAVtbWxGAkJmZCc451Go1GGN49uwZXF1dkZWVhTVr1qBXr168S8uWDE2akIni0aP63+BXhL596ec1RaVS4cKFC7hy5Qpv2LAha9myJc95+JA7engI5pGRMM83U8tj+PDhuHnzJpo3bw5bW1sBhVoAg4ODER8fD7fCUuKKMGwYMHUqlBMmYNeuXRwAS09Ph4ODQ/HnyuVURT17tsD/4ttvgWfPSJK/dCkFimWpZRwdSSYukZBSJa+vvggWFmSGt24dKQBCQoqOPCuFY8eOidbW1sLkyZMNF+hfvw5s3VphhQEASnq4uBRLolUHWq0WJiYm3K5TJ4YpU2j/xsVR8HrpUonHRKvVFqk0h4eH49KlSxBFkZuZmbEnT55oPRYskPTv0YOhc2cKYkeNKrIMqVSKHj16oEePHjh79iwOHDhQdEd98gnQvTsc6tXDhObNhdOnT6NThw5wtrOjkWn5vgL37wPNm5OaY9EiIDeX9l1Z3x1161JP/sGD5DeybBn13H/+eYGqoVYt+pkzh86rEyfofGUM5s+eYcrOnfBVKrnVvHmsQWUStn5+RX8vYT8LgoA5c+YIy5Ytw4YNG3hmZqag0WjAGDvJOZeHhYV1i4qKas4Yqy+KYitRFE10Ol0NqVSaLQjCTd0/wa23gigUClOZTHa6fv367UaOHGluYmKi/4uvXqVrRyXIzMzEvn378g35Xt3MXiP/r2CvpKfViBEjry0KhaKNVCq9NHv2bNNKjy2qJmJjY7FlyxYAEPSRvn3zzTdzLC0tl4waNcqiStXHv4PsbOrtTEqimfYjRgDTptGov7wbEc45wsPDkZGRAT8/P8hkMj5w4EDWWt+KmSHZvp3W9T//qfqy/viDqvt6JC2USiWePXuGbdu2QSqV8qFDh7KmTZvi2LFj/MqVK8Uioj59+uDhw4dceeUKG3rgABK3bUOEvz8fsmABMzc3r/q6l8bUqWQEt39/9b1HBcnOzsbOnTvFlJQUQaVSoUePHujduzc92KYNJShWrix7IYWIiYnBjh070LdvX7Rv3x6SyhhQHjkCeHgg0dIS69evR+PGjfmECRNKj2xnzKBAPCCAPienTlHv9MyZ5b9XWhoFb2FhBSZx7dpR8qp795Jfk5sLfP89Ba5r1xYEcYVITk7GiRMndOHh4ZJJkyahQRVbc16gVlM/8KVL1MZQCM45cnNzYWJigpycHFhbW4NzXtTYMN+pvqLV4gqSm5uLCxcu8Mb/+Q8a/Pgjg48PKWeaNiVPhq++Kvaa48eP4+rVq7C0tNRNnjxZYmtri++//17n6OgocXJy4leuXGGenp4IDw9HzZo10fXxY3ja20PSti2pHKytS1yX7du386ioKPb5558XtPXs2EFqpPK8E9LS6Lzq0IFUPxERwIYN9JmYMoUCPGtrUnu8zJMnVOldsYLMBY8epYRtaipdK21s6DNmbk6GrR98AKxYAaVKhbPh4brbt29LGGPcyspK1Ol0HAAsLS2lMpkMgwcPhm1pHiAKBZ3Pn31Gy3VxKTUxlJqaitWrV0MqlUZptdq35HJ5iUlzhULBAJjL5fK/eRSKYVAoFJZyubzU8cEKhcJCIpH4Ozs7t5w8ebKZoG/CNyODFCZr15Z6/pWFKIrYvHlzzpMnT1bNnz+/PHWiESMGw1jZN2LEyMv4NGrUSHzdAn0AsC9wcR4JYG95z9dqtT9mZGSoN2zY8LMgCNza2jqrY8eOFp07d5a88n7+l6lRo0ACOnw4ycC3baPRTa1bQ9miBU48f45bt28DAJydnfn06dNf3Ub06kVVsxEjKCFRWZKSqCKm54goMzMz1KtXD19RAMHyb9QGDBjA6tSpAxMTExprFRUFqVSK0E2b4PjsGUtv3x73mzZF4IULgEzGnK9dQ8eOHVGWO3eV+OCDEgPDvxOlUkkjxDIyUKdOHWRnZyMxMVEYNGgQnJ2dyQRPp6Oq5uHDJJWvADt37oROp8OxY8cgiiI6d+5c8ZW0tASePEGNvITVkydPSj+nlUoKevN7ue/fB8aM0f+9NBrgm2+KusG//XbBWLiSMDcnKfnixRTQmZkVm3e+Z88eJCUlScaOHWuQQJ9zjvT0dFhZWkKSkgI1YxC0Wjx9+hQJCQl4/vy5+PDhQ5aens4YY2CMQSaTQSKR4MMPP4SZmRn5lcyaReu6vPr8v54+fYoNGzZAp9OxmpaWvEGDBshKSYFFXBye/f47bNu2hRlIARIQEMAtLS1FpVLJGGPs/fffZ9evX2fr168XZ8yYIeh0OtayZUu0bt2aPXz4UFejRg1MmTJFcvPmTX4mNxdXLC352NWrhdzr13Fn40Z09fLCgwcPULduXfj7+yM2NlbXuHFj9ujRIxYQEIC+ffvi/PnzaLt0KaznzIFQXrBva0t980BBki4lhST6NWuSD8fu3ZR8+eorOnf69KFzwsmJPCVcXUmJ0agRtS40aEDP1emAxo0podm//4upHWaWlhjo7i4ZMGAAHj9+zBISEiQymQyCICA1NRWPHz/m69ev5zNmzBCsSwowe/akNo0JE0j5Mm5ciZum0+lw4MCBHJlMtru8PvG8x/6pgX5zAPdWrFhxUalU7gVwGcAjAE8AWAMYKpPJltvY2NQcN26cid6BPlBg3lmJeyPOOY4ePapKSkq6o9VqFRVegBEjVcBY2TdixEgRli5d+lunTp2m+vj4vJbTOnbu3MkjIiLyKw9KfV6zePHit0RRrA3gOQDfr776ChWS7b1CtJGROLFhA2+ybx+TaTR4NmuW2OHttwW8Di0Wp08Dd+9WrTd91Sqqni5YYLj1AkgqKwh4MnMmnsTEcOnmzaxhw4YwMzPD4sWLAQC1a9fm77//PpPpIdGuFHv30qxtfVy1K4lOp8OtW7eQmJgoPnjwQOjRowekUimuXbsmJiQkCABJnWvVqiUmJycLderU0U2aNKmgBL9wIfX63r1bYal4XFwcgoKC+IMHD9ibb76J8PBwsW/fvkKFVDQffUQVs23bkJSUhN9++w0DBgxA+7wRZQAoyM/JoSBr2jSq0s6b92KMmV6IIlVrFy+mwC2fpCR6LN+gsSw2baLz9dy5F89Xq9VYtmwZnJ2dMb2sMWx6wjlHQECAGLFzpzBu926c2rqV3757lzHGYGZmJlpYWPCaNWtKGjZsiDfeeANqtRpKpRIREREICgrSZWZmSkxMTCCTyXizGzfQtX9/Zv2O4UzVRVHElStX4OrqivT0dPz111/wEUWIp0/jlLc3Ro0aBdU778AuJQV/fPABRFGElZWVmJ2dLQwZMgTZ2dmwtLSEp6cnJBIJOOf4/fffxYSEBKFBgwbimDFjBBMTExw8eBC5ubm6cePGSYCCpAJjDE2srETH/fsFC7WaB40YgbScHObq6io6OzsLoaGhYt++fYWDBw9CKpVCFEXY2dlxjVotzpo1SyKranJPqwWUSogbNuCxUgkXqRSSzZtp8sG5cyTtHzaMzrNff6Wq/uHDlAiIiSHPk5AQvcdycs5x6NAh3cOHD9nMmTOFYqNwdTqaUpGdDbRoUepnOCAgQBsUFBSkVqu95XL5v06Wn49CoXCTSqXhQ4cONYmMjFQ+evRIlZWVJVOpVGYSiURbt25dVY8ePSwrnJT76ScaZdmhQ6Vaam7cuMFPnDgRq1ar28rl8rQKL8CIkSpgrOwbMWLZXgumAAAgAElEQVSkCIIgmGdmZqoBlN00/oro0qULi4iIAAAnADH6vGbhwoWHAEChUNQQBEGdmZkpq1n4hv81JjQ7G9fMzVnHoCDYP30Kt0uXBKxaRQGLoyPJZF/VmLfu3Wms4KlTVOGqKKJIvb1TphhunTinCm7z5sDixXDauxdOQJG7s2HDhkGpVCIgIIB/9913rFGjRrp+/fpJdDodbGxsIJFIDDPJYelS6vk20Nz2kjhy5Iju1q1bEuT10Z89e5arVCpmY2PDv/jiC0RFRaFhw4a4cOGC0KtXL3h4eBQE+g8ekPz3448rdQNbr1497Nq1C+3bt8eTJ094QkKCsG3bNsyePVv/yQgrVrzwTXBwcIBOp8ORI0fQpk0bSBijx3r1oqrojh1k+LZzJxmdVYTYWGoZWL266N8//JDOl4MHy1/GlCl0XsXHA3/+CXz8MeLi4gCQqWB8fHzJkwReIiMjAxYWFpBKpUhMTERaWhqUSiWio6N10dHRgkajYRPnzkWEvT2iY2PF6dOnS+zt7SGTyYolYKVSKSwsLNCxY0d07NhRIooi4uPjkZOTw2KysrjvtWuwMjfX9e3bV1IVtVZ6ejoEQcCZM2d0d+/elYiiCJlMxgcPHsxah4Tg7smTXCKRsMu//MLbLlsGhzZt2DxHR6SkpCAiIkLw9PSETQlTFBhjGDVqlBASEoKOHTsK+a0gLVu2xL59+16cq7Vr18ann34KqVQKqVQqnAB0nmfOCB1GjmS6jAxIWrcWMjIyEBERwfz8/NC0aVNERUXhyy+/BOecpdStK4m7eRONt29HfHw8fH19dVqtFiqVSujYsSNr1aoVBEEA5xwqlap0k0+pFJfu3cN5jUbMVauFHp07o/eMGaTiOXu2IJA/d44k9u+9R+0U27aRWmDzZvKJiI6m9oqsLLqWP3hAvhCurnSO63SARAKWk4O3XFwkt44eFS9NmsS9PvyQmcfH07qo1aRwWbeOEgmlfIbVajUuXLig02q1U/7NgX4ecYIgpNjb29du0aKFGfLuY0RRhCAIJgAqnuXPzaXrRo8elbpOpqSk4Pjx40qNRjPEGOgbeRUYK/tGjBgpwrJly1bXq1fv/QkTJlTcGr6auXbtGvz8/CCVSpfMnz9/YWWWsXz58k2MsQmiKGLs2LGmBuuvrSaCgoIQFBQkfvbZZwU3+jod9RBv20Y/CxZQ4O/l9fcH/gEBJKeeOLHi0wQCA4Hff6cfQwTXt2+T5PbCBVoXPapncXFxOHz4ME9NTWX5PlTdu3fXeXt7SwCqrEVGRsLBwaHEYOVVc+vWLRw9ehQajQZjx46Fh4eHfi+8f5+SNTdvUjWykmzdulUXFxcnkclkfNy4cWzbtm2wsrICY4z36dMHTZs2LfvA/vUXyZ59fQEAv/zyi5iUlCQM6dMH7fr1o2DG3p56ZPMltzodBd3+/mVL8AsTHU3b+XJrRVoaLbciPbihodQ+4OuL73x9katWQxRFAIC7u7vo7OwsuLi4wMnJCZGRkQgLC4OtrS3u3bsnNm7cWLh79y5q1Kghenh4CHfv3oWpqSnPyspipqam6Nu3L9o8fgwhJITUC1Xh448Rn5GBw507c0tLS3HixIllmio8efIEhw4d4hqNhnft2hVOTk6CIAi4c+eO7tKlSy8C/FmzZrGIiAh4enrCYvFiQKFAhlKJW998I3bZskWQPnwIVsXPyoMHD7Bnzx4sXLiw7MTbsWM0ZvGvv2haA4CHDx/ijz/+gLu7uzh+/HgBAEI2bhSPxsYKGnNzzjlnb7zxhuji4iJoNBocz3NV55xDq9WCMYbevXuj+0s+Drdv38bp06dFAKxv374sMzOTX716Vfzkk0+K79eoKAoS33sPuHaN/jZyJF2fgoJIzdK0KSlWmjal879uXcDbm8z+dDo677VawNMT/Px5hERF8fs1a/JhrVoJJhYWBSaVrq6Az8vTZwuIjIzE/v377/73v/810PiU15tvvvnmu86dO3/q4+NT9WlCYWH0fTJ5csH+rgCiKGLDhg05SUlJ8gULFnxX5fUxYqQSGCv7RowYKQJjrG+XLl1eWaDPOS9uNAVysfUj5+E358+ff6ayy1epVNMAbJJKpbuysrIqaSFe/SiVSuzdu1cXExMj8fb2LrozJBLqBZXLaYRYQABJnAMDqSo0bRq5+leXPL0wPXtSH6uFBakMKkJKCo2wqmqgf+QIcOYM7Y+lSyskm69Xrx5mzpzJ8gIw3Lx5E4GBgZKgoCDY2dnxtLQ0ptVqIQgC+vXrJ3bs2FH/9pbsbKpIR0bS/jEAycnJuHnzpmhra4v27dsLp0+fhlQqFdu0aSPoPXXiyRMaTRcYWKVAHwDeffddiVqthlQqZQC1FaSlpQEACwgIgJOTE7Zv3847d+7MatWqhYYv9007OBSR0M+wtBSivv8ekkmTKABq0KD4xASJhIKo336jY14eaWkkwb19u7hc/+lTmoaxapX+G92sGXDrFnKPH8fotWtx5oMPxDhRFLy9vfHkyRMeFRWlu379upCbm8usrKy4m5sbDw8PZ2ZmZkJMTAwHwJydnZGamqobO3asRCKRsC1btmDAgAFo3bo1fZbzFANVYuZM1JFKMb52bbZmzRpJbm4uSjKlzM3NhVKpxN27d8XExETBxMSE+fn5gTEGURRhbm7O2rRpAxcXFzRq1IhZW1ujXbt29Pk9cACYMwfWSUnosXChgA8/JDO6SpKamorz588jJCQE3t7eImOs7M/bgAGU9ElOBt58E/j9dzRp0gTjxo2Di4vLi9c2nzpV8Fy+HEn16zOboUNhbm7+4rF27doBoO+e5ORkJCYmwtfXF7du3RJ79eolmJmZ4ejRozqlUinx9vZm7dq1YxKJBGq1mp05c0aSnJxMfjKiSMmphAQ6p/Il/T//TOP58q9zJV0nC/9t+PBiD7NBg9BMFNndPXvENYmJuo+mTZPo23707Nkz6HS6G3o9+V+AVqs9+vDhw2k+Pj4Vd9F7mSVLqEf/pUkx+hIQEKBNTU29p9Ppvq/yuhgxUkmMwb4RI0ZeoFAo2gPwqDbTMj348ccfdRkZGZL//ve/OHr0aG5mZibee+8980LBf5WuW3K5XAQQtHz58vjMzEw3gEaRyWQyw0i3DcSaNWuQk5MjmTNnDko0ZspHKqWqjo8PVYnOnaNxZK1aUWDTuXOl+wz1ZvFiGok1cqT+QW1KCjB3LlVOKsvt22SgFhNDEwtsbIBK9CcLgoD8iQYNGzZEr169kJycjBs3brAWLVrA1NQUT548wbFjx4Rjx46hT58+utq1a0scHR1RpjS6Rg2SyOdVfauKKIpYv349TExMmEqlYidPnoQgCHz27NmC3rJ5UaSK/qxZ1GJgAAoHHYMHD8aRI0cAUJ/1apLNs2PHjgEA5s6dC0tLSyQnJyMwMFCnzMhgb0+ZIoizZoEPGYIbGg3PaNyYvVm3btkj9GbNogA9I6P8qjxjFHCV1JeflQUEB1dwiwFIJDDt1w9xnp5o37Kl8K6TE4SOHQHgRfmPcw5GFxUGAGlpadiyZQucnJzEkSNHCvnX2YMHD/I6deqgdevWDGFhwPvvlzt6Uy8CAwFTU9i89x5q1Kihe/jwoSQpKYk3bNiQ5Sddnj9/jvXr1wMAnJycYGtryxs0aMD69+8PQRDyf4oH3CdOFEw2SE2l68+ePZT8qyRXrlzB6dOnYW9vz0eNGsXc3d31S6y5utKx7dSJkiSRkWjSs2exJJEkNBRO9vZ0zSgBxhhq1aqFWrVqoX79+jh58iT38/ODKIro1q0b69y5M2Qy2YsLqUwmQ4MGDXRB27YJQ3r2ZJg5k6T569YBP/xA1yILC1ovAyAIAkaPHi3ZunWr+Pvvv4vTp08v8dC8TG5uLrRa7T+jb80wBD9//txMpVJV3oBVFElx9ssvlTLkA0hhEhwcnKHRaIbl3XcYMfJKMAb7RowYKUwoAOTkvDoj3szMTAEAVq5cCUEQckRRtP/jjz9yo6KizEA3zUGGeB+1Wi0/derU6UuXLuVmZmaa29vb544aNcrcwcGhmKrg7yY3Nxc5OTl49913yw70X8bCAhg0iH7i4+lm//p1qvRPnEjVIwcHwwf+tWqR8dT779MYPX2Wv20bMH585Rzrs7Pphn3wYOC//6WA2kAIggAHBwc4ODjA09Pzxd9FUUT37t1x7NgxnDp1SiIIAmQyGZo1a4bY2Fg+YsQIVqIx3UcfAdev48+nT3WMMWHIkCHMrJKBXExMDNRqNTw8PNjAgQMRGBiIFi1asAoF+k+fknFgq+pR9LZv3x7t27fHqlWrxKysLAGgymn9+vXh6+uLnJwcREZG4uDBgxA0GonXxYuQhIXhtosLolNSEOrpyeqOHl1k/nqJWFlRr/3+/SSxLQ1RpF77tWtLW2GSVVcCQSqFet48PDh/Xmy1e7eAn3+m6nIeLycPbW1t8emnn74I/gHqp759+zYbMWIE/WHUKKpWV2AEYqncv/9i7J6FhQWuXr2Kx48fs8uXL8PExAQ2NjZicnKy0KxZM3Hw4MHCn3/+CY1GI3p7e5dfNf7pJ3KB//JL6km/cIFULFXg9OnTaNGiBQYMGMAqPNpdKqVJC2lpJIUfOrS46mPbNjpncnNLDfjzsbKywttvvy3RaDTgnBf3S3j6FNi/H4M5lySvWwedqSkke/dSNd/Pj6T4Z84YTNGTj0Qiwbhx44SNGzfy48ePY+DAgeW+xsrKCiYmJtkGXZHXGLlcnrtixYoLoaGh3m3btq3cQvz9KWk+Zkylvi9TU1Oxf//+3Lw+/QoajBgxYliMwb4RI0ZeIJfLc5ctWxZnampaffbhZSCKIjjnDEArAB1EUTwOgIWHh49gjNkD2CCXyzMN8V6LFi06o1AoGmZmZjYFEJWRkbHl119/7dS1a1dtnz59Xum18bfffkONGjV4/fr1Kx+V16lTMIbprbeoSvH113Tz36ED9fdXUcJdBG9vcis/fbp8sz5RpPFplQnSQ0KA3r1JwRAd/beNtxMEAfb29hg7diwCAgLQtGlThISEICwsTKdWqyUHDhzg48ePZ3Z2dkVepzlwAOJ//4v7H34oAYDQ0FCYmJjAysqKSyQSbmNjw4cMGSIpL6mj0Wiwfft2AEB+y0G//FGN+jJjBu2/ixcr9rpKMGXKFCEkJAQymQytW7eGTCbD1atXxXXr1gmCRoOaaWng1tbocO0azgwZgqBCXgOPHj3Kr4qX/SajR9P25JmZlUhiIvXYvzQurwi1a9OM9FICg7LWJTk5WSe0bCnB5MkUFEydCvz4I40ULAfOObZu3SoCEGxsbMhc8vr14m0LlWXJkhe/enp6SoLzFAwffPABcnJyEBERIfTr1w/169cXACC/v71MRJHOn6NH6f/515Iff6zy6vbs2ROBgYH81q1bjHOOPn36iF27dq3YzrC1peRNejowcCAwdmxRiXynTsAbb5DMXg+KTG3JziZFgyhSYqFHD1h//jlWP32KeVOnQpKfINm7l1o9DBzo52Nubo7WrVvnG9WWS17CQq/JNf8WlEqlX0JCQre2bdtWvJft8mVSrVy9Wqmqvk6nw549e7JFUfxaLpcbpDhhxEhVMAb7RowYKQJjLDEqKsqpXr16f0PDd1GCgoK0ADiAULlcfrfQQ2uq4/3kcnk0gGgAUCgUXQF0DAoKCvb09ERdQwbCFeDRo0dIT0/Hl19+abjyu6srjVjjnAzZnjyhvtB69ajnv359vUdBlYpUStW+OXOoP7Wsvt3AQOprdXDQf/l79pCT9eHD9NO8edXWt5JIpVL45Jlhubi4oE+fPhJRFPHnn3/ydevWsSFDhqBly5YASCK9PTmZa+fO5W96eQleXl6Ii4uDv78/tFotq1u3LouOjhZ/+OEH2NvbY+rUqXi56p/vDl442LS0tBQ7dOhQsSDo2TPgiy/0CkINga2tLby8vIr87b3x44XkzEykvfWWaJ6YKNjeu4fDLVvq6qxfLzGrWxdKCwvUq1cPKpUKSUlJcHR0LPtNWrcmEztHxyIV9SI8fUrtHmWZay1fTh4GLyGKIu7evYvjx4+/8BLp1q0b7O3tUbNmTTg5OcHGxobFx8eLcHMTkJNDbQWHDgEjRpQrxRdFEQkJCcKgQYNQz8WFPqdHjgB5PeRV5quvaLt/+AHdu3eHUqmEubk5auUlPupVZiTk0aOkpEhMJOXAH38A5c2v1xMvLy94eXkxrVaLrVu38qioKHTp0qXi7VVmZvQzeTIlg27fpnW0sqJrhz5jFvPhnAL8vXspoRkQQMc2LykjADCztERCQgLqnzpFVX19JjtUETs7O6SkpIiiKJYr5Tc1NYUgCJUfxfAPhDFmb2lpWfF7GLWa2tG++46q+pXg3LlzmrS0tOtardZoyGfktcAY7BsxYqQIOp1OmT+f++8iMjISO3bs4ACkgiCsXrhw4d8+Hkgul4sKheIygJ937tw5Y/bs2VK95dEGJDAwUNekSRO9zZcqBGMFgUTfvnTjevo0OUe7u1PwP2JE5avlTk5khPbjj2Ubp+XmktpAHw4epNFU1tZA//60bgbqgTUUgiBg7NixwqVLl3Do0CGcPXuWm5qa8oyMDMHKyorNfPyY4cABwMsL9erV+z/2zjwsqvr74+977zDAgOyKAgJuuYuiGO577ntq5ZJpZlrZ9m11mUYtM/OXlZm5hFu55Ja5LygmgqKCgSiigoqAguzMfu/9/XFAEUFmhhmXuq/nmUec5XMX7gxzznmf98GEBw262DVr1uD69etYuHAhevTogVatWpXOTUdubi4A6g92c3MTXnvtNdbFxcW89+fff9Pv9do1i/tPrQHr64uay5ah5t9/s2BZgGUxePBgjp86FZcaNkStjh2NQUFBsh07dvArV67kxo8fj5o1a+L06dNCfHw8OI7DxIkT2VKTOaPRCNnUqTT+saJgPzeXWj1iYx8d4HXoQPLvknGc2dnZSEpKQlRUlCiKoti5c2e2du3aOH/+vBgREcGUuNJj0qRJEEURHMdRNKpQUFLq7l2SuC9bRtXlSiguJmV1bGws3y44mMMXXwCtW1t2ciuiV697EuQSg8nqrXf9Op3PzExKEh44AJw7Z/W2IJlMhr59+zKrV69mNmzYAE9PT7Rr167q5E95Ro2i29tvkxLo/HlKqJQmOKdMqfy1yck0XpFlyWCzc2dqDRg79qGnyuVysSgri4FWS2qTx0CzZs1w9OhR5tixY+jZs+cjn1ty3qyUQXo2YBiGMztJpNXSNRITY/qUj3LcuHEDp0+fLjYYDKOkPn2JpwVp9J6EhMQ9VCoVx7Jsdu/evZ07dOjw2JKBO3bsMCQmJkYZjcZvAJxQKpX5j2vb5VGpVK8A+G3y5Mkmzcy2NtHR0UJ4eDhbr149YcyYMSYZMFWbwkIKBFeupMrdN9/Ql+KQEPMD/7t3KeDp3LnivvDsbKr8l+knrpCbN+kLV5cu1Ns/Y4Z5+/GEyMrKQnp6OoqKisAwDEJDQ8Fu3Uq9whUECmU5fPgwIstJ7Js1awa1Wo3U1FQ4OjqKBoOBmTlzpuk7lJtL5oUJCWTW+Lg5cQJ49VUKni5epDFjZa7pixcv4o+NGyFy3AOjAw8dOoSYmBjwPA93d3c+JCSEi4yMFAoLC9m3334b165dE/fu3csMHDBAbLtzJ8MMG4bb/v4QRRG1S7+oazTAyZPQde6MyMhIBAUFkWt6efr2BXx8gLAwnDt3Tti/fz/r6urKBwcHcx06dHjgqXq9HgCwb98+MSEhgTEajejcufM9tcc99u+nBFVuLq1f7n3E8zwWLVoEnU4HF4YR3k9JYbFqlUXjvSolKooq0x07Vn8tUQTc3WlMYmAgfT4wTPUVQRVw9uxZ7N+/HzVq1ICbmxvPMAxu3LjBNW3aVOzcuTNjdtAPkInn3r10DdasSUqOV1998DkGA1V0t28HvviC2j+GD6/SiyBh4kTB79Ah1i0tzbZGqOUICwvja9WqxQ0cOPCRzzMYDPj666+NgiA4KZVK/WPavSfKN998c2zAgAHdWrRoYfqLJk+mvzsHD1q0TaPRiKVLlxYXFBRMnDNnzlaLFpGQsAFSZV9CQqIsLWUymWNoaKjNPxtKZyF7eXnpsrOz7QG8q1Qq42y93UehUqkYAL9169ZN8PPzeyIufaGhoWxAQAA2btzIREVFPSSFtgk1apAkeulS6nU9eJBGau3YQV/yJ02iSqUpX2Q9PalCumEDyaPLJyu2b6cqc2WBvihS4qF9e5qhHR1d/eN7jJSa+z3A6NEUbBQWPrKy3rt3b/Ts2RM3btyAn5/fPZO6u3fvYunSpdBoNIxcLhdRxuDtkajVpOT4v/+rcJyXTfniCzrWd96h1g7godYLtVqNLVu24KXNm6Hr1UsICAi4d7H06dMHvXr1Qm5uLjw9PTkAaNu2Lbty5Up+2bJlnCAITO3atXH4yBEY8vKEpkuXssvr14eLiwvef/99JCYkwGvUKLF4xQomds8ePikpiT1z5gzz7rvvPuzQvXv3vWD88uXLoqOjozBt2jSuokRbqeJm6NChTP/+/ZGXl1dxxblfP0o29OpFCpoSwz29Xo8zZ87g1KlTop2dnTh9+nSWP3OGxeHD1g30AXqv8Xz1g32jkda5fp2C5X79qAJqSdBtAuHh4ULXrl2ZLl26MCiZbpCamoqDBw+KK1euZFiWFR0cHAR3d3euWbNmqFOnDhwdHXHlyhWcO3dO0Gg0YskUAaZRo0bsgAEDKEExbBipXD76iAxMb94kNUZyMvXw29vT5+Dy5fS+qSKIBgBcuQKvQYPY7c7O4kRRZNjHFOzn5+cjPT2dG2OC1NzOzg4uLi6avLy8NgBO2X7vnjxGozGotjnV+YQE8rioRpvT4cOH9Vqt9m9RFLdZvIiEhA2Qgn0JCYl7MAwzulmzZrLHMYLOzc0NAJCdnf0bgB+USuV5m2+0CpRKpahSqQx37txhjEYjW6UjuI2oU6cOOnfujCNHjoiCIDBdunR5fBt3db0vf717lwKhiRPpi7KvLwUOVblujx4NnDlDM6fL9h/zPAULX3xR8es2bgTmzKE+24QEoE4dax3Vk6dzZ3Iuf+utRz6NZVkEBgY+cF9Zk7CGpjqe8zwZif344yOl5FbFaCRfgAULKOmjUAByOcmoKyA7OxsAkNW8OTqPHMmW73EvNUUsRSaTYcqUKVxaWho8PDzg7OyMoqIiZseaNUJOVJTgrtOxuQUFWLt2rXgnPp55VRSZ344eBS+K3HvvvYf169fzK1euZD09PYUXXniBu7f2yZPkB7FmDYYPH84tXLgQKSkpaNCgwSMPVy6XP1pa7uhIrt65uWSWOW0a8ps2xaFDh1C3bl1MmjSJvSf5P3686vNrLtOnU/LMGuvExQG//Qa0aEEBs40CfbVaDYPBwD733HMP3B8YGIg33niDFQQBmZmZTGpqKvfPP/+IUVFRKC4uZniehyAIaN++PSMIAnvmzBkAQExMDErHCMLHhz5j/v6bTD7d3KjKHxZG/dk9e5IKxlQWLADCwuB94QJ0WVlYtWoVP27cOO5xtH+lp6dDoVDwCoXCpAxRkyZNHGJiYgbjPxDsq1QqO5lMJpo80eHMGWrRsNCQD0BpoqnIYDCMUyqVkmRa4qlCCvYlJCTKYgAgoMysaGvx+++/F2dmZjIcxwksyzI5OTlOdnZ26QaD4WulUpls7e1Vg0YXL15M/fLLL1G/fn1Nv379HBUKBXQ6HbKzs9GoUSPzDaMsICQkhMnMzERkZKRYUuF6/Hh6ktT11VepkhcZST30Bw7QDOkXX6RZ8uVhWeqHfest6nst6YVGRAQZIJU37/vpJ1qnbVsadySX/7sCfYD6fi2Y+ZyTk4Pk5GS8/PLL2LRpExITExm9Xo8qPR1KJzFs2WLBzpqJVksBc/fuwKFDpASpYtJCfn4+wsLCAABn/P3xnFwOU8JHmUz2QDLExcUFr86YweHuXcDLCymDBuHEiRMIUSiEWmfPsr3j46HVauHq6oqJEydy4eHhyMvLY5YvX46AgAC+V69eXB25HOB5iKKI2NhYODo6CvXq1bOOskcuJ7+ANm2APXtQs2VLuLm54ebNm0xCQgJarFpFCYE4G4ia9u6l91upssISRJESRleu0O/3xx9JmWMjVq5cydvZ2XGlyeDysCwLHx8f+Pj4oGPHjg+MMBQEAXq9nlm1apUYHBzM9O/f//4IR1Gkz7DJk0m51LgxmfhFRJhfzTUaSTUxYQIwaRIYOztMnDiR2b59O5YsWYKAgADhhRdeYB9S+FiR5ORk3tvb2+S/040aNbKLi4sbDmCWzXbqKUClUtnZ29tH+Pr62pvU7nHnDiWv9+6lZJAFaLXa0jF7o5RK5V2LFpGQsCFSsC8hIXEPURRT0tLS9ADMKG9UTX5+PpKTk50AfAggDuS472gwGA4olcrHbsb3KJRK5XWVStUMQP2UlJQly5Yta6hQKDRqtdoBAPP666/D19fX5vvBMAz69euH2NhYJicnBx6lAfOTIiiIbjxPo/VWraLg39eXDM46dnzwS3PjxtQjvmsXKQMACjxGjrz/nOhoGlEVE0Ovb9mSbv9GDAaqHP79t1mj1Xbv3i2kpKSwTk5OaNu2LS5cuCA8NPO7PGo1VWPLVUetjlZL6oG1a4HFiykg/OefKl+2b98+8fTp0/cCtZfz81Fz2TLyZ7CUiROBL75AvbffRj1XVwYtWjCYPh2hZXwKnJ2dMYSMIdmCggLs3buX/fXXX+Hs7CwOmjmTOb1pE5+SksJ16NDB+l4ZH39MAWe7duhgZ4dTY8eiWbNmwHff0e/LFmRnUyuBpdy6RR4LcXGUjAsPp/e1jSgoKEBhYSE3cuTIh1stquDatWviyZMnhVu3bnF+fn7iwIEDGTYrixItHTqQeuKLL0h1xLJkLGhnZ9mYwx9/BNavpwRXiRrF0dERY3F1CkkAACAASURBVMeO5e7cuYOIiAhxxYoV8Pf3F8aOHWsT35W7d+8ioIIJEpXh7+8Pnufrq1Sq+kql8prVd+jp4SUPD4+W48aNU1SZlOd5MqodO5ZaOyzk0KFDOkEQNiuVynCLF5GQsCFSsC8hIXEPlmUbBwQEPHpelJmUzAdXcxz3/axZs/7PmmvbCqVSeRHARZVKdZFhmE/UavU2AEfs7e2jjx8/3jIkJMTe3d29YrMvKyKXy9GgQQNh586dJPl9GuA4Cvp//JECiRMnSO4fGkrztv/3P3L1t7cH5s2jL1Nt29KX7g8/pMBep7vvlL5jB7BmzZM+Ktvj7EzS5zKu76aQl5fH1KxZEzzP48yZM2jatOmjJaI7d5JsPjXV8qkKptKmDbUILF4MTJtm0kuOHz+OBwL9l1+Gt709UFRUvX2pV48C0+XLSVWye/cjHbVdXFwgCALc3NxE71q1ENiiBf5WqcQPPvzwofGHVoNhkLliBZK/+w6dc3MFtksXFgMH0og8W/DOO5SMsRRfX1KGTJlCSpsNG6y3bxUQFRWF2rVr802bNjW5Yi2KIqKjo4Xjx4+z3t7e3Pvdu8O5Zk0WO3fS6L2rV4GFC8kvwtOT2kz+9z8K9sPNjM3y8yHOno0tLVoIRRMnig7btnE9evSAT5mKcK1atTBq1CguMzMTK1asYNVqNZxtMO5So9Ew5rQLyGQyhIaGyk6fPv0VgJesvkNPASqVyo/juKUdOnRwNkl9l5tLSrIqphk8irS0NMTHx2sNBsMHFi8iIWFjpGBfQkLiHizLNnFzc6u2hP/GjRs4ePCgOjc3l1Wr1Q4cx93gef6Zkw+WVECmlv5fpVL1u3bt2orLly+PqFWrlnratGk2b850d3dHVlbW0xHol8fRkar8AI3S27mTKv4FBdSr36QJ9eC/9x7JZ3v3piDsrbeAGzeocmiBtP2ZZft2ICfHpKceOHDAeO7cOZler2dkMhlmzpyJEvl+5e9PnY7Oe1iY7QL9O3doTGNKCkmgzezdTk9PFwCw/fr1Q/v27aklJiGBJjjMm1e9fevbl66tn3+mJFIVXL9+HYMHD2ZatGgBeHpiYseOsvK+AdZm4/HjEIODhbE3brC4c8f0EZSW8M039F5ctsz81/bsSe/XIUOAX34h93obc/bsWQwcONCsvz/Z2dk4tWULO/DKFSiWLIFzv37UdvThh0BGBvlGdO364IsmTqxyMkZ5Nm3aJMr/+gvBMTG47OrK9uzXD4cPH8atW7fEjz/++KHI8vLly6KHh4fg7Oxs9ZY4URRRWFjImmVAB6BDhw6y6OjooSqV6jmlUnnZ2vv1JFCpVJ4AGnEc1x3AgkaNGhlbmqIO+/JLSmTFxVk8QcFgMGDr1q1qo9E4TalU5lq0iITEY0AK9iUkJO4hCELh+fPnjZ07d7b4s8FgMGDjxo1arVa7EMAJABzP81H/hpmzJf14I7/66qvvfH1933wc2/T29mb/+ecf0x3YnxQKBY3Ie+UVcrpOSSF3/6QkCsLeeYd6XDt3Bg4fpkTBf43Vq8mkLyurwoc1Gg1Onz4tCoLAxMTEyPr06YPnnnsO7u7uAPDoPv28PBp1uHPn/QSMNVm6lNouNmwgJYaFbSU9evRgk5KSEBcXJ7Zr147hOA5ITwf++qv6wX7r1tS+sGoVVforIT8/H7/88gv0ej3TrFkzulOvp2s1KKh6+1AFHMcJnTt3ZrFhA/2uwsKo4vzZZ9bfWJ8+lsv433kHOHWK+vMvXrT+pIAKkMvlgsmad1EEJk+GV58+6FCjhuCYmMhuWr0a/TdvRpvgR4yU37OH2k3efdfk/YrauROdPv2UuThvHoo+/RRv1KoFb29vpKWlCZcuXWJPnjyJjuUmHhQVFQnOzs42SdImJiZCFEXR39/frL8Jjo6O6Ny5s93Jkye/BmA74wUbo1KpmtjZ2X0miuIImUwmd3Nz07q6urIDBgyAh4dH1d9diotposTQodUalbh//36dRqPZN2fOnI0WLyIh8RiQgn0JCYl7CIKwIDs7e7xGo4GjicEYz/MwGAz3pK9bt241CIJwUKlUzrXlvj4pVCpVAMdxr7dq1cq2JcASfHx8oNfrGaPRiCc1HcBs/Pzo1qULjdFbs4Yq2r/9Rj356ek2D6qeSiZMeNCzADSbOT8/H6dOnRLi4uJYmUwGV1dXwdPTUwwJCalw/NtDGI1kBDdr1oPTD6zBW28BM2aQC3sp1Rjjd+nSJQBAZmYmo9fr6XPmhReoilxdGAaIjyevgkrOW2pqKtatWwdRFNG/f3/cO7/ffkttKDa4LpOTk+Hl5YVLly4JeXl5rKDXA0ePkuJl6FBg5UqqQnt4WFfp4uBgvoz/2DFg9mxqh+jRg4L+xxDoA0BAQACbnJzMt2zZ8uENiiJd5/v2UdX+wgXAxQVMnTp4/uWXWVGlwsB//hH27NnDMiyL1q1bV7yRM2cqTbZViF6P1OPHhbotWzIvjBvHlA0Oe/fuzV66dAmHDh1CaGgoyr5Xg4KCuPXr14uCIMCaPft6vR47d+5Er169GEvWbd++PRcZGdlPpVIFPckJOHPnzu0ok8kGff656T0sKpXqeXt7+3VyuTzg+eeft2vbti3r4uIChmGqcCstQ3o6jXU9cYLGMVrIjRs3EB8frzEYDK9bvIiExGPiGfnmKCEh8ThQKpUX58+ff+3cuXP1OnXqxGRlZSEzMxM1a9ZEWcmgKIpIS0tDYWEh9u3bpy0qKnKYOnUqzp49i8uXL9sB+Df/AWzH87zz4cOHjZMnT7b5mEJvb28ANJLKxcXFptuyCfXrA3PnUhBz8yZJihMTqZ+2Z0/qmezRg8yybCyhfuLI5ZT4MBqB6dNx69Yt7NmzR8zIyGAAsJ6ennj99dcZBwcH8y6qYcMoibJggXX2U6sFNm0iuXNmJvX/9+1LbuzVpPR6btu2rejo6EjHWVQEeHnRdqtDXh5VykeMoJ8rcHQ/duwYXFxcyCugZF8AkNrEBoiiiN9//x0AYG9vz7z44otoxnFAbCw9wd+fkmIffUQBSHi49VQv+/aRn4Y5Sg9/f7qWevYEoqLo/fuYyM3NRZ06de5f+4JAqoImTaiN4I03gJdeos8TmQxYsuTeUxmGQVBQEKvRaMQDBw6gTp06zAO/XwAoLKTEVYlSpkquXkVxx47IGTeOtVu16qEqsKenJ6ZOnYoVK1bg4MGDQr9+/e5F3z4+PrC3t8fZs2cREhJiwdmoGK1WC7lcjvDwcMTFxfFBQUFcSEiIyYlgBwcHdO/e3T4iIuJHAF2rfIENUKlUHIBIg8EAlUo1s6pRdSqVSmFnZ7dALpdPGThwoGPz5s0tS6AYjXTdqFTVCvSNRiO2b99ebDQapyiVyjyLF5KQeExwX1Q271hCQuI/SURExNC0tLT6bm5u2Lhxo+bq1auRZ8+e9YiMjERxcTGMRiN78+ZNbN++PTc5OTlFq9XOYVk2PyYmJuj27duXRFEco1QqLzzp47AV3bt3vxgREbFbrVaPcXFxcaxdu7ZNR/GxLIvz58+LTk5OjI+Fo4GeCrp2Jef9X38FBg6kEW3x8TTf+tAhoH9/Ms5avZqCHRuOrXqiHDoEFBaiMDgYq1atQmFhIdOyZUsxKyuL6dWrF+rWrWveejxPQfLLLz880tBctFqqfN26RcmY99+n4Kphw+qtW4Zjx44hKysL3bt3Z+4ZXNrZUbX1hRcsc0cvxc6OriejkVQkAwY89JScnBxcvnwZ9evXxwOj0X7/nYKA0aMt334FMAwDJycnMTk5menfvz8TpNWSguDjjx881l69KKDNzr6vTqguTZvStky9Ll58EWjQgHreR460/TSHMuTk5ODo0aPo+8ILjOuRIxSUrVxJypL336eExahRlBRq2bJS+bWPjw9z9uxZxmAwoFGjRg8++P775Ofw6qtV71BaGv4+cwZJd++i98KFeChxUEJUVJRw8+ZNpl69ekz9MokRhmFgNBoRGxsrhISEWK20b29vj06dOqFp06YAwMTGxuLYsWNgWZbx9/c3aQ0fHx8mLi6u5pEjR5zCw8OPdrdCEs8cIiIiXvL29u7HcZwgCIJzeHh4ePfu3SsM+FUq1XNyuTy8fv36vSdMmODo5+dn+d/bESOA27fNauGoiOPHjxtTU1MjjUbjZ4/73ElIWMLTafokISHxxBBF8RdRFHfv2bMnVRCEqZ988kkPo9Hoqdfru546dWr2jh07bv71118wGAwjP/nkk+azZ89eNWvWrAkA2FmzZjX9L4yfUSqVZ3me77tnz578uXPnori42Kbb8/b2xqFDh0ShOs7aTwOBgSTXXriQbrVq0RfwnBz6Yi+TkVHb/v001m/gQHJMftaPu4SLFy/iTO/eONWrF35csgQKhUIYN24chg8fzsyePRvB5krwV68G2rUj80NzkwRlKT2/w4eTq36rVhT022BkWOm4sI0bN6KwsJDuZBgK9KvjyC+KNBauuJgC1b17yZyuHG3btoVMJkN2dvaDDwQG0nFbGZ7nER4ezgBAUlIS8PzzdG7LV2I57v45ePttqsiLjx68UCXbtgErVpi6o+Rb8NprlPigYNLm7N+/X/zqq6+w83//w/hz5wT/OnXIMT8+nuT6pecqKMik61EQBOTn51ccnH/6KX3OVMXly0BoKK6eOCF4zZwpVhboA0BRyTVbUQDaqlUrJjc3l1PbYLSil5cXunbtyrzzzjvM6NGjmb///hvr1q0TjEZjla/lOA4vv/yywmAwfA5AUKlUpmUJrIS9vX3/4OBgpylTpjh4enq+bW9vf0KlUnVQqVQPnMS5c+cOt7Ozi+3Zs2fjMWPGODg5OVm+UZ6nqTCmJHoeQXp6OiIjI3U6ne61qhQJEhJPC4xY3T8mEhIS/ylKJHg1JPkaoFKpBgLY/dlnnz3aPK2aqNVqLFq0CK1bt8bQoUNttp3HxurVNG9+zRqS9vfuTZX8L78kQ7F+/cit/9tvaaxb69bUZ/nDDyQt7t3bJoGordDr9di2bRufnJzMOTs7C1PmzmVvT5qEhv9XjUmUgkDnIiuLZPzVWcfVlRIsbdvavJXi0qVL2Lx5Mzp16oSePXvel+O2bAn83/9Zbi5YWEhB4tKldG2cPEl93VOmPPC05cuXC66urnjxxRdZOzu7+w8IAikaqpM0qQBRFBERESFERUWxnY4fF7oaDGyVLQM6HfDHH2Tgt24dmV9awg8/UBvGV189+nm7dpFnQJ8+gFr9oD+DDTh//jyuXLmCW5cv8wPDwrjCiRPh6+KCmqdOAWvXVuu9/euvvwqZmZnMsGHD7psvArRucjIwf/5Dr8nPz8fZs2eRkZGBFjk58B80CHbXrmFJVBS8vb2Fvn37sn5+fhVKx2NjY4Vjx44xBQUFjLOzs6BQKISpU6fKSp+7atUqwdfXl+3fv7/Fx2QKBQUF2LJli3D37l1m5MiRTMMyahxRFKFWq5Geno6srCzcuHGjKCUlhWNZNkKn08WIojhPqVQabLqDZfjmm29iRowY0a5hw4alI0XFyMhItV6vvyuK4kG9Xp/q4OAwkGXZ1mPHjnWstqJt2zZqF4uKqpYhX3FxMZYtW6bWaDQT5syZs616OyUh8fiQevYlJCTMQqlU8gD+84F+CS1cXV2Ncrncpp+lCoUCTk5Oz2bPfkW0aUM9y6JIwVVSEsnb162jXvH9+0ny/8MP9PyjRymYu3YNeP11Gt937BhVa95//4keSlUYjUYsX75cFASB+eCDD+Ds7Myif3/UqE4v9J07QGgoJUw6dbJsjT//pN7ns2fp/LZrZ/n+mEhiYiL++OMPAEBwcPCDwdOmTdUb77Z5MxnLla5Zpw4lD155BXBywtGjR3Hu3DlBp9Oxw4YNwwOBPgAYDNSukJ9v1YQHwzDo3r0727RpU+y4fZsNbt0aVU5dt7cnlcWJE1Thv337kdMFKuWllyhxUBUJCZSA27WL3OptwK1bt7D1t9/44sJCLiQ6Gn3On0fqwYNcQHY2ZGPGUPvA229XaxtGoxE3b95kQ0JCkJubiwdMTXNyyDOjHDExMTh48CA8PDyEJgoFGs6axW5KTES6jw8UCgWfnp7OhYWFoV27duLAgQMfihTbtGnDtmrVCgsWLICfnx8uXbokmzdvHurVqydOmDCBCQ0NZffv3y/079/fptlJFxcXTJ48mT1+/Lj422+/YejQoSgsLOTj4+OL8vLyHARBEORy+QWj0RhrMBhOADipVCqv2HKfKkMUxVrOzvQu4DgOzz//PNO+fXunGzduOGVkZLxeVFQk1KxZk23RogU4a5lDTplSrUCf53ls3LhRbTAYfpICfYlnDSnYl5CQkLCc7Pz8fJkoijbt2y9BfMC86lkmOJhur7xCfcIjRlBVsVcv6suNiCCDsHXrqBe9Vq3789xv3KB/jx6l/uZbt2ic36ZNJMV2dASeoqRIdnY2ioqKmE8//fS+e3ZAAPkT/Pij+QuKIlWhJ00CfH3Nf/3HH5Mkum9fmg4APJZAHwACAwMhl8tFvV7PpKWlwaPs+L7t2ynBU25agUkUFVFVf9Cg+/fVq0cz4q9cAYKCEBkZiYCAAHbkyJFQVFQpt7enBFT5JICV8N62DbV4Xohr2JDtbMoLnJzIEf/wYQqCt20Dmjc3b6PLl9P7ZdWqih8XBOC77yixMGYMYObcdpPIzwcSEnAiPh7TVCpO/d13EAcOhAvDoFXr1qTasRIymQzDhg1DdHS0cOHCBTY7O5uUUFlZNPWgggRbeHi42L17d6bTuXMsnn8euHoVk728oNFokJaWxvE8j61bt6KoqKjSz16O4zBz5kyIosiePn0aBw4cQEpKClNUVISmTZtiz5497KVLl9CkSROrHWtFHD9+3PD333/zLMs6/Pnnn7C3t9+m0+l+BnBRqVTetunGzUAQBPvyyTaGYRAQEFDa5mOdxIhOR39HwsKq7T+xf/9+XVZW1mmDwWCDGZkSErZFCvYlJCQkLEClUjkCWDVo0CCReQyRvqOjo5iYmMjY+gvjY6VZM5INl8KyJOHv0YMC2XnzSJbt5vZwxbHUZMloJIlm/fok0d22jVoDvviC+jMfo5t4RchkMhgMBiQmJqJFqTza3h44eJCqjebMqxdFOj9jx9KYPVPR6ahFonQqAsuS0Vk1jarMRaFQ4MMPP2QWLFgAXfmKc3q65QaDDENBfXmX9QYNgC++wPF334UoinjxxRcfPVL08GHq+beie3opwokTcC4qYk01UbtH797Axo30e5szh65rU2XuL7xA11hlpKSQxP+774CrV6039k+rpakbI0YA8+fj9oEDuPT668g4fBgBHTpYZxuVEBQUhKCgIDYtLQ3r1q1Dnz59oPj4Y1LDVKBaEAQBgc7O5OzfvTu9L0Az6UsN/maZ8F5jGAYMwyA0NBShoaFYs2aNsGTJEtbR0VHQ6XRsdHS01YN9QRCQk5MDvV6P69evi5GRkXd5nm8N4A4AfPrpp09ln64oinKZTIasrCzExcUhJSVFyM/PhyiKGD9+PFunTh3rbCgjgxKrDRpUa5m4uDjx/Pnz2QaDYXiJslFC4plCCvYlJCQkLMMXAFJTUw0Mw8jbtGlj0+r+8OHD2VWrVqFTp06VOkM/c8yaRdX5/v2pR7lE2gl7ezIKmzCBTLXi4qg683//R7LzsnJcmYzUAQDw/ffAN99Q3//ff1MP+qlTNAFg3z6S/VtzjnkV5OfnIzY2lre3t2dr1ap1/+LgOGpdMNczRxCoKm/qTHqtlozOWrYkd/o336QEyhNi27ZtYkJCAuPp6Sm2atXqwTfL99+TQZy5iCL1mG/dCrRti4KCAixZsgTOzs5CSEgI20WrxaW//hL7jBrFPDLQB4ADB+gatHawf+0a7i5ZgpiVK9Hdkup5mzYUuBw9SuqXTp0eNvirCJ6vXMZ/7BhQowaNVbxzxzrvi7VrgfPn6X29bh3+zMkxXm3alCusW5fp3r27zQP9svj5+SEgIIBfv349pn73HVfheRBF9N+5E8YaNaif34o+IBMnTmQzMzORl5fH/vXXX/AqSSJUF0EQkJCQgGPHjhXl5eUpZDJZPsuyRQzDZBoMhvFPUwW/MhiGsfv5559FnueZOnXq8E2aNGEDAgKY8PBw4ejRo3jllVeqv5E5cwAfHzKbrAY3b97E3r171QaD4QXJp0jiWUUK9iUkJCQsQKlUXlGpVH2Sk5NfS0hIeOXs2bOQyWSFCoXCoU+fPnYe5lRsTcDHxwdt2rQRNm7cyMyYMYOxaM7w04iHBwUuGRlA+VFZHEdV+1u3qGLP8xRQXL1KAX5F8vPSoCW8ZCjExYtUseM4wNubqtmTJwNnzpDs24KeUFEUcevWLSQnJ4t37twRXFxc0L9//3sLaTQabNu2Tbx69SoDgBsxYgRqlbYhlLJhAwVFqammbXTJEjKd27Kl6udqtXRO586laub583TOnjBubm4MAEyePJmxLx9czp9P+/nnn+YtqtEAEydSQAwaVSmKIgoLC9nw8HB4Tp2KkLlzGZfp06teyxb96oIAtGoFjz17EBAQwH/77bdckyZNhBEjRpj3Bq5Th9pbStoSsHlz1UZ6R4/S84cPf/ixadNIARMZSetZAs+TAeDw4XR96vWAqyuyBQEn585FXGysrHu7dmJ2drbYpEmTx96CNGLECO7E8OEoOnECzuvXP/igICAjORnOeXmMoUkTmxh+chyHzMxMUavVPjCWz1IEQcD69evVGRkZV3U63f8AhH/++edV2+8/ZbAse7tPnz4NWrduDZZl731u+vv7MxcuXBBQXRm/KJIPRbdu1VomMzMTGzZs0BiNxheVSmVitRaTkHiCSMG+hISEhIUolcrDAA4vWLAg4fbt26N4nt8M4Gtvb2+he/fuVv/22KtXL/by5cvYsGGDMGHChH9HtM+ywF9/UWCydClVeMvj6wvMmEEKgLNnSSLs4kIu5Tk51LNfGU2bAjNn0s9Xr5Ls//x54J136MvgF1/QyLVJk6DX62EwGGBvb3/P2EsQBNy6dQtpaWlITEzkMzMzOZ7nIZfLRS8vL7FWrVpcTEwM+vbtC4ZhkJiYiN27d0Ov1zPNmzdH27ZtUa8ic7UBA8zrua9Rw/R+9oYNybhw/vyqndgfI6WKlHPnzomdOnV6MPgbOfJewG4WP/4IvPoqtHo91q1bZ8zLy5M5OjrCy8tLzMzMxLZz55gxgoDAPBOKcgsXAsePWzfoZ1kgLQ2cmxvqRkSIqampuHbtmuVrPfcczZ7neTLwe9S1P336w2oJoxGIjqYgPy3N/HGDt26R1H3KFFKNREeTXL9FC6BjR8TFxeHPn36Cl5eX8PzzzwvdunV7Yt8zHR0dUSMwUPg7M5PJIdM6hmVZxERFoe706WJyYCCT+sEHeKNXL6tv+9KlS9i+fTs8PT2FkSNHcg9MBrCQU6dO8RkZGck6na6dUql85oL8MpwTRbFB+YR1p06dmJMnTzKLFy8W3N3dGXd3d6Zx48Yw69zFx9MEl61bq5XAycrKwpo1azRGo3HCnDlz9lu8kITEU4AU7EtISEhUk88++2wBgAUAMG/evMERERGdunfvbvXtKBQKjBo1CmFhYawgCBWOgnpmcXWlUWk8X3m1vVEjurVpQ0H6kSMkQf7nHwpC/PwevQ03N/q3V6/7Rn9eXjh37pyYnpQkdF6xgvt94kQIPA+5r68gq1lTvHPnDscwjOji4iI0aNCAGzZsGJycnODg4MAAYAAgLi4OixYtQu3atYXU1FQ2KChIGDZs2KN/OR4e1Gt+4ACZ5VVGSgoFwseP329zqIiLFyl5kZZGCgBze8NtiNFoxIULF7Bz5074+/sL/v7+D5+b2rWBS5fMW1ijAb9wIXYoFOLlwkLG1dVVptFoMGrUKDRo0IBJTk7Gtm3bwL/zDrj0dGrreBQ9e1ZvIkB5rl4l/4kSVUVOTg7DMAzGjx9fvTfu9Onk0P/KK8AHH5BSpSJ++43O6U8/3b9vxQpSt8yeTVJnU7hwgbZXuzYlF/bvBz7/nN5P9vbUanPvqRcEmUzGvvXWWyysZbRmKampCJ0yhb1RsyZOnjzJL168mOMMBjhxHDxat2biAgKgzcy0evuVKIrYsWMH+vXrh+DgYKvYyfM8j4iICL1OpxvzjAf60Gq1h5OTkwe0bdvWqez9Dg4OePPNN5GRkcHm5OSIERER+Oeff+Dj4yMqFArGxcUFoaGhqFmzZuWLnzhBJpvV+NuYk5ODsLAwtcFgmDZ79uytFi8kIfGUIAX7EhISElaEZdlwQRA6bdq0yTB48GA7Jyenql9kBkajEXK5XGRZ9t/hzF9KcDAZpM2fTw7dZZ3Vy9O4MZmW7dpFcvgffiB3+4wMwNPTrBFLd6dNw19LlzKdO3TgmDZtMH3YMIgvvYSCw4fZuG+/xYsnTsDlyy8Z1KlT6Zf29957DxkZGbhy5QrbuXNnNGjQwLRvmhs3kuT0UcF+YSHQtWvlgf7XX1PC49tvydNALn+qAn0ACAsLQ3p6OgBg/PjxrKyifvPLl0mBMWZMlevp9Xro9Xpci4rCrunTEeDmJr46YgTjW04p0aJFCzJFzMkhU8OQkEc7zgcFVWs810N4eZHCosR5PDAwkLt+/Trv7e1d/QDQ25sSQKVtDCrVw4kKN7cHDSCzs+lai4ysegLD3btk6vj553RzdgbWr6dkUkXTDAAUFRUhJSWFbd++ffWOzVrMng1oNPDfuhX+/v7c1eRk1Bw8WKwxZAhzc9EiaMPCMHjwYKtvVhAEGI1GHDlyRNi9ezfr7e3NT5kyhatOcjYpKQkMw1xUKpVJVtzVJ8X2q1ev/qDX6yEvNw6xZs2apcE8ExwcjJSUFBQWFjJFRUVCdna2uGLFCq5x48bisGHDmIc+Rz75hHxJpk2zeMeKiooQFham1uv1/5s9e/Y6ixeSkHiK+BeVhSQkJCSePDNn+F2ivQAAIABJREFUzpwDYHRSUpLdxYsXrb5+YmKi8K8x6KsIjYYq06YwZAgZMDVpQoZ+331H48mUSpM3d+7cOcHDw4Pv9cILcH3pJcDBAczOnXCNj0e3tm3hkpFBVc3Zs2l7AI0TK4OLiwsaN26MgQMHooE5zs+//EKV1ooQRUp4FBZSP3R5pk2jILZhQzp+lgXGjTN9248JtVp9L9CXyWSoMNAHgOefv++z8Aj0ej0WLVqExYsWwW/MGDTIz8f48ePZ8oH+A3h4kKndlSrGiufk0PPMNU6siJgYYM0aCvZL4HkeWq3Wet+7PD2pl9/JiRJHZSdbAKRgGT+efjYYKNExfDjQvn3llc/PPqNbbi5JotVq8lH47Td6TSWBfm5uLhYvXgyZTIbephpI2hJRJGPOX3+l/9+5gwZGI1x++olh5s9H7ZKkz927d62+aY7jMHDgQOG5554T33//fRQUFHBHjhyp1pqnT58u1Gq1FXwQPHsolcpsmUx2Njk5+ZHPc3FxQVBQEDp37ox+/fqx48aN46ZMmYKUlBRmwYIF9z5XAADXr9N16uaGjIwMJCYmIi8vD4IgmLxfBoMB69evL9Zqtf83a9asny09PgmJpw2psi8hISFhRVQqlTuALb1790aQpcZXjyAtLQ3PPffcv6uqX5Yvv6SAf/p0ctZ/lHQdICO6vn2BLl1Izr9tGwXjW7aQfDkiotKX5uXl4fz582zHjh0ffrDU0G/fPvq/INAIp6IiahdYtozUCPHxwOjRlstGg4KoIlXegVqtBhwdScVQilZL/eQjR5I8Oynp/iSCpxSFQoEOHTogKioKoaGhlZtvyWSU3Dh3rlKn+YiICBw7dgzOzs5o0rQpzvXogfYzZpi2IzNmAB07kudDZc7ztWtTYscanD1Llfcy4w05joNOp2PS09Ph4+Njne1wHF3nej2NsvzgA3rvABSgx8dTwJuaShMqyl5PAL3XLl+mvvv9+8lHomZNSiIdOmTybsTFxQEARo8e/XS0F82cSa06GzZQ4P/CC9RS8d13AAA5gCFDhuC5as5fr4zg4GA2ODgYOp0OarUa7uXHQpqBwWBAWlqaA4Dt1tvDJ4tWq/3jypUrwc2bN3cw53W1atXC5MmTcfbsWXHNmjVMs2bNxCEODgxrMACJibhy7Ro2b94MBwcHUaPRMKIoQi6Xi3Z2doK9vT2cnJxYd3d3xtPTE97e3qhTpw6cnZ2h0+mwadMmTV5e3gGj0Whif4uExLOBFOxLSEhIWBGlUpk7f/78m4cPH6574sQJbePGjTF06FAHa/SFGgwG3L59mx1pqlHbs4q9PZnoxcZSEG8KCgUQGkoV1V9/BVavpqC8sJCCn/nzcaGoCLdv30ZeXh5/8+ZNtrCwkAkMDBRCQ0Orjk6Cg+kGUEAoisCOHSSjHz0aGDaM1AVDhpgnBf/kk4dN1hYupJFpf/xB/9dqKckQEwO89x4F+0ePmr6NJ4xer4evr6/Qo0ePys8zywIODjTn3tW1wqcUFRUBoFnqvffvp8RQ+QkOleHiQj35v/9Ov6fKmDWLRj5WR4qekUF99G+++cDddevWBQD8/vvv+N///mf5+hUhl5NDf1YWJai6dqUAt1Urur7i4ugxZ2cgKoqUFKGhlNBat47OZf36wNtvm73poqIiREdHi56eng+1UjwxOnSgto2YGAr69+x5yBCzjSWGkGZib2+PDh06ICYmhm/Xrp1F7RtqtRosyxbNmjWr2Nr79wQ5npKSYgBgVrAPAB4eHujTpw/TsmVLbN++Xbz91VcMJk9GboMG2LlzJ/r37y8GBwczoihCp9MhPz+fKSgo4PLz85Gfny/m5OQYExMTmVOnTrFqtZoRBAEcx4kcx/2h1+tfVyqVVpD2SEg8PUjBvoSEhISV4Xk+AEBdrVbrl5CQsM3BwcGtX79+Zn+pKc+1a9egUCiEmjVrPgWlMxvCstRXnJxM1f2PPzb9tTVqUDV16FCqeK5aBcTE4Nbduzj/ww9wql8ffNOmXLdu3VCvXj24urqafy5LpczjxtFNFGmWvYsLBU6ffw4kJtLtuedIbl0Zo0ZR0qBsn/2dOxRsCgKdi27dSKq/di2NS3uGOHz4sBgfH48uXbpUXfHdto2C1kro0qULzpw5g+iICPTevJmq2Obw8cfApk33z2tF3LkDmOLc/ygGD6bEULkWDS8vLwwfPhy7d++GTQw227ala3HwYLru33+fzPU2bgTCwkhtoNEAkyYBp09TcqBuXVJSvPSSRZs8c+YM9u7diyZNmgijR4+2ihldtYmNJVVM795Uze/UyfRJFjagWbNmiImJ4SrqUTeFu3fvQiaTpVp/z54o54uKiuzUajUUlbSGVEVtZ2e8CbDnNm0SDx4/zhj++AMjRoxAy5YtGQBgGAYODg5wcHBAmdY3BmViH41Gg2XLluk1Gs1BvV4/UQr0Jf6NSMG+hISEhJUp+cJwA8CNefPm7Th16tS00tFs1cHR0REGg4HVarVwcKh27uDpR6sFVq6kMXmOjua9NjAQWLQISEiANjsbOW+9hT7FxahpZ0fV26tXK60gmw3DAPPm0c88T3J/V1fgww/p57lzaV/mzXs48DcaqQrcpw+Zn82eTUGvwUDJg/PnSU7t4lLlbuj1eshksqdDRl1CcnKyoNfrudDQ0Kov/sGDacrCsGEVPuzi4gInJyfR/sYNBlevPjIxUCG+vpSAOXaMqvwVsWVL9Xv2jx+v9KGWLVti165dKCgogFvpdAhrwjA0yjIriyrbN26QYmL3biAzk1Quu3dTgF9URNecpyddh46OpKox4XPqwoUL2LqVjMo7derE9+7d++kI9AEy7ExOBg4epFuJQeKTIjc3F0ajEfHx8Whb1USICtBqtQCQa/Ude4IolUr+m2++uZiRkdHGLJ+TsvzyC9idO9HuzTeZZsHByMrKQoAZ0zS0Wi3WrFmj1ul0a3mef0sK9CX+rUjBvoSEhIQNEQRBCWCaTqerdoDu7+8PPz8/fuvWrcy4ceOenojOVrRsSf3EJcZLMHOcodFoxAWexx4nJzQaMYJvERfHIT2dAro33qDefkGofNSfJXDcfVn+yZMUOF67RhV5nqceexcXSmLcvg34+FCrAUBqhtxcoF8/CvB376ZkQQXcuXMHycnJUCgUKCgoQHx8PJ+Tk8PJZDI0bNgQAwYMgHNVfgc2otSNXC6Xw9XVlc3PzzctAfHFF1WOxzPodMxrGzZAP3gw5H36mLdjDENKipJ2gAqZPp2M/A4eNG9tgH7XzZtTRb98a0YJxcXF4HkeojVMACtDpyNTwtLxkn/+ST34rq6kbCgoIJn7Dz9Qr//06XS8okgmhQ4OpIxZtoyeO3s2EB1NvfxZWcjRavEPz2Pw9etoEhgIx9atOXz7LalT0tPp9W3b0jhIliUvgexsutZzciip4OdH7z8HB3pv8zwZDcpklXo2mITBQKqGd94h1cITDvQB3AtA1eUNFE2k5O+GDTJDTxZRFJPy8vIs66XYu5facaZNA1gWCoXCrEBfp9Nh7dq1xXl5eZsMBoMU6Ev8q5GCfQkJCQnbUgBA0Ov1rDWq8YMHD+Z+/vln3LhxA/5P2Yg1m8Aw1GN85YpZwX56ejrCwsIgl8uFIUOGsC1atOAgCMCpU1Rp/+ADWjM0lHr8hw613f43aEDVVoCk5Pn5QEoKSfW3b6dK85dfkjv/8uVAqXN3Bcer1+uxa9cuMSkpifHy8hL0ej0cHR3FoKAgtm3btsjJyUFERAS/dOlSdvr06YxLiSJAr9cjISEBsbGxQm4uFQnt7OxEZ2dntmbNmsygQYOspghYvHixoFarWaVSifz8fLFt27YwaVSkXA7cukVBWiWwgHikd2+me6tWqGXJzvXrB7RoQW0RFZmzvf32w672piKKZLT4iLF2p06dEmQyGetqLVVJedasAT76iCr727aRoqRJEwr4e/QgE0Q/P7ouS536AWDq1PvHYDDQz6NG0blwcqLkhVwO5OYiautWcC4uYvC4cQwKCmgigFoNuLuTekCjoVtqKiULeJ7ea/XqUQLLwYG8LXbsoORW8+bkc9C6NalffH1JFfPXX5SMa9iQ1u/Shd6r3t50nqOjqW3HyYn2uV07Gt1oMNC6TwmOjo7gOA4ajcai17u5ucFoNAZad6+ePFqtNqmgoEAESetNp9QT4/BhunbMRK/XY926dcU5OTnb9Xr9G1KgL/FvRwr2JSQkJGwMy7KCXC63SiTl7u6ODh06CNu2bRPff//9p0c6a0sWLiSZ8fffA1OmVDr+qyxXrlyBl5eXMHXq1PvnnWWporlrF/Uw79xJAU3z5hSEZ2TQLHFbUtb4LSOD9mn1ajq+b74h1UFiIgVd5eTUt27dwvr160UPDw9x6tSpjJeX10PXlEKhwNixY7ldu3bxy5cvZ9zd3ZGfny9qNBquRo0aYvPmzdGzZ0+WZVkUFBQgMzNTPHnyJGrVqoXQ0NBqH96vv/4qqNVqFgDmzp0LURTZESNGmPbijRspYKxkPwoKCtD3jz+YWvPno5al4ycZhlQd69ffb70oS926NAKwqjn05TEaaWTdV19VWk02GAw4c+YM27t3b+u3WgweTNexSkVBfXExBUQ7dlClf+VKCvhXrKDgfNeuiivoDHO/PcLL6/79ZdpPUqOjwXEcMHDg/cdLr+uyaouuXR9ef9Kk+z9X5BPw6ad0LktVMIJAwXthISkAGjakx318SCEgk9Hx5edTYiEri4L/p4i0tDTwPI+GDRta9PoSJ38nlUrlq1Qqb1l1554s+RqNxgAajmAaGRmkDvnnH1KamIlGoykN9HeW9OibPptPQuIZRQr2JSQkJGyLXhAE2ZUrV9CiRQurLNilSxc2NjZWjIiIQLdu3ayy5lMPw1DVslYt4OWXq3x6UlKS4OnpWXFEZWdHAV9BAVXWf/6ZgoX+/SlIevFFCpJs7YtQOgLuuecoyOzenb7IpqcDDAN1cDDON24snAoOFmV6PXPXaGQ7duyIPn36VBkpDh48mAsICEBBQQF8fHzg6+sLBwcHBuWqaKIoMvb29mK7du2sMs4xJyeHqVevntC1a1d269atKC4uNr03ffnyR8quz585g0YZGXBp0qR6Ozl9OgXmmZk0bq8sKSnkxp+fb96aly+TtHjhwkqfcv36dej1erRs2dKCna6AwkLyN9i9mwL7pk3pmgoIoGuob1+a3hAXR9e5QgEsWUIV/cWLqTK6evWD5pAm4OTkZLx586YsPz8fNlEolEr5KxqRWDbJUzqJIS6Ozvv8+aQo4Dg6Jy1b0rl4gqjVaqxbtw4AUL9+fYvWYBgGjRo14i9evDgCwI9W3L0nTaFWqzUv2H/xRWoR+eEH8zdWWIiwsDB1UVFRmMFgmCFV9CX+K/z7ez4lJCQkniAlXyje3LZtG9asWVNw9OhR8cyZM4iOjsbVq1eh0+nMXlMmk2HIkCHMyZMnxRLzpn8/HEdjtPr3p/FpVSCKouhdVfXXxQWYOJF6kps3J3n/oUOUWLC3p97fa9ess/+PolcvmoF+7RowcCAS3nwTixYtEg40b4784GBxqLc3N12lYj977z30yc9ncOJElUsyDIOgoCB06dIFDRo0qNAvgud57N69G4MGDWJk1emTLuHatWvQarXM0KFD2cDAQLz00kt4/fXXYV/ZXPvy/PHHI8fiteY4hE2ahNvV9Viws6Oq4MaNDz/WsqX5bvxaLSUNLlyo3OUfgI+PDwRBwOnTp83c4XJcukTXppMT9eEXFFDQ37jx/eckJ1OV/NVX6f/9+lEyIjYWWLCAKuxjxlDlvGdP8pcwkYkTJ8q8vb35VatWVe84rEF2Nsn+a9Sg42nQgDwZvv+epnE8YTZt2iQAQOOyv5sK4HkeglB5kTk4OFghl8s/UKlUT96EwHoUabVa0yvrsbH02b9kidkbysnJwYoVK9RFRUXfSIG+xH8NqbIvISEhYXtWAXC9fv165s2bN5vI5fLGPM+7GgyGXgAgl8uFHj168KGhoSZ/kWvYsCH8/f2FzZs3Mz4+PoarV6/yWVlZjgqFwjhp0iS7EunnvwuZjGSc771HQf8jjtHd3Z25aeqYOjc3GlM2aRLJ+X19ySwvLIySDC4uVEWtV89KB1KGwkIymTp5EqhVCzp3d+w7eRJ9R45kW3z4IViWpch2xAjInZ1Jiu3tTaZngwbR/728THJQL09eXh5YlhVbtGhRraq+0WhETEwMDh48CJZl71V7/fz8zFvIz6/yfn1BADNmDFqOGycEBgZWv1AxahT1fGs0D056YBiqiH/9NWDqHPYvvyTju+TkRz5NoVBAoVBYXg2/epWM9yIiqN3j9depYl8RX3xBiZPkZJK529tTMmvYMEpMDBhAfe++vnRfRgZVS+vWBYYPr3JX+vXrx61duxb//PMPWrRo8WQmQPz0E1XzU1OBrVvp37lzKQFy4AA9Z/VqOg9PYP9K57y3adMGPXr0gCiKD01kKS4uxp49ezRJSUlyAKKbm5va19dX5unpqbCzswPDMOB5HjzPQ6fTBQLQz5s375PZs2d/89gPyPrI7ezsTPvs+fVXapFJTDT7d5mamopNmzZpjEbjR7NmzVpmyY5KSDzLSMG+hISEhI1RKpU8gAq/nKlUqmC9Xj/swIEDsz08PPBcRaZhlTBo0CDup59+Qmpqqj2A1wHYFRcXz0pISPDt0qWLdXb+aaNpUxoXdvkyfbmvICAzGo1ISkpix40bZ97arq5kkhcdTbfmzam/eflymnFfNnCyFnfuUI+1kxOwejUOvvaa8PqxY6z7gQNkTFhKqbN+qadAXh4Zzbm4ULCm0ZCj+oEDVKk1wYU8Pz8fHMeZb5BVhujoaERFRaGgoAAA0Lt3bx6AZaX3Tp0q7cONjIzE9SFD0P2DD9jqjrAEANSvD8yZQ7/L8jPYAwPNCyhUKmDGDJOe6uzsLF67do1pY2oiAaCedTs76od/801KSJUa6lXGd99Rf7tKRaaH9etTL35oKJnt1a9P9x86REkDhYLc95ctA1q1IkO9vn0rXb527dpwd3fn//zzTy4mJkZ87bXXmMcW8B87Rj3bb71Fsu7XX6ce/x9+oPaM0v3Qaun4GzeudDqCLYmMjBRyc3PZ7Ozs4vj4eIFlWbuQkBCuadOmdqtWrULHjh2RmJioLioq2igIwgcA+JycnBY5OTltGIapK5PJXAFAEASdKIo6AHcByARBWPfYD8Y21LC3t686DklNpQRU9+5mjdsURRGnT58Wjhw5Umw0GkfOmTPnkOW7KiHx7CIF+xISEhJPEKVSeQ7Aufnz54/auHFjkwkTJqCeiRVkV1dXhISEiDExMdrPP/98NQB8+eWX8vDw8O/9/PxMXueZQy4nCfbBgyTtL0N6ejp+/fVXODo68v7+/pYFnaGhwPPP07z0+HjgzBnq4c/Pp6r6lStUhbYG+/YBpQZ29vZQ5OQwLjExVJl9FG5uZLYGUCIiPZ38BsaOpX7l7Gzg9GmqdFZCZGQkX7duXYsjtH379t2TpNepUweTJk2CTCazXGOflETB25UrDz1Ue+pU0f3ddxkfHx+Ll3+ISZPo91o+2P/xx/uO9FXx8suUgJozx6Sne3l5iZcuXTI9W5GSQutnZVGCy5R2i/37qRK6ZQtdw7XKzS3YtYuuZZ4Hvv2WguSdO8nLYPp0es2nn1IipFYtUpGUQy6X4+233+bUajUWLVrE3LhxA4GBgSYflsWIIgX6Z8+S6qbUmb9RI1Li7NlDyQCAPDdSU8nJf+NGk7w+rMXdu3dx/Phxluf5CEEQ+s6ePVunUqnanDx5MioyMhIAEB0dfV0QhNkANpSRlZ8quf3rsbOza+bh4fHozGlCAn0m/PwzJUVNxGg0YteuXdqkpKR0g8HwglKpvFrd/ZWQeFaRevYlJCQkngJ4nn8ewFvr1q3D4cOHRVN7+fPy8oxGo/Fe4/7MmTN/4Dhu/bp16xATE/Pv7Uv88kuSMx84AE1uLrKzs6HX65GdnQ1nZ2f+ww8/5KpVaWQYoFs3kti/8w5VUrdsoUDaz4+qnipV9Y9j58571aq7d+8iqkMHxjhmDPXxv/wyVXGrws2NAjInJwryQ0MpmMvMpOCoUSNKKqjV92bMp6amIi0tjR02bJjFZXKNRgNvb29hzpw5eOONN1Dtvv8mTWhUXDkuXbgARqdjvK1dne3ZkyraBw8+eP9LL5FJnykMHWpWENK+fXvWaDRW/cR588hhv149SmjVqGH6/PncXFKkANTHvnv3g497eJB8v1s3Gmf3+efkW3GqJMbs2pUSRcHBVFGdMYOUIxWgUCjg7u7OHz582PafNaNHU/vFjBmU4OJ5mq5Rvz6pGF59lZQ5ZWFZ4OJFav2xsr+J0WiESqXC77///kBm6Pbt21i5cqWG5/mPZs+e3V2pVOoAQKlUxs6ZM8cBQEOlUsnMnj07UKlUrv+v9o9zHNerbt26lX/+RESQQmX2bLPeY/n5+VixYkVxUlLSIb1e30oK9CX+60jBvoSEhMRTgFKpLADwM4D+Z86cCf/666+xdu3a4uzsbOTk5FT4msTERCQmJtqJotiz7P08z78KYNz58+cLbb/njw+tVouEhAQcPnwYW7Zs4XcfOSJkT56MqDFjsGrVKvGbb77Bjh07YGeChN1kOI4C7xMnKFj+/nvqk371VQrGzp4lGb0lqNXAJ58AISGIj4/HTz/9hNq+voL8q68oYK9fn+THogWxwNix9yv/s2bRDPM1awA/P/A8j4sffoguHh5MRcZ9pmI0GsXbt29bR1YPUCX2+PEHgrLU1FScWbJELPjpJ9HTgpnaVdKpE7CunCr6++9NMwFbuJACYzNaZjiOg1wur9xY85VXgPPngRdeoDGTAJkGmkO9evenAnTo8MDYvHvI5XRNDx9OrRPdu5NZ5e3b9LidHbWIJCQAH31EFf/SkX7lGDlyJHfr1i3GZgF/RARw4wZJ9Bcvvn9/bi55DJS63P/yCykgyhMSQp4Eqam0loUYjUYYyig+7t69CwDIz8+XiSXv0Zs3byIsLEyn1+vfmz179rcVrSMFn4BKpVLo9fr6FSp1eB5YupRMS996iz7LTCQ1NRU///yzJjc39yu9Xj9UqVQ+fMFKSPzHkGT8EhISEk8JJRWe/QD2q1Qqx9TUVPVPJY7SXbt2RadOnSCXyyEIAsLCwoxpaWkyuVz+/WeffRZXfh2VSuWclZXlnJOTAw8PjydwNNbl/Pnz2LNnD+zt7XknJyfW3d2dy8vPR3JYGNq3bYueCQlMUXAw9Ho93NzcqmnXXgEMA7z7Lo0t27ePpMK5uUBQEM38Bkgy/+abD8umK2PbNuCvv4A+fbB//35RoVAw48ePZxl7e3JP79yZ+rSbNKFKZiXz56vc71JH9unTYRw7FuFHjqBZXBzy6tSB4dw52L37Ls2Wl8lMMvpLT0/Hhg0bRI1GwzRq1MjyHv2KWLsWePttoEEDGI1GrF+7Fh/+9RejeOUVq23iAfr2JZPEa9fuB42iSMaH77xT+etEkZInffrc//2bgK+vL/R6PXP+/Hk8//zzdGdhIUnQZ8ygILyw0PIec4OBFCGnTlHyZMKEyvuc69WjlokuXaiSHxsLjBtHPhiffkqJLjs7CqiXLaPrPjaWVAeLFlFvf8kx2dnZITIykundu7dl+/0oPvoIGDKEklalJCbSe2fLlvv3RURU2HIAgCr869dTMunvv83avCiKOHv2rHjgwAEDwzBC3bp1Df7+/k5XrlwxsixbmJeXl7N79+66/fr1c/jjjz/UOp1uKoDfzD/Q/xQhXl5eGrvymdm8PGq5SEykViZTP0sBXLp0Cdu3by8q6c8/WPUrJCT+G0jBvoSEhMRTiFKp1KhUqoYAMgGMi4yM/OT48eP1xo0bhzp16iAtLU0GYMhnn332VyVL/AZg8LJly3r4+PiIo0ePdnIuNXl7hkhLS8OOHTvEwsJC9OnThwkJCXk4sExJAYYPh3NcXOVu7tbCw4MqTV270nzvt94CPviAjPtK+4Jv36YvqVWN/rtzh1zRAQwYMIA5cOCAsHjxYrZ169Z8t7AwzunFF6lCO3VqpcZ15nIlIwMxMTGQrVyJxMREMXrLFoxv0oS5fuUKAocOhdCxI7gff4TDyZNUXa4g+A8PDxc1Gg3z7rvvwtXV1bqJlezsewZrLMuCYVnsnTZNfLFHDyvJB8phb0/V4M2bqXIMUAV46dJHB/t37pA83EyysrLAcRzNXFerqdVCrSa58vTplECoDkYjuZaXBkm//krTBr76quLnN2xIZpReXsDNm1Qd/+QTCohbt6YWEQB6jsOFevVwLjparCuTMYY//xS6Ll7MOo0eDXbgQLRu3Rox5fwzqoUoUhJi1qz/Z++8w6I4uzZ+P7PL0ougSBEEURExdrGXWFBj1xQbSqxJNJZ0k+hmYxKNJtEkxo4lKrGhRrGixh4EVCwYFRABpQgqvWyZ5/vjgIIssCAkb77M77q4DLtTnpkdCOec+9yHEhfPP4dBQTTqsCSHD1dsTPn11zRqcO9eUnQYGEhGR0fj6NGjj7Va7RAAaXfv3m2XmJg4UqPRvM4Ym65Wq1MuX758jnOuLSws/EOpVG6t2sX+9xAEobu7u7tpqRf/+otUNW3b0r8GKrREUcTp06e1f/75Z3ZRf35EbaxZQuLfCuPVkQdKSEhISPytqFQqBmAxgA/kcjnXarUyAM5KpTKpkv1M5HL5Gi8vr9dGjhxpWtG2/2ukpaVh3bp1aNu2LXx9fSse71UkqUVm5rMK7d9BQgJJvgsLyUiqZ0/q+c7Lo17pnJxnTvol4Zx6URcsKFV5vX//Pg4ePKh79OiR7K3Tp3kdDw/GVq6kxIKfH/Vvv4D0/sKFC7h+/bpu+vTpMrVajR07dohxcXGCubk5N83MhCYnh8kBTF2zBkd+/pmbHDjAjRUKaKdNE0xOzE65AAAgAElEQVRNTXHq1Cmu0WgYAEydOhU1apgHUEX7nXdIzg4gvUULXOjalQ9ds6Z2gn2Agn2lkozqDOmLv3WLqt+PH5ce22cAGzduFAVRZBMnT2YYPJieg4MHq7lwPaxdSyMpX3uNvr90iQLcDh0q3m/zZurdv3ePgqz584HLl4GAAGjr1sUPP/wgAhDq168vMsaYmYkJt123TjDPzUWij4/OQiaTXbSywrx586CogmO6XuLiSHWwcCEpExo2LP3+pUv0vo3NM+f9tDTaLje3cnVK587UgvPpp5UuRavV4syZMzh79ixkMlnY559/3hF4+vt4PoBdAF4B8J2xsXFoYWHhCKVSmVLla/6PsWTJkrNDhgzp5uXlRS/s3w/Ex1PSqQpGipmZmdi5c2fuo0ePbhQWFo6s7P+HEhL/RaRgX0JCQuJfhEqlagHAEYAVgN+VSmWlbl9ff/31dTMzsyZz586twZlxtcuhQ4d0kZGRsmbNmokjR440zF9m0SKqZN65U6258y/EmTM097tvX6BpU6r8nz9PMvGsLJJEl+TaNZJKHzqk93BRUVE4vWULb5aXJ3aPjJQZHT9OVc4vviBTuWpw48YNHDlyBC1atMCAAQOevl48/7v474HHjx/jwIEDOo1Gw0bGxAg5aWn8ULNmfOzXXwt/fvklr9u8ObNxcoJH8+Zl5oa/MN9+S73hPj5ITU5Gav/+0H3/va5Nv34135pRksWLKXAsNkT09CSZeHmjMJOSqiTfByhw/HrhQsxfvhxCUBBVrmtyjCNAcvf+/UlxAlCF/uJF4IMPKt83MZGSVLa2pCQ5fBiIjcXp5GR+u2FDPnXq1FL+DJxzPHr0CI/Xr4fD8uXYOG4cnADe8+OPmX0V5NelUKspWXHihP62FZ2Ogvrlyym5VkxGBrVCzJ1b+Tl0Ovr9sGXLsxYXPdy4cYMHBwcXMsbu6HS6MxqNZrm+fnuVSmXPGDvFOe+sVCozDbrO/zAqlUqQyWTZc+bMMbMwNyen/b/+os+ifXuDjxMVFYX9+/fni6L4lVarXaxUKsVaXLaExL8WKdiXkJCQ+H+MSqUyAqD28vJCx44d4eTkVLMGdrVAYWEhFi9ejCFDhqBt27ZV2zk5mar7Hh4Gy0BrDM6pl//336n67u9Pld+GDUkuvXjxswAlMZH+wPX1Lfdwly5dQuGMGfC+e5dbx8UxmJtTr/SlS8D27VVaWmJiIjZs2AAXFxdx0qRJVTbnFdVqhL3zDq61aCFOvXVLYCdPUlJl6VKqxNXUKMLbtynobtIEBUFBWHv2LGZ8/z1kzydLaprYWAqUr12jxMznn5PC4PmAfvNmChKPH6/a8UNCoH3/fSx54w182q8fBTU1PZdep6MKt739s2MHBgKrV1MyyhD8/am6XzS+Li0oCLqZM2EUFAS7zp3LT6KJInKvX0eOry9ud++ObmvW4GZyMiwtLWFsbAwLCwuYm5uXnxzKySFDwk2byKDR2lr/dk+e0LbPt+vcukVKiy5dDLvOrCxK6Bw7ptcAsUhVlKfRaPoCCP2vOubXBiqVqoW5ufmfH0yfboEPP6SkzoABgIODQfuLoojg4OCCqKioR2q1ergk25eQqBjZF5XN8pWQkJCQ+NfSq1cv8ezZs23S0tKaRUZGIi4urqBt27b/qF/L/v37tWfOnOGZmZmCTqeDQqEAY+xpQHf16lUkJCTwYcOGsSoHeZaWFEBHR9MfkH8njJG8uE8fkqPOmUPr6NOHghNfX1IebNpEQZiPDyUB9BAYGIjQ0FCgTRuxmbm5YGxsTNfm6EjBThUN3K5du8YfPHiAWbNmVSvCZDIZbHr3xukLFxDfooXY/PvvBUEupwpyt26UgPj4Ywr8Oa++smL+fFJEDB4MWf/+uOXkhAIHB7j8HV4M7u5k1NekCRm9GRmVVVEwRiMOfXwMO+7ixXTMXr2QFBeHSyYm6DluXO0oT/74g8bTlfQa8PQERo0yvN1g6FBg0CBqF3F0xNrjx3UKf394HT/OEBJCihV9rQ6MQeHggNtdu+LPzEzuOn06Y3v34leNBlE3b/KzZ8+yixcv4s6dO7rbt2/zvLw8lpKSwqysrCCIIgTOqcI7ciRV9vVx8iSNS1ywoKxS5osvSA1Q3L5QGcbGpAIwNaU2iueM/Q4cOJCblpa2UKlUbu/Vq5dhx5QwiHPnzr3tY2/f0z0wUI6mTYFJk8pP7jyHRqPB9u3b82NiYiLUanUXpVJ5r3ZXKyHx70cavSchISHx/5z58+cPVyqVDMD0+/fvV7/huwa4ceMGj4yMlLu7u8uioqKwa9cu/tNPP2Hx4sU4fPgwwsPDcf78ed6iRQtW7d7fkBBApaIg65/AyAho14569rt1IxO+rCxySm/QAHBzo5Fmu3bpnV9++fJlxMTEwNHRUfR7/33B6s03gSlTSDHQujXJ/wcMKDsyrhw457hx4wZcXFxeSOZqYWGBOXPmsLi4OFlSRgYFXFevktlZgwZkrAVQhW7FCpJWnzxZtdGBH35IXxoNEnbtQry7OzjnMGg2/YtiZgbs3k3rHT/+maS/mN27KdFSLJEvD1Gklg5RJGf93FwkFRQgoG5dDBk6tPbW7+AAfPZZ6deio8lfwFAEgST8c+cidvJkABC6Dhgg4NNPyTzxwgUyFSyHdl26YNaCBcwmIgIeGzdivoMDPj5/ng1v1Yo7OztzZ2dnmUKhkF24cEE8duwY3/7ee9DZ2OBuYiKpD/SNCSzGy4tUFfoUO99+SwqGqiCT0RSCd98lY8MSPHjwgHPOqyjfkKgMlUol87xzZ1an334zxuuv04QTA3/P5+fnY+PGjXmJiYlH1Gp1X6VS+f9qtKyERG0hufFLSEhI/EcQBGGmo6Mjj4+PZ6mpqbCzs8O+ffsKtFqt0fTp02U2Rc7btUVycjJ+//13NmrUKHh7e6NoTBcDgLCwMERGRoqxsbHczs5O6N+/f/VPZGdHcub27ana2apVzVxAVTEzI7O+vn3JbX3bNnqtd28KjhctouDqxAmgQwdozcywevVqMSsrS2jdujUfOnQoJeR9fMjZf/hwkirb2lIF1sCe8by8PDx8+JD5+fm9sBbexMQERkZGPD09Ha6urs/K0x06PDOB+/NPMk+7eJGC5pQUSr60aUNz3Svi4UNK1hw6BJfZs+Ho6Kg7fvy4LD4+Xhw7dmztFih69iRn+gcPyJ3/eSPEPXuoJaNrV/37iyKZyzk7k/t9nz7kAA/g0fXrkMlkaFOVwLuq/PEHGc+VxMWFvAGqAmPIDA7G7nXr4G9pyeRyOalKAgLIrX/ZMgqui83ViggPDxcfP37MfX19ZRYODoCDA4R27ZCRnIyTp0+zgYcPI3XSJN7/o48YMjJk2LsX4kcfYZ+VFSwTE9GoWTO9y0lNTYVm2jSkMMZjx4xh7WJi4OrqWtoIcMIESs4UjzM0lH79qKXm+nVArYa6dWvcvHkTOTk5FgAiVCrVRaVSWY2ZlxJlYIyNadp09ZOmTc1NFy2qUn/+48ePsWXLlrzc3NzNGo1mptSfLyFhOFKwLyEhIfEfQS6Xxzx48OClLVu25DHG7mm12uaCIDwRRdHxypUrePnll2v1/BcvXtS5uLgwb2/vMkGbj48PfHx8ai6Yq1ePgk53dwogq2sYVhPUrUtBX0wMjQybMYMCwshICvY//BAYPhwFM2YgOzlZ0CgU6Nu377NA2tKSeqgnTqTe5Lg46id/8oQSGceOVTjmz9zcHE5OTmJQUBAmTpz4wvd4xIgRLCgoCBERETpLS0s8ePBAZmVlxfv06cMaNWoEVjwNoX9/SroA5KOQmUnzswcOpN74ggJKzJSUhScmUj98164Q+vfHtDp1ZPfv38fGjRuFqKgoeHl5VTyV4UVgDHB1Bb78ksYd7t0LfPUVvffoEbVelAfnFAQvWwbcv08JgxKEhoZyc3Pz2nONFEVyrx84sPTrVlZAr15UuTZk0kARgfv367wbNUL9Tz+VoVmzZ20j06dTouqvv0idUkI2f/bsWZadnS1wztGqVSuYmZkhMzMT2y0s4NKoEWSZmci/cIFpt26F/M4dICgIgr8/XN54A0ePHkVSUpI4YMAAwdzcHAkJCUhISICxsTHOnz+P3tnZUAwdCplMJu7YsUMAgBkzZuBpgrKwUP/UC0OQyYC1ayHGxWHtoEF5OTk51wVBiBBF8SKAC9U7qEQpGGMcWJllZzeyzgcfGLMqBPrJycnYvHlzvlar/fDzzz9fWYurlJD4f4lk0CchISHxH6FoXFRzAAlKpTJbpVIZA1AD8LO3t185efJk8xcem1UOGo0GixcvRqtWrTC0NqXMz7NmDfVNx8SU7fP9pwgIoOA9Lo4M34qD48WLIf7yC76fPVt0dnbGoEGDBOviXlaNhqq2/v6kFihm1izqlXd2rvCUt2/fxt69e/knn3xSIwFnWloabt++jSdPnsDMzAw3b97U5ebmCoWFhaxv377oWl71OzeXFA5Tp1LlWy4n1/eFC4H336fExq+/kgqghHHaL7/8wtPT01nPnj15r169ai9o1mioVeKLL4D164GjRymQr1OH1qXv2W3XjiYILF5MJnl6HPYvXbqE4OBg9OnTB92q6LdgEMXmfPpMzl56ifrSXV0NOtSlS5cQEhKC2bNnw1StpkTChQvUy19MZCR9Xp99hofNm2N/cLCYkpIiNGnSBLdv34aRkRHX6XRMp9OhVatWfPjw4aygoACnR45En+hoyE1N6XNPSAA6d8bevXsRFRUFQRCg0+lgZmbG69evL8ZGR8tGnjsH9/XrYeHu/vT0wcHBups3b7KJEycK9e3syJjzBX0dwkNDefqSJX+9fOhQJ5OCAkkiXlMwZg/gt9BOnc5fef31uW/NmWNh6BSPlJQUbNy4MV+r1frNnz8/qHYXKiHx/xMp2JeQkJD4j6NSqQRjY+NdhYWFI7t06aLp1auXUU069mdnZ2PLli08Pz+fjxgxQmhUHNz+HYgi9ZW7ulLAVltVYUNJTyejvogISkDMmUPV+YkTgWbNgLQ05DEGmasr1k+fjoZ9+ugGDx5MWYpLl6j3f/x4kpsXBzcnTgBLlgBHjpRr/JaZmYmffvoJ8+fPr7VLE0URa9euhbOzszhkyBDDbnRBAfXB9+hB8v05c6g3ftUqclbPzQXat0d6RgaC9uwRU1JShNatW+t69+4ts7S0rJ0LuXiR7mnJOeyJiaWDybQ0qnZHRFCVu0WLCkci5ufnY8mSJWCMYcGCBTW/5k8/pTWtW1f2vUOHqEXB3LzSw6jVavzwww988ODBrEWLFvRiWBgweDD1/5c0UnvyBNi7F7c3beLhY8ey3kOHwqm81pKMDDy5exeB69fDt359NFmwgBII77wDfPMNNl65Ij4yMRHmFo3OKzbm5DExwODBYFevlkqicM4RHBzML1++zD7r1QtyPz9KHLwAa9esyZowe/Yjk8LCpeB81QsdTIJgrAmA1TpB+G7JwoW/jBw1yt3T09OgXVNSUrBp06Z8tVo9ccGCBbtqd6ESEv9/kWT8EhISEv9xivofR6lUqpcuXLhwrWHDhmha3nzxKhIfH48dO3bAwcGBv/XWW0KtSbDLQxCoStyzJznfBwT8ved/nvPnKfEgCDTD/eBBGqO3ezeZ9Y0bB7PmzYHAQPi9/DKi+/SRaa9dg/zTT6mC3Lcv9fyXbEvw8qJecp2uXKk25xyiKOL+/ftoUFNj8vSQnZ0tOjo6Gv4hm5hQEPf++2TUFRlJr3t7U9/8778Dhw+jbsuWmD5smJAzYACSvv6a7Tx8GBZPnkBRWIi8YcOQHxfHG3TsyPv4+govnKhyc6NkioUFudIPHw5cuULvHT5Mwe+CBfS6TGaQM39qaioAwN/f/8XWVtGay5NGHzlC7RIG9LPv3LlTdHBwgLe397OskY8PqVBiYigxU6Ta4DY2uNi4MbhazV61s4OJWl3+gf39kX/vHtJHjMApJyfehDGGrl0psaLVYuz06cJ1Bwew2bMhFH9+6elgKSmUTHkuicUYg7zoWb+YkYHOq1a9kON0RkYG0tLTZTtGj35p4ubNBWBsHDjf9gKH/G9Dpfs3AUwGMPJrpXJAvTp16hn6/5XU1NTiQN9fCvQlJF4MKdiXkJCQkCjmBgBERkbqGjduLKsoMM/OzkZqaioyMzNhb28PGxsbPF9pDQ0NFU+ePCl06tQJvXv3/mdL6r/9BuTlUd+4gWOeagU7O+DHH599zxiNqysoAPbtIxO4NWsAlQpW1tZIdXXlqba2zPn+fer7nz+f+t1//JGSFyNHklHf2rVkUGZhQYHocxT3Nh8/frzWAs6MjAwUFhYKbYtd+SsjP59M5fr3J7NCV1fqeV+4kEzlund/anCHe/eAwkJY5OSg6eTJgnPnzihYvx7Zf/yB03FxfPTGjezu0aO4uWuX2CoxUcAPP9C9tLCgSQbh4STPr1ev8rF39esDkydTEsXSkoL6kBCaB/7oEfXkM0YmdQYSFRWlq1+/PlxdXWu+l0QUyaF++HD979+8SZMpKgn2Y2NjkZCQILzzzjsoI7M2NwdOngQPCEDOhQvIzMpCaGioGBUVJXi99x46m5pSlf7zz0vPuv/oI6BVK+Rt3Ih1y5djwoQJcHNze3bwIhPEbZ98wq2ePEH7Dz9kiI4m1/0PPiD1QDltD126dGEmJiZI2b6d75XLeTtvb8HBwQEmzxsrGsCdO3cgl8tDJm7alIvNm+sBWAbGzoLzF5ML/BdhzBTAbACWAEaqvviiqZFcvnL48OFmhsj3Y2NjsXPnznyNRjNpwYIFO2t7uRIS/9+Rgn0JCQkJCQCAUqnkKpXKKSYm5tTJkyfd+/bta5Sbm4vo6GgcO3ZMY2JigsaNGxvFx8fnPXz48KlmWS6XP9JqtXbW1ta5Y8aMMbe3t0d4eDiOHz8ujBkzBh4eHv/kZRFOTiQJb9iQjNeq6lBeRTIzM7F3717Rw8ND8PHxgXGxBPmrryhIbNiw9A4mJtSLn5VFQWrXrsCSJbCaPJltvnoVw4KDefO4OMZ69iSpdlwcMHZs6WO0a1fGGK4kTk5OePjwIUfRBISa5sqVK7C3t9cJglBxQJuYSFX8gwfpfsTGAnfuAJ07Az/9RMH/8xQnaOztgenTYQ7A/KefYAfADWD48kuYRUez/Rs2sFbjx9P9tbCghEJ8PLU5DB1KiZIzZ6hCP3MmBfDjxpEpoK8vSfGNjQEPD0pAiCKwdCkpDT74AHjzTWqjqAJpaWmIiIiQjS7ptVCTREQAP/xAa9PH7t2VJjhEUcTevXvFnj17MhsbG/0bz52LY40aiVmTJwvJTk4Q3d0xa9Ys1KlTh943MaGfsXXr6B6ZmJDyQS7HxSIzSiMjI4ii+FSmn5SUhF27dukyMjJkADBq4UKwrVvJ/O/hQ/JOKAdra2u8/PLL0P3yC4svLOSBgYHQ6XTo1asXulfx5zs2NjansLDwKACA8zQw5gjABowNBufBVTrYfxnGjADsBhAKYKHqiy/MjIyM9r/++utmjo6OFe7KOceff/6pO3XqVI5GoxmqVCrP/B1LlpD4/47Usy8hISEhUQqVSuVqZGR0ycjIyLagoEAjl8sfazSa/ZzzbLlc7qPVatcA2KdUKvNK7NNQJpO9r9Pp3gVIxeni4sLHjBnDqlNpqzVOn34mdzagh7m67N69W5eYmCgTRVHMyckRxo4diyYuLhQw/vxz5dVltZqqoklJuD9sGHYlJIhyCws2wc+PWTdtSms/c4ZGhr3yyrP9dDoKWr/9toys+/bt29i+fTvmz59fK472P/30k65Tp04yn/Jk7cnJgKMjKRLGjqVxfMX3IT0deO89ChTHjKEAtQpr1Gq1WLZsmdiqVSvu6+tbfrJBFCkhUr8+tU9YW9OaVqyg8+7YQcmgGzeeGdrl55cdw2cAnHMcO3ZMl5iYKEtKSqqdXn0AyM4miX15Y/1mzKDr/Oabcg+xf/9+JCQk8HfeeYeV92wUFhbi559/xvjgYNRv3Bhs/fqyG8XEkGFkSAgpNGbPBgAkJCRg165dYk5OjtCkSRNx7NixwoMHD7B+/Xp06NBB17dvX5mRkREpCtRqoEkT6Lp3B/z8ILt8mZIyFU0L0ekAmQznz59HWFiYbu7cuQYrKHQ6HZYuXZpfWFjYQqlU3n36BmOvAvgOgDukP5Yrh7HmAAIAzAEQBs754sWLg1q2bDn4lVdeqdD5NS8vD3v37s1PSEhIUKvV/ZVKZfzfsmYJif8AUmVfQkJCQqIUSqUyQaVSddJoNBMAfD9v3rwsA/aJV6lUswGsB1BfEIQWCQkJP3z33Xeajh07yrp27SrI5XLIZDIIglBWJvx30bMnyeXfe4/kzbWQiMjLy0NUVJSsR48eePnll4UlS5aI4eHhzPboUWbr7W3YtSsUwPLlwM2baBASgtlxccI5MzNx06ZNePv+faaIjqbq//37JH0vCqogk5H7ulZb6nAajQbbt2+Hk5MTFwShxm6+KIq4cuUKwsPDRY1GI3h7e5fdKD//WeU+KYnue8mpD9evU5C/eTMF/9eu0fqrMBnixo0bEASB9e3bt+IMgSA8M9qbMOHZ67/+Sv8OHAhs3Eiu/Obm1HaxZQtND6giwcHBumvXrskcHR3xSsmETE0zfTowaVL57w8YQNdTDmlpabhx4wbefPPNcgN9gO5xbm4ujPfswY27dyFMnIjIbt24hb09GzJkCCWQGjem57Zx41IKiISEBOTk5Ah169blbdu2FQCgePJH//79ZbISkzI0oohbU6fyPRoNM7lyBf1DQ7l3aCgzqlePPAM6PTf2vmlTIDgYaNoUzZs3xx9//CHbuXMnf/XVVyu8nmKK/BQelgr0AYDz3WBsL4AOYCwXnEdVerD/IvQLrTWAjQDGFd+nhQsXTrSwsBjQr1+/Cn+Q4+LisGvXrjytVrteo9F8pFQqC/+GVUtI/GeQgn0JCQkJiTIolcpYAMoq7sMBXCv6NkSlUi3X6XQtIyIigkJDQ10BQBRFOQAIgqCTyWTFX2Jubq5F69atMWzYsBq9Dr0MHUrBJGNU6a3BKjfnHHv27OEmJiZo164dA4CJEycKISEhPGXdOtzs1Ensjip4iTVvDjRvDiE8HN2uXxcaLlqEeGtrNOndG3j8mGTnu3eTJF0Q6JqWLyeZf+/ewNGjiE9KQmBgIGxsbHQTJ06s0Z7xlStX8qysLNa2bVt0796dmRerJYrv6/DhQEYG9eYnJQHFc9FLEhxMQVxxEqRlyyoH+7m5uTA1Na2ZRAZjNG4vO5sCS8aoSv3555UrMkpw9+5dmUKh4JMmTardzFZSEikVysPDg5It5bB9+3ZdmzZt4OjoWOGzkZKSwgGwn1esgKlcjgl//AEvR0d+ICmJabVajBo1ijZ0cSEPihL3ys7ODgDg6urKmzVrxgDA1NQUAPDXX3+h2Pn/QWAgjN5/Hyc+/JAP6dWLxcXF4WKdOjj8+DHeOHqUN1q9muHAATp2sat7x45PR0/WqVMH/v7+CAgIYGFhYej0fGJADw8fPgRjLFLvm5zrwNgc0M9sLfVh/Iuh/vyZAPoCaA/OtQCgUqmGC4IQMGrUKFl5hpk6nQ4nTpxQR0RE5Gq12jcWLFgQ8vctXELiv4MU7EtISEhI1ApFwf9VAI1Lvq5SqeSiKJqIomis0WiMAZgAWBIZGTlq4MCBTyt+tYYgAK++CrzxBhmbbd1aY4dOTk5GbGwsmzZtGqysrAAA9evXx/gxY1iGpSUORkQI1XIL6NABq8PCtEY9e8rHr1xJa16+nAIdb2+SxO/fD1y+DDCGFABiQQE/tGwZTy4sFDp37oy+ffvWaKB/7949ZGdnszlz5sDMzOxZAiMnhyTwR45QD769PQVn+gL9kyfpc3Bze/aavX0ZZUJlxMfHw0HfjPnqEBtL6oj0dOoZL57gsHUr4Odn0CFu3LjBMzIy2KhRo2o30E9LozGFXl7lb3PlCrUs6DHwO3v2LAoLC4U+ffpUus4uXbowLy8vNGjQgH5GP/4Y9Z88EYzffZcfpiTPs2M8fkxtBXfuACYm8PLygqenJ09OTn66ydWrVwEAbm5uyMvLw6FDh3R5Z87IugwbhjnvvScAQJHZI/vxxx9xxtqaN7pxgyE9nST9U6eSOmPOnFItOQ0aNIClpSVu377NO3XqVOl1ZWRkcLVafbOCTcYBEMDY6wD2gvPyZRL/JRhzBt0bawCDiwP9L7/8sr+RkdE2Z2dnFhgYyAcOHMhatWpVatfk5GTs3bs3Nysr66JGoxmtVCrT/v4LkJD4byAF+xISEhISfytKpVILIKfoq5hXFy9eHB4dHd1erxS8NvjqK5rNrdWWO7Kuqpw6dQo2Njbc0dGxdJARHg7r776DZsAAhIWFcR8fnyoFgWlpaXj85In8TZUKJp98QlMFAgOBL78E6tSh4Pqrr8i9/PRpHMvO5vcGDGDDMzNZ8/R0yPv2rZHrK0lKSgrkcjnUajXMzMwosA8IAK5eBYKCyDOgItWERgP4+wOrVwONGj173c6uShV0ALC3t8fdu3cr39AQGjUibwczMwoqw8OBIUPI6O+dd+g6K3lebt26BSsrK96iRYvaDfbXrwcuXSJ1R3kMGAAUVc5LkpeXh3PnzvFXX32VGZJgq1OnzjMzPoBaRkQRnn/+yY45OODJkyfP3rezo2C8RKv7w4cPRR8fn6cJJy8vL5w8eRI7duzgKSkprHdkJGs9ejRMixUCJWCM6dzc3GQwNqYq/pUr9DPQvj1QWEgeCyXGUY4ePRqbNm1i+/fvx9ChQyu8rsePH+eLohhX7gacczDGAXwFQAbgt4rv1L8LlUplpVAogkRRbPbZZ5+5GLQTY64A1gD4HcBScM5VKhWTyWRzFArF12PHjjV1dXXFjRs3cODAAVy+fFkcN26coFAoEB4eLoaEhOTqdLo5oihuLEoKS0hI1BL/7JCcWIwAACAASURBVCgkCQkJCQmJIjQaTUBQUJB44MABPHnypPZP2KQJ0KMHBXchVVeQhoaGitu2bRPT0tJw9epVLF++nMfGxmLIkCFlA7ysLLBhwzBu3DgcP36cnTx5kqsrmktegqCgIB4QEMD7yWQ657feAtu0iar4wcEUyNWrB/TqRT38ly8DM2aguYcHs7Cw0LUcMADyKlbJDcXHxwfmZma8sH17qhy/8go51wMUJFfWHpGQQHPWn+9nDwoidUAV8Pb2RnJyspCUlARNBf3plXLhAqk+OnSg701MgAYNgLNnyfjw0SPg6FEykSuHLVu28KioKDZixIjaN6YYOBD45JOKt8nOBubOLfNyYGCgrlGjRmKTJk2qf357e+DOHbgoFDzMzw8PSk6D+OQTMjwsQhAEITk5WVf8va2tLYyMjPj9+/eZl5cXOj98KJiWk0SpU6cOTp8+jWXLlvEVP//ML2/erMXkyc8mJIwcSYaV+fkAaPLEm2++ibi4OP7NN99g69atOlEU9R778ePHGgAVG8JxLgLwArC7qML//4KiQP9PLy+v7lqttoFKpapY/cMYA2NDAHwPYB44X6364gsjlUo10tjYOKJOnToLp0+fbupaZG7ZokULzJw5E6IoYvXq1bq4uDiEhIRkajSa1vPnz98gBfoSErWPFOxLSEhISPxPMH/+/NWc805XrlxJ/umnn3D27Fle6ybYRkbAd9+RyVc5wcDzaDQaHD16FCEhIUJMTIywcuVKnDhxQteqVSs2a9YsNCpZpS7mzBng9dfh5uaG8ePHIywsDEFBQbqyGz4jNzcXa9as4Tdv3mQjhg5lPgqFDD16UEUVoMrz2rWAqSlVnz08qKoeHw/z9HSM+/ZbWYGHB1Xb33mHguiaIiICQs+eGDxoELvUpAmiLCw4GjemgNgQgoOBPn2oAvw8DRsa/FkUU9z/vW7dOnzzzTc4cOAAUlJSqnQMAKTyKOr/fsrAgVRF1mqB336j0YHTpgF5eXoPYW1tzQCSk9cqokhTF5o1q3g7Y2MycizBjRs3kJaWJhs0aNALt3bIFQoM6d2btQkPR8CaNVi9erUYEhICMTOTjDAzMyGKIh49esQ8PT1Lna9JkyZgjGFIYSFw7BhQjmeHn5+f7LPPPkM/V1fmef06q7tkifzmyJGcz5pF92D3buDUKZoEcOIEwDkcHR0xa9YsNm3aNMTFxcnWrFmj95dJVlaWAOC+vvdKwbkOgBOAlWCsblXv0/8aKpVKrlAoQry9vT18fX2NBUGoOPvImAmAAQDeBTAXnEd+9dVX/kZGRqlOTk6bBg4c2Pbtt982L6X+AGBpaYkJEyYICoWCBQYGcq1WO6WMGaKEhEStIcn4JSQkJCT+Z1AqleEqlaoFgKknT55cfPbs2UJPT0957969Zc//EVljvP46EBYG9OtHwXJR4Pg8nHPs378fkZHk5dWhQwf07dsX2dnZsLOzKz9oys2lQKaoAuvq6opZs2ax5cuXy1asWMEHDRrE3N3dS+2Sn5+PX375BUZGRmxWy5awHj68/LUNHw7s2gVMnkwjyN54A838/HCxWTMoEhLQ9vFjqv7XhFpi/nwyYHvlFaBdO7g2aIBTY8Ygr6BA9CaJc+VotUC7dqQG0Ccf79evym0VNjY2UCrJT/LkyZMIDQ3lly9fZk5OTjwtLY29/fbbsLGxqXgSwo0bgIMDyfRL4ugIpKSQ+mPUKGDKFNo2PJz60ou8GYqxtbVF3bp1RblcXrsFlcREUhxUNkLS0ZGejyLTRK1Wi+DgYN67d29YWFjUiPrAuH9/aC5dQpu33kLe7dvCLY2GR0ZG8q7BwYL5vXvQFqlLLC0tS+03atQoNqphQwryhw6lxIQ+Hj2C/Nw5tNi6FS0GD0bopEk4evQom5KUBGdnZ/rcFiygpNqtWzRB4cMPwby9UbduXbz22mvYsWMHO3/+PLp27YqYmBicO3eOZ2RkiAUFBZYADHOA5zwejNUHUA+M9QXnx1/gtv3TjLGzs/MePHiwsU6nA8hzwRSl26sI6s9/C9SfP0D1xReC0TffLDMzM5s2evRoMycnpwpPZGRkhIYNG+qePHlyW6vV7q3xK5GQkCgXJo0OlZCQkJD4X0WlUr0E4BwAqxEjRvCWLVvWjjRaFIHFi8HnzMHW3bvFQrUaTZs2ZR4eHkwQBGg0GmzcuBEA0LlzZ/Tq1ctwI8G0NBon16dPqZfz8vKwdOlS9O/fv5SRWGpqKn799Vfk5eXBb8gQNHryhAI7f3/9x9fpqJopikBWFpm1LV2KMzqdaNWwodB65Up639MTGD0a2LQJqFuFwmRWFo32W7UKWLSIFAQlxtatW7eOm5mZYdy4cYZ9NhMnUsLgq6/0vz9rFlWES5r2VYPQ0FDExsYiJiYGgiCgQYMG4pAhQ4S6desWtWE/t9wJE8hYLji47MGio2mU3MWLz15bupTaJlasAOzswDnHvXv3EBwczD08PFitjtsDqKXA3Nyw8ZGNG5MPgbMzduzYwWNjY5mxsTGfMmUKs7a2rrElJc+dizoJCTDauROhoaH82tGj8P/uO7ZuwQJu5eDAR48eLZiUXG9eHjn3A4Ctrf6DbtoEHDgAjB1LozPr1sWqVat02dnZsg8//LDs56jVAocPA3v2kOph5kzA3BxHjhzBxYsXUa9ePajVap2xsbHM3d0dYWFhhQsWLKjaDE7GpgF4H0Az/Av/kFapVDKFQpEwevRop+JE47Zt23Lj4uJW6XS6T5RK5TPVEWM+ADoBEFRffPETgL7GxsZL7e3tG48ePdrMzMys0vNduXKFHz58+KFGo3lJMuOTkPh7kWT8EhISEhL/syiVyusg6eyso0ePFtRaL78gAJ9+ivAhQ9Dy++8FFxcX4a+//hK3bdsmrl+/HluLHPvffvtt+Pr6Vm1iwNKlQGhomZf37t0rAkCxWV9BQQHS0tKwZs0aFBYWYl7Xrmg0dCiNoisv0AdI1l9YSFX3mTPJnf/XX5Hj7i7IIyOppzkvj2ax5+YCNFe8cs6do5nzALmqZ2WR63/J+fQATE1N2cOHDw1Pwri5lTlGKRITK+yJN5ROnTph3LhxmDNnDoqDwpUrV2LTpk3il19+iYyMjGcbiyLw66/A77/rP1iTJtTLX9II7/33ySDu6lUgORnp6en49ddfIYqi2KtXrxdef6W8+WZZFUJ5TJoEmJoiMTERMTExbPr06XB2duYBAQE8v6jPvSZwXLYMJrt3Q/buu+hqbc3e/vJLZrpqFWZ98AHz9/cvHegD1A7h768/0P/zTwruzcwoMTRq1NMklampqZCfn48NGzaU7feQy8lQceVKSoR16QJcu4YB/frB1NQUaWlpyMzMlHXp0gUWFhbcyMhoc5UvlPO1ALwBdANjblXe/5/nVVtbWyu3Egm1IUOGmNvb27+tUCgSFy5cOEOlUpmDsb4AZqfWr5/+1cKF5gqFIsnW1na3r69vyzfffNOgQP/+/fs4fPhwjkaj6SEF+hISfz+SjF9CQkJC4n8apVKZC+DnhQsX2m3cuPGT9957rxyt74tx4cIF8WqTJsLLnp7o7+sLMFYzo+qSkihQeQ6dTicCEE6dOiU2aNBA+O2338AYg1wu59ZJScyoSRNgwwaS4FfG4MEkiXd3BzhHYWEhwo2MYPPppyQzX7iQWhU2bqS59xMnApv1xDic04i5QYNIth4bS0Hl+fPlnloulyMrKws5OTmwsLAof41qNQXM69ZVPBfe1rbKPfsVUVy59vf3F8LCwpCamiokJCTgxx9/RLdu3cSXX35ZEFq1out8773yD9StG1WZR42iaQGCQAH/Dz8AS5ag7qZNMDMzQ//+/WWGBEEvjK8vfe6GYGsLMT0du4KDxa5du8LOzk4YPXq0sHbtWl1AQIAwYsQI5vy8V0F1YYxMAS9epCkAI0cCixcDn39eejtRBD76qOzzffcu9d/v2UNKks6dy0xnmDBhAtu3bx/++usvITk5GQ4ODmUr/KamwKefUjLhs88Ae3u8O3IkomQy2Nvbw9HREYGBgdlqtfpYta6Tcy0Y+xjAAwDTq3WMfwiFQrEoJSXFIjo6Gk2bNgUAWFlZYerUqeaJiYnm50+e/NY+MHD5pS5dHkZ26pSdYmv7qnfz5qKPj4+Jk5NTxe0wJdDpdAgKCsrVaDRTlUrlndq8JgkJCf1IlX0JCQkJiX8Foiguy87ONk5ISKjxY2u1WoSEhAjOr7yCZr/8AnTqBBw69OIHTk2lYKVjxzJvTZgwQT5x4kRERUXx3377DU2aNNGNHDkSdePi2NSgIDC12nDDO8ao6unvD1ha4sKWLVoAcGnYkJQB27ZR4uCTTyiQP3WK1ADFFBQAx4+TBPrzz6larVJR4F8JxZXhLVu2VLzhrVukDigxIk0vDg5Uka0FfHx8YGRkBM45BEHAuXPnhHv37pEUf9y4infu2JGMHP/6q/Tr770HzJqFrF27YBofD5msZnJEFZKYSP8a2upw4ACur18PmUzGunfv/vRvvylTpsgaNmzINm/ejPPnz9dchmXLFmDECPLDyM4mI8mSExZ0OuCllygB5OhIrz15Qs/glCmkRAkOpqq8nsBSEASMHDkS1tbWurVr12LZsmV4/Pix/rU4OdGz37EjTM+eRfu9e+EK6iN/+PChDMC1F7jSoQDeBmOvGxwB/8OoVCpPtVrtDuCpl0IxjDG4KhQYU1Bg3qNpU7nNihVOL8+Y4fnRRx8pRowYYeLs7GzwZXLOcfDgQXV+fn4ogJ01fiESEhIGIQX7EhISEhL/CpRKZSaAyTt27Mg3dGydIeTk5CA8PJwDZLoHxoAxY8oYr1WL48eB69fLfdvNzQ3vvvuu7K233sLo0aNlRmfOILtuXRgdPkzS8arQrh3QuzfUa9bggbGxHACeVmsVCvIMOHWKpNN+fiSR9vMD0tOp4j9tGkmg4+NpdJ6BvPHGGwDImK5cbt2ir1On9AZvpXBw0G/c9wIcOXIEq1ev5iqVCuHh4fD19YWbm5uuS5cuOjelEnB1rVhtAFAlv25d/UmgV16BtYUFXtuzB/JyXPprlN27gSNHDN488+uvcdzEBCNHjmQlkxGCIGDIkCHw8/PD2bNn2R9//FGTkgoK4NPTacxiSSPB3FyactC2LalJdu8mr4bERGDnTmpHMYCZM2fKfHx8kJ2djZ9//hkFRf3/nHOkpKTg0qVLuHHjBjIyM0lh8M479HO1YgXw3XcozMszBlCNsQ1F0Eg+GYClIKf6/3kYY7MAwNbWttDT07P0m2FhwJdfAsbGMPrpJ3i0aYNGjRrByMioyuc5cuSIOioq6lZhYeEoacSehMQ/h2TQJyEhISHxr0GlUlkByJw5cybs9I1tqyLx8fHYunUrrKysdJ06dZJ1KJ6vDgBxccBrr1HvuiEmaPq4epWqlJ07V75tTAx0PXti08iR3KpHD/G1116reom4oAA5rVohXhBQ8MEHaDd5ctltOCd3+caNaW3jxlElthqFyZs3b2Lfvn1cFEU2e/bsMm7rTxkxgkbqLV9e+UHfeIMMAbt0qfJ69LF7924xNjZWeOmll7ilpSXz8PDAU/dwjYYSG/v2GWZamJtLkwiOHCkzGaGwsBBrPvoIb4sijMaNI3VIbVFQQBVzQ1o8AFzy9RXN6tWD17Zt5RZ5UlNTERAQAGdnZ+7n58cEoYbqQRERwDffkGneo0fAzZvA+vXA6tVkGqhU0uft4UEqlGoQHR2NwMBA1KtXD25ubggPD4dcLoe5ubmOc468vDxZnTp1RHd3d2ZhYcGa16sHu127kLJmjXjfwaFX+0uXzr2Q0R5jclDQPwic76n2cWoRlUrFAPgACAWAWbNmodSEky1b6JlydTW8PaQcLly4oDt9+nSiWq1uq1Qqa8loRUJCwhCknn0JCQkJiX8TuQqF4q9jx4659+jRw+RF+4xv3rzJnZ2dmb+/f9nA2sWFRqtlZVUv2BdF6lE/c6bybTdtAjp0gOzyZbS4d48dPXpUptcxvjJMTJDp7Q3byEju2Ljxs521Wgrs4+Mp8ZCaCuzYAcybB7z1VrUCfQA4cuSIrkWLFrIBAwaUb1p47RopByobEVfiGmrCoA8ARFFEbGwse+ONN+Dm5lb2Iq9fp2SOoZibU6vEl19SP3kJZDIZ8p2ccDQhQTd40iQZIiLIXK428PQE/vjDoGD/4sWLyDE2Flq+9FKF21lbW0OhUIj37t0TsrKyYGNjUzNrdXICMjOBvXvpfkRGUtC/ZAlw+zbdy+7dq/0MAoBx0ci+tLQ0pKWRB1yHDh3g6+srAwC1Wo3w8HAhNDQUOTk5+NPUFB/Nn48jQM7rixYtA3AEjK0B54nVWgD173sCWAvGjoHzsuPr/kFUKpWdsbHx1sLCwgEAYGNjI9apU4eyOVot8PPPwL179LvAy6va5+GcIyIigp86dSqjyJBPCvQlJP5hJBm/hISEhMS/BqVSqVOr1d3u3bu3f/369UhOTq7WcTQaDYok3ax79+76N5LLyUzu0CFg6tSqnyQhgeToxT3J5ZGeDnzxBVVr69d/2lN++/btqp8TwMXXX9cl9evHYGxMkmgA6NABmDGD/pA/cYKC1sGDqcKang5Mr56/mE6nY+np6bzcouijR+SMHhMDGCoF7t4dqAHVBgCcPXsWjDHWsGHDsm9evQr06FH1xMLQoWQ+l5lZ6mW5XI4pU6bghouLbM+8eZwPHQocPPgCqy+HvDz6PA3o1y8oKMDJkye5y8cfw2jQoHK3u3r1KpYuXQpLS0v22Wef1VygD1Cwf+IEJX3c3QFLS5ruYGJCz1+PHi8U6AOAq6srpk2bhokTJ2LSpEmYO3cuevfu/fR9hUKBrl27YuDAgQCe+UwoPDzYdx9++AOABFDv/UwwVkE/SgVwHgXAAYANGCvnl8rfj0qlclQoFBEtW7bs/frrrwMA7O3t6QY8fEi/2+rUoaTLCwT6BQUF+O233/KOHz8erdFouiqVyuolTiQkJGoUKdiXkJCQkPhXoVQqH8+bN+8NuVy+9Pz58zpD1becc0RHR+PatWvILArUOnToAA8Pj4p3bN6c+rWrqvJ98ICq5xWxaBFJme/coZ57AG3btkWrVq34jh07oNFoqnZOAFZXrwqKmzcpmB83joLDEyfIfV8uL20WGBRECY07d6rlgD99+nQhOTmZnT17Vv/NUSiA336jEXWGkp5eJpCuLmFhYWL79u1FvQqJVq2AtLSq+wPY2VEF9NQpPW/ZYdq0aUh8/Bj72rXT8WXLKOFRk9y+TSaKFcjsw8LCsGjRIv7999/D2dlZbBobS6MZ9ZCVlYUjR45wxhhee+01JpfXoOjz6lWqGqemAqtWUfV49mzg7Fnqna9B7w1HR0e4ubnBxcUFVlZW0HcdzZo1Q7t27WBtbc0fPHgAR0dHC7mxca+iUXo/ADABMB2MTaqW4R7nWgB+AAyciVi7qFSqBgqFIqxLly4NXnnlFYW7uzsA4M6dO+ZZ587RWNBOnWgUZtHUiuqQmpqKVatW5cXHx+9Qq9UtlUpl9TKVEhISNY4k45eQkJCQ+Fei1WpToqKiZHXr1tX16tWr3P72wsJCHDlyRHf37l1BrVbD2NhYzMnJkdna2uq6d+9eeV+8jw99TZhAsvyhQw1bYEAA9Xe3aKH//YIC6hVfsaJMwDl8+HB269YtfvDgQT58+PDKE/PJyZQ4+PFHtD15ksWamYn47TcBzZqRdLo8OfnHH1OQX68emaS5uwPt2iE5ORk7duzQabVaJooi69OnD2tXlIwo5tChQ/zy5ctMp9PBxsambGC0cSOwbBkFfFUhO7v0pIBqEh0djfz8fKFbt25l31yzhqrK4eHVO3jjxtTjPGgQJVBKYGtri6lTp7KtW7eyRebmmPLSSzD66CPUmTOn3MMVFBTg3Llz6NKlCxQKhd5A9SmLF9Mz1bq13uOEhITg2rVr6NmzJ3N0dESDBg1kePAAMNY/sXLDhg06BwcH9tprr7EXGhm4bx95IDg60nM1cSIlke7epbGGs2bRfd+8GbCwAMaOBU6epETA4cPAjz9W/9wGIggCLCwskJmZydavXw97e3smk8l6AAA4TwfwHRhrDGACgH1gbDY4v1elk3C+CIwtBWO9AUSB89QavgyDUKlUJgqF4kz37t0du3XrJgPwdFJEi+vXkRkSorP6/nuZvkkhVeHatWs8ODg4X6fTvT1//vxfX3zlEhISNYkU7EtISEhI/FvZCMD99OnTM21sbNBaT/ADUFB68+ZNWb9+/dC+fXsIglAc4FfNAM/dHShvvJc+vL2BElLiUnz0EcmYL14sd3dPT0+WmZlZsZzgo4+AZs2Avn2BP/8ECgqwd9o0nY2NjdDh1i0atSeTkcu2PszNSVFw9SoFr+3bA+3a4c6dO8jMzJQVjQbUHTx4UHbs2DHu7u7ONBoN12g0LCkpiY0aNQppaWlo3rx52WO7uVHlsKoFUs6BIpl1dYmOjsaOHTvQp08frlAoyi5gwACSLleXtm3JZyEmhu7/c5iZmWHq1KlCVlYWDnMutj9zRqjTq1eZAF2r1UIURRw4cAA3b97E+fPnAQDGxsa8X79+zMvLC6IowszMDLGxsbCyskLu+PGIycxE/Lp1Ym5uLre1tWV9+vQRHB0dERAQwDUaDRs/fjxKtS6Ym1Ov/OjRpc6fmpqKnJwc2fDhw2FQoF/82QQFAc7OdP0rVlDiZN06koF/8gn147dv/yzB8Pbb5IS/ePEzZcmTonbu339/NmrRwwP46itKqMXFlZ8oewHatGmDxMRE2NnZ4fr161yj0TR97hpjwJgSgAeA3WDsCICl4NxwuQn18CtBZngf1+DyDcbIyGi+m5ubQ9euXZ/+njOSyzEnIwMXCgr4/latZJ3kcrFdNVW+BQUFOHjwYMHt27cfaTSaV5RK5YuMMJSQkKglpGBfQkJCQuLfSgGAmQCNsNPH6dOndTdv3pQNHToUL1ViUFYpKhVJsocOJWl6RYZzZ87QPHZ94+gKCijQmTatwtO1adMG27ZtE5KTk+FYsu//5k1yrL9yhSr2pqbkoB0ejvz8fOTl5Ql169ZlmD6dkgkVzY83MaGRc48eUdDFOXDoEB5kZPCWLVuKbm5uMjc3N1n37t0RFhbGr1+/DmNjY6SlpaFly5bw8vKCl74+3wkTaJLBkCEVXqNe6tc3vL9fD1qtFvv27RN79+7NunTpUjbQDwyk4xf1L1ebwYPJSb6cVg3GGKytrdF40CC2XaPB5FGjuOOUKQzz5gEAMjIysHr1aq7RaJgoiujYsaOuW7dusvDwcJ6QkIBz587x4OBgVnwsxhjs0tMx5OBBpH/5pa5Zs2aCpaWlcPfuXd369eshl8uh1WrZ4MGDUcajoKCAntnFi0u9HB4ejrp163JXV9ey96l4asPeveSjsGoVsGsXPXe//kqVe19fmprQvHlpf4KSkw20WurXT0rSP5Vi2DD6Asihv3Vr4NgxYMoUei6/+oqSK6+8UtknYhDW1tbw8/MDAHTo0IEFBASUNf6g3qAYMNYZwNugiv8fAPaA8wIDT9UHgA6MvQZg9wu5/VcRlUplJZfLZ/fv39/0aTeCRgNMngxrT0/0+vBDdvXXX8Xg4GChSZMmsKrimNGEhATs2LEjT6vV7tBoNLOUSuX/lCGhhITEM6RgX0JCQkLi3woHgJEjR+o1FMvLy8P58+dlw4cPh7e3d82c0caG+ozv3ydH9PI4dky/Md+771LQExRU6alcXV0hk8l4enIyc3R0BPr1o6Bq4UJKOHBOxn4luHLlCjIzM1m/fv2oNWDePEoqHD1a/ti7rVspEACApCRoX38dD+fORdt+/Z5WBK2srNC3b1+hb9++AIAzZ87gjz/+wLBhw1BmRJtGQ0Givmq/ITg4kIlbFRBFEXv27OHx8fEi55yZm5uzjh076pcUXLpE9+a116q3vmL69AG+/hq4caPCCnT79u1ZamqqeNzamvk1aABs2waMHYsVK1bAxsaG+fv7Qy6Xw8TERAYAL7/88tN1azQaPHz4sNgpH4pz54CkJIwdO/bpZ9O6dWuZlZUVzp8/j9atW6Nt27ZlF+HiApw/T89MCaVFjx49sGbNGr5QpWLTuneHY0QEMHkyBfHGxsB331F/fatW9Ox+/DHQoAEQEmLYPTpyhKr258+T18Crr1a8fb9+9O+IEcDw4fTfCQk0tjE+ntppHjygtpV69ao/ErOIIuf+8uU6nGsA/ATG3AHMAlAHjN0DcKjS4J2q+6ag/v37AP58ocVWAYVCscjT01OwLU42RkcDfn6kuOjaFaYyGSZPniysXLkSy5Ytg1KpNOi4nHNcvHhRPHnyZK5Wqx2zYMGCWnCglJCQqEmkYF9CQkJC4l+JUqksUKlUW/bt2zfexcWFlQz4Hz16hA0bNsDW1lbn5eVV9Xn15SGTUQBz9ixJl5cu1b/dyy9TgFQM59Sb3LIlyZkrIzcX1y5cgEtyMlp07UpKgI8/JlMzKysKMp/jwoUL/OzZs6xp06bPJNleXlRZPXaMevP1mbotWkTz4zdsQODp09r4efPk7Vq04O2dnMrV3/v4+ODUqVNITU2Fo6MjCgsLUVhYCCtBoJnqwcFVN74r5tYtul9duhi0+YEDB3DlyhVYW1ujT58+MrVajTZt2jztTy7F/fv0mdXEDHmZjIKnPXsqlZunpKTwhm3aCPDxoWD62jU4eXqKiYmJQn5+PuqVM0LPyMgIpcZL2tmRF8Jz9O7dGxcvXsS1a9cwVJ+nhCDQsxcVBdjbk2FjaCisJk7EpB9/ZPGurqjj6EhBYUEBsGEDSeqtrAB9ngeGcvgw+S8MGkSy/Ph4w/ctTkqsXUv/ZmfTsyWXk4M8YzQpY8YM+nmoRlvGnTt38gsLC1dVuiHncQDmgrGOAF4F0AeM/QjOK74gzvPBmAsABRgbDM6Dq7zIKqJSqdooR79xAAAAIABJREFUFIo3+/fvbwoAuHCBkjbffkuTD4qoV68eXn31VURERGhhQDygVqvx+++/F8TExNzXaDT9lUrl3Vq7CAkJiRpDCvYlJCQkJP7NTBdF0S80NBQDBgwAANy/fx8BAQEwNTXl06ZNk5WpPNcEJibUB6/TUdBXksePqW+55Pz2WbNo+wp69KHVUgV+0CCgfXtYurnBaPx4kc2YIYOJCfXll0NiYiJCQkJY27ZtMajkiDVBIBO0776jYEvf5IF3333qRSCKouDUoIHou327gAcPqB1B7+WboGHDhnzt2rXMwcFBfPz4saBWq9EpNpZ3unKFGX32GcyqG+wXFgIZGQZteuvWLVy+fBn+/v5wcXFhlX7WnToBH3wAVGCWVyW8vMhwLiGBWin0cO/ePaSkpMiGDh1KwfOGDcDlyxgWGCiscnBAQYGhqnBQe8SqVWUSIYIgYNKkSQgICEBsbCwaN25cer/wcHpmu3QBFiwgV/zkZMDeHofHjhVN2rZlbUePFvDWW7S9i0sVboIeRJE8DUqa7j169GKVeEtLSpQAzxQD+fmUeFMoSOVy4wYZTT56ZND4xsTERA2ASwavgfOLYOwSgJYAtoOxYwAWFrnwl7ePFox1ALARjDUA5y/uPlkOKpXKWKFQbO3fv7+JuZkZtW2cP0+Jyfr1y2zv7e0Nb2/vSmOBx48fY9u2bXk5OTkH1Wq1v1KpzKuVC5CQkKhxpGBfQkJCQuJfi1KpzFepVIiIiEDTpk1x4sQJMSkpSbC3txenT58u1EqgD9Cc89OnqbLbqhXQv/+z9548oYDd2JiCnkuXyHn888/1H2vHDgquBAHw96fq8+XLOLZpE29Sv74MTZvq36+Iu3fvYufOnfDw8MAQfT3y5uZULff0BGJicPT2bVy6dAkKhQIuLi6wMTGB2w8/YHffvmAymaDRaJDz88+wsLSkYMrUVO95/fz82NWrV5Gamio0atQInerVw+nTp9mWVq3ER999J8jlcnh6eordunUTHBwcDLyxIKm2hYVBm96+fRv29vZiw4YNDfugr117oRFjZbCyIsO5mzfLDfYfP34MuVzO69SpQ6VqS0vcsbFB7uXLmOLtzR1cXAxzMOScEjOdOul9287ODpxz2Jb0iXjyhFQb48bRvPtJk+gZKyHl7/nuu7KNGzeCc16taXN6uXSJRv2NH/9M4fHwISp7lquETEaeFdev0/eDBpEpJuf087R377OWAz3JHa1Wi4yMDDMAVRsXQYH9ZTDWH8B4AHvA2C8AjoNzXTn7/AnGHAE0BGO24LyaYyAqRiaTvefk5OTextOTYc4cMhXdtMmgxIc+RFFEWFiYePLkyUJRFD/W6XS/KJXKv817QEJC4sWppb+CJCQkJCQk/j5EUcSWLVvAGBOGDx+OWg30S5KeTpLokuzcCfTqRf89bx7NZPfxKV1Zi4ujwAsgF/xz5yiIS0ujJIGpKbKzs7khxlnbt2+HQqHA2LFjy99o4UJSDdSti9DQULRv3x6Ojo7io0ePeORff8E9MhJ9X3oJnp6eaNKkic7I0pKSD/XqlatGEAQBbdq0wYABA9CvXz9YTp+OwU+eYOb77wt+fn4YMWIE8vLy2Jo1a3D3bhUUv5mZz5zaK6CgoADXr1/H4MGDK/+gtVpKdjx6VFaJ8aL07EkV7Dz9xc6WLVvC1taWL1myBIGBgVyr1eLEhQu6jK++gsM77zC88QaQY4C/2YED5bdiAHjy5AnkcjkF+5wDERGUhDp1ipIRERE0hSAhodR+Li4uMDIy4tHR0VW9cv2cOQO89BIlrUqqO7Kzyx8BWRN06EA+DIyRUqVfP0oEHDhA7/v6Atu30z1Uq5Geng6FQpGsVCqrN/qB8yxwvhLAJwCmAJhQVMEvb3styOxvWbXOVwkqlcpNEIRPB/bsafp/7J13eFTF98bfuVvSQwqhBUKvIRA6qEAApYQuX5qIoIKKFBVUUMr1UgQFURRpKqBICSC9hdB7CySEEgiRQAghPaRsdveW+f0xCXVTKaK/+TxPniS7c+fO7C48eeec8x7y2musS8SoUSUW+nfv3sUvv/ySfeDAgXOyLDeaNGnSfC70OZx/Hzyyz+FwOJx/O14Gg+Eve3v7Fv369bMrrrP0E/Httyz6/cknrG7Y0ZG52r/2GkvvHjMG+PLL+wLzvfdYJLhDB5ZKbbWy+nYbNGvWTNizZw+qVq1qs6abUop9+/ZpmqYJw4YNe9wo70Fq1ACmTwd96y3UCghA848+gpub2/0LPvsMLVQVLZg4u6+Gjx9nwu0RY7fHSE5m+61ZEwBQrVo1AEC9evXIsmXL6NmzZ2m1atWKdvpC6X3DwAI4duwY3N3dtUqVKhU+r6oCr79uu4zhSalShR3k7N/PosuPoNfrMXz4cCEuLg7Lly8nK1asQHp6uuDl7c3KACpWBBYsYNHngkoftm8vMCvhjz/+0KxWq4Bjx4DPPmOt8BYtYk72eUyYwMokNm9+6FpfX1+yfft26uPjQ+yf0PQOgwaxfwtvvfXw45UqsdfqeZC3hwED7rcb7NyZRf5DQoDevZF88iQanD59F4Q0AaVFT+V/FEovAegLQroBeCfXwX89KL1tY+ynIESfmxVwoljt/ApAkiS9nZ3dxi5ubg5lundnpQwFGYgWQnR0NNatW5ejqurXiqLMEkVRexrr5HA4zx8e2edwOBzOvxpRFJOtVmu7nJycmQsWLMiJjo5+vgswGlld7JkzrNZ85kxWR7xwITMNi4piIlhVmdgpX55937evQHFXr149qKqK5ORkm89rmoYjR44IgYGBRWudJYogDRog08dHu3r16sPPjRrFvh7Fzw/4+Wf2PT9u3mTPu7nZjJp369aNREZGCosWLdISEhIKX2dWFqsnL4Tz589r/v7+heedW63Ad98xAfqssj2++Qb46af7/eJt4O3tjb59+yIjIwOUUpKWlsZer9mz2QFQ9+4ssyM/pk1jBnX50Lp8eaHJ6dMwXbzI2tbVrfuw0AeYud/atSy6/eC1rVuDEKJ98803OHz4cMmEXVYWM+CLiXlc6APAb78VfGD0DElNTUX6O+9A8/Vl2Q4xMbh0+bK58eHDKoAeIMQBhISDEPsS1zIw871PAUQCWAxCxuUzTgEwA0ARnDqLhpGQr/yTkmo3WL1ah23bSiz0ZVnGtm3bLEFBQWkWi6XLxIkTv+ZCn8P5d8Mj+xwOh8P515P7B6kkSdLBoKCgDS1atHBu166d4bmk8ut0LNX977+ZyLp0idXzr17NovqSBIwYwcZ++WWRpz1w4AA8PT1pnTp1bIqP+Ph42NnZ0caNGxdNnFStCrz1FtpNm0YcfX1ZaUEeAwawdnm2GDiQXWsLSlnZwQ8/sJZ5NvDy8kL//v2xfv16EhoaisDC+qV7ebE68wLIbTEoNGuWf9b0A4NZ3XJuf/tnQpkyQJMmrOtBly75DqtVqxaqV6+OQ4cOYd++fahevToqVKjAXNIPHmQlIe3aPW6mduMGS1O3dQhisQApKag/YwYiy5al9u+8Q/ItVXByYoc3q1YBR4+CUort27eroaGhOkKIDgBKlSolKIoCnU5XPN07ZQqwZw/zRXgUSlnpSoUKRZ+vhJhMJkRHR+Pu3btIS0uzxsXF5SQkJJQCgFq1ask9evQw6FxdERUVhcsffthFFMV4EOIG1hrPAmAbCBFAaRcQMgQsSl/wBzIPNm43CLkAIBCE7AfwGYDQR1r1tQSggpDXQemGJ9nvvM8++6jDyZOfNypd2kD27mXdCkpAYmIi1qxZY8rOzg6WZXmYKIr5tyTkcDj/GrjY53A4HM5/BlEUD0iSVPf06dN//f333/79+/d3ei5p/YSwmuStW1kkOTycCeB69Vjq9dixxZ4yICAAixYtIhaLBbZSq93c3GC1WomiKNAX8Q98c6tW8ImOJhkhIcw8LY9WrVj/d1t4eACBgcDLLwOffw707Hn/ublzmQO6jXZwD1KzZk0IgkCSk5MpgIIVpJdXvqaA9/aR62AfHx+PypUr5z9QllnWwaOZDE8bQoBu3dj7Xgg6nQ4JCQmqt7e3rkKe+CWEieXt24EhQ1haf24pxL3nv/ji8cyJ2FjWu75LF5ydPx/nL1+mTXW6gl/fXr2QnJGBpMuXcezYMZqcnCyULl36XgbJvn376MaNG4ler8eYMWPg4uJS+P6Tklj2RD6+BcjKYiUtT1oiYANKKeLi4nDlyhX13LlzOWazWW80Go/JshyhKEosgAgA5wGUiYmJGTt//vx+DRo0cDAYDOcnTpwYnztJOgDWioCQPgDKgBA9gNkADoCQngDagNIPirio2wB+BSFnAMzL/fk4KL2W+7wCQkqBZQBcBqWXS7L3LT16vN4yOXmOb/fuesOnn5ZI6FNKERYWRnfu3JmjquoYTdOW8tp8Due/Axf7HA6Hw/lPIYpigiRJbRITEycvWLBgfJ8+fRxq5taSP1P8/VnK/po1LFXaYGCCrWdP9r2YWQYpKSkwGAw2hT7AWroZDAaqaVqRw6+7wsKQ9PnnGOrszARYnuu9Xs+yDgIDbbboAsBq3h9N55dlJnKLgKIocHNzK3ytiYmFpvGHhIQAQL796e8xZQqwaRNwuURaqng0bQr8+CPQvn2hrvPVqlXTHT16VMWD/ggAq/mPi2NZIhYLS8UHmIHja6/dH3flCjB+PPOKmD0bpx0csH/HDrz88ssaCivR9PbGusxMNBg2DNn9+2sfffSRLu8zZrVacenSJVK2bFn8+eefdNWqVcTb21v19/fXlS5d2vZn8fZt9vm+eZNlONgiKYml9z9lEhISsG7duuzMzMy7mqatVRRlGYDLn3/+uS3ThzsAhk6dOnXV+fPnJ1ssluk2J6XUDCDPxZBtiJD6AG7n/pwEYDiAwwAagtJ9+S6Q0jAAbUHIcABfgZBNYK796aD0LgipAMAehHQCpcHF2fvujh07N710aS3Gj9c5jR5dnEvvYTabsXXr1pxr167dkWW5myiKl0o0EYfDeWHhYp/D4XA4/zkeSOvfv27duo1NmzZ17tChg1H3tJ3YH8XHh0W/AdbuLjgYCAtj0drWrZkJm5dXkRzh9+7dq1arVo0gH/GWkJCAMmXKwFiMfvbVq1dHZGgo5DlzqP7nnwnJc2YXBObaXpBz97hxLIrfuzdrazZ+POsoUMT6YEpp0bwFMjKAa9fyfVrTNFBKMWTIEDgW5u4uScwU8XlgMLA+9sePFyr2jUYjzcjI0CUmJqLMowL5vfeYgV6ukIefHzB9OvD990xMr17NMkZeeol9GQwgZ87AycmJvvrqq0X6u66ct7da/9o13cvvvad7MNpuNBrh7+8PAAgMDCTBwcFaSkqKbvny5aCUwt3dXUtJSRHefvtt+Pj4AGYz86CIispf6APMxNLJqShLKxImkwlHjhyxnjlzRlZVdbSmacuLGo2eMmXKbgC7i3VDSrcD2J7726sArgHoDmAmgKog5AcAe0Hp1nyu/yVX6HcE8BMICQalf4JSGYS8CmApCKmYb+u+ByFESCtV6p0aXl4LMpcv19V+9dVibYUthyI8PBy7du3KoZSutlqto0VRzCctg8Ph/JvhYp/D4XA4/1lEUTwkSVKd0NDQv2JiYhr379/fqdTT7LNeEHXqsC+A1XOfPQtMmsTE7NChTPy88opN4W+1WpGRkaEbOnSozalNJhNOnDiBbt26FctMzM/PD97e3gi6dYv069ULTg+67G/ezKLJkyfnP4GHBxt/5w5z/B4/vsj3NhgM1GKxAIWl8derV2Aavyk3VTx3rvz55BMmQJ9lrf6jjBgB1K8P9OjBzBltQCnFkSNHULly5ceFfh49e7KU91u3WBvC3btZ+8ARIwBXV2D48HuR/mPHjmH//v15Uf1CT5EopTBUrkx+Gz9eHXvzpi6/gwlfX1/4+vreO2hKSEhAVFSUsHfvXixbtgy+vr5a1wkTBMPrr8M0aRJcKM2/xv/q1aeSwm82m3H06FH55MmTKiFkjSzLU0RRjH3iiYsDpXm1GmtyvwB2IKeCkIYA9gMoDaAugNugNC33uiQAK0FIGIDmICQYwMegdCcI8QFQG4QQUHox33sT4nqrQoVBVienb2/MmkXblUDoZ2RkYO3atdlJSUk3rVbrEFEUTxd7Eg6H86+Bi30Oh8Ph/KcRRTFJkqSApKSkiQsXLvzi9ddfd6hVSOT1qVO1Kvvq04dFQe/eZTXOH3/MXNbd3Zkje27N7bVr12Bvb09dXFxsqqfQ0FAoioKGDRsWeylbtmxR79SooXOYOJEdPkREsCfc3Ji4LIgKFYAVK5gHwcKFTPwXEVVVyc1HerzbxGxmXQ3yIS+aX6j5Ys2a+ZckPCv0evaezp+f76GJoihITU0l7xWWcdCpE2sT99ZbQEICc+tfvfqhDg5WqxVHjhyhfn5+JCAgwKbQN5vNiImJQWZmJjIyMmhsbCyNjY0Vhg0axNz6DxxgJSiFULZsWZQtWxaNGzfGkSNHcOvmTazs1UtLsbMTzN9/j06dOtGWLVvaVvuZmazF4BOQlJSE5cuX5yiKslmW5S9EUYx5ogmfJpSOAQAQYg/gTVCqgZDvAKSBkEEAggC8A0ozQelFEHIJQBSAJSDkVwA7AYwDUB6AbQdLQqplOjtPulWt2gB11ixjwEsvFStNSdM0nD9/Hrt27cpRVfVbRVFmiKJYeCYBh8P5V8PFPofD4XD+8+Sm9U+TJOnA+vXrNzZp0sTl1VdfffZp/bbI8w9YvZpFbTdvBtatY6I7MhLo0QPJhazL3d0djo6Ohddn28DBwUHQGQwgU6awPuyqyrIL3n33vvAvCEliRoQ1agAdOxbpnpqmQZbl/CPZD2I0PtYa7kHu3mWtyTMyMvKfY8MGoH//gssSnhW9ejHHe5MJsFFmYDAY4O3trS1ZsoS+9957ugLLMF57jWVbmM1MMN+4wV6b3NKJ7777jlqtVlK1alVcuHABiqJAURTIsgxFURAXF6dGR0frHBwcVHt7e+ro6Kj39PQkLVu2RPlq1YDQ0IeNAIuAo6MjOt66BcycKWhRUYiKikJYWBiOHz9OmjdvbvsQpkyZ+/4QJeDGjRtYtWpVjqIoH0yePPmPEk/0rGH1/jtyf+4MACDEBUzE54CQnwBUAKV9cmv/2wCYCGAZmBngGRASCFYScD91hZCAxNKl+5xs02ZguQkTjC2bNSvWv/v4+Hhs3rw5Oz09PcpisYwWRfHIE++Vw+H8K+Bin8PhcDj/bxBF8bAkSXXOnj277vr1680GDhz4/NL6beHuzlL6hw5lwn/jRuCXX2BMSqK9KlcmCA9naeEPiH9ZlhEcHAxnZ+diiX1FUXD79m1cu3aNuLu7U/TtS3DsGEsNX7KEicjOnZn5W36vSVwcM/KbMIFlAixbBrz9dpHuLwgC3NzcCh+Ynl6gq727uzsIIUgqqCf9Z58B33zDnOqfN+XKsfcrJOThzgUPMHjwYGH+/PnYvn07evfunf9cmgZ8+inbh07HzAZ/+IEdEN24AUedDsTODnv37lUEQUDel06nI3q9XihVqpTugw8+gKenp+3To+rVWZeFzz5jhxRFpX9/wNsbgiCgdu3aqF69OubOnUtXr16tDRo06PF7HTzI7lMCIiMjsWHDBpOiKL1z6+3/XVCaCeAVAAAhiwCUza13OAegA4B9ANwANAPwPwA9wLwAFuaO65Tq7i7tev31Bk0/+siuXr16RS7dSUlJwZ49e3Kio6Otqqp+oWna4tyDTw6H8/8E8nDbTw6Hw+Fw/vtIkiTo9foJgiBM6tOnz/NP6y8ATdPw47hxeLdyZbhUrcoM/9q3B6ZMQQqAPYcOITIyEpMnTy48lT2XiIgIbNq0CZRSNG7cWOvQoYPg4OAAbNvGDPeio5m54Pr1TPDbisIqCnOcHz2aZQHcuQM0aABcvMhMBwth4cKFNCkpiQwcOBAeHh7wzC/qfvgw69cuSfnONX/+fKSkpGDcuHFwfnStsszS6YvTI/5pc+wYcPIk8NFH+XZh2Lhxo3L+/Hm9vb097dChA2natOnjg2bOZOUeiYlAly4sU2DVKhbp79oVSZ6e2FOvnjJw2DA9Stpx4ocfmHeErfs/isXCzAe3bAEeKSHJysrCTz/9ROvUqaP17NlT99Bns3179n62bl2speXk5GDu3LkWRVFeEkXxbLEuftG5b3DQH0BvUNofhEQCOADAEcBFChiia9QI2DVgwEv/GznSoVy5ckWaOjMzE/v37zdHRESoAGYrivKdKIpZz2IbHA7nxYaLfQ6Hw+H8v0WSpJcNBsOmxo0bu7722mv/TFq/DWbOnEnbtGlDqlativIAyKFDoBERuLRpEy7XrYvarVrBb8wY5gBfCJqmYebMmejZsyetX7/+4wr4xAkm9gcNYpFjStkBwKNYrexwoFevhwVsejqrKS/Eld9qteKXX35BcnIynJyc8Omnn9oeeOECcOYMy3bIh5iYGPz++++PH3hkZDB3+MhIoFKlAtfzzGnfHpgzh9XF54OqqtiyZQtNT08nb9vKkFi1CtixA/jzT+Zor9ezDJDccoj1f/6peu/YQVodPizg+HHg9GlW21/cfus7djDDyLZtCx5HKTBvHjBmjM1DjIyMDCxcuJD6+/trnTp1uv+P6auv2DXF8HgAWPr+mjVrrowfP75OsS78t0LIu2AGf/Mo0O1848Z/Hx88uGz/IUOc3PMxfHyQnJwcHD582Hr69GmVEPKLLMtTRVFMeebr5nA4Lyw8jZ/D4XA4/28RRfGoJEl1wsLC1l6/fr3FgAEDivRH9bOmbNmydM+ePUSn00FVVYwaNQoe/fsjxGzGm927o/T8+cwEbskSJrpeeQWws7M5V3JyMhRFga+vr+1Qt6MjS8VPT2dp+tevPy72w8PZY5GRj4u80aOZsd/+/QXuyWg04v3338cPP/xAs7OzSUxMDKpUqfL4wOxs4FLB7b59fHyg0+kQHx8Pb2/v+0+4uAC7dv3zQh9gnQpmzQLWrs13iE6ng7u7O0lKSnq8JMNiYbX/eR0PHBxY1kK1akBwME7odNqVGzd0ry1cyJzuk5KAuXPZ4U3v3izbonr1oq11wwYm5AsS+yNHsvKOr7/Od4irqyveeecdsmTJEl2LFi1Y2Qal7DP1yOfTarVix44dSE9Ph4ODA1xdXeHu7o769evfy9bw8PCAoiiVJEmyF0XRXLTN/Ks5HFWjRoVLDRsmlU5IyLo5YkT5Yf36OegLObyxWq04efKkeuTIESuAdYqifCmKYtzzWTKHw3mR4WKfw+FwOP+vEUUxRZKkV1NTU8ctWrRoaq9evRzq1q37j65p6NChgslkgqOjIxYuXEhXrVoFR0dH7a6rq27Z6dN0xPLlxFlRWC10cDAzWrt2DejbF2jX7qHI7tWrV+Hp6akRQmznkzdowKK1zZoBjRoxw75HMZuBUaMecoK/x/Ll7HtKSqGGeHq9Hp9++ilZunSptmrVKuH9999/PJ3fZCqwZh9g9f/u7u7qsmXLdKNHj0apUqWAmzeBDz4Atm8v8NrnRvv2wKFDzPTQz++xpy0WCw4dOqSdO3dOeOWVVx5/b3buZBkOD2YGGAzswKViRfz966+0fPnyuOc5UbEiK4GwWln6/+LFwLlzTPx3755vOQEA4JdfmChPTc0/+v7KK0Uy2fPy8kKZMmW0efPmCR4eHni9Wzd4G42AkxNiYmJw4sSJPP8IzcPDA9WrVxeys7PV1NRUGhMTI+zZs0dwdnZWO3TooPP19UXp0qWF5OTk0WAGdv8qJEkiAJwe+NIDyAKQAIACaA6gLNG0DAD+I8qU+SLD3d2dvvmmUqVZM/uXKlTIv50hWBvFiIgI7Nq1K0fTtL1Wq3WcKIpXn/nGOBzOvwaexs/hcDgcTi6SJDU3GAxbGzRoUKpz5852hUXUngdpaWk4cOAAXFxccObMGWqxWIijoyM+++yz+4NMJhadXb+eibKMDFZ737w5Dh07hmPHjmHChAn53+T2bVazPWoUi9wmJt53kp8zh4n4goz4FIVFfffsAVq1KnRPmqZh2rRpqFKlCoYMGfLwk1FRLBo+cWKBc8THx+O3337DiBEj2IFBeDgwezZLeX9RWL2aOejbeO3PnTuHXbt20SZNmpCOtroa3LjB2uI9+voAwPr1sLzzDhZPm4ahb78NV1fXx8fIMivPeO89ZhTYuDFQuXL+7vszZgBr1jzekSE6mh2i7Nr1kFFkQWRkZGDHjh1ISEighr//JsOOHcO2L77QIiMjBV9fX81oNMLb21vw8/N7TMyazWaEhYXRQ4cOEbP5XjD/+ylTpowtyr0lSXID8LcgCCs0TVsiimL+feufAZIk+QAIdHBwGGC1WlsCEHQ6nWIwGFRCCJVlWW+1Wo2EEM3FxcXs4eJCe3/+uXPksGGq1quXoV79+nBxcSn0PnFxcdi6dWt2enp6rMVieVcUxWPPfHMcDudfxz//VwyHw+FwOC8IoiiekiSpdkRExOobN260HjhwoJNHMeuMnzbu7u73HNsbNmxIFixYAJPJhKioKNTMM2VzdATefJN9JSQAe/cCiYlQq1SBU/nyeH3mzHxbwQEAKlRgUX2TiaXlWyz3x4aEsBTugtDrgatXAW9vJvwLOSQRBAGBgYHYvXs3bt26hYoP9mC3Wtn9i8jJkyeVQD8/PQyGF0voA6x13q+/Ppb1YDabERISgooVK5KHyhDysFhYxsUHH9ie9/XXYa5QAenBwVi9ahV9/4MPHg//GgxAnTos+0NRgHHjWMvEo0eBs2eBwMCHo/2ffMJMAB+FUva+FsPPwtXVFf/73/+wYcMGknXxIi7Y2dHIyMi8TI4CXSXt7e3RsmVL0rJlS1gslrze8B9KkjSliCZzpQG4a5o2Rq/X5wAo4JTryZAkSa/X63cAuKHX68uqqtrcaDSWqlGjhla3bl3HatWqQa8k8MrtAAAgAElEQVTXw2AwGB481FAUBWpams5u2jQD5s4FXFzQrFcvwWbmzCMkJSVh//79OdeuXbMoijKOUrqcO+xzOJz8KHZ/Xg6Hw+Fw/suIophutVoD09LSvly0aFHOhQsX/uklAQDCw8OxYMGCe78nJyfbHli2LPDGG7jZuDHmDBqEm5UqoealS8Bbb7E6/5AQlpb/KNu2sci8kxMQE8MeW7SIRdl79Ch8gd7ewI8/FmrUl0ezZs1Qrlw5hIaGPlw34OhYJGFZvnx5vPXWWzh79qz+1vjxtCBDv3+M0qWZF0JIyEMPWywW5OTk4M6dO9i+fTvmzZunWq3W+wOyslgkvkMH2/MKAu5WrIhBK1bgfzt2FNx2gBAm/H/8kWVN3L7NvAT+/JOVPFy/zsY5OrJxr756/9qRI9nhS16pRjFYvHixmpqaqjVr3RqlevYkY8aMyb8Dgw2ys7Mxa9Ys7NixA5qm2QEoUm9AURSv6fX6HwBAUZSHPkiSJDlIkuQhSVLhqrqIUErLKooyzGw2d5dluSyllNjb2xvPnz9vPXDgAGbOnImtW7daH7xGn5ICu+xs4Phx9l7362e7ROYBMjMzsWnTJvOSJUuyrl69+rUsyz5TpkxZyoU+h8MpCJ7Gz+FwOBxOPkiS1NhgMGz19fX1DAwMtDMUwf3+WaEoCmbMmIHmzZvDw8MDzZo1y7f13t27d/Hzzz9DlmVMmTKFpUonJTEn9wkTgLAwZu6Xk8Nq/PNqsdu2ZY7uvXoBY8cyEXLhQv4ZAY9iMgHnzwMtWxZp+IYNGxAbG0s/+uij+4I1IoI58YeGFmmOGdOnQ1FVfPrxx3DKq19/kYiOZiUQhw499HBOTg7s7OygaRp++ukn6uXlhTfffJO9Dhs2sJKEw4fzzZKIj4/HxmnTkOPsDN927bTOXboUPYBDKaBp7HW+cAH46y/gyhVWAjJkCCs/MBqBjh3ZOvz9i7XlgwcP4syZM3T06NHEuH49yzb55JNizQEAISEhOHbsGABkA6gmimJiUa+VJOkbAJ8D6EYIcbWzs5tqtVqrCIKgqaqq1+v1d3U6XQaA8xaLZSOldK0oitnFXiS7lxNYu7xkADUEQdivadq9lI2BAwfiXnvP6dPZv72bN4s0d0pKCvbu3ZsTFRUFQRD+sFqtn4uimFGSdXI4nP9/cLHP4XA4HE4BSJLkamdnt8LJyenVgQMHOpYuXfofW8v333+PjIwMfPHFFzDaiARGRERg48aN0Ov1qFChAn3jjTeIrXHIyGCp3Nu2sVTurCyW1t26NRAUBLi5sciypydQku4EjRqxw4LBgwscZjKZMHv2bIwaNep+1DcmBhBF4Pffi3Sru02aINrNjQa/+ipxdHSkVapUod26dRNelDaKAJgPgre37fp7AAkJCVi2bBmaN2+O9gEB7PXv0AHYuLHAaRVFwcHgYLTs2xdnZs/W2o4cWfyMTVVlhwoTJrDXPS0NOHmSvf/5rLcwFi5cqDZq1EjXsmVL5gVQqhTzgygBv//+e2ZMTMz7oiiuLu61kiRRAHBzc8vu3r27k4+PD/R6PSilSE9PR05ODhISEnD27Nms+Ph4HSHkG0VRZomiWPQ6Etv3dQKQ1bBhQ/To0YMdyo0ezbJuPvqIHbQUcDBFKcXff/+NsLAwc2RkpApgtqIoc0VRzHySdXE4nP9/6L766qt/eg0cDofD4bywBAQEWPbu3RtksVhSzp07197V1VVfrly5glOnnxFNmjTBuXPn6I0bN9CgQYN7a9i3bx+CgoLo5cuXSZ06dai/vz/p2LGjbaEPsDZoVaqwyG27dkz8BwWxyPySJcBPPzGDuIJM+QrCwYEZBDo5FTgsODhYS0hIIHfu3EFGRoa2c+dO6mQ0EnerFRdcXBAfHw8PDw/cuXMHsbGx0DQNTk5O0DTtXlaDfcOGKN+nD7Hz9oajoyMJDQ0lPj4++Ke9Fh7C2ZkdXvTpw9LqH3vaGU5OTjh+/Lj60ssvC/D3Z++Lj0+B0wqCgGq1auGKyYTdZjMpW748in0YJQjss/DuuyyLYPx4FulPTgbeead4c+USFhYGNzc3VKlSheDMGeDll5kvRBG5e/cuIiMjIQgC7ty5oyYmJh4ICAgoWqpHLl9//fV+g8FQvlmzZrr+/fsbPT09731mCCFwcHCAi4sLypcvj8aNGxv9/PwMCQkJzbOzs9/at2/f/oCAgCJnETxKQECAfPjwYdc6deq0qnr1KhP5N28Cvr5A/fqsVaINrFYrzp07h3Xr1mWdP38+NiEhYZ6qqgMnT54cHBAQYLV5EYfD4RQAN+jjcDgcDqcQRFGkABZJknRsx44d26Kjo726detmn6+YfkYYjUaoqkqio6NhtVphNpsRFRWFw4cPo1WrVmjevDnc3NyKdxCh1wODBrGvtDQWVR42rFgmeY8xZAhr+/a//zFHeRvlBlevXkVoaKgAAAkJCTQtLY1WqlRJt3v7dliCg7FL06her6dbt24VCCFwdnZWs7OzdV5eXoiPj0dAQIDWZsMGgQwbBtSpg+a58yYkJGgrV64Uxo4de69f+z+Ovz9LkT97FmjSxOYQHx8fZGdn6+40b45yOh3w7bdFnr6uJMEwcyZ1bduW7F+1Cu3aty/62sxmdrDz008sol+mDMvyKKQbQkH4+PgIN2/eVAHokJRUrGvv3LmDpUuXmnU63V5VVVvLsuwK4FZx1yDLckCzZs3QqVOnIo13d3fHm2++6Xj27NlqISEhJ7/55pujZrN5kiiKJ4t776lTpwYaBOG9apUqse4Uf/wBjBmT73hFUXDq1Cnt0KFDFkLIMbPZPB3Awdz/dzgcDqfEcLHP4XA4HE4REUXxvCRJ9a5evfrbggULug0cONCxbNmyz3UNFosFRqMRM2fOBMB617/88st49dVXnzzbwN0d6N8f6NuX1fNv3MiM3fbvL/5cVasyN3gbUEqxb98+rWnTpoK9vT3atWtHBEHQAUB2o0YwbN4M/wkTCABiMpmgKApcXV11QUFBNDIyktSoUQPHjx0jVbdtg6ltW9SsVw95aftDhw4Vpk+fnq+fwT8CIUxE796dr9j39PREv379cDUkBOTKFVjKl0c5qxV6vb7Qvej1etQZOZLclmUcPXYM9Xx9UeDnklLmiUApSyv382MGjlFRrANAYCAwcybQrBkz7SsGZrMZWVlZMJlM7PNYunSxovrXmWHgmvHjx78tSVItvV4/TlGU4GItgtEtLCxsY2BgYJE3QAhBkyZNSIMGDRzOnTvX4eDBgy/NmjVrj8ViGSqKYlph10uS5GVnZ7eg0t27Xd9autRBN3IkEB9v87ALYC0ow8LCsGfPHpOmaccsFstYURQjbA7mcDicEsBr9jkcDofDKQHTpk0bqtPpfu7UqZND48aNyaP9wp8FN2/exLJly9ChQwfUqVMHK1euRHp6Onr27En9/f2f/gIiI1ld/6efMtO2gQOLP8esWUCtWsDrr997KCIiAjt37tTGjh0r6B81oMvMZFHQZcsem0rTNJhMJjg7O0MJD8exu3dx4sQJLScnR6hXr57q7e0tXLx4kd65c0d49913UaEYIvNpYzabkZqaCovFgrS0NDSsXRu6N94AVqwAXF0fGkspxd27dxG2erWSvX27nuh0CG3aFJqmQafTwc3NTW3atKmuefPmDwn/5OTkx9L2b7duTS85ORGHyZPRqlWrhw8KEhKAy5eZE39CAjBlCjuEcHAAunUD5s5lGQgASzefM4eVYxSR6OhorFq1Cm5ublpgYKBQvXp1wMODZQ4UoXc8wDI+Nm3adOLzzz9vVeQb20CSpAaOjo7HP/74Y8eSGmsqioIdO3aYIyIiVEEQVlqt1u9FUYy0cS9XvV7/WfnY2HGtMzIMlX/5RW8MCWFGlzaglOLixYvYvXt3ttVqvWyxWMaIoni8RIvkcDicAuBin8PhcDicEiJJUh2j0bijevXq5Xr06OFgn08t7tPgypUr2Lx5M/Xx8dH69eunEwQBOTk5UFX12aer37jBDNuuX2eirTgHG2PHAtWrszZuYIJwy5YttHr16qSHrZZ+WVnAZ58BCxfmP2diIqtnv3ULqYKAFStWUFmWqZ2dHU1PT9dpmoYGDRpoOTk5WqlSpRAYGKgvzmGMxWLBmjVrVL1eT5o3by5UrFgRgiDAarXCJVe0Ukpx4sQJGhsbq/n4+OhSUlLUuLg4UEpJo0aNhJCQEOh0OioIApVlWahRo4baLz1dR6Kj76XoU0px/vx5nDx5ksbHx5M31qxBZaMRxnHjcLdnTyQlJUGn0yEmJganT58GAFquXDnY2dmRxMREmpqaSgwGA+zs7FRFUYQKFSpog61WXayDA9bExcHT01MbOmiQIAQHswj78OFMvE+YwMwXBYHVknftylos1q17/0VITWVdGIrxmT5x4gROnjxJx4wZww6/MjNZK78TJ4r8mbl79y7mz5+frSiKF4BORqOxmyzLK6dMmVKs9BJJkoidnd1KV1fXHm+88YaTm5tbcS5/iJSUFERERKjHjx+XCSHpgiBcoZTGEUKcAFRXs7Jq1qlcWXvNbHZwPniQvZY2oJTi2rVrCA4OzsrKyrplsVjGANjD0/U5HM6zgot9DofD4XCeAEmSHA0Gw2pBEDp369bNUL9+/WcS4v/xxx/VqlWr6rp164bnkUVgE0qZq/yiRYAtoZ4fsgx15kwca9eOHj58mPj7+6Nz586209PNZuCLL4Dvvy94zqys+y0DHyApKQmnTp1CRkYGYmNjkZOTg8GDB8PR0RF6vR6enp6IjIxEfHy89tJLLwkWiwVhYWH0woULNNfNX3fq1CmUKlVKlWVZl5qaCgD3ygSqVKmiKYqCW7duCXq9nrq6utLs7GxUrFhRqFChAuLj4+n169fRpk0b8vLLL+duyYwffviBvtKwIV6ZPJkkr14Nq5MTcnJysHLlStSsWZN27dqVOFIK/YYNzIn/EXM+VVVx8uRJJCcna6qqUlVV0bFjR50sy0hPT4eqqti6dSusVist6+hI+//8s3DE1xd1TSb4lC/P0vVr1nz4NbtyhfkqbN3KTPoeJDmZif/Y2CILfk3T8N1332mtWrUir7zyCkFCAmsjOGJEka7PY/Xq1aarV69qAJybNGmC8+fPm2RZ7iSK4pHizCNJEtHpdOP1ev2UNm3a2Ldo0YI8SZcGVVWRmpqK5ORkmEwm6PV6lCpVCj59+kCoX7/ADhKxsbHYuXNnVkpKSqosy59QSjdykc/hcJ41XOxzOBwOh/OESJIkABgP4GtRFIt8HaW0yML9+++/V7t27aq716/7n2LnThatXboUKF++SKL//L59mk+fPsKqjz7SOgwcKNSuXTv/wVYr8w7IzqfleUgIa2MW+Vg29WPMnTtXy8zMFHQ6HYxGI5VlmdjZ2dHs7GwCMDd7nU4HQRDQpk0bZGdn4/r165qvr6/w8ssvIzIyElu2bNEaN24seHl5oW7duli2bJmiaRpeeuklfe3atVFQNoemadi6dSuuXLmimc1mAQDaZWZqyTExwvn69QEAzZs3R5cuXYDly4FVq4C4OODCheJlT+SiJicjY9kyXBcE1J04EWeaNkX62LHo/kAJxT2OH2cHAJs3s/fRFhMnsjFlyhR5DTExMVi1ahXatWuntbKzE7BiReEHN48gyzIWLVokp6amGurVq5fTqFEjh7Vr12bKstxFFMWjxZoMgCRJzYxG43cVKlRo0r9/f8enkoFjtbJDmW+/ZZkrpUvbrM3PyspCcHBwzpUrV8yKooyjlP4hiqL65AvgcDicwuFin8PhcDicp4AkSU6CINzRNM25UaNGaufOnXX5ufVnZWVh7dq15tjYWHsA6NSpE1q2bFng/HPmzNFee+01oWHDhk9/8SVh9GgmEj//nAnzR/qGq6qKQ4cOadHR0YiLixP69u2Leu7uLG28RYv856WUOZgfP25b8MbHMx+B4cMLXaKmaVAUBYIgQK/XQ9M0hIeHo3Tp0khNTUX58uVx4MABtG7dGuXzE7zF5MqVK/Dy8oLJZMLatWs1o9FIunTpQipWrIjTp08j4+RJtLlwAdaZM3E7ORn1c0U/duxg7Q/1euC334p+Q1VlBoonTrD3wWwG3n0Xt1xdse+rr9Dg8mUIixejQYMG96/Zvh1YsAD49df8hT4A3LoF7NrFujMUg9jYWPz555+0f+nSpFpkJPDdd8W6HmD/Rn766SfF399f6dKli/21a9ewbt26HFVVp6qqOru4glmSJIPBYPjD29u725AhQ0pe96Jp7H0aMICVm3z8MVCxoo1hGk6fPq3t27fPAmCJ1WqdLIpiZonvy+FwOCWAi30Oh8PhcJ4SkiQ5AuhqMBi+lGXZv0ePHmjUqNFDYy5evIj169cDgArgbULIFEppDQ8PDzpy5EhiK7XdarXi+++/p4GBgcTPz+95bKVIJCUlIWfyZFTauRPkxo17j1NKcfjwYRw9epT6+fmRypUrw8/PD3jvPVb3HxJS8MRTprCvR8379u5lAnTIkGewm6KjKAqioqJw69Yt2NnZISIiQs3MzMx744gsyyCE4JVXXtFat24tPJY6LknMvC3v4EZRWMZETAzQpQtQo0bhi4iOZrXhDRoAs2ezLgoffHDvgMRsNmPlyJFoERpK/+rdm9SuXVvr1LGj4L55M2uH+M03QLlyBd8jJgZo2pRlG9jZFeMVAkJCQmBYu1YLaNlSwLvvFuva/EhLS8OGDRuyExISzJTSpYqirARwoajCX5IkNwBpNWrUMPXp06f4EX5NA86fZ+9RZORjB1x5xMbGYtOmTdnZ2dkXLRbL26IoXirejTgcDufpwMU+h8PhcDhPGUmSCICJAKZNmTIFhBDcuXMHt27dwvbt2wFgBIDFoijS3LHTcscDALy9va2lSpUydujQAYcOHUJ4eDicnZ3xySefvFAt5VauXIlr166hLKXo0qMHfN57D6dmz8buI0eg0+kQGBgIf3//+xfk/c3x998s9Tk/+vdnvckfFZgzZgBXrxZYG/2siY+Pxx9//EEJIaRs2bJqdnY28fX1Rd26dQVN0+Dl5QVCyL0vm4SEsLT9P/9k4vyvv5hpXoMGwPz5+UfbrVYm8PfuZSI8LY11SHjktaSUYs2aNWp6ejpGjBihs06ejG3Z2arzhQu6Gq6uMI8ciboBAUUrIUlOZqaMxRT7u3fvhssff2itunUTMGBAsa4tjISEBJw7d06+dOmSxWQy6Q0Gwymz2fy1KIqFtuiTJKmGwWCYbG9v3/fDDz8suqnm7NksE+LKFfY5tvHaybKMkJAQa1hYmEmW5REAgnhdPofD+SfhYp/D4XA4nGeAJEllACTUr1+f+vr6kqCgIACAwWBY/OWXX35gY7wrgIYAegNIByDlPde1a1c0adLknzPmy4c5c+YgO7e23tVqRZtdu7Cte3e0MJnQ9NNPUdpWrbeiAG5uLJLdurXtif38WBr/g2ZyiYnMQf4JDNaeFJPJhIULF2r169dHx44dhRK/H5QCbdsCP//M9qqqrCXejh2sLOJRzp5lrQ8bNgSCg4E+fZhXQj4HP6GhoTQkJARjxowhjo6OwODBQEoKkmrVwq4qVbS/794VevXqhSKVhPzxBxO5hw4Va4s//fST2slk0tXq0IEdTDwjLl26hKioKERGRubIsvzBpEmT/ijKdbNmzfqzSpUqvQcMGOBY4MD584EKFdgeEhKAZs1sDrt9+zaCgoJMZrM52Gq1DhdFMaX4u+FwOJyni77wIRwOh8PhcIqLKIqJU6dODbhw4cLeCxcu6AwGw7ovv/yyXwHjMwAcBnA4V/jfE/s1a9Z84YQ+ANSoUUOLiIgQvvjiC+j1esSPGoX3KEX5hg2ZiV/Hjo9fpNezunsXF8BkYu3dHqVOHSaAH6R9ezbf3LnPZjOFsH//fhw/fhyVK1dG+/btSy70ARYVnjePmRx+8w0T8YMGARbL/TEWC/DDD8wpf+xYoFo14LXXgDffLHDqpKQkBAcHkz59+sDR0ZEdLLi4AE2bwis2FoNGjRKmzZiBCxcuwM7ODpqmoW7duvl/vjp3ZoaBxUDTNGRkZOiqnjkDFOJF8SSkpKRg/fr1CqVUP3jwYIcVK1b8Pn36dIdJkyYtLuxai8UyIjo6umdiYiLK2DqUun2bGROGhbHffXwe65AAsL0ePnxYOXLkiFlV1femTJmy+ok3xuFwOE+JFycXkMPhcDic/xhTpkw5CMANwEBZlvsX41IfAHj99ddhNBrpkSPF6jj23OjWrZvg6OiIAwcOAADKly+P8hUqsAhox45MnH7xxeMXurgAP/7IRL0typRhGQAPcuQIMG3a091AEYiLi8PPP/+snj59Gv369cMbb7whGAyGJ5+4dm0m6ENDAX9/4NgxoE0b4PBhZj44fz4z3Js7F+jdm7WvK1u2wCllWcbq1atpvXr1aO3atdlrOHQo0KgRS/ffuhVCQgLq1Kmj3b59W9u4cSNdt24dVqxYQU+ePIlly5bR9PT0hyctUwbo2RPYt6/IW7t06RLs7OyoIS7Opnnd0yAqKgrHjx/XKKX3/pZt27YtVFVdNHXq1IGFXS+KYialdN65c+fkx560WtlnMziYZTWMGmVzjrS0NPz666/Zx48fP6soSj0u9DkczosGT+PncDgcDucFZNq0aWvt7Ox65eTkGABg4sSJ0D9qWPcPEh4ejuTkZBw9ehTvvPMOKtoSdUePAq6u7Odjx4D337//nKIwk7latR6vfxZF1vLNw4P93qwZi3Ln9q1/XkRERGDbtm20QYMGtH379oKDg8PTvcH69cyDoH9/4N13WaeCpUtZnXy3bkXub5/H5s2b1ZiYGIwePVonmEzs9e7ShTnH5312bt5kJRL92dnT9evXERQURC0Wy703oVSpUvD29qaCIKBChQq01alTAtatYwcuhaAoCubNm6c1adIEAYcPC/jss2LvoyAOHToknzhxQsvJybHT6XRRqqrWzHtOp9Mlq6paGoBZFMVC3yxJknpXqVJl+ZAhQ9iH9OpVoF8/duBisbB2evlw8eJFbN68OYdS+pWiKHNEUdSewvY4HA7nqfLi/NXA4XA4HA7nHpMnT+43ffr0XwRB6KZpWrkZM2agXLlymr+/v9CoUSPk19bvWXLq1CkaGxurtWzZUrdp0yY4Oztrbdu2FWwKfeC+OF+8GNi0iYnPnBzAwYGJz9q1gbp1WfuyBw8CtmwB3nmHiX1KWW3/c245GB4eju3bt6Nz585o1KjRk6XtA8C5c2w/Hh7AW28xoX/sGOtB/9tvLEX8wAGbqeJF4dKlS7h06ZLw4YcfEiE1FRg3jqXgv/HGw7X9mzcDK1feE/tVq1bFhAkTCADcvXsXQUFBSE1NxaVLlwgAXLlyhZTp2RPVhwwBZBkoIKshLCwMe/bs0by8vNCmaVMBixcX29jvUWJjY7Ft27bMevXquej1euzfv98AYCaAdZMmTTonSdI3AD4HAL1eH0spHUwIKbS1niRJRK/XdylXrpwDkpPZwVRAAMtGcXJi2Sc2UFUVu3btsoSHh6fLstxVFMXQJ9ogh8PhPEN4ZJ/D4XA4nBecXMf+fgA6Axjq4uKijR079rmW4oWHh2PTpk33fq9YsSLeLW5LtfBwoFUrID0dyDus2L6dpa8/KK66dmVp7FWrsjT2UaPuj39OfPvtt7Ru3bqke/fuBQ/Mc2Y/cIAJ25Yt2X7++ov1Y583D7h2DWjcGOjenZU1dOzI+tcfPQqMHAm89BITmjodM9MrJunp6Vi4cCG6dOkCfw8PYOpU5pnQv79N13gArCNAkyb3sydscOXKFaxZswb+/v5az6AgAdWqAdOn2xy7b98+nDp1Cu3bt6dNmjQhuuRk4NNPgRUrir2fPFRVxZo1a8zXrl3bYWdn56MoSrggCLIsy1+Ioniv3kCSpEUA3gcAnU4XNmnSpEa25pMkyQ5AF6PR2JUQ0pgQUv+D4cONpX74Adizhx2+FIDZbMaqVatMCQkJJ6xWa58H18DhcDgvIjyyz+FwOBzOC05u+64gAEGSJE3IzMy8M2vWLHXMmDE6R1sGd0/AtWvX4OnpCXd3dwCsjRsh5F4JwfDhw2Fvbw/XvPT84tCwITM8MxpZHfjMmUzYnzrF0tjDwpjg7dCBjYmJAebMAT788CnusHAyMjJgtVpJUlISRVoagbs7sHs3kJrKUuJbtWKHEImJLHKenQ0sWMBa5rVqBVSqxAwG+/W7n91w9uz9G+Q527u4sEjy5ctMdL/3HtC3L4ug5xNZfhRVVbF69WqtSpUq8Le3FzB3LjtM6JevFyTj00+BIUOY+V8+ODg4gBACk8lEtUGDIKSl5Ts2ISEB9evXV5s3b87aJcTEPFFUX1EUbNy4Ub1x40Y0gOETJkxIBQBJkgYAiJg1a9Zlq9V6iBBiD+DewlRV9Z81a9aMCRMmTHx0Tjs7u/3u7u5+9evXd/Lw8CC13n8fuqgo4Jdf2AFJAaSnp+P33383mUymP6xW6yhRFNUCL+BwOJwXAC72ORwOh8P5FyGKYoIkSZ4WiyVl/fr18ltvvWVQVRXZ2dklE+APcOPGDaxcuRKCIKBRo0Zaeno6uXHjBilTpox2584doXTp0qqbm9uTHTDUqsWEsCCwmuiLF9ljvXvfTzePi2MC2tubuaI/KzSNHTQ0b84i3adPA5MmIathQ/j5+aHBiBEEpUsz8X34MOsiMGAA0KkT4OXFjO+uX2dzrV17f95Vq+7/XJCp3smTQIsW7JAjMBC4c4dlCpQrxwRo376FbmHv3r2ayWTC+02bCli6lLX069278L2HhbGo/9Gj+Xoh+Pj4YOzYsfjxxx91UX36QP71V+pZpw4pb6OVntVq1R4qdUhPB6pUKXwd+XDo0CHtypUrN1VVfVUUxVQAmDp1agCA1Z6enrRu3boV09LSXvH09LTPzs6WExMTM6pVq/yoFAUAACAASURBVObq7e2NjRs3jp0xY0bqxIkTv3twTkqpT4eAAOcac+cCEyeyw6a6dfPPfsglLi4Of/75Z44sy5MmTZr0fYk3xeFwOM8ZnsbP4XA4HM6/EEmS+gJYSwi550huNBoxcuTIEon+zMxMzJ07Fw4ODnTw4MFkx44dmtlspm3atNHFxsaiZcuW8Cgg5bvENGnCouHz5wMTJgA1a7KU6jp1WK3/k4r9oCCWPXD2LHNW/+MPoF075oA/cybg5sZM64KDgX37MM/fX6146JCuyfDhcGvRgonvR/rZOzo6Ph3PhI8+YvsvV+7hNoWxseyxsWOZkeHChTYvj46ORlBQEEbUqwf3c+fYoUXXrkW//82bQL16wI0bgKdnvsOCgoLUK1eu6AatX0/jPT3JtSFDKACtd+/eulKlSgEAvvvuO7VXr1666tWrs4uOHQPS0oq3nge4ePEitmzZEv3FF1/UyHts5syZZ+rXr9+oe/fuBZaw3L17F0uWLMkxmUyBoigeyHt8xeDBn6pt2nw1dPVqJ3z/fZF8IC5fvoyNGzeaFEV5Y8qUKZtLtBkOh8P5h+CRfQ6Hw+Fw/oWIorhOkqQylFIHAIMARFmt1nWxsbHw9fUt9nwnT56ETqfDxx9/TIxGI9599917gsrPz+8prvwRTp9mEfZZs4ANG4BJk4BSpVh9e/8CuhVarSzVf+FCFmnPzmbt6Y4cYdcqCrBzJxPU1auzlPI8R/qvv2Zi2t4eMJvZY4MHw9y3LzLnzNFdaNAAV8+dY6Z6NhAEAUOHDkXZQlrhFYimsQONS5fYzw9SqRL7/vrrrHQgJQWYMYOVNOQePGRlZWH9+vXoZWcH99BQdoDRvn3x1uDjw+anlGUoVK1qc1j//v1Zav7IkUS7dQsXT5yger1eWLRoEdq0aUP9/f0JIQSq+kBm++nTzIixhBiNRhBC7r0wU6dODaCU1s99LF+xn5aWhkOHDplNJpMDgIYADgAACGn2JvDVrIoVnVLWrYNnAYcbeZw5c0bdvXt3hizLHUVRPFPizXA4HM4/BBf7HA6Hw+H8SxFFMSn3x5mSJOkBwMvLq0RzVa5cGSdPnnz+Lv+CwL569mQit0cPYPRoICmJmdzNmcMi1vXqsSh4dDSr7z99mgnlpUuBChXYmLxI7YIFQF6pwZ079+/VogX73qrVY8uIjo7Ghg0b4OHhoX3wwQeCIOQfPN65cyddtmwZGT58eJFEo01iY4HlywE/v/xbCrZrx76fOnXfPC48HLRBA6xdu1ZreusW6pUqJaBHD7b/kmA0Muf+4GDgwoWCx3p4oGbjxqi5dq2AFi0QHh6OgwcPavv27dNpmqZLSkpCrVq12Nhz55gfQQmpUKECZFn2kSSJiKJIjUbjL02aNLFr27btY2NTU1Nx5swZa3h4uGy1WlVCyO8A/gJwGoQMA9AHQCABKlrt7VMSExOFwt63qKgo7N69O0uW5WaiKEaXeCMcDofzD/JcnXw5HA6Hw+E8G0RRVABmLlcSEhMToSjKU11TsahbFxg0CAgNBTIyWJQfYD3h//4bcHUF3n6bRaEXL74vTE+fZgcF5csDP//MHqtUqcC09Ee5cOEC/vzzT2iaRgsT+gDQpUsXUqdOHbp48WIEBwdrSUlJiIuLw82bN1Hk8sizZ4EyZdjPNWsWPLZ5c+DECZYB0LYtIubM0Tz27UOAIAgYMKDkQj+P2bPZ/AkJj2cZPAghwJgx99rvNWzYEGPGjNENGzYMOp0OaWlp9z9DjRuzzgQlZM+ePRa9Xn+vhkNV1XWhoaE0KSkJZrMZ169fR2RkJDZu3GheuHBh1tmzZ1eYTKZmiqK0lWV5dOuDB1/pt2bNS8dbtKAZzs4h0ldfAZSm6/X61YmJiQVskgn9devWmWRZ7sKFPofD+TfDI/scDofD4fxHEAQhZuXKlVWaNWsmBwYG5t8Q/REopdizZ8/9qOw/SUAAM5jLy1A4fpyJRlVlaf0GQ4G93osKpRQXLlxASkoKTp06hTZt2qBdu3YFO7U9QK9evUjjxo2xY8cOeubMGQiCQAVBgNVqJdWrV9c8PT1hMBgEnU6Hq1evaiaTiVSvXl0rV66crn79+rC3WFgmgr190Ret1yP2zBlEf/ml0P3IEeheegmoX78k238YQQCcnVlZwWefsdKH/PjwQ2DJEibmcylbtiw6duyIPXv2UIvFovXp00eH6Gh2MFMCNE1DWFiYHVh5yvuSJGkAHBVFIcuXL0/VNM3ZaDRGE0JSZVneryjKdxMnTkyXJKmyATggA6h344Z0zceH7g0I0O/u0gUA4gGsVhQlNCMj438AbLYKiIiIwNatWzNlWe4kiuLxEm2Aw+FwXhC42OdwOBwO5z/C5MmTq3799ddHT58+/VKbNm3g7OxcpOuys7MBAIX2lH9ebNhwXyhevcrE6PbtrDVdaiqwcSOLZnt7l/gW27ZtUy9evCjY29vT2rVrC+3yUuaLgY+PDz744ANd7q8EYM7tR44cEZKSkiDLMhRFoZUrVxa8vLxw6dIlXWRkpHbo0CHhfydOUH3lyuRGlSo0Z98+UrlyZdwzt8uHHJMJYZMno/ndu9Bv3Mh8CCIimM/Bxo2PGQkWm9OnmZdBVhYT/7awswO+/565/vv7A2Bt8qxWK/R6PXXIq9NX1fsHNsXkem6HA4PBsLhSpUo1nZ2dtfPnzzsCwMSJEx9K2cgtX/H7+uuv+9lR+tHYefMcyB9/ILRjR12Lpk1hHx6O7du3A8BvAFYbjcYWZcqUsSn0z5w5o+3evTtdluU2oiheLNHiORwO5wWCu/FzOBwOh/MfQpIkewA5AwYMQO3atYt0jSzL+PrrrzFo0CDUqFGj8AueNQcOAMOGAdeuPfy4pjFB26QJq9vv2ZPV58+YUazps7Oz8cMPP6BDhw5o+QSp5iXBbDbj4IEDKPPdd7RcZCTZN24cUnU6pKam4rXXXkOpUqVQvnz5xzofUEXBiVGjNM9z50itkBCCvI4L4eHAjz8Cv/3GPADeeIPV4ZeUK1dY1P7OHcDF5d7DGRkZyMzMhF6vh0N6OlyrVQMMBiQkJGDp0qXUxcWFNmrUiLRs2ZLoLBZWlhETU2hbO1usWrVKiYqK0rdt21Zp3bq1XqfTISMjAz/++KNJVdUyAHIANNLpdK8KgvCFl9UqdNyzxyHh22/1luBg8wFBMGq2S1V9DAbDlTFjxjg8ehAWFhZGd+zYkSrLcgueus/hcP4r8Mg+h8PhcDj/IURRNM+cOfOXNWvWDDcajUrv3r31derUKfCaPBf19PT057HEwvHzA9555/HH8yLXoaHs+969wMGD7OcxY1ibt06dCpzabDYjJCQEjo6OasuWLXUFDn4G2Nvbo5OPD5CURFCvHgZ9/DEAICQkRDtz5oxGKUVWVpbe19dX7dq1q85gMABWK65Pn05dTp0SfA4cAB5srdiwIRP6ZjPrHe/nxzwAStB+EQBQuzZw8iSL7CsKoNcjLi4Ov//+O1UUhej1epRKTMRbK1bgwtatCD9/ntatW5f26tXrvrhOSmImiCUQ+gDQrVs3vU6ng5OTkx5gfhJbtmzJUlXVGcBXRqOxo9ForFGuTBnaqWZNJ6uqwrJihXZkz54LmYLwC4AwAEYAIQBUAK/lPtarRo0a6qNCPyIigu7YsSNdluWXudDncDj/JbjY53A4HA7nP4bVan0fwM+yLPcJCgqaXKtWLevVq1eNvr6+/8fencdFVfV/AP/cWVkERcQt0TTN3Upz30vLVi217NEytbSefNoXS+V6Sfu12/pom7mkmamZZWpuaT6KqLjgjogLIoggCAwzd/39ccVcUBBmGJTP+/WaF8NdzvkO9Xo533vO+R6jcePGQuPGjS+oum87uyVdSYv7eV14uFmhPjMTuGiE+wJ33mm+AMDlMh8GxMYCL70E/O9/F1xqGAa++uorIy0tTahcubL24IMPlnmif058vLkE4aWXzh3q3bu3pXfv3hYAOHXqFGbMmCEsWbLEuLd7d8Hx44/IW7FCyP70UwRcLokPCACOHzfft21rruX//vuSxdeiBTB6NLBtG2I++girVq1Chw4djDvuuEMQBAF5OTnIPHjQ2LVxo6EHBqJbt24XjqLrOtCnT8n6BhB69jMuW7ZM3bNnj5KTkxMIoJIgCFsFQXixQ4cO6NGjh0149VWo0dF4f9gwjzp06GNRUVG/AMDEiROfczqd77tcLthsts/Hjh27BgAmTZp0S61atYLP72v37t347bffziiK0lUUxf0lDpqIqByyTpgwwd8xEBERkRf16NEDPXr0SOvevfuatWvX7svIyNgkCMLpU6dOnTxw4ICwefPm0HXr1unJycmeFi1a2K1WK8LDw7Fy5Urs3r1bbdu2rf936+nbFwgOBm6/vXjXP/ggcNNNQE6Oueb8jjvMdf26DqN1a+zatQtbtmwROnbsiMGDB1suniZfpo4eNavxd+sG1Kt3yemgoCA0btxYWPvrr7jhjz+E0KwsfN+6Nbp27YrKlSsX3f6//mVu27d8uTlDYsSIqx9lb90aK3Td+Gv3buGRRx9F27ZtBeFsGw6nE5U7dhTauFxC26FDhXPr9AvExZkPXXr1uro+z7Np0yZj7dq1VlmWfwBwGwCEhYVVGzlypL2pJFmEPXuAceMwp2rV3Mzs7AlRUVHfAYAkSc1sNtuCm2++2ZGVlbVfUZRBPXr0UCZOnPiQIAjRnTp1coaFhQEAdu7caZxN9LuLohhf4mCJiMopjuwTERFdx0RR/On83yVJClVVtT+Amw8cODAmKysLVapUQcuWLZGQkKBnZGT4P9EHgD//BM4mZVelSRPg7bfN92PGwLjlFvwyZAju/vVXVP/wQ/2udu38//l+/92cLn+FBxnhmoZ7du4UsgTBCPnqK0H76ivUrl27eO1XqmS+2rQxdzAAzAr7EyYU+2+6JzMTsXl5wthp02Br2tSM93wnTwIvvgg8/PClhQGPHStenFcQHh5e8HRimMPh8AwbNsxZc+lSB6xWczbHbbdBsduRlJzs1HX9GwCQJKmS3W5f2LZtW1tMTIyu63ovURRdkiRZHA7HVw8//HBIgwYNAADbtm0zli5dmqUoShdRFPeUOmAionKIyT4REVEFIoriGQDfS5JkdzqdXadMmdJKUZSQ7t274+DBg5ZepRiN9apt24BffwWmTCl5Gw8/jH179yK+USPkPPmk8eyzz1oQGWlW9X/tNWDPngu2kCsThmHuaV+jBnDxiHiBEycASUL9nj3xUU4O7jpyxLBYLMKGDRvQrVu34vdVr56ZkOfkmLUN3G5g925zTf9FRfyysrKwc+dOOBwObN++XcvIyLD27dcPthYtCh+hb9/eXNtfWKFnq9WcWVAKDRs2hCiKUBQFFk1zWg0DiIoyH+Y8/TQAIPXYMdhstrQ333wzKzo6+nGHw/Fuw4YNq9StW9cWFxcX/8Ybb6Scbe7foaGhgQVbS+7atQtLly49rShKR1EUD5QqUCKicsz/T7eJiIiozImiqHg8nhmKooQAQExMjBEYGKi2Luvk93LsdsALNQT++OMPCFYrHpw40RwpTkgAXnkFWLHinyR2/nyzcnxZ2L3bnFJ/uUKCqanmXva9esH5/PN45NFHhSVLlgiCIBjVqlUrWZ8hIcD27UCtWsDjj5u1As5L0lVVxdSpU43du3frcXFx+k033SQ8//zzaNGiBdCvn7krQv36gMdzYbsLFgD9+xf+GXS9ZLFexB4XB2uNGuZWfkePmoX/zrLZbDAMI/Cdd94ZFxISMnXQoEG1Bw4cGHTkyBHV4/HMBwBJkprYbLYP77nnnkqCICApKQmLFy/OVRSlBxN9IrrecWSfiIiognI4HF0rVaqkDBo0yB4RESGgPH0vuPNOs9J8wXZ7JXDs2DHk5uaiZ8+eKFinjYAA8+cDDwAZGeb7jz8GHnsMGDAA+OAD83df2bvXLEA4bNil506cMKfdT5xorueHOcLdvn17dOnSRbi4inyJbNliVtn/4AOo06bhq//8R8vMzLTWrl3bGDFiROF/6IKCfRdv6derl5nYXyw8HIiMLF2cS5eaWzBOnGi+L+Szp6amQlGU8MDAwLeeeuqpwJCzWwXqug7DMNwA4HA4ojt27Ghr0KAB0tLSMHfu3HxFUR7kGn0iqgjKzz/qREREVKYEQfAEBwer1apVs/s7lkI1a2ZO5T9vNLe4DMPAtGnTEBQUdPmp7wVF6zZsMH/+/fc/2/o995w5+v7ggyUI/AoUxXydt4c9ACA52dw6cNYsoFWrC071KUVl+4vpALbu2IG/3W69RseOljrVqmHkvHmw/PTT5Z+o2GzmbIjx480HEt9+ax5v1sz8G23ZcmH9gc8+A2bPLlmA6enmrINTp8xCi3Y70KlToZc2b94cbrcb9evXP5foA4BhGDoASJL0CoCBbdu2RXp6OqZPn56vKMowURTXlCw4IqJrC5N9IiKiCsrj8TyXlpbWKyYmpl7Hjh1Ltim6L82efWlhuKsUeTUjzF27mmvbAXM2QUCAWVl+5Ehg8+YS7xt/gdmzzV0Czp+tcOAA8NBDwJIlwI03lr6PK5g6darmdrst3e+7T2jdujWEnBwrfvoJqFIF+OUX88FKzZqF39ytm5mMn+/PP82tBBcv/udYYCBQp07JAuzRA7jrLmDyZHPJwRU4HA50LORBkN1utwGoB+DfVqsVhw4dwh9//JEvy/IzUVFRP11yAxHRdYpr9omIiCooURRlWZZ7r169Ou/UqVP+DudSlSsD69eX6NbDZ9fgW63WkvX9+edm0hkWZk75FwRz//rPPjNHnkuyJl1VgVWrgNtu++fY1q3mEoKVK32e6GdlZSEzM9M6evRooU2bNuZWeqGhwMKF5oONDz4Apk0D8vMBWb60gd69zVh79jRrAADAmDHAjBn//D1k2azQHxpa/MDy84GWLc2Cf5s2mYl+KQQGBlocDkclAM00TcPChQuhKMrI8ePHzyxVw0RE1xgm+0RERBWY0+l8W1XVSuvWrdM0TStRG5IkITo6GtOnT9cTEhK8F9zvvwP//W+Jbl2yZInRrFkz9C+sgNzVqF8fEEXz/dtvm1Ptf/8dqFrVTPpPnix+WwkJ5gOMrl3N35ctA15/3fxZq1bp4iyEpmk4dOgQ/v77b0ybNi3nyy+/NKpXr646Ll57X2DDBuCtt8zPe9FSgnMEwUzMg4PN30NCgCeeMB+OAObI/44dxZsF4XYDX3xhPmh45BGz0r4X6hLUq1cPFoulsyiKewG0BRAxbty4H0rdMBHRNYbT+ImIiCowWZYXWK3W1F27dj3XvXt3a3h4eJH3JCcn48iRI9i1a5eWkZFhBYA77rgDOTk5mDdvHkJDQ7VRo0ZZL5tUFpcklWjq/JkzZ5CRkSGcTfpKF8P5CtbO169vFo8TBHMLusGDgXHjzFH6zp0vf/+aNWZRu9q1zen8S5YAP/4IRER4JbyMjAzExMQoTZs2tVssFvz888/5mqal6Lq+XlGU5QDmPPjgg0V/93v3XXNHgBMnzKn7mzaZDzcKfPaZufRg4EDg55/NooJOp3nu9Gmzcn5RZNl8KPDJJ2axwvHjS/ahL6IoCnJzc+F2u28CAFEUt3ilYSKiaxCTfSIiogosKipqfnR0tCswMPCZqlWrXrFQn67rmDlzppacnGyNiIjQ6tWrJwwYMACVK1eGzWYDAEv37t0xc+ZM4bvvvsONN96Ipk2bom7duiVLujXNXPt96BAQFFTk5YZhIDY2FifPjrZ379796vssDosFuPVW831Cgllwb906c4r7qVPATz+ZU/Uvrjdw4IB57+TJQFKSmehWr16iENLS0jB16lSEhYW5b7vttoBjx44phw8ftimKcjg+Pj7A4/FEAnhKFMU5ACBJUjsACC3O9HqLxVxS4HabDzLCwsyq+A88YO6QAJj/PfLzzc8+ZAjw/ffmVoknT15+VkCBN980Cy/u2WNu6+cFiqJg7dq1SmxsrG61Wvfb7falXmmYiOgaxmSfiIioghMEoanL5QrYsGGD0rlz50sSfl3XERsbi7Vr1xqhoaGWZ599FuHh4YUuhg8KCkL//v0ta9as0ZKTk4XY2FhLzZo1MWrUqKsPzGYzp3d7PEUm+0lJSdi0aZOekJBgCQ4O1tq0aWMJDQ31fdFBm8183XWXmegLAvDVV0DfvmbRuwkTzKUIggAsWmRuY5eTYx4vxiyKwrhcLkydOhUAkJWVtWD16tWDLRbLOl3Xfwbw+5gxY45LkmQXRVEBAEmSAh0Ox4IHH3wQQcV4aHJOQIAZJ2DWTmja1JyFYLGYD2F+/x2YOdNczjBjhlk9v2bNy0/FHzvWfFgwejRQkv8fLiMlJQXz5s1zud3utYqiPPPWW28d9VrjRETXMCb7REREFZyu6x9bLJaWO3fufKJSpUraLbfcckEiv2zZMsTFxeH+++8XWrVqVeQofUREBB555BErAGzatElftmyZZd68eWjYsCFkWYbH47ngpyzLUBQFiqJAVVVNVVVD0zTouo6QkBBB/egjIbtyZaiqKgwfPlyoUaMGAEBVVcTGxiIpKUk7dOiQNSgoyNKvXz+0bNmyhFX5SqlgycGaszu7xcYC+/aZx4cMAY4cATp0AJ5/3hzR1jQz4bdYrmq5QmBgIFq3bo24uDgAaA+g2vjx4zPOv6Yg0QcAh8PxYYMGDcKbN29e8s+2bJn584UXzCUMO3aYSX5iojklf84cc6r/+vXmTIDz7d5tznLIzjYL+d1wQ8njOI+maVi3bp26YcMGt6ZpI6Oion70SsNERNcJwTAMf8dAREREfnZ2mvemhg0b5g0ePDi44Ljb7cYnn3xidO/eXShsm7PiWL16tb5nzx7BMAzDbrcbdrsdDocDBT+dTiecTqfF4XAIdrsdBS+bzYbIMWMg2O3I/uwzbN682UhMTDRefvlli8ViwaFDhzB79my0bNkSbdq0ubpt9sqKYZgj+q+8Yib04eHA338DjRoB99xjbjU3ZoxZqG7BAvMBwebNwP33m8sCWrQA5s4FXnoJ2L4dZ44fx5rq1d25v/9uS61e3eZ2OlH7+PE2w2bM2IZCvtRJktTE4XDEvfDCC4FXNap/JR6PuSShe3fg6FGzWN/YsWYl//vvN48XbJvncgE1agB//PFPYUIvyMzMxNy5c/POnDmz2ePxDBFF8bjXGiciuk4w2SciIiJIkhQhCEJKrVq1tLp16xp33313AAAsWLAAubm5+hNPPGERvLHP/NVKTQWsViAiArqu46OPPkJERIT25JNPWteuXYs9e/YYzz77rB8CK4aZM4GPPzYT+ZCQf9a7X8zjMT9jSor5uu02s4Bfixbm8TlzgNGjETN8OIJOncLKu+7C019/fWxjp06RAIy7/vwzBcD9AL4FkA9gBIBvAPx3Wd++r7dyuW6t/eOPFsyYYRYH7N3bnH3QubO5BMHlAiIjzRkGxaXrZoHBBx4wl1ps22bOWjh50kz8K1UyC/cVzAAIDi66zWJKS0vD999/n6+q6lhN0z4RRZFfZomICsFp/ERERARRFNOjo6PvPHHixGvp6el3d+/eHQEBAUhKSjLatWvnn0QfMBPFF14A5syBxWLBqFGjMHnyZGtWVhZq1aqFmJgY/8R1OYZhTnnfts2c3j51qpkEX0lBJfu6dc0XAAwf/s/5Nm2QnZ2N5T16nDv08auvFkxjEDZ26tRAnDBBAfAAgAAApwB89lePHnmnatVqXj0szAK73Vw6kJtrbnH35Zfmg4SYGLO4XkKCOb3+3nvN9fTjxgHR0UB8PLB2LTB/PvDyy+aOBE2bmsfuu88c4Zdlc1ZCYqK5lWB8vLlsYdQoIDCwRDsqFP6nNZCQkICFCxe6ZVl+Mioqap5XGiYiuk5xZJ+IiIjOkSTJ7nA4ZoeFhd370EMPBU+dOhUvvvgiKleu7J+AzpwB2rUzK7efHXmePXu2lpiYaHU4HPB4PLjzzjvRpUsX/8R3vr/+AlQVmDQJeO01M3H2EsMwkJ6ejoULF8qnTp3aZrVaK8my3NxisUSPHz9eLOyeSZMmTW7Tps1zffr0ueIuC+ecOWOO2APmUoJbbgH27jXfP/+8+dCla1ezCN9HH5lbI376qbn0YN0682GBppnbC65Y4bXPDpif/7fffvPs3LlTNgxj1Pjx47k+n4ioCEz2iYiI6AKSJFkAaADQoEED7fHHH/dPwbsCmma+HA4A5u4AO3fuRK1atZCTk4Off/4Zd9xxB9q3b++f+JKSgIULgY0bzYS4SxevjWYX0DQN3377rSszM3OLLMt3A3AAqCmK4oHCrpckyWm321NHjBhRpaCgoc8tXQocPw489ZRXm9V1HQsXLnQnJCTslmX5DlEUz3i1AyKi6xSn8RMREdEFRFHUo6Ojf6pbt+6jfk/0ATN5vu8+c2o5AIvFglvP7nNfo0YN9OjRAxs2bNDat29ftrGqqjlVfetWc9/4//zn3AMJb4uPj0dmZmbi2WRXA+AGcKWk98Fq1apZyyzR/9//gA8+MNfxe5GmaZg3b17+4cOHt8qyfLcoii6vdkBEdB1jsk9ERESXsFqtR2vVqqUB8H+y/847ZkX3y3A6nbDb7WU3VfHkSbPo3v79wNNPm1PZL7e3vJfoug6LxXLqbKJ/RZIkCQEBAWM6dOgQ4tOgCrjd5g4Dr79urtH3EkVR8OOPP7qOHz/+P1mWHxBF0eO1xomIKgAm+0RERHQJVVWPpqWlKSgPyX6TJubIcbNmhZ62XE0V+dLIyDCT/FtuMQvxTZli7i1fBhISElyapm0s5uXtBUFo0rx5c5/GdM7nn5uF//r08VqTmqZh9uzZrhMnTqyQZXmgKIqK1xonIqogmOwTERFRYRYdO3bsnQMHDgTcfPPN/o1k/35g9GhgwIBCT6ekpGhBQUG+eyiRl2duf5eRYdYOaNcO6NfPZ91dkIjgzwAAIABJREFU2HUeVq9ejX379gUB+Lg49zidzim9e/cOtFrL4DlNVhYwYwawfr3XmjQMA4sWLXKfOHFioyzL/Yszm4GIiC5VRo/CiYiI6FoiimKyqqoD5s6dqy5dujTfr8F06wYcO3bZ0xaLRVAUxfvT+GXZ3K6ua1cgLs584BAdbe5VX0Y2b96sx8XFwWKx/CGKYkZR10uSVFfTtKatWrXy/V6JmgY88QSweDFQpYrXml27dq1y4MCBQ7Is92WiT0RUckz2iYiIqFCiKP5pGMatmzdvDvBrIBaLuY3dZbZz69Spk+XUqVOW48ePe6c/TQN27TJnEnz6KbB6tTll38fr8gtTr149CwAYhvF9MW8Z0KJFC5TJqP6UKUCjRkD9+l5r8vDhw9iwYUOeLMt3iqKY57WGiYgqICb7REREdCUpVqs16/vvv89NT0/3XxRt2lw22Q4NDUXnzp21GTNmYM2aNaXrZ9UqoH9/YM8e4LXXzPXoXhy1vlqHDx/W7Xb7rKioqPnFuT4wMPCe+vXrO30dFxITAUUBXn3Va9sMulwuzJs3L19V1cdEUUz1SqNERBUYk30iIiK6LFEUT6uqGpmSknLo6NGj/gvkrbeAmjUve7pHjx7WIUOGYNOmTfjoo490VVWvrv3//Q945BFzDfrIkcDAgeb0fT+SZRkxMTGyoij/V5zrJUkSZFnuVN+LI+2FMgzgvfeAypWBWrW81KSBX375xaVp2rSoqKhlXmmUiKiCY7JPRERElyVJUoDT6Vyhqmqrxo0b+y+QGTMuW6CvQN26dfHaa68hICBAWLx4cfHa3bkTWLTI3N6vf3+z8N6993pttLo0fvnlF8UwjO2iKO4t5i0RFovFGhLi4x33NmwwZ1o88YTXmty8ebN+9OjRY7Isv+y1RomIKjgm+0RERHQlIR6Pp2N4eLhWZlvcFebxx4Hp04u8zGKxoGrVqjh16pR+xQsTE4E1a4BnnwVOnwaWLAEefRQoi7XuxRAbG4t9+/bZFUX56ipuC3c4HKpheL9W4TlpacBnnwHt2wM272zqlJaWhpUrV7plWX5QFEXZK40SERGTfSIiIro8URTTATTOyso6efDgQf8FUqUK8N//ApmZV7xMVVUcOHBAqFatWuFD82438MknZmV9QQCWLweGDfNFxCUmyzKWLl1a8Ov3kiQVdw3+AUVRUmNiYnxXwX7nTqBtW+DWW73SnKZpmDdvXp6maaNFUTzglUaJiAgAk30iIiIqgiiKB2w22/rU1FT/jrpu2AAcOnTFS+x2O0aMGIE9e/YIixYt0txut3lC0wBJAlq2BO64A5g1C+jRwy8V9ouSl5cHu92eBSDcYrGsAdBOkqTAou4TRVGTZfnONWvWZO/dW9yZ/1dh/XogKgp45RWvNRkTE6Pl5eVt13V9utcaJSIiAIDg06leREREdF2QJKmWzWbbO3DgwMo333yz/wIxjGKtpz98+DBmzJiBAF3HUEFAhKrCGh5urvuPjCyDQEvOMAx88803eSdPnpyiadoRAJ8DeAbAYgBGUZXqJUm63eFwrHv++ecDg4ODvRWU+bd79VWgY0evNJmdnY0vv/wyX1GUVqIo+nHaCBHR9Ykj+0RERFQcqQA2p6Wl+S+C1183C+gVw4033IA3IyIwIDzcOPHbb5ianY3PbTY9oWCkvxwTBAGPPfZYcI0aNf4NM9EHgBlWq3UCgBOSJBmSJN0tSVKhTz1EUdxiGMb0VatWee/DvvmmWcDQS4k+APz+++8uwzA+ZKJPROQbTPaJiIioSDab7emQkJBO7du3918QAwcCI0Zc+RpdBzZtAl55BY6dO3FTnz5Cq9hYDP2//4Pb7bbMmTMHixcvNjZv3ozk5GQsXboUK1aswOTJk7Wvv/7aiImJga5fubZfWQgJCcETTzwRZLfbZUEQeomi6NY07T/nXbIMgP7OO+9MkSTpxovvVxRlXHx8vJqa6oXt6vfvN6fw9+lT+rbOOnjwII4ePZqtquokrzVKREQX4DR+IiIiKtL777+/+t577+3ZokUL/wWhKOY2eQMHXnrOMIDsbODhh80q8fPnA6GhF1xy5swZ7N27F5s2bTJcLpegqirq1Kmj6bqOunXrWnRdF3bu3Gl4PB4hIiICrVq1QocOHcrowxUuKSkJM2fOBABYrdZ5mqY90qJFCzRr1gyVKlXC3r17ta1btx598803G1x879tvv/10tWrVJo8aNSq4xDspyLI5df+FF4CbbirVZymg6zq++OKLvKysrCFRUVGLvNIoERFdwjt7phAREdF1Tdf1BocOHTIqV64s1KlTB4I/9qG3WIDhw4GePYFq1f45vm8f8PHHgNMJfPghcNttha7rDw0NRfv27dG+ffvzT16w116nTp2ELVu2YNeuXcaKFSuE8PBwCIKAkJAQhISEID8/H+Hh4b76hJeoX78+br31Vi07O9tSr169Rxo0aIDI82oOBAYGWmNjY2sUdq+u699lZ2c/s2nTpls7duxYsmz/88+B4GCgwSXPEkps+/bthsvlOmAYxq9ea5SIiC7BkX0iIiIqkiRJHa1W60NWq3VIRERE6KBBg4Ir+aOSfUYGULWqmczv2gV88IFZOC4jAxgyxGt7vwPAqlWr9A0bNlhsNht0XT/3eumllxB60awBf3C73fj6669dOTk548aOHTu5sGskSbrJbrdvf/LJJyvVrl376jo4cACIjQW6d/daUUNZljF58uR8t9vdTRTFLV5plIiICsVkn4iIiIpNkiSrzWabfMMNNwx78sknyz7bF0Vzyn5goPkzIgJ4/HEgIMDrXem6jiNHjiAyMhK6rmPRokXG0aNHjVdffdXvNY88Hg9mzJjhysjImC3L8ihRFC/7hS46OvrJqlWrfjFy5Mhgh8NRvA50HXj5ZaBZM2DkSG+FjTVr1qibNm36fcyYMQ95rVEiIiqU3/+xIiIiomuHKIqaqqpbrVZr0Rf7gmEAn3xi/nz9deDpp32S6AOAxWJB/fr1YbPZ4HA4kJOTA4/HY5k2bRr27Nnjkz6LIycnB9OnT3dlZGQskGX5mSsl+gBgGMaMnJyclWvWrJGL3cnevUBQUNEFEa+Cy+XCxo0bVY/H86rXGiUiostisk9ERERXxWKxBKelpdnS09PLvvMHHgAqVTK3gvPilP3iGDp0qHD77bfrhmFg+fLlmq7rSEhIQFxcXJnFkJ6ejilTpuSfOnVqsizLT4qiWOTWAaIoGrIsj9yyZYtSrP9mqanmQ5RRowAvPtRZv369YrFYfhJFMdFrjRIR0WVxGj8RERFdtbfffntEYGDgZ4888khQZGRk2RbsMwxzmrmfZhfk5+fjs88+g6ZpEAQBsixj0KBBaNy4sU/7TUpKwty5c/NVVR01fvz4WVd7/8SJE1+tW7fuhCeeeCL4ihfOmAEcPw689VaJY72Yy+XC5MmT3aqqNhJFMdlrDRMR0WVZJ0yY4O8YiIiI6BrTvXv3bWvWrDkTHx9/u8ViCahbt27ZzRbcsQNo0QJ45RWzQn8Zs9vtaNmyJRo0aID77rsPISEhxh9//IGcnBzB6XSicuXKXu1PlmWsWbNGWbZsmUtRlAeioqJKVMV+zZo1W10u17O1a9cOqVq1auEX/fkn8PPPwKeflibkS8TExGjJycm/jBs3bppXGyYiosviNH4iIiIqkbFjx36hKMqovXv35pfpTMFWrYBvv/VLol+gcuXKuOmmm2C1WtGmTRuhT58+iI2NxfTp0+F2u0vdvqIoSExMxOLFiz0ffvihZ8uWLUtVVW0iiuKakrYpiqJHluUXVqxYkVvoBbpu1kEYM6bEcRdG0zRs3LjR4/F43vVqw0REdEWcxk9EREQlJklSsMPh2BoYGHhD165dg9q0aVM2GfipU8CECcAXX5RJd8WhaRrmzJmja5pmefLJJ694rWEYyMnJwenTp5GTkwOXywVN03D69Gn50KFD7tOnTwc5HI79siz/qOv6DG9NfZckyWa321MGDx4cUa9evQtPjh8P9OplbrXnRfHx8ViyZMnWMWPG3O7VhomI6IrKtrINERERXVdEUcyTJKmpLMvdly9f/ktYWFiVBg0a+L7jgABg9WogN9cs2FcOWK1WdOnSxfLjjz9ecs4wDCQnJyMxMVE/ePBgbnp6ukPXddVutx8BkKzr+gld1/NVVT1qGMbfALa+8cYbpZ8icBFRFFVJkl5ZuXLllyNGjAg5d2L9eiAxEXjVu4XyDcPAmjVrcj0ez3ivNkxEREVisk9ERESlcnbrt7+io6MH/vjjj79ZrVbh5ptv1h5++OEgn3VaqRKwZ485wl9Okn0AqFGjBlRVha7rsFgsyMjIQGxsrLxjxw4NQLqmab+oqroCQByA1LFjx/pjiuX81NTU/2ZmZqJq1aqA2w3ExQGvvQZ4ud7AgQMH4HK5UgEs82rDRERUJE7jJyIiIq+RJKkRgP8A+I/D4dBlWbaEhoYaiqLkAzBq1qypZWdnWwIDA4UBAwYEV6lSpeSdnT4N1KoFHD4M1KzpnQ9QSgkJCZgzZw6GDx+O7du3u3fu3KkIgvCtoihTRVE84O/4CkyaNOmDW2655T/333+/E59+Chw9Cnz0kVf7MAwDX331VW5aWtoIURTnebVxIiIqEkf2iYiIyGtEUUwA8LwkSW9omrYbQP0zZ85oANoDyE9KSmoNwGWxWH44ePAgbr+9FMu4w8KAXbvKTaIPAHXr1kX16tUxa9YsCIJwQFXVrqIonvF3XBdTVXXyjh07Rvdq1AgBhmHubOBlx44dw+nTp3MALPB640REVCQm+0REROR1oijmAyhs8X4iALzzzjs7cnNzuwEQStVRZCTQpQuwbFm5mM6fk5OD3NxcQ9M0Qdf1vuUx0QcAURRT3p80aVnW2LF9a95/v4Datb3eR2xsbL6qqh+Loqh5vXEiIioSk30iIiIqc7qur0pPT+8AwFmqhpxOoHZtIDPT78l+bm4uvvvuu3yPx/OfqKio7/waTDHU27Fjqycl5X4MHer174P5+fnYv3+/Rdf16d5um4iIisd/G9QSERFRhaVp2pQ9e/Y48/PzS9/YvHnAiRPmPvF+tGvXLsMwjN+uhUQfglDjoUWLnvpzwIA8CKWbXFGY+Ph4w2q1rhBF8ZTXGyciomJhsk9ERET+kOF0OmPmz5/v0kubpOs6cPfdwMaN3omshPbv35/j8XiulUJ0r5+uUuW7bF23erthwzAQExOT5/F4Jnu7bSIiKj4m+0RERFTmRFE0PB5Pt+PHj+/duHFj6dZ0WyxASgrQubOXoiuZrKwsADji1yCKQxAGAkiZPnz41kqVKnl9OsTx48eRl5eXC+Avb7dNRETFx2SfiIiI/EIURcXj8Qxcu3at5/Tp06VrLDAQaNYM2LTJO8FdpczMTOTl5QHATr8EUFyCEALgBQArtdDQe5o2ber1QgebN292a5r2uSiK/l1XQURUwTHZJyIiIr8RRTFJ1/Uv/v77b3nfvn3QtBIO8gsCMGKE37bhy8rKgs1mOyCKouyXAIrvSQBvwjB2WCyWvg0bNvTqd0FFUbBnzx5B07TyX7eAiOg6x2SfiIiI/ErTtOXbtm1z/PTTT/jrr78uyPZVVYWiKMVr6JVXgHXrgFNlXxPO5XIBQHqZd3w1BOEOAG0AbJckqYkgCOG1vbzlXmJiImw22z5RFNO82jAREV01JvtERETkb+sFQRgHYPSWLVvkEydOAABOnjyJd999V/3kk088Z5Ppor33HrB8ue8ivQyXywVN01LLvOPiEoQgANUBTINh5Fit1kEtW7a0CV6uxL9t27Y8t9v9X682SkREJeL1fVWJiIiIrsbZqe+TACA6Ovrk999//33r1q0deXl5sFqt3ymK4po7d+6o4cOHB+/fvx+6rqNp06aFNxYfDxiG+fLBlnKXk5mZqSiKklBmHV69YQCawTCeAwCbzTa0RYsWDm924Ha7cejQIRuAn73ZLhERlQxH9omIiKjciIqK+llRlOZxcXFfHzx4MFaW5bGKoryRmpqa88MPP+QvWLDg1C+//HLyt99+86iqemkDggC0agV88kmZxn3o0CG3YRixZdppcQlCFQCtAUgAIElSfQA1IiMjvdpNfHw8bDbbKlEUS1ltkYiIvIEj+0RERFSuiKJ4BMDo849JktQuMTHxLgDLAOTv3r172t69e+96+OGHAxs2bAgA0HUdx44dQ+4zz0Bp1AgtVBU2m++/6uzevRtZWVl5ANb5vLOrJQg2AN8BmArDOHn2aNs6deqo3pzCbxgGYmJict1ud9k+ZSEiostisk9ERETlniiKx2AmrQX6SZLUY968eb8+8sgjoQ0bNsS8efNchw8fPmkYxl9d3n23Z9yOHbXbvf663ZtxyLKMzMxMCIIAXdeRmJior1u3zqUoyj2iKBazkmCZ6gJABbCy4IDNZutQt25dr265l5qaitzc3HwAq7zZLhERlRyTfSIiIromiaL4lyRJD8+fP/+3bt26Be7fvz8IQGNRFOXT77+/cm+NGtUBeCXZP3ToEFasWJFz8uTJALvdnioIggFAMwxji6IoUaIo7vNGP14lCHUAvAXgXhiGUXDYZrPdFxkZ6dWCBrt371Z1XZ8liqLuzXaJiKjkmOwTERHRNUsUxVWSJN33999/P2e1Wn8bN26cDACfvfjiiABgb834eNRv0QKlmbIeExOjrF69OkdV1VGGYfw2ZswYj9c+gG99CGAGDONccQNJkroGBwffUK9ePa92tGfPnnxVVRd4tVEiIioV4bwHvURERETXjbygoN2HGzWqt2LYMKNt27bBNWrUEEJCQhAREQGL5Z8axW63GykpKcjOzoau66hVqxZq1aoFQRCgqiree+89j6qqTUVRTPLjx7k6gjAAZiHmhQXJviRJAoB8q9XqbNKkCVq3bo0bb7zxgr/F1dB1HZqmIS8vD59//rlH1/WQcrqUgYioQuLIPhEREV2XgvPz77rx4MGs7OzsNuvWrRtqtVpb6LoeabPZqgwZMiTQYrFg/fr1+Xv37rXY7fZ9hmEcBKAbhtHJZrOF3XXXXUGRkZHQNM1+jSX61QEMAvD2+aP6giD0DQwMtHbo0AHJycnazz//bNU0DVar1QBwbqa/YRjCee/P/SzsvSAIMAwDDocj880332SiT0RUjjDZJyIiouuTYRwPFoRx4oQJLhjGiILDkiS9On/+/Ek5OTmaqqqTdF3/duzYsWnn3ypJUpc//vjjG4/H08Rms+0u++BLpTuAWTCMHQUHJEkKcDgcU/v3729r0KABAFgNw0BmZiZUVRUsFgssFgsEQSj0Z2HvC17Lly9XYmNjp/rt0xIRUaGY7BMREdH1LBvAxUXjvszJyWmsKMr8qKio5YXdJIriekmSmtvt9rd0XU/wfZheIgg9ATwGYMj5h2022+t169YNOZvon71UQHh4eKm7PHjwYL6u63+VuiEiIvIqrtknIiKi65sghAOoAsNI9HcoPiUIlWAm+okwjNUFhyVJusFmsx3497//HRQWFubVLj0eD95//31Z1/XKoii6vdo4ERGVCkf2iYiI6Hr3KYAaAHr7OxAfGwHgRhjGN+cfdDqdn99+++12byf6AJCUlASHwxH/xhtvMNEnIipnmOwTERHR9e4pANd38bh/RvV7nX9YkqSWTqezT7du3ey+6DYhIcHj8Xjm+qJtIiIqnZLttUJERER0rTAMN4DXIAg/+TsUnxAEG4DFAB6HYeSef8rpdE7q0qWL0+Fw+KTr5ORkj2EYW33SOBERlQpH9omIiKgiWAcgxd9B+MhwALsAHDz/oCRJjR0OR6+2bdv6ZHDH7XYjIyMjAECML9onIqLS4cg+ERERXf8MYwOAvyEID/g7FK8ShMYAbgQQhYuqLjudzo87derkcDqdPun6yJEjcDgcO0RRzPdJB0REVCpM9omIiKiieBjAWH8H4TWCIACIArALhpF1/ilJku5zOp3dO3XqZPVV98nJyZrH4yl060IiIvI/JvtERERUUXwMoCMEwWcJcBm7G+Za/QtqEUiSZHM4HP+97777gu12n9TlAwAkJSXl6bq+0WcdEBFRqXDNPhEREVUMhmFAEEYCeBFAM282LUmSYLPZvldVdaIoigeLvqOUBKE2gCEA3oNhaOefslgsIyIiIsIbNWrks+51XUdaWloAgE0+64SIiEqFyT4RERFVJPMBHPFBu11UVR0KYCuAz33Q/sVaAPgLhhF//kFJkiLsdvt79957b7A5y983kpKSYLVaj4wdOzbDZ50QEVGpcBo/ERERVRyGkQngKARB9FaTkiR1gVntHwB+9la7lyUIPQGMAzDt4lNOp/PrNm3aBNWuXdunIWzZssUly/JnPu2EiIhKhck+ERERVTSVAdzjjYaio6N7W63WFWd/bSaKYqo32r0sQbAD6A9gDAxDP/+UJEkNdF3v06NHD98t1Ie5GiIpKUkwDGOxL/shIqLSYbJPREREFYthxMAwOkAQwkrTTHR09AC73f5r+/btAwICAraJorjXWyFegQRgz9mtBC/gcDjeatu2rdVXW+0VSElJgWEYp0VRPOrTjoiIqFSY7BMREVHFIwi9ACThvIXtkiQ5JUmKLM7t0dHR99lsthkDBgwIDA4OhqZpsT6LtYAg1APQB8DMi09JkhSh6/rgDh06+HRUHwDi4+NlXden+7ofIiIqHSb7REREVBGtAtAehmEAgCRJYXa7/YDdbk/4v//7v4WSJDkud+M777wzPjAwcN7gwYODGjVqhLp16wLAAEmSKvssWkFwAvgAwH0wjNzzT0mSJDidzlmtW7cWQkJCfBYCYFbh37lzp6qq6myfdkRERKXGZJ+IiIgqHjPJ1yEIS87uS7+pTZs2NV5++WWnLMsPAfAUdpskSd2tVuubzzzzTFC9evUAAHXq1EHLli0rORyO73wY8csA9sIwTlx8wmq1vhwaGtqld+/evp2/D2Dfvn3QdT1RFMU9vu6LiIhKh8k+ERERVVQpAODweJ6MiIiofddddzkDAgJw0003FYz2Vzv/YkmSQu12+9x+/foFXjyC3qdPH2dAQMA90dHRw70epSA0B5AKYMrFpyRJamixWN5+7LHHgm023++ovG7duhyPxyP5vCMiIio1JvtERERUMRlGHoAHbjh9OuqOO+44ty/94MGDhc6dOyt2u31PdHR0X0mSBEmS6jgcjq233nprWOPGjS9pym63Y8iQIUEBAQFfTJo06XmvxSgIVgD/AaDAMC6p9O90Ot/v1KmTPSysVLUGiyUzMxMZGRkGgF993hkREZUak30iIiKqsPbffHOjx779NrJmpUrnjgmCgF69etkHDRoUERoaOtvpdCbb7fZ9Xbt2vfGee+657FT5iIgIjBw5MtDhcPzfxIkTn/JSiG0A7AUw5+ITkiTdBqBPx44dfT+kD2D37t26xWKZL4qiWhb9ERFR6ZTJPw5ERERE5dHcf/3rnuY33ugeUL16wMXnGjRogBdeeCE4NTU1ODAwEFWqVCmyvSpVqmD48OFB33777WcTJ060jxs37pKp98UmCHUAiABehGHo55+SJMnhcDh+7tOnT6Cvt9orsH379jxZln8ok86IiKjUOLJPREREFZbFYqlePSzMifr1gdzcS84LgoBatWoVK9EvEB4ejqeffjqwUqVKH77zzjv/lSTJetWBmWsK2gNYBcNIuPi03W6X6tSpU+uWW2656qZLIjU1FTk5OTKAdWXSIRERlRqTfSIiIqqwnE7nnRGNGgn4178AXS/6hmKqWrUqRo0aFVSzZs2hDodjpSRJt0uSJFxFE3cCeAqG8fHFJyRJ6iQIwgv9+vULKqgz4GtxcXGyYRjfiKKolUmHRERUakz2iYiIqEKSJKmKx+Npc9NNNwGSBPz0k1cT/sDAQAwdOjSobdu2nYODg/9yOp0LJEkq+ruXmcG/DeCVQmKubrfbl/Tv3/+SHQF8RZZlbN++XVdV9Zsy6ZCIiLyCyT4RERFVVL2rV6/ucjgc5m9jxwIHDni1A6vVil69etlffPHF4KpVq95lt9unFGNa/8cAxsMwLtjLXpKk6g6HY/ntt98edPPNN3s1ziuJi4szLBbLX6IoHiqzTomIqNSY7BMREVFF1bRhw4bm8LjNBqSlAT5Kom02Gx5//PHg6tWrD3E6ncskSSq8CIAgdARQH8Cm8w9HR0f3tdvt+9q1a9e8d+/eDp8EWQhN07B+/fp8j8czoaz6JCIi72A1fiIiIqqoDh89ejQPQDAAwDCAatWAVauA227zemeBgYEYNmxY0NKlS7vu3LnzUHR09DDDMBaLomgAAAQhCMA9AF6FYeQAgCRJIU6nc3pISEifhx56KOjGG2/0elxXEhcXZ6iquk0UxU1FX01EROUJk30iIiKqkGw2201Hjx4NPnfAYgGmTwcaNfJZn1arFffff7+zefPmzl9//XW22+0+Hh0d/Y1hGDGvBQT0DnK7IU2YkAhJamGxWPrabLbXmzRpYr/vvvsC7Xa7z+IqjNvtxurVq/M9Hs/zZdoxERF5BZN9IiIiqpB0XW/sdDoNAP+UtH/gAeDFF831+9Wr+6zv+vXr4/nnnw8+dOjQzbt3737btWWLsvqeewIP3nyz22azveR0OtGoUSNbhw4dAmrUqOGzOK5k5cqVHl3X54uiGOeXAIiIqFSY7BMREVGFpOv6lJCQkHsAhJ47KAjAtm3A7t0+TfYBwGKxoGHDhmh4440B+PPPAKNfP+T061cJAEJDQ4u63adSUlKwc+dOj6IoL/k1ECIiKjEm+0RERFRRxZw+fdrpdrsREBDwz9F164CsLHMNf1nsY79vH2C3Q3j8cYSWRX9F0HUdixYtylNV9UVRFDP9HQ8REZUMq/ETERFRhSSKosdutx9JT0+/9GSzZsA3ZbCt/LFjwKBBgCiWzYOFYti6datx5syZ/YZhTPd3LEREVHLWgCKtAAAabUlEQVQc2SciIqIKy2KxnHK73Zfut7duHVCvnm87Nwxg5kzgmWeAsDDf9lVMubm5WLlypVuW5aHndgkgIqJrEkf2iYiIqEIzjEJy2oYNgaeeAlas8F3H8+YB2dnAc8/5ro+rtHr1ardhGNNEUdzl71iIiKh0OLJPREREFZIkSRaHw9GwSpUqhV9QtSqgKL7p3O0GJk40E/5yMn0/IyMD8fHxmqqqUf6OhYiISo8j+0RERFQhWa3W58LCwoKrVatW+AWTJwNNmwKFrekvrXffBb77zmy/nFi5cqULwAcsykdEdH1gsk9EREQVjiRJVQRBeHfAgAHBFssVvg717w+89553O1+2DDh6FGjRwrvtlsKJEyeQmJgoq6r6ob9jISIi7+A0fiIiIqpwHA7Hx02aNLFcdlS/wN9/A0FB3us4NxdISTHX6Xuz3VJavnx5nqZp40VRzPN3LERE5B0c2SciIqIKRZKkWwRBGHTPPfcEFHlxcDAwdCgwYYJ3Op86Fdi7F2jTxjvtecGxY8eQkpKSr+v61/6OhYiIvIcj+0RERFRhSJLkcDgc03v27BkQEFB0rg8AuPtuoEaN0nd+7BiQlQWMGVP6trxo1apVuZqmjRNFUfZ3LERE5D0c2SciIqIKw263v1OnTp2b27VrV/wS+IMHA1WqAJs2lbxjRTGT/HbtgPDwkrfjZWdH9d26rn/v71iIiMi7OLJPREREFYIkSbc4HI5/P/TQQ4HC1W5399FHQEAA0L59yTrftg2wWIAHHijZ/T6ycuXKPI7qExFdn5jsExER0XVPkqRaDofj9z59+gRUqlTp6huYMwcQBEDXzaT9aiQnA6NGAZs3m22UE8eOHcOJEyfyOapPRHR94jR+IiIiuuZIklRZkqTgYl7b2OFwxHbu3LnmbbfdVrJsWxDMhP3BB6/+3jfeAF5/HbCVrzGWVatWFVTg56g+EdF1qHz9q0NERERUBEmSGgPYZ7fbNwNod6Vr33nnnddtNpvUu3dv5+233166YfXnngNU9erumTkTuOsu4JFHStW1t6WmpiIlJUXhqD4R0fWLI/tERER0zZAkKQTAXgBQFKXRla6Njo7u73A4xNGjRweUOtEHgFatgMxM4Kuvind9Whowe7ZZlM9qLXX33rRu3TqXruvvi6Lo8XcsRETkG0z2iYiI6JphtVpfBCA4HI7lAC67H54kSVVsNtu3jz76aFDlypW9F8CuXcC6dcW79tdfzSn8TZt6r38vOHnyJBISEnRN0/7r71iIiMh3mOwTERHRNUGSpBBBEF7v27cvDMNoiysk+w6HY2Lz5s0DIyMjvRvEiy8CP/wAZGdf+bo//gD+/hvo1Mm7/ZeSYRhYsmRJnmEYUaIoFvEhiIjoWsZkn4iIiK4JNpttfMOGDS233norevbsWdlut8e//fbb/5EkKej86yRJqqzr+pPdunVz+iSQCROADh0ufz4725zu/8wz5nZ95cju3buRmpp6QtO0z/0dCxER+ZZgGIa/YyAiIiICAEiS1AiASxTF4xcd7+V0OhePHj06sGDrvOPHj2P16tV5R44csdpstj88Hs8nAA7YbDaxSZMmw/r37++bTPvMGTOhv9ysgY8+Ao4fBz7+2Cfdl5Tb7cann36a73a77xBFMcbf8RARkW+xGj8RERGVC5Ik1QJwwGKxfANg5HnHe9rt9l8fffTRc4k+ANxwww14/PHHg/Py8rB9+/Z+mzdvvsvlctmrVKmi9unTx3dD6qGhwMaNgCQB33574bnsbHNN/6xZPuu+pFasWOHRdX0eE30iooqByT4RERGVC1ar9U9N02AYxk0FxyRJqma32+cOHDgwqH79+oXeFxwcjM6dO1s6d+5c8CTAN9P3z1e1KqAoFx7zeIB+/YBPPzUfCJQjSUlJiI+PdymK8pK/YyEiorLBNftERETkd5Ik1dA0rQWAZJvNduDssQ4Oh2N7u3btwho1uuIue2WvbVvgm2+A+Ph/jv3yC9CoEdCypf/iKoTb7cb8+fNdqqoOFkXxtL/jISKissGRfSIiIvI7QRA+P1tHqPlbb711RpKk6oIgrO/bt6+1WbNm/g6vcL/8AoweDaSnA3v3AsuXA1OnAoLg78jOMQwDixcvzldVdV5UVNRSf8dDRERlhyP7RERE5HeGYQwEAFEUzwCA1WodUatWrfxym+gDwCOPAElJgGEAY8YA998POH2/guBqbNq0SU9MTEyWZfnf/o6FiIjKFqvxExERkV9JklQZQNbZX3vabLYHAgMDnxk2bFhQWFiYP0Mr2oYNwODBZuX9vn0BS/kZRzl69Ch++OGHHEVRbhVF8ZC/4yEiorLFafxERETkb32rVKkiZ2VlOQCsqVu3rqtfv35BISEh/o6raJmZ5sh+kyblKtHPysrCjz/+mK+q6iNM9ImIKiYm+0RERORXAQEBI3r27Olo1apVwaEgf8ZzVX78EXj1VaBpU39Hco7H48HMmTNdqqpGRUVFLfN3PERE5B9M9omIiMhvJEmqYbPZ2jdu3NjfoVyd3Fzg2WeByZOB6tX9Hc05uq5j3rx5rry8vPmqqn7s73iIiMh/ys98MyIiIqpwrFbryObNmxvOclbYrki//QacOQNUq+bvSC7w559/ysnJyTtlWX5KFEUWZiIiqsCY7BMREZHfOByOQa1atQrwdxxX5cMPgdq1gQULytU6/bi4OCMuLi5dluX7RFFU/B0PERH5V/n5F4qIiIgqFEmSImRZbhgZGenvUIrv5Engq6+AyEjAVn5WQyYlJWHZsmW5iqLcIYpipr/jISIi/ys//0oRERFRhWK1Wkc1b95ct9vt/g6leLZsAdatA3btAsrRsoPjx49j7ty5LlVV+4qieMDf8RARUfnAkX0iIiIqc5IkhVosllc6dux47Uzhf/llczS/HCX66enpmDVrVr6iKIOioqLW+DseIiIqPziyT0RERGXO4XC827Rp04CaNWv6O5Si5eUB770HLFxYrgrynTlzBtOnT3cpivLvqKio3/wdDxERlS8c2SciIqIyJUlSVV3Xn7zzzjuvjVH9r74C4uKAsDB/R3KOpmmYPXt2nizL744fP36Gv+MhIqLyh8k+ERERlbU7IyMj1ZCQEH/HUbTp04E+fYCffgKsVn9HAwBQVRVz5sxxZWdn/62q6kR/x0NEROUTk30iIiIqa1WCg4PLR+Z8JYmJwKRJQEAAEBzs72gAAIqiYNasWa7k5ORVHo/nQVEUDX/HRERE5RPX7BMREVFZ25Oamqr6O4gr2rsXSEgANm4sN+v0ZVnGzJkzXenp6X/IsvyYKIrl+29IRER+xZF9IiIiKmu7Tp8+HWgY5XRQ2jCAf/3LHNkvJ4l+Xl4epk2b5kpPT18oy/KjTPSJiKgoTPaJiIioTImimG2z2dJSUlL8HcqlFMVcp794MfDSS/6OBgCQlpaGKVOmuDIzM7+QZXmoKIq6v2MiIqLyj9P4iYiIqMxpmjYrPj7+lRtuuMHh71guMGECsH078Pjj/o4EALB//34sWLAgX1XVkVFRUbP9HQ8REV07OLJPREREZU5V1T/2798vl6up/L//Djz1FDB7NmDz73iIYRhYvXq1umDBgkxFUXoy0ScioqvFZJ+IiIj8YWNeXp6alZXl7zhM27cDb7wBqCpQpYpfQ3G5XJg1a5YrNjZ2p6IozURR3OTXgIiI6JrEZJ+IiIjKnCiKms1m23r8+HF/hwIcOgQIArBwIdCokV9DOXLkCL788ktXcnLytx6Pp4Moiml+DYiIiK5ZXLNPREREfuF2u1cnJyd3a9Gihd1vQSgKMHCgWX3/lVf8Foau61i3bp26YcOGPFVVH4uKilrqt2CIiOi6wGSfiIiI/MIwjE1HjhxxAajslwA0Dfjf/4BvvgFat/ZLCIA5bf+nn35ypaWl7VYUpZ8oiuVwmwIiIrrWMNknIiIif9manp4epOs6LBY/rCx8/XVg507gzz/Lvu+z0tLS8MMPP7g8Hs+3iqK8Ioqi6rdgiIjouiKUqyq4REREVKG8++67SUOGDLmxTp06ZdtxbCwQGAjUrg2Eh5dt32ft2bMHixYtcnFbPSIi8gUW6CMiIiK/0TRt8aFDh8p25CEmBhg2DKhUyS+Jvq7rWLlypbJo0aJ0RVG6MtEnIiJfYLJPREREfqOq6qYjR47klVmHx44BNWoA330H1K9fZt0WcLvd+OGHH1xbtmzZoShKC1EU48o8CCIiqhCY7BMREZE/LTl69KjN5XL5vieXC3j0UeD334EOHXzf30VOnTqFKVOmuI4fPz7b4/F0EkXxZJkHQUREFQbX7BMREZFfvfvuu7/07Nmzb/v27QWfdaLrwIED+P/27j826jrP4/jr+512inRLgYOuFHcXw11qQOAWEBVRyaFE3fgDOV3ulrBBFpbE0+uZvTtcgc/Ongt7BGNWN0iAdQ/DjwqFBouw4YdrQAhLNUKLhQJXLRXttgXabjvTme93vt/7AzHu8UOlMx369flISJr58f585r95Mt8fqqmRHnpIstK31KXU1NRo8+bN0WQy+a/z589f1a2LAwC+kbgaPwAAyKh4PL7s3XffnXTrrbfmpW2Rn/1MOnxY2r07bUtciu/72rNnj7tv3742x3F+YIw50K0bAAB8Y3EYPwAAyLQ/trS02G1tbemZXlcnTZ4srV+fnvmX4bquSktLY/v37z/22fn5hD4AoNsQ+wAAIKOMMW52dvbhhoaG1A/fv1+aNEn6/velgoLUz7+MaDSqV199NXry5MndiURinDHm025bHAAAEfsAAOAa4Hne/7a2tqZ2aHOz1Lev9Nvfnr8Cfzdpbm7W8uXLo83NzcsTicTDxphYty0OAMBnOGcfAABknO/7sWQymbqB0aj0yCPSnDnSjBmpm3sFvu+roqLC27VrV6fneU/Pnz//d92yMAAAl0DsAwCAjAuFQjf07t07NcN8XzpzRnr8cWn69NTM/BKu62rTpk2x2trajxzHmWKMqemWhQEAuAxiHwAAZFwymRw7aNCg1AybN0+qrpbKy1Mz70t0dHSopKQk2tjY+HYikZhqjOnsloUBALgCYh8AAGRUJBK5Pjs7O3/AgAFdH9bWJn3nO9KTT3Z91ldQXV2tN954I+b7/vJEIvEfxpgUnosAAMDVI/YBAECmjSooKOi0LCunS1P275d+9COpslLKy0vR1i7N8zzt27cvuXfv3nOO4/zAGHMwrQsCAPA1EfsAACDT+ubm5nbtDkGxmBSPS4sXpz30Ozs7VVZW1llXV3fUcZyHjTH1aV0QAICrwK33AABAxkQikYGS/iEnJyf7qod0dkqTJ58P/mnTUre5S2hvb9fLL78c/+ijjzbF4/E7CH0AwLWKX/YBAEBGRCKR3pIaJWnw4MFXN8T3pT//WbrtNum++1K4u4vV1tZq48aNUc/zlj777LMmrYsBANBFxD4AAMiUH174Y+jQoVc34ec/P3+bvRUrUrWni3iep7fffts5cOBAh+M4/2iM2Z22xQAASBFiHwAApNXzzz8/1fO8vyxcuHDHFx+3LOt7Q4YM8ceMGWNd1ZX4XVfq6JCKi1O11Yu0t7erpKQk2tzcXOk4zhRjTEPaFgMAIIU4Zx8AAKRNJBKxk8lkqe/72yORiPXF57Kzs2+/6aabrOHDh3/9wfv3S6NGSUuXSsOGpWq7f6WpqUnLly+PNjY2vhyPxycQ+gCAnoRf9gEAQDrlSVK/fv06Y7HY0UWLFsUcx3lPUlk4HJ548803f/2JnicdPy49/bQUDqd4u+fV1dVp3bp1Mdd1/2XBggW/T8siAACkEb/sAwCAdBpfUFDwl7lz5/Z+9NFHixzH+XtJsyRtTSQS4UQi8fWmxePSpEnS8OHST3+ajv3q6NGjWrt2bYfjOA8R+gCAnorYBwAA6XQ2FotZ4XBYtbW1yc8e+2fbtp+xbXvN5s2bOy68sKamRi+++KJfVVUl3/cvnuT70smTUmGhNGZMyjfq+77eeeed5ObNm9scx7lr4cKFu1K+CAAA3YTD+AEAQDpVdHR05CQSCY0YMSJ04MAB2bY92fO8XaFQ6Gxra6slSR988IG2bNmioqIi68033/QPHTrkjRgxInTjjTcqPz///KRf/OL8Yftr16Z8k/F4XBs2bIh+/PHHJ13XfdAYcyrliwAA0I2IfQAAkE5/m5WVlQyFQtmFhYV66qmnVFVV9eNPPvlkal5eXnjChAk5Bw8e9Hfu3GlNmTJFw4YNU2dnp7V+/Xpry5YtysvL0zPPPHP+yvsVFdLixSnfYFtbm1avXh1tb28vTSQSPzHGOClfBACAbkbsAwCAdBo9cODAZCgUkiT1799fd999tyUpr7OzU2VlZcm6ujp72rRpGjp0qCSpV69emjlzpr1s2TIvHo/bHTt3KveFF6Rt2yQ7tWcgNjY2as2aNdFYLLbYdd1fGWMucf4AAAA9D7EPAABSLhKJFEi6XdKhlpaWiwI6Go1q1apVfnZ2toqLi61evXpdNGPGjBl2SUlJ8vCvfx269YEHFEpx6FdVVam8vDyaTCafXLBgwf+kdDgAABlG7AMAgHSYJWlRKBRaMnjwYOuLT0SjUb322mtebm6uZs2aFbrcgG+Fw/rJ1q2h340b553+7nc1xXXtrKyuf3VxXVfbt2+PV1VVnXEc535jTGWXhwIAcI3havwAACDlsrKyRkuSZVn/dv/99+deePzMmTN66aWXZNu2P3PmzCt/D/nTnyTX1Q/nzbOrq6vt+vr6Lu+rsbFRK1as6Dhy5MgfHccZRugDAIKK2AcAACnnuu6/S9K9996b3bdv388fr66u9vPy8pJz5swJ2Vc6LH/JEunUKam8XN/Kz9fQoUOTr7/+umpqaq5qP8lkUjt27EisXLmy/ezZs/MSicQDxpjWqxoGAEAPYF3yPrYAAABdFIlE/ClTpmjkyJEX7mHv7d271546daqKioou/8ZoVBo3Tlq3Tho58vOHKyoqtHPnTo0dO9a755577Cv+Z8EXtLS0qKSkpKOlpaUiHo8/boxp6upnAwDgWsc5+wAAIOUikcjtkjRkyBBJ0u7du7333nvPmjFjhm644YbLv/HgQWnNGqmy8qIr799yyy0aMmSIVq9erdOnT3vTpk2zr7vuuivu48iRIyovL495nvdL13WXGmO8rn0yAAB6Bg7jBwAAKWdZ1n9JUp8+fXT8+HFVVFRYTzzxhHXF0Jek3/xGKiy87C32Bg4cqOLiYtt1XX/ZsmV+Q0PDJV+XTCa1ffv2RFlZWUcikbjvueeeW0LoAwC+SYh9AACQcr7vn7jw9969e71Ro0ZZAwcO/PI3rl4tzZt3xZdkZWVp9uzZoaKiImvVqlX6/xfuO3funFauXBk9fPjwO57nfc8Ys+fqPgUAAD0XsQ8AANJhlXT+PPuGhgb7jjvu+Grv+oq31jtx4oSqq6u966+/3uvXr58kyfd9vf/++/4rr7wSO3v27K/i8fg9xpgzV7d9AAB6Ns7ZBwAA6fChJG3btk2FhYXJ/Pz8UCqGuq6r0tJSv7a21po0aZI1btw4y7IsnTt3Tps2bYo2NTU1OI7zsDHmSCrWAwCgpyL2AQBAOnz7wh99+vRxd+zY4efk5GTl5OQoJydH4XD4r/4NGjToSwd++OGHKi0t9fr06aO5c+da/fv3t3zfV2VlpbZu3RrzPO+/k8nkYmOMk9ZPBgBAD0DsAwCAdKiVNFfSgGPHjp2TlGfbdn5WVtbf2Lbdz7KsfMuy8qLR6O2SVFxcrPz8/EsO8jxPmzZt8k+cOGFNnDjRuu222yzbttXa2qry8vJofX19k+M4jxhjDnXfxwMA4Npm+b6f6T0AAIBvqEgk8m1JDQ8++KBGjx590fOnTp3Shg0bvNzcXD322GP2gAED5HmeDh486L311ltx3/dfcF33eWNMvPt3DwDAtYvYBwAAGbVo0aLjEydO/Lvx48d//pjnedqyZYtfXV1t3Xnnnd6ECRNs27bV1tamjRs3Rpuammri8fg/GWNqMrh1AACuWRzGDwAAMspxnJIjR4785/jx48OSdPr0aZWUlHg5OTnW7NmzVVBQYEtSTU2NysrKYp7nLXUc55fGmGRmdw4AwLWL2AcAAJn2h08//XSB67ratm2bX1VVZY0fP1533XWXFQqFFI/HtWHDhlh9fX3HZ1fa35/pDQMAcK3jMH4AAJBRkUikt6Rm27avC4fDmj59ugoKClRXV6fm5mZvz549juu6f3Ac58fGmNZM7xcAgJ6A2AcAABkXiUTCtm3v8zxvrCRlZWW5lmWdCYVCxzo7O5dI2m6M4UsLAABfEbEPAACuGZFIJCwpV9JQSZXGmESGtwQAQI9E7AMAAAAAEDB2pjcAAAAAAABSi9gHAAAAACBgiH0AAAAAAAKG2AcAAAAAIGCIfQAAAAAAAobYBwAAAAAgYIh9AAAAAAAChtgHAAAAACBgiH0AAAAAAAKG2AcAAAAAIGCIfQAAAAAAAobYBwAAAAAgYIh9AAAAAAAChtgHAAAAACBgiH0AAAAAAAKG2AcAAAAAIGCIfQAAAAAAAobYBwAAAAAgYIh9AAAAAAAChtgHAAAAACBgiH0AAAAAAAKG2AcAAAAAIGCIfQAAAAAAAobYBwAAAAAgYIh9AAAAAAAChtgHAAAAACBgiH0AAAAAAAKG2AcAAAAAIGCIfQAAAAAAAobYBwAAAAAgYIh9AAAAAAAChtgHAAAAACBgiH0AAAAAAAKG2AcAAAAAIGCIfQAAAAAAAobYBwAAAAAgYIh9AAAAAAAChtgHAAAAACBgiH0AAAAAAAKG2AcAAAAAIGCIfQAAAAAAAobYBwAAAAAgYIh9AAAAAAAChtgHAAAAACBgiH0AAAAAAAKG2AcAAAAAIGCIfQAAAAAAAobYBwAAAAAgYIh9AAAAAAAChtgHAAAAACBgiH0AAAAAAAKG2AcAAAAAIGCIfQAAAAAAAobYBwAAAAAgYIh9AAAAAAAChtgHAAAAACBgiH0AAAAAAAKG2AcAAAAAIGCIfQAAAAAAAub/AFuCKhK2u2s2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "ax = rs_df.plot(edgecolor='grey', facecolor='w')\n", + "f,ax = wf.plot(rs_df, ax=ax, \n", + " edge_kws=dict(color='r', linestyle=':', linewidth=1),\n", + " node_kws=dict(marker=''))\n", + "ax.set_title('Rio Grande do Sul: Nonplanar Weights')\n", + "ax.set_axis_off()\n", + "plt.savefig('rioGrandeDoSul.png')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/objects.inv b/objects.inv index 8c8a34fe028d0d8118c92d3cd44d32e53008dc3f..c2c9d2d4a12d8c4c03c7d17f52f79bfe71c6bed0 100644 GIT binary patch literal 12164 zcmZvCbx>W;vh{)B1PSi$?s|f|O9<}n4hMHVxC9LZcemgW+}$-C++72_{O+yqzWb`a zzxJ-#RkLThr&q6DJ(OhXPFB_qATnzQ4|4}MM;9+L4|5k+Yexq%4kSu46&FVvb5l0~ zGCOM%CoflHyT4;!|NUKnjEjYzh3)Ua7b|lz7jt`KYX>uP7cxf+GB+!0S27E0J9DzX zPg6&GCl_;9S93EmcUNl%OET}jbFm8mVzGkv4URde+za4?2u8;k1pR4yRL&n_ce^^4GnI z1J(d};XgF0u8ZvGu6gl**R$7GRy3~lO_)Fn+=mys6cO9eEO77I9}83X4Dc~GLZef=TGA8CmKtDFI-J^LU;46n~Q?UA(*(WlZbkSJviDCc(v zzUq+IN!fFzTTSOa$+rooQX@GOJHn;Nj+V!iz%OzSAS1aMo5J~<*hj>9e`ywR_nE;& zCx#HA@nxhNdv=h}Zhi;J;ldnSKJ`24;F(-m(4gC;-QP*I?QLY-AVqc52KS~F@L}Dr zBZQy7WYH6r)iNm0U`GsW{;s`qniU9onM^j3=r_zX*|16;Bu;M^r^F9@y50@U`^*6TA})1Iep zE}%jImOE$?wrTx)Vd19pyf$g`VrrQ&W#wB^4`H^i3pBY8`Yx|M?&#NU?se4joS<|Y z3j7nMSssw7Bkjp6hAhnd%7mP2>}wXEM3)z$J%bH+LvW^IyKulZh$hr_oiy-dtT@aV z^Yg{l8-0;Aij`E8_=$VjG5D^Z6_d!M$M#onHsm$8G~0c48Mzp;#ym9NA-V5jI|z!L z!>$|i8v2FGD1uIU6-8NiMo-9sMDpY&QOwE8*Jm9D`uG3j5 zxCwA2ICh0Zdv0*D$hF&d_C6FMdI3x4INLT7ad*pCD!HbtCgqnb*9?}fjUK6#DyIg_!VQ5f@ zSCVPFF0fAN<8BKr6mpQP;)igXS%dC9YC(-jeNTCJ7>c&C%U+W3uu9X{aT^6RoBJbL z?x#@Mkp=!ugmQUV6XibU#k!TlL;^$7&wPHMrb9C+MzhJo=<3Snl`1ol= z&1%(o_;fw;RxF~Q3YVRVrB$TWnb1F{c}7YkyEuhidy`Rc<`6%=|8CeHiK7!;W%@|6 zH|*_YP5J?2MPUW{?jd=VA(9TZvl@g;7ekoYm!s+^6cKW;rml{6mxyZqSkD{LJuta2y;Bt}7QuRf3?= zyU#K(s753;2=@AucD^0<6=f^a%FG}$pcGb}V3!(Id?%j;Bcz4%!w zT%NRm92MM$mb zT++JCGan^JqZIt7Ix@mtpD#Wtt+@jnzVfYdv_K;W{yqugt8e0uYzx|G+}nOT&$Y)`LXQ@B48^;AqbE2q)CrmBXc7JGAgGmgYrXNtI9@C9#xCMo7 zia3sVl)XE#CUA|Qkn}u&Y4{#m?kV4GUMuE|?eMP@UkMWfkV`ZHd?Q+BUsqiWox^vo+O#_yRbhp-UW+ zCfGw09r{zraVyLCriM9@_GgnOM4)|P#6+J*loeY{z5~v2=R3Xn3d{mFo_-^XgTYB>YOQrHn!J)yWn(zusJJEyOW0pP=4N5%=OiTbrD|JHGW`v`#G!vk z(3UFJwxf@|$G^TyRzKM8hEmKVFgr$GbnS%`DQ$0{Q@=G1Lp-qEAo&o)7k%ua~apN zp}Sbe3*ll$)#q&J5x$90SuSjbJ@rlF1g6h72Nh{+qZ4F_ZXu=PDl2#VF4Qq`Fo!Mq z&SBBqAdo9blMCeL(lWDKv-u$p1{oON1-s*KH!?EQgo*E>Wd zIAfaYl&wB*%2EJx-7eL+ZGN}l^X%q?!FwiEfbr0d`Z8bt zM)nXVglt|F_~z1tJ>xH-3+hDP%F~D48mh|XCekzXO zd;66@u+h2H7uNG*Jzcx-skq(^JQxIC@8^nSP*im+UXa^v;V##P?L|1s?`whOELGx8d+G*By% zj^!c+Iqzpbg__K??sO!^xNJMuOjdHZ*uGmQdtwsn^Jg%jR@_6U66EAH-oMc< zQWc-jq4J}dok$@kiDRvV#p$14W3i%vP6b7epcR^#rcaa!lYh>Y4Fz035`2GZ%6;t6 zGQepI+5>Hk^?x@sIhGy^$4jmIy}BSW2q!^0I5ws^qixsLfo3y|B_s*NUlIhI<>-mgYi-oD*IBFJRo2^lkx5X8**^)WDxGO1ykJ4ycaXT- zL*39nS9Qh`|f@YW6`%y z;8&j_WrH3GDLn@`B0W)`_2`~O;ra6xVPQS3r1Yd=4P!hy(&|4y%Om7AORGU3A7iy1 z0v~lo=i&EgA;gv&?0yXsv!anpHu$rRp5Wgl{^RRJWYFqsD7=6H3$fZwFWJ5ce3=iX zJ}y{wtp%cU%}WJ1LEVu9hqJT z(5m?=*qvedlm{cs+00mtH5XX*;=DG)EQVKN4k4pPU?zWi1lm%v#?8GdNt~ud{m~r> zxQc=3@f~uu`p>o?A^b$7nP2mI!EV$PsqT~a0*L0UloAV3eg!Ik?{s-0%UyZs_r4vR z4v!$qwJD?Z)yZp18|5zU;n z8-6Zp)$YeFi|T4s8GO|L8;uO-nsv0ygeG4GZJp^%Kjf2|a`TFnosgtN)s3o)6^?13 z(q*7wqcdU*gfT_#h=C}hcUQ6cu&Z^`kn&E;)|O^I1qv>c7fs7Nw+?d(O2wK$yVHl( z(@tC$9A#PF#}f2HMaFq}#Etm}HiAtr}kibT53llyU%V>(h^)Tw-2W?)wQ^yR$jL!r&S z!AiOIvrP-on2?@U)fpdj=T=v5BeC0W3FE+jLr4skb)Px6kNQm*y>!lZb*V_Gzv? zu0gzlJL64R)Lf?aYL^xpTO98PQF~>2j>>D*{N@{Fzn#SZGqS5)z2+UqnFKAyGx%dL z7MR|gRTXjA8d(@{5SA{1LfwJ1mo64(+BE@sG?^d$X=E-QtFn&#jGukZXX-> z70eZP6l=T3lnjdT!*)Y0QlFEGh#F3JZGbjj^log_@sB=?W9b1bLoYmcEi#nH*#GZ% zL7M(7#`p;Y${a7AlldzJV#Ii=hoOvYIAw4{LTR_7v$x2YU{B{GG2yK5!?7Z~;D!n@ zXfdvVsPqIN7I-xACcqsiB3Of++cP^=hd|Nb9PVKcQId`)F^i5o(%-aR}6 zxmz86??d9xV_8#%Z{PeM?Kf~(u@KIinq3oUJAqH$mqiu>F$!yBXvOv_2*rMM{pr1o z-2pxU?_(j9V?M+LXne`usenwD-7E>?uTh`Ew1)(vk=xJ_7Tl{Fz#qI5pK+rrQmaaA z@5aZPyzve*=f}eM(q9@}p@yT|RNnCoGT%>iCd1OUWEp33e^YzhlsC|_D`JQ!U`oQZe;O@#bLzIRy`BLnmt&g82tlAC9R>u zM|;;Oxy0{}2i*!@;~)Tnuf# zjt@7YTpO*@C^)YE6;Di96%FvA@T>Z*hQdFpstL>CbVQnI&WhCA0+s7uXU;0u=C0l9 zp*h@BAby1PdBRS)9)Iz0WQF-tote=|7+M87Z2=MFQuA!NV(tt6*}6LD~kd*Ma8 zPr2TQQ;w~qwI_E@4guk2hoC37u~ zX}acbRje$)6BWPd_Ku!cCrf@-9vxdl=m+Nqef6AP#ws+5OZf2aJr8c>>h<+q;^(9~~O z1^1(N#P!o%TAC%;7nANcchneb{Q2_aku8ybrZ6vdW=NojugPW)KyIX>`B3_s)y5hx zUw9+5fV9B&<=m?>28rrINs@}hbSQz{w?d5?Aq>c;2^uaJ=Hn%0$&s3OV;q{A)$Zu` z&G#;??|RWQaW#xFlHWhZF9i6fFo8aeR2K%BY3^ht4X`?5XcOWHh^FE>+p$`!=N3rk z8R;XjQw*nHv|Ik(3RxXc{dwVa&n@&svOpd$)?NAOJ2%JcKkuUNWx%GF!&~?-5kRumr8m)>rogY7#8B@&EVC{328>jL%2cV>T@f6QlEqm!$X@u=ZHtvQ(+ z(YGSf0-Y4l;j6J5@Y`gy>I8|h#>{b3JZYZX8ALjURvbH&57+f*GX`Van&t9V@j zCMYFk29E8pC_da;NiUbGbU$eyAKHFMi(iOMe&K;Tkds==y!u_0>}^l!?4;CJ^Yc5;kNsJd-a+)8HS`a-l}SVn+)1 zK9lk*YlEQ(;iE&2nv1%__Sm$z(H5ZWRQ8klY@tJp%5+zk`Y`H7DS5l^0D>2AkZ&&_ zXIGNCaU$H-*7ZvFXokNE`B&+;7@MF*b`l2y{7M|gzs2tMa2sdcp^%05cqyqoq z_aiJoHbOs_EP!2cSG=-1j=DlCS?S>0oXeOIn%Sn#Tto)Bywm_pz-&8MXmV`Aw2^)g zJabIVHz-ij`QF_fW)MK$3(`6Gj-IfQr5emX0sEG{kAbGNtEkkxp?I#y{q0qu(NCnA zSfOWk5NFeqscF+w+GLk%^y ztJYY#(xLILFs{`0^LLPzYH#TUvuXnJkCi1C7*+b*7L6Vo@1*%fyaK((x&+kiU6kag zr!sGDr#9yPD>VF@EoG(1>_?a!-~UmjAWeKJbx<>D&iVmG3uUu_Qn4_Ez43%=F|q&P zjCKBDKhOqWP+XUo12@9y{&b-&z5Tfnu4tQXm{{ivx|63z6($jMCo4F*cQ%=u4pv(9 zbTD5mP@qm8h4IP5kf^yoUPFq|mAax(tLB734YBjE$7%+|5@rn4wDJeW9~g6cNw15Q z;zK|2tCJ_P?G9W4PwAFFHSbi>2{<{T2dYwv0W9?10Rk+1QG*2mXR>=DI$hY`9KGdT zMW@}YfQ#D2WiZqKNkZcSdG7BCV4ECYi$#TK_cf z5?l_uQ)Bs)Q?O1J68b~_8}aTSvOax3mQH5QOuu(o=IdgLp(mf18qzEs)TK`keJ7(H zi@f>7yAC5;|1W+>4{@;qYs`!cr41?}Kl6 z>K+ST-^>`caYFS17|-4&hE#b?TG4#mrssWK_}fm?(xU~Yi2*F1|73?Wnp>PFaxfqK z@H0~+jKBHY#)hvgT6f*~Vbig{%Wy*_%ip>zHVtyRDtI|GNk|7yR@rJT2rW#ILyHqn z6>SfBu`;xKFV*7t)@bqMkxo%`Gg7FW8V4S9^+&=-tqhA=M(CRxQ_X$z{1kQXgxX4L zyd#-`Q$5|3o;)1?JE#+M8WQgH@9k!5ILn>{DxoN^N}4T(f!#ihw?_9ga5z^0p9<$5 z8Kp4(Zl{&@_Z4#P-*(OyN>v$F@=pReyC=tlj>mY}*ceRLrl9dQE|M|+O#Rc5=1S8> z-OnE{*W>a0&@jg*>wS(swFV&WuDof&1Vi^f&L_{tv(vp=72X!m7U5yaS2?Sdb>0+7 z=$094tB; zE1wMTNU~C}>dwOG`wF*q${k~nsX^B1wm?kg@IRcM zsPx%Qjx&_ws$7i1cr>&kT=?GtrHuqaPYfZ3h^o7un`V7=DWi$#v_f7!n2JR$Ar%tc`udZm?uXB<45r;^ zCq8xhoZj}7HA~dk2&4j;kbf-=m$OV*Ki6;R>#xPmrOfr*+gegCjNisf2ZIzhv~pWv zmPIxzQM}2|b45%;x={payDtZCySowrRNgLP0UzX`>1Hj1&w$Jgy{>g&b}uOq8`LwP z6a8p*87YCrsOCQ@QJ%>#+R|nYZL?I_yxNpN(xT0&*DcI?rshz3(pv`xmKe9>9 zmlwF)p^3I%D!IVz?$0rfFp17x^w1!@FEdG%g{2V1m3m{EdjW|xKvaKXQPN&n&;hE!L z42{(}d7ZfL#*@COEf8-l-Ywm;{s|+FqjogJ9g=TaApfZ2H-d9;=-!4JgU z@W0m)JFIDDdhxbU+@x_K{Q0Aqd6ybRmi!_Kqbc;Ur7|6WTH`M!s;EP#XiK>{QSmLz zshUDjqA)6wD=`teNwEL6invdZ{pMLOm3u5=))n1mL491KSpD4{x;oDLKVY4b4^X5>vJoR81eInx3q!AyFcV9!SuZ6R|r_UyxPvP8_ zPx91g;k$fM<3!@R3QgI)d89@Z#vI1W3{?KExUAWN)QF4}v{K^&isOlTa_f-k^gM>o+O!7h_ z@>v$@5E}g>E5Py%#QDO4IAHI4Wu7yOzrkp$O=~w#>IWNiD-@X|n^J3j6J~tn6-7Zs zUUWEr?|1EA=Qeaw4f1yB)M9HDwlKN?z3#o%bSoKk+Rcse$VvIMa+PCW)B`c*;yYfR zsxl7Au6Ovep`xlP^%S5QgDM0PX4TAN5BRlh%MPBdzC!90a*wa;D=PBJy5u*b;q%ez zytKHYGe686Sc4TBU+jk1CnbiYj^Afa9=aW$w~XPbZ9R6F`FQS{ci~gwUwU_wIq=`s zONEV<_0@?`ITG20x?)BltZdcKjQr)dXFhVCvMeN#w~BV32_}k0OLmjvZg`Gv=o6o? zzNJyBa2OFFb(zKeaLLhIq^d`H)5uvxhK#c7YMv_9H=IVA zo*yqvX*SH9+$C~mYWjTLdlfnG)=n)oiKSJBf_bx$#4E~@ZEKY?)-my&kLu;3r#?@e zNdI{3=t&Uc>eR=c*O4=+HTdM0on@PGrh&@EGp8wMf8A}~QX}M^^jo!%!S)^Pd(H=C zh|j`COj}mPIa+}APaQj6q8j036u;r4i=vH+liaV7t(!zug6{6>>2b~9saCOe_rczk zSzS6@x>c~YRWD$h#cES_6rap)g51@frBRk+h+F!V`AlzGIb?qMF)rq{vtzQb?v(AY zjJDlHT}kHd%by}2qF93{LkxP@7!=o;mGiqPANIy<*V$ozcrud2Q+Wn!{7V>f5R^bR%K0a-;|ka(R_I)^aW>9>sO*Mpu581){lxbbs-P& z_QMbPm`rkfvq7_Pf9U8Bt1mK*fOpX}w4FV1$_Q4~Xx*4*|f!?vAHFdyYpD zTk8h6aJDVTurXU(n_KVKB5oUNd>s!0=umg5%^Q&8o|E6?p(71(8toWYqe|s)e^g;W z#(U0F;TLHe{uZOQ%A9#?nxhi(VlKXV+9?IvN zG&f-q63aVIbpxMFL?}bZ-u_Wgl<^37ZR?lOnQI>4(eLjKIr(8#*E8#sWj%$ZpOnOk z&w=f-sC?KVp~U4iMOaG?DS*L?ZUO#9lk{O#2a9JZM^663M)?;V{*CK%paIeGWjh;t zt3jz&$KM#Hrga-&W#v0?MQ*rg4Igk9{+(Q(Sb+ys{IhMv#Eu4ruKj1z7ojS!_{sg6 zXAPEV^h*(Oze!mH4X0o7UY`}m;B;mR^E!ct?3!_;h`9w9_YFt+s#a_#Q#aR#2`G;Q zf#~0NEemP>F!>f(xP}d>VfX2X^A9HWmc`AB;>qOu>_#zpVIzj-Gv2c{i7`4v8UM7p zR>(3Ar2r`Uh}*T&o(~U30RfH|m$>$ssqXi8dX14veR@7;HY`m)E96fPO{(oZc;%ox zLoQLj$F#kz7O_NRFQy)HkZ0d{!_mIF0(?QqZOzjbSCLfVc+j9#K3+E)5 z=cTRpd~zbV|46}Xk75%rEF>R>ZO$0K|D}=ohtIZ#ZR@*kt82e%X^i5DNsg@@rqxLatu_|!c; z%IqiKm8{plDtN~o*m9{v1VkI>Siv+{d7{;~$u)iOi zIhgiEo@%y9VNY}8mBc(-egf{Y@<A2 zB7cm^etBZExO_6PFehv|Y9@F)h)R8gvonWh(>Yohaf`Ql-=I9KZ@^i#UVGS) zqYIsDqV6}YvM!LYCbFvvZs4DG%yJgYx`m2Zk~e1}JL}@Jn^C8dBXlY){OUP$bLnzE z-SlT2#s#Qe=XC*E8~MECSS+u(e$GwU(_L&zc{$E`Do>>W<*9ZX0%^1_#9hkUoBWVp z=Z|jbNI69<NUF2 z{hlik?`mZKj^}>9{?d1UH}qtoH9JG7*+9E#?!#%qO0fOrsNvX_&-nD7m4VZ=QeDa{ zHFc745m;lbnVX*BT(>1Q$+4!2^hI67M%?I=BM(B$;AUaMUW!f^WO5q~3hbXm$PjLFU-GyGgAt9^P pp7YEk_J5|&*XAA6+Z*;n#Po!~7T5g_HmX + + + + + + + References — libpysal v4.9.0 Manual + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ +
+

References

+
+
+
+[AS96] +

Luc Anselin and Oleg Smirnov. Efficient algorithms for constructing proper higher order spatial lag operators. Journal of Regional Science, 36(1):67–89, 1996. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9787.1996.tb01101.x, doi:10.1111/j.1467-9787.1996.tb01101.x.

+
+
+[RA07] +

Sergio J. Rey and Luc Anselin. PySAL: A Python Library of Spatial Analytical Methods. The Review of Regional Studies, 37(1):5–27, 2007.

+
+
+[WS98] +

D.J. Watts and S.H. Strogatz. Collective dynamics of 'small-world' networks. Nature, 393:440–442, 1998.

+
+
+
+
+ + +
+ +
+
+
+
+

+ Back to top + +
+ +

+ +

+

+ © Copyright 2018-, pysal developers.
+ Created using Sphinx 7.2.6.
+

+
+
+ + \ No newline at end of file diff --git a/search.html b/search.html index 055201ea5..8a5bc5683 100644 --- a/search.html +++ b/search.html @@ -1,43 +1,128 @@ - - + - Search — No Errors Test Project documentation - - - - - - - - - + + Search — libpysal v4.9.0 Manual + + + + + + + + + - - - - + + + + - + + + + + + + + - -
-
-
- + +
+
+

+ Back to top -

- - - - +
+ + +

+

+ © Copyright 2018-, pysal developers.
+ Created using Sphinx 7.2.6.
+

+
+ \ No newline at end of file diff --git a/searchindex.js b/searchindex.js index 2ba3b8680..bff2af42d 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["index"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.index":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,sphinx:56},filenames:["index.rst"],objects:{},objnames:{},objtypes:{},terms:{index:0,modul:0,page:0,search:0},titles:["Welcome to No Errors Test Project\u2019s documentation!"],titleterms:{document:0,error:0,indic:0,project:0,tabl:0,test:0,welcom:0}}) \ No newline at end of file +Search.setIndex({"docnames": ["api", "generated/libpysal.cg.Chain", "generated/libpysal.cg.Grid", "generated/libpysal.cg.KDTree", "generated/libpysal.cg.Line", "generated/libpysal.cg.LineSegment", "generated/libpysal.cg.Point", "generated/libpysal.cg.PointLocator", "generated/libpysal.cg.Polygon", "generated/libpysal.cg.PolygonLocator", "generated/libpysal.cg.RADIUS_EARTH_KM", "generated/libpysal.cg.RADIUS_EARTH_MILES", "generated/libpysal.cg.Ray", "generated/libpysal.cg.Rectangle", "generated/libpysal.cg.alpha_shape", "generated/libpysal.cg.alpha_shape_auto", "generated/libpysal.cg.arcdist", "generated/libpysal.cg.arcdist2linear", "generated/libpysal.cg.asShape", "generated/libpysal.cg.bbcommon", "generated/libpysal.cg.brute_knn", "generated/libpysal.cg.convex_hull", "generated/libpysal.cg.distance_matrix", "generated/libpysal.cg.fast_knn", "generated/libpysal.cg.fast_threshold", "generated/libpysal.cg.geogrid", "generated/libpysal.cg.geointerpolate", "generated/libpysal.cg.get_angle_between", "generated/libpysal.cg.get_bounding_box", "generated/libpysal.cg.get_point_at_angle_and_dist", "generated/libpysal.cg.get_points_dist", "generated/libpysal.cg.get_polygon_point_dist", "generated/libpysal.cg.get_polygon_point_intersect", "generated/libpysal.cg.get_ray_segment_intersect", "generated/libpysal.cg.get_rectangle_point_intersect", "generated/libpysal.cg.get_rectangle_rectangle_intersection", "generated/libpysal.cg.get_segment_point_dist", "generated/libpysal.cg.get_segment_point_intersect", "generated/libpysal.cg.get_segments_intersect", "generated/libpysal.cg.get_shared_segments", "generated/libpysal.cg.harcdist", "generated/libpysal.cg.is_clockwise", "generated/libpysal.cg.is_collinear", "generated/libpysal.cg.linear2arcdist", "generated/libpysal.cg.lonlat", "generated/libpysal.cg.point_touches_rectangle", "generated/libpysal.cg.toLngLat", "generated/libpysal.cg.toXYZ", "generated/libpysal.cg.voronoi_frames", "generated/libpysal.examples.available", "generated/libpysal.examples.explain", "generated/libpysal.examples.get_path", "generated/libpysal.graph.Graph", "generated/libpysal.io.fileio.FileIO", "generated/libpysal.io.open", "generated/libpysal.weights.Delaunay", "generated/libpysal.weights.DistanceBand", "generated/libpysal.weights.Gabriel", "generated/libpysal.weights.KNN", "generated/libpysal.weights.Kernel", "generated/libpysal.weights.ODW", "generated/libpysal.weights.Queen", "generated/libpysal.weights.Relative_Neighborhood", "generated/libpysal.weights.Rook", "generated/libpysal.weights.Voronoi", "generated/libpysal.weights.W", "generated/libpysal.weights.WSP", "generated/libpysal.weights.WSP2W", "generated/libpysal.weights.attach_islands", "generated/libpysal.weights.block_weights", "generated/libpysal.weights.build_lattice_shapefile", "generated/libpysal.weights.comb", "generated/libpysal.weights.da2W", "generated/libpysal.weights.da2WSP", "generated/libpysal.weights.fill_diagonal", "generated/libpysal.weights.full", "generated/libpysal.weights.full2W", "generated/libpysal.weights.fuzzy_contiguity", "generated/libpysal.weights.get_ids", "generated/libpysal.weights.get_points_array_from_shapefile", "generated/libpysal.weights.hexLat2W", "generated/libpysal.weights.higher_order", "generated/libpysal.weights.higher_order_sp", "generated/libpysal.weights.lag_categorical", "generated/libpysal.weights.lag_spatial", "generated/libpysal.weights.lat2SW", "generated/libpysal.weights.lat2W", "generated/libpysal.weights.mat2L", "generated/libpysal.weights.min_threshold_dist_from_shapefile", "generated/libpysal.weights.min_threshold_distance", "generated/libpysal.weights.neighbor_equality", "generated/libpysal.weights.netW", "generated/libpysal.weights.nonplanar_neighbors", "generated/libpysal.weights.order", "generated/libpysal.weights.remap_ids", "generated/libpysal.weights.shimbel", "generated/libpysal.weights.spw_from_gal", "generated/libpysal.weights.testDataArray", "generated/libpysal.weights.vecW", "generated/libpysal.weights.w2da", "generated/libpysal.weights.w_clip", "generated/libpysal.weights.w_difference", "generated/libpysal.weights.w_intersection", "generated/libpysal.weights.w_local_cluster", "generated/libpysal.weights.w_subset", "generated/libpysal.weights.w_symmetric_difference", "generated/libpysal.weights.w_union", "generated/libpysal.weights.wsp2da", "index", "installation", "notebooks/Raster_awareness_API", "notebooks/examples", "notebooks/fetch", "notebooks/io", "notebooks/voronoi", "notebooks/weights", "references", "tutorial"], "filenames": ["api.rst", "generated/libpysal.cg.Chain.rst", "generated/libpysal.cg.Grid.rst", "generated/libpysal.cg.KDTree.rst", "generated/libpysal.cg.Line.rst", "generated/libpysal.cg.LineSegment.rst", "generated/libpysal.cg.Point.rst", "generated/libpysal.cg.PointLocator.rst", "generated/libpysal.cg.Polygon.rst", "generated/libpysal.cg.PolygonLocator.rst", "generated/libpysal.cg.RADIUS_EARTH_KM.rst", "generated/libpysal.cg.RADIUS_EARTH_MILES.rst", "generated/libpysal.cg.Ray.rst", "generated/libpysal.cg.Rectangle.rst", "generated/libpysal.cg.alpha_shape.rst", "generated/libpysal.cg.alpha_shape_auto.rst", "generated/libpysal.cg.arcdist.rst", "generated/libpysal.cg.arcdist2linear.rst", "generated/libpysal.cg.asShape.rst", "generated/libpysal.cg.bbcommon.rst", "generated/libpysal.cg.brute_knn.rst", "generated/libpysal.cg.convex_hull.rst", "generated/libpysal.cg.distance_matrix.rst", "generated/libpysal.cg.fast_knn.rst", "generated/libpysal.cg.fast_threshold.rst", "generated/libpysal.cg.geogrid.rst", "generated/libpysal.cg.geointerpolate.rst", "generated/libpysal.cg.get_angle_between.rst", "generated/libpysal.cg.get_bounding_box.rst", "generated/libpysal.cg.get_point_at_angle_and_dist.rst", "generated/libpysal.cg.get_points_dist.rst", "generated/libpysal.cg.get_polygon_point_dist.rst", "generated/libpysal.cg.get_polygon_point_intersect.rst", "generated/libpysal.cg.get_ray_segment_intersect.rst", "generated/libpysal.cg.get_rectangle_point_intersect.rst", "generated/libpysal.cg.get_rectangle_rectangle_intersection.rst", "generated/libpysal.cg.get_segment_point_dist.rst", "generated/libpysal.cg.get_segment_point_intersect.rst", "generated/libpysal.cg.get_segments_intersect.rst", "generated/libpysal.cg.get_shared_segments.rst", "generated/libpysal.cg.harcdist.rst", "generated/libpysal.cg.is_clockwise.rst", "generated/libpysal.cg.is_collinear.rst", "generated/libpysal.cg.linear2arcdist.rst", "generated/libpysal.cg.lonlat.rst", "generated/libpysal.cg.point_touches_rectangle.rst", "generated/libpysal.cg.toLngLat.rst", "generated/libpysal.cg.toXYZ.rst", "generated/libpysal.cg.voronoi_frames.rst", "generated/libpysal.examples.available.rst", "generated/libpysal.examples.explain.rst", "generated/libpysal.examples.get_path.rst", "generated/libpysal.graph.Graph.rst", "generated/libpysal.io.fileio.FileIO.rst", "generated/libpysal.io.open.rst", "generated/libpysal.weights.Delaunay.rst", "generated/libpysal.weights.DistanceBand.rst", "generated/libpysal.weights.Gabriel.rst", "generated/libpysal.weights.KNN.rst", "generated/libpysal.weights.Kernel.rst", "generated/libpysal.weights.ODW.rst", "generated/libpysal.weights.Queen.rst", "generated/libpysal.weights.Relative_Neighborhood.rst", "generated/libpysal.weights.Rook.rst", "generated/libpysal.weights.Voronoi.rst", "generated/libpysal.weights.W.rst", "generated/libpysal.weights.WSP.rst", "generated/libpysal.weights.WSP2W.rst", "generated/libpysal.weights.attach_islands.rst", "generated/libpysal.weights.block_weights.rst", "generated/libpysal.weights.build_lattice_shapefile.rst", "generated/libpysal.weights.comb.rst", "generated/libpysal.weights.da2W.rst", "generated/libpysal.weights.da2WSP.rst", "generated/libpysal.weights.fill_diagonal.rst", "generated/libpysal.weights.full.rst", "generated/libpysal.weights.full2W.rst", "generated/libpysal.weights.fuzzy_contiguity.rst", "generated/libpysal.weights.get_ids.rst", "generated/libpysal.weights.get_points_array_from_shapefile.rst", "generated/libpysal.weights.hexLat2W.rst", "generated/libpysal.weights.higher_order.rst", "generated/libpysal.weights.higher_order_sp.rst", "generated/libpysal.weights.lag_categorical.rst", "generated/libpysal.weights.lag_spatial.rst", "generated/libpysal.weights.lat2SW.rst", "generated/libpysal.weights.lat2W.rst", "generated/libpysal.weights.mat2L.rst", "generated/libpysal.weights.min_threshold_dist_from_shapefile.rst", "generated/libpysal.weights.min_threshold_distance.rst", "generated/libpysal.weights.neighbor_equality.rst", "generated/libpysal.weights.netW.rst", "generated/libpysal.weights.nonplanar_neighbors.rst", "generated/libpysal.weights.order.rst", "generated/libpysal.weights.remap_ids.rst", "generated/libpysal.weights.shimbel.rst", "generated/libpysal.weights.spw_from_gal.rst", "generated/libpysal.weights.testDataArray.rst", "generated/libpysal.weights.vecW.rst", "generated/libpysal.weights.w2da.rst", "generated/libpysal.weights.w_clip.rst", "generated/libpysal.weights.w_difference.rst", "generated/libpysal.weights.w_intersection.rst", "generated/libpysal.weights.w_local_cluster.rst", "generated/libpysal.weights.w_subset.rst", "generated/libpysal.weights.w_symmetric_difference.rst", "generated/libpysal.weights.w_union.rst", "generated/libpysal.weights.wsp2da.rst", "index.rst", "installation.rst", "notebooks/Raster_awareness_API.ipynb", "notebooks/examples.ipynb", "notebooks/fetch.ipynb", "notebooks/io.ipynb", "notebooks/voronoi.ipynb", "notebooks/weights.ipynb", "references.rst", "tutorial.rst"], "titles": ["libpysal API reference", "libpysal.cg.Chain", "libpysal.cg.Grid", "libpysal.cg.KDTree", "libpysal.cg.Line", "libpysal.cg.LineSegment", "libpysal.cg.Point", "libpysal.cg.PointLocator", "libpysal.cg.Polygon", "libpysal.cg.PolygonLocator", "libpysal.cg.RADIUS_EARTH_KM", "libpysal.cg.RADIUS_EARTH_MILES", "libpysal.cg.Ray", "libpysal.cg.Rectangle", "libpysal.cg.alpha_shape", "libpysal.cg.alpha_shape_auto", "libpysal.cg.arcdist", "libpysal.cg.arcdist2linear", "libpysal.cg.asShape", "libpysal.cg.bbcommon", "libpysal.cg.brute_knn", "libpysal.cg.convex_hull", "libpysal.cg.distance_matrix", "libpysal.cg.fast_knn", "libpysal.cg.fast_threshold", "libpysal.cg.geogrid", "libpysal.cg.geointerpolate", "libpysal.cg.get_angle_between", "libpysal.cg.get_bounding_box", "libpysal.cg.get_point_at_angle_and_dist", "libpysal.cg.get_points_dist", "libpysal.cg.get_polygon_point_dist", "libpysal.cg.get_polygon_point_intersect", "libpysal.cg.get_ray_segment_intersect", "libpysal.cg.get_rectangle_point_intersect", "libpysal.cg.get_rectangle_rectangle_intersection", "libpysal.cg.get_segment_point_dist", "libpysal.cg.get_segment_point_intersect", "libpysal.cg.get_segments_intersect", "libpysal.cg.get_shared_segments", "libpysal.cg.harcdist", "libpysal.cg.is_clockwise", "libpysal.cg.is_collinear", "libpysal.cg.linear2arcdist", "libpysal.cg.lonlat", "libpysal.cg.point_touches_rectangle", "libpysal.cg.toLngLat", "libpysal.cg.toXYZ", "libpysal.cg.voronoi_frames", "libpysal.examples.available", "libpysal.examples.explain", "libpysal.examples.get_path", "libpysal.graph.Graph", "libpysal.io.fileio.FileIO", "libpysal.io.open", "libpysal.weights.Delaunay", "libpysal.weights.DistanceBand", "libpysal.weights.Gabriel", "libpysal.weights.KNN", "libpysal.weights.Kernel", "libpysal.weights.ODW", "libpysal.weights.Queen", "libpysal.weights.Relative_Neighborhood", "libpysal.weights.Rook", "libpysal.weights.Voronoi", "libpysal.weights.W", "libpysal.weights.WSP", "libpysal.weights.WSP2W", "libpysal.weights.attach_islands", "libpysal.weights.block_weights", "libpysal.weights.build_lattice_shapefile", "libpysal.weights.comb", "libpysal.weights.da2W", "libpysal.weights.da2WSP", "libpysal.weights.fill_diagonal", "libpysal.weights.full", "libpysal.weights.full2W", "libpysal.weights.fuzzy_contiguity", "libpysal.weights.get_ids", "libpysal.weights.get_points_array_from_shapefile", "libpysal.weights.hexLat2W", "libpysal.weights.higher_order", "libpysal.weights.higher_order_sp", "libpysal.weights.lag_categorical", "libpysal.weights.lag_spatial", "libpysal.weights.lat2SW", "libpysal.weights.lat2W", "libpysal.weights.mat2L", "libpysal.weights.min_threshold_dist_from_shapefile", "libpysal.weights.min_threshold_distance", "libpysal.weights.neighbor_equality", "libpysal.weights.netW", "libpysal.weights.nonplanar_neighbors", "libpysal.weights.order", "libpysal.weights.remap_ids", "libpysal.weights.shimbel", "libpysal.weights.spw_from_gal", "libpysal.weights.testDataArray", "libpysal.weights.vecW", "libpysal.weights.w2da", "libpysal.weights.w_clip", "libpysal.weights.w_difference", "libpysal.weights.w_intersection", "libpysal.weights.w_local_cluster", "libpysal.weights.w_subset", "libpysal.weights.w_symmetric_difference", "libpysal.weights.w_union", "libpysal.weights.wsp2da", "libpysal: Python Spatial Analysis Library Core", "Installation", "Raster awareness API", "Datasets for use with libpysal", "<no title>", "<no title>", "Voronoi Polygons for 2-D Point Sets", "Weights from GeoDataFrames", "References", "libpysal Tutorial"], "terms": {"modul": [0, 108], "unstabl": [0, 52], "class": [1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 72, 73, 80, 86, 90, 110, 112], "vertic": [1, 8, 9, 41, 92, 114], "list": [1, 2, 7, 8, 9, 19, 20, 21, 23, 24, 25, 28, 39, 41, 44, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 76, 78, 83, 87, 91, 92, 93, 94, 95, 98, 99, 104, 107, 108, 110, 111], "sourc": [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112], "geometr": [1, 4, 5, 6, 8, 12, 13, 18, 52], "represent": [1, 2, 4, 5, 7, 8, 9, 12, 13, 18, 52, 65], "also": [1, 4, 8, 16, 17, 19, 20, 23, 24, 26, 40, 43, 52, 53, 57, 61, 63, 72, 73, 92, 109, 110, 111, 112], "known": [1, 8, 26], "polylin": 1, "paramet": [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110], "A": [1, 2, 5, 8, 16, 18, 19, 20, 21, 23, 24, 25, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 52, 58, 62, 65, 66, 91, 92, 101, 104, 106, 108, 112, 116], "point": [1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 52, 55, 56, 57, 58, 59, 62, 64, 79, 88, 113, 115, 117], "exampl": [1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 48, 52, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 112, 113, 115], "c": [1, 45, 65, 71, 83, 91, 94, 103, 109, 111, 112, 115], "0": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 52, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 114, 115], "1": [1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 19, 21, 22, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 39, 42, 45, 48, 52, 53, 56, 58, 59, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 93, 94, 95, 98, 100, 103, 108, 110, 111, 112, 113, 114, 115, 116], "2": [1, 2, 5, 7, 8, 9, 13, 14, 17, 22, 31, 32, 35, 36, 43, 48, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 77, 78, 79, 80, 81, 82, 84, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 100, 101, 102, 105, 106, 107, 110, 111, 112, 113, 115, 117], "attribut": [1, 4, 5, 8, 12, 13, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 72, 73, 89, 92, 99, 107, 110, 111, 113, 115], "return": [1, 2, 4, 5, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111], "clockwis": [1, 5, 8, 41], "order": [1, 8, 25, 26, 40, 44, 48, 52, 55, 56, 58, 59, 61, 63, 65, 66, 69, 72, 73, 74, 80, 81, 82, 85, 86, 94, 95, 110, 112, 116], "len": [1, 5, 7, 8, 9, 69, 72, 76, 77, 99, 107, 115], "float": [1, 3, 4, 5, 8, 10, 11, 13, 14, 16, 17, 20, 22, 23, 24, 26, 27, 29, 30, 31, 36, 40, 43, 48, 52, 56, 58, 59, 61, 63, 66, 72, 73, 74, 77, 86, 88, 89, 92, 98, 101, 102, 105, 106], "length": [1, 5, 36, 52, 74, 77, 81, 82], "__init__": [1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66], "method": [1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 15, 19, 25, 26, 40, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 77, 83, 85, 92, 100, 108, 110, 115, 116], "properti": [1, 2, 5, 8, 13, 52, 53, 65, 66, 110, 112], "arclen": 1, "int": [1, 3, 4, 8, 13, 15, 19, 20, 22, 23, 25, 45, 52, 53, 58, 59, 61, 63, 66, 70, 72, 73, 74, 80, 81, 82, 83, 85, 86, 93], "comput": [1, 3, 4, 15, 20, 21, 23, 25, 31, 36, 40, 52, 55, 57, 62, 65, 83, 84, 98, 108, 110], "us": [1, 3, 15, 16, 22, 25, 26, 35, 40, 48, 52, 55, 56, 57, 58, 59, 60, 61, 63, 65, 72, 73, 77, 78, 83, 85, 86, 88, 91, 92, 94, 98, 100, 101, 102, 105, 106, 108, 109, 112, 113, 115, 117], "arcdist": [1, 17, 43], "meter": 1, "bounding_box": [1, 5, 8], "bound": [1, 2, 5, 8, 15, 19, 25, 28, 48, 52, 77], "box": [1, 5, 8, 19, 25, 28, 48, 52, 77], "self": [1, 5, 8, 52, 65, 66, 110, 115], "_bounding_box": [1, 5, 8], "rectangl": [1, 2, 5, 7, 8, 9, 28, 34, 35, 45, 52, 77], "The": [1, 3, 4, 5, 6, 8, 12, 13, 14, 15, 16, 17, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 43, 48, 52, 53, 55, 65, 77, 78, 92, 100, 101, 103, 105, 108, 110, 111, 112, 115, 116], "left": [1, 5, 8, 13, 25, 28], "lower": [1, 5, 8, 13, 25, 28, 52, 61, 63, 72, 73, 82, 110, 111], "right": [1, 5, 8, 13, 25, 28], "upper": [1, 5, 8, 13, 25, 28], "3": [1, 2, 5, 6, 7, 8, 9, 13, 14, 15, 21, 22, 25, 35, 48, 56, 58, 59, 64, 65, 66, 69, 71, 72, 73, 78, 79, 82, 83, 84, 85, 86, 90, 93, 94, 95, 97, 98, 99, 100, 103, 107, 109, 110, 111, 112, 113, 114, 115], "10": [1, 2, 3, 5, 7, 8, 9, 13, 19, 33, 34, 36, 37, 38, 41, 45, 48, 56, 58, 59, 60, 64, 65, 66, 67, 69, 72, 73, 77, 81, 82, 84, 101, 105, 110, 111, 112, 113, 114, 115, 116], "11": [1, 28, 33, 45, 56, 59, 81, 82, 101, 102, 104, 105, 106, 110, 111, 112, 113, 114, 115], "4": [1, 2, 7, 8, 9, 13, 14, 15, 21, 30, 35, 48, 56, 58, 59, 64, 65, 66, 69, 71, 72, 73, 76, 78, 84, 86, 90, 92, 94, 95, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 110, 111, 112, 113, 114, 115], "part": [1, 8, 115], "object": [1, 4, 5, 6, 7, 8, 9, 12, 13, 14, 18, 23, 48, 52, 53, 55, 56, 58, 59, 60, 61, 63, 65, 66, 67, 68, 72, 73, 74, 75, 76, 80, 81, 82, 85, 86, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 115], "segment": [1, 5, 33, 36, 37, 38, 39, 52], "compos": 1, "vert": 1, "resolut": 2, "bin": 2, "data": [2, 3, 7, 9, 22, 52, 53, 56, 58, 59, 65, 78, 79, 84, 89, 97, 99, 107, 111, 112, 113, 115], "structur": [2, 7, 8, 9, 14, 15, 52, 55, 69, 110, 112, 115], "specifi": [2, 8, 12, 13, 40, 52, 59, 77, 110], "number": [2, 3, 6, 7, 8, 9, 10, 11, 15, 20, 22, 23, 25, 52, 58, 59, 61, 63, 65, 70, 72, 73, 76, 80, 83, 85, 86, 108, 111, 112, 115], "area": [2, 8, 9, 13, 101, 102, 104, 105, 106, 110, 111, 112, 115], "encompass": 2, "diamet": [2, 43, 57], "each": [2, 15, 48, 52, 53, 58, 59, 62, 65, 74, 75, 84, 87, 91, 95, 100, 103, 110, 112], "todo": 2, "complet": 2, "thi": [2, 3, 8, 15, 22, 24, 44, 48, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 72, 73, 74, 77, 79, 83, 85, 92, 100, 108, 110, 111, 112, 113, 114, 115], "doctest": 2, "g": [2, 13, 26, 48, 52, 55, 61, 63, 72, 73, 77, 99, 107, 110, 112], "add": 2, "item": [2, 28, 71, 115], "pt": [2, 5, 7, 14, 15, 20, 23, 24, 29, 31, 32, 34, 36, 37, 47], "an": [2, 4, 7, 9, 16, 17, 18, 20, 22, 23, 24, 27, 32, 33, 34, 35, 37, 38, 40, 43, 48, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 69, 72, 73, 74, 76, 83, 87, 91, 92, 94, 100, 102, 110, 112, 115, 117], "locat": [2, 6, 7, 9, 13, 29, 36, 52, 55, 57, 58, 60, 62, 64, 65, 115], "x": [2, 4, 6, 9, 13, 14, 15, 20, 22, 23, 39, 44, 46, 47, 52, 60, 61, 63, 71, 72, 73, 79, 83, 84, 89, 98, 110, 116], "insert": [2, 65, 74], "8": [2, 9, 29, 30, 63, 65, 69, 79, 84, 95, 98, 109, 110, 111, 112, 113, 114, 115], "7": [2, 5, 9, 14, 15, 35, 48, 58, 65, 69, 80, 82, 110, 111, 112, 113, 114, 115], "found": [2, 52, 65, 112], "within": [2, 7, 9, 24, 57, 77, 100, 111], "remov": [2, 52, 57, 61, 63, 65, 77, 82], "from": [2, 5, 7, 8, 9, 14, 18, 29, 31, 36, 39, 44, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 86, 89, 90, 91, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 114, 117], "wa": [2, 92, 110, 111, 112, 113, 114, 115], "ad": [2, 53, 58, 65, 77, 110], "b": [2, 4, 5, 45, 52, 65, 83, 91, 94], "5": [2, 4, 5, 7, 8, 9, 14, 15, 26, 28, 31, 32, 34, 36, 37, 38, 42, 45, 48, 56, 59, 60, 64, 65, 66, 67, 69, 74, 78, 80, 81, 82, 84, 85, 86, 89, 90, 93, 94, 98, 100, 108, 110, 111, 112, 113, 114, 115, 116], "sort": [2, 52, 65], "in_grid": 2, "loc": [2, 6], "whether": [2, 5, 15, 39, 41, 42, 52, 58, 65], "tupl": [2, 6, 8, 16, 24, 25, 26, 40, 44, 45, 46, 47, 48, 52, 65, 75, 87, 91, 97], "_loc_": 2, "li": [2, 5], "insid": [2, 7, 8, 9, 52, 77, 92, 110], "test": [2, 5, 8, 9, 19, 57, 90, 97, 110, 111, 113, 115], "tag": 2, "tc": 2, "i": [2, 3, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 29, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43, 45, 48, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 72, 73, 74, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103, 105, 106, 107, 108, 109, 110, 112, 114, 115, 117], "nearest": [2, 7, 9, 20, 23, 52, 58, 59, 68, 88, 89, 113, 115], "search": [2, 51, 52, 108], "proxim": [2, 7, 9], "r": [2, 5, 7, 9, 13, 14, 15, 22, 52, 53, 60, 65, 77, 84, 91, 100, 112, 114, 115], "distanc": [2, 3, 7, 9, 16, 17, 20, 22, 23, 24, 26, 29, 30, 31, 36, 40, 43, 48, 52, 56, 58, 59, 62, 77, 88, 89, 92, 98, 110, 112], "around": [2, 13, 56], "6": [2, 5, 7, 8, 9, 13, 14, 15, 28, 35, 59, 60, 65, 66, 69, 77, 80, 81, 82, 84, 85, 86, 92, 98, 102, 103, 104, 105, 106, 110, 111, 112, 113, 114, 115], "leafsiz": 3, "distance_metr": [3, 56, 58, 59], "euclidean": [3, 22, 52, 56, 58, 59, 88, 89, 98], "radiu": [3, 15, 16, 17, 20, 23, 24, 40, 43, 48, 56, 58, 59, 88], "6371": [3, 10, 16, 17, 20, 23, 24, 40, 43], "kd": [3, 58], "tree": [3, 8, 62], "built": [3, 8, 52, 108], "top": [3, 25, 52, 57, 112], "function": [3, 40, 52, 57, 58, 59, 65, 79, 108, 110, 111], "scipi": [3, 22, 52, 55, 56, 57, 65, 66, 67, 82, 85, 96, 100, 110], "If": [3, 15, 22, 48, 52, 53, 55, 56, 57, 58, 59, 61, 63, 65, 69, 72, 73, 74, 77, 79, 83, 84, 85, 88, 94, 97, 98, 100, 101, 105, 108, 111], "12": [3, 9, 28, 77, 84, 110, 111, 112, 113, 114, 115], "greater": 3, "spatial": [3, 22, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 68, 69, 72, 73, 74, 75, 77, 80, 81, 82, 83, 84, 86, 90, 91, 92, 93, 94, 95, 98, 99, 100, 103, 110, 111, 112, 113, 115, 116], "ckdtree": 3, "otherwis": [3, 8, 15, 19, 32, 34, 37, 41, 42, 45, 52, 56, 98], "offer": [3, 108, 110], "both": [3, 39, 52, 65, 100, 102, 110], "arc": [3, 16, 17, 20, 40, 43], "note": [3, 8, 9, 14, 15, 22, 35, 40, 48, 52, 55, 58, 61, 63, 65, 72, 73, 77, 79, 80, 81, 83, 85, 86, 88, 90, 92, 93, 100, 101, 102, 103, 105, 106, 111, 112], "onli": [3, 14, 39, 52, 55, 57, 58, 62, 65, 77, 82, 90, 92, 100, 101, 102, 104, 105, 109, 110, 115], "appropri": [3, 53, 100], "when": [3, 4, 18, 22, 27, 43, 52, 53, 61, 63, 65, 69, 72, 73, 77, 82, 83, 92, 94, 100, 110], "latitud": [3, 16, 46, 47, 61, 63, 72, 73, 110], "longitud": [3, 16, 46, 47, 61, 63, 72, 73, 110, 112], "set": [3, 14, 15, 21, 25, 26, 35, 40, 52, 53, 55, 56, 57, 58, 59, 62, 64, 65, 74, 77, 83, 90, 94, 101, 103, 105, 111, 115, 117], "meaning": 3, "valu": [3, 4, 13, 14, 15, 24, 52, 56, 58, 59, 61, 63, 65, 72, 73, 74, 77, 84, 90, 92, 93, 94, 97, 98, 100, 110, 112], "see": [3, 12, 35, 52, 56, 58, 61, 63, 65, 83, 84, 92, 108, 110, 111, 112], "doc": [3, 53], "below": [3, 110, 112], "arrai": [3, 14, 15, 22, 52, 55, 56, 57, 58, 59, 60, 62, 64, 65, 69, 74, 75, 76, 79, 83, 84, 87, 89, 96, 98, 99, 100, 103, 107, 110, 114, 115], "index": [3, 7, 9, 52, 55, 56, 58, 59, 61, 63, 65, 66, 72, 73, 77, 99, 107, 109, 110, 111, 112, 113], "copi": [3, 52, 58, 90], "so": [3, 14, 52, 53, 65, 80, 85, 86, 100, 110, 111, 112, 115], "modifi": [3, 58], "result": [3, 8, 14, 15, 52, 55, 56, 58, 59, 61, 63, 65, 77, 92, 101, 102, 106, 110, 114, 115], "bogu": 3, "typic": [3, 101], "nx2": [3, 15], "which": [3, 4, 5, 18, 27, 29, 52, 61, 63, 65, 66, 69, 72, 73, 74, 88, 92, 94, 95, 101, 105, 110, 115], "algorithm": [3, 14, 15, 35, 93, 116], "switch": [3, 66], "over": [3, 15, 52, 61, 63, 65, 94, 110, 112], "brute": [3, 20], "forc": [3, 20, 53, 112], "ha": [3, 5, 65, 74, 100, 101, 110, 111, 115], "posit": [3, 22, 52, 55, 56, 58, 59, 61, 63, 93, 98], "option": [3, 15, 16, 17, 20, 23, 24, 40, 43, 48, 52, 56, 59, 61, 63, 67, 68, 69, 72, 76, 77, 80, 81, 82, 83, 86, 91, 92, 94, 98, 100, 101, 102, 104, 105, 106], "default": [3, 8, 15, 16, 17, 20, 22, 23, 24, 25, 26, 35, 39, 40, 43, 48, 52, 55, 56, 58, 59, 60, 61, 63, 65, 66, 72, 73, 74, 77, 83, 85, 86, 91, 97, 98, 99, 100, 104, 107, 110], "str": [3, 7, 9, 12, 20, 32, 33, 34, 37, 38, 48, 50, 51, 52, 53, 55, 56, 58, 59, 61, 63, 65, 70, 78, 79, 83, 86, 88, 91, 96, 101, 102, 105, 115], "sphere": [3, 16, 17, 20, 23, 24, 26, 40, 43, 88], "assum": [3, 16, 35, 46, 47, 52, 61, 63, 65, 66, 72, 73, 74, 76, 77, 88, 92, 100], "ignor": [3, 52, 56, 58, 77, 88, 98, 101, 105, 110], "pysal": [3, 18, 19, 22, 28, 48, 52, 56, 58, 61, 63, 65, 66, 67, 68, 69, 76, 77, 80, 81, 82, 83, 86, 91, 92, 94, 98, 100, 101, 102, 104, 105, 106, 108, 109, 110, 111, 113, 115, 116], "radius_earth_km": [3, 16, 17, 20, 23, 24, 40, 43], "radius_earth_mil": [3, 16, 17, 20, 23, 24, 40, 43, 88], "m": [4, 5, 22, 52, 76, 112, 115], "slope": 4, "y": [4, 9, 13, 14, 15, 20, 22, 23, 39, 44, 46, 47, 52, 61, 63, 72, 73, 79, 83, 84, 89, 98, 110, 112], "intercept": [4, 53], "rais": [4, 18, 22, 27, 43, 52, 53], "arithmeticerror": 4, "infin": [4, 48, 56, 58, 88, 89, 98], "pass": [4, 22, 52, 55, 57, 61, 62, 63, 64, 72, 73, 74, 77, 83, 99, 100, 104, 107, 110], "l": [4, 5, 12, 108, 115], "particular": [4, 111, 115], "25": [4, 59, 60, 66, 69, 82, 89, 110, 111, 112, 113, 114, 115], "start_pt": 5, "end_pt": 5, "line": [5, 18, 33, 35, 36, 38, 39, 55, 109, 113, 115], "where": [5, 12, 22, 24, 52, 56, 57, 58, 59, 62, 65, 83, 87, 89, 91, 94, 100, 103, 110], "begin": [5, 27, 53], "end": [5, 27, 52], "p1": [5, 8, 9, 26, 40, 42, 77], "helper": [5, 48], "do": [5, 27, 33, 35, 38, 52, 53, 61, 63, 65, 72, 73, 77, 92, 110, 111, 115], "NOT": [5, 65], "call": [5, 35, 53, 65, 101, 110, 111], "p2": [5, 9, 42, 77], "minimum": [5, 13, 52, 62, 65, 77, 92, 112], "get_swap": 5, "its": [5, 13, 15, 52, 57, 65, 83, 110], "endpoint": 5, "swap": 5, "line_seg": 5, "intersect": [5, 9, 32, 33, 34, 35, 37, 38, 52, 77, 92, 102], "other": [5, 15, 22, 24, 30, 52, 57, 62, 80, 95, 100, 102, 106, 110, 112, 117], "bool": [5, 8, 23, 25, 26, 35, 39, 40, 41, 42, 52, 55, 56, 58, 59, 61, 63, 65, 66, 69, 72, 73, 74, 82, 85, 86, 97, 98, 100, 101, 105], "true": [5, 8, 9, 15, 16, 17, 23, 25, 26, 29, 33, 35, 38, 39, 40, 41, 42, 43, 45, 48, 52, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 69, 72, 73, 74, 76, 77, 81, 82, 83, 85, 86, 90, 97, 98, 100, 101, 102, 104, 105, 106, 110, 111, 115], "fals": [5, 8, 15, 23, 25, 26, 35, 39, 40, 41, 42, 45, 52, 55, 56, 58, 59, 61, 63, 65, 66, 69, 72, 73, 74, 77, 82, 85, 86, 90, 97, 98, 100, 101, 103, 105, 110, 111], "handl": [5, 8, 52, 77, 92, 110, 117], "being": [5, 15, 52, 65, 75, 103], "anoth": [5, 62, 100], "check": [5, 15, 32, 33, 34, 35, 37, 38, 52, 53, 65, 77, 83, 90, 92, 100], "against": [5, 19, 33, 35, 38, 112], "ls1": 5, "ls2": 5, "is_ccw": 5, "counterclockwis": [5, 41], "exclus": [5, 57], "ly": 5, "ccw": [5, 41], "cw": 5, "is_cw": 5, "_line": 5, "_p1": 5, "_get_p1": 5, "_p2": 5, "_get_p2": 5, "sw_ccw": 5, "sedgewick": 5, "turn": [5, 66], "ar": [5, 9, 20, 25, 29, 41, 42, 48, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 69, 72, 73, 77, 80, 81, 82, 85, 86, 88, 90, 92, 94, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 115], "collinear": [5, 42], "middl": 5, "": [6, 14, 16, 17, 20, 23, 24, 40, 43, 45, 46, 47, 52, 56, 58, 59, 61, 65, 66, 69, 74, 78, 84, 108, 110, 111, 112, 115, 116], "p": [6, 8, 12, 22, 52, 56, 58, 88, 89, 98, 111, 112, 113, 115], "abstract": [7, 9], "pl": [7, 9], "query_point": [7, 9], "queri": [7, 9, 20, 23, 52], "find": [7, 9, 24, 26, 28, 95], "n": [7, 9, 14, 22, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 73, 74, 79, 82, 83, 88, 89, 100, 103, 110, 111, 112, 113, 114, 115], "overlap": [7, 9, 19, 35, 52, 77, 105], "region_rect": [7, 9], "rectangular": [7, 9, 65, 66, 67], "region": [7, 9, 48, 65, 66, 67, 101, 102, 104, 105, 106, 108, 111, 112, 114, 116], "rang": [7, 9, 58, 59, 69, 71, 76, 104, 114], "polygon": [7, 9, 13, 14, 15, 18, 31, 32, 39, 41, 48, 52, 55, 58, 61, 63, 64, 77, 79, 88, 92, 111, 112, 113, 115, 117], "origin": [7, 9, 12, 27, 29, 48, 52, 60, 65, 87, 91, 98, 100, 110], "some": [7, 9, 52, 108, 110, 112], "maximum": [7, 9, 13, 15, 62, 88, 89, 93, 112], "hole": [8, 14, 15, 52, 77, 92], "none": [8, 32, 33, 34, 35, 37, 38, 40, 48, 52, 53, 55, 56, 58, 59, 61, 63, 65, 66, 69, 70, 71, 72, 73, 76, 77, 88, 98, 99, 107, 110, 111], "creat": [8, 52, 53, 58, 65, 72, 73, 76, 80, 85, 86, 91, 97, 99, 100, 107, 109, 110], "sub": [8, 52], "consid": [8, 52, 55, 65, 100], "perimet": [8, 52, 111, 115], "bbox": [8, 48, 52], "centroid": [8, 9, 13, 14, 15, 52, 55, 79, 88, 112], "99": 8, "_bbox": 8, "build_quad_tree_structur": 8, "build": [8, 48, 55, 56, 61, 63, 65, 66, 67, 70, 74, 98, 108, 110], "quad": 8, "onc": [8, 57], "speed": [8, 56, 98, 110], "ring": [8, 41], "increas": [8, 58, 111, 115], "significantli": 8, "respect": [8, 55, 56, 58, 59, 61, 63, 115], "multipart": 8, "center": [8, 13, 111, 112], "graviti": [8, 56], "mass": 8, "0353535353535355": 8, "contains_point": [8, 9], "contain": [8, 9, 15, 23, 48, 52, 55, 56, 57, 58, 59, 61, 62, 63, 65, 72, 73, 77, 83, 92, 97, 100, 101, 104, 105, 110], "fall": [8, 65], "exactli": 8, "edg": [8, 9, 52, 63, 64, 65, 77, 87, 91, 92, 115], "mai": [8, 14, 15, 48, 52, 56, 58, 61, 65, 98], "yield": 8, "unpredict": 8, "9": [8, 9, 14, 15, 35, 59, 60, 61, 66, 69, 79, 83, 84, 98, 110, 111, 112, 113, 114, 115], "isinst": [9, 29, 33, 38, 65], "3333333333333335": 9, "3333333333333333": 9, "query_rectangl": 9, "mean": [9, 52, 62, 83, 110], "empti": [9, 52, 61, 63, 65, 72, 73, 99, 107], "equal": [9, 52, 58, 65, 90, 92, 110, 115], "p3": [9, 26, 42], "qr": 9, "re": [9, 110], "rule": 9, "vertex": [9, 52, 61, 64, 115], "base": [9, 15, 43, 52, 56, 58, 59, 65, 69, 77, 80, 88, 91, 98, 111, 112, 115], "variou": 9, "repres": [9, 21, 52, 55, 58, 77, 91, 92, 100, 110, 112], "measur": [9, 27, 56, 58, 59, 112], "between": [9, 16, 26, 27, 30, 31, 33, 35, 36, 38, 39, 52, 56, 58, 59, 60, 62, 87, 88, 89, 90, 91, 95, 98, 101, 103, 115], "try": [9, 83, 110, 111], "except": [9, 52], "notimplementederror": [9, 18, 53], "print": [9, 15, 53, 56, 65, 66, 67, 71, 73, 110], "futur": [9, 61, 63], "min": [9, 101, 102, 105, 114], "larger": [9, 48, 52, 106, 115, 117], "than": [9, 48, 52, 55, 58, 62, 83, 110, 111, 115], "convert": [10, 11, 17, 43, 44, 46, 47, 52, 55, 65, 66, 67, 87, 100, 110], "string": [10, 11, 53, 61, 63, 65, 72, 73, 74, 83, 86], "possibl": [10, 11, 15, 52, 101, 105, 110], "3958": [11, 16, 17, 20, 23, 24, 40, 43], "755865744055": 11, "second_p": 12, "second": [12, 26, 40, 52, 65, 75, 77, 91, 92], "o": [12, 52, 60, 65, 87, 91, 110, 112, 113, 114, 115], "17": [13, 110, 111, 112, 113, 115], "minx": [13, 114], "mini": [13, 114], "maxx": [13, 114], "maxi": [13, 114], "16": [13, 59, 80, 84, 101, 102, 104, 105, 106, 110, 111, 112, 114, 115], "height": [13, 25, 110], "set_centroid": 13, "new_cent": 13, "move": [13, 15, 25, 78, 91], "new": [13, 18, 26, 52, 53, 58, 65, 74, 92, 94, 101, 102, 104, 106, 111, 112], "set_scal": 13, "scale": [13, 52, 110, 112], "rescal": 13, "ratio": [13, 36, 112], "old": [13, 19, 94], "e": [13, 26, 48, 52, 55, 58, 61, 63, 69, 72, 73, 91, 94, 99, 100, 107, 110, 111, 112], "current": [13, 52, 65], "size": [13, 53, 71, 110, 111, 112], "width": [13, 110], "xy": [14, 15, 79], "alpha": [14, 15, 52, 56, 98, 114], "shape": [14, 15, 18, 28, 39, 48, 52, 61, 63, 65, 66, 72, 73, 77, 78, 79, 84, 89, 97, 99, 100, 101, 102, 105, 107, 111, 113], "delin": [14, 15], "edelsbrunn": [14, 15], "kirkpatrick": [14, 15], "seidel": [14, 15], "1983": [14, 15], "collect": [14, 52, 61, 63, 77, 83, 92, 110, 116], "ndarrai": [14, 15, 22, 52, 58, 65, 110], "one": [14, 15, 24, 25, 32, 34, 37, 38, 44, 52, 53, 56, 61, 62, 63, 77, 83, 85, 91, 92, 93, 95, 100, 102, 106, 111], "per": [14, 15, 52, 111, 112, 115], "row": [14, 15, 25, 52, 60, 65, 66, 70, 75, 80, 84, 85, 86, 87, 91, 96, 100, 111, 112, 115], "coordin": [14, 15, 25, 26, 40, 45, 52, 55, 57, 61, 62, 63, 64, 72, 73, 77, 79, 88, 92, 98, 99, 107, 110], "geoseri": [14, 52, 77], "remain": [14, 57, 100], "even": [14, 24, 44, 52, 100, 110], "singl": [14, 15, 41, 110, 115], "There": [14, 65, 115], "cr": [14, 52, 110], "includ": [14, 15, 52, 55, 58, 61, 63, 72, 73, 78, 79, 82, 83, 91, 96, 101, 102, 104, 105, 106, 111], "have": [14, 15, 27, 52, 65, 92, 100, 109, 110, 115], "definit": [14, 52, 53, 61, 63, 91], "edselbrunn": 14, "et": 14, "al": 14, "refer": [14, 15, 77, 92, 111, 112], "h": [14, 15, 59, 116], "d": [14, 15, 16, 17, 22, 43, 52, 60, 64, 65, 83, 87, 88, 91, 94, 110, 112, 115, 116, 117], "On": [14, 15, 111], "plane": [14, 15], "ieee": [14, 15], "transact": [14, 15], "inform": [14, 15, 65, 66, 111, 112], "theori": [14, 15], "29": [14, 15, 65, 77, 86, 110, 111, 112, 114, 115], "551": [14, 15], "559": [14, 15], "np": [14, 15, 22, 58, 64, 69, 74, 76, 83, 84, 89, 99, 107, 110, 114, 115], "poli": [14, 15, 31, 32], "00000": 14, "dtype": [14, 65, 67, 78, 83, 110, 115], "geometri": [14, 15, 28, 35, 48, 52, 55, 56, 58, 59, 61, 63, 77, 92, 108, 112, 117], "69048": 14, "45238": 14, "step": [15, 110], "verbos": 15, "return_radiu": 15, "return_circl": 15, "autom": 15, "select": [15, 61, 63, 72, 73, 109, 110, 112], "propos": 15, "tightest": [15, 48, 52], "all": [15, 24, 48, 52, 53, 56, 57, 58, 59, 61, 63, 65, 69, 72, 73, 101, 102, 105, 106, 108, 110, 111, 112], "rank": [15, 112], "everi": [15, 66, 80, 85], "iter": [15, 61, 63, 65, 83, 94], "would": [15, 26, 52, 65, 77, 92, 101, 105, 108], "keep": [15, 52, 82], "ones": [15, 69, 74], "smaller": [15, 102, 115], "radii": 15, "case": [15, 52, 65, 77, 92, 110, 115], "next": [15, 53, 80, 85, 86], "retain": [15, 57, 62, 104, 110], "previou": [15, 104, 111], "jump": 15, "ahead": 15, "after": [15, 65, 110], "largest": [15, 65], "boolean": [15, 77, 90], "tri": [15, 113], "690476190476191": 15, "4523809523809526": 15, "pt0": [16, 17, 43], "pt1": [16, 17, 30, 43], "two": [16, 26, 35, 38, 48, 52, 65, 90, 91, 101, 102, 105, 106, 115], "form": [16, 27, 41, 46, 47, 52, 61, 63, 66, 72, 73, 87, 91, 101, 108], "earth": [16, 17, 20, 23, 24, 40, 43], "kilomet": [16, 17, 20, 23, 24, 40, 43], "mile": [16, 17, 20, 23, 24, 40, 43], "76": [16, 17, 20, 23, 24, 40, 43], "http": [16, 17, 20, 23, 24, 40, 43, 77, 92, 109, 111, 112, 114, 116], "nssdc": [16, 17, 20, 23, 24, 40, 43], "gsfc": [16, 17, 20, 23, 24, 40, 43], "nasa": [16, 17, 20, 23, 24, 40, 43], "gov": [16, 17, 20, 23, 24, 40, 43, 112], "planetari": [16, 17, 20, 23, 24, 40, 43], "factsheet": [16, 17, 20, 23, 24, 40, 43], "earthfact": [16, 17, 20, 23, 24, 40, 43], "html": [16, 17, 20, 23, 24, 40, 43, 77, 92, 112], "dist": [16, 24, 29, 30, 31, 36], "suppli": [16, 43, 58, 65, 88], "180": [16, 17, 43, 72, 73], "math": [16, 17, 29], "pi": [16, 17, 29, 59], "arc_dist": [17, 43, 58, 88], "spheric": 17, "linear": [17, 43], "r3": [17, 43], "unit": [17, 40, 43, 52, 65, 92, 103, 110], "linear_dist": [17, 43], "convers": [17, 43], "obj": [18, 53], "must": [18, 22, 24, 44, 53, 55, 57, 60, 61, 62, 63], "support": [18, 52, 53, 56, 59, 61, 63, 88, 109, 112], "__geo_interface__": 18, "lineseg": [18, 33, 35, 36, 37, 38], "rai": [18, 27, 29, 33], "chain": [18, 65, 91], "typeerror": [18, 22, 53], "geo_typ": 18, "type": [18, 48, 52, 53, 61, 63, 66, 72, 73, 74, 77, 82, 85, 86, 92, 97, 109, 110, 115], "bb": [19, 28], "bbother": 19, "star": 19, "defin": [19, 52, 59, 61, 63, 65, 66, 69, 74, 84, 86, 88, 91, 92, 94, 101, 102, 105, 115], "weight": [19, 22, 52, 53, 108, 110, 111, 112, 113], "_cont_bin": 19, "chflag": [19, 45], "b0": 19, "b1": 19, "20": [19, 56, 58, 59, 69, 80, 81, 110, 111, 112, 115], "k": [20, 22, 23, 25, 52, 56, 57, 58, 59, 61, 62, 63, 65, 68, 72, 73, 80, 81, 82, 83, 85, 86, 89, 103, 110, 111, 113, 115], "mode": [20, 53], "neighbor": [20, 23, 24, 52, 56, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 72, 73, 75, 77, 80, 81, 82, 83, 84, 88, 89, 90, 91, 92, 93, 94, 98, 101, 102, 103, 104, 105, 106, 113, 115], "pair": [20, 23, 27, 30, 52, 61, 62, 63, 65, 101, 102, 103, 105, 106], "valid": [20, 52, 65], "xyz": [20, 46], "w": [20, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 72, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 110, 112, 113, 114, 115], "dict": [20, 23, 24, 52, 53, 56, 59, 65, 77, 98, 99, 107, 110, 115], "id": [20, 23, 24, 52, 53, 55, 56, 58, 59, 61, 63, 65, 66, 69, 75, 76, 78, 86, 87, 91, 92, 93, 94, 96, 98, 101, 102, 104, 105, 106, 110, 112, 115], "lookup": [20, 23, 24], "convex": [21, 48, 52], "hull": [21, 48, 52], "stack": 21, "threshold": [22, 24, 52, 56, 98], "50000000": 22, "calcul": [22, 58, 83, 88, 110, 112], "matrix": [22, 52, 56, 58, 65, 66, 67, 74, 76, 83, 84, 85, 87, 95, 96, 98, 100, 101, 102, 104, 105, 106, 112, 115], "numpi": [22, 52, 55, 57, 58, 62, 64, 65, 69, 74, 75, 76, 83, 84, 89, 110, 114, 115], "time": [22, 61, 63, 72, 73, 97, 110], "observ": [22, 52, 56, 58, 59, 65, 66, 69, 80, 83, 84, 85, 86, 88, 89, 93, 94, 95, 100, 103, 104, 112, 115], "dimens": [22, 61, 63, 72, 73, 97, 110], "minkowski": [22, 52, 56, 58, 88, 89, 98], "norm": [22, 56, 58, 88, 89, 98], "metric": [22, 52, 56, 58, 88, 89, 98], "mathtt": [22, 26], "infti": 22, "manhattan": [22, 52, 56, 58, 88, 89, 98], "32": [22, 112, 114, 115], "instead": [22, 52, 61, 63, 77, 83, 92, 110], "work": [22, 52, 53, 56, 83, 110, 117], "ram": 22, "roughli": 22, "amount": 22, "byte": 22, "5e7": 22, "invalid": 22, "dimension": [22, 83, 84, 97, 98, 99, 107], "need": [22, 52, 55, 58, 77, 110, 111], "optim": [22, 52], "integr": 22, "flatten": 22, "indic": [22, 52, 89, 92, 110, 111, 112], "t": [22, 26, 53, 83, 100, 110, 111, 112], "41421356": 22, "23606798": 22, "82842712": 22, "return_dist": 23, "wd": [23, 24, 60], "wn": 23, "pointslist": [24, 44], "lat": [24, 25, 26, 40, 44, 47, 61, 63, 72, 73, 97, 110], "lon": [24, 25, 26, 40, 44, 61, 63, 72, 73, 97, 110], "kei": [24, 53, 56, 59, 65, 75, 92, 93, 94, 98, 110], "pup": 25, "pdown": 25, "lonx": [25, 26, 40], "grid": 25, "geointerpol": 25, "corner": [25, 101, 105], "cell": [25, 48, 52, 55, 65, 66, 67, 80, 100], "more": [25, 53, 55, 65, 110, 112, 115], "assess": [25, 26, 40], "start": [25, 52], "bottom": [25, 112], "same": [25, 27, 52, 53, 56, 58, 59, 65, 69, 74, 100, 101, 102, 110], "input": [25, 48, 52, 55, 60, 61, 63, 65, 72, 73, 78, 108], "42": [25, 114, 115], "023768": 25, "87": [25, 26, 40, 44, 110], "946389": 25, "arlington": 25, "il": 25, "41": [25, 26, 40, 44, 114, 115], "644415": 25, "524102": 25, "hammond": 25, "IN": 25, "02393997819538": 25, "80562679358316": 25, "66486420641684": 25, "897317": 25, "94638900000001": 25, "8974888973743": 25, "80562679296166": 25, "66486420703835": 25, "770866000000005": 25, "77103781320412": 25, "80562679234043": 25, "66486420765956": 25, "64458672568646": 25, "80562679171955": 25, "66486420828045": 25, "p0": [26, 40, 77], "along": [26, 36, 74, 83, 110], "great": 26, "circl": [26, 57], "wai": [26, 52, 53], "navig": [26, 109], "first": [26, 40, 52, 65, 75, 77, 80, 85, 86, 91, 92, 95, 100, 104, 110, 115], "decim": [26, 40], "degre": [26, 40], "proport": 26, "mid": [26, 111, 112], "newpx": 26, "newpi": 26, "893517": [26, 40, 44], "981417": [26, 40, 44], "519295": [26, 40], "657498": [26, 40], "85592403438788": 26, "949079912574796": 26, "p4": 26, "ray1": 27, "ray2": 27, "angl": [27, 29, 40], "share": [27, 39, 52, 61, 63, 64, 77, 91, 92, 101, 105, 111, 115], "valueerror": [27, 43, 52], "rect": [28, 34, 45], "rel": [29, 62], "round": [29, 65], "pt2": [30, 31, 32, 34, 36, 37], "ret": 32, "exist": [32, 33, 34, 35, 37, 38, 87, 102, 106, 110, 111, 112], "seg": [33, 36, 37], "get_segments_intersect": 33, "seg2": [33, 38], "r0": 35, "r1": [35, 100], "checkoverlap": 35, "bbcommon": 35, "prior": 35, "complex": 35, "section": 35, "keyword": [35, 52, 55, 57, 58, 61, 62, 63, 65, 67, 68, 69, 72, 76, 77, 80, 81, 82, 86, 91, 92, 94, 98, 100, 101, 102, 104, 105, 106, 108], "should": [35, 52, 53, 65, 74, 77, 83, 92, 110, 111], "extrem": 35, "caution": 35, "ri": 35, "closest": 36, "seg1": 38, "seg3": 38, "100": [38, 65, 74, 112], "101": [38, 92, 115], "poly1": 39, "poly2": 39, "bool_ret": 39, "common": [39, 63, 83], "_ret_bool": 39, "import": [39, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 114, 115], "map": [39, 48, 52, 111, 112], "zip": [39, 111, 112], "altern": 40, "haversin": 40, "formula": 40, "radian": 40, "harc_dist": 40, "km": [40, 112], "radangl": 40, "47": [40, 115], "52873002976876": 40, "007460167953189258": 40, "describ": [41, 65, 83], "v": [41, 52, 65, 112], "106": [41, 115], "57798": 41, "35": [41, 114, 115], "174143999999998": 41, "583412": 41, "174141999999996": 41, "58417999999999": 41, "174143000000001": 41, "58377999999999": 41, "175542999999998": 41, "58287999999999": 41, "180543": 41, "58263099999999": 41, "181455": 41, "58257999999999": 41, "181643000000001": 41, "58198299999999": 41, "184615000000001": 41, "58148": 41, "187242999999995": 41, "58127999999999": 41, "188243": 41, "58138": 41, "58108": 41, "189442999999997": 41, "58104": 41, "189644000000001": 41, "58028": 41, "193442999999995": 41, "580029": 41, "194541000000001": 41, "57974399999999": 41, "195785999999998": 41, "579475": 41, "196961999999999": 41, "57922699999999": 41, "198042999999998": 41, "578397": 41, "201665999999996": 41, "57827999999999": 41, "201642999999997": 41, "57737999999999": 41, "57697999999999": 41, "201543000000001": 41, "56436599999999": 41, "200311999999997": 41, "56058": 41, "199942999999998": 41, "56048": 41, "197342999999996": 41, "195842999999996": 41, "194342999999996": 41, "193142999999999": 41, "191873999999999": 41, "191742999999995": 41, "190242999999995": 41, "56037999999999": 41, "188642999999999": 41, "186842999999996": 41, "186552999999996": 41, "185842999999998": 41, "184443000000002": 41, "182943000000002": 41, "181342999999998": 41, "180433000000001": 41, "179943000000002": 41, "178542999999998": 41, "177790999999999": 41, "177143999999998": 41, "175643999999998": 41, "174444000000001": 41, "174043999999995": 41, "560526": 41, "56478": 41, "56627999999999": 41, "566541": 41, "174144999999996": 41, "569023": 41, "174157000000001": 41, "56917199999999": 41, "174157999999998": 41, "56938": 41, "57061499999999": 41, "57097999999999": 41, "57679999999999": 41, "triplet": 42, "exce": 43, "newpt": 44, "980396": 44, "776787": 44, "980906": 44, "696450": 44, "newpoint": 44, "69645": 44, "touch": [45, 77], "boundari": [45, 52], "z": [46, 47, 59, 61, 63, 65, 72, 73], "phi": 46, "theta": 46, "lng": 47, "clip": [48, 52, 55, 64, 100], "extent": [48, 52, 92], "composit": 48, "voronoi": [48, 52, 55, 117], "gener": [48, 52, 55, 65, 71, 75, 97, 110, 111, 112, 113, 114, 115], "individu": [48, 52, 65, 77, 92, 110], "datafram": [48, 49, 52, 55, 56, 58, 59, 61, 63, 65, 92, 111], "array_lik": [48, 52], "overload": 48, "about": 48, "how": [48, 53, 91, 103, 110], "follow": [48, 52, 59, 65, 97, 100, 108, 109, 110, 115], "No": [48, 52, 112], "appli": [48, 52, 56, 65, 98, 112], "arbitrarili": [48, 52, 58], "lead": [48, 52], "mani": [48, 52, 58, 108], "magnitud": [48, 52], "Not": [48, 52, 55], "recommend": [48, 52, 100, 110], "chull": [48, 52], "ashap": [48, 52], "ahul": [48, 52, 64], "smallest": [48, 52], "alphashap": [48, 52], "alpha_shape_auto": [48, 52], "arbitrari": [48, 52, 61, 63], "reg_vtx": 48, "geopanda": [48, 52, 55, 65, 77, 78, 92, 111, 112, 117], "geodatafram": [48, 52, 55, 65, 77, 78, 92, 117], "panda": [48, 52, 56, 58, 59, 61, 63, 65, 72, 73, 110, 111], "unavail": 48, "region_df": [48, 114], "points_df": [48, 114], "finit": 48, "avail": [48, 61, 63, 72, 73, 108, 109, 111, 112, 113, 115], "column": [48, 52, 55, 56, 58, 59, 61, 63, 65, 78, 80, 83, 85, 86, 87, 111, 112, 115], "popul": [48, 112], "regions_df": [48, 114], "dataset": [49, 50, 51, 56, 65, 108, 112], "name": [50, 52, 55, 56, 58, 59, 61, 63, 65, 70, 72, 73, 78, 79, 88, 96, 110, 111, 112, 113, 115], "file_nam": 51, "get": [51, 52, 53, 74, 78, 79, 88, 89, 110, 112, 117], "path": [51, 52, 65, 78, 81, 82, 111, 113, 114, 115], "file": [51, 53, 65, 78, 79, 92, 96, 108, 110, 111, 112], "instal": [51, 52, 111], "adjac": [52, 55, 65, 91, 115], "transform": [52, 60, 65, 84, 91, 100, 110], "encod": [52, 65, 77, 91, 92, 111], "matric": [52, 101, 102, 105, 106], "experiment": 52, "api": [52, 53, 108, 111], "incomplet": 52, "It": [52, 53, 77, 92, 100, 110], "recommenc": 52, "from_": 52, "build_": 52, "constructor": [52, 55], "rather": [52, 58, 111], "invok": 52, "directli": [52, 55, 57, 62, 85, 109, 110], "present": [52, 53, 77, 92, 110], "focal": [52, 65, 83, 92], "least": [52, 61, 62, 63], "loop": [52, 65, 76], "seri": [52, 99, 107, 110], "multiindex": [52, 61, 63, 72, 73, 110], "neigbor": 52, "level": [52, 110, 112], "By": [52, 56, 65, 83, 104, 109], "convent": [52, 110], "isol": 52, "produc": [52, 112], "tabl": [52, 112], "binari": [52, 56, 58, 59, 60, 62, 65, 77, 84, 91, 98, 100, 101, 102, 104, 105, 106], "standard": [52, 60, 65, 66, 67, 74, 84, 85, 91, 100, 112], "global": [52, 65], "sum": [52, 65, 84, 85], "doubl": [52, 65], "varianc": [52, 65], "stabil": [52, 65], "underli": [52, 64], "asymmetri": [52, 65], "intrins": [52, 65], "symmetri": [52, 65], "w_": [52, 56, 65, 66, 98, 103], "j": [52, 56, 57, 59, 62, 65, 66, 76, 81, 82, 98, 100, 103, 108, 110, 112, 115, 116], "n_j": [52, 65], "n_i": [52, 65, 103], "requir": [52, 65, 77, 110, 115], "link": [52, 55, 57, 65, 91, 110], "presenc": 52, "non": [52, 55, 61, 63, 72, 73, 87, 92, 93, 100, 103, 105, 110], "zero": [52, 65, 74, 76, 87, 100, 103], "ascend": [52, 65], "classmethod": [52, 53, 55, 56, 58, 59, 61, 63, 65, 66], "build_block_contigu": 52, "regim": [52, 69], "block": [52, 69, 108], "contigu": [52, 60, 61, 63, 64, 65, 66, 67, 69, 72, 73, 77, 81, 82, 85, 86, 91, 92, 93, 95, 100, 110, 113, 114, 117], "relev": [52, 69, 104], "relat": [52, 65, 69, 99, 107, 112], "membership": [52, 69, 90], "For": [52, 55, 57, 58, 59, 61, 63, 65, 69, 76, 86, 88, 100, 108, 110, 111, 115], "counti": [52, 69, 111, 112], "belong": [52, 61, 63, 69, 72, 73, 100, 110], "state": [52, 69, 111, 112, 115], "could": [52, 69], "analysi": [52, 69, 110, 111, 112, 115], "u": [52, 69, 109, 110, 111, 112, 115], "like": [52, 55, 56, 58, 59, 61, 63, 65, 99, 107, 110], "rangeindex": 52, "build_contigu": 52, "rook": [52, 58, 64, 65, 66, 67, 68, 72, 73, 74, 85, 86, 93, 100, 101, 102, 103, 104, 105, 106, 110, 115], "by_perimet": 52, "strict": 52, "builder": [52, 110], "coverag": 52, "mesh": 52, "neighbour": [52, 77], "exterior": 52, "In": [52, 65, 110, 111, 112, 115], "practic": 52, "capabl": 52, "partial": 52, "strictli": 52, "queen": [52, 65, 72, 73, 77, 85, 86, 92, 100, 101, 105, 110, 113, 115], "thei": [52, 61, 62, 63, 65, 72, 73, 100], "version": [52, 100, 110, 111, 112, 113, 114, 115], "gdf": [52, 65, 77, 78, 115], "topolog": [52, 65], "determin": [52, 53, 59, 65, 77, 91, 93, 101, 105], "sequenc": [52, 69], "correct": [52, 112], "faster": [52, 110], "can": [52, 55, 56, 58, 59, 63, 65, 74, 83, 100, 109, 110, 111, 112, 115], "miss": [52, 55, 61, 63, 72, 73, 97, 110, 112], "precis": [52, 110], "topologi": 52, "slower": [52, 55], "build_distance_band": 52, "kernel": [52, 56, 113], "bandwidth": [52, 59], "band": [52, 56, 61, 63, 72, 73, 97, 98, 110], "delaunai": [52, 57, 62], "triangul": [52, 55, 57, 62], "provid": [52, 55, 56, 58, 59, 61, 63, 65, 110, 112], "extract": [52, 104, 110, 112], "ij": [52, 56, 98], "d_": [52, 56, 59, 98], "wij": [52, 56, 98], "dij": [52, 56, 98], "decai": [52, 56, 98], "declin": [52, 56, 98, 111], "output": [52, 108], "build_kernel": 52, "detail": [52, 56, 65, 108, 112], "build_fuzzy_contigu": 52, "toler": [52, 77, 92], "buffer": [52, 77, 92, 114], "predic": [52, 77], "fuzzi": [52, 77, 92], "relax": [52, 77, 92], "notion": [52, 77, 92, 115], "violat": [52, 77, 92], "condit": [52, 77, 92, 108, 115], "planar": [52, 77, 92], "enforc": [52, 77, 92, 108], "three": [52, 77, 92, 112, 115], "regular": [52, 77, 80, 83, 85, 86, 92], "nearbi": [52, 77, 92], "digit": [52, 77, 92], "separ": [52, 77, 92, 115], "coincid": [52, 58, 77, 92], "cover": [52, 110], "build_contiguti": 52, "similar": [52, 77, 92, 110], "close": [52, 53, 59, 62, 77, 92, 103], "gap": 52, "final": [52, 60, 77, 86, 91, 92], "aris": [52, 77, 92], "custom": [52, 77, 110], "geom": 52, "percentag": [52, 65, 77, 92], "side": [52, 77], "either": [52, 61, 63, 78, 82, 83, 106, 109, 111], "exact": [52, 77], "document": [52, 111], "sindex": 52, "allow": [52, 92, 111], "gaussian": [52, 59], "geoemtri": 52, "precomput": 52, "callabl": [52, 53], "triangular": [52, 59, 113], "parabol": 52, "bisquar": 52, "cosin": 52, "boxcar": 52, "discret": 52, "less": [52, 53, 83, 110], "ident": 52, "noth": [52, 55, 56, 58, 59, 61, 63], "raw": [52, 55], "user": [52, 59, 65, 76, 111], "take": [52, 53, 71, 84, 110], "vector": [52, 59, 83, 84, 98], "truncat": [52, 53], "constant": [52, 74], "across": [52, 59, 100], "sampl": 52, "condut": 52, "depend": 52, "scikit": 52, "learn": 52, "ani": [52, 53, 56, 57, 61, 62, 63, 65, 83, 91, 110, 111], "here": [52, 111], "cityblock": 52, "admit": 52, "jitter": [52, 58], "randomli": [52, 83], "displac": 52, "uniqu": [52, 83, 97, 101, 102, 105, 106, 112], "cliqu": [52, 103], "induc": 52, "fulli": [52, 65, 115], "connect": [52, 57, 58, 65, 87, 115], "build_knn": 52, "knn": [52, 59, 65, 68, 110, 115], "build_triangul": 52, "inf": 52, "gabriel": [52, 55], "relative_neighborhood": 52, "cg": [52, 58, 88, 108, 114], "cardin": [52, 65, 114, 115], "component_label": [52, 65], "compon": [52, 65, 108, 112, 115], "label": [52, 61, 63, 65, 72, 73], "deep": 52, "make": [52, 53, 56, 58, 59, 100, 109], "explor": [52, 77], "node": [52, 57, 65, 91, 103], "color": [52, 65, 114, 115], "black": [52, 112, 114], "edge_kw": [52, 65, 115], "node_kw": [52, 65, 115], "focal_kw": 52, "plot": [52, 65, 110, 111, 114, 115], "interact": [52, 100, 110, 111, 112, 113, 114, 115], "folium": 52, "instanti": [52, 65], "subset": [52, 57, 62, 110], "relationship": [52, 91, 100], "displai": [52, 112], "addit": [52, 58, 61, 62, 63, 72, 73, 111], "argument": [52, 55, 57, 58, 61, 62, 63, 64, 65, 67, 68, 69, 72, 76, 77, 80, 81, 82, 86, 91, 92, 94, 98, 100, 101, 102, 104, 105, 106, 110], "applic": 52, "folilum": 52, "objecto": 52, "from_w": [52, 66], "from_adjac": 52, "focal_col": [52, 65], "neighbor_col": [52, 65], "weight_col": [52, 65], "format": [52, 65, 96, 100, 110, 113, 115], "ajac": 52, "destin": [52, 60, 65, 87, 91, 98, 109], "cost": 52, "hold": [52, 110], "from_arrai": [52, 56, 58, 59], "focal_id": 52, "neighbor_id": 52, "ensur": [52, 59, 65, 115], "focal_index": 52, "neighbor_index": 52, "from_dict": 52, "dictionari": [52, 59, 61, 63, 65, 72, 73, 92, 93, 94, 99, 107, 110], "neighbor1": 52, "neighbor2": 52, "weight1": 52, "weight2": 52, "from_spars": [52, 65], "spars": [52, 56, 61, 63, 65, 66, 67, 69, 72, 73, 82, 85, 96, 98, 100, 107, 110], "mappabl": 52, "from_weights_dict": 52, "weights_dict": 52, "higher_ord": [52, 61, 63, 72, 73], "shortest_path": [52, 82], "diagon": [52, 59, 65, 66, 74, 82], "lower_ord": [52, 82], "proper": [52, 81, 116], "higher": [52, 58, 81, 116], "shortest": [52, 81, 82, 95], "join": [52, 77, 82, 92, 101, 104, 105, 115], "lag": [52, 83, 84, 116], "oper": [52, 83, 84, 109, 116], "numer": [52, 84, 112], "n_compon": [52, 65, 115], "n_edg": 52, "n_node": 52, "nonzero": [52, 65], "pct_nonzero": [52, 58, 61, 63, 65, 72, 86, 113, 114, 115], "ax": [52, 65, 110, 114, 115], "figsiz": [52, 110, 115], "limit_ext": 52, "maptlotlib": 52, "store": [52, 65, 92, 95, 99, 107, 110, 111], "hashabl": 52, "whose": [52, 65], "shall": 52, "send": [52, 65], "linecollect": 52, "fine": [52, 65], "grain": [52, 65], "control": [52, 65, 100], "aesthet": [52, 65], "scatter": [52, 65], "updat": [52, 111, 112], "matplotlib": [52, 65, 110, 111, 114, 115], "axi": [52, 65, 83, 114, 115], "figur": [52, 65, 110, 115], "limit": 52, "you": [52, 58, 65, 100, 108, 109, 110, 111], "overlai": [52, 65], "actual": [52, 65, 100], "gdf_graph": 52, "coo": [52, 65], "to_w": [52, 66], "to_networkx": [52, 65], "networkx": [52, 65], "symmetr": [52, 65, 105], "nx": 52, "digraph": 52, "to_parquet": 52, "kwarg": [52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 72, 76, 77, 80, 81, 82, 86, 91, 92, 94, 98, 100, 101, 102, 104, 105, 106], "save": [52, 65], "apach": 52, "parquet": 52, "serial": 52, "metadata": [52, 65, 110], "pyarrow": 52, "packag": [52, 108, 109, 110, 111, 112], "nativefil": 52, "stream": 52, "write_t": 52, "read_parquet": 52, "error": 52, "unsupport": 52, "unique_id": 52, "datapath": 53, "dataformat": 53, "metaclass": 53, "read": [53, 65, 110, 112, 113], "write": [53, 65, 110, 112], "open": [53, 65, 108, 109, 111, 113], "arg": [53, 58, 65], "instanc": [53, 58, 61, 63, 64, 65, 66, 69, 72, 73, 80, 85, 86, 90, 97, 99, 107], "__new__": 53, "pars": 53, "filenam": 53, "filetyp": 53, "__registri": 53, "etc": 53, "we": [53, 100, 108, 110, 111, 115], "handler": 53, "inherit": [53, 100], "automat": [53, 65, 100], "conform": [53, 83, 84, 99, 100, 107], "prescrib": 53, "care": 53, "registr": 53, "doesn": [53, 110, 111], "much": [53, 55], "sens": 53, "treat": 53, "shapefil": [53, 56, 58, 59, 61, 63, 65, 70, 78, 79, 88, 92, 111, 113, 117], "dbf": [53, 56, 59, 61, 78, 111, 112, 113], "now": [53, 58, 110, 111], "ll": [53, 110], "just": [53, 83, 110], "expect": 53, "by_row": 53, "cast": [53, 56, 61, 63], "typ": 53, "keyerror": 53, "content": [53, 61], "registri": 53, "subclass": 53, "clean": 53, "themselv": 53, "up": [53, 83, 85, 93, 110], "flush": 53, "seek": 53, "els": [53, 97], "offset": [53, 58, 65, 110], "static": 53, "gettyp": 53, "alia": [53, 54], "rid": [53, 100], "most": [53, 83, 100, 112], "hit": 53, "eof": 53, "neg": [53, 93], "omit": 53, "until": [53, 110], "reach": 53, "befor": 53, "stopiter": 53, "fileobj": 53, "th": 53, "record": [53, 112], "tell": 53, "implement": [53, 57, 93], "redefin": 53, "increment": 53, "po": [53, 112], "fileio": [54, 65], "graph": [55, 57, 58, 62, 65, 103, 115], "reli": [55, 111], "numba": [55, 57], "quickli": [55, 110], "construct": [55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 72, 73, 80, 83, 92, 101, 102, 104, 105, 106, 116], "Will": 55, "without": [55, 65, 68, 110, 112, 117], "warn": [55, 56, 65, 66, 93, 110, 115], "quit": 55, "few": [55, 110], "local": [55, 103, 109, 111], "among": 55, "diagram": 55, "better": [55, 112], "short": [55, 57], "howev": 55, "unresrict": 55, "from_datafram": [55, 56, 58, 59, 61, 63, 65, 77, 92, 115], "df": [55, 56, 58, 59, 61, 63, 92, 111, 112], "geom_col": [55, 56, 58, 59, 61, 63], "use_index": [55, 56, 58, 59, 61, 63], "activ": [55, 56, 58, 59, 61, 63, 112], "downward": 55, "build_sp": [56, 98], "silence_warn": [56, 60, 65, 66], "kdtree": [56, 58, 59, 89], "characterist": [56, 58, 59, 112], "deprec": [56, 61, 63], "dens": [56, 98], "signific": [56, 98], "gain": [56, 98], "obtain": [56, 98, 110, 111], "dend": [56, 98], "sparsiti": [56, 98, 110], "distance_matrix": [56, 98], "silent": 56, "disconnect": [56, 65, 93, 115], "island": [56, 65, 66, 68, 77, 92, 93, 115], "To": [56, 65, 83, 100, 108, 110, 115], "silenc": [56, 65, 66], "40": [56, 58, 59, 112, 114, 115], "15": [56, 58, 59, 77, 82, 101, 102, 104, 105, 106, 110, 111, 112, 113, 115], "30": [56, 58, 59, 72, 73, 111, 114, 115], "wcheck": 56, "util": [56, 78, 79, 89, 90, 110], "neighbor_equ": 56, "14": [56, 59, 77, 79, 84, 101, 102, 104, 105, 106, 110, 111, 112, 113, 114, 115], "invers": [56, 112], "08944271909999159": 56, "tolist": 56, "01": [56, 110], "007999999999999998": 56, "bug": 56, "issu": [56, 108, 111], "126": 56, "from_shapefil": [56, 58, 59, 61, 63, 65, 68, 93, 115], "filepath": [56, 58, 59, 61, 63], "idvari": [56, 59, 61, 63, 65, 78], "shp": [56, 58, 59, 61, 63, 65, 68, 70, 77, 78, 79, 88, 92, 93, 111, 112, 113, 115], "suffix": [56, 59, 61, 63, 70, 78, 79, 88, 96], "acceler": 57, "c_ij": 57, "evalu": [57, 90], "arckdtre": 58, "identifi": [58, 96], "attach": [58, 68], "ti": [58, 83], "broken": 58, "further": [58, 62, 110], "occupi": 58, "those": [58, 100, 101, 102, 104, 105, 115], "acquir": 58, "differ": [58, 74, 77, 91, 100, 101, 105, 110], "five": 58, "four": [58, 108], "fifth": 58, "becom": 58, "whole": 58, "solut": 58, "problem": [58, 117], "small": [58, 110, 112, 116], "random": [58, 64, 76, 83, 97, 99, 107, 110, 114], "w_set": 58, "w_union": 58, "wnn2": 58, "given": [58, 65, 78, 79, 87, 88, 91, 110], "wc": [58, 100], "get_path": [58, 61, 63, 65, 68, 77, 78, 79, 88, 92, 93, 96, 111, 112, 113, 115], "columbu": [58, 61, 63, 65, 78, 79, 88, 111, 113, 115], "4f": 58, "0816": 58, "wc3": 58, "juvenil": [58, 79, 111, 113, 115], "1904761904761905": 58, "w1": [58, 90, 98, 100, 101, 102, 104, 105, 106], "3f": [58, 61, 63, 65, 72, 73, 86], "595": 58, "reweight": 58, "new_data": 58, "new_id": [58, 65], "inplac": [58, 65], "redo": 58, "align": [58, 65, 76, 97, 99, 107, 110], "flag": 58, "denot": [58, 65, 87, 91], "place": [58, 65], "parameter": 58, "fix": 59, "ep": 59, "0000001": 59, "h_i": 59, "foral": 59, "adapt": 59, "max": [59, 110, 114], "dknn": 59, "kth": [59, 61, 63, 72, 73, 110], "dknn_i": 59, "accord": [59, 112], "uniform": 59, "quadrat": 59, "quartic": 59, "z_": 59, "le": [59, 112], "exp": 59, "adjust": [59, 65], "knnth": 59, "kw": [59, 61, 63], "500000049999995": 59, "4409830615267465": 59, "000002": 59, "kw15": 59, "33333333333333337": 59, "2546440075000701": 59, "bw": 59, "kwa": 59, "552786404500042": 59, "10557280900008403": 59, "endogen": 59, "kwea": 59, "10557289844279438": 59, "99999900663795e": 59, "08": 59, "18034101": 59, "14213704": 59, "18": [59, 84, 110, 111, 112, 115], "02775818": 59, "kweag": 59, "3989422804014327": 59, "2674190291577696": 59, "2419707487162134": 59, "kq": 59, "35206533556593145": 59, "3412334260702758": 59, "31069657591175387": 59, "3011374490937829": 59, "26575287272131043": 59, "kqd": 59, "wo": 60, "style": 60, "flow": [60, 87, 91], "abl": 60, "sutiabl": 60, "amongst": 60, "od": [60, 91], "assoc": 60, "lat2w": [60, 65, 67, 68, 74, 80, 81, 82, 83, 84, 90, 94, 95, 100, 101, 102, 103, 104, 105, 106, 113, 115], "full": [60, 61, 63, 65, 66, 67, 76, 100, 101, 105, 110], "id_ord": [61, 63, 65, 66, 74, 94, 100], "geo": [61, 63], "from_iter": [61, 63], "contiguiyt": 61, "wsp": [61, 63, 65, 67, 69, 73, 74, 82, 107, 110], "wq": [61, 77, 115], "829": 61, "polyid": [61, 63, 78], "pct_sp": [61, 63, 73], "nnz": [61, 63, 73, 96], "098": 61, "from_xarrai": [61, 63, 110], "da": [61, 63, 72, 73, 97, 99, 107, 110], "z_valu": [61, 63, 72, 73, 99, 107, 110], "coords_label": [61, 63, 72, 73, 110], "include_nodata": [61, 63, 72, 73, 110], "n_job": [61, 63, 72, 73, 110], "xarrai": [61, 63, 72, 73, 97, 99, 107], "dataarrai": [61, 63, 72, 73, 97, 99, 107, 110], "raster": [61, 63, 72, 73, 99, 107], "2d": [61, 63, 72, 73], "3d": [61, 63, 72, 73], "multipl": [61, 63, 72, 73, 110], "layer": [61, 63, 72, 73, 97, 110], "y_label": [61, 63, 72, 73, 110], "x_label": [61, 63, 72, 73, 110], "z_label": [61, 63, 72, 73, 110], "year": [61, 63, 72, 73, 108, 110, 112], "upto": [61, 63, 72, 73, 110], "core": [61, 63, 72, 73, 99, 107, 110], "neighborhood": [62, 111], "superset": 62, "span": 62, "introduc": [62, 112], "closer": 62, "wr": 63, "330": [63, 110], "083": 63, "criterion": [64, 72, 73, 85, 115], "seed": [64, 83, 97, 110, 114], "12345": [64, 83, 110, 114], "docstr": 65, "view": 65, "help": [65, 110], "lexicograph": 65, "id_order_set": 65, "creation": [65, 112], "630": [65, 86], "extern": 65, "gal": [65, 66, 96, 113, 115], "io": [65, 108, 111, 113], "stl": [65, 113, 115], "78": 65, "542": 65, "implicitli": 65, "63": 65, "trcw2": 65, "39600": 65, "trcwtw": 65, "2530": 65, "722": 65, "2533": 65, "667": 65, "histogram": [65, 114, 115], "392": 65, "9604": 65, "userwarn": [65, 110, 115], "asymmetr": 65, "diagw2": 65, "ww": [65, 66], "diagwtw": 65, "diagwtw_ww": [65, 66], "id2i": 65, "encount": 65, "max_neighbor": 65, "mean_neighbor": 65, "averag": [65, 84, 110, 112], "min_neighbor": 65, "neighbor_offset": 65, "s0": [65, 66], "s1": 65, "s2": 65, "s2arrai": 65, "element": [65, 74, 75, 83, 100, 103], "compris": 65, "sd": [65, 112], "deviat": 65, "trace": [65, 66], "trcwtw_ww": [65, 66], "getter": 65, "from_wsp": 65, "thin": [65, 66, 67, 74], "10x10": [65, 66, 67], "2x5": [65, 66, 67], "sp": [65, 66, 67], "lat2sw": [65, 66, 67], "todens": [65, 66, 67, 73], "int8": [65, 67], "from_adjlist": 65, "adjlist": 65, "from_fil": 65, "from_networkx": 65, "field": 65, "correspond": [65, 99, 107], "fullw": [65, 75], "associ": [65, 75], "third": [65, 75], "wf": [65, 75, 77, 115], "get_transform": 65, "set_transform": 65, "descript": [65, 66, 111, 113, 115], "neighbor_list": 65, "indexed_on": 65, "model": 65, "pyplot": [65, 110, 114, 115], "f": [65, 94, 110, 112, 114, 115], "made": 65, "underneath": 65, "zorder": 65, "lp": 65, "read_fil": [65, 77, 78, 92, 111, 112, 115], "tmp": [65, 110], "firebrickr": 65, "marker": [65, 115], "remap_id": 65, "modif": 65, "throughout": 65, "replac": [65, 94, 110], "_": 65, "id0": [65, 74, 86], "id1": [65, 74, 86], "id2": [65, 86], "id3": 65, "id4": 65, "id5": [65, 74], "id6": 65, "id7": 65, "id8": 65, "sum_i": [65, 66], "sum_j": [65, 66], "big": 65, "set_shapefil": 65, "header": [65, 111], "gwt": [65, 113], "out": [65, 90, 110], "entir": 65, "extens": 65, "sensit": 65, "restor": 65, "cannot": 65, "done": [65, 111], "manipul": 65, "itself": 65, "sinc": [65, 110], "longer": 65, "guarante": 65, "to_wsp": 65, "implicit": [65, 71, 81, 94], "to_adjlist": 65, "remove_symmetr": 65, "drop_island": 65, "sort_join": 65, "entri": [65, 87, 108], "direct": [65, 91], "forward": 65, "backward": [65, 117], "becaus": [65, 110], "BE": 65, "THE": 65, "distinct": 65, "leav": 65, "preserv": 65, "appear": 65, "kept": [65, 100], "code": [65, 111, 112, 115], "to_fil": 65, "guess": 65, "overridden": 65, "to_spars": 65, "fmt": 65, "bsr": 65, "csc": 65, "csr": [65, 82, 96, 100], "col": [65, 66, 70, 96, 110], "spreg": 66, "nxn": [66, 76], "75": [66, 110, 112], "csr_matrix": [66, 100, 110], "395": 66, "match": [66, 82, 102, 106, 110], "off": [66, 115], "statement": 66, "doe": [66, 83, 101, 110, 111], "wsp2w": 66, "w_knn1": [68, 115], "unstandard": 68, "10740": [68, 93, 111, 112, 113, 115], "163": [68, 93], "w_attach": 68, "166": 68, "21": [69, 80, 110, 111, 112, 115], "nrow": [70, 80, 85, 86], "ncol": [70, 80, 85, 86], "outfilenam": 70, "lattic": [70, 80, 83, 85, 86, 100, 117], "combin": [71, 112], "taken": [71, 112], "drawn": 71, "integ": [71, 101, 102, 104, 105, 106], "testdataarrai": [72, 73, 99, 107, 110], "renam": [72, 73], "dim": [72, 73, 110], "coord": [72, 73, 99, 107, 110], "int64": [72, 73, 78, 110], "float64": [72, 73, 110], "90": [72, 73, 79, 110, 112], "60": [72, 73], "attr": [72, 73, 99, 107, 110], "nodatav": [72, 73, 110], "32768": [72, 73], "000": [72, 112], "300": 73, "val": 74, "main": 74, "explicit": 74, "basic": [74, 110, 117], "id_typ": [74, 86], "w_const": 74, "insert_diagon": 74, "diag": 74, "arang": [74, 84], "125": 74, "w_var": 74, "fill": [76, 97], "myid0": 76, "myid1": 76, "myid2": 76, "myid3": 76, "005": 77, "drop": [77, 101, 105], "detect": [77, 92], "featur": [77, 109], "cross": 77, "project": [77, 88, 92, 111], "ibi": [77, 92], "geog": [77, 92], "ubc": [77, 92], "ca": [77, 92], "cours": [77, 92], "klink": [77, 92], "gi": [77, 92, 112], "ncgia": [77, 92], "u12": [77, 92], "sec12": [77, 92], "gpd": [77, 78, 92, 112, 115], "map_rs_br": [77, 92, 111, 112, 115], "rs_df": [77, 115], "239": [77, 92, 115], "59": [77, 92, 115], "152": [77, 92, 115], "23": [77, 92, 111, 112, 115], "107": [77, 92, 115], "001": [77, 92, 110], "13": [77, 79, 110, 111, 112, 113, 114, 115], "wfb": 77, "rs_df_ix": 77, "set_index": 77, "nm_municip": 77, "wf_ix": 77, "tavar": 77, "s\u00e3o": 77, "jos\u00e9": 77, "nort": [77, 115], "mostarda": 77, "in_shp": 78, "geograph": [78, 88, 112], "94": [79, 92, 111, 115], "93": [79, 111], "80": [79, 92, 112, 115], "95": [79, 111, 115], "79": [79, 115], "82721847": 79, "36907602": 79, "33265837": 79, "03162401": 79, "01226541": 79, "81971908": 79, "hexagon": 80, "shift": [80, 112], "down": 80, "22": [80, 110, 111, 112, 115], "wh": 80, "iff": 81, "w10": 81, "w10_2": 81, "w5": [81, 90, 95], "w5_2": 81, "sparse_matrix": [82, 96], "csr_instanc": 82, "wk": 82, "w25": 82, "w25_2": 82, "w25_3": 82, "tryself": 83, "categor": 83, "variabl": [83, 110, 112], "categori": 83, "strength": 83, "weightsobject": [83, 84], "resolv": 83, "break": 83, "tie": 83, "winner": 83, "chosen": 83, "choic": 83, "That": 83, "routin": 83, "compar": [83, 110], "9x9": [83, 84], "3x3": 83, "y_l": 83, "array_equ": 83, "explicitli": [83, 84], "reshap": 83, "9x1": [83, 84], "again": 83, "yvect": 83, "yvect_l": 83, "9x2": [83, 84], "y2": [83, 98], "ym": 83, "vstack": 83, "ym_lag": 83, "wy": 84, "setup": 84, "yl": 84, "recomput": 84, "33333333": [84, 100], "66666667": 84, "yr": [84, 114], "hstack": [84, 89], "row_st": 85, "bishop": [85, 101], "dia_matrix": 85, "strucutur": 85, "w9": [85, 86], "w9r": 85, "edge_matrix": 87, "network": [87, 91, 113, 115, 116], "edge_list": 87, "md": [88, 111, 112], "6188641580768541": 88, "stl_hom": 88, "31": [88, 111, 114, 115], "846942936393717": 88, "nnd": 89, "w2": [90, 98, 100, 101, 102, 105, 106], "carri": 90, "w3": [90, 93], "n4": 90, "w4": 90, "n5": 90, "link_list": 91, "nodal": 91, "defualt": 91, "networkd": 91, "relationshilibpys": 91, "spintw": 91, "any_common": 91, "report": [92, 111], "horizont": 92, "minext": 92, "non_planar_join": 92, "what": [92, 111], "were": [92, 111, 112], "27": [92, 108, 111, 112, 114, 115, 116], "109": [92, 115], "119": [92, 110, 115], "122": [92, 115], "139": [92, 110, 115], "169": [92, 115], "175": [92, 115], "223": [92, 115], "247": [92, 115], "253": [92, 115], "254": [92, 115], "255": [92, 99, 107, 115], "256": [92, 115], "261": [92, 115], "276": [92, 115], "291": [92, 115], "294": [92, 115], "303": [92, 115], "321": [92, 115], "357": [92, 110, 115], "374": [92, 115], "wnp": 92, "45": [92, 110, 114, 115], "185": [92, 110], "246": 92, "nonplanarweight": 92, "ipynb": [92, 110, 111, 112, 113, 114, 115], "kmax": 93, "redund": 93, "specif": 93, "info": [93, 95, 112], "ith": 93, "as96": [93, 116], "old2new": 94, "remap": 94, "them": [94, 110], "old_to_new": 94, "w_new": 94, "w5_shimbel": 95, "24": [95, 102, 104, 105, 106, 111, 112, 114, 115], "galfil": 96, "spw": 96, "sids2": [96, 111, 113, 115], "462": 96, "rand": [97, 110], "missing_v": 97, "origin_x": 98, "origin_i": 98, "dest_x": 98, "dest_i": 98, "distanceband": 98, "dimenion": 98, "x1": 98, "y1": 98, "x2": 98, "999": 98, "pd": [99, 107, 110], "1d": [99, 107, 110], "dataarraycoordin": [99, 107], "da2w": [99, 110], "randint": [99, 107], "da1": [99, 107, 110], "outsp": 100, "continu": 100, "perform": [100, 101, 102, 105, 106, 110], "sure": [100, 109], "potenti": [100, 109], "shell": [100, 109], "ture": 100, "stai": 100, "neccesarili": 100, "anymor": 100, "geographi": 100, "group": [100, 110], "don": [100, 110], "want": [100, 109], "our": [100, 108, 110], "w_ij": 100, "block_weight": 100, "r2": 100, "illustr": [100, 115], "occur": [100, 101, 102, 108], "gotten": 100, "happen": 100, "larg": [100, 111, 112], "toarrai": 100, "w_shape": [101, 102, 105], "constrain": [101, 105], "comparison": [101, 102, 105, 106], "therefor": [101, 102, 105, 106, 109, 110], "equival": [101, 102, 105, 106], "4x4": [101, 102, 105, 106], "plu": 101, "6x4": [102, 104, 105, 106], "19": [102, 104, 105, 106, 110, 111, 112, 114, 115], "cluster": 103, "coeffici": 103, "c_i": 103, "quantifi": 103, "k_i": 103, "ws98": [103, 116], "42857143": 103, "assign": [104, 110], "union": 106, "da2wsp": [107, 110], "w2da": [107, 110], "nonplanar": [108, 117], "upstream": 108, "famili": [108, 112], "demonstr": 108, "tutori": [108, 110], "background": 108, "ra07": [108, 116], "host": 108, "github": [108, 109, 111, 112, 114], "discuss": 108, "well": [108, 110], "gitter": 108, "interest": 108, "contribut": [108, 109], "pleas": [108, 109], "guidelin": 108, "scientif": 108, "public": 108, "appreci": 108, "citat": 108, "paper": 108, "analyt": [108, 115, 116], "rei": [108, 114, 115, 116], "anselin": [108, 116], "review": [108, 116], "studi": [108, 116], "37": [108, 114, 115, 116], "2007": [108, 112, 116], "bibtex": 108, "articl": 108, "pysal2007": 108, "author": [108, 114], "sergio": [108, 116], "luc": [108, 116], "titl": [108, 114], "journal": [108, 116], "volum": 108, "page": [108, 110, 111, 112, 113, 114, 115], "softwar": 108, "txt": 108, "histori": [108, 110], "term": 108, "usag": [108, 110, 112, 117], "disclaim": 108, "OF": 108, "warranti": [108, 112], "libpys": [109, 110, 112, 113, 114, 115], "python": [109, 116], "environ": [109, 112], "through": [109, 115], "forg": 109, "pip": 109, "command": 109, "download": [109, 110, 112, 117], "distribut": [109, 111, 112], "tar": 109, "gz": 109, "decompress": 109, "your": [109, 110], "folder": 109, "might": [109, 110], "newest": [109, 111], "while": 109, "been": [109, 111], "incorpor": 109, "achiev": 109, "run": [109, 115], "git": 109, "com": [109, 111, 112, 114, 116], "fork": 109, "repo": 109, "clone": 109, "chang": [109, 110], "submit": 109, "pull": 109, "request": 109, "notebook": [110, 111, 112, 113, 114, 115], "raster_awareness_api": 110, "onlin": [110, 111, 112, 113, 114, 115], "give": 110, "overview": 110, "newli": 110, "develop": 110, "interfac": 110, "mainli": 110, "involv": 110, "go": 110, "back": 110, "inlin": [110, 111, 114, 115], "plt": [110, 114, 115], "splot": 110, "xr": [110, 114], "esda": 110, "moran_loc": 110, "accept": 110, "easili": 110, "varieti": 110, "gdal": 110, "via": 110, "open_rasterio": 110, "open_dataset": 110, "let": 110, "air_temperatur": 110, "nc": 110, "air": 110, "lt": [110, 111, 112, 114], "39": [110, 111, 112, 113, 114, 115], "2920": 110, "53": [110, 115], "gt": [110, 111, 114], "3869000": 110, "float32": 110, "72": 110, "70": [110, 111, 112], "67": [110, 116], "65": [110, 114], "200": [110, 114], "202": 110, "205": 110, "207": 110, "322": 110, "325": 110, "327": 110, "datetime64": 110, "2013": 110, "2014": 110, "31t18": 110, "00": [110, 115], "long_nam": 110, "4xdaili": 110, "temperatur": 110, "sigma": 110, "995": 110, "degk": 110, "grib_id": 110, "grib_nam": 110, "var_desc": 110, "nmc": 110, "reanalysi": 110, "level_desc": 110, "surfac": 110, "statist": [110, 112], "ob": 110, "parent_stat": 110, "actual_rang": 110, "multidimension": 110, "deal": 110, "abov": 110, "total": [110, 111, 112], "month": 110, "groupbi": 110, "facet": 110, "col_wrap": 110, "facetgrid": 110, "0x7f68f71b8100": 110, "py": [110, 115], "similarli": 110, "recognis": 110, "mention": 110, "properli": 110, "w_queen": [110, 115], "12th": 110, "gsoc": 110, "veri": 110, "slow": 110, "effici": [110, 116], "multi": 110, "to_seri": 110, "210": 110, "regress": 110, "moran": 110, "lisa": 110, "moran_da": 110, "p_sim": 110, "018": 110, "003": [110, 112], "002": 110, "006": 110, "quadmesh": 110, "0x7f68f4044940": 110, "earlier": 110, "additon": 110, "had": 110, "revers": 110, "journei": 110, "prebuilt": 110, "ecmwf_era": 110, "40_subset": 110, "sever": [110, 111], "73": [110, 115], "144": 110, "62": 110, "350": 110, "352": 110, "355": 110, "85": [110, 112], "82": 110, "2002": [110, 112], "07": [110, 112, 115], "01t12": 110, "tcw": 110, "tcwv": 110, "lsp": 110, "cp": 110, "msl": 110, "blh": 110, "tcc": 110, "p10u": 110, "p10v": 110, "p2t": 110, "p2d": 110, "lcc": 110, "mcc": 110, "hcc": 110, "tco3": 110, "tp": 110, "cf": 110, "2004": [110, 112], "09": [110, 115], "04": [110, 115], "gmt": 110, "mars2netcdf": 110, "92": [110, 115], "desir": 110, "dai": 110, "metr": 110, "ship": 110, "last": [110, 112], "w_rook": [110, 115], "deriv": 110, "necessari": [110, 115], "process": 110, "straight": 110, "wsp2da": 110, "successful": 110, "ve": 110, "plai": 110, "tif": 110, "unlik": 110, "remind": 110, "access": 110, "rasterio": 110, "backend": 110, "lux_ppp_2019": 110, "880": 110, "940": 110, "827200": 110, "50": 110, "49": [110, 115], "745": 110, "746": 110, "747": 110, "525": 110, "526": 110, "527": 110, "0008333333297872345": 110, "744583325": 110, "0008333": 110, "init": 110, "epsg": 110, "4326": 110, "0008333333295454553": 110, "is_til": 110, "99999": 110, "area_or_point": 110, "0x7f68ef4c5ca0": 110, "look": 110, "firstli": 110, "slice": 110, "reduc": [110, 111], "overal": 110, "easier": 110, "visual": [110, 112], "da_": 110, "340": 110, "129": 110, "subplot": [110, 114, 115], "subplot_kw": [110, 115], "aspect": [110, 115], "set_titl": [110, 115], "plot_spatial_weight": 110, "show": [110, 114], "suffici": 110, "compution": 110, "expens": 110, "advantag": 110, "parallel": 110, "w_rook2": 110, "opt": 110, "anaconda": 110, "lib": 110, "python3": 110, "site": 110, "_index": 110, "124": 110, "sparseefficiencywarn": 110, "lil_matrix": 110, "_set_arrayxarrai": 110, "720x720": 110, "axessubplot": [110, 111, 114], "absent": 110, "henc": 110, "include_na": 110, "equat": 110, "multithread": 110, "As": 111, "refactor": 111, "scienc": [111, 112, 116], "unvers": 111, "chicago": [111, 113, 115], "highlight": 111, "familiar": 111, "mexicojoin": [111, 115], "home": [111, 112, 113, 115], "serg": [111, 113, 114, 115], "src": [111, 113, 115], "subpackag": [111, 113, 115], "mexico": [111, 113, 115], "thing": 111, "Such": 111, "builtin": 111, "poly_id": [111, 115], "acr": [111, 115], "hectar": [111, 115], "pcgdp1940": [111, 115], "pcgdp1950": [111, 115], "pcgdp1960": [111, 115], "pcgdp1970": 111, "pcgdp1980": 111, "pcgdp1990": 111, "pcgdp2000": 111, "hanson03": 111, "hanson98": 111, "esquivel99": 111, "inegi": 111, "inegi2": 111, "maxp": 111, "gr4000": 111, "gr5000": 111, "gr6000": 111, "gr7000": 111, "gr8000": 111, "gr9000": [111, 115], "lpcgdp40": [111, 115], "lpcgdp50": [111, 115], "lpcgdp60": [111, 115], "lpcgdp70": [111, 115], "lpcgdp80": [111, 115], "lpcgdp90": [111, 115], "lpcgdp00": [111, 115], "98": [111, 115], "summari": [111, 112], "71": 111, "initi": 111, "yet": 111, "latter": 111, "head": [111, 112, 115], "albuquerqu": 111, "censu": [111, 112], "2000": [111, 112, 115], "tract": [111, 112], "dat": 111, "airbnb": 111, "rental": 111, "socioeconom": 111, "crime": [111, 112], "atlanta": 111, "ga": 111, "homicid": [111, 112], "count": [111, 112], "rate": [111, 112], "baltimor": [111, 113], "hous": [111, 113], "sale": [111, 113], "price": [111, 113], "hedon": [111, 113], "bostonhsg": 111, "boston": 111, "load_exampl": 111, "28": [111, 112, 114, 115], "And": 111, "load": 111, "alert": [111, 115], "dataset42": 111, "get_url": 111, "grab": 111, "balt_url": 111, "geodacent": 111, "lab": 111, "taz": [111, 112, 113, 115], "4109": 111, "shx": [111, 112, 113], "get_file_list": 111, "master": [111, 112], "readm": [111, 112], "balt": 111, "traffic": 111, "zone": 111, "california": [111, 115], "tokyo": [111, 113, 115], "mortal": 111, "us_incom": [111, 113, 115], "capita": [111, 112, 115], "incom": [111, 112, 115], "48": [111, 115], "96": 111, "virginia": [111, 112, 113, 115], "97": 111, "wmat": [111, 113, 115], "render": 111, "tampa1": 111, "tampamsa": 111, "tampa_final_census2": 111, "prj": [111, 112], "variables_document": 111, "pdf": [111, 112, 116], "tampa_counti": 111, "kml": [111, 112], "sbn": [111, 112], "mif": [111, 112], "sqlite": [111, 112], "sbx": [111, 112], "gdb": [111, 112], "a00000007": 111, "gdbtablx": 111, "a00000001": 111, "gdbtabl": 111, "a00000004": 111, "fdo_uuid": 111, "atx": 111, "a00000002": 111, "catreltypesbynam": 111, "a0000000a": 111, "a00000003": 111, "a00000009": 111, "gdbindex": 111, "a00000006": 111, "catrelsbytyp": 111, "spx": 111, "catreltypesbydestitemtypeid": 111, "a00000005": 111, "timestamp": 111, "catitemtypesbynam": 111, "catitemtypesbyuuid": 111, "catitemtypesbyparenttypeid": 111, "catitemsbytyp": 111, "catreltypesbyforwardlabel": 111, "catreltypesbyuuid": 111, "tablesbynam": 111, "catrelsbyoriginid": 111, "catitemsbyphysicalnam": 111, "catreltypesbyoriginitemtypeid": 111, "catreltypesbybackwardlabel": 111, "catrelsbydestinationid": 111, "geojson": [111, 112, 113], "xlsx": [111, 112], "gpkg": [111, 112], "__macosx": 111, "_2000": 111, "_tampa_counti": 111, "_tampa_final_census2": 111, "_tampamsa": 111, "tampa_counties_shp": 111, "iohandl": 111, "pyshpio": 111, "purepyshpwrapp": 111, "0x7febc3b1bd00": 111, "26": [111, 112, 114, 115], "tampa_df": 111, "geodata": 111, "repositori": 111, "rio": [111, 115], "grand": [111, 115], "sul": [111, 115], "rio_grande_do_sul": [111, 112, 113, 115], "citi": [111, 112], "brazilian": 111, "43mue250gc_sir": 111, "499": 111, "cpg": 111, "lake": 111, "497": 111, "renan": 111, "xavier": 111, "cort": 111, "889": 111, "issuecom": 111, "396693495": 111, "textual": 111, "remote_dataset": 111, "0x7febc78c00d0": 111, "0x7febc4a5efb0": 111, "0x7febc4a5ed40": 111, "0x7febc4a5ef50": 111, "buenosair": 111, "0x7febc4a5efe0": 111, "charleston1": 111, "0x7febc4a5ef80": 111, "charleston2": 111, "0x7febc4a5ee90": 111, "health": 111, "0x7febc4a5ef20": 111, "commpop": 111, "0x7febc4a5f070": 111, "parcel": 111, "0x7febc4a5f0a0": 111, "chile": 111, "labor": 111, "0x7febc4a5f100": 111, "migrat": 111, "0x7febc4a5f130": 111, "cincinnati": 111, "0x7febc4a5f1f0": 111, "cleveland": 111, "0x7febc4a5f190": 111, "0x7febc4a5f250": 111, "elect": 111, "0x7febc4a5f0d0": 111, "grid100": 111, "0x7febc4a5f220": 111, "groceri": 111, "0x7febc4a5f160": 111, "guerri": [111, 112, 113, 115], "0x7febc4a5f280": 111, "0x7febc4a5f040": 111, "0x7febc4a5f2b0": 111, "hickory1": 111, "0x7febc4a5f2e0": 111, "hickory2": 111, "0x7febc4a5f310": 111, "0x7febc4a5f340": 111, "houston": 111, "0x7febc4a5f370": 111, "0x7febc4a5f3a0": 111, "lansing1": 111, "0x7febc4a5f3d0": 111, "lansing2": 111, "0x7febc4a5f400": 111, "laozon": 111, "0x7febc4a5f430": 111, "lasrosa": 111, "0x7febc4a5f460": 111, "liquor": 111, "0x7febc4a5f490": 111, "malaria": 111, "0x7febc4a5f4c0": 111, "milwaukee1": 111, "0x7febc4a5f4f0": 111, "milwaukee2": 111, "0x7febc4a5f520": 111, "ncovr": [111, 112], "0x7febc4a5f550": 111, "natregim": 111, "0x7febc4a5f580": 111, "ndvi": 111, "0x7febc4a5f5b0": 111, "nepal": 111, "0x7febc4a5f5e0": 111, "nyc": 111, "0x7febc4a5f610": 111, "earn": 111, "0x7febc4a5f640": 111, "educ": 111, "0x7febc4a5f670": 111, "0x7febc4a5f6a0": 111, "socio": [111, 112], "demograph": 111, "0x7febc4a5f6d0": 111, "ohiolung": 111, "0x7febc4a5f700": 111, "orlando1": 111, "0x7febc4a5f730": 111, "orlando2": 111, "0x7febc4a5f760": 111, "oz9799": 111, "0x7febc4a5f790": 111, "phoenix": 111, "ac": 111, "0x7febc4a5f7c0": 111, "pittsburgh": 111, "0x7febc4a5f7f0": 111, "polic": 111, "0x7febc4a5f820": 111, "sacramento1": 111, "0x7febc4a5f850": 111, "sacramento2": [111, 112, 113, 115], "0x7febc4a5f880": 111, "sanfran": 111, "0x7febc4a5f8b0": 111, "savannah1": 111, "0x7febc4a5f8e0": 111, "savannah2": 111, "0x7febc4a5f910": 111, "scotlip": 111, "0x7febc4a5f940": 111, "seattle1": 111, "0x7febc4a5f970": 111, "seattle2": 111, "0x7febc4a5f9a0": 111, "sid": 111, "0x7febc4a5f9d0": 111, "0x7febc4a5fa00": 111, "snow": 111, "0x7febc4a5fa30": 111, "south": [111, 112, 113, 115], "0x7febc4a5fa60": 111, "spiral": 111, "0x7febc4a5fa90": 111, "stloui": 111, "0x7febc4a5fac0": 111, "0x7febc4a5faf0": 111, "sdoh": 111, "0x7febc4a5fb20": 111, "0x7febc78c0130": 111, "nyc_bik": [111, 112, 113, 115], "0x7febc4a5fb80": 111, "0x7febc4a5fc70": 111, "clearwat": [111, 113, 115], "0x7febc4a5fbe0": 111, "newhaven": [111, 113, 115], "0x7febc4a5eec0": 111, "fetch": 112, "fetch_al": 112, "s3": 112, "amazonaw": 112, "geoda": 112, "jovyan": 112, "pysal_data": 112, "sjsrei": [112, 114], "archiv": 112, "sacramentomsa2": 112, "nat": [112, 113, 115], "fetch_nat": 112, "alreadi": 112, "pysaldata": 112, "fetch_south": 112, "fetch_guerri": 112, "explain": [112, 113, 115, 117], "andr": 112, "michel": 112, "34": [112, 114, 115], "moral": 112, "1930": 112, "suicid": 112, "literaci": 112, "1830": 112, "franc": 112, "1915": 112, "1934": 112, "guerry_document": 112, "dept": 112, "code_d": 112, "depart": 112, "north": 112, "east": [112, 115], "west": [112, 115], "central": 112, "corsica": 112, "na": 112, "dprtmnt": 112, "accent": 112, "factor": 112, "ain": 112, "aisn": 112, "allier": 112, "vosg": 112, "yonn": 112, "crm_pr": 112, "person": 112, "a2": 112, "compt": 112, "g\u00e9n\u00e9ral": 112, "1825": 112, "crm_prp": 112, "literci": 112, "percent": 112, "militari": 112, "conscript": 112, "who": 112, "donatn": 112, "donat": 112, "poor": 112, "bulletin": 112, "de": 112, "loi": 112, "infant": 112, "illegitim": 112, "birth": 112, "bureau": 112, "1817": 112, "1821": 112, "1827": 112, "maincti": 112, "princip": 112, "sm": 112, "med": 112, "lg": 112, "surrog": 112, "densiti": 112, "rest": [112, 115], "medium": 112, "a1": 112, "wealth": 112, "tax": 112, "movabl": 112, "inhabit": 112, "commerc": 112, "industri": 112, "patent": 112, "clergi": 112, "cathol": 112, "priest": 112, "servic": 112, "almanach": 112, "officiel": 112, "du": 112, "1829": 112, "crim_prn": 112, "parent": 112, "infntcd": 112, "infanticid": 112, "dntn_cl": 112, "bequest": 112, "inter": 112, "vivio": 112, "1815": 112, "1824": 112, "bull": 112, "ordunn": 112, "autoris": 112, "lotteri": 112, "wager": 112, "royal": 112, "proce": 112, "bet": 112, "1822": 112, "1826": 112, "rendu": 112, "par": 112, "ministr": 112, "financ": 112, "desertn": 112, "desert": 112, "young": 112, "soldier": 112, "accus": 112, "conting": 112, "minu": 112, "deficit": 112, "insuffici": 112, "billet": 112, "minist\u00e8r": 112, "guerr": 112, "\u00e9tat": 112, "instrct": 112, "instruct": 112, "prsttt": 112, "prostitut": 112, "regist": 112, "pari": 112, "1816": 112, "1834": 112, "classifi": 112, "duchatelet": 112, "1836": 112, "la": 112, "en": 112, "sein": 112, "1000": 112, "angevil": 112, "pop1831": 112, "1831": 112, "essai": 112, "sur": [112, 115], "statistiqu": 112, "fran\u00e7ai": 112, "crime_p": 112, "quantit": 112, "english": 112, "translat": 112, "1833": 112, "whitt": 112, "reink": 112, "86": 112, "fran\u00e7ais": 112, "doufour": 112, "crochard": 112, "hugh": 112, "victor": 112, "lewiston": 112, "edwin": 112, "mellen": 112, "press": 112, "dan": 112, "vill": 112, "3rd": 112, "ed": 112, "1857": 112, "36": [112, 114, 115, 116], "drai": 112, "jombart": 112, "2011": 112, "revisit": 112, "Of": 112, "constraint": 112, "multivari": 112, "annal": 112, "vol": 112, "2278": 112, "2299": 112, "doi": [112, 116], "1214": 112, "aoas356": 112, "brunsdon": 112, "dyke": 112, "graphic": 112, "vari": 112, "exploratori": 112, "research": 112, "confer": 112, "gisruk": 112, "nui": 112, "maynooth": 112, "ireland": 112, "april": 112, "friendli": 112, "challeng": 112, "368": 112, "399": 112, "gfranc": 112, "prepar": 112, "juli": 112, "2017": 112, "econom": [112, 115], "southern": [112, 115], "412": 112, "69": 112, "1960": 112, "codebook": 112, "csv": [112, 115], "state_nam": 112, "state_fip": 112, "fip": 112, "charact": 112, "cnty_fip": 112, "stfip": 112, "cofip": 112, "fipsno": 112, "dummi": 112, "hr": 112, "1970": 112, "1980": 112, "1990": 112, "hc": 112, "rd": 112, "resourc": 112, "depriv": 112, "ue": 112, "unemploy": 112, "dv": 112, "divorc": 112, "male": 112, "ma": 112, "median": 112, "ag": 112, "pol": 112, "log": 112, "dnl": 112, "mfil": 112, "fp": 112, "poverti": 112, "blk": 112, "gini": 112, "inequ": [112, 115], "fh": 112, "femal": 112, "household": 112, "pth": [112, 113, 115], "hr60": 112, "blk90": 112, "gi59": 112, "gi69": 112, "gi79": 112, "gi89": 112, "fh60": 112, "fh70": 112, "fh80": 112, "fh90": 112, "hancock": 112, "54": 112, "029": 112, "54029": 112, "682864": 112, "557262": 112, "223645": 112, "295377": 112, "332251": 112, "363934": 112, "981297": 112, "785797": 112, "604552": 112, "6280517578125": 112, "39815902709961": 112, "brook": 112, "009": 112, "54009": 112, "607233": 112, "748370": 112, "220407": 112, "318453": 112, "314165": 112, "350569": 112, "929337": 112, "214990": 112, "242293": 112, "52625274658203": 112, "16244888305664": 112, "ohio": 112, "069": 112, "54069": 112, "974132": 112, "310334": 112, "272398": 112, "358454": 112, "376963": 112, "390534": 112, "621643": 112, "716681": 112, "574021": 112, "52516937255859": 112, "02275085449219": 112, "marshal": 112, "051": 112, "54051": 112, "51": 112, "876248": 112, "546097": 112, "227647": 112, "319580": 112, "320953": 112, "377346": 112, "962834": 112, "803253": 112, "564159": 112, "52446746826172": 112, "72112655639648": 112, "castl": 112, "delawar": 112, "10003": 112, "228385": 112, "480294": 112, "256106": 112, "329678": 112, "365830": 112, "332703": 112, "035714": 112, "169480": 112, "380903": 112, "77269744873047": 112, "38300704956055": 112, "fetch_sacramento2": 112, "sacramento": 112, "msa": 112, "83": 112, "66": 112, "1998": [112, 116], "2001": 112, "po_nam": 112, "cbsa_cod": 112, "cbsa": 112, "man98": 112, "manufactur": 112, "establish": 112, "man98_12": 112, "employe": 112, "man98_39": 112, "man01": 112, "man01_12": 112, "man01_39": 112, "man98u": 112, "man98us12": 112, "man98us39": 112, "man01u": 112, "man01us_12": 112, "man01us_39": 112, "off98": 112, "offic": 112, "off98_12": 112, "off98_39": 112, "off01": 112, "off01_12": 112, "off01_39": 112, "off98u": 112, "off98us12": 112, "off98us39": 112, "off01u": 112, "offus01_12": 112, "offus01_39": 112, "info98": 112, "info98_12": 112, "info98_39": 112, "info01": 112, "info01_12": 112, "info01_39": 112, "info98u": 112, "info98us12": 112, "info98us39": 112, "info01u": 112, "info01us_1": 112, "info01us_3": 112, "numsec": 112, "sector": 112, "est98": 112, "est01": 112, "pctnge": 112, "nation": 112, "growth": 112, "effect": 112, "pctime": 112, "mix": 112, "pctcse": 112, "competit": 112, "pctgro": 112, "window": 112, "factfind": 112, "fetch_bik": 112, "nyct2010": 112, "fetch_rio": 112, "fetch_taz": 112, "sy": [113, 114, 115], "append": [113, 114, 115], "abspath": [113, 114, 115], "georgia": [113, 115], "__pycache__": [113, 115], "polygon_hol": [113, 115], "berlin": [113, 115], "burkitt": [113, 115], "arcgi": [113, 115], "calemp": [113, 115], "geodanet": [113, 115], "desmith": [113, 115], "book": [113, 115], "snow_map": [113, 115], "street_net_pt": [113, 115], "baltim": [113, 115], "1978": 113, "explan": [113, 115], "211": 113, "k12": 113, "kwt": 113, "baltim_k4": 113, "4nn": 113, "baltim_q": 113, "dropbox": [113, 115], "shp_file": 113, "907": 113, "534": 113, "voronoi_fram": 114, "21783296": 114, "08408578": 114, "51956025": 114, "51807539": 114, "4642193": 114, "3994576": 114, "98210684": 114, "63503022": 114, "22691341": 114, "58994414": 114, "78491801": 114, "89803294": 114, "point_df": 114, "fig": 114, "blue": 114, "edgecolor": [114, 115], "red": 114, "_subplot": 114, "0x7f85e38b94a8": 114, "33": [114, 115], "n_point": 114, "0x7f85e39dae10": 114, "0x7f85e1fbd240": 114, "38": [114, 115], "buff": 114, "05": [114, 115], "facecolor": [114, 115], "xlim": 114, "ylim": 114, "vornoi_weight": 114, "43": [114, 115], "915": 114, "44": [114, 115], "52": 114, "idx": [114, 115], "46": [114, 115], "50851787": 114, "12932895": 114, "decenni": 115, "mexican": 115, "1940": 115, "sastr": 115, "gutierrez": 115, "2010": 115, "interregion": 115, "dynam": [115, 116], "277": 115, "298": 115, "set_axis_off": 115, "border": 115, "6953125": 115, "grei": 115, "linestyl": 115, "linewidth": 115, "252751e": 115, "mx02": 115, "baja": 115, "2040312": 115, "385": 115, "792187e": 115, "7252751": 115, "376": 115, "22361": 115, "20977": 115, "17865": 115, "113": 115, "1397171020508": 115, "0177764892578": 115, "225988e": 115, "mx03": 115, "2912880": 115, "772": 115, "785573e": 115, "7225987": 115, "769": 115, "9573": 115, "16013": 115, "16707": 115, "111": 115, "2061233520508": 115, "8027763366699": 115, "731957e": 115, "mx18": 115, "nayarit": 115, "1034770": 115, "341": 115, "750785e": 115, "06": 115, "2731956": 115, "859": 115, "4836": 115, "7515": 115, "7621": 115, "68": 115, "88": 115, "6210784912109": 115, "5653114318847": 115, "961008e": 115, "mx14": 115, "jalisco": 115, "2324727": 115, "436": 115, "967200e": 115, "7961008": 115, "285": 115, "5309": 115, "8232": 115, "9953": 115, "03": 115, "52490234375": 115, "85663986206055": 115, "467030e": 115, "mx01": 115, "aguascalient": 115, "313895": 115, "530": 115, "350927e": 115, "546702": 115, "985": 115, "10384": 115, "6234": 115, "8714": 115, "02": 115, "8461990356445": 115, "01176071166992": 115, "sonora": 115, "inclus": 115, "c9": 115, "san": 115, "lui": 115, "potosi": 115, "asarrai": 115, "105": 115, "w_knn": 115, "170": 115, "fact": 115, "seen": 115, "countri": 115, "certain": 115, "consist": 115, "w_knn3": 115, "61111111111111": 115, "168": 115, "fuzzy_contigu": 115, "rcparam": 115, "savefig": 115, "riograndedosul": 115, "png": 115, "oleg": 116, "smirnov": 116, "89": 116, "1996": 116, "arxiv": 116, "onlinelibrari": 116, "wilei": 116, "1111": 116, "1467": 116, "9787": 116, "tb01101": 116, "librari": 116, "watt": 116, "strogatz": 116, "world": 116, "natur": 116, "393": 116, "440": 116, "442": 116, "trim": 117, "compat": 117, "maintain": 117, "remot": 117, "url": 117}, "objects": {"libpysal.cg": [[1, 0, 1, "", "Chain"], [2, 0, 1, "", "Grid"], [3, 3, 1, "", "KDTree"], [4, 0, 1, "", "Line"], [5, 0, 1, "", "LineSegment"], [6, 0, 1, "", "Point"], [7, 0, 1, "", "PointLocator"], [8, 0, 1, "", "Polygon"], [9, 0, 1, "", "PolygonLocator"], [10, 4, 1, "", "RADIUS_EARTH_KM"], [11, 4, 1, "", "RADIUS_EARTH_MILES"], [12, 0, 1, "", "Ray"], [13, 0, 1, "", "Rectangle"], [14, 3, 1, "", "alpha_shape"], [15, 3, 1, "", "alpha_shape_auto"], [16, 3, 1, "", "arcdist"], [17, 3, 1, "", "arcdist2linear"], [18, 3, 1, "", "asShape"], [19, 3, 1, "", "bbcommon"], [20, 3, 1, "", "brute_knn"], [21, 3, 1, "", "convex_hull"], [22, 3, 1, "", "distance_matrix"], [23, 3, 1, "", "fast_knn"], [24, 3, 1, "", "fast_threshold"], [25, 3, 1, "", "geogrid"], [26, 3, 1, "", "geointerpolate"], [27, 3, 1, "", "get_angle_between"], [28, 3, 1, "", "get_bounding_box"], [29, 3, 1, "", "get_point_at_angle_and_dist"], [30, 3, 1, "", "get_points_dist"], [31, 3, 1, "", "get_polygon_point_dist"], [32, 3, 1, "", "get_polygon_point_intersect"], [33, 3, 1, "", "get_ray_segment_intersect"], [34, 3, 1, "", "get_rectangle_point_intersect"], [35, 3, 1, "", "get_rectangle_rectangle_intersection"], [36, 3, 1, "", "get_segment_point_dist"], [37, 3, 1, "", "get_segment_point_intersect"], [38, 3, 1, "", "get_segments_intersect"], [39, 3, 1, "", "get_shared_segments"], [40, 3, 1, "", "harcdist"], [41, 3, 1, "", "is_clockwise"], [42, 3, 1, "", "is_collinear"], [43, 3, 1, "", "linear2arcdist"], [44, 3, 1, "", "lonlat"], [45, 3, 1, "", "point_touches_rectangle"], [46, 3, 1, "", "toLngLat"], [47, 3, 1, "", "toXYZ"], [48, 3, 1, "", "voronoi_frames"]], "libpysal.cg.Chain": [[1, 1, 1, "", "__init__"], [1, 2, 1, "", "arclen"], [1, 2, 1, "", "bounding_box"], [1, 2, 1, "", "len"], [1, 2, 1, "", "parts"], [1, 2, 1, "", "segments"], [1, 2, 1, "", "vertices"]], "libpysal.cg.Grid": [[2, 1, 1, "", "__init__"], [2, 1, 1, "", "add"], [2, 1, 1, "", "bounds"], [2, 1, 1, "", "in_grid"], [2, 1, 1, "", "nearest"], [2, 1, 1, "", "proximity"], [2, 1, 1, "", "remove"]], "libpysal.cg.Line": [[4, 1, 1, "", "__init__"], [4, 1, 1, "", "x"], [4, 1, 1, "", "y"]], "libpysal.cg.LineSegment": [[5, 1, 1, "", "__init__"], [5, 2, 1, "", "bounding_box"], [5, 1, 1, "", "get_swap"], [5, 1, 1, "", "intersect"], [5, 1, 1, "", "is_ccw"], [5, 1, 1, "", "is_cw"], [5, 2, 1, "", "len"], [5, 2, 1, "", "line"], [5, 2, 1, "", "p1"], [5, 2, 1, "", "p2"], [5, 1, 1, "", "sw_ccw"]], "libpysal.cg.Point": [[6, 1, 1, "", "__init__"]], "libpysal.cg.PointLocator": [[7, 1, 1, "", "__init__"], [7, 1, 1, "", "nearest"], [7, 1, 1, "", "overlapping"], [7, 1, 1, "", "polygon"], [7, 1, 1, "", "proximity"], [7, 1, 1, "", "region"]], "libpysal.cg.Polygon": [[8, 1, 1, "", "__init__"], [8, 2, 1, "", "area"], [8, 2, 1, "", "bbox"], [8, 2, 1, "", "bounding_box"], [8, 1, 1, "", "build_quad_tree_structure"], [8, 2, 1, "", "centroid"], [8, 1, 1, "", "contains_point"], [8, 2, 1, "", "holes"], [8, 2, 1, "", "len"], [8, 2, 1, "", "parts"], [8, 2, 1, "", "perimeter"], [8, 2, 1, "", "vertices"]], "libpysal.cg.PolygonLocator": [[9, 1, 1, "", "__init__"], [9, 1, 1, "", "contains_point"], [9, 1, 1, "", "inside"], [9, 1, 1, "", "nearest"], [9, 1, 1, "", "overlapping"], [9, 1, 1, "", "proximity"], [9, 1, 1, "", "region"]], "libpysal.cg.Ray": [[12, 1, 1, "", "__init__"]], "libpysal.cg.Rectangle": [[13, 1, 1, "", "__init__"], [13, 2, 1, "", "area"], [13, 2, 1, "", "height"], [13, 1, 1, "", "set_centroid"], [13, 1, 1, "", "set_scale"], [13, 2, 1, "", "width"]], "libpysal.examples": [[49, 3, 1, "", "available"], [50, 3, 1, "", "explain"], [51, 3, 1, "", "get_path"]], "libpysal.graph": [[52, 0, 1, "", "Graph"]], "libpysal.graph.Graph": [[52, 1, 1, "", "__init__"], [52, 2, 1, "", "adjacency"], [52, 1, 1, "", "asymmetry"], [52, 1, 1, "", "build_block_contiguity"], [52, 1, 1, "", "build_contiguity"], [52, 1, 1, "", "build_distance_band"], [52, 1, 1, "", "build_fuzzy_contiguity"], [52, 1, 1, "", "build_kernel"], [52, 1, 1, "", "build_knn"], [52, 1, 1, "", "build_triangulation"], [52, 2, 1, "", "cardinalities"], [52, 2, 1, "", "component_labels"], [52, 1, 1, "", "copy"], [52, 1, 1, "", "explore"], [52, 1, 1, "", "from_W"], [52, 1, 1, "", "from_adjacency"], [52, 1, 1, "", "from_arrays"], [52, 1, 1, "", "from_dicts"], [52, 1, 1, "", "from_sparse"], [52, 1, 1, "", "from_weights_dict"], [52, 1, 1, "", "higher_order"], [52, 2, 1, "", "isolates"], [52, 1, 1, "", "lag"], [52, 2, 1, "", "n"], [52, 2, 1, "", "n_components"], [52, 2, 1, "", "n_edges"], [52, 2, 1, "", "n_nodes"], [52, 2, 1, "", "neighbors"], [52, 2, 1, "", "nonzero"], [52, 2, 1, "", "pct_nonzero"], [52, 1, 1, "", "plot"], [52, 2, 1, "", "sparse"], [52, 1, 1, "", "to_W"], [52, 1, 1, "", "to_networkx"], [52, 1, 1, "", "to_parquet"], [52, 1, 1, "", "transform"], [52, 2, 1, "", "unique_ids"], [52, 2, 1, "", "weights"]], "libpysal.io.fileio": [[53, 0, 1, "", "FileIO"]], "libpysal.io.fileio.FileIO": [[53, 1, 1, "", "__init__"], [53, 2, 1, "", "by_row"], [53, 1, 1, "", "cast"], [53, 1, 1, "", "check"], [53, 1, 1, "", "close"], [53, 1, 1, "", "flush"], [53, 1, 1, "", "get"], [53, 1, 1, "", "getType"], [53, 2, 1, "", "ids"], [53, 1, 1, "", "open"], [53, 2, 1, "", "rIds"], [53, 1, 1, "", "read"], [53, 1, 1, "", "seek"], [53, 1, 1, "", "tell"], [53, 1, 1, "", "truncate"], [53, 1, 1, "", "write"]], "libpysal.io": [[54, 5, 1, "", "open"]], "libpysal.weights": [[55, 0, 1, "", "Delaunay"], [56, 0, 1, "", "DistanceBand"], [57, 0, 1, "", "Gabriel"], [58, 0, 1, "", "KNN"], [59, 0, 1, "", "Kernel"], [60, 3, 1, "", "ODW"], [61, 0, 1, "", "Queen"], [62, 0, 1, "", "Relative_Neighborhood"], [63, 0, 1, "", "Rook"], [64, 3, 1, "", "Voronoi"], [65, 0, 1, "", "W"], [66, 0, 1, "", "WSP"], [67, 3, 1, "", "WSP2W"], [68, 3, 1, "", "attach_islands"], [69, 3, 1, "", "block_weights"], [70, 3, 1, "", "build_lattice_shapefile"], [71, 3, 1, "", "comb"], [72, 3, 1, "", "da2W"], [73, 3, 1, "", "da2WSP"], [74, 3, 1, "", "fill_diagonal"], [75, 3, 1, "", "full"], [76, 3, 1, "", "full2W"], [77, 3, 1, "", "fuzzy_contiguity"], [78, 3, 1, "", "get_ids"], [79, 3, 1, "", "get_points_array_from_shapefile"], [80, 3, 1, "", "hexLat2W"], [81, 3, 1, "", "higher_order"], [82, 3, 1, "", "higher_order_sp"], [83, 3, 1, "", "lag_categorical"], [84, 3, 1, "", "lag_spatial"], [85, 3, 1, "", "lat2SW"], [86, 3, 1, "", "lat2W"], [87, 3, 1, "", "mat2L"], [88, 3, 1, "", "min_threshold_dist_from_shapefile"], [89, 3, 1, "", "min_threshold_distance"], [90, 3, 1, "", "neighbor_equality"], [91, 3, 1, "", "netW"], [92, 3, 1, "", "nonplanar_neighbors"], [93, 3, 1, "", "order"], [94, 3, 1, "", "remap_ids"], [95, 3, 1, "", "shimbel"], [96, 3, 1, "", "spw_from_gal"], [97, 3, 1, "", "testDataArray"], [98, 3, 1, "", "vecW"], [99, 3, 1, "", "w2da"], [100, 3, 1, "", "w_clip"], [101, 3, 1, "", "w_difference"], [102, 3, 1, "", "w_intersection"], [103, 3, 1, "", "w_local_cluster"], [104, 3, 1, "", "w_subset"], [105, 3, 1, "", "w_symmetric_difference"], [106, 3, 1, "", "w_union"], [107, 3, 1, "", "wsp2da"]], "libpysal.weights.Delaunay": [[55, 1, 1, "", "__init__"], [55, 1, 1, "", "from_dataframe"]], "libpysal.weights.DistanceBand": [[56, 1, 1, "", "__init__"], [56, 1, 1, "", "from_array"], [56, 1, 1, "", "from_dataframe"], [56, 1, 1, "", "from_shapefile"]], "libpysal.weights.Gabriel": [[57, 1, 1, "", "__init__"]], "libpysal.weights.KNN": [[58, 1, 1, "", "__init__"], [58, 1, 1, "", "from_array"], [58, 1, 1, "", "from_dataframe"], [58, 1, 1, "", "from_shapefile"], [58, 1, 1, "", "reweight"]], "libpysal.weights.Kernel": [[59, 1, 1, "", "__init__"], [59, 1, 1, "", "from_array"], [59, 1, 1, "", "from_dataframe"], [59, 1, 1, "", "from_shapefile"]], "libpysal.weights.Queen": [[61, 1, 1, "", "__init__"], [61, 1, 1, "", "from_dataframe"], [61, 1, 1, "", "from_iterable"], [61, 1, 1, "", "from_shapefile"], [61, 1, 1, "", "from_xarray"]], "libpysal.weights.Relative_Neighborhood": [[62, 1, 1, "", "__init__"]], "libpysal.weights.Rook": [[63, 1, 1, "", "__init__"], [63, 1, 1, "", "from_dataframe"], [63, 1, 1, "", "from_iterable"], [63, 1, 1, "", "from_shapefile"], [63, 1, 1, "", "from_xarray"]], "libpysal.weights.W": [[65, 1, 1, "", "__init__"], [65, 2, 1, "", "asymmetries"], [65, 1, 1, "", "asymmetry"], [65, 2, 1, "", "cardinalities"], [65, 2, 1, "", "component_labels"], [65, 2, 1, "", "diagW2"], [65, 2, 1, "", "diagWtW"], [65, 2, 1, "", "diagWtW_WW"], [65, 1, 1, "", "from_WSP"], [65, 1, 1, "", "from_adjlist"], [65, 1, 1, "", "from_file"], [65, 1, 1, "", "from_networkx"], [65, 1, 1, "", "from_shapefile"], [65, 1, 1, "", "from_sparse"], [65, 1, 1, "", "full"], [65, 1, 1, "", "get_transform"], [65, 2, 1, "", "histogram"], [65, 2, 1, "", "id2i"], [65, 2, 1, "", "id_order"], [65, 2, 1, "", "id_order_set"], [65, 2, 1, "", "islands"], [65, 2, 1, "", "max_neighbors"], [65, 2, 1, "", "mean_neighbors"], [65, 2, 1, "", "min_neighbors"], [65, 2, 1, "", "n"], [65, 2, 1, "", "n_components"], [65, 2, 1, "", "neighbor_offsets"], [65, 2, 1, "", "nonzero"], [65, 2, 1, "", "pct_nonzero"], [65, 1, 1, "", "plot"], [65, 1, 1, "", "remap_ids"], [65, 2, 1, "", "s0"], [65, 2, 1, "", "s1"], [65, 2, 1, "", "s2"], [65, 2, 1, "", "s2array"], [65, 2, 1, "", "sd"], [65, 1, 1, "", "set_shapefile"], [65, 1, 1, "", "set_transform"], [65, 2, 1, "", "sparse"], [65, 1, 1, "", "symmetrize"], [65, 1, 1, "", "to_WSP"], [65, 1, 1, "", "to_adjlist"], [65, 1, 1, "", "to_file"], [65, 1, 1, "", "to_networkx"], [65, 1, 1, "", "to_sparse"], [65, 2, 1, "", "transform"], [65, 2, 1, "", "trcW2"], [65, 2, 1, "", "trcWtW"], [65, 2, 1, "", "trcWtW_WW"]], "libpysal.weights.WSP": [[66, 1, 1, "", "__init__"], [66, 2, 1, "", "diagWtW_WW"], [66, 1, 1, "", "from_W"], [66, 2, 1, "", "id_order"], [66, 2, 1, "", "s0"], [66, 1, 1, "", "to_W"], [66, 2, 1, "", "trcWtW_WW"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:property", "3": "py:function", "4": "py:data", "5": "py:attribute"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "property", "Python property"], "3": ["py", "function", "Python function"], "4": ["py", "data", "Python data"], "5": ["py", "attribute", "Python attribute"]}, "titleterms": {"libpys": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 111, 117], "api": [0, 110], "refer": [0, 116], "spatial": [0, 108, 117], "weight": [0, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 114, 115, 117], "distanc": 0, "contigu": [0, 115], "spint": 0, "tool": 0, "interfac": 0, "raster": [0, 110], "util": 0, "class": 0, "function": 0, "user": 0, "set": [0, 114], "theoret": 0, "lag": 0, "cg": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], "comput": 0, "geometri": [0, 115], "alpha_shap": [0, 14], "voronoi": [0, 64, 114], "sphere": 0, "shape": 0, "standalon": 0, "locat": 0, "kdtree": [0, 3], "io": [0, 53, 54], "exampl": [0, 49, 50, 51, 110, 111, 117], "experiment": 0, "graph": [0, 52], "chain": 1, "grid": 2, "line": 4, "lineseg": 5, "point": [6, 114], "pointloc": 7, "polygon": [8, 114], "polygonloc": 9, "radius_earth_km": 10, "radius_earth_mil": 11, "rai": 12, "rectangl": 13, "alpha_shape_auto": 15, "arcdist": 16, "arcdist2linear": 17, "asshap": 18, "bbcommon": 19, "brute_knn": 20, "convex_hul": 21, "distance_matrix": 22, "fast_knn": 23, "fast_threshold": 24, "geogrid": 25, "geointerpol": 26, "get_angle_between": 27, "get_bounding_box": 28, "get_point_at_angle_and_dist": 29, "get_points_dist": 30, "get_polygon_point_dist": 31, "get_polygon_point_intersect": 32, "get_ray_segment_intersect": 33, "get_rectangle_point_intersect": 34, "get_rectangle_rectangle_intersect": 35, "get_segment_point_dist": 36, "get_segment_point_intersect": 37, "get_segments_intersect": 38, "get_shared_seg": 39, "harcdist": 40, "is_clockwis": 41, "is_collinear": 42, "linear2arcdist": 43, "lonlat": 44, "point_touches_rectangl": 45, "tolnglat": 46, "toxyz": 47, "voronoi_fram": 48, "avail": 49, "explain": [50, 111], "get_path": 51, "fileio": 53, "open": 54, "delaunai": 55, "distanceband": 56, "gabriel": 57, "knn": 58, "kernel": 59, "odw": 60, "queen": 61, "relative_neighborhood": 62, "rook": 63, "w": 65, "wsp": 66, "wsp2w": 67, "attach_island": 68, "block_weight": 69, "build_lattice_shapefil": 70, "comb": 71, "da2w": 72, "da2wsp": 73, "fill_diagon": 74, "full": 75, "full2w": 76, "fuzzy_contigu": 77, "get_id": 78, "get_points_array_from_shapefil": 79, "hexlat2w": 80, "higher_ord": [81, 110], "higher_order_sp": 82, "lag_categor": 83, "lag_spati": 84, "lat2sw": 85, "lat2w": 86, "mat2l": 87, "min_threshold_dist_from_shapefil": 88, "min_threshold_dist": 89, "neighbor_equ": 90, "netw": 91, "nonplanar_neighbor": 92, "order": 93, "remap_id": 94, "shimbel": 95, "spw_from_gal": 96, "testdataarrai": 97, "vecw": 98, "w2da": 99, "w_clip": 100, "w_differ": 101, "w_intersect": 102, "w_local_clust": 103, "w_subset": 104, "w_symmetric_differ": 105, "w_union": 106, "wsp2da": 107, "python": 108, "analysi": 108, "librari": 108, "core": 108, "introduct": 108, "develop": [108, 109], "get": [108, 111], "involv": 108, "bug": 108, "report": 108, "cite": 108, "licens": 108, "inform": 108, "instal": 109, "releas": 109, "version": 109, "conda": 109, "pypi": 109, "awar": 110, "load": 110, "data": 110, "us": [110, 111], "xarrai": 110, "dataset": [110, 111, 117], "local": 110, "netcdf": 110, "geotiff": 110, "neighbor": 110, "addit": 110, "resourc": 110, "backward": 111, "compat": 111, "i": 111, "maintain": 111, "download": 111, "remot": 111, "url": 111, "work": 111, "an": 111, "other": 111, "2": 114, "d": 114, "basic": 114, "usag": 114, "larger": 114, "problem": 114, "trim": 114, "from": 115, "geodatafram": 115, "shapefil": 115, "without": 115, "geopanda": 115, "lattic": 115, "handl": 115, "nonplanar": 115, "tutori": 117}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "sphinxcontrib.bibtex": 9, "sphinx.ext.intersphinx": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"libpysal API reference": [[0, "libpysal-api-reference"]], "Spatial Weights": [[0, "spatial-weights"], [117, "spatial-weights"]], "Distance Weights": [[0, "distance-weights"]], "Contiguity Weights": [[0, "contiguity-weights"], [115, "Contiguity-Weights"]], "spint Weights": [[0, "spint-weights"]], "Weights tools to interface with rasters": [[0, "weights-tools-to-interface-with-rasters"]], "Weights Util Classes and Functions": [[0, "weights-util-classes-and-functions"]], "Weights user Classes and Functions": [[0, "weights-user-classes-and-functions"]], "Set Theoretic Weights": [[0, "set-theoretic-weights"]], "Spatial Lag": [[0, "spatial-lag"]], "cg: Computational Geometry": [[0, "cg-computational-geometry"]], "alpha_shapes": [[0, "alpha-shapes"]], "voronoi": [[0, "voronoi"]], "sphere": [[0, "sphere"]], "shapes": [[0, "shapes"]], "standalone": [[0, "standalone"]], "locators": [[0, "locators"]], "kdtree": [[0, "kdtree"]], "io": [[0, "io"]], "examples": [[0, "examples"]], "Experimental": [[0, "experimental"]], "graph": [[0, "graph"]], "libpysal.cg.Chain": [[1, "libpysal-cg-chain"]], "libpysal.cg.Grid": [[2, "libpysal-cg-grid"]], "libpysal.cg.KDTree": [[3, "libpysal-cg-kdtree"]], "libpysal.cg.Line": [[4, "libpysal-cg-line"]], "libpysal.cg.LineSegment": [[5, "libpysal-cg-linesegment"]], "libpysal.cg.Point": [[6, "libpysal-cg-point"]], "libpysal.cg.PointLocator": [[7, "libpysal-cg-pointlocator"]], "libpysal.cg.Polygon": [[8, "libpysal-cg-polygon"]], "libpysal.cg.PolygonLocator": [[9, "libpysal-cg-polygonlocator"]], "libpysal.cg.RADIUS_EARTH_KM": [[10, "libpysal-cg-radius-earth-km"]], "libpysal.cg.RADIUS_EARTH_MILES": [[11, "libpysal-cg-radius-earth-miles"]], "libpysal.cg.Ray": [[12, "libpysal-cg-ray"]], "libpysal.cg.Rectangle": [[13, "libpysal-cg-rectangle"]], "libpysal.cg.alpha_shape": [[14, "libpysal-cg-alpha-shape"]], "libpysal.cg.alpha_shape_auto": [[15, "libpysal-cg-alpha-shape-auto"]], "libpysal.cg.arcdist": [[16, "libpysal-cg-arcdist"]], "libpysal.cg.arcdist2linear": [[17, "libpysal-cg-arcdist2linear"]], "libpysal.cg.asShape": [[18, "libpysal-cg-asshape"]], "libpysal.cg.bbcommon": [[19, "libpysal-cg-bbcommon"]], "libpysal.cg.brute_knn": [[20, "libpysal-cg-brute-knn"]], "libpysal.cg.convex_hull": [[21, "libpysal-cg-convex-hull"]], "libpysal.cg.distance_matrix": [[22, "libpysal-cg-distance-matrix"]], "libpysal.cg.fast_knn": [[23, "libpysal-cg-fast-knn"]], "libpysal.cg.fast_threshold": [[24, "libpysal-cg-fast-threshold"]], "libpysal.cg.geogrid": [[25, "libpysal-cg-geogrid"]], "libpysal.cg.geointerpolate": [[26, "libpysal-cg-geointerpolate"]], "libpysal.cg.get_angle_between": [[27, "libpysal-cg-get-angle-between"]], "libpysal.cg.get_bounding_box": [[28, "libpysal-cg-get-bounding-box"]], "libpysal.cg.get_point_at_angle_and_dist": [[29, "libpysal-cg-get-point-at-angle-and-dist"]], "libpysal.cg.get_points_dist": [[30, "libpysal-cg-get-points-dist"]], "libpysal.cg.get_polygon_point_dist": [[31, "libpysal-cg-get-polygon-point-dist"]], "libpysal.cg.get_polygon_point_intersect": [[32, "libpysal-cg-get-polygon-point-intersect"]], "libpysal.cg.get_ray_segment_intersect": [[33, "libpysal-cg-get-ray-segment-intersect"]], "libpysal.cg.get_rectangle_point_intersect": [[34, "libpysal-cg-get-rectangle-point-intersect"]], "libpysal.cg.get_rectangle_rectangle_intersection": [[35, "libpysal-cg-get-rectangle-rectangle-intersection"]], "libpysal.cg.get_segment_point_dist": [[36, "libpysal-cg-get-segment-point-dist"]], "libpysal.cg.get_segment_point_intersect": [[37, "libpysal-cg-get-segment-point-intersect"]], "libpysal.cg.get_segments_intersect": [[38, "libpysal-cg-get-segments-intersect"]], "libpysal.cg.get_shared_segments": [[39, "libpysal-cg-get-shared-segments"]], "libpysal.cg.harcdist": [[40, "libpysal-cg-harcdist"]], "libpysal.cg.is_clockwise": [[41, "libpysal-cg-is-clockwise"]], "libpysal.cg.is_collinear": [[42, "libpysal-cg-is-collinear"]], "libpysal.cg.linear2arcdist": [[43, "libpysal-cg-linear2arcdist"]], "libpysal.cg.lonlat": [[44, "libpysal-cg-lonlat"]], "libpysal.cg.point_touches_rectangle": [[45, "libpysal-cg-point-touches-rectangle"]], "libpysal.cg.toLngLat": [[46, "libpysal-cg-tolnglat"]], "libpysal.cg.toXYZ": [[47, "libpysal-cg-toxyz"]], "libpysal.cg.voronoi_frames": [[48, "libpysal-cg-voronoi-frames"]], "libpysal.examples.available": [[49, "libpysal-examples-available"]], "libpysal.examples.explain": [[50, "libpysal-examples-explain"]], "libpysal.examples.get_path": [[51, "libpysal-examples-get-path"]], "libpysal.graph.Graph": [[52, "libpysal-graph-graph"]], "libpysal.io.fileio.FileIO": [[53, "libpysal-io-fileio-fileio"]], "libpysal.io.open": [[54, "libpysal-io-open"]], "libpysal.weights.Delaunay": [[55, "libpysal-weights-delaunay"]], "libpysal.weights.DistanceBand": [[56, "libpysal-weights-distanceband"]], "libpysal.weights.Gabriel": [[57, "libpysal-weights-gabriel"]], "libpysal.weights.KNN": [[58, "libpysal-weights-knn"]], "libpysal.weights.Kernel": [[59, "libpysal-weights-kernel"]], "libpysal.weights.ODW": [[60, "libpysal-weights-odw"]], "libpysal.weights.Queen": [[61, "libpysal-weights-queen"]], "libpysal.weights.Relative_Neighborhood": [[62, "libpysal-weights-relative-neighborhood"]], "libpysal.weights.Rook": [[63, "libpysal-weights-rook"]], "libpysal.weights.Voronoi": [[64, "libpysal-weights-voronoi"]], "libpysal.weights.W": [[65, "libpysal-weights-w"]], "libpysal.weights.WSP": [[66, "libpysal-weights-wsp"]], "libpysal.weights.WSP2W": [[67, "libpysal-weights-wsp2w"]], "libpysal.weights.attach_islands": [[68, "libpysal-weights-attach-islands"]], "libpysal.weights.block_weights": [[69, "libpysal-weights-block-weights"]], "libpysal.weights.build_lattice_shapefile": [[70, "libpysal-weights-build-lattice-shapefile"]], "libpysal.weights.comb": [[71, "libpysal-weights-comb"]], "libpysal.weights.da2W": [[72, "libpysal-weights-da2w"]], "libpysal.weights.da2WSP": [[73, "libpysal-weights-da2wsp"]], "libpysal.weights.fill_diagonal": [[74, "libpysal-weights-fill-diagonal"]], "libpysal.weights.full": [[75, "libpysal-weights-full"]], "libpysal.weights.full2W": [[76, "libpysal-weights-full2w"]], "libpysal.weights.fuzzy_contiguity": [[77, "libpysal-weights-fuzzy-contiguity"]], "libpysal.weights.get_ids": [[78, "libpysal-weights-get-ids"]], "libpysal.weights.get_points_array_from_shapefile": [[79, "libpysal-weights-get-points-array-from-shapefile"]], "libpysal.weights.hexLat2W": [[80, "libpysal-weights-hexlat2w"]], "libpysal.weights.higher_order": [[81, "libpysal-weights-higher-order"]], "libpysal.weights.higher_order_sp": [[82, "libpysal-weights-higher-order-sp"]], "libpysal.weights.lag_categorical": [[83, "libpysal-weights-lag-categorical"]], "libpysal.weights.lag_spatial": [[84, "libpysal-weights-lag-spatial"]], "libpysal.weights.lat2SW": [[85, "libpysal-weights-lat2sw"]], "libpysal.weights.lat2W": [[86, "libpysal-weights-lat2w"]], "libpysal.weights.mat2L": [[87, "libpysal-weights-mat2l"]], "libpysal.weights.min_threshold_dist_from_shapefile": [[88, "libpysal-weights-min-threshold-dist-from-shapefile"]], "libpysal.weights.min_threshold_distance": [[89, "libpysal-weights-min-threshold-distance"]], "libpysal.weights.neighbor_equality": [[90, "libpysal-weights-neighbor-equality"]], "libpysal.weights.netW": [[91, "libpysal-weights-netw"]], "libpysal.weights.nonplanar_neighbors": [[92, "libpysal-weights-nonplanar-neighbors"]], "libpysal.weights.order": [[93, "libpysal-weights-order"]], "libpysal.weights.remap_ids": [[94, "libpysal-weights-remap-ids"]], "libpysal.weights.shimbel": [[95, "libpysal-weights-shimbel"]], "libpysal.weights.spw_from_gal": [[96, "libpysal-weights-spw-from-gal"]], "libpysal.weights.testDataArray": [[97, "libpysal-weights-testdataarray"]], "libpysal.weights.vecW": [[98, "libpysal-weights-vecw"]], "libpysal.weights.w2da": [[99, "libpysal-weights-w2da"]], "libpysal.weights.w_clip": [[100, "libpysal-weights-w-clip"]], "libpysal.weights.w_difference": [[101, "libpysal-weights-w-difference"]], "libpysal.weights.w_intersection": [[102, "libpysal-weights-w-intersection"]], "libpysal.weights.w_local_cluster": [[103, "libpysal-weights-w-local-cluster"]], "libpysal.weights.w_subset": [[104, "libpysal-weights-w-subset"]], "libpysal.weights.w_symmetric_difference": [[105, "libpysal-weights-w-symmetric-difference"]], "libpysal.weights.w_union": [[106, "libpysal-weights-w-union"]], "libpysal.weights.wsp2da": [[107, "libpysal-weights-wsp2da"]], "libpysal: Python Spatial Analysis Library Core": [[108, "libpysal-python-spatial-analysis-library-core"]], "Introduction": [[108, "introduction"]], "Development": [[108, "development"]], "Getting Involved": [[108, "getting-involved"]], "Bug reports": [[108, "bug-reports"]], "Citing libpysal": [[108, "citing-libpysal"]], "License information": [[108, "license-information"]], "libpysal": [[108, "libpysal"]], "Installation": [[109, "installation"]], "Installing released version": [[109, "installing-released-version"]], "conda": [[109, "conda"]], "pypi": [[109, "pypi"]], "Installing development version": [[109, "installing-development-version"]], "Raster awareness API": [[110, "Raster-awareness-API"]], "Loading Data": [[110, "Loading-Data"]], "Using xarray example dataset": [[110, "Using-xarray-example-dataset"]], "Using local NetCDF dataset": [[110, "Using-local-NetCDF-dataset"]], "Using local GeoTIFF dataset": [[110, "Using-local-GeoTIFF-dataset"]], "higher_order neighbors": [[110, "higher_order-neighbors"]], "Additional resources": [[110, "Additional-resources"]], "Datasets for use with libpysal": [[111, "Datasets-for-use-with-libpysal"]], "Backwards compatibility is maintained": [[111, "Backwards-compatibility-is-maintained"]], "Downloading Remote Datasets": [[111, "Downloading-Remote-Datasets"]], "Getting remote urls": [[111, "Getting-remote-urls"]], "Explaining a dataset": [[111, "Explaining-a-dataset"]], "Working with an example dataset": [[111, "Working-with-an-example-dataset"]], "Other Remotes": [[111, "Other-Remotes"]], "Voronoi Polygons for 2-D Point Sets": [[114, "Voronoi-Polygons-for-2-D-Point-Sets"]], "Basic Usage": [[114, "Basic-Usage"]], "Larger Problem": [[114, "Larger-Problem"]], "Trimming": [[114, "Trimming"]], "Voronoi Weights": [[114, "Voronoi-Weights"]], "Weights from GeoDataFrames": [[115, "Weights-from-GeoDataFrames"]], "Weights from shapefiles (without geopandas)": [[115, "Weights-from-shapefiles-(without-geopandas)"]], "Lattice Weights": [[115, "Lattice-Weights"]], "Handling nonplanar geometries": [[115, "Handling-nonplanar-geometries"]], "References": [[116, "references"]], "libpysal Tutorial": [[117, "libpysal-tutorial"]], "Example Datasets": [[117, "example-datasets"]]}, "indexentries": {"chain (class in libpysal.cg)": [[1, "libpysal.cg.Chain"]], "__init__() (libpysal.cg.chain method)": [[1, "libpysal.cg.Chain.__init__"]], "arclen (libpysal.cg.chain property)": [[1, "libpysal.cg.Chain.arclen"]], "bounding_box (libpysal.cg.chain property)": [[1, "libpysal.cg.Chain.bounding_box"]], "len (libpysal.cg.chain property)": [[1, "libpysal.cg.Chain.len"]], "parts (libpysal.cg.chain property)": [[1, "libpysal.cg.Chain.parts"]], "segments (libpysal.cg.chain property)": [[1, "libpysal.cg.Chain.segments"]], "vertices (libpysal.cg.chain property)": [[1, "libpysal.cg.Chain.vertices"]], "grid (class in libpysal.cg)": [[2, "libpysal.cg.Grid"]], "__init__() (libpysal.cg.grid method)": [[2, "libpysal.cg.Grid.__init__"]], "add() (libpysal.cg.grid method)": [[2, "libpysal.cg.Grid.add"]], "bounds() (libpysal.cg.grid method)": [[2, "libpysal.cg.Grid.bounds"]], "in_grid() (libpysal.cg.grid method)": [[2, "libpysal.cg.Grid.in_grid"]], "nearest() (libpysal.cg.grid method)": [[2, "libpysal.cg.Grid.nearest"]], "proximity() (libpysal.cg.grid method)": [[2, "libpysal.cg.Grid.proximity"]], "remove() (libpysal.cg.grid method)": [[2, "libpysal.cg.Grid.remove"]], "kdtree() (in module libpysal.cg)": [[3, "libpysal.cg.KDTree"]], "line (class in libpysal.cg)": [[4, "libpysal.cg.Line"]], "__init__() (libpysal.cg.line method)": [[4, "libpysal.cg.Line.__init__"]], "x() (libpysal.cg.line method)": [[4, "libpysal.cg.Line.x"]], "y() (libpysal.cg.line method)": [[4, "libpysal.cg.Line.y"]], "linesegment (class in libpysal.cg)": [[5, "libpysal.cg.LineSegment"]], "__init__() (libpysal.cg.linesegment method)": [[5, "libpysal.cg.LineSegment.__init__"]], "bounding_box (libpysal.cg.linesegment property)": [[5, "libpysal.cg.LineSegment.bounding_box"]], "get_swap() (libpysal.cg.linesegment method)": [[5, "libpysal.cg.LineSegment.get_swap"]], "intersect() (libpysal.cg.linesegment method)": [[5, "libpysal.cg.LineSegment.intersect"]], "is_ccw() (libpysal.cg.linesegment method)": [[5, "libpysal.cg.LineSegment.is_ccw"]], "is_cw() (libpysal.cg.linesegment method)": [[5, "libpysal.cg.LineSegment.is_cw"]], "len (libpysal.cg.linesegment property)": [[5, "libpysal.cg.LineSegment.len"]], "line (libpysal.cg.linesegment property)": [[5, "libpysal.cg.LineSegment.line"]], "p1 (libpysal.cg.linesegment property)": [[5, "libpysal.cg.LineSegment.p1"]], "p2 (libpysal.cg.linesegment property)": [[5, "libpysal.cg.LineSegment.p2"]], "sw_ccw() (libpysal.cg.linesegment method)": [[5, "libpysal.cg.LineSegment.sw_ccw"]], "point (class in libpysal.cg)": [[6, "libpysal.cg.Point"]], "__init__() (libpysal.cg.point method)": [[6, "libpysal.cg.Point.__init__"]], "pointlocator (class in libpysal.cg)": [[7, "libpysal.cg.PointLocator"]], "__init__() (libpysal.cg.pointlocator method)": [[7, "libpysal.cg.PointLocator.__init__"]], "nearest() (libpysal.cg.pointlocator method)": [[7, "libpysal.cg.PointLocator.nearest"]], "overlapping() (libpysal.cg.pointlocator method)": [[7, "libpysal.cg.PointLocator.overlapping"]], "polygon() (libpysal.cg.pointlocator method)": [[7, "libpysal.cg.PointLocator.polygon"]], "proximity() (libpysal.cg.pointlocator method)": [[7, "libpysal.cg.PointLocator.proximity"]], "region() (libpysal.cg.pointlocator method)": [[7, "libpysal.cg.PointLocator.region"]], "polygon (class in libpysal.cg)": [[8, "libpysal.cg.Polygon"]], "__init__() (libpysal.cg.polygon method)": [[8, "libpysal.cg.Polygon.__init__"]], "area (libpysal.cg.polygon property)": [[8, "libpysal.cg.Polygon.area"]], "bbox (libpysal.cg.polygon property)": [[8, "libpysal.cg.Polygon.bbox"]], "bounding_box (libpysal.cg.polygon property)": [[8, "libpysal.cg.Polygon.bounding_box"]], "build_quad_tree_structure() (libpysal.cg.polygon method)": [[8, "libpysal.cg.Polygon.build_quad_tree_structure"]], "centroid (libpysal.cg.polygon property)": [[8, "libpysal.cg.Polygon.centroid"]], "contains_point() (libpysal.cg.polygon method)": [[8, "libpysal.cg.Polygon.contains_point"]], "holes (libpysal.cg.polygon property)": [[8, "libpysal.cg.Polygon.holes"]], "len (libpysal.cg.polygon property)": [[8, "libpysal.cg.Polygon.len"]], "parts (libpysal.cg.polygon property)": [[8, "libpysal.cg.Polygon.parts"]], "perimeter (libpysal.cg.polygon property)": [[8, "libpysal.cg.Polygon.perimeter"]], "vertices (libpysal.cg.polygon property)": [[8, "libpysal.cg.Polygon.vertices"]], "polygonlocator (class in libpysal.cg)": [[9, "libpysal.cg.PolygonLocator"]], "__init__() (libpysal.cg.polygonlocator method)": [[9, "libpysal.cg.PolygonLocator.__init__"]], "contains_point() (libpysal.cg.polygonlocator method)": [[9, "libpysal.cg.PolygonLocator.contains_point"]], "inside() (libpysal.cg.polygonlocator method)": [[9, "libpysal.cg.PolygonLocator.inside"]], "nearest() (libpysal.cg.polygonlocator method)": [[9, "libpysal.cg.PolygonLocator.nearest"]], "overlapping() (libpysal.cg.polygonlocator method)": [[9, "libpysal.cg.PolygonLocator.overlapping"]], "proximity() (libpysal.cg.polygonlocator method)": [[9, "libpysal.cg.PolygonLocator.proximity"]], "region() (libpysal.cg.polygonlocator method)": [[9, "libpysal.cg.PolygonLocator.region"]], "radius_earth_km (in module libpysal.cg)": [[10, "libpysal.cg.RADIUS_EARTH_KM"]], "radius_earth_miles (in module libpysal.cg)": [[11, "libpysal.cg.RADIUS_EARTH_MILES"]], "ray (class in libpysal.cg)": [[12, "libpysal.cg.Ray"]], "__init__() (libpysal.cg.ray method)": [[12, "libpysal.cg.Ray.__init__"]], "rectangle (class in libpysal.cg)": [[13, "libpysal.cg.Rectangle"]], "__init__() (libpysal.cg.rectangle method)": [[13, "libpysal.cg.Rectangle.__init__"]], "area (libpysal.cg.rectangle property)": [[13, "libpysal.cg.Rectangle.area"]], "height (libpysal.cg.rectangle property)": [[13, "libpysal.cg.Rectangle.height"]], "set_centroid() (libpysal.cg.rectangle method)": [[13, "libpysal.cg.Rectangle.set_centroid"]], "set_scale() (libpysal.cg.rectangle method)": [[13, "libpysal.cg.Rectangle.set_scale"]], "width (libpysal.cg.rectangle property)": [[13, "libpysal.cg.Rectangle.width"]], "alpha_shape() (in module libpysal.cg)": [[14, "libpysal.cg.alpha_shape"]], "alpha_shape_auto() (in module libpysal.cg)": [[15, "libpysal.cg.alpha_shape_auto"]], "arcdist() (in module libpysal.cg)": [[16, "libpysal.cg.arcdist"]], "arcdist2linear() (in module libpysal.cg)": [[17, "libpysal.cg.arcdist2linear"]], "asshape() (in module libpysal.cg)": [[18, "libpysal.cg.asShape"]], "bbcommon() (in module libpysal.cg)": [[19, "libpysal.cg.bbcommon"]], "brute_knn() (in module libpysal.cg)": [[20, "libpysal.cg.brute_knn"]], "convex_hull() (in module libpysal.cg)": [[21, "libpysal.cg.convex_hull"]], "distance_matrix() (in module libpysal.cg)": [[22, "libpysal.cg.distance_matrix"]], "fast_knn() (in module libpysal.cg)": [[23, "libpysal.cg.fast_knn"]], "fast_threshold() (in module libpysal.cg)": [[24, "libpysal.cg.fast_threshold"]], "geogrid() (in module libpysal.cg)": [[25, "libpysal.cg.geogrid"]], "geointerpolate() (in module libpysal.cg)": [[26, "libpysal.cg.geointerpolate"]], "get_angle_between() (in module libpysal.cg)": [[27, "libpysal.cg.get_angle_between"]], "get_bounding_box() (in module libpysal.cg)": [[28, "libpysal.cg.get_bounding_box"]], "get_point_at_angle_and_dist() (in module libpysal.cg)": [[29, "libpysal.cg.get_point_at_angle_and_dist"]], "get_points_dist() (in module libpysal.cg)": [[30, "libpysal.cg.get_points_dist"]], "get_polygon_point_dist() (in module libpysal.cg)": [[31, "libpysal.cg.get_polygon_point_dist"]], "get_polygon_point_intersect() (in module libpysal.cg)": [[32, "libpysal.cg.get_polygon_point_intersect"]], "get_ray_segment_intersect() (in module libpysal.cg)": [[33, "libpysal.cg.get_ray_segment_intersect"]], "get_rectangle_point_intersect() (in module libpysal.cg)": [[34, "libpysal.cg.get_rectangle_point_intersect"]], "get_rectangle_rectangle_intersection() (in module libpysal.cg)": [[35, "libpysal.cg.get_rectangle_rectangle_intersection"]], "get_segment_point_dist() (in module libpysal.cg)": [[36, "libpysal.cg.get_segment_point_dist"]], "get_segment_point_intersect() (in module libpysal.cg)": [[37, "libpysal.cg.get_segment_point_intersect"]], "get_segments_intersect() (in module libpysal.cg)": [[38, "libpysal.cg.get_segments_intersect"]], "get_shared_segments() (in module libpysal.cg)": [[39, "libpysal.cg.get_shared_segments"]], "harcdist() (in module libpysal.cg)": [[40, "libpysal.cg.harcdist"]], "is_clockwise() (in module libpysal.cg)": [[41, "libpysal.cg.is_clockwise"]], "is_collinear() (in module libpysal.cg)": [[42, "libpysal.cg.is_collinear"]], "linear2arcdist() (in module libpysal.cg)": [[43, "libpysal.cg.linear2arcdist"]], "lonlat() (in module libpysal.cg)": [[44, "libpysal.cg.lonlat"]], "point_touches_rectangle() (in module libpysal.cg)": [[45, "libpysal.cg.point_touches_rectangle"]], "tolnglat() (in module libpysal.cg)": [[46, "libpysal.cg.toLngLat"]], "toxyz() (in module libpysal.cg)": [[47, "libpysal.cg.toXYZ"]], "voronoi_frames() (in module libpysal.cg)": [[48, "libpysal.cg.voronoi_frames"]], "available() (in module libpysal.examples)": [[49, "libpysal.examples.available"]], "explain() (in module libpysal.examples)": [[50, "libpysal.examples.explain"]], "get_path() (in module libpysal.examples)": [[51, "libpysal.examples.get_path"]], "graph (class in libpysal.graph)": [[52, "libpysal.graph.Graph"]], "__init__() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.__init__"]], "adjacency (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.adjacency"]], "asymmetry() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.asymmetry"]], "build_block_contiguity() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.build_block_contiguity"]], "build_contiguity() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.build_contiguity"]], "build_distance_band() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.build_distance_band"]], "build_fuzzy_contiguity() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.build_fuzzy_contiguity"]], "build_kernel() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.build_kernel"]], "build_knn() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.build_knn"]], "build_triangulation() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.build_triangulation"]], "cardinalities (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.cardinalities"]], "component_labels (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.component_labels"]], "copy() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.copy"]], "explore() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.explore"]], "from_w() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.from_W"]], "from_adjacency() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.from_adjacency"]], "from_arrays() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.from_arrays"]], "from_dicts() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.from_dicts"]], "from_sparse() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.from_sparse"]], "from_weights_dict() (libpysal.graph.graph class method)": [[52, "libpysal.graph.Graph.from_weights_dict"]], "higher_order() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.higher_order"]], "isolates (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.isolates"]], "lag() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.lag"]], "n (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.n"]], "n_components (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.n_components"]], "n_edges (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.n_edges"]], "n_nodes (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.n_nodes"]], "neighbors (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.neighbors"]], "nonzero (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.nonzero"]], "pct_nonzero (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.pct_nonzero"]], "plot() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.plot"]], "sparse (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.sparse"]], "to_w() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.to_W"]], "to_networkx() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.to_networkx"]], "to_parquet() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.to_parquet"]], "transform() (libpysal.graph.graph method)": [[52, "libpysal.graph.Graph.transform"]], "unique_ids (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.unique_ids"]], "weights (libpysal.graph.graph property)": [[52, "libpysal.graph.Graph.weights"]], "fileio (class in libpysal.io.fileio)": [[53, "libpysal.io.fileio.FileIO"]], "__init__() (libpysal.io.fileio.fileio method)": [[53, "libpysal.io.fileio.FileIO.__init__"]], "by_row (libpysal.io.fileio.fileio property)": [[53, "libpysal.io.fileio.FileIO.by_row"]], "cast() (libpysal.io.fileio.fileio method)": [[53, "libpysal.io.fileio.FileIO.cast"]], "check() (libpysal.io.fileio.fileio class method)": [[53, "libpysal.io.fileio.FileIO.check"]], "close() (libpysal.io.fileio.fileio method)": [[53, "libpysal.io.fileio.FileIO.close"]], "flush() (libpysal.io.fileio.fileio method)": [[53, "libpysal.io.fileio.FileIO.flush"]], "get() (libpysal.io.fileio.fileio method)": [[53, "libpysal.io.fileio.FileIO.get"]], "gettype() (libpysal.io.fileio.fileio static method)": [[53, "libpysal.io.fileio.FileIO.getType"]], "ids (libpysal.io.fileio.fileio property)": [[53, "libpysal.io.fileio.FileIO.ids"]], "open() (libpysal.io.fileio.fileio class method)": [[53, "libpysal.io.fileio.FileIO.open"]], "rids (libpysal.io.fileio.fileio property)": [[53, "libpysal.io.fileio.FileIO.rIds"]], "read() (libpysal.io.fileio.fileio method)": [[53, "libpysal.io.fileio.FileIO.read"]], "seek() (libpysal.io.fileio.fileio method)": [[53, "libpysal.io.fileio.FileIO.seek"]], "tell() (libpysal.io.fileio.fileio method)": [[53, "libpysal.io.fileio.FileIO.tell"]], "truncate() (libpysal.io.fileio.fileio method)": [[53, "libpysal.io.fileio.FileIO.truncate"]], "write() (libpysal.io.fileio.fileio method)": [[53, "libpysal.io.fileio.FileIO.write"]], "open (in module libpysal.io)": [[54, "libpysal.io.open"]], "delaunay (class in libpysal.weights)": [[55, "libpysal.weights.Delaunay"]], "__init__() (libpysal.weights.delaunay method)": [[55, "libpysal.weights.Delaunay.__init__"]], "from_dataframe() (libpysal.weights.delaunay class method)": [[55, "libpysal.weights.Delaunay.from_dataframe"]], "distanceband (class in libpysal.weights)": [[56, "libpysal.weights.DistanceBand"]], "__init__() (libpysal.weights.distanceband method)": [[56, "libpysal.weights.DistanceBand.__init__"]], "from_array() (libpysal.weights.distanceband class method)": [[56, "libpysal.weights.DistanceBand.from_array"]], "from_dataframe() (libpysal.weights.distanceband class method)": [[56, "libpysal.weights.DistanceBand.from_dataframe"]], "from_shapefile() (libpysal.weights.distanceband class method)": [[56, "libpysal.weights.DistanceBand.from_shapefile"]], "gabriel (class in libpysal.weights)": [[57, "libpysal.weights.Gabriel"]], "__init__() (libpysal.weights.gabriel method)": [[57, "libpysal.weights.Gabriel.__init__"]], "knn (class in libpysal.weights)": [[58, "libpysal.weights.KNN"]], "__init__() (libpysal.weights.knn method)": [[58, "libpysal.weights.KNN.__init__"]], "from_array() (libpysal.weights.knn class method)": [[58, "libpysal.weights.KNN.from_array"]], "from_dataframe() (libpysal.weights.knn class method)": [[58, "libpysal.weights.KNN.from_dataframe"]], "from_shapefile() (libpysal.weights.knn class method)": [[58, "libpysal.weights.KNN.from_shapefile"]], "reweight() (libpysal.weights.knn method)": [[58, "libpysal.weights.KNN.reweight"]], "kernel (class in libpysal.weights)": [[59, "libpysal.weights.Kernel"]], "__init__() (libpysal.weights.kernel method)": [[59, "libpysal.weights.Kernel.__init__"]], "from_array() (libpysal.weights.kernel class method)": [[59, "libpysal.weights.Kernel.from_array"]], "from_dataframe() (libpysal.weights.kernel class method)": [[59, "libpysal.weights.Kernel.from_dataframe"]], "from_shapefile() (libpysal.weights.kernel class method)": [[59, "libpysal.weights.Kernel.from_shapefile"]], "odw() (in module libpysal.weights)": [[60, "libpysal.weights.ODW"]], "queen (class in libpysal.weights)": [[61, "libpysal.weights.Queen"]], "__init__() (libpysal.weights.queen method)": [[61, "libpysal.weights.Queen.__init__"]], "from_dataframe() (libpysal.weights.queen class method)": [[61, "libpysal.weights.Queen.from_dataframe"]], "from_iterable() (libpysal.weights.queen class method)": [[61, "libpysal.weights.Queen.from_iterable"]], "from_shapefile() (libpysal.weights.queen class method)": [[61, "libpysal.weights.Queen.from_shapefile"]], "from_xarray() (libpysal.weights.queen class method)": [[61, "libpysal.weights.Queen.from_xarray"]], "relative_neighborhood (class in libpysal.weights)": [[62, "libpysal.weights.Relative_Neighborhood"]], "__init__() (libpysal.weights.relative_neighborhood method)": [[62, "libpysal.weights.Relative_Neighborhood.__init__"]], "rook (class in libpysal.weights)": [[63, "libpysal.weights.Rook"]], "__init__() (libpysal.weights.rook method)": [[63, "libpysal.weights.Rook.__init__"]], "from_dataframe() (libpysal.weights.rook class method)": [[63, "libpysal.weights.Rook.from_dataframe"]], "from_iterable() (libpysal.weights.rook class method)": [[63, "libpysal.weights.Rook.from_iterable"]], "from_shapefile() (libpysal.weights.rook class method)": [[63, "libpysal.weights.Rook.from_shapefile"]], "from_xarray() (libpysal.weights.rook class method)": [[63, "libpysal.weights.Rook.from_xarray"]], "voronoi() (in module libpysal.weights)": [[64, "libpysal.weights.Voronoi"]], "w (class in libpysal.weights)": [[65, "libpysal.weights.W"]], "__init__() (libpysal.weights.w method)": [[65, "libpysal.weights.W.__init__"]], "asymmetries (libpysal.weights.w property)": [[65, "libpysal.weights.W.asymmetries"]], "asymmetry() (libpysal.weights.w method)": [[65, "libpysal.weights.W.asymmetry"]], "cardinalities (libpysal.weights.w property)": [[65, "libpysal.weights.W.cardinalities"]], "component_labels (libpysal.weights.w property)": [[65, "libpysal.weights.W.component_labels"]], "diagw2 (libpysal.weights.w property)": [[65, "libpysal.weights.W.diagW2"]], "diagwtw (libpysal.weights.w property)": [[65, "libpysal.weights.W.diagWtW"]], "diagwtw_ww (libpysal.weights.w property)": [[65, "libpysal.weights.W.diagWtW_WW"]], "from_wsp() (libpysal.weights.w class method)": [[65, "libpysal.weights.W.from_WSP"]], "from_adjlist() (libpysal.weights.w class method)": [[65, "libpysal.weights.W.from_adjlist"]], "from_file() (libpysal.weights.w class method)": [[65, "libpysal.weights.W.from_file"]], "from_networkx() (libpysal.weights.w class method)": [[65, "libpysal.weights.W.from_networkx"]], "from_shapefile() (libpysal.weights.w class method)": [[65, "libpysal.weights.W.from_shapefile"]], "from_sparse() (libpysal.weights.w class method)": [[65, "libpysal.weights.W.from_sparse"]], "full() (libpysal.weights.w method)": [[65, "libpysal.weights.W.full"]], "get_transform() (libpysal.weights.w method)": [[65, "libpysal.weights.W.get_transform"]], "histogram (libpysal.weights.w property)": [[65, "libpysal.weights.W.histogram"]], "id2i (libpysal.weights.w property)": [[65, "libpysal.weights.W.id2i"]], "id_order (libpysal.weights.w property)": [[65, "libpysal.weights.W.id_order"]], "id_order_set (libpysal.weights.w property)": [[65, "libpysal.weights.W.id_order_set"]], "islands (libpysal.weights.w property)": [[65, "libpysal.weights.W.islands"]], "max_neighbors (libpysal.weights.w property)": [[65, "libpysal.weights.W.max_neighbors"]], "mean_neighbors (libpysal.weights.w property)": [[65, "libpysal.weights.W.mean_neighbors"]], "min_neighbors (libpysal.weights.w property)": [[65, "libpysal.weights.W.min_neighbors"]], "n (libpysal.weights.w property)": [[65, "libpysal.weights.W.n"]], "n_components (libpysal.weights.w property)": [[65, "libpysal.weights.W.n_components"]], "neighbor_offsets (libpysal.weights.w property)": [[65, "libpysal.weights.W.neighbor_offsets"]], "nonzero (libpysal.weights.w property)": [[65, "libpysal.weights.W.nonzero"]], "pct_nonzero (libpysal.weights.w property)": [[65, "libpysal.weights.W.pct_nonzero"]], "plot() (libpysal.weights.w method)": [[65, "libpysal.weights.W.plot"]], "remap_ids() (libpysal.weights.w method)": [[65, "libpysal.weights.W.remap_ids"]], "s0 (libpysal.weights.w property)": [[65, "libpysal.weights.W.s0"]], "s1 (libpysal.weights.w property)": [[65, "libpysal.weights.W.s1"]], "s2 (libpysal.weights.w property)": [[65, "libpysal.weights.W.s2"]], "s2array (libpysal.weights.w property)": [[65, "libpysal.weights.W.s2array"]], "sd (libpysal.weights.w property)": [[65, "libpysal.weights.W.sd"]], "set_shapefile() (libpysal.weights.w method)": [[65, "libpysal.weights.W.set_shapefile"]], "set_transform() (libpysal.weights.w method)": [[65, "libpysal.weights.W.set_transform"]], "sparse (libpysal.weights.w property)": [[65, "libpysal.weights.W.sparse"]], "symmetrize() (libpysal.weights.w method)": [[65, "libpysal.weights.W.symmetrize"]], "to_wsp() (libpysal.weights.w method)": [[65, "libpysal.weights.W.to_WSP"]], "to_adjlist() (libpysal.weights.w method)": [[65, "libpysal.weights.W.to_adjlist"]], "to_file() (libpysal.weights.w method)": [[65, "libpysal.weights.W.to_file"]], "to_networkx() (libpysal.weights.w method)": [[65, "libpysal.weights.W.to_networkx"]], "to_sparse() (libpysal.weights.w method)": [[65, "libpysal.weights.W.to_sparse"]], "transform (libpysal.weights.w property)": [[65, "libpysal.weights.W.transform"]], "trcw2 (libpysal.weights.w property)": [[65, "libpysal.weights.W.trcW2"]], "trcwtw (libpysal.weights.w property)": [[65, "libpysal.weights.W.trcWtW"]], "trcwtw_ww (libpysal.weights.w property)": [[65, "libpysal.weights.W.trcWtW_WW"]], "wsp (class in libpysal.weights)": [[66, "libpysal.weights.WSP"]], "__init__() (libpysal.weights.wsp method)": [[66, "libpysal.weights.WSP.__init__"]], "diagwtw_ww (libpysal.weights.wsp property)": [[66, "libpysal.weights.WSP.diagWtW_WW"]], "from_w() (libpysal.weights.wsp class method)": [[66, "libpysal.weights.WSP.from_W"]], "id_order (libpysal.weights.wsp property)": [[66, "libpysal.weights.WSP.id_order"]], "s0 (libpysal.weights.wsp property)": [[66, "libpysal.weights.WSP.s0"]], "to_w() (libpysal.weights.wsp method)": [[66, "libpysal.weights.WSP.to_W"]], "trcwtw_ww (libpysal.weights.wsp property)": [[66, "libpysal.weights.WSP.trcWtW_WW"]], "wsp2w() (in module libpysal.weights)": [[67, "libpysal.weights.WSP2W"]], "attach_islands() (in module libpysal.weights)": [[68, "libpysal.weights.attach_islands"]], "block_weights() (in module libpysal.weights)": [[69, "libpysal.weights.block_weights"]], "build_lattice_shapefile() (in module libpysal.weights)": [[70, "libpysal.weights.build_lattice_shapefile"]], "comb() (in module libpysal.weights)": [[71, "libpysal.weights.comb"]], "da2w() (in module libpysal.weights)": [[72, "libpysal.weights.da2W"]], "da2wsp() (in module libpysal.weights)": [[73, "libpysal.weights.da2WSP"]], "fill_diagonal() (in module libpysal.weights)": [[74, "libpysal.weights.fill_diagonal"]], "full() (in module libpysal.weights)": [[75, "libpysal.weights.full"]], "full2w() (in module libpysal.weights)": [[76, "libpysal.weights.full2W"]], "fuzzy_contiguity() (in module libpysal.weights)": [[77, "libpysal.weights.fuzzy_contiguity"]], "get_ids() (in module libpysal.weights)": [[78, "libpysal.weights.get_ids"]], "get_points_array_from_shapefile() (in module libpysal.weights)": [[79, "libpysal.weights.get_points_array_from_shapefile"]], "hexlat2w() (in module libpysal.weights)": [[80, "libpysal.weights.hexLat2W"]], "higher_order() (in module libpysal.weights)": [[81, "libpysal.weights.higher_order"]], "higher_order_sp() (in module libpysal.weights)": [[82, "libpysal.weights.higher_order_sp"]], "lag_categorical() (in module libpysal.weights)": [[83, "libpysal.weights.lag_categorical"]], "lag_spatial() (in module libpysal.weights)": [[84, "libpysal.weights.lag_spatial"]], "lat2sw() (in module libpysal.weights)": [[85, "libpysal.weights.lat2SW"]], "lat2w() (in module libpysal.weights)": [[86, "libpysal.weights.lat2W"]], "mat2l() (in module libpysal.weights)": [[87, "libpysal.weights.mat2L"]], "min_threshold_dist_from_shapefile() (in module libpysal.weights)": [[88, "libpysal.weights.min_threshold_dist_from_shapefile"]], "min_threshold_distance() (in module libpysal.weights)": [[89, "libpysal.weights.min_threshold_distance"]], "neighbor_equality() (in module libpysal.weights)": [[90, "libpysal.weights.neighbor_equality"]], "netw() (in module libpysal.weights)": [[91, "libpysal.weights.netW"]], "nonplanar_neighbors() (in module libpysal.weights)": [[92, "libpysal.weights.nonplanar_neighbors"]], "order() (in module libpysal.weights)": [[93, "libpysal.weights.order"]], "remap_ids() (in module libpysal.weights)": [[94, "libpysal.weights.remap_ids"]], "shimbel() (in module libpysal.weights)": [[95, "libpysal.weights.shimbel"]], "spw_from_gal() (in module libpysal.weights)": [[96, "libpysal.weights.spw_from_gal"]], "testdataarray() (in module libpysal.weights)": [[97, "libpysal.weights.testDataArray"]], "vecw() (in module libpysal.weights)": [[98, "libpysal.weights.vecW"]], "w2da() (in module libpysal.weights)": [[99, "libpysal.weights.w2da"]], "w_clip() (in module libpysal.weights)": [[100, "libpysal.weights.w_clip"]], "w_difference() (in module libpysal.weights)": [[101, "libpysal.weights.w_difference"]], "w_intersection() (in module libpysal.weights)": [[102, "libpysal.weights.w_intersection"]], "w_local_cluster() (in module libpysal.weights)": [[103, "libpysal.weights.w_local_cluster"]], "w_subset() (in module libpysal.weights)": [[104, "libpysal.weights.w_subset"]], "w_symmetric_difference() (in module libpysal.weights)": [[105, "libpysal.weights.w_symmetric_difference"]], "w_union() (in module libpysal.weights)": [[106, "libpysal.weights.w_union"]], "wsp2da() (in module libpysal.weights)": [[107, "libpysal.weights.wsp2da"]]}}) \ No newline at end of file diff --git a/tutorial.html b/tutorial.html new file mode 100644 index 000000000..4c5287e17 --- /dev/null +++ b/tutorial.html @@ -0,0 +1,197 @@ + + + + + + + + libpysal Tutorial — libpysal v4.9.0 Manual + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+

+ Back to top + +
+ +

+ +

+

+ © Copyright 2018-, pysal developers.
+ Created using Sphinx 7.2.6.
+

+
+
+ + \ No newline at end of file

}0%} zG4)^7Mr&N0j^=2C&7UDPq>n&}17_@lc)w1G+RL8)ep;Y1A_c;Pg@pmUqXzuh78+pV zE6!0-_(kw!Bnn8BX-!iRI5s(q9>_>Y^$0&XgoP;pCg^VSo6w=i!7pm-RkL zT=6y7%GI*(o8-}^+z%job^H)RUwd?WvDg!gDLXBgBJ9yd0pw$nCWlS5L3KjT7X}8U z8-~=3p>T3c!uQ7#7$n?ZDFxlw`CRsiAL``@?rUu`4MBO@3Sa{tMcU1cH<{f44v0O$ zsCW$eJzsHkfH=-AE}~N`>ZLf_Fk`0{sldtsk4EBH;L4Uo}qgIVO>s|KV3- zl2^t70}qTK8hZLKAOIEXxgPN*bTqHs^@svI%ulUu99U$$R1LPvx*%^9$121?5HB5C zJbi}nolbVe{n1-|pcF{y<^nGJj3@z}2tSv6GY1JbO0!ECWo{l^S%rLccPA?{9Zol7 z9X&ie8V8O4GK3l)=ClV{Ayi_-9lms-3flQ02L=BrQOTb>9gHpD<>PBRye>zxX*X!`!{kty2&Ls+snqU()BK&5LRXE3w1O&gEZOC`_=dP{i zxi>FIQx~%)a#ul0skXLu@vzO1*Y%JLpm+(9+a21|(KpM+{}mJ{rf?WZJ@RLO=_LC4 zUJ=B#1QErqyFsF55R9GI0aTFh(8PQ~fIi71P&btr^FM+!jzk>~ z+lPK4La_Y&cg(as$eoGE%}%Jiw`*ZlfGrkzobM>}adE|x3VZPuCA^#=Bk0v30mf7+ z}GKE31PQ9wQ6TOJWVTKsV_BEOH0 zrRJ7V05THWw6wIF08=}H=FBZDoKe%zkO+`S-w}uzf-xAMV zd0APj*H7zFUqZ}NMn&%~tzIYvttu)i_J?Nr#As9UcGd|v1ldhYn8f(&Hajs*?>Z54 z7$STN4ebK$@dJV6jjnQ>K13v`9L`pcOAv3Ug!%MAJch1Kt>n*t(-sSVFFeL7Ox}H3 zCl}D4s@?6@YR=Aptl@H z4k%OeP&|kI+S}O;ZmrO+MXHzDTb`HayHo%C+WRqqqYYPCuUn>-ze5g)rq*%2MdWH6IJ~7c}0l0cp)%4 zYX5Y7nX_=GcQ4)H!6p}%kwFpOUn0N7B=y^!nsZhAsZfXl%#AAhbt#~HOi&1U;7BUl z-CbI5o^B2!#SR)*X|R5R1p(C~)J=;Zez8#au^@;sG#NB2GjNJ#K*TWfYJZuse%g>@ zWs-jD_PfbS&3Mu>FS^aTRBf^L4A0Wk6e%=J%u+Cc>}UJpJ&8xYu8_iSbN$p9!%?#! zzR2efyFE6d>Id36Ae1K!|uBOVlJYg}ocWI9+Hv9b$>+jTGp$*BM%Da%^}P zlV^He9Ea-M`xH(k8-wI`hfiQNz!Rk?*J%m>mH#iK(2G532&=9R8SWiT?Tn`86|twmD##na zTk>wW4xFkn(?qg02x;L1CffDm-4Q{XZd5i~`@qM@NYgKC+v8?RHnuPh$|v!r+h#* z?EgEx|MPm1o(GoDb@X)9@dRL}1`jcY*XB_CXD=_oRbH%k=8rkHZ5M=tBO^WF{g>|U z?pF62R!x|5GsrP9=KnP3o(Y#)*9LQV?3s578kHt~uQ+${N9Je6CEL$w*xBu35OD$* z>R+!MG-xI;_5%Zovn+`ffZ+=G6?mYGI()QVb8jziXlOY6fjo!!j+>-j>ov)lS%H+~ zW^4+iF&UGZN;=OQgg2)^d*;(^2-%lXN~{R@gZ? z^?*1_IEXL(&}aV%Ox+xZ%^^3CTMX*#6io%nJGhUZrl6>JVqYlM?}F?do1X+|Ye&1cx6n@y6h@5hNlb6EK;s|LOaxUkpBw`GtYUhWT`I|gG(e$Y%H#|&;j zh(!ge`-tzF78+wdT`nYY9&z~Rd-)8Pa@dWZp-p!&>TIV_KMyBBv%T zJ&b5l3bGkHPR(!`tRSfV+sxkM(VZhzvnswX!e8XcOX*UjWI9ItJ5<`Jy_FKoD-Tm5iGM}ra z2bd8F898Km#MChp_y(dCGX?N&PLdHHA8QJOpPozL_hQKHida5ABsR%1e>6lc4#9#c zD2TRsnE$CSvrb&mAFXvi;}rdh6l4WQ-6r}K9%WGPtO2D|tz-`n%PN3GE$gxQsHtHc z_owKGi%sw&sr|nM#xuvgD_fjd>`smStsOWx>~5ByqE~kYzHFdus^TL8_?ZW~c56X_ z*&y!_8=x0@Z2%yY*WG{e=t?I_PP z%u+aN%(~$_-%CqB?g@EDVrVw0>^YyA@2U0ag{ms~gwFA(=hIQbhMCLl>AsR)m#heyQY{MUGInht^4J^rpLprGp9jU z(Aq+icWRUQkP_5xyWFnPXh;3KLa*Zd@J}ij_@>MGVd%r7R6$>g9^C?@lU?5UZCuc-tsDv(NrC<&Nw)ZBp~CxYbO9*ahY0z;{*(Fo zxD+#;G|ptuHLMX$98PpV35UiX2P?=pWZnxa>$zVPM76L3-~9! zERx}!kT!Du_r3d8To_TZE!jxfgIz?}=`fD&+&&L&C%PCk{TXR_aVtmEP8FL5PHf88)-Dh|p zY)>I*wUMA;usSb*=sIY@11vSl_&~trfNA7W92P@=L!UHF5U4jWLX(o}v|fVbvsr`n z0?!$+1Oy;`lEFCBJBcmf#$=NnI8k4y4w{AkibSm!D$4Fh0k!L~yPuBt4aH+?m8sc+ zT;+0yukTL)Y=7pzBQmd%;B0X=>YXc7GhIkjA+Jl75lv(eXiFK%cEX+MT3# znYChv9v?d`D`4*u6WlhJ0iS#Zv?7w%7Fo);#RYSD1qJK(H)kNx;iLW^k+S=tlKTBP zgX?RO_x|O{t=!i0swETV|H;N|DDAwDGc|p%g7Pc;Csm=>5Gx{{wNua(!)UjY;_8}>Uh>Xvw>(GKJQzl%Sj12nP;)R-3d0X7Uh;<*1{GVpf1d&pFI z1b#!%IoZ$s2iuN=w7)Ct5=wEu(U}P5DFk=)xx9FFffgLl@PyGqw4s#a`6>Ju4^<{xrVMun8&G$SAF}U=?34GOy_{;1bw8d z)nwi`2`{hv7cq1Xn3XlloF+CZDR5K^--LtUmA*xTeYNw!LGqH`J|EILYf>zm1%?j0 z-DefpSV(+s(PhW(6y`Hn=1XZGiQrfE_vL{`V}j2>|A}zPD>nY^uU)@3&t!_9k>spW z9mEnlz$FKPmx+IPkBNyX4+JD{4mE*=m6no%)-T}Nn4w)Ct*7gW$)B!Z@9O#j5Hki~ z6VNjYXQriri0|)gz`M=&w)?e@7RAolI)45uTF@2|ggn>-u`8b?A!9*TM>X=+zP^NA zX!^h%35|%r1h}LC^rp;zR0yE*k2y_WRYJifa7|g%fwXfKMsLi=40YA+r+tp!hE-r! zr?e->s7$Ml2I#`?Z2$>gFsy2vou5BM`g!*~Jb3peQ{j6aSE_V)V>aUuWovJjw0d#S z-^5oF6fLfJAcRF%;<&BxHewD#wIsM*z;&%NUEtnZQBjr8J?44shVg%r-1-ogLqw1~CJo2)IiHMEONL}nqL1yyc-=)WknLuU($(ysYNkB^1fVl^5I{V+EN$)5OdZC!{ z7J#T_Fo#>&9q9JyQKzh}aPaWDKec;l&H;i9(1{dy>Bvu|pWYjQs8i>}#CI2Dln#AZ zr3FFC<^Ij_Rg)oNtpC8!%g(0mn>$;tr@aa}P>S1YYvLe@1a^NU3~X)n z)?6bZBEAe7%K=QerAO}r9JEf~l!m;tp$}l6%$NugW@7pVHX`8a>3NT7gR%hNNdZR3 zD$wkHS@GO~D=0m`x?;=vD>FARRNDr^kPeBbULD3}W^eoZo;`g*Pmb29vk(oz+Fz+Q zd6(twiIVt=T3Oj#RW4M8O*lg$f@DMk(8T)_F)>yawS+l7|6JO4zi!VzFc3{t)5kis zJBEC5R4eMr(YIODH^F{m1?e(+f1U^OG!R%-KBvfsRE5cd_K_*lHMsOS5gS6w~-hh+us#`Fd@ zx)I)|G1)L2o~lo+C?!$Y3TZ;`q#`M!0E`C8Ws2QA9CuXc+Qwk4gOk&FDEM(tABvGb zW_YTWWtgFW-2xbI(pgP1mst*7yAIUoxQ*ol_!Do*bhBo{=1mUck{8)}8o(HtV0Wbh zyaYjDA>P}N$!R9o2Oy-u5b(=rPmYhXDq2s`G@G4@7Eia{Pn!Ou!Yb3+^t>F3XW_M5 z@ry}Hk^!w$;$H#Pbg4}=+8aTge=>c<&x=16Ui4GiIXl0co&_}3AcY-vxIOmcX5{&C zzO2je57%Yy#Dui8`y9ql>ET~~Lylo2(`Q!pVcR#(d?J8KYn&jC*2u`o!BNvu0~vm8 zo%0p~g1!`-sFak{kM_F(8A3E!rgIM=u;BDfH@WIvfypW;vGoK}WhiY&qI^sa;Ry zF@STUmC948+cxBYCnxLS!9O`U=?1+BZPU!}0?F%44v>q2MT?@`#H;Xs%AH8VKtZts zyN8UgyljExwhJErQE1Nf86NSr3}gxE1A12&(@_2@pLI$t!G9r z7r%;B+O#z^i0f^aecV8xAYV~H&HYdr%y?o@f9t%5mU6pxz-sfZW)-krY{UgotKI{{ z^G}Saz3s4exoQY!SsQI-AV{jOxD8+q(+vuT5?1 zUuAbno(0OZJcCwC7(pS4jo-jl-oK4FpolBsBZ9>H@#$&6gn3Z%x}AO>MiaLb<=#y0 zR?2HP_bvIJn>!YUSXA& zI-ezcu?G(&3`7(@oDwM&$rQ3Yn&AVZpuVc=rqh_y86E=hgQ|uG$~SJu`rZa`X8+81 zkf~1qN^ko|nN%(Ihewqm9YVe_B8Y7G5iDV~7=XAbEB;62q!tEh|9E`_yT8AfKu7xt znjCKAIu0o*Iv6f-mn+puT6Km3{))m($ERRwS32*h%^7o^1W+mEPRQU(`b*^k?>yS% zxx&>^u4XJl^%JQre#c7=lDQ~Wcq!V_!$T0fq>TI5v#6>4fgf)GTz9W>$CTbM&1X7l z&UGNz1olmX=jZ3w9W+epHZI=~KcW*DEMhAtABC>l)=MC2z5G~3hs%A*RB<1-DehWWnCS&H@ zh7&oGp_!SKAZMVpaj2z?570TXZO4O)PlF~82ZtXc+@BWs?hvB+1lHjsF0)8UWqdPb z{HZWs)c8=aU;YFy6O%Wt(D|M2GpgSSkYaYherS&OfgnLO=-35dnV`GJe$fW(k!9jc zb^_}igu{G+1Q*h&!yO^1+CSlrfeQ{-whCag_h0^Rn4a?%kD>B-BB#+M;(*zWf(ikwVg3um zO@dTciuE}x%j4qj3NKbsktP#CXcxD~=>YQ!dirc2tjJ|cJ~*?kKf56UIaz4@ zEQ&P*AbW||_fKMPmE$Cpbqy_BKI= znaGYLC1gNG&99vodyXOt!nuTn?KQPtIVmCK9J8HCb8hPf0QuD zL4f5@6^og2Oc9X|odkiq<7=_LvcVpPPC>ApOvA&Iz;?cJ7sjU1(O?VDR~>=grO)n% z6QePrU974P4mqV1zT`V4rJrOV1+!X^>BG6$6sz6W0VG#!uLF>`SnrP_0+~BAwqXa< z^j#AQB1|;2TYzz$X2H7V0YKLzqo!P8-A{j6wuspLfJk$C6{h_eUj7iQ+CPiftZxxe zzY1gH?eBPm1KRu}EcRQSUbJe^^w7DpLoFT=Q3!B1e}X|f^&=2@8&Bb#j11IoKQK~G zak*E4XmJb_NFo>v2G&!MWrsEG7Zt89@u8s>*O~CZ z#678*v!ZxB8y6w9Sz;Bm9R|&SoZpE`a6Bpl>|EqdoHBvX`#4anmMbeO+kg#WW|4c; z3g7zV%4REPFvF`@y-szh4A0)Gl#P6qP0V78lq`8}WJFgo=W z_U3n_d~JSAmGKBbghrJi;{E-7T%w*>XrW^@D>5@Yq;Dy!=1Yn&fXIqvJ=Pxl%`G zJA6BIfHAlDWra=8G&mE7!Klgvon=KA1%&5_*mM!{xyuLGr1QmdNglU@0Lps=$3$1R z!RC{cxp|>VQbjA^DsH>^iRU0Cir6n8{Licf%#0T7yn(F*g#Y-9CfKv<3JZ0vfSyVK zCSMwptz<;8O>6vR3u z)1hD)U=Yv*;Qi751Wq1Ygbxp>(zOv&E=)|!e2uzLdRvo|DMb-Yki3cj(Jp@+@xCZZ zY-wp}hP8TM5q5i;pY<I-tUB$+MJk3@Y-#Um!$7{ zhN_y&G;0{h$jCOp8gtIW{cB6k-C#q&(7#Mu^n%KCaOq+W%Kxu=F`!i-Z!|S|-;w9; zs-}lM{qP6%A$U0eKs9~Cd(l;b@I?zGCs>Dp07=#8eJ94P0>BMm89`u18vs0;1nkg) zY4cfEl@6an8g?O1xT*g*Ts3hoTtGys`bpzn^PAk4e;Vua9L8X8F#p=X(pUl59L%`c z&h$OK;nw-|=>)(+3-Etm5Rk(O!uz*#j97|4P~A$!!C^lQOn%PT*x2M0Gh;eOy$$w9 z5Q$~>-5Pl=ylvntOvq;1s~)-n7E*vY^kd~m-~>2%_rvxtUTjH$AT!cyPj$Noen2#r1#tH#cI9+9VchQ;P{hRK^-w_L@!S9hT-np}E`;y7 zo)0S6XmX(Z`^z9RKfh|^lcHk%UZG~qKzj<0wFSbl?lYd#rfnbGOhTs3>1WA4LOuSxzFO;-U_b=vhWjfB9G5(q}gMOZe?X4b%;f&cD!%h43RF_eGAr}j7tlZS^#*Xxv%)BY|3`YII4sL*DR z1~n*UL~9_FGH~AAeR(lIt-tDo3Xpyv76Ii|$>5+WO+dP|JNKc!3Gd~N(XiDq4Wig> zdt7C7Km?5Kc%jX#gr}e(_AMN-niKT;TYwqNncN$S-|~TP-P5#0huZc0+6%e2W9S)2MwXR!9ymr&I`A;mK%ESlD ziHd%!M>y=yi(A>+;s>?1NH>CQV$RrNtv<@^`}Y6>QB(hWB9}jZ@#N*@kw~}M=Muf6 zsl8rUKR*9=baX@xq;^};-JrO{L=BXA&6x)`!i;%aU#hA^6ciOhV`2!p!^-1CCIDD~ zaXu76Ddd6kEuYeR%%6OGZX59C4Qhcp^DU((l|)jS6f0|3=_0*v@`v&zt%fii|LqOE zGU>>cTZoffT%)D=WkJhrFS>?qIFA?Ot~ithda2%<>ch{!Dy_$ys|=ycrDCz8Poh( zE_#V<2RISl`}co{Wu&J(J4j#>vtlkODdDu}qyCSa{JCa{b|5HqN8K*)C|ZKYH$PQX z{Rd*nJQ(G@h1mX6LB}M(Y&u01@QB4nynpn?50y>Nc>nq;cZ15lLPJcOqI>Oz2JfzL zioM^ZfOL&b1gQJOi%0JB^K1S1lf(K{<5Pj?>#5vZxYEQwCN=#|CWuAl^Hfz3N^>!T zzn#M>j~AU=;Qmp-rn`d5L4r`$)(%GsNUJ`6G%7VH&)RQ({gVc+w|hiH2QL*B`{oxH zjafMC?e93cVfy%@LJ zyk3Xs2uiI{UWycJvn6Rw&EXm{Ixf`v-mE%J-Ku}Jt=+t z#4w-_J_X+=D?R;kje7ytp}tZ2f#^NzI^T=OKsbbe>#iPTm^gA9TYF6xyZ+b7n^Ew@ zE9DQlDk0TI5fMaxs#%=P0AmniqL)QxUVst{j6HP#SU@>&9;`VysGa!k+1NVwgZHWS1-5gW{wSIg$;F75ZV^e&ziG^8N(PzDI5%PO@e@{X)43yw_Q#Oru$uT&qJakJ=(PkkVB!mew32~WKn-jN2 z1_w@%mY)6@@tr%V@!+>*gNs2wf9Qo?m1*a~&9N(rn2b#L34k`cl5$~AUGj1Y9p zqytqCqp1ar8JU^yi;Iirf)3OHbcM>wg!zR9E!BE8xd9(P3K1tm%*>D3*-Yf)AD*q< z&{5uscqUaz((AUPZIu`GVuzU5w#)oD=Q&z1xDtY>1)YMeffHk8WlbSEIe0brduQs) zyo)&lu5y-eXO;8rj0saRp9!%p8_Qi5W>mMGAMR#ms#W@ZQTIeM)tD2HMX58fLJ9nN z88tMkygeBCUfu)EP`*+YX25$ey{q8wzFw~T#n^4LoGL~bd?MT*c6NHI{f>f5qMb%K zys^Qp)#cm;WJCpCq7ai)z@$b$RmDAcn4cA%nyORUguXRaP7bxM8@$U#fFxH`RmDRj zf<%xy^WC@PJafLqngPYuZRA6r&?+p6FE|3g_(DlVCC{LgiB}Wqw9aJaiV_mCJzl{0 z?Z1j|=Il&7JdX*N*U$28;14yT0hD z<}9;w;fHg+|1uswdh}?c@!#y${xH@Z&s|PRzX$zzZ)j7PNg{py{QO$mre`z+-S>=- z^5i|BTB?ljK4f6PgbvWb(J>Az0D_RaWjR`+GxBA%y!m<(7+CvM1qRUcg*|-E!qR6q zC-Rq?3w4!&fi>VVH!1SY9oFuG(AKA*8dA&>i2{-mX?jjjMP_#C=;*|Qt#b^}qsb`8 zyTV2q&B^SQtww8#nl<|=(bq7=Ie?&P13x@{5z1^SWI*iz^|1t9E-wcM0o;(JF*Hx4-$q8(LRppt_kKBBoU$%Xa2U@m z^U|ccfXl7=8Srg}LKSs}gDnknCZ~B11v)zV{9(sEwIF>1@7VKy&0Aj+zJp?7Q-v4b z`g9de7xLwp05*~Umf#{YO-)Uhz_6WM=wEpMGuIU~lCVP|Bipa~@*vV}M_E(zm(;Uo zv`?Ps;Smr#63U3i-5e+Ct+AB^TT6xYvJCzCMO(e4+Mm|e!1wgGz$*7+r8~JWEluxg zrZzpDHsk4AwvZ6eD0IjG9@Oect^4(L;OVKy0bDZ6zz4&~f18|wA{@*@3Cn9kZhn5$ zWUNM$XKkSw~k=aq1)Nny&lZHrCVbc6<=-bxOwec6xV5FWhDnu zSh2qAgo@9fzikc<1JWtu{o>*xr0Vh3xorFglqx`Ot&Zsl85zEyfj#AT@rUp5-;ec8 zuEQQW>^G$f4BZA_U&nO~4=1>`P1e1a6&gc|;un{e96{GJ{yDcrGQNP7=l#!b_5@KO z7{EccM@Hgs!x*oar}_#YL{K10tE&D7qcj5eDl7gMo}Pl>Fbu8IC|;-G=l@`C)s>o( zVgwy7AI1PhU7eWQW4BU6jwl@5rR6!Fw%MAR@(inbPoC}$pgu4{gWgd3BNDPzi=`A4 z@Z#UUZ_m!YpQ##I#>F)Z-M(PHYM^Q)2oq}S>s7%u_8&;K<>logps{t?n{C{7pY_al z6u`O*nz68zkbm2kr}oi4te29=GajSVY!OM@?8 zt?a|GZ3mA2qqi>Q*vv@cU(Mn;NRkQ<51;Sp?OiBQ=8O|?cmJG{8vjPd(6IA*L`!h$ z`by_l)Z6Zyv`-|bXBML)Z`V+sKmYj2d{d(*{Z?uShVaEPv@aQT@TBIzn6#huB>C(1 z7y%eXe)sk!!rLMnbN6ZZmoGd3c7@C3NdVIlN8br3shS}iZQjLx?n7ad1RKu7lI#-h zUlmoTz;e|o{`LC2VyJTPx_?}Ieb$%!#N0f+z1rI0Yfbs=Fz_@`=_J{cA3$&(WIRj* zwHlF_NJ>pZ1Hpb7rdC#6C;`$r;+mRdNL_bI40WgKBa|MWjfWEd&ID)$iWn#2+!lt<(Tm$zgYB<^V>|yb;FLs9`+<>oK5jW@L z0t5suo5KQ)O%i=8llPgTk4uw#=!==3$ z6KRz^)UK`+uHn}X_Up>}JL5!BF&MUno-3qCmkd1Fp->{;!bo|afq^0X?ORC|mAG6& zsmSd6;o0G8S^n&GA5tS$tE@9J@Of!>EGdf=tCXOqxcK@hKT1qL0j=L zH#c`d{}LF&UH?RT|797?@DV~TE-}U1@;5%|O};2pRDcQ^&o%j~f^X^d3kb(4oVZ8Z z_y@}dD%@+haEhlP-mU)A=#wDK$~O$+9)Aa|Q26<4VFL4dBDj#uXB``t**6Um>&i-H zNIru3UgxpslQjOQsP@em(NL|qCPcs|Qc_`&bL{5p^Wt@vL;6%|>YgA~%~Y1i5kJrF zYU@|rmj3}S93B;wh%`j}gvhYAQ2hAva*pGpqhfEY1XR76Dz~>9=>n~}iB$L5qBJ&zK5?SI>QzPC0G+Y%;lgj$zXGBki%O;7#!Ts!;V~!1g@Q}S28N2@Pe;Y$s zfP0JU=-f$8N%>uB*lgeh!^VzZ9r(+(iZ_mu={28eDp~L<<0yRiX^a)~KsF%np@7^c zb!MiP$cfFRc5=g#^P}&y*wXH0aY7Vdyxv{rVZRx8Pxzk#)0K3oCi&xUdoUA+LKJ|# z|4#Lo)sq1=RmdrWCeWxmNvLCIwvh_*Di@(hS_uvUMD)m!x&xkkf*ARypw*@U@HBSI z#lx(ZGQ81Sa&6${Q)>=mAE=E^gt4IFGU^fa967@%3;QsBogNGSMsA{1HhQWp8 zc!@?=q5rBKAME~WkN7uMz6OL><<}~Sx67slCp&2119jVZ1LLATdsu4fo#~kwP#w3T zu+s3dvqxWkcYXw6CvzyCzO+^$A|wh7T3PuD=Wsa9;GD2d|2Ew3y+K$6ZgTOwRAQC1*pRGHALo}OeNBZf zu8g9LV8q(z3NS)ELHtAs*C-xIEZd@I^)UFh@=h=Fp1#7Bs_90IGuC-KJ6`FD6udc`4nQW&8=e~E7Py`a$ZG)aac z9390x1*3OoaKRSP+1p#1)G$0eO!Cz0ub6xg%Hpr6v3>+|VLhJzd zgY^zk^-@j#A`)ioH-Z7~J3BjuS7XiB?b9MFD=n923e603DB9IHOp~C z0;Tn9Xn{JBv@m2ayaM=I75={UtGetZ8am42H`{ShYqI*j6qNk)%WaLz(+6F%KE%(H z*@!!OGW7fnR-f#N9UiyqC@JOU|yl$;sJtf0pZfk;cQpSp=QD{?;)3+>llyLKqdMj1)l#9d?_h2&w`P3LL1Ykjj!;oRAgqwZIFSmcM)ycyNR5zv-Hr%VH$K0SISb*l2WPDUsrlPl?psdFh+g&=klKVB0)??!>!(T1i{yj)unmpcOJUV=%=k{3c{NMAM z@NnG=$Vb7itgM`dsLFX;OW7x`&iOJ!vss8OL;6vvJeJurh%(H$CUM)zc zGh7{VX54qc4WSQLXIxyYSWIrN46~lzAb5I3=;*{DBlQ76KzDC%9$;V$3q``^S{y63L+Ssl$DifApu&X zq~z`iw-%!|KL;_frr}5BirWUyDaksJk3P(JT*W1LFPK)0UZHq+Y1)J1D+GG+4TzDm z94UghX{^4?6(c)?mw2O}B(a)mYbn5o^b5GBPM|sVJy;P&Wubsnb($C(i(qhWGTr^> z97K!#6mZ5@hK7bxaCIj_*~U*Wyx|hYTOMuLc~v989J#n6dPG_DKYW4r4J|m5s;+=H zt5Ggg*KTktEg0KU(b4I|LPw89tFim!|C%um`EiPfFtV|c9-aTClaYT=>kzoHBmDTn z&dvl)UA<+iji8R`McSJO!F(_6O}}L&Cx^kP{R*y(n0J1pWMm~byBk9#W;sD<*30o} zxIceMQ1W7nmg!qE4sHpCG(OEsIE2csI#e@@eAhDK&?_=qsXLHTgleA-P>>6anVOk} zz(b*}r>Exce}l;(!pImd3UORw;)IaFxVfctG@V7P_(Vv^7)T)hb1V%_&HHR@Q9v_) zHqcrGp%V;Yj+iZhqF2U7yqD6Muh7N!mpny;A+2s0I5)@#s9xUMl82kJmW)le<>${} z5|`a~@!y4=jAw+@`#yxgoqqs?k2%Vm?UXi;YxRdbU(^z2e*WY;mIxTa#SHEa{1%1m zvYX zl7nDgspA&tRgpeXDUe`2LP%flaxC8i{SOEr<`(!L$i|%0iavxcGyd&c+~dQ;B9l`o zm1p|;>C)w6H(3BnZ$7z>`QLEy#etgNfJ7=kJRF;nloSI@OAtvFT&&}2ZDCK)fPyx_ z!SjAsz$y6m%Hi|KM74a>)zy|d=Mojqsc&K~yxz??sqfBKs6G`GV4Inl=?}bj`HPE_ zLKY*}ZqU?JKrKRDS*)p2u9h#OrljQZi3A!AmPe1?q*EJp+-6|oGR2Ne;}w@TG@NWU z>8Stm2e4{z@raJvCAw}=n}%$k>%M7Vzlh@too6VD))cNt7tShwD^ zh~kxrj{P>R>ck8REX=$nV>D|fcXnQ#^u}>=a)RX1KBUj)I6Zn1q<)hSKkycD`|8`< zvqhI&$N$#?Tv1eey%YYzs#9fpYkc`<(o*dpn0 zS?05gpufmgaJ2~*%TH8oLSPvlFWI5PO(XE+$yj!>*-wzh(E;+cS7v4pg@l9#fkXWeAFt|51CKe#y?EfYyHhoWt)bWH&)!9BGPXSa z)&ACouf`l-?}f++9eJf$HyI@f3H`+6>+IY=#Rr$YB z4WhHcX|Y=o=7++~cmdy&`WqPR>;e)=S^Kk|H!`Q1{NgmBzSo~iP^8^hKe=*559pB$ zK*nw22)V#p#E^z>-M9mzH`4Y2dXI9B;s+PwT)C$gYHiIo_%%9T1}v_;jD{FAsrJve zdNAO${oU@=S4W)e&aj-Ho`%D{E#Q4p;<7!?bw9bAF7iI$6Q@8wII**{F9S^}ZDv-j ziU0`K=Cf+ytU;5{S##Fr=bKiz-IW0Bz63qpDWv%*tE&ft*yFJq;zIHAD)0`Ewo-U3 zp{9&B!P(gv^0uQOA__#h_8?7UxT+e)G*Dm2p8*e1zU5NC5*#amI17$7^PhhC_}!m< zD$i9y^gu1<#6LjvJ%@Ok=FLAj9dFK#)`}?yKcloz#@!R0-9Lf3@1I@EFHG%<0L!!T zm)*R(Sz;0rsCIKry&4+_!`-I`3K~a_3w#KG;^sZ?5^Or+|1>wFvlyVIBqR$3q=qBbv{14nQyc*1j_c#ojd`5}wFYn=XIGTZE^9RH|A?HSTo}%E3=Hcg6yAQt} z-&?u%oge37z$s9z)W~i0rE!mGH4+0k&rHQDG^8Qh|K?(D9}s|tI5JG_@a%QLFL3b% zqCgY6SF#{Lrwf}-NY3)=O6tbwod{sp_qj6^$ps+qP4~l-sKL+pxB+A&!?w1sIV(oP zBtt9gv{h6}_I6Tv6uzBtf#Ln_z<@Fm7*m$}G`1xOlTNy*|J~cSZ?BJ6K7d^gj_U(- zD#atlivcJ;Lsa}JTc1%BK=T7*T|5A{W0b;j>dXc8u4w*iw~Mh-L>f;5OLe*UR9RTu z{Joxje%aJh&dx0HcC~k5ZS6U{dzQdWZa}Loh+t%5T7a}WAXW*WGgp=?#)m45Z{W4@ za0rIy{o4Ns7+x{3k_*&xL6a$-ReGeOKXtLFMAU-5>oNwlPTqw)ZI9D;rpL5`?Bs1`y&#zbhfzvD{nYd$T2W*)OO@_bpoA)H5{`KgzyrMYE}Q zl>80}|Hx>)SUSm2!Xr#wM>0}Uq+FUN%=iUN&RXiPr5Oz$q`M=EC!! z1@?4vPY;jr;m$Ps@IlqpyLUK0o?OVSVPU27kA*w2XjD#_7b-@#k@Ic{qIcMNKQ_ z$hU7nWulUQI5as)3Cur|%joRuOM-V>7HMmLY)dIi!z(lCyz!r)mH~T&j?T|UX2nlK zD3Gq8`ky=j4NoWrDI4p!oY63&!^uhdMG_mYs7Pi#{v8QK%dcOdxC8`{hDrh^LsKx3 zFN22U^mxoL0`g<4FU7zrumY;c2a1`(p2GC>xq;sdZ-mjs=jmn7YXOy_Hq80QMTc(C z*GKQWB%N(LgsEr`37{+u?mQ32JKii0ogCUq0xH{UMP#<#VW$3h zZ?6=QM+)hCQDgLzow=A!0QGP3ZS@o~gcA3lBfi_;RPdv<6$M($l`y6^lc0sv~P|qBBL)rn6?C3A1M$Zz2>BF0H2pkJbILL5R}SENT!ER-eJz?C<;_K zVlVae2VQ)dCv({hel5S-6u&)gQ;&Mf`TpUe_pTbL;)C)2H{&vA>;67y?MNjMGNIk*M_sgD^_W1^Yg<;kCs5r5zGChDi_1k zlcL_{j$xMRuchU+H7!s(G^=|zi~R3qWfjV>I|j8C19+l-4evTO`}z|8h^%(oGpD@L zpcee`;hU+&mzL?aXlU4!r((=a8q?Hxbxs4&gshU|-EkkolK_N zBqaOr^Z~qsR8ay6aR$QEePIIGc*YJ#&@0D-wZ7HD)Kmtq;=fBb3P7>}*F76RW&d#A5FVy4pE?Wo&-HhAJD1+Y z=Fm4PF66T|x@aSy;Pn?tY^Wn*;v?0^7q5!PI1N55xdJvl~tPiW0 zi`N#V$i^{-D!F)gg6@8drzg6&=T9G!nOR{ycO7ADi%7Z1v(`#+-$aLErCx_$Qd+vO zyBiGbH8kcJm0!L*0A1CpK(r*-OxRdi>0u;QW=;%9CZFHIhb}R}!a^-g_C4*( zX2l*zZ1EEmR4&zfep^Tgh=x!|2avVm^5nK4qr~}Y8AQ_&9RWAz8lgpasBg#ttu2Hf2Zw~bg0T^-4|(7>Sb%{Dn=bfjRZe~) z5(IFV#a_@{Ii4MwAu4X)x3%g566C-8 zi>0ki=P^MZ><+5dLPbE#S1?qi|1#Gq?PrC@V<_7(Bg&iYE}i|Z@6@`!CAEDD{3K|p zAzlxQ4jnpPY}mMRmja{|K~RjIIyFo;V8NUOAQZO~eMh$`=iW@(H!$L0-Ux_WUcY26{>SQ9pSmA%28(QgDP3w3*}4U7F|n|Z%fBLp14L3G#wrM3;X_^`o+I( zIshIY0QjR_ZIzf1A1?tC#CNdtWZ&G}yjp3xv1GQ4kCkxP7U_dP_2lHXnJ!OqMR5ZQU%{n~uQT*B%dwHQxrhsZC%u|&uEiFw| zav!80ohS}OrP-eCRh9IA05zkaq-5Dj7Gr#((#IE3RNfrgeSP(_*x&zgn$HTUN7{#Y zINOA9J`)lXiDct{lV6<3s<^qmCZoZZ$Hldo`i75mJHUb?E8kh)L>#@{nVjCIPo==> zjMvd#siA@oDQ>qK4ep&*bPtQdNWl6`#RYn@q&Vlbl<&XR|CD&^kqY-4GX(~M{rees zb=RR8BO)Pr2BE}a(=$|zC5fE@d(9S!Qz0SMk3p}n2T#dS!<7S1%U_QoQ+&`@qrrU+k<`N2 zIL2RAk`0XU4eqW@@_jBiJKt(PGf-y+7r+K5dz&91gO47;Vm;f`1fmUva1LHkc|f$E;iXMj@vpt8QrSBIXT6o zFWK1GBH;5IhS#OagH}M6Q02__vMX1-h=GQnut@4tLOnuTfeA@3NM~XK7n41-VV<9# z-z}HPIW+6F9-A`Q_@wc>k6JfCDuKqY>J8g~2XOX_(p*k=XZX|JE~kqlvgT7JN985w5Mz86{1(2L$5 zoXeuFb3`jB2-wSbqRdFbdoyMzySv)EIB@r=2W}}DFmwe?XPAwMl(e)5Ye58rp7V&@ z26wLCMzE$Q$b*9w@9!wviB2%*KP|=E4u2WbN~NED{8Ct$r&^ePnP$Ja7i74{W1&9& zJvGnrHl@0^wYYfoxg{yz+c_&0olfSWrNwa^=N<}8+o!I~#q(u>u*OC@%4--WaH;m8 z|2WN+;=9nf-*d>f<{9?cYX~P=0T@hL1%D<3ZvCIIl?eDrRax0vb1pp;+&{W;JAsn@ zBu~!jv4pR!tsM(({Fwb2%6FLkk#>joRxfBWExxqAK|RS%Xnbr_p!Z5Igt2OZz6G^2 z0oBqHRBkX6v>x0dF3^&~aQ#|^ib-I8VLNwQzo|!)9P9S{$w%?w)t#DyUrB5f&g+CE zPuyhAf6EvxNPLZX+qPW5h;B39@@RXOZK01wQ?TBaiuOIy#IWz^Al5VS<<#@Y{8mK7 zI#LS+Z&j3bvq5A;MBsH!Op0lHc{6usASp{g+=D;nT_ouD1i7^d(e(%qsfN3+F$ouK zKaGSYyhzP1=-Mn=9W&G^F+biEDom@!^OwT#?u&>}D9)EBUzG!FnwABZLgX?ox6K4< zocdZcq_T>ZCq4e`OnIjFijyLVoRoA0BBx@g5JrQ!vfvOThlr&X77`p#y%_xnzEwew zPQi!sl8^E>7Z)M`9IT+>*fG(389!cJfW1*z7#`6Vru zQA~`8#Aj(qy>tQb3Re~$gSIfVw$MOoA@rcMv|(1EbIm+eox=M+F#;Y2#7kdbih%H! zmTK;Euj0QqsQ32fjaGMyWUZKy+U32cn0X|&iW$ap2eEWEW~2E8ZwcrbP`ytozNIa7 z@E85b0!ZfQ>`Kem`v&{>-021HA@u|7HxB~-2>1I#SgMAY7y>E3G4K8GsR-}hQ!hki zrC3LFOL2Mj>01tm?#T~s%bpTLL*km{m>EyVC$htTI4%`v8Q*8x7{qw7JBz`@h?wes;ZeoG&9i(< z?!0B_OWL^B69^fugm*gshF@OBUT575+<){)b#p@&4f8fVSrFEjS_#sL30AvGAHgcP zsQ8x_c~xfWbqYmK=dBT35G?9|lBeUpuXUE6&Bbq6X+2sZqAwP(7krCY!J1Tul(e!w zCJ=3+c+r(1rFemop8|wF1Ju~of;#PNadyM3SA?Ng_ z4J;Wx`)kuXLm*(5z8-~ia|EY&o@x{~1s)27!n;!Oz9x+8H0_Bs`2HI&y_khPQy@^D z-#)TwXYwH5#CTwEiVC!opmQXK0^Y-~X>~K_u+~R|ERIM5#_(}{RXnLdsR91-+5_V) zO%ifaSzA(^=($QX(HB{_<(NP#h+1zRHGH-DLb2MCcz!i>xWWC^V>ebs|HE6-cGKAG zTtub=v>#oqzeTQ(6Qu|eZ~2{yZ}Ypc?(OWnypaO#9?fkDlQHk~x?!)&)S^Egq}hId z=tceSAjmnF=Fr4&5rQB8Mg*SRkp6kp-#jnXnBd9uRvi!ULgHmCk4dP~* zIH_x6w{KIFnI&*Q*=T~>G$n<$MD3B|Zi$YM>+!#Dwmmh5JXGsU0DRfXii@`zRqN7R zEjQlizbm`@z~35rklQVq2t5q(eV~gc<6#@n=-61Y+s2^O3JC=^0^nvwF8&U*jA&7C z!Zcl7Jb*40{%;733^jo+QKF%M#>gR^#UNKaj$zIIjmH~szmB>lGBUT*dd%swd=err zPa6`|aLCz%&98kfd3}Y(HjnxjKExtw8*6rcka?R8|uKfbw+!Dk@g($-df z`BZRq#AT;z5zojKo1-_~k}OYo-9%2lQ5vpU)B(i$!NA5-s+K#1|K0wG%jjGG8PgvH z1}^8|?GJHre>%>uebLMHb!KWmlYzaC0mFJ!cu@R&9_`!aS-*eEl*QEJX+dX9dcoA* zzb3}oYo)OH;acgVxz9&XSi`DTX2gwi9cBy2Z!UvC&e(}S#SnLZyup<8goM9-&@I1s z0{OL4&!0mSCQk~l<$n;_i$H+5nQpoN!z!$Qvdd7{*H>W7OV=z;1bJ|T*^7U2qznwP zpA}HBj6kE5-4KPZ(wEjj*#H1ul{NWxC;?WZ%dH>@$yYo!6g-<${M=M=~NB`ws70R@aPtsv*)*>g2*?ccygFM!78 z8Ms&gnB%e;uMoN*WixnJoXjzF`bjb`5{uyU514k`os1{MrfSd{+)yGS1eO*8xe?b* zO|0V-#BKV#U(C5OJS0-=zDu_a{->0IIz3HDMkWnGjIto@)LaW?0olGfvv_*?W-cB4 z;zTT(C1Od%#cj#<-xpdMZ$xOEmVXxpNrq*{c^HHdh{#}YKJRtg!~94ctd5{Sm8-e= z)2~K|PKw|_lw#9~IMq!{<`4NIKGFmPQPb_$`8EEHZg@guYqJdN`*dtidAL))yFNpY z&FsVT(Wa;{y~Q#}rQ=WFCCB7tH}T_>r}JY%(LkV-7SimSP!Orr)vkgF(mWD!cKrfK zLHE86=-3ZK@>JKAAeYs9L;DrOVG?v78gN#q$a?(ckm_`hq~*Z*1bj6RHeUu^e1L?f z^OGGGxLEH1G>r_iia>Z|D24$bGW7ksa3Nr;`I?&RN4pKLONWSdLh+TG{@t}cU)bmz zMBmvCNH&zt%*skA9&$8(MJJH=pM#63Wh&x*p~v4=1)k5AY6vli*g@tkoPjbSFE*C2 z3`Uxf2FT-$=rZLNss)$f4%gYOM7a=v>9c_Y0{SCFKR?J4X0O&p?=a=Y%vl+E7JuOF z8{W|3X{dF{#oRhTpTFGSV?y)=4(c_p>EON*^T;#=AQJVNiVbed@Zez8Fi2wIrKP>B za|*%YRQoit*xu;v=&?R9aUmUzhw(8;Q|}wZ-m&hC;+u}KCpEh4)9T%-e%;FL+|x_- zZzxL$gE=z%9+$-7?OUGA?nauLuG>$fi$}hpjoUMTVETD{Znqtn)C4^LNXL@0aPxn_XH4IEn=uVJWj2@LjAnA zDMH!xWpKE;>C;xa1x24fe|>%u(kRiI`sktTAt{RhIyz_KpAMYpBF`J&)xla{Dz+q! z4uGy5p-2Iz;7bAZ4Ps=Z5Eb9PG1S%7O^1{>WiwP(I>^Wst(+I(U}A~9OGE_JXyUqT zK9k7K?#V7Qu=R!Il)?QX7pxOToYceq`>kPC)m|%YFB1`Xv_ENDw3W}#hD5A^T?O^I ztxyI#MB=$Ia&RQW$&-S$M{M-6MY|7eG<74nao;8;<>jfEt**Wj?%(6#q7bUf%N_8` zmXQIBvb{8Z8@#Q@CLV7ZFcVOxzKQ>-;pp1gx!38%F9!M}UP^pWt{=V;gjYNRcw=0) zKdaoX>c91Qv932kc~=Vy^hV>HyW0zGybva-uc-8VuPy8q2)`{rh*VYfGRvpZ$+Nok z@ZZ0%=4MeKPaZ-1E-Iu6UxLe9oC&#Fb6(hscj9Ovj6z27o615By2&7#XD9mYr76ZW}71GfnNXrQ!O~ zZuF`qYw?X<8iaK%=&1^iF9D>WLy$ncva8U`2N}~hUhg*2r87Z1w+?q|+jCg^ytuJ( ztM0O9><_D96E&#!t%e1X5)%X0JONuYf@tm6v)}7@T{qR)L6MJ4_qzDI(Z=t)9$MI* zC(kPCGr}w*dX1f}Y}EUKZHT%+TUu5Ln2Tz_*0qIYK zhKhO$yp>Mb`Cwl4w0J!I0unZb#E1@j*mD>Dwk;%2KF>Nw`W5Jyr`4WP$>|VHZk40; z_5E)0CI=Qnvar=?U$c0mE@qD%`;E^0*^#Ke?UdU)5DC71pMrg`6!Xg38n;eAI^&6s z_!boPR~8mn;FMWjT^)`8ju~)8^_XIsnAi-ZSZm2m4u{=tnlY-pWEpQ_g7BVjfYa1t z2#D5c%?QEZIfrzJ$SsB!R;LE4s@jy>bY$mmxf>=t?udR>BmoZ3lVC= zz`i0GeOMU!6Y_a;A-IB9 zpCtDSbkH1jD6P@$EIKYP`BcduP);6*wnH*9vc)%b&YoYbv1X!a7%fNf;2HYe+1U#4 zT47zCAY34lBsdrqzE5)btoK(^xKu$9R|liw)wlV7-5h939ZR*0n;b9eNx(UXg%;c5 zbd3e{^sR(JMOaIQV&sw~vd>9jG~2+>^J}jWt1+4UE98pIVKBC59&h0{{rOWh3PVNU z;qjPG($L?HlGrk7NEyykVD}vQEY!NCJ6#9MV_v%RUoV*Sb#^Yz=WD!@wKNew8j-_V2yAXqjo~xmP}f^2OqdadsMiU?Pi3 zr5B$fwPsh@;)~-B0wY+FHTw z)yAM#ahdkSv#IHWDspCHO553^nY}hw!XLE^iU5&)_ z*6xZEZhK_z^2XfB38AOA z$}j5nF3%+L{`^AgAfNY1utE8AeSK==BLk@q0JzNqJ_s~)5FA0j*=qSB8M*k$d!l`o zTBVDM($5BfZj6HvcX=p;vGfso4r{l2z)}DzSdcfl?wKq}Ckc6Nk{li#0SpqGkr4%L zl1hjKU2nSJ(MII-Xc<>AX=djD-GMx5R4=MaS!yT2F>)Q$)DxrQE)rn9|I);nCCG-pdAXyDjs{YPs^ZT zE5E$tQ2_{ZH^cp-mws4>kx?;c=x%Y}2S89EHJ2!$u;GtdKA5Qdp+4WQw&L{P&{hFkqdLeWcdU@p$~I%p^F-QFVl zd;U@(^~c{}^B$w!$N^;rij!GySGPuog*PM+=Mp8|#*`>m^yjsao!xD)$2HB=6Yc)M zpdN;(+^iUKh$e&EMiR)haS*r6=DS)y>#9u>9z%)aSDh_7F| zeHr^Gl|vUDF%DY*mO-$245MLR85sM=tF6hwwhk21IxugaLGAGgVD2^o9Vza99{1k) z)_@QUsLI!SH`fGU^hF?26)-`7Qb275uODB${}urAgV_=gc`wzbt40t%_9 zI?tY!ZoWj=JbY!@`E&K|FTx_(7iN5De6wR4E~lHt<++e$91C62)#J9T(7OQhfZTOFhVxfdE)LS{0IOwUWGpzq-ak8P z=}P?A;QoM>RiWNt0d)-Aka$~j_dd%#G~%3hi@B@*#g@u4IW^+P8&sRF{^aYU)inL% zkpr==sjTZnSO33rj6mkTEz}VC}F>wb7s#ii%kpG*YfrW=a!22V?LQ3vm zmfVfokoj~<&cx2Zk&kv>F{;?dN4fayW)-oGqQ2r1dPQS#8e`J4#BaRJe?M|@5`wP+ z!I1f~99}^R*oij&k%o|xRp}gLJQ=xf+Z=Lu=u~D9u~sy(mBLk`^1H2tMV;CFujs|Q zI-&UY_h@*W=-+3SiNm@#2Z$tRf>`;Zg98+p?l=r`k^h289uP_lauSl^Qz^F%RJadh zESU_j3D$hl(+Le!@8=OvN&Aqq(kE0I@YqK~s9TfxK@q-p!({($!ZKBYO*2ll{hyufp3umq4 zf!*P8bHCd#_uC*1W)-#wu7Q{*39`GUl!mi0a5=AU=NL-mu$(mc>WH~qd65Z}8Sm;d zC}_T~6-d(5MT=ePrEatsPBc9$9`w7;yte{^zL>^p%3qtApdkvF2hSmE0xzB(+PI%{b&~dL%SekK z%u;3V%{SN9upWg-@LtWMt-~UtxIg~mYAO5_gpVEOjS)mjUYY&4msqfptGNmDf%LT- zGN=lSdMtqBArpjXT!6f>hI1kXvZw3uk}T<3pR+1RdKdt^&M(mld&8uu>u!#o(%~Ge z`R$&|J=@6&i3)&GS&vM(Fd=3QyjXxp1PKWUI1n=^&?3{jV2J{J_gvuBVeM^eyw~URE!wH~=wayPf z`JvjBOfJo;`)r%?H#TbCYe7%$x{VE4_xk!D#o!J$&@ig8CTHJr37zWwP>L53&UkgD zbdeSErvo0?djYiAjUWL}hOyHCsr0&FdFKz$9F$3MKoL$|?j>dPF5-X$>R54JnZ6Fb!5=6h`DumysU9D9-HK}zTkgKf_-;G}9X3wp#4D5srtU9; z1Ah1+G;J-F6Xqql-ZTy<6UyZz=ym6hsh)c@6d&*0Co z^RkT5v_Qh%Y*hJUn-&=FjP8k014USKg@J|DW>+)!9e2=`2FeWH^2)02AaHXJ#>%mN zwCT;1lO=P!rK{A_S_VMz+&rL8Lw~imyB6>d%s`Ul60Ccnc*<{)-`c_~+#q+lS9|gxD=s)r-G~mE9Vi?hndy=-3&Q7UK4#r(eCd z+EaIR{6oTMMQ(n^UFvBvhooUGp`k+BYNN7&-H@v4Np6gn&2hLuB@i6Um=L?;zRAGJ$HxbGjn1?pBC{#nW^z;S4acOYf|pGzV_Df= zylcPrgkhAV=flHLTLuNfw;8&V9JTnoFC+_Siv-tcZpb^WF>UG0P7pkyAUfGoOB3aAJz8ki$xN zvr29A$(<9?JE25(h=>;MiTe3yOGy04psKBIgM={|bmUH$BJfq>ma z)f2yApu>Tu{x?~wx#jqBOiMx^p>WR&&oA2!rhhcDw`TVOZuJWvz2kLRS7y3@f3b!t zxMmTi4gr^SLYN0CK=tyt=B-@~m7t2&BL=ni@jpFo0#J+#*5jW44Eb0~@w@B4-brpA zDVay~^HeodlQ}VqA;ZHB1kP7~->2AzM-a8%C4QjGZa>X<^82Zqf|W_=o-*!S=aY$VY`oN`*lnqpyZumU8XiMc5PS+idsmOE}l*gB*n5 z8+dp=-q7d@`asUnzK5{KQ7`|3Q(b-SA=&Uq#5cmqO5+(2afvD52_GB?oNeUGlob%# zrf8Lux!>maPFwFtMiPFES@SKPk&*CKvum+O)mmxIPn!1WI^&(zaH1XN-mT+BSZ`ow zWn+_0*L|4TkoCu%>ofwn&Vm(@jrb`aPqODC^q%*Hykng{%8MaR2yY&s!k+*)xC&^K zwG4f$ErPFU^kI_;lu{{(-TV<0)b0bTnzO4VRO7KP{>_n7^{_-@|1;|j`0H}u1<{BW z*!ZLux4&O|g;`J3I_4PY=xm^IK1(tiVqZ7jCq8!QRl<5|U8$X&p_qU9i^?9I|M6pE zXeE&rHC0vBdRO;HFUR1$d=1RGESoDU8$0_i$Y^?pflDUi{&L)$!dN9~hP^&qF_Sfu z(QA#SGGuw@smCOUTuqQoJVGo!_hIO(lE+IaqCr^&e(=p@#o6M#FZ({=s)yvUG z*a$0Y>q=Pn1GY#3)W8-o#J*SKNl_7V+Kkw?u47L&-a zk;%WG+wY@<6mz7ShuE!ARO+yrQ*^ESp zCUj0BLfcHVK*VZ)R*d3QBc7O@U0Krm_a+eO`0beb<(MSBtnRj3gO$%o`0p69hA-L zPo5r4tmyT=laDwh2nhfA^O-L|XrtbfjU_s+u6z)UKbLDc$*7aWF?)rF3Rjk|qH|6y z77AY7asP(PXV^%d3oyYvd|hF+CQ<0CdD!tG;PvUei{PWwH4%DYcu6uXJ3OH)^ zZ_U}X-`{~p3LOGoz9M&JV*G#L<`m$`!e3UbvWl6Onx77w;{@hdACJH(oxr;9Y}VFg zz!->_eO7FO%F9(plRiqd1-}3M)6RhB@#^0{dv-6<_&dihJqtb&Qgol3z)i9;|v)-%*29Mfu4KITR2?o{Jy)!%mMNXz|-kZMp=Cpml^*IOm zZNCJ}K4)F=VZprV)2H9Jxqd((Tb<2buyi+YTiEg&IotF>*L_|9j(CLi16L0n-BtQ} zR!C@V$h4=MV?&bWU#i^gC?Hrm;r82eVWFm#z_GWl>F2l21DwrDuM&QEgf6r#LwXw|sc11lxuhy41ch<7CS9Pp#4-`=qbI@b} zUgg0ITo}B4?|$GV6Ze73^}hYC+4oZB{(FgkkJJ~*xlVg(#PE;-G#+uE<#({Z?b9#6 z|JE~nCb*4EZFXO7Iz6{*|smkEId-u9~JqP_=Z07+Rf51>u($`;q>G4Ms z#vk$J*RRa}Sm>wp%2dSlCBMVu)SU}~x&16Kc3jjBFO*YKnhZ2na3)Xl{EibT5YY$f vN=A~vsF(;!dmTP)K!a0^fbJS7rO*CH9QXUZcLm#D1|aZs^>bP0l+XkKJLIJ# literal 0 HcmV?d00001 diff --git a/_images/notebooks_weights_38_0.png b/_images/notebooks_weights_38_0.png new file mode 100644 index 0000000000000000000000000000000000000000..0607806511af38135a0f355e9318cd22d2514c83 GIT binary patch literal 34252 zcmce8g;!Pi7w@G}LR7j@S`ehWR1i=~x<$IX1q6hl8&pz4M5IAL8brFgyOHqH`8L0` z-g^JRV=YH#2JXG*oc-PVQ`-D{{WD=C6e|GO~48a5c-}j^l1eu?!ZOAECYUtD@J@)iE&vy|T(Uv>^`!!U( ztH9F1s^%GcNC3U7C5|k?y^tTJY428%=WnG#;+9kBUznstwRzABnyn&FU;g$IL+b0> zNwIwJhcBt6_a5UoN;hBb#mqqll9G~NV!n|2U|?W;kPb3BAtEFsBqs}9(133+H~#Bf)Mix8ciWEr#m?hvc#DQ|wQT4k@x(1Dd+Jy7c_~ z{C|3SUajox>?|)XO6lt9Ei5iNp63jhXQ<@)S^ALVDx@|iJkoepHsOu!chLCw1>DmG zvAq{$K8VjBKa#RAGX5d+b9#r%EPL;#-CU%fA40llOgt_riQjb~^LdDLmIIX^l}Ml2 zNSnyb$GCG_isjw7)i-{0N$f>|oo#uJx@?P?UoLgw)h=7=pJQSq;SDf++S=r? zadBN7dcS^`uzB?um0YlfE)pY{+|xADux}nDPgMK@mY)Z5HR6rdQSd;PjFGkgtm zN2M%aAtVVHUDo>-wj7rJRFAm)*loB@`)M(R8Gv<%k(WwGQ}e(0c)}E6w?cYh;VIby zbsBzBTyeA$nm(kQk|vaz zozT$G7d5Vb+1{NU4Di^^Qrg;9ARj2p#Uv#KL+!jU>rG*K#L8-7_W@_(=Z} zsz2=sDyhc)!-9oJh-lV&@!Rv!_i#0o-1kHVgRWcdi0jI-yfaz+9fE!P_V+^p^?V|$ zu|gtlZtnZ4tO=E^Mi%#}s0ud6ifGzOxBo8TVxsYoM?8H?LPD~%*cv9_wE9xk)%9nb zT#g(UdBinJam3nbtv1J*7#((VSI=i&ozePt=Tp)tv->it`+xO<8vYF>(#uwPpO$JB zjjes|SuMo7G|kP}`?mk>>;wf7KX@&J{b{(|;Awd^uN+lF7LCA-1UjFTtQY=xxX757GvYo)YSilhd(nm&aP=P zl(4k?ezZMNCR(IhU1|+A-@zESAs#>YN~F)Au#0#2q3+gbLF?Uz(pAF_l(~2meD)R= z7U`(&bz;O{GcpWmq7EVr2m)ylNsNkV;ge@;b|uCg_uhGUoZ6?Y9czTY!lrvG5UDfq z^%Vt^)PGKLa<{u2rb!Ttl{Qm}BIny>g_ae+)R9^R>bmvbWNUrt{JK^4C*2$PYEOf39lrOF!oxzY^^vgTeDC}tOAyG2&_~Q;7^3wdlh7sY)$&JV(mhr`_2W|s z4WE)*V+5mE7i+R@A?Wu+I7U5U+%v&8^>XR;ut*<-}+ zfB#{>4#uZS2@MMy$dM-rev3$`CZZJcy{dITJFs}?;81d(?sup-T5e^7`o&Z%>uk-T z(+U!SU`@D99M-x@Uann0djEdQbFR=e%DpZEkM%S5Hh#XqK72I=epiy)G(1L*7L!;I@P-<*6>cVtj3euy=DK zffuv+`Ew&D;R$&}H2p@Q^N7ye6mn$LOG`^jv)Ym2PdHh?-rk<4R<0-^3CY`$?`ocP z`VHfj6+YjLFPNF9X~-j>p*;^H{!1$4yuPfSAgp!p^V(_YWH&oD zD%$*0MA=uxbbL3r<4IhkM0;Of+hC4-6DRI!_a~&p+GBS1*2xO1uCUNh#~xGUa<$Xi zAMt+ZbUdi!YFLluEF`r)ExFdfJMA4Ets=q;{!SCsjD11$XUoP-;v*&Y{{3qnFL?{2 z;9sK~#;eafP4O(Rb)kkv5=|!9iBLRYo_c00!wev~Ln&Zb>%0-$!gRDdH`m(Hu^}%> zU}#!yA!C-N`_q?r?R*jWN zGqIq;NuRLwV0v2jwN0OI|2I`uZ55S&N@Mf8yHS;MK03Vad-Hs7&}s5UHvjt54lDRR zm6Sx0c*t{sXheFmv~V((P3R(<+^U3NW;SuYd_nc~>JS>g$y#q}eha}J{0eRMoSYod zgY|~wWQwzcjR2O{U#pzAMs1k8O0h5`N%xA!ax(Tba+Jw^5E=1Y!FOm1uQCQz8fU0J z^5V4j$*h-}&|*IAi(2irc%3Zhk;YM~$<|V7J(1bhWo6GLa?I(t{K9pv{v948GHgiz zmqsk*-O+?usw(S9P;ebJ#)k&hh|xXy*yZe@4W)v8Hz%}2Hk7Zg(B$NssKxOW?d*nh z(tWRRuurKF67Ba0j4G+o`;bh}l)aad418GZm@z9@{R0A^qS%?4-N)st!=j@Jl;o0c z`zvj^hxtpr{W<`j`!#|PinMb5>~QO66fOEkE{qq7SmDz1{d9z6xZAyNTCPwGS+SMT z*0C~Juun;_Ws3xM@dyTUzlSi$o_#4U?msLl-g0wrxLa0At}gB&h5gHA>yHEFaWXA7 z^&KzK+qZpr$qN?NJbW>X3l|{dc0QSEQ^_Akui)bmnE^G zg_uKi|G5}0iD;I1p+TU6koxQ&9Ybq;P(UXbIaTR%>G|&I+@Y6;hXWZI*uz1G_HF^ekrGn zr_Mj|!DZIFHBV`bQfbt#h^gpDKy=-Nb;=FruS2)CU8~{hS6b0GpIf(YH&ijgzu&;iK%#8HsopEi?=iqC*_!`Wn{uL_ni@0VgNp*F3o#p-0%w zO2JIos^6=~;!}19vY4;3qJG4y%;y*R<)&lWP9y3s?iFjlZ@9#BU%)u6wQInjmWm$f z>A{Po|3XLZbLY+-O}4~DI3R_0O!2V&`?U!IZRG|&HfKo($c}h@#P;9QkD?Y8^ZwVt zWHq{VeLnYoAj_fD#p?H;KhzbPY)F)gUS#dlghnFdk!t>kPFn=USm~=|zGG_pGah>+ zBLNXcU=XVKHExP9(;TTnDk`5HrjQ$^e*jhLq^<32ZHQg{DQ1~z&o4Wt;SW8@{1hB8 z|E7((o{z~qOuGG~?k-{)pi|J20A3Ey7(mD$DtSV3vGFz)+6;0V+EVQZITo~ernEKg zP46dwPO*;y?ufaMTe+{VI}0(2i~H8f@A8=P^C_v-mQp;1vB9bH`%(*-*GBckMD?Ai#MNdy~C?IH2}?j0UG{BoN| z6c-x$D9`Th9btMNAksWA_rA^1CjlZ_fZoBw%KBY$$5YsOy^%`DxxEWMuVVhl>aYo$ zB*7$t8L?+%XgI%@$gbm9RDbrJk(0B(Wnx0``_o|j)X#i2lS4BzqAz2!N$@aR?jta{ zagmGAE$fFZEASp;7iJjZn6w$Zr^S|}Y@@QBD9u6ke|b9d-Dc!t3ND)_;)fQR91EZA zwE0VUd0}h5WSQAmn?ieW=LL@|B|PN!5zE6g81o07fQ3@680OWrZ;KqKY_od)F;G=K$R04a9)%a8xIgMQ!b)+S_nJzqg0VM65DlTCsi_$dfpvO*&JC!# zFfT8UgNc#xXs*W1E>u0gAXA`)&!6^S#GHq_Es|>Mcj?jGl4jy_K=B`2g6}-dQK^Us z3*%mQ{zV8le%*wbS%j0Y#TQGvV3gqgeJ8HRk8LfKm6dY=@SqbD5#7xn>EyGUz36+a zfs0mdeariZtp6A9$FHyMl9PAx+Ds0Mva|nXNL4V)h#w?o*A8DFEznU?P*AwOx;!uX zW~wg_%DU8UXK1wQjw-1{6C$K7eoXE0z{ zVMawIBe@_69Gb$sLfZ*`nlWp@o%zwDEfq^k%f<)_eqAXksj3=X#Kwk%VaAU&wCXqV z@S>^!atDaR82Su31FL@h`ekZnc23X8_%kvpisY@4k%~=E-q1!S9N^P#n9rT4sHnrX zw)phlU&N;1PyTYzdwfnE8ygF)Od2kvQ(&_2-*Lx@6eWg;gyb{zKU`ca-HBq zZm6X)VM|d&E{#S|i%w3ow&tiiS@DpU+s=@qprC9zt@VmJ%s0L#24ai_2#`w74~{x< zYnvUGKdt$&<)O5lo!wu6KDsbG(`jaFS9=N#P){y-F3T zkla18QC3m$f22`J%g)~8ezdJ+hS)`%;5AkVm-(Vg_7h0?e2I_z%x#9hefU>H2Hx4| z?OQx3!wu82YNvO`6fDfcOr4Q)`0)98A3xq9DVzB5N?sm`hlBHa<_Ila{Eqb$qsEbX zhI;;+63uQwK|wS&VtIo^li>LH_!Dh5Viu^uJoWs#M=bgTfk&1Vo>L#6y#1Ui?wbZw zniLL8fxjrFIKFNz^V-E2H(S>tvYG(f=y#%BtVuHwJR(!>h$L-Yilpq z6HTUmx3=1hZ8-ODI6o^;FT%&hCOz%u?z5*pjK7jJZTVB_+8Dv9N3?wou(g@jke#B-?Hc@X%7~g*-ycwCvO&uEY7a zH6Ir0y3N}Y{rB(RC-(O%0o|p5%God~8UIA~ISt?Y`kf6&zIJV0-J1&SHAjt7{@68w8n$jBzZOek6TJ ztVdD#>iNMIJmmNY5m8Y!fVO{b5TyRwx9$NbRZ-gFxGfR|>O;x=cC(d&)bzc*y&t(u zLaoAx+3E8~gfgJ{7b$$?YrQo+U*G#19Dz$cSc0LFZZo7~E9+Z)~ z#l=Np+!p&=w{E4-%jy-V=U>e?1w4Tg83owD&4)Zc^vsaGpJC8&?pg=k?Y>ThWvjcF z*Vt~OmexPKp^km}ufL){e-2%0i;CMA%6%vzl9F%3Ii`<_hL##hBTlWQJa6Wf7~|i3 z`D|i;3^i@7j3uWGdiG)xyN+pZPftR=6~8rN)?@9+p+LK$IYTmFe4!<{=3r~A=sunC z*NBpAGH%mn2}wzJMmL;m;0y{Pw4hTiqs)UaqMLwnVllLA`s6rdanXnr7jrbPKB9~s z<;|PM?`ns_wh=>ec(l|79e_>%EaH;C7;KysFZ)kGric|#XO`z6X zKL}mCe|64v_F+MhX8v)J&x7GZ0mNZ%COYUz{uDD48Vao`?}@B!!kMn%(S zyp=KRqo$?J@Ok|09v~>7fOxY&RXjUft9$mB8n-7TtgSC2EU;jpf||E;wRd1)c({3PdVtb6H%CL+Cd{QOR?z{*0>T_JOBpB(%HGb=N58oFT=4lx@u+!)CUa_mfw@!>q&=){H=TgnRY2|7>+Rhy$_#aUc?`-|f#JFzPP`)yMD`9{6Apr9bG z-TL!FB&dVSvMhKNZlch`XF&NhQ&%4i93R&-)~#Wb=M_JB%`MVTE`BPb!E3%|J($SPs({w@OGdHb$4ehIsT`H2t}Yz5uJ3DrG<#<; z_C@TLJ$xRuIXFG;PPdEqxu)7XtT=YA885fEUuVC73X1gn_BLCgRvD(S+fFtBi$fCZ z$r=)7j%#Fy`E0G1ZS-M}UBe}#^z-Mk0D9|+ki*YZRS9!d@_v=FoyXB)_fT&d5t8$U zE>xn>(SNZR`Wj0w+lxra7fxI|eFPotg{*A#c|aRAS`Z#uBxUs)B>;Vq!{OJxfEISA zk#F!c3r3@KsDxcFDRUCf@Vm`SP35!;62*?j-x`CQxZQAlX;-_~jAPs!cJ}*@fN)m|B9DODvXOdHo z!V|mLYvEwd86pj0N#{0;^ulYaf5xKscXRW$VqeWQO+GHBc@l@r^l%=5n%g7J_@tz) zOvDeWKBSw5j~W)8WnCHaq{y^4P>Az|R8YIdP+waUT4!Ef$9 zk=NH(dldYBZgUu;KdSYXF%bfus=W%91DX1{=POAD-}H-eIT|iX|Dsj}|JQ2NRMc=~ zS?Bt9atxYX%2n}LR)3Wet}l=%3BkxmMq2834AVP|&+sIE#l;Q1jO#eyLDXIzO@Z#w z)6;Vld0uzCjGG7#u&@%uZR_E!LtnT4JsHFvN=}JCZ80K+EJ*8t?BEu{9f3+ahX4_r zs(v;$_MSJ$E2QE+BGA35#2U1Zc9Ssv5_8lam&Fq{wqbpf5x>Yy_hA)-(_wuBb#1zT zsi><5{r>$7@E;)&(VLadgy-t{hquz!?$aDi5|ZBuT_}2wfkR9mk~z-A#dQy)nHLHQ zk6GB+pM#P-oXNbn+!0s#76FWgGm?UTXZEAtz)3Do6P0iuXp3)$zP@S&QVh}-H}B&h z0$#s|h)hX~jZ~Uj{uv7%v$WXFOo*#XXr!Z)diQB)qTqvwTpkSZ@bHvh{p^fm>dGrb z!#@<&p9s~gfktb-A?WJdQ$KA2m_vzW zV;^h{@~KER-KDfcjH>Ey5`YW$lWxrs@7-zxQht%S0iw;33X-}-9A^MP* z2-?8#%=pm`8FBl02_?A_w_Sa7EUXsOb6J@Z?f1=68CDuo>DP1DBkv;R;1y%vwnYxm zJ>4$+R8zD)Tc@)2{ru*v zR{`U(enI{CErSr~o_2!I2zItiw zDpet^6gG%B!5RkdDrAAL|0!Whet<3Iaz&(p=+i(7GUx09BA9b}Yab6B<9vw&j3aeZ}|Sfj@y1 z0ToqGI63ca7^TZ4ZPZy%`p=+Dnh~|<#be+1*0V@`gcm%-Ml36WF8AAL!jd=)Y}?!0 z?X3|~#^To`28i4ppUmU^{U(5?BXo3h=#9m!y=#bWNxY35gtLc-$19-clsX0s!1E}-7;C(iFTSHf*T+Y|A%0mfn|(sSylWNR?br`FXX?AXzWdu zaCbj!3;fVQ{)~aaCA|n$TwI)wf#LZNq(obkFdJ)9bhIDLeyLdcJQ#qaf{x32pH$$g zKZ<(siHL~&20LnbZA}L_CtXgd#)3~4>6NwwON1~mkEF!Jpnv}yU&NxR@I4J`CkNen zPLu{13RW_vxzjr{l;RH`J_w7QF5e%D62H>C2Q48m z5Pj2}IH}c$uJUtNa?k3d=yPB)&!lG)22>fsNHnMrg%~gb13Qc#RBS!~>4Hs@wo5)m z80+FnnA0lJ`~EkSxDIq*U*8fC#7n>F^PZfYWrCUp*OMW2mX(GyCnDUD-e^>l$HXPI z7XtRhjX=V)PXlV@5J=!6D|@T9wswbQH8Vc*+c#{$_q4B)J7e*aIM8->+%UXFMMdwD zk>&OF^_i8GmDQkVX3kV{AR76UJV$2_Eh@Ap8+@zh<8g3soR_`pO-sNjpPZWTJUU%lc}t~frbZyO z*GA*}pRKKJczQZoXnTAo|Mxhim1N?sPH``fj?_LOm)M#DHD&tTv8|YoAKNKKJqcxH zWwCGF%HtZ^JlGgQ&<1_@@B~^vcS3x;Zg@yYh}(rF5#csGJr_`Br1D2p3e=OU?dIz5 zj};l@!t5FT*kgJOV6Wz)`o`$^X-x*`um1-sD*DU+n+4GNAT}1yB4J{ffs6U(q1GO?5S*|xyXW158{mT@2tEIJF#V8JT~s^?dnUlbQ}#zHk895{2C zbP~c-`40=9l2#}+5=8s*`q!RK#POXq%eiT>IOW@4yxeH%mv=U2g`(r)T8vFhLZEVw z@IEFmY+==1aP?R2&TQ=+Cd}POub!G5&f`lr2Ex_H`iAMeETYWJ@|9zUix| z-0SS>`ULVz#=G+)1tx`*^-8$rxeD#ShuV6@{!)0%ptu;pgAtwsK9JOH>U0e@S3F1) za-jPYprhn#6#a3Vdxr(qP{Y%+wK0SD)S?Jvox@_9s8=bt=st-0f!5zIPy4z!_)8X! z-QvL%>2!Wn2ZF}vdeFQ8K6yk?Rduy8h!fAAJuALpF8`_L=d?x96bV*2TngD=iS$=H zB?R9L<8^Cvel@(pO62zVqXPC_V55>78yi&Y#9@};iH$e-iUV5t@}2$x zR{KsU5RcH)(^KQ=Du?A>v5Fhk(H`@#y|-7oVx-RN2=U~}2>BI*d}2m+cA&-7PxhH= zC#E-~LGFM4_~YPVC(a8Yp~HkF2DlciXkB}u@w4NzKU=jAaTx5FWWmir8G53 zK_8BZi+c-333Eh9h{FksqU0Aw!j7QxXRSN6WPL~vBJpE1djiB)h1A<{Y)>VW<6X{e z4mQ{yJ!+X~qkdW)hBHmVUb-`05`dAh>QO&Rqy|W}gzY?1E@#t(>(iOC+&lQ3FF9)W z{D)G509oPPT#bc)us8iNe`btWEM32HJU9=wPRgf>YE zB!dr>J^$fhRqL5w3FNq#i%WmmFW>z${xhp7MzSpwSm9zmU z`VC+5{-jk=j90j?ZDFkyOp)t@zrz0X9g223KM~^B;epxopq0COdJbM(cyrlI@(d5- z7()9Hcz4D_^gISwz9KF@zNto$eyUlCruIJ(gJWk^j1R&}t{2C*3e+D#1H7aXHv{c7 zN-L3F(C5P4S2p&)h6eE#`;;F`+^%f>HOG4V2;R0YvO{0TSC{EAFtKj5l+X0C$|wK6N!d}AN{5!CL_%76 z`s~gM6}c}%8vwfLxm>q32ai@?RmXZBZju+3F?M!#?p+?wg}n*B!~G;AB(TnXU-69? zmS(-TAjt4H3`SO7zU5B@g*?6NnOtnP0K&{8t*-!SL_{tcy5Rc)+kYOesq*{CrWkay zmk`!qEdPP~`1G`qyRRLKfxexbf2j>EdgcM>Z@i|)#%!sAPNsDhzkq&W(@D$aO@hY- ziF-SHDUQxR&HMx{=Q*KA(`!g!NKzINQ|v}Wmt-hKCszp zY&glW$jQsYwf%;lDS0Rzo^ki?U00j2JL}E|y56-1XFs&q1_%8-%?BOl8&Ti@)dE1Y z7xqx0Mh>$Wt}6xqk$v^56(IQn+&vnv?I#ap?-d#}JO;sb){yHH8*!Kktsjm^AH`O! z`3LE+*b!v(yobIWUve;Lgm`RhY!?pTe{|@$?eI+Z;*dO_&x-Pkd1#m3!U9Gw<~^7=Uq_25&1ibLSbfhc9VPe?<=cTTl~_-3om9D9RlS0RV`nAvG`4kHB_kU zm*o`{zR)6UI!HUT#VLw)^rneYz)vIAQ_>aB>}I>Aa=w#f-9Zct41l~*UA131N6#Xp z-FuxbFtE^_JwI>Q{h1dBGXRQy-*0!RCfhb2@o}s(lgP zEPUiIRAw|kNNwDQkd@j>@>H{B#m%ud^7Ity001TsnFVKY(5g?Y%aPj@(UmyC=J?Bf z{{dKE|7n$(j);V`qK>xN8 zIMWIX8$WS3=BA^HU#hk*0C=_K|8xX4{;^yvHn;@6|=$*bnW)v#DGKLE(md%)RvMX{QwJ0%@3}KQIHn zkSu>?BXn_he4VGd3n*lE?*iFpW$7f==0M74O^VZA_zik*DR7w8lk2PCSsx$1h^qo= zj?4375)@TCJeC9o%A=hEF9y3eboQrQg_Y)XKlhON$D^^9736kxhr~#TX-VV`g+TJ= z%|K~RN=43CR|5`K+Skm?%<-x!0T7En*#I&E;ei3SB?G44LB*KJ@9$UheIlqrUOb;NlXJY4hq~$}| zS7W$mXt<***f2eJeNoV@6=V4mAwl+daB5v;d2BBo#Xtu`roHE|)zo|A;e(%oxWaE}yrsY-&-WTfCWI`9PR#zupTw2=y*TvCdS+SUGSO10I zcA6Gk2X|x-zaS!|$>u(lSwztnc$%*+h1q$JS&~5WIc=u}cq|5&HOeMLE@s^3K7@tIllh%lS^n5ddj8}B4>xVCizTP#%4waT zzaaTywNOt&DLQ3|hAiYg8kS`yWOi{HuFkF{u(6~P{RuDwc~I!^R|vF0EQ8Si16SMb zG#dHuU$N(*rLmdW*e3bM?w9VDm%GevZf4GI*^Y9tfsi^J8XQ#lDIJksgK4}hgpf&) z)F?nrWQ)nS7j~|?bcIaU+ofStphLQKo@&3Sp1viW|3Ko0L*h4(Wx^7sEyYsTwl|dt z?b-eOZ>64D_eT^BjWM0(_lE>*$|w0*Ri5Ounaq~E9nmPp?>P+&&{5mZwz-e^Q*HOE z>>BjQ-48e4D6zheCZWSRo5iBrMLW4Gfr7w{pJY3^_uPTTPZEyrLL{Z2KbR%*Fu30$ zGV1CqKPL!!+)H78z$)|^Jg@;sT`Chk|M-$oxbcGg|2{>Q>V%u@c4kAc?FJ2d0C)%y9VvHd z0&H`iNx@j<_3KZNN!YY~BI4#YF`k>8khY1==BiwWP)h z^#*{yuzu*Y3|v}H^>)ELui5o;*;+=eTFc*&z0UYt-9yUeL{xFQsRf0lx-xTJizO8Lr~n%Ep1MQ8HK@$}U{zm&$84=`i-oFAfPX61{dE(w&I5BT5s zLGPEVYO1OXfqV8_R-A0)rWZS|$T@&ZvpABkv4WP8Y9~(iW`tGHr2-Q$LnP=Uc`jR{ zDhbW*3GnoS-xK_MrMD?cNX-rnnX`I9<-<2ElgV-mGy?+zVm~T8n_WK@`PQ+33}>^} zni#|&N)=~3A4X&C;ptk#v8cEE)}~s%oLeMWz)X#+nlBnND=MpT)^p|TpUY`h5pi*p z*##HqTxR&it_8Xuwss9xHbAifs`MZxCdO6cRA^YS`X10d%?e8*QHRCA_EI)L@YWD) zJ%>EMli<_bJ!l;Gi5kaaW4A z!GFyUgYQk-7-IVqd{fWA0mwB-s+Q*F&&#W;^&HsE_y`|F;plhAxIrDUXhH;w2*P`> zX`Qa5WLY;Dzliq{+l9BH%DwTT2I8sn(<^8RriSwp^NHJgg?f#Fw-5+LMa9^d z7-grJ#D}$KtoBQo83XN#Bq%7Q(Wz9@{lIyl_vGmOw3c*mcoGsC`fKgu4QFLwU?|ou z2p_RzfD|oxgf!Ry7&m1679L(j{;4J2)72H<{svRGNJ#H5S3Zp1RR8|lsdncu~EgA z3qBD^5w$GIXiF1yZhw!4j)sZA!fz*I-QO=2d)1XldY2;X-Nb~oOIMc?TciITUrzE0nv7T`7>J3LTIK$`AE3`MXReTjzPPyTQ-#m-6^!FM`(Tp< z;ZgL1QlZn+gMt7~^&Geb1u=2ZY@JsN0B*3Y+Pk}rd(*`^T7j=YkcA#HQGbpSgi`SV zw>j_4H!Z7gn!xD#esyfDb$SfOq2uecbf0Do@oP3BVqz|Ref{B~p*YCN6T5ZDj!D2w zf64fIVY=FB*XHim{%^_$ClsVYskTgrBcOKK5PT?Jb4Vlb2a!n)o=H-Ax?+#16IQB1 zrCk0<;_%q7a&2}aBcsQg&c7()O=PsySV5s9`0J117+F_TwEdPwK&e-27qCXP6LUQM zXLVgRjI~v+y<;qel<0iTtgMw@H8Qf&zAJzL)=5#~iE5%WzPh&Zc|#}@6OKY=$koQ~ zPmW9R;kbTlE6E=MZbJ8v`pCSICISLb+ADCtO$E_f&wim9O6s2?sot0KXwJ+yEHBG)EgX(L0e9^l zG4US(a#C^6gKr;WV)icqFSrUiXEr~KdN4TZM}SU8-gqTEmkf?&L31*BM{n<+&5`^Y zty@}|kOV2>d+77S3DR6TFBylJVe4cca6`dpMAq2WKFAMm!Bqq;v83yjBZX|Nf%+qu zT0B;abLfTo32qm=wGVyO!vv(@umj-62Jq(L>3J_};Kjwo#rpa{R>!}UuIHeEi<~aU z@fH0Aad^DaE?req^TpLsWkU=Y^Mj$~YM_o{_-*T4AC4J-qF>ZFH8u66BIoPZ#XtTS zdqW%jrgLJ&k%TofO(X{1%G!|o66iz9R**|9#5{L6wgU2KCG& zsRHC?Mr=9{*o8=Qy-vjb`10#5gdFI9RtGaTofaY~J@Bg@aC67WDkvmEB}#)HN{_HsQX)uBP1Q3& z7pA922M5`#{&bb%hjzv7`uci%7ng*ewlkfC#KcC8ekkodJq?I1_t%A+|IaRutkvnTq~!K}fhG1-O6{a`dRtGT5h|RD|Sn zRH&%9O~aG43krV~*k+VaN<-5q#DqAxgLs+Dhu33eu3%fCUE;i@9|uBrbC8u z730>@yzsN6BaC)EA3*9+@aoGDO0MEmT_O+%EjS9cGDVVK95T?|C}<()TLS|2t;i)I z2ml@-8acbKp*&p=kB>Ff82FX6wKwBoo{&;e)%A?7`O|)L5uySY+A2LoA5x?r)bnTb z?}q!VBsTSRc5)qTPYit>N;T1fgv*Uo01ACDffUG77-03+JZt+NNFYeMy@P*&Om{4< zw$Vur{+gS+6inko(3c|EqFd`8!$?n0kg5<2#wn$MJp$_v^)pvjzR909@&N$>RI{Xz z1A4PNTL-317S!1wB>K$F&6!{8rThVG2Y5FNl)LBf4IQFwnCR_}y+gTOgT1ck9>?1g zul3c{e`@BB=;!Slevl4c+_Y#^J!npqVA0D`$*V8ZWZOrKa^VI*EN1ThK~Gm#3y7{= z5KH4oTjPMJuuP7M&0A8_%k$j^aW#TKUIgPmk=;GppFu7{PjHd>^sxi~m{0riUkvNA3P-78&=Er}HT%M_9ya5~L-i~tI$z(o!f z8Hnc@H274$#Ul>G045HKfxesh$`plaLmXi555y!SH%S3*>8!gDT1RCb`toEhb#n5-et({I`;yBX8po1@LLR}$CMGs( za3f#!fdm?%UBFjFJ;nkW=0)bv#%P}E_xc+Pl$@Hnur#6RDfW9?L?guWV^UKi#`L`+0s{l1g~$GsvZbV^ z+R2m5c?!zGiXA?+$P4&j&tQw;3*aYEd`e*v?;aJE-rtWPlVWjkb8kRmYiDMEu6gFt zm76RuP*qSJ1`hN!bv|%E?@-lae~^A}baIUfu5uUEoE-!LX&}v&3k7=oN>-K*ypBzs z(`D##*>G4`AwIYdvfV7AUB|92r?aQ$F9Zx$8AFY*g5FHRh5x9#v&9C!^?8#yk2FN5 zMl1DdTrG9*G`!!v8_3t-U<4!C!O>C5-kuZUc6TW#dW*u<d$V|0<{^FVd@_5;oNk-P5e zRvT#NF$oE+>SQPS<=8J?M7v$`8gi0KV6!;S-}~RD>orabvepF5YGj1;l6b@Uj_}i! zNG*6Gm2Q3H5ttA`5h9_a+=ja^Dln9M(3r~Ni zD&q!)KTIwz8i$10H6-L`{>?BdJiC0(Dx$(1bba@R#)!kB9tl*NOp8s20foDV#}_!Y zfhH44H^HK_fq!|JX={qwY>EBwhN2+j4$B6?sYp-NcnBdVnG zAnezOqzjT55*aPWbG}g!F5Bo}N;kGSU7f113I=8gtIXm|dNi4JPu{ z560iGGPxPSz%^>Uy${IeM$g8?r!*g0pEH78$?ys5ukcRCRSxy=$hH8U6x%OI5lFQI zHHW1yxB2s3lcpMrA>$PV;cCDxuqgY6hrDfMbCHl71Jv)pj{x8FVP$L!3cf}h0#Yro zADdTznhB;wvr)-2b_n<-&|;_V9RG4psRC1bu-8+R;4a;9y$hmFKMHo{8Z9fhKqY@_XlNL*#)%852~eEe#%AaQ z1OEC1MyjsP?H)y(wt)yu<+<@@u&G=5i?RyiWK5nv)qBkV>ujsMr_Xq4U4#BKSK z+fqb4R9MSO@?Ag8rTk;R|ll?vLu~&>>I%tpvfAS#sMc#0dbeAAoyV z;o7`)=xIG$O9r~P^v%YYSbxjYSv?wIMx6QyW>W}xkAn*e*{~1nIzJ5$)(1X9EPo4F zbN^>()EhQQ_x&I_lkww6cu!wnQqhogqMqV?rcMlPmyGiAVO-jpKWIec>^Fq~VH&i? z>r1#nD{53QKSnIy8NP1>srwyloSTA1r@rylVyuuVPY&5e{SS$}83K86RQhaE%X&YP zNcINh9mV~GjqZZ&ECW6v5bx}@bl=(fCpNUQgL;Rz;524IbnydFzsfTMZxruShWRy( zcTYWT{Dd4x%SiDumv*Ct%{TwwEI^b1m=~`4`m^N_=p7$C>FDm}LA>yaw#tlu+}GWm zl9ZAX-rwKvB?gjTTT=j52gtM8bWej+^PS#?0r`a^CvWfk7FpSV(kIG9BAbvXHCc6c zKlWL=_di*VIW*Z=6T7;f<9fr(Mb5y)~54l>$!)!`}~N8 z0Rt2pEd;owjEpj8Y-zFv{)5mVj1rBu=ie~#V%5Zwd15GPD(&vT4BX_kO4Jo$kabk5 zA_mdVA2z3*;bXdkhW3W*ll{^kyjvwDjlS29aEd0Tax*YtJhS-y66IqCa1qpS*N}&t zKQ}vj+V%K`8$j&p55!K2*ooyKSj4+JKE@A~b~0;Ofk^{9qs?Hhy-J8^NJ=7^_1t1N z;`&5DLel1aIHEBKdS4C*6>7aU&;`;daL(l7^8uaJp>VJ6N8 z{^kJEpr$H^rJHQnO>|cfXjwTdK|_SMclEWzn>Tb2udy^p<#kxpo8XC8iTCj8Qn~fz zOJh^OKP;V}?J6Ch{kfO)G}^0i;s&(iQ}s_9eSvg>OA&qkZ?LgvPy$Det8Pc(!$(7h z?AFuRY*}E{?II91mM)u^HiMmSeDg`E z8>9lj$lYP;CQ#e~EpD8A@m)cTwY}2 z8ZmED5IkPO5ZM5Qy#uy^viJ7v9rN?#;A|1zyVs16@bvsOTDz+c>J#vHpMW|A$^j9BY;!8PIP8D?6n+aEznrAFJPa$> zm2Puyly$dg8XL?^DV~S=(W({GVuy}L`~4u-*(QIr9U^`I{_d;p-LKR1V|7csb)RhS z#f=+9h)O?a^D~lcyiH8_%;JGc_TQcElsOtSbV7oGZ!t&@>a@TDGxc|7M=8g(yVaZL zJ*M0xrKSD@<`8pR1b-d{G3SlM1L4nHtd zc>TMYa)_0|JZ=9wUh*_DH1xY@kt$KSf#)svL$&!H{scQT{{6kZ#&V0HD*jn_G!SV8 z(xBC%V_>|wiPjRfPWjx#JDyV!y>gp93VB)f=d0((;7D3*c}UdqfbCxmI6TEJ!uEA3 z+tWl7RlSAX$qF0@yn&?`Q(9Uo00Iz9OBCppYzFnZ3i9$xh{k~d<=go9tFYH{qe*D$ z=nUnid4__AH6!GguR+&vNSyfLLkBG7Pg@n$VJ667XeI80i}@eGYLPzV0UU^>?Z1Eb z0WYbPO|Xe0ySWb)nL0{K@%!6FZ^7SX5f1@T*v@?btmJo76AG-WfkhDy71##bN?N%? zu$>(JFfaqIYkjUk9G0IlsfZwT&_ZM4lX2HOh zr@@;p{-EZh$SKNLSg@?9s2G-(|29j17i0#DqBpBEI2^S~hjw3u{LM^EZj6mlngclG z>*LC@Scga})ruYxefRg`?t8Q#%RGKABZG`rfs7pd^#z?_nb?qX!9YiEoS8|ToSKTe z@!eo`F%Imf00J&l1kT0Fx^YTzWdFd{;RaCCIEcYG|PtDC|W`e0+a znwyN*k`SQke=t5^6YFNJ*cfEl|3X7!Sy@@vzbR)`L6;f=(_yg8O!3>JG8b6r*MJ{% za%W?Y@ampPJ>Vs^hXptXXiO;;6}+34*f$fY8ikb)?;8p993#Cre)2K&w(83l#Nl-O9Q=H}-A^79|TBI17vxlbXv7h^JU zvl^ei36{EB!<)|xuC09{Kg!jbs-E2bKiz%zKiB&k_s33TG=z+lA|w@sLMgHmLPnu7 zvNB59L`BLTC9;)~&5_EAY{?!GvO-2=ulxD_-jDmAxX&-=an5<1K78J<_v^Z@=ep?V z&?y%YqJx4oqyH@0w+93SfJF6u_Ut@h$)#VU+p*`z4!)kV7tY5SK=i`e8z3S8l(Zzz@w>VBd)tvb}yay)s-?t*)Jz@ z$3{ib$!@zVymHoM(Tb3ZcXViTwO;>*(k(#)kkU&iE+>;lc|vU8?Er9a7nQ1jD}AXvqgstHze( zF%BJuCmzO?P!4A1^On@^vI>oxr16IfhZ_$1Q@M}cbQpvaxA2PP@hAw^34yH5WXJMU zdY0`GDbD3ZeUsDHvgD%5FMmDRYoJ#ADzaApFz>+grJonpHaEyf6?OGapVx%Z&mJoH zndhUjopJ2^k)Uv@&$HxATnw)oadV%8ZY`zTN?umh>oaOEFE20JZ}%X~Sl<qGIl?nUI zu32Ewvm2`m6^NmDgvMYRvrjKZ&|`ad?{1rZ>9Q^kJyXF+Cu26p4F{8t?`XvXyrJjx z%#F+t2C$g6+Ft>s^Z4~q7Mz2kEXwo0ckSAB(h2AI-GZ}Q@z=qB&Th5fNkWl`B>EW_ zQ^A-kFYO0cwypv?$B{h)sqeymR8%wzi0(%BDn2#H<3P(W`aSp1_e@TbQRC0z+@6kz zeG(SCc}|6XfW=*l{?Tnehr43Og*1>@8_(Nv`Z}-?N|c!Gj0l zwgV(I#XgYl5V8lLF%VI*;t8qY#%|F_*Xp3{DcqX(7iUmVrjT@4&0DYFK6=$@;QyQF3L zUcc~eGEQNVKykh>v^2OY46o~MDZg}%&%^o8s_ zWze?$D0`yNl?QBYF)f_I-7N4vVZ zNF=}qXGNQCFL9kF4&>!dcctF^6br)qI+g9_MHx(V`SvRkoy}}6EkxYst-kE z)d6IKgI)ib?nrs^q_@zhoBAIy~TRG$B7$*{1nY{;q8 zbBo>y5*85&0!-|iuq|dR{WPVvrlt{uaK3?AYhLb9dFU=u5s1LI;-(z;*?wd@9Gk;pV68PkB@iThHMPi)?7`s z6+7~*`n8xx=5ftnlYxxFvc}jzu&{_@=@T_(;9+3cmQyg&D*vJk|L@-xuEt z#gy&3a`q9rCGR2eas1-|Od2GTemZOb_{*nC1TZ zT{rZ1382{Aurc~^>eXSDbL)9c2P9--EkxOW4GciHeZMBR;hI+Qdm&3ike~^>WTN{P zzu7wRX`Y^*)ZQgR^}YcCRfGTTvp0V%c+qJv6yGU$#y*|Z-}B|mT=VpjA@y{-i3YZ? z|7;iohJrA#05s7HguFmbR+hXFiV$MPM`IFv!yC_)Swp;XPXJ^kY{`(h(^t$&P930{ z&vnORraJ{a6E+@Ng`jX{BTV$qGx?SqE!V%hiLYXl#WAK3K7oaI+`Gu>IsI-czf7>2 z((AdqY}@0|E1uA9L6|2K5)N=k*k61R5HLy>gme)FX=&+o9CU&gkh@!=k=_IX_$w+Y zaa@ydzn?X5Wfr%mblh|@YGhC5&FiLbi0K=c{BzcYhG^TLFNt8+jH z=eM6{k`x{Np>^-zHm^7GiB7R&D`xQVGy)#apN99WxIbxH{zB^n$|Eiq)dYTa()vB?o|AUNY2pGnt9jrp6>P)*~Bf4Yq-ZVwCLUJb2(FPM@7xOQv}RWs*X@AH9o_s<^@ zr}Iki0`@O8`>jMhQh93r_I7;xPcu26f4Ru49>bOYDFa$P;zizhnocnaSL3#q4~ zs+(bEF5~vloZ)zs9S zMZa#0I)-K~Xmx3(>EWL)W=Jc8?AI0!DkvWmx4&4MnAI?pg+k?B_wPIPSgj>^p|ALL zL>~OVnnQrS# zv;=E!iBx%@4EfKWb*%IAM63up&S2EIs~>NChghkahTHWVdPgAfmmI>^SP5+7Pgjnf z+z_-Zn3Y8JG8Q*}a9N#1hT;%u0C}H=KW)&s=0-(D^_Gm9mMDer@*F>&gWwGhcsQq( zvy6%PDPKIm1v>iHzj&vnd$ps!0rh4iv6j z88hw7nZ6qNz*0z9IDlq$?G58w^R7J@gI6JJp6BM@%Xbv49rMne8iKz&QDQCvEA)o- zqP^tyzdOlGQ~EYX8k?fxfW!Sy!2xZyZ5i@Nj8^9KPVd>X=X`{T{Yc%Ok)p?>>FGLZ zQ7|{Pe2?NU*sXt>VH*0aa5Ohh;)Ep&A{@$6uR3)6OVtY`yjXS)4qu5d2`?(TSzJ-X z=x6`n!CSs7F-c~YuB|!w`Hw-~r)Z@9v}o~}^;J)Azd<&jDp02Ff{$)ake3pbmgWMZ zoeZz&Tx0Pe{$z}|L_2#DET95u(QChB`-ajI3o$4uGEu_mEABadwyB9GuB7jukH7zp ziT5Fp;3&oQbqq-7Q0waG1cBasx^~!o{kVveeMS^8>f`X@X*x82)P=I1uwy!nW!{*L zK2EVwvc;wIS*Ls7>_mE5O>kY9x_`+RM3aQ!Pe>vjo3OCzPiRQ-LkIEF;s;#E>?979 zC>H_}+!fchmm!MhJp>d{kVrZf)pA!Jl-(_7BPb}izWBq&ajEYibdtXFg`Y%-!DmKl zzqn3hN9$y`*CU4-Xbgy3XR7bhUO2T5;!q=Qw7$L`7*b0v-uIL6XOr;^OM0G_tyy=u z@4Mp`TAmA+m?#a>+p8=Jdd{I0&BViG!G)Fd@%n|U`8HYkQdVA}d{=%EVI+u9n(+9J znQ&{#145s|-jVTfIN=F1OjOn?uCKw-(Whv=y~mtJDid0dH1-@k7#_0QtVy7;XK98; zoB@<&c3$2P`dnU&g+UmE4!|>yu1%Dm-&aWgzXp7>NN8y<=n%28vJydjP5syBdrJ$A z%DqA!B0}ZeVYmH(q<|qMG}m{o7Q7sKeyn6aNd(}!=xnq6=ho@k?;{Y$2#6y|S1 zdWxv0ES(&3%y4q&&XJx41iZztnGE;L04eUnhgbW=ZTAy8Rk*X2%pGXS(3B7ns1Y&< z1h|GOd+ZH_Zxixv{DG_iLvt_WZ(Bk?^?9yNFzNk!ddRqgF^xQf%k4>eL001D>qn9| z27S(TW_tVt!&4R`Ro9QF&mrT^0q!)++S>YW@4Y5wGqW+tEwxbKsPgji5#3hqWS&vo zRu6Cw8MArvA!^NS{B@OI{&7amVuNFV+zijc%`pIrXWESO$;NW;veM0DQSH=A&^dye z@qwF584{df(CObXR0-p$!`vB%9+IF;q~Mt=!r$?l@D`f4K81U_GT&m4^~u}R=6Bv@ z!mzd%1f~7GdnTwXvfIi-4k=gSHMhgVJ&1IX!ne<~gH7V}3nvUQzS4rBMZXgY22laU zb^th~Vez9$%usFJ-H~XZL!eXF>VdB9A!;R|5RO)T=bfBKG*Na?8`k^X@ zzTKx`3O{lGx0*)YNxjSH{vr9*deUt*Z6m^p#y#;lsUehiJa%cGw}D({Ud_+fSDYD$ z2SFz;E>KriwOE9|h*ahL^3FJOuybT|55iiMipcj~Pm}Cb= zN99pwlJRn>?c2AH9-{iZ!;e$;9`%}k!N$ArOAca=c(`*4lb-c-cgN#Q5G)?>%UsBA zpS^g&3n>2(8oD{WGqpfthk?bmKnKy|yNo7BO z#ym$Bu!;)(kt0WVK*|zhZy6{{->4{khZQp9uPs1gbZHvWU!|;0v!8uF>q|V_$ocB$ zTnHrn+I$oX4<$qre8|f?492+bz-m^hK>6n1Y8%?sT%n;Q?TqZ?I1*=X-}vLys}dkZ z+g^H-NXU8HixB0~E!3$zdNqOXFzxXiIB;O_m}IYHPAb=E{Gs}}X^dVrjEsR#_iEXU z{jdpt@*xVzDmTHku)+oj;Rk(zUY`+ra%ku-3$4ne-4PufI%n*8pRNC*tF<~c&rw}& zd;&QvSBNz2SR_E!HQ~yn72ZuW>>$?dZ zK`xH*=nTE#aZRvN| z8;f1~?eDe!8bjx)0M?0viKz^JO|cTy`e(ar-BwH*bn>Y2FI=H60a0%E_m|xI>SWeB zYIXViS!3O|9M$n~i`&B#>@nVQNaEl@Zx;*}Y5nP_DJV`9anV6262Z~YDhpE1vn$V8 znkxf1n_*zme`>qA?gYQO9j@}Ck&-mdR8VX>rS4Lkcv5#W2WMd90SXxf5XawZ|L-Wp z0GaCf^#Xt?OCL{sm3;8WH#0-Oo@Q(1%8A*Rh96#ga6^BRW7^0*4)S3g%6e5~tIB`) zbt}2h{vZ*KMCG|frehZvkgV9H$vFSLWpcp@w!PDU+`9P0#dTVfirhmL6`#>>|2UHV z5f?*v_#R%xgj}Ie_`z<$%(L7VEi7F2!7ls1LZ8sks|(~A82&-jeg{GVM<@xG_#rfg zNiffHRNE15;9{6Tp@28x_7T_>c&%=tQ{^pd-=kaqGIT>= z47zr*8g|{m!Q$rTv@kp1bQ0=LNc1Yeim1k%jkIii>)-PD z(z~l2Bx(lAw^yVjYgU&fIh9oObj#!_s}M!4j*7$ zglJ=uBMr3ydgaMC!b9Q=@$vE6093oHIM@4M$|rUs#d1a!>1~DY9}2tIv!uAW4K7U; z4&&$};g6m0P`ZMTku-1NC4|@OM~efb&LYTvM0V&fE+7my$aK(cf0H;prQRpOvK;9H zU?>hI{&65wqc%T37ePk*vzyM*k^gyO;o$J_Ma&u2{|v}%Y!0>0F@%SQ$K#z%&(ie7 zPzV;G2q@2p#a!}BCdVmuS}57kJ3uUQ2xkjDgQmd;TOPdgWVpgX2XdfDiGj{Cm|Vc6 z`V;~hb#Crh>UXv{)-)jR^K$Fk4kDYJC4{%=sgF?nW{|Awo{9~d{# zG*l~w)TJ-ylF30F==`UW+NxOrVKNc6UXvS5GjKt+rgdqtW}1WOiIG}49N9P;09oJ< zOvu-qKUMFA_yRINh0B+*QwvBl0A4(Hf6EY zcK%)KqcNwj_Pn9Iw}1@>3Li}IQqoY6pm*~|r3prF)r?8P4vvKus2@Z?^L+kWwGZ}t zB0mfSVw&MWwDEFsa=ZvTDt}`6MwJF_@L4X!67pqt+j;~$F?W8?I_z9ropnz_VzeE^@W^TV`pJ0 zsT*2I^&GejorW+}o2}>r;%74oXMZrtC>Xl_rGl$VP;vKH$=C`z4p96_NV|9g8TIEu z1_h7x_se}aby*Mi+1lHOWJ1pR`gPjp^H%R$gx;oX`{1Zv zbo3bGdF!4oAWn*xC9_L?NPG9bT)pD?>A{h!j$&=S>)Oh4RJL=xL9bHYb8oEYlvyt2>Q#i_-Q< zuLo2cf?dM_4wICW)EIl6!A@pWyE8d+t4U^PHm|8gP*B?_?KxdcL!Fo1ylJ=b39@~s z;w*0+0OIg0hK^;n8mW2bw=r?Ib;V1i}U0<3Sb**Quq2eRcdR zXVj7uHJ!%1TwnhPyq^tqpbW#=wf7p^hsR>WLpT%V$uQCueQ<%iXd*!|S4d{IuSMuh z=!!nGoZWfAo!_9eb0>KM2*J3bA;8Z+AjZA}J?t#4$LrUyt(#(bPoCy z^sa{wrPb%oUDfgZ_k1t&z1cV`DAB`ob%L;sVAn-?fvA#Ox5B8d^YIP*Rv)P54p09W zz&Ydi2aqn{G$fN&WdsinD;kZelzn5+b8-2ll=^3}@ifPqGkf1)DaRQ!mtJQcR<$3z z#Cs*?+F%*k#iNF*!-CiDWbG03J?ktA)v{eewwm1yKTxy3^zW;(Rlvi_Ta5& z5$0V94!&c4>S}-eOIoB!OFqnG=V+7Ube`(@`n9?`)(s+D!<8k-N-TG6z2XvpL?2;s zvUGIM|Gt^fdnw^z(A`~ZQh!vD6sB>%r;xFxMy<|$eeQWKv&f0Lru9w9QyqPOpduB^ zIy{|bGgDmFA`w}-2kkhT=}NE^a-IEttr!g>TN!e-G8bO6aJb5D18hVNP4 zT9fHAHr?47E=cP(BNY_DdESTd()dJsw!_0q{b9RXe%8}v($enF$x#}>CCM+Ox!pcF ziC^nv#g~c3ooQF>?N7kFEdqhhEgKt;Neb#68ZBh8PSnv)s7|dd2h~eUhw#_;2D@+Y zs_!leh>sVyosRzV`*#hRoAQbZZ>#RyCz`DOU1qlr(yXub8wYw*ur0P-MFJJCo!tZN zG{vV+56petJ5sibPr=;rL+`!HZK|C_0OX$UrKNM5MMY(oxZ|f9A_Z`X*F)O8fKu1= z&bfH=n9cgewVjml1#mfxB8#;$uSwd{N%1Gd@Qv4chGaXST^!0 zh41Pw>=&@)GBAMFM2U7LS^3ciagO`j?1T7ER#Z&~J9qcZU0@)~`bs+b z2%w`Mbz6i?huSC-?KEne@)e}tb|WkgsxIZuk7id$p0&oZIR#?dRSs{e-8!(!$m)p* zk`|a0n>RPs`WIv-o+3U*Yq}+wj&|F&l(mKfitVjbPb|b#BOB-Pzdo0U^4OsJU`Ju| z`7br#_8d$BaK<|+D=QCl9WU!DR-JBhUUhCD>KkEAw zE*7w{79Kj?BqPWs#VN_(Dn9k&LQiRFdC!?0sYTLi>gtccesFry7-W(eJ&JXDjQf8# zNs8*ct&G#$a1to(hsgCZg8cX4G(^0F@b<83v~OC;J0h-SIO}5r&FoZRe;o?(V~sjC ze|d?sXQRQZ_O70zqpJz!^QIvD?X}(2K01|^{N;R7oWuXj^OqLnQZtSo-(1}HXS6{* zQ=y_FJT_b~ypv5*Q{qvtrs3f;XZE4PPosX`$0?OYSzc##NOl{*l{Tavw_}He%;h7T z)*`F{y%m9DF}o<^IX&mK%s&x&{WO6H?Ok#sd25UMha9jU$HcufhO==W%*D+mDv5~sX0CbkbiA2%RQ=m9R18c4$AIu51mkLkSPD86%f9^N{1LHlh`iC~VvAh)%%PW$iFfdY`uIqn5c<=x(GH_|QeJZ>)ke#d|M(W!zE z7Icop8A7`jAI~lU2JF_>=7tu21tj_mBW+iJY~b?YT?B=Pl$#MhzwI$SJqi8#Ht~tI z7xAC{fP9HdND8#VEW^(xNAfK$j;68=;T3ajX&Db|lYL|V0mQp8%qhlL9+Yd4H740n zqoDWM@wis1=D%lLQsPY^A$k(Op)o|FHKB(6@0zLnlc!Hh)U_O^*H`9Epg6Fh^%7|? z5=rX&TCK+iZo6r|-$L~De#H<;itPNHoFbwrhgcv3jr2E)R|Z2zTKSXpNv{BrjU%f1 zxl?@ne#;L2sHqq7$)SkRz&cLm68d7*4DEU(lPy+@+@iEy7E#mj{m+~FCWubL zFHSTh^lT?6Ar6f|?&7xqy!EzcULJdQ^X0LMV+Rtn!_xKWr*(_8H7Le^6lQ6usHjxK z@)NrbR$t?ydM|FVEi+IdlDEN$Jz)1YEvhx%j%JAtDMiE3i}t|M%#thAIdO=7V5lxu zHfHR!uJ5gfO~CMnLN3-UOezJJRCCh^8&aD#X)B#*Yvms?%@sN=FpFB2n3O~bWxr{L z_CAU@UVeTB8WO5-T-fw+R{DoJHp5vJ_^NC0RgY1fpM{5|QyN9p%+Rp^a4B>LgmENG zBb8uvC4_|ule9g=zM4SW@>5b2AR`&Mefu_BeF+!AF!ZujeA z%iA=qp}`8J3yvgADZG%U&5hP5>=bns-&<(Cud$|PKc-G^Ud14j$n@TgAFs*MLIEuVrj_ZV$pQ&T#QegkR$Ax+Y2^!JpN?Uc!KosszowiRbo7udH0BnMF* zP#y_*h8MbI?%y^@im)u`xy?~+zKy2?kn|wQ=;lp3d8~4H;^Sk91j!wEw9x6^!?Y7* z!iJH*4IA!|+Ri4Z{hs96N&0N+u_3vx8Y>T7f^AL?S)};iCL573fvdOtU;Ru?J+2!F zC>nFj6Xr6pfT0%fAFZH+DsfU5NTSHqgviEPvZ&t>-LCm5ETwC;Ci5j*Ja!53YX>96XfQu?%5L^2{FA> z`GYT%OpJjt{W`nDMH{u!!^DElWV2$?ul}L&rgDF)tD9|9u34Zbh1l{n7~xo<-P4C7IKG4{)l)-#9&$KBVvBKW z1tM?R)^i?xuZ?x7lk+!CCvtM?guicXWKGa2Ip2(xCV2u!tby(90O9e3EW+Qp31>0uJ8KNAoN4q>kgi6k;2T z@PPvfiqHFT@J0#8%|8DsK2i;-hny80TFl$92QPUQ=|~Xac@gptQwgxvto~KhTS6p4 z*`81=pU5ucS0}sJBtwyBdL(M{?&jf(srFya+(t%~{m?=Q5g-<@O8EcYVy&n zD_h=w%XG)lX$>W~-~6DV5&e`IXE^R4t8i0lNlN68U#$5e_R9@8ZBhjc8H|X3`+^Px zaUQ1QGc#EbrBp%~s(?j7m(ZgO4h(!B-XY~s_f0!jMU>sBn&A**>51p>{2(QT_y-q= zKlJX9jSnKk0IN?uAvi|vhTz!fXkD(*K~Yi70<$JAN!(jI_w5rL8y-dvHBIH>(sli_ z?|YAR3czR`LtXibikvqJ8DMB*l4Ay8AnyE+A0c#eIMOqBLiLdwfyA}A<~#fS4j{^u z0vQO2(~X)W$nbC4*aS*0v8$!M_ck^rZLKh>w7$EYQBV+lLz@7%@1Yy20AHA6{o@pD zkBaD1Mxdf*;^I=3)YY%}(#I)zsrn3?djVQud;@+s5b9*-z$HOgi3oDLiMAsc)ehl} zD=gVd*R!;XZk_%r7+vx*PEVPp`FLD)0wlA<<~!x{pPvnV*as1Li$A+qU0u$zN5eQ? z{QI($lpnF3WOw}?eDKmRMBBhmZ6QR92n#Fg>0wXcPk<8>m@~1wiWJ7-3LF(&y8%Y4 zlQY-E8nKkZY<_kX^AF)6{|9GOae7`KAW9Q3ZSb!tTF}d}P84Me@YSDl9A%MQP$92_G|fkq+Qwtn3lKd1&)? zzHTXWf_nsDdMFkqHpEIgY)2TR@Zrb4r%s*v4`n7nsJ@u%ZP8lQtw*sp+4pbr;`Wpv zNmB%Un_uUEWbPH*Sksy8Wu5m2z3k=A*xgEul|AwmmNr#?`Gb*Smf8+#^>uY#Po7Xs z2vPFYp9|zFtMd1JXEwElA zg@E1Rg*L~0wvMZg2;?1@dcChL`c3#ZZEtEawGz(v2F0(T`XlFWh5O{PcV6CntkesD zGYu+nH_o^sdllY@;{bxMQGL=sW!3-h4B0us{^#H)eGnZMjr9enm2QXp63!=UWKc7$ zfEf31KOI}|{bdy39$C1_euFf-*1aImgK(raHs_mUY}!-u>sEKOkRL0i6f$tVbe>y{ zJRIc-hc#)GHYM%H)i>g*seLxq8)FG(;l0;Qu37q*c>oty2&sJ1+h+bk!w=*N_7>KI zv-j5{LlBWb;k_|cgnoD&hKqt#+ErXgu+#~il`nvD{CrffKc}=?u!*@m86GA*Ho^e= z51w_+2$OGhb=zST@+vNtf}cJROxi8zDwMR_hHLAD`yNcC8I-?@j$Y^SOh^ly84b*P z)Sp2n&UMytR%2x5%ns@c%$_{{64O3=aN6(rApUU`@?>w1&6P1kzU~?OqJpR=?vdc!oK1&?B<3QDXA$*+^)9wx{Ybe0>hKfvSu?}r@vP% zu&*o-fwu0)!JhL$hoYq6UEDC)@v%UICpVbwq=R{jrnRH^?2JceiS^opf%%?177$I) z;q-#vHNSqH0~E^P8N^_~1QiW|F2WIlXNEUuc`%_=VzBxE*W@O&ItcYRmV$Rnvmiyk zKyeZej>SaxsZhPbN7qP$nr~HDVc-pluQ%if;R41Vs&v$}N#02#q-FbGZ7bDJ)E&N0 zZoWR3)p@npz{3?{(jUOtE`ZRQf|^w?BI!lf`cES*&$ZbO#@Xuj3VX}8_Nx#h!LAb5inVrxYT(^R2;iK zUEx)0K^1?&A(1PY5ynIg_PesWnn)uF!P%*En)-2jxVNY>KIX-K>{4tAJ#?rGfBGT< z2SyD%A=7;&r@pR{)!F|c)K0n%!``b;h+?0IDAK(b{d9SLe!ej76idXITx;Cewh0!t z7uO-v&YkvSHuApq!=#RCpv8EZAZ{F=t1HH^Z_7$GM%qLHxx6-ph zKCioC$E+W?pKBh6!yj!4vMg^^<~p;Eaxqgrf)s!jH=H$^&7TLbkEYqd=Jf$IpE8@v z2Z>9L}>BvR(VFIrt%Rj+Nzw+?D zZJ-Efgi$UC+o|G8wbR|OOp^x^gj=?@*#%iyHlY?2ecwRXFmZD;;%S*L&knj4C-Y3) zTglC}vl?wU9C#B`G}siNDo=2urtte++%1R1I6l7vXbPL=+nbt$63LVDJqlYTn*Lqk4AFK1(F$VrLg+bxF_ z)j{<1SU-CNLO!h-hM$sCUGev6K%6d4$tSiXz0I{Yxg72mVB?!0e)H#NrytXEOk5Jg z=enWhU?RUueU-?Sz|1sxY~TS6%P|9?wdLg?_l;FCYrC84j{AjFXtOGxah^ey-tC}KP|o!a!@76nUhF5h-qU;cYtOM1QHFeLg2JP3xX{f?II6Zw--;nctP z3a@wXJ$*`BQMuS3ms%t;C{stBHec~7&d5rTiLS*}6UR=vb#mb=Fxv)<uqoyU$J zZ`R7t_SR4W8qS$PmGtf%?l#U352o1JMDKi;T3MXEMr`8IE4+J|FbGZuoQ!egQc%*c zU@zYIFPC;Ir<#316FsIh@{jOJAd7e9!ja^=;1@hZ2bs8zp!2)QB?21{lvpomdHPfi zhZbUbdlMaf5pNhBGAs)M1F!UH36c@J8ft25%fTk@6YiY#BoO<2{3Zn3eAxw6w5(Y@ zvUTP=*`4NJ0fs=r$qn5Ww48KxyIH-Uu%IRq)E;t7#=-M)-Fe8T7($pZ zCMGA9C(?8XOD^ms%~-;*5RvxEpJnemm6d-J4%cp9R#B-0z(huR9CZ3fGPhW@ga`5V z*%)IuJvMi?RBg9hL3(<6Qs?9fv=GwSe~C=42Jryp5%Emy`qX+^i6lu~)4Xmfv9zr;O#!Tdf3`T? z7X^b||NL=~n*Gf~1igv&o)=_))|wP|Lq8mk^z+-W8thtP^Ji$?-l9?c$)GuA6RNWA)zKQD#pKy!=UC&yoFYuvpwTeb*jKq)Sy}0eOFfL~*4;n%colPb zAAdd$K0I)```o5HQD-jIU{&B!8s4i^O#zq*TL`O_#qHaPxdjF765`^ssMrs$pR6%H zF^Hy_*qbBcvM9v!I0@rtiGLrhes{ei$#V}W8ewqB$UvBV*k1fz0~jEp!=mifcW>Zv zCI67|Ci~xqshY%#Um^*MdF1O&K_e);x;SNtv>O%nocFo*$r?{vokDx3r<`ktZ_#qK=%(gqI&E9N=*>Ii>U&%=fDzT##YDs+fn?k?E3mYq!E>zn_J|~5*ETcSbwZksMv0(>M`gc z>y7lP&*q zAUX9$SAvlYLPe(Q0z!O+m6Ro^dS3F6Lb;+$4 zvElrO$*HI{L~oW1udh74y#n<}9hqyRmwPMtXOV^rz;8Gpy$r;Xl>dwo;R9{&;?Y22 zV-n1G-=Ml)Bt2cOF}f;+PuHY8e}``W9ug6y1L?Zn5)sPdh;CU5QN;XF{Wk2-X5-I< zdF(pLh>?V@u=r3mq=f9`+p8ozZKmVWo{rmYk^Cb{vF_-NH zKlI0&t*@W^f4^%OWB~zyHlICzULWx6St`RO$g%fvVO&l@x7R*_KDhbHC!*Y_=2WCg zG4_4OUfr|aXqxw;PK@-{9FL84G~N{2J_IOc0X-e7s;cq>UQX$`=FQdF&-TAh_=it` zjBRE~P{0e)-5?>-f^>(Z(nv}R(jXu$B^{E|4bmyio4jv) zfxNd_gZVtUrj%}Qh1JwMTLbxAaG@0JX1y>ki6i(H!;!S-!|x1HSi0n zqok}VCcHc_O+(=S@7TT2azr4oiEjTv8lLgGgx?f!lGb!mv3>32V&q_kcx&WjXKm|b zZD~yJZ06u-X=_8z`Iz%D7dyR$larkw2gm<=!(&?qbB_BY&(IJEdW7sV3Dx&0Td6LZ zBpOp4yIfp#&3>4e`5~E_N@ZUr%tkd$*q=(9$R6ZayyR(b6HH2cb|`b0OPM9}UwFr} z2rAD_(x;X&JJ_|GF#=lb=o!Si@Q8GEZ|53sA-)g;(5X zlz$oI8JX~M@K(ZY3JndF!WQ7+G&gfoYet!PQ6V=udc!P55tN)L0ct42!e(*)~ zGsHULJtALay$3~{CPGFfeeLX=y3@6*e9M?KspCT?#T6pq+wH|YpcQE4kR`%@UDFWi z>H4PXPmu5cA7cJLmZJMTTjGK9Lfa+1eDCp&HE=Owd|aood-9ZQWWx9 zbL0~Uh>0DMnny8QTyAe)ZS521<>A_Zfixy12c};ayfS}pkdTv;_qVr8Fa7=dH{}|-`&+3jnTVSD`uZUj78aAn)5S36tf3mRW@jamm;w{p+ZDP%`w}a< z&ZBxan(++V&(3+V?SlgDUEXi;PphpbC5efM);CL<`jN!-^=TIu7YS%+Qr$O(ANa1F zy&(%*!PknvLAH}5kv@(PmzG}nvI_Tvc;d1%tt329LM`B6x;<8;qv2Z5(R8Uy$!kqP zPC)Q#F_FFJ#fuls?P27P)&|n~sBqAemTKNI#aN2?h-5Oas=FfHKA+Lv`{t)e;?db_ zI+YgtR}*C>dIf@G2P-|6OC1qIP2S$hv$Y!=8zCP)wA4DTmD^0$EM$yYMcu^-nnPSF zl1TF~!@3>3+RHyX#h!47C-$GDByz#ugHL9ZczAd#RGx^vy*=@2o0-8P9X^eit^oOj z$HyU&kvp(V6^7TBXMEq(H*L$=Z|=;;GKWUZ5^KN>8noQ6UBd8D6g^w!ksu(8q~huR zs#d5@-}ZP)&kru+XKSkzu z*-MF}D2_@~T3R}XNVq(R4#6l(#fbT{K*As06`o$LvPpJsuJO!|ck$ujIK!2eD)Mll zDSt=4qL3$ayMAKMc_Ay?5{OM6%VplbY-(z{Cp@tGB}T6A|9tH*!%XRoZ2*`=|t-K7Fd3HS}JK zJ-(yC{omNp)}+e3>vg{?x<8VFf&wX(5EmCQIfs5*5|{b^JnbP1JgSHe10-uw>8Clv zVU5pUL?30=)m<#U?)yCRbg^rxdZ*OB+C zo>1E4Hi82_uFXtObE{E4CqS*Vnfcu0dYJ3_r_!?MfvgoZDQOk#N#YjR$qpxnhf)d( zcw~=tL;6#NlIvV{i;wsAO5be#sd{stpP! zc-(L_ET8|)yU_;?n{0Vybrp|L+TP%LB7lHXjv&A+;x3;veE@$)Tic!=y$8yC4%2_1 zKjx*mb!!!ls#}Q`j)wLma4cP(9R^{OKSqcUUH`4M z;S-9z?dmzIaG52FQofYu|LC$pyQSJ-sgMj|D-76ES2ObSYjPPjBZ9lbjjFWw&(_j= zVwL~1Ut*M1euNl6-a{?bCux_DW)y(Bl$G^73eRFFQ#x+9Mcs~~*)6QSoJ>5MIn*KU zA&X4o`_xCXI9OQc#uKGRqso+?X9s51v-JYw*1UO|?D3QE)b#aemJ0IoWBc#h-kv{3 z{0JFh5vvhqTb)47l}|}YAEd*`%z6`_wl*L;&LYo~l8~5M4P^#Oy?)K~=lffo1qyL{ zEWcJb*$Im2qNxcVgO6E*fGX+sv5rmMY42CCx|PzxS>CH%i<KRqL$V=A(z^=4)7b?n@oG z-?Xb(uUqlOtd)JwFnye6-myEA66~@ zPA)AsE3&g0*>%3-z^0O{bKWj6OFj7rw?@jQzPz%s;%Ql>EvCffrK-Av%hR!k(oAmP zQRX?{>?iqaq zLc%}sS+mdQdIIE-`d?qv`26N(n9Ho|^WRP0Hyu@P#;;WiM{QylzdD@Xg}X*rWh`JIlt?NB zBDvtn9w@5s*bJtorncDY_OQOZ>WpL4aDZx|5y-GZr(LA}AuP;&e#jddt<&ZhZVc0Z z!|&DyjpzpsF&Jh49%hW^WFFY&$WVD9GGZOz@jkxD-m(_YLeh6dt9egYH0O@rX1IR2 zu{9aN#+An$N=X)G_RGNgDlQ@VV6ba1))3B>$NTrEQZZ)_Fp-0BD1V9_kElSQe0}Aw z9~Ii&6i4;ulvLV2BqT&Usbj7kE%7Oe#T3~K1$1&6Tzn3W-<4;F_{PpDswZB{6k^7p=C>s}94Oq(5>e~Xw zlRM()vkmTC#Rg3_7dVm=HaDyPHTPiGIO9^Hqj+by?B*fWBP4YZPDrn?1HK_KR3DaH zkOc^<|7i=&{Pt2&(dC+N>-?QyYD(;p-EqvrfDEZ%JU@EOyANawt}@26;Q3^AP(cez z2+hqokh(NI&8AVl3PQWz@2}G zNJ6Bc@3CXr6Nz0gyknnm{ ze*WcD{yu;y^{k=Tw-cC1t9>X*Vs!W2PMpRpxaZ`fRU2*abF?y?1ekL&D(RSMkj2sW z7@lt=eIFW%HTWK$y19bpamwJx_TiqP8-KazRHdbVWhJ+Q5^dvwe@Y59rk~xWM2VF2 z%A8CD-(>*7TPLT=kBNzzCm%#bo7qY-7Rt@m?-DKM4q5ceMRS+_Bv!UU&$&U%(W-kM z{$j4qI518b%j1a9y@KBfQ?rJkRNL2P#>eYw;@#mY($}wXHLV2;i;Kw8N_$VJuAwQm z8kdbEz(MhR(jyU_9Td&@?p0WaDlHG~XVnIb4~(+E1>gNW>LOMYR{E~r#E!zzfErE} z7!yHd)EPz`Rven%&JPKBa%j^$$qKhfud#=)}WQIgg?U8)^JXA zen89@_pZ{ChA=)_J0OqcmBtuvisL! zIhrGvkHja89#ag{Z~hregISrT7u29466sp#a-?z_RFW^~6c6sq)QQE`&5}LR#)Qu}sMKV?`Mr7ErA8?q zo!x;LMhLI1t?^}hU7i1AE2&>xUR%?c8X78d4}%}5tF3+K{O%pDD#?m~f6E@f&oy`HE|+I7qL(=^e=eLKZwld2^AG0qsz=nhpfp`$ebYvhW8t-) zFboe16SC$_4krD@yH-c{Cp7bYeu`_Ac9F9pe9aGGKzNa)M0RYaGt$pdOga$%eMXRT zAg2mG)fmc=Z$8@aDd89_e=u+3LYE{&E&QG!Pcc3I;eVf1-$rN@B)10R>-^i9ai20S z!y%F0S2gQQ67#;^fdcw(d%T2h!2ZNl;t?4(Krm)Nw6x+% zoi#NlLbtZI*v$J=Heymz!gK#iwnA-@5pxq0oBzWzKm6e1$@Wlz8XE%-PnEumOvg=N zP*Bk3@p&>KA>j-XHNVsPpbsF>9eAu8IlXMbK|#emzka>{X~F%2@9m$Fj({9-%!}cb zeRtva03|`^fK)t zk5s{TJI=L>{29(~4Lk8N-o3H2u>q1#Fg-o3yR^8-B=hVU1#=F--5*jyPV4jODJj#1 z8YTMjJ&EJ+U7xdtEP^U+=NcD1efezBC8d0avL^j~)+TqnCZ1%tyBID$o8QRu{UYU? z&%BDI-9($ngMGTqH@{~TFKt>?ZgPfSH!-2PHC2rdWG?%WcIA5uTrtFZclRvdIesxQ zDi!c$k$AYcS9&Gm=6~F;8a*%cZGbVR`}iO(=<3h-1qCzp>YVd|-iSLm9N1M%dPtXy zrx&gBv$Fof9vxM|ie|inIHK-+2WNKRc41sb@|7Z`XA$Z}$jZt-E^`e_icOvuyj~aE z)%Cr-z3GVXx1$AdEB4jFtjmxY*1ARGBUUesJCQ?)!NEym{UN=&xF>u|UCV;ZM z{N%nZM<{Z34pLWFv-b@)_ZxIZCS*2^a*V(Pa)s69`T7`Qn!Pcdwz_+puFYG3d471` zcySFJ8p&kYKlG`{WDZJjZe)~=K$8eb%F8p4TUB`ZvaO`)+A2HtafK#37wc5n zf6^=ZnN(gv9~rx30aolC91M%yTpkKW$h6`m_BFfjA}NaAIoft#yM%>f*DOUK(5<*X zbMQxQ4g%bD0H)abJNLg$^=@hoY`?ubIU`x#H`jPG+dPW`0^;Hby9MM|E&4wnydqhp zm6JyqD{AcvKsD`b8(dxMC+z*)UKv)YeZn-9uT+H^wM(j{rB&mwf(1-F95~}U)V;?( z5r|^a{_9VST^|SzgmRotw z?d{L#xK!bP$4k;pl8~;jBw5<=#V$W4#Kl$pvF24&k7(*{ZIjxr_Dm#@R(hKBQZYL_ zJ4N*U-u#SJZU%jZ0!_S*K?o8Gy2TxaW2E=VeX9~oF&iP1)+Z=~qaAyCmzS69NJvO~ z$HzR=jh;H@WfMu1RCM_42Ktjzti&7~9GXSyiGQk0S{65c`##c{m}>vb^R3ZG*|3X< zOl*BBK?Fhe$oNh7Bb_@-UPJY+j^T7-jbkHURcJ(ng*yZ>I3|fzi8{n&C6X|xbw}x6Lsf5Jk+#1%Zf@Y-*6mwIzCuEhwOe*s_l;vkd<{G zi0QH}fUI__suRn(#w)g^&Zu!%W_RB7>gwvawX+ZZOp!_B@!~Na9F-~56NPp^vf8iTaCcdi3bi%-lq+0&D8z-@N-Evx@})r z>=74N#p6zUNmJA83}!j^!qLwzK%G7=FPpwe=6%bbe0JsP%Ko4t_!#1|z(?XrU^dV%wPHOb+(Y+*7~Hfk}i zl$WW3q}zY0h@Av4gstM*2L=WfPWP8u&d|J^%_+a;Ps>9`dO#q(kDlZ7+QGqLVzE7} z4|Eh`wW{4Fe2=}B)I%z63jj~&`%*zTL&tEico*b-1PP9pN3EN@Zxy-sXLE?^gRd@#pr4r&`viVo-o<1 z;uNyfL@|f@J<|F9%dH{p$8>ADj*+mi@L;i?&^^qbh5yVXNlArX;d(zHlpeC+O-}Fa z>Y8kH+E5N_F|0{`-sEWh$q@ww1&Sg*>{vS4Xkj_Z-N9fwFaGzy1K&z3aj$yo!lvoC zzWO)!AQ^=XtEUMctKh_)jb2FTZmhDg%Jckki>fX2kv#mpexXsmVw!-UAip)&;y2^P z|9EIv`1vP%2@ZDh(!B)#di57(DpM6Klptp^f6fKs9=djx10AB@SD{l^r0Ejbl+3em z&6QSER8$6m!usU;QN<)Ru(z*M36J$y-S&n_m7VQ=`rPMyK_h%Fd)4@ z{ErNQhhH*VCeOgZf&V;;HU|L4L(;FkMR@fM4MWwo1`oC3`Q)OP9St68D3$qIoyr4H zML+4@|J=7a6F?BZK}_+BQ#U@IePnyKp)O3l@XB?z-qrGOwU14uHP7b~eVe05uWqc= zda`^As+M@X*(#@iSN*+eRThw&et}3MnEE|75SwK3NAyI{=N3}U#qCv%Dm3?|~ zF_&-_`nzZ<^&sNlf%=T&JBkPA%yJiW;fUO z*3eN=?RJ}P8kazq5@F6kIw=OMBQRyEb@D<^j;aZ&GNW!?M}bqiTLH3*nrLXIA@FU@ zA5JXLP#+Ny6Ayin!f*g>=dWXgW>NEKp?EMJJM;FA*8rF2EzE3dd$t2O*V|CiF@WG` z<98>>9!<)}S8BA}1q;;?WC#-Jq}Y-HeKOo4^+In#v6@1*9?Q9=bW%Q2Nl;aO|0Wh5 zc(VqGjm-I8Xr>ZL`y)U4-p0MNHJO#&CSR*~rHM*Q;s$6;mseK{>+8%V+ErLWE<4$@ zw6vod9+fT}J-ZzFoM}SUZ7AhGCTr}orW@Q{+TlE;^{dd%)VYvzQ~l?jwx$7O$o{J; zX`GcL&m}K?z_TB%N_|CNe7b2qQs& z-Bovbt6q3qf!-OZC-(en&X2-kVq#*_27N_3_pPU#pf_Fn|-YDSF znp&oyc^u;QTs1v^CL{CHs>%UiqSyS**x@E7HPB*FWrBdjVdN_SC{$|YE$HbU2VH!z z!+iXaJ*gt@-`@zVDP+f9FK%t&;74WNMDd`b9En|rNG)|ROik7ODuedEOzy)&D!pGm z6L$Yu^4dE8P8}szE(SW<+41h20X70e^u7K4uhC<@u&qihe>2q|kLlPI7wjlndYnDj zq!}z-m>F0dFtAdf&K5r&ii8$^6~k{tw=GJa{&8yAHvX zm6iJA#d^ti4F7_BA=f84v!CG4D62{kfRna%hzLl2nHzyvq@kvMo%k~MA<}%R%PbND z>f^_czq?G+c{B?eHe5P&B|@*96deH%(_gTKK+(s%5%Oz4*Ww5 zI;2OTdQrjK-U5*1{PXjf*N@#m4mX@EH=~5zWv@h%MSJu|)e5g*fg{-UaFr(3tX9X) z?uo9R9w9gxajB^hx9r4BtD`IC;cgp3yVAmlTFBYDE77N=+2dO528Y|$Yi$W^8WX^H zN$Q1F)y$#h-Fi3-+KA_fBlMifKz!NgWya7t8@Sz}5NiwxIHt)}Fgq984^?X&O^naorO9|F!4W$g!ao^y?!5-jbYA>9I?32QMerElu=BB?wdtJ}SAbdCi= z2?+?qLBy89z$vYJy^~h%{?Dcs+KMjxV3#in#yULJ`L(s@aHM%cGgB@X!#E=EMs(yo zQwsMUe52-C>B{UZiO-eEJe&5^q=OsrNK#755n8jAoV+|rvqMEP&zqpNbni4+&PvPQ zxkoeh!FbIRWzy5sP!P8!iA(AaAv$ zs`@M=gI*F-Vt2NocA+)+{?n(Qgij_+oS@}efFnWg^N;RGTaDHe+Qh?5<__(mv1SlA z*Lohv$5ViI#mb9d_?F2hLc_0i6frwBbr%H#Z{)l6WHf?8xBD2`XOj701Bv)EIXSta z*x1<6q7n-2A~M^?Gp6*UBrTERwENF}4%~3+FFAo*RK3I~bqD+K00d0f;-S%Tae=VP zMrQ{r`36mmx^=HAsK6KeRUQr)^Y#w`=2=u}Zx3R8*Nmg`w>o9>VGbP!Glpl%s>;g^ z1n20VmMcn4qKCFOXL_NnG2FjNIHL7 zNA`Cq)5i0;3itHzIEBsIMI+=)0t!G7%DP6*aY26U?IZMM4h`mybT@*x^O3P@`hb%; zY`5?e?cy<0fLS#)KY~PMdYK;&0QGYq{ItZV3|EH(Vg`?8iP8<|pI|jh3yr&wA=1;* z8n47|&Z0J8SNCIKV@sKuG8S2oCA1qepj`#_y>?ugy%$M`;pe~orvG{+AqT^UO#&*L zA!kxZ-(%yIPpN&MJNbnwFvf?ndQTM-U+v^D#oPfg!vQ?PqX>xoFl11(Rct*c3@+0aIgf?3s2qM*w~m8qwDeiW&t{gBrAb(?j0SmEA>jVNP~0% zd{AO~TJ!1eg;wz>T9#-H^-|lL_zDgwJ8VJ*Db8)8dGltC)o38X=x|s7bzk= zSe2hAC*4kx%qMC|HO(yvB=-iyZhk=rNr_TKBl*N)hF=i#(08mzOK}B{2BD}pcJ}Sv z8}WE8Z=}0m)iAKKh6=eIG2_t+hr~b9iT`Z*?)=CS@ezP?tx0EOQh9m#AV0>p{Vp#D9f zTf^+mCR~FoZ0g0Or7o~)=C`*W?E*-9_Usu!gp7YsU=F#p1k2QeD2f)W%B?RZ&(-(T z)yP#uAqSwVtQD~?D=VA2xVRMSvt+tq;L|>{v3aZkl#lz(Snt9uOl@s#y&2m)9xrs5V`a_x z^24p*11K@Om+M(kOaQg@pGQ)6K|DjbyrP0ZmdNXDh5Yj9w;}?eF)leQCU({4aPbzE z3s7S31-uZa4EGpKhf6pbHG6{QnldZFbj$TSk|`Y3F1{;CfXXi*KnMoQ-<6d>D5uvA z|7Pz41)>%6s=u7?INtm=V3W+7lNSBylP~O*Zg|}B(DT8k@V+r&O^a)`<|Y47=d?3T z33}K{Pel7GEZs(&)6-I>r)ao3e@9V5Z9j@$gg2n2i1v+X<3uhE0-ko-{zF>Mo~?j9ZEo59Szqn8NkNH)k{xI5I{ zTf!{oX=`g+X)%Nh-kR}4A%4X5b#q?&?AxhCdKVsSPlmOGl;RHelG01tJV!7>{=rd{Qh4~i$ZfFZ6Swp|hE-uJD_sG_|N#{p3lJJ`pQtQ$Ok};-hl#XaI zjclLPIU`lPj+;0$sB^}hslDmbKU3d`phi!`j-~7E?|j`geSNeL*vkh6D@G zqeqW~7#XvF+Pbo`u6)@!-9^e|)_){>JXArXb?8Np*!6ypeEk~OMuCB6 z%8AFO5l@i^`eODwC+=bj9E)(HhwZPU&Twl+WsiX+a^id9lcanqQ zxSHRu71wFb`v8bqZ*(!Nt|X_z+od^fgFt8L0UcCW8{b5y3^aTy_R5?Y6SAf6Pt-p5d(Q6m9rVGP~nS8s3j?e^1$qu{{y zRYgSwOo}r9?3Z|{i4UC&8D}7ZTp}7%}EE#75gP~+_ju^ZN(Ir>WO%Nj* zNTeB{Oj85O3L|T-o+~fb4#e`P^z+fSv6=WgpK;1#s{kVJTV)cn5rA7agPX^>a>epH zP_=!bu3ixm5tY;5ySFF?>(n=pE;d)`xYkc4iRrvG;Va^Pk^xd91-Au(hBkpl-fsp` zQGMRzK3#yS@@a-u$VNuZdka1a=8oZ@0@AaveE56phKzXkcSItJR^$bE)r0RBpB=bM zA~#r;eS|}}2*RlHWBvLURoagPye|2LMMM^smr)V?t_O@ifBt-8^b_^A&j=5+4h<3B z5{tvb`+7f|7`}e}>IAI90(kkSYVzgP^3VlZ5o>c=y#_39OJz58A_gCSl=ZHd)B7TN zA4FZFg@wF?&;RWzf|(xjQ(7nI7Gxg%9Sy7b@x%D$`pOh`<}x6HHsi8stUGsV|B3Lb zS&>(JHKeNWJeDH(xc%r6Q`HqSs~QF~JWmJ-n;)i^7ONRjT|?eNl{x3# zGo^3ey#k{d35(Q|xlMn4yse9|hX)5WYiaJ06ERnZ|K_~e0Cg@hO~~0_uF=gGRZn=5 z+!qz4g;t7*jjiJ6?=PD!>M5tG=C*`hyu4y$Ymxu+Proz;W08LLEWlxJUV`&=FU9ck$=fl^)dT~%CW(q95rRl+ z7OsgD;4LdX2|d2S_>K%pN&!vpKh++v{)&DepC1!L+!1m2IcUM9My)~Y(n^icc}SYI zlt^sV-oGM^GtLjXL1K`NRshu+w8R-GdgRkzV^pTzPR$P%&&=rm`1I-J((7q{MDL?= zNcfmYO8(5Gu*c2`?`CSXm60gESAFZ$7np)~}~4#=2J}FOjVTxvit)Hsu64x!fp` z6AC2~wDA%HjsA2oTR?qe5U(I_MgtvHO}|nuLi%`LjQ*KYFIRFO3aEMKxp{dv^+N3I zZZYk~&9#o=#`k&%Z;n*JfEOCKqYegkB6uJ?SM@pJ@Lo=3#z5()einY|4}U0qk6Br< zDBF{B-&DO!|AqeFXYK{i0qOB+g(tobVN4_|%3&F1orV%1YiMW)@3#?Oe$%QjEE&S^ z;r;qGdwjJ|nEUfVgx7oiLZ-*TaAvcBMjQl1+$GI%v5mhGGm;GCiUBbq5^SeTr7W2v zI8>4iZpTkde-Z3JBXpz{aLB&fY2OK|L<*nnth#LU2$n&d9F$o)B1YL^#FM7JLpw(o z48eECxVm`M%noUj)*a&p-l^tKD2@z?@E!we`u4NFAK`$24Lj@CWh!ZTw)(wPyJ(`q zJc^o*PElD!ML>cezp$|I;IE3}{?DV0=EZj2uoO7jA>alX=8AA)l3^R(-^~B1+ko}# z`O?Say9(4ItctFOeFrFc4;9O?W{3Ui0)cFv?$qs)Ks7c`_l!TZb4Kq^K_YvMs$SBV zOl$QJ_;=Q=tlS7F9S*+$7V?a%t1G|5GUmPeyNs9INQUT!NEwJ1C9XYgxvoL3jX+k+;pwIC|sl-22mF+Ty!b&(p+{DwfBx-EYa}*e%b5g z8sJx3b(0`?@_x^d*04B#WJI;xW=3%5^yWIaSX7iZ!b>760qSKJGl%>KWu}Ev7u!)b z*WbT=dlKv$Z1if2qoO?3YostPvYDE__-vc5c&i;&zH3p>Gpk3x_Bc4|3@S)@?G`u-2(Phb8O^T0S zMa@7%5J(n`RDD=Gd;MQBZ&B5%YMhICYSDXNK;wpFQ2hS^{J2nyow{ga2&z~OxITQCs|2DI{zr^m& zHhSIo7szcVoYOOM{r5;vy-)XA@t?l?t4e``?smBPUrk-z5^N`;*S(1gPu~9FzD;-; z0cXV9ZTOeg>Vt%WjMz$G+^{cFufr85@)4Gep5E5?>AoLkbxOxcBCX{#Z2al>%|Eet z^gDJofPPEGkBCEle2=6>wa2D(LozRgQksicdpF7nMStEV9~@BXx0- zpB^Wz{($k-MSEMe#rT$37Ih=AAi-3Y6 z1dw~y3%Xm=|K<|I&YoqVkqw`YjxPKzUnF>!Kik{U0toinr)2`Y(;&aNKJt|q!V9-s z?8*qN^ZJ|X3*goQh=P)@W!+6=qkCeeA(@HtEHlTO3$49=%~X1%?Tby zh71Z{bkfoJ5g-MyBQsEAenpdHjgX!7qkl8B*x#9ylyst( z9*dg7uf)=q0r`!kzoUiSseIUxC~2N#HFii80@1Qsszh>@cUo<4BL%mDn|+$7r(jBI zDs})$A%i9aWu8N&4ER<4jpGvo%9FlCx8r#X`i;Vp(+EPst4`3&?lnOd_g6*>5XK-| zzrYOeK%F;7SR(jeSyjx-$FJBSt^l9jgZM7$+dq{`pd)u8iF3J+a)&t{FrsS7{F`l% zwXk50h>VOk(+cV`U98l8lqBrRNnB8fsghStUnuhIdBx>Lf_`~fWy}%4RMYNQmX#>S zD?z(G!yKw+d>TQLIj@UHW5s%fIJClvhs+<-)(3qzkXDuvH~+kw@x>64D?Dm!SUIs1 zh2h=y)bRPk!^6OZnSHRnN2<7zD7jqXKU}e?^7r!#sjG7z7%i!H&^td};zuBIutKCEzL^XX#@FXvig1% zvYnGtTfiOS8Zf1xST?e;2Ce<=4!<(+R?DxIM}p)lurKDv6-s2F2r?nUM&^sLGN`VD z0C&~ zu4{^!L$P(sD;iKGLeLG#P!|RuU6co+yvDEQW>e&`5)5>_w!UP(p$rL>T7cpfbB!Xm z3BrO`TD6$SQ(XyWrQYXvH0$E;%!;VEDZ14qmnbH83=6Qyf|IuE#8Ia|UA45(qHPyR z)3cl&aWZalyzx8ub}vAv);TpD;L7hjMU}$Q^N5+4eBoihAPdX6GFfHvVR_(gXh+C! z=|yL2=cGOR8hx|I^vaDk_BE14;?2kT!=}C2pMgeP=6zI5UYGX2H!93;?jV#teM;oB zr3F*OD8cYgnMw0}i;sHP(UH@8H#hb4Ux}Hee}Wd3hh^?#UqXN@S4V~bb)-lqAx-dI zcVlc?UOM_E>l}`J-fyFmtw{jSnhkC|paU?K=+&t=x*fARf|&iT8h<~Ol>J>5H3Z@! zfBkxq18^$zKTpQHu%0vGm}g&Dk7-$>$O@uvZ$%-m;*HK9$e;q$jZ%E^VjbVGVutIL zRo6|0U8wAn2^|TpNM%06^pt^j!;(c5ZLR_4#?`3%I zoWP1l$N8sQe9dxS}g%n4FN`8S1bUc3GA9( z!kDfR3?F z3IWEY4MBv{^Ydshi%A>A<9+$&P-(qWMEDQQQuwSVGQe4~1LZ_cTbt_NR>c6>(aIxo zIhMxj^UZpQBAKuCCaIL`gae42*%$MuH!ahIL58>0>zc1#5q$XY;ZD8V@!xl0?TZ`h z>!*A^Eu-aBauJA+EV6S!c(l~`(v#Gq#Wda{#u9lV?(05R7kAE&kWO~ZDOu~B%fjQ% zkDoeq;swmrwB+$vhX_88;`ERI)KVED6OK69Mxo+G_3-q4Gp^ZPFxuT%-;nesuSQi$ zpVoaaMfgrYP&v~Msm06R(6kp97JPvqX90_l4hIVH+#dL~=#wV|dYw_hVT?w({wQ!t zYQc+O6LQ{ahF$&w9%|2914=?dB!H@aZf7Dsx=jMVuWK4u>Cv+BK3v_}6&~>Ny35D; zsd2P$f5x_n1!g8vAW96e`3#eea0x$n;K@6bi zpF@$VVv?B1C@4IXl$4TIR;)b9eUE_Ss)IUzSMNFNbFZB3cKDIx*tK9S9x6sgMuMw) zSN6`v4DxMXl$XX|p5tS#^)u)xS?Ipb9ljiUgxA=}&LJwCa<*vRXB=o*-W!^%tEcs4 ztdkDKAN^@VW(elkmDOL>_$VdFAz?VmOs*|OVpy~Rf+c`Q)fjfM=<7EBOac^7m^73*sSbQUMAkyH&mHz@LM4C*~ zotd>e_L?MDjg9^>p1OtxwSa4Mc)Bp<)y2PupoZv5qbvc>kAoSQ_51SIMl&9xmzM0AgK6h0(x{85v0p+5ogl%qaP)^n{0fJ(QoS3;*samh^pfef9gG8= zfiuLh(eWiVN9DU!AOvJRfM!wfSdl=0*D@h_887r_BX}&2aP3^o@qOdiv>so6=GoGG zfI1D5E$}~dKpO3>t^Ux3Kv0wdwN5skUF)9954SicN|De0xGqyLP(w&dTb!Mj7XuK_ z7Yy;h)x4ri0OyEA+p8$C>*gMgCL9O_VHG{%+@H9hDsG2>|gStOoyTIY&Cf+ zJUmOO^##D1^yN(Ai)hZ8@ z%llTqp25C_Vz*XV?T>ex!?Cd>n0^@upQa`;x|xDFtz zF29fvo6dLZmPXI5T2DA7fL+;mBd*)S#7p!ai1zpPw(-q*+_#;sA!KO{>e?4^Yj)cp z+U$BI0le{JYHFYVowKj`Boa^yZtLP5`apt%yE#tK#RLSwcvb`^axnZ4;7Kz0SBJUG zp<;8v?;PsHyu$w8xBe}RhGJ{>a^2N#C9{qsGKWg)+W$~}pf7+bS z6~+2yQU8t@Nm?^7yu{8U(rs`f4b9AujbS=<|IOr-&WTnmE9=bWi2SYP9L56XVNGLV zVr0QGS%Fkne7%yik=&QGv_Kn6ViC`C?v07EEMcehSJw(-Bf~k(17cir-e}9^Sy@?S zAj6@6;#2s3vaI`l)Q=_aUj))m?3S4i(7uQc2ta-yFX=<)ZMs8IN_{@A?;fG3pwI!=Qt*AsVr;AU1Ww-; zLxl?mHuaROwKe-~oB8&QojDX)Oib+b?5xFt`)98`X1a(@aR_i_nFy+dl>~zzxG9*V zgV~C%p7u9*2(ol$#_(##HH8#W&(FdzY(OFE!EeB*b~37=b$S0DGQa1aohk^O^}!E0 zYpkQITH#pP{bPWdVyf}%S=${60&T6LvDb)Z`)O|z6O*Zn^K&b?7;t&|onfZz#V+KK z)O9)^$PPog(hgL3n}14{P^Q+8&)=T4tS4aOc!9S51vIqYjoAjF!78@R%#|&$vcHU4 zbzNUw3_%?R^G{ish?<&ui-@L9YUYQuOH)9pVQC@T6EiHwJ3N-ghr_3*@4xBRDnr^6 z$7O#}nu?NA7ODyXDQO^-j-_T_lqV@-_+oT)e`-|nux!KOvr1id^-oVv2YY*8uB`SY zbJNpjSoB||dzWLaT?QvWL<>;%^Ai1rP{@Bo6Fp6piAel*IP$gmaA0c7{#6P{eaoxM z%N}3HH%nsO%jF`Z-W?0KE&uyTqsXF{Gi2dauE}nM7z5cu3$$L$^V`}89=HHmSWXyo zC^-x^K%o4)19kOIR+Ok405mlO6AXQNN~>9?;!$^AePQm#L?i;&){|0TIW)gHXPe)} zmsTn@Y(aj&%pB6w+Zzkw9k2b1rg#(VSvPFv<<2iPZX~R<#>TzyM+IYc2pjT7+r}c)tou)KAU#ZzWlHCg;QQ z9QHC(|ffc+qmKN2l;{gd0O&5FM9 zqIg6FOsv~Hgn57BQ>oEejj|7amu|>k86F)rdE@$gOi2+w10l1i7ABIWe-ic62s+Kr zzF)%4<9+)l9F;(vY5117!F<04{ir3w|rz; zIX%(w(V3+$PPU(#b(36!;6VyWiKn1kg;P9522XWy%jzQ$jb3BZMIWCpxj|czftSQ` z#Q^I=g%rpz(U{hSU&perTj(O)+8z)m$pL-(C=!*+2LhiyOZ=v0D+#L1SZ{vnzdTrk zP6F1Ih8)j%0!IaV?ynb2N=oQ3yeB-Mp@SRTofT|#dJ`Cu$sCqh(_zia_X9xY8gv4# zY%;424M2l9bfVP6OfQ>3or6i)C&q1<&kIKdL)Ol$B?xx3^dYE07SqMeEF$7L2EEUM z9}cU~V7)-8JKt2%)T;~Y-?_L>f~lAA=%zw~$nNvT%W_P$1SL{P@66KJHeL&!S6W*d z!eF+sg`0A^ezr@ z5e`Dd!r#&1&F^rIhbqh!e;!`8!8B~PTct<0I7xd9S=a-5K|!|x*zHMwU~-s?f$y$m zB&bcl`uZM;?Om>=vsX7zlSuoHTA5v0)VY{jC2DDX+y4=v-;D6tp6XFMW2YAuriQ`E z=XQ3b2W`ZPd*7$IK^l_=C>IM^bft<(ocaT-Ju_Lw}3~SC=x2LD)K4fe+!SWXS zLAOaH{S<~C!kg?C{8FOR$L>S~-6?8sCl#m$VG-P*<(Ih*+Ju$118tMtzDxX=em=11 zCrATa{sv8=g;?K5FHJ|7<9$`p)eA|1c*lW)7Ycj!3)nlLPa?rqorn4t0T~_5+GtYS zl|x7(XaVa9J3CzSCy-=POv3>b&$LKJhF-sq{)Vi{vrf;J9YQ-YPEOq6GFhG_&sceg zK&O)I1!=jY-FO2;_3Ie}&*QiSpbI1FNJ;>Qjmk8C3?%c}1~SSP?H>OCy*xYCs~oOF z*uSOOxde76RvFf|&0QX=0FVV73s@%qHw)19<;xedi?h2t#>2QP1eBC_V1N}w|C!Xb zzKHD~hX+0x^tp`MiMV$)SuI$=dN&#^Py^9<`mSv~l9&)xl^r#PR{R3s7>HJ+T4#gZ z54mj+gcRB#SbJMf6bgq*(`9?&rIVX+C=f5x^}C^aHg4WNPcYELYDg*`zY++AiwzQ}pA$ZPYH^+^ zE9>=C`gJOH*vobKf%xI+&z8SLmwPCVX~s8v@|oigYHem_ zWOg))CvZejz(rWw19jJb&D9m;&$h32T!{`DXFsG9dBUpnP)lz^PAZgl%|}pQj4DDtECo7NQ;I z0b|#|#KLkQKsEa7sTsxTd49wPsPr|5R(YEpK-uq02K6;BL>sHC`M{JAkD?Y(c6+xk zv^(*5w)-I@XklqPeto(>1OcmIaC6?nMlU97=lS~Qn8Or%u4Lh8=DRmS^_l^tdf)RN4mODm{@{^M>RkhS6ihZLUEP!e z5cntfa&e(9l)ar2+W8C%t<1;A2k81_G;U&`5u z5zeYVzmBMaL3}@wIW&|Wb0LAl;PHX0x;okIAlC~h{V1hZq9t9BgB*c@^4GzEfm)VV z=hmGfUcz=~oL1w-5gPigfhqjL5({!qfI-Z95736&jNw4lW_-y+ zY%^Q`6~>d|(+Wo8^H>czp*Sj{a_H7j{P1#POfRt$m zGdS=rT?zqZ2}Alf8N<~ab=O;38Q&02Pk}*yXr8GXvY6(FK(`4@w-vMNbX*Zryx8BV z%Q2|&62T78KtNIsS$uRuiG_4@Zye{l!4Ic9_V)I-kxBV@_NTAp=29UQR*CU-mO0e8 zeA0Ty6}*qlTf=y$K}aRTW1GiE8Msd5(i4~fKiZi|-UJia1@Z?goiPsyH+OBhPLtEp z@L-Io+zjUFUQ>z$;~_b&mOj=;vx&b$9D1~$6ML_-Crp+f74=C10pjwQJVuT;NmD}I z)i`)#gWV1%ewK1N6YV;^;SeuuQTyifU$1qRi^OMRB#Bof&r}Jv8rs|1(lm{^yBa>b z6RXS!ec#cqkqvmJkFHRm)AaGq@5)uMna2>wJ8vE)bz%wZiGkMe2mGB}82Em` z#>;#1(7%P?d^OqD>)4!*907mG3BTbAuJ-NVeRk!$H-=l9J_Hc#8q8MynqO7L16t8g zo+4dux>))@Z0y#3HjU5Wl`vOdT2{7z#H2Wli1|R-aI-|mPGI|IM6d|;&m*OxRN_9$f%j~uwaJ{>{8~`WsXGe$3-^q%H@b?P5 zXV?8z@8ju#aQU~2p9?d1$5tmCKA^u20wLsdJurPg#xBhx3-x@Ue7#@CaXi<-s#a16%wps0Gwphas2-yb z4M3}V`^uF=9v&W#VlsH9wfhSFFRj0Q0*cZAvZTb#4r4oKyLoNVaCV1*I5!I>^17=T zdUsY1>KUSyAX+a; z(fcsYOC;FPPRO+$ewO<5DOY0xTCLb806=BKimX_x+5!03k2LJ&he%HBrwtpNJ}gzP z$*1lVixi&c|5TYMiR4MZej4eeD@;;Y!344rrER8S3GwiU+ z1r3c}35|?B42KTgD|e!y-7lo%?0l*kbZzhAxfcfntpTlRG z`fys~{{7l7F{lqknpF;gTRRM}=!kf(JKY_8A9zse9%r)0f;u@RO)gbVRR++g+JK^ z=b4Z%Uo>XXsR69m&&VdFL`O+>fQ32WJ}}?5^`&2OciB!*kk@v6QgL!{7~)oc51hb$ zwnutua*eW=C)!E1-M>pSaNkFuB}ESkf9PS9yCFcnYS*qELC{2VU_b!p(W7LR z6clfBY7~PKC4Fi3`rK|a9O`VQFLS0?Q~Lr0Mh6&(sWbJ@V_~LChH8S$ zyW$fQ_lk*$rDtRe{vG^4oYBhB!Ku^G(ELNW9ziDuk_8q?6h6KC_m|6&p%Y}3Cb-zC zY&sR;HiF}6nyPCdY*?Ul^qBv)*7^xtSbKIUDBS<(QvsKl?LrbgY<+ne?58GBcSv*2-I;bUk*V&Tq>*@8f( zhv(3d#j>NVtCokQA#%>qc_wqJ1%kEqzP@C)T=E=^XkwATQXFFG>zN@^2@b1dZCZG3TcA1h{mAaCv9zg zymu1Yn^{A1gR?74Td#P?(b>JDQKhAAnHo}&l9lO@$8aEsc1k%*p9>5YF7=)&w?&}$ z^dPE({r&wda6Cwm8AX9tW)&0A2ZtW1*#9U*;IsSm)O+jv`^veZbdEgG2n<`Aluw5;MK`6@haGX={_2xlyH*VZ#GsV;uu4NFOJW)yp(1!2g+FY15t`H!$^C^~+p9@ntN-7k0 zL)n5CPoL&1KYAN#*Q-u*ee4nv5-%~4KGu<&CqF4BhO`<|2>7{U`1GQqm6%n|ZuRe| z&+gx!mcdN|&!s~POxYjL(k02n2rjN1v+2k^o%@{Q)X$$gaJZ)C=H}*SzuNt~1ffbb z`7`0HR97p0ZU#S>qk(R2q4g#P&5wBNG9aolQvADDd1`|!U2=z4G+dT=|Ld1~A+YD7 zzv@GJvUA~-+5fHZOpwG_8}qoM6|cdZEu*NVC&j?j!-AC9d7a08@pp;^VNFM({r$+STOf<=nKGc z(2)Fq^5-GS8Df1SWp*N+@}ZQGT1cML=r1>8i7M0eO`%t zetw2jv%du5 zdKSmK=G%>5`f?ZYzTr*!uEZ~LdynI9YaFB$gBYj?j`O(qn?pW8H*dfu?=CKV^ym$J%&p!gi$?-@H0*lJ-DPR_6Tk%| z(=w{&^i?BsC+Pg)!`C}!d!>K56gulv`%8=u2?KK4}AZCo)lyay!heb$Gd z@3%)aM#5Prrbfv7x(>}xcRudx_pDzrsf?AXtRM}j?daHFAI?z^a3>I<6i0=H!w<{3 zK0!DNr-DKrM5lhhII+Fg~5e^AI zZ)<@iiGvNnuiw3o`KkXMa$PHNmf+%0`tHnhr6Nz+0>@(oZescZ`=T{?(2#w5sm1#C z&hJ<=HkMe-)BV3cIyWuuI8JJ5nG!vO zdu|9s-#ldOl2RR*iN9xO3;eKfyG@Vw0vghNpFVv;aL!YT6n!T0%XtRB9i%TLY(TwE zPuS-pK$s(=rYhL2MC#)Tmt{_A-f@B;!E@g(6^^LJf6okZLLbD}3sQL{1ch*`n;~^h zH&A&uAN6|=LO&Yhg_kAm*2O=7zggLJznzqYFkc0o$MN4C-CVOhjoEh>78CZ}2n~cE zhAZUpW4BIs2U;A-hQ`LzxQf|DE!2wg3I-1y8i{{#6v|Q&>wmZ2jk(s@v(dggdamGH zZnnUm-V%BYkC6y9@E_H4baV^|3{3TJB)4xDSa7>1a>sL?3w5mwoxuRf0UmTg*kCEG#$}Ub)gaNXs-Pc+u!_+fD9XuvH>hBZw9=j)_V4C~t)c}9SgzJVxadQKwy8Hvwun@GN1H{Q4NhJ%Y zDYyRqfY8^!(P9r|=vg;yl=(A$!6WOetn7D)@K>&81XHiq%-zl_W3$wL<`gNOGvNsd zU4*DcW(9!hTIe<}Wa&fVI^gy$|A=m8+aQpdM~`jXl@-A+L@>Rd>nh58G+egx0JpB9 z$H8$fV&frTloz|p@9zAX&o1|!%;(DU zQ#tWc_FOJo>&~{_Z-em)?Jp@Q`3c)T6lIrRC?!CK(UyJbTU=Zl`*Uw?^iyXsyH-wf z>LmD)29lQU+3RN8w`miWx?i0%JExAGB|zlB0i3Z@u1|-h0%W8(e|~4?4 z4sT8E=hFW3EiGsbhe&Gc>x00w#{pL*>h9wc5>m^`4x$H0iC!r7qR=``U5C%x47(fw zwnK$IqCMUeI7DTM3ynQ>upCNLPjsYFdGdd-PO;K;1w?=u? z10T2k+z?H8lP-H|Hi*G8-w>HNdl%&&n8!=)wr`aW8cE~I*2{Y2?@#ultqm?1?}ZU{ zqLB@qAmtHq{Y?M66S{2dV&@#<yh}O7T<#8wmQVKCyR!e`%)Rpfq=u0Lc*a4GPPMk5@+M*~aC?a6E ze-AcHNKkMXGWB~9WZ(Wb@m*_q_s@wPB6XP7ZrwKP8N*>le!756L@&=kSX@kOaRISe zFbWHSW&|-V`|J1b4?lkF31AwPH~VvfNg1VVdUo5IWAWd=0B&^&KTf7RgN-2J4-LL% zW5NhsL#$K9;J*%w>y5orG5$p6%)w!$9=D^WmDa1B7p6O0w}@sf;Ej+F6YLF($S z+BJh}-WllZ{e%8L#GlM|Xqabudn;>dsdJi=NN*0HQtPMc>H?)+n)!VI@Z5`ymAN>f z(kTGY0a1EK$OjX7XE=y%csQvOZGS+>@ z*Tz9mgrb>_#Shxtr@pm+wj}qijSX#v-lT|o zs;Bb7m%t?;ps~xaULi8&d;I#W_o)_SN;rs%VadSc?|hjJMZazguTvt&0KwJ zCI*j~#ES+dBJ0Mew6;^?$Pp3*dxpSnT=)6q=dV{YNGtAJPNjbO^k-#fGw3$WDSza_ z0%{g1db8(5v_rug>jCop92|^5|9@1v*x^i&C69l9ZB|1W@d`0W9=C7v6NPIiU=c)< zM$1(~Z7hrX%50vT+rmf?A-QZ^UEv(HAJa=+zGV>cS>W2zB_t*7x+ZpfesVh`dT2AN zz)qxcL2gC$@R{SpJ~DkbdELcS-9N7DlbLy_`$&eR{eDYaIkRmZ!k3Yc!Zo$C96Kpa zGe$oeI}ZT4x$d>IO@8|}xm8O+rJwB0{+U02e5S0OJm%!@{`dI&YWIQ*mF+OGnO;H;0gM)bqNqV>KQ8yRVw!26Q= z>Qz1$jd^k%Tm9f<=JUG+_j{Ppb2ohb>YtZ)oSvHcR>}Kg;^NVY_Cp_aPcz9Nx#a7L zTvvUNA%ry$SC27zAB9F80Pgxol#WDswCnb!oBrj?9ApKHjEV<|U-E9~2ECKV83TfX z5)s2S2#;nQf@0KgiKc5Qq)&rhcl) zi;GeD6bn6x4PAU}POTEshO<6NZS(LT=t z=V^n+=H^gXg9^Wo3xseH?Z^lf-9g~anR$&^vYMu&wDtBnkJEmw1BDRBScdELAku0t z_YZxm`@Wlj_JDG^go9b#yIiM zRAya8rM71KQ@}8xww1Bs`-|N*PW&?m_o-a1s`?hC$9a@YAe!^dT2Or>91ua9w1qpz4Zs3j|a7)G)68G~p@2*|Dh9GbWqVcQk zkWMT|lt?M7wmaJ|+3s@ttwxBOGgRJ9pAF2Cj#uKu^@To_x|-*Wrm_#dNHZc1}~ zwVy+CcTX!6l$Hj;Kv4$1r;@6PQNi5h&=TMAz7PBpmP(`byxZd}^o91$&MFYinN+!+gkp=7m6i27s2J0-d%hq? zI%a^AFi?R~R!((Ye5bu_7owN-hmsJ=Y(97HD%+EU#zklIB z8Sx_aK*+gycm^RQ2z+_2B@G3d7}$`VpYOGZ9?A56|A9ffk5GY_q44Gk3JRv`^8H0x zKw3%)0d{O#cdDph=}b$jqSkZFUF1V?W`>iq?99x}=1}-uzjSGzBC0-&qUCi~W+o<~ zz#uOpruXF`x`#T{N6ap2>hpUex4CB|OjTEWodBu(=8 zg{xP4CdyZHg(j4hCu+8rgb~ydgv3(bKONPw_XY^lnkR%T*8E@b5rl3rDVIUGrUpw% zIv`j)9T73H7r1B15d199JBio9pMCxTrCYSMKuY$jIg`k%P+78lzMwkh_#0`RaAQt(lnnFSmt%u>rXl zd6C?cUlF@-8@F3DIr6lN~)-or%Q4&E(YjcHQ!+C)G-8Uky7I2jz|VW1r975>v7g(Ip7XN>*wzkg?O z6Xb2Zd<$b5xF=<)FtY6IU$*aFQO8S1T?%Snl_Hp{uN7HcN$c#`k3R@}0di0FK&yWi zV!F@0U5&H^fMnu$g0LwuPz?yE|476@c?p?cH1Hd4inN%a?+j-HLU7&5>0c9>Aw!jq~=m}_m ziJuUx3b7Z0jxP|Y;O>Ajhz4pRJd0;Kii!Coxb8c$j=Xgy9gkt`D+2`&$VM2YdABk( z^dvXFG&Br+u3BW^XQ1_Wu2u+?(SA<3U-;%{(U_Rpio(rQ@BdE=;9S5VcMv~0F?gn{ z+%eP8)U-t_UL-Z&cN)hWQ$zy9Y)=q@WZF}BgUV%N`3_Nrm~`%iZ+W>iY@M$#{cS#i zO*c9G(IeMCER_(k_RaKGmIk^ti-ziD1ps_j*VcZCk?N(1aWU6KXZYl4w+BUYKLcoP ziA(7uJ<1-sp8L*0rOI`lOA;fKDC9kQ{fF`tczAe-nW9d}`13KyX$H4@f}%i;`I9$@ z#anG09^KCW>*=`hm3siBX@a(;`&4$KUDzwWo6b`A%s&0nx2;C*OV-uNF-#yOmf4N=Da`#-^N8$lWR>8M^zbsL`m3fEJ@;;(~eAEf!x1g zerfg_^^u7Q0Nt1KxYk>qeP1u`jQ{$3{5jeASn*x!k=)l@atwZ5xk_i};v!?;E#C6s z!;1@tGZnxsi&hjvoh?(8W~x;Pf05}E!1!?-D8Wtw+* z+N~OxmK~3odC{CbC*fXJ+j-!3&E}p(G|tWV@0Wpr%Ge74rc!;mcr!#w-+m0opg{ID zHW<9lxD*4lU$9CK#h<)EOyj6SYk&tu^mEVj*AQ9#!FTIZf)M%B;B$XGDh%BY+kfI# zR(BEA;)Gx?;MLIqK{ven-(6SF)Q*?BFJxzPr+H8H{JgEwy?aXN4D8Vs8hNJx)vUu# z18p=)B;b^h2lXEe2D1pg*3aaYq_~RiH!7vlj1ynrz^kW^P=rRs>6GEdlo}!ckRj!JvR)=o*h`# zuX1k=(mk}qLrv@{ceHY(q6&(gd3%E@ry^c)r?cJ*)IodB_m{rHeO zCDs2b95Cws>9{R-b!Sbdsi*1?Mhg%8A*uQT_%Z2;Jb?$g3)kczZuRJ4DJR6RAYNn` z9*T4fjCb+Y|7l4nV3J6C)SdCv&yV!ur%!|Hk9NPk-2cww`JIw}l+P9<2m?%8h%l$8ykKT#hU7b=W4yd~k#@3hGHZU^ zHCec+wbkV{D|KtqwT!Z_aUZ;zS)9zOjg;%ds-h!F^OIAIKyo6)KxqH|{R?1BxnZOX z5ELXcwY{Rf41mgj&_`Ai#@~2e;>kKE1Z;K? z>5b_*N-|cur{9JOEoBt&Vy5EwT-}&FrjP6-m(A5!cJt2s+GP2AB?Uf?^3K{wd?W@1 z0waVPLJ6@L=(m;8m+4SvvD0}iHL*+35x!lB9GIKaSvhX1xuuglQYCqpn_cMmZpZ2U z!P54mK<4z}K8zY~9>$#Q^T!sksyd*;j@jM0)BER|X^j`VK+G72z^=Ec!UkbiFSVa(xF)Lt54|_p&*3_K{N<{fBm+C? zyS0ZgOTCEeLiq@U-h=uGu~vfzv!=?2%;-Aej%rR+_Eb>NvG0QJ;np|KmVse18N0)G z;3*pzBCTvyc!9E<*{ZN1Gzoj<6?m^cElt;^tLy%i^M+ds*$ZSiu3Cq)A3vte&dEtM zIWa87fXud%Z@0u-d$-be)?evo-vDYiC5LPQM`dck8P6S0gTeMZ*59`lEcjZVt5%+} zX@Ido9kg~Vk_IzgzWf0WZ@BT;^AT1z_6M#7*(c5nzs}-TZ)j+!MP;^r&bCpXJX#$= z9Ctzuax#!eoB%Q4{+VBeXEHmd=c?OE?l_;C`}@~ibk|C4V`K2Ec57<@1DXl%Z`zgG zNt(^gjeeqQn~MTiJmDmh@2d|=BBzroWo?MIiA^qkdizgN0267|Di`T4TB6A$7(RWV z9thJOi2`xc3R8{cZT{T6+ybvHccNwo_8RNIUV(vu#KLt8D%#nKfHrV&5Y;?kiOZ_t z@#8cMPMctXcY`xinkz$&lUyoun%sj|9l?dW2p(st-NwRYzs4RRzDb9{vYU&u$nqRJHU~xc`O)eU z;RLxutowFBWgnW?yZk5k%^Oj1QHLzmo$W1j9ljVknJddg})fR5x3fI7Cu3;o}OPygaLqgt668LcK2425s0<`pcIkNv$vrjIozqL z`Y1i#axK47mbkS8Dr%VS*m0XX3$q_M5ClvKn8#dYeiQ(`vhwmt61wWSsP*XqE1Me^ zn|Hsbbn^G5SnK|{>Pwbu>iyxNjLKyj8=LFkjES~H@yefS{15V0`ffCvp31i>{<*Gr zQKOe2gp|KYU$YbA(QD@+WXw`@7-{guRM?3QYM++0cKaLac7ejL?>xDeR_%u>9C+?S zW4zHLeS)7~osNNF?CBIOXTSi!`yq^}YDl_uU;fiLRaWVIgXMU6xl*3*#?w=p|MCpx z7ZpTULWyEJXJ==gu%!+9{X*vQ)WTH+^}Nr}AKtsZf17IL;KgKdM)hNT`0YzZUvBhB4QRVP z?5(^qX;XnKQKX?vffZ^*M#Tde$m68LY*NlRqW8qgmGc58PK-SWKX|%Aagi=^ zbBo7PiQsm9)71f>GcY{^Jj=Ta+NA(tlj_Vl(T0LtwtV(B0FASdn)`zyhJk_ts$J{2 zy$nli4>>zHq!FR@iTIeLrjZxDJ@>4;MBT-B0{^paqx7v0AD+rHjx3GZI~XT)dbB;q zbz#$OsKk=irM*$znw?z>y6&&H|6`+>BOx>QT;N{bx9`ZtkV<3Ct4Ewd{|T>uo1Y_X4IVBQHa1ON6M7haVx2#STXoJV?vN-e8(z}s z%+IY)3l3I+w(*3d+8}RK-Ua zAgVMnl+DdKlikJ+85$dtJwEV4N1yp};w!{#43yaQx9HRG1aC!0b8da6|Cl7lKWW#) zdFkd&i>t3q$*C9$6i4C@#@0GJkRsvaI2D^hlZV$_6zE&N7>%YR=^}dzK7s3B$xBLf ze|PP^tie+%Tr+aZ`P4&RUWeO9j{KedwR=5V;N*ir<-jur`(?C}n?B8St325Jw>RQ* z=$V%G95n&{h{*2ZVSRy^5!qWzLHQ=%$&|XXFIn_jJ&#BuqcXP>*L$8QNdxVZUORzl zFPVbCF8P_6a`;hyGAgW^Z$m6RzeVPy8P4p-$(KCa<90DIjmr$T@n=2u&iul~%ha!8Xx>YdIp`{P*`Gn&p{?>uFBwUek{ zyGuN#PhpXm+~{U<)=9}?pZ|Bvp3SGV}2y0CByuT=c# zKI_Joo7(1&4;%$P0Qo(?I7?^?nwa;u%cv34+Y?49BchLS%$}{9(0AX*;>KW%<>|kCe@%lp%wMNAEyP z$gt$ykBn`Z{(2$F@(=t@n4MTEcaLeyHKliTA3CSaAOwkaA&2*W_DCI`Z94R%tLVy` z`QlDPKlf!@p{+4idnCwKxrDxTJQ~Jf#IixE6;@;US()O?+Wi@|!FQU_PZ6|bDg)M72se%(f5TuM6k?lGO1*dIoQ z{m-9EN7-rnyv`t2ZcB78A3(Lu_y1F_A#=DC-ekrCnJXfJr%}wLIxIx#VY5)!Kv?fI zF^E>p(<5{V}EQ>PkOQbC)pW7)@CqI~#etcNo{T9HU z#hUTr)fWK%=c`@%<^Lo^T(C7ZEaUQM+*9;!xL%TB{nIBHM2nK?{e2rn|8#wrbx%tA z^`>=wsZ9C~OIx3tPl}nhUS8WIAmB8TznNc85r}}A-6KxwS+;tuF}Lj*7_Jfk{5YbE zAg*OY=-pJ41h+crk&*l~qnbeC5;%e5$9WJ<4M3PTx~{d4`3`wihp{ zQ1(}Rn%`NaGQP{AcvwWTehIRTYggH1b{1%b;*Q^7*%}lF#9J#2}O(}fnV^bj0_80IM#1X8s7&>dC#(GLGz!D%39x= zK=#hr=A|@T_Ou%HVb@BFPc?aZeEZOo)U0olWfnUz(=70$yZDBdZF2Ij8gE5nE){&; zx18R~JY%pfW=V%K_ge~Ot5%ZKZrCbz^JU}{v}yeaVZ#cM+>L}<>H$h0j>86r;i#qe z2_tw=A9)8PGOx~jmC+}kaNjhcMqHmwd5Dy2B?f znjBV~wqB0Tw^W{`(;8(L2+>&X-aDJ5WFhwXu-$(9ky$ZfqGi|4HEM; zjo&v4rCeMcI&jI%4vsn4;bnLTjn$dVHljQ8Z{BNKCn}6=FY)&9L6OPC#8it6X9ENW z(^3A<**rde9@4o?35kiFvBU`rKxCa}XSOD z3j`lTJPGISONKzt`jWle+WZ7Q zMHB|WOg;#`DTENZ`uYL8kDmJ*78W+(G8=G5joLSmLi&c4>g7MbgCZ8kqtgDPYrH#u zy`{gA2E7Wb_QTN{8R_~0bDj)#HO<`Q`DUscpB@uOS?K+uexqnUq-T8yJ5(^i+{WfS zY=LEB&pppI4-F4SC-rcCY3KEaoNm^G>c?v{#mDjS@!G&PD*xg_%|wS}a_+^vJlN{Q z&Txv;6DfLG9T3_eKff|9J6odyAFUYc3$TU+$DLq)!8A-mFo&mObo69QZ0v?xa{t|% zq7)A>F#4vcsX2(UN@Z$ZBiR{^yP|$~uV}BHPYPsJ&?4x==Z;%Eunl9C7TQ1vifgR@kHWl7_oyF3w1#?HL2rvLukj=g%d z=I{}1?Q~JOtKIek1RAzeA+m*5jLl6=+;EBc^MxQU8$zmEUw*vatzl`RCyGdC?71j& zo{n|Jz2xfVHV-(JGJ_dTGaqCRj*PGLeJJ~)A-;#xhEkatxLsLot4rW;sj!C+o(l&4T{pA^D${R&tW1_D$RaWNW}i2%mhadi!jjZp$eX@TS{lKTh` zPhdq^*^^0s%F}B5omt2eFspg-mwc{y@nTvkMnYW+eA_obY>)x|X>u^2+qSa1+A11fsF=;K73p zK`WCVWc&^sxBiwVpuPudKKEt;i|oO-?i)a!bmgsD#p=hs@%W2YI6Haq`%oG9B@;CJ zjPfMrTE;0(7Z6e?{#wu6KojI&T`dm{8x+tQyTR-DKvmMz+zbUE6|5*fI~%*^mpWfc z#GT+LjXVBf>8Jk3JR=_Yyf*une{3-a=)N{%bXXFI(kpm#ou>D+zYmAkE8}fzerzN9 z44Uf`WSJ#hBeSSK=`di;xI-w!nj1soH?S+Eqe}>6G4H9qjn>md3Su9gS@KJLfddfL zC<5@Te*XM<%}PZ!lF;?u?;>3{O%2`5n!4V9D6)QRnir3h}CXgzVkzx!Cf#vV@g zdYU(xm~b-Z(>qTR0?fft#EeKV{W?$YY*zT|C~oQhoL;JmiHTYL0khde_dcZIT^JiA zQB_qP85<)8{QZO=1t1JBV6xTi2WnsAhTD!kkH%3f!?a1I;l&~2)ZmH)pIgu_aH*!CWG0?*A zA@kXSY)aU!SA%VF@xr&l7Z&0y<*g9b!JQ*4(ZE0h`ndi2?Jm4$ZS~ra6Oh-4Q6*9<>d4++2}MSEcj2 zaw3Bn1L`;MspVP}TP&tW1ES@=CGPk(h zP*(JNGoDpR1#t|!Syxw=)PrTAOIi9qAP||&@y`NBgG){Kf3mw(V)UKknC9EN?`h}> z(0W~iVxN^Y@v}~B3<*O2U+LF2C5W^nhaR8lR;L&pJ$TZds}tqXD1ioYuya+&1k7xk zWIB9UTgKSveN!*{Q(h-mqxT5DfAajf9qyrQQo_RG;x%!W!P(g`ynfelgRdbZYiTax zn^!y-s&g+XPcu;yTnJurtt$q6%xwgz=_PluL(FQbL&G6MP_l&m`NRYn&skeok%K3vl_2~9qa&848k zp*Ds7_AD+dQOkd~7&t$U>LcweAi2re%@ z>U-X&bQLVsBDAl)iFBk4%XCt{BM z%&SnD5zkWu5aqotE-RF+clxRhA)TIWXyl_+dgcuqBbL7PF;)rADW@hz7od-JL;p{u zLrl^w7=4R$^$%TLhnyAY+uQ#BNB#E^7nRqcgbfR@9>Tx7x;$Z6XM4Oq=8}Y} z{mC2&Y1bzSsXfOKkGFFS(?>|<>xG}jr9K9E@!ZZ^n;#ZNZ3*2K#j~kMzBLCXjnNUi zyC^c4ap~|03PwSYZyZhXGMX5#`vdNADPm9}i#YX|^(k}FL3hK0d4@H~PR&gpXVSQG zPw+i4-B_t9uNclzC$2k;BWhJNB0oZ!{*CygpfRl4n5_g^Ky-HdzE{3~pxEZJ$-Xvh zi%svGbmAc4%acx$r7Eo4x=T~LTj^Z$+{R9b*rsd*s=DY(Fkgrnjtt}0@^8DN6)tmk zJCX{&%9nd4PX1LiZ%N6{4zanNp~IeMM8e_S^t95NEtMeB=vPocnFzV}AzX$r#C%h* zP`Vn(7*|ES{4IE&GWD{`zU}YU*`q9yZYtay6cj3k9v}f#Yh#yi%v8c7b+N;8<=p~1}fRFJkIcxhla9KP& zC+I_Mekn9Mh|a=U8{g8)&jc^0yLV@+0NRZ_gEu#1$fUX{@ula3m-RPnHfrk^lwAI_ zDz*kRPDMSb{h~3AmkD9QGZ2a$wH3x8|hv?^xy_>iP&HM8s7iRys5*am$sda?O2Eq8gz14Ir6`;=HO zX&?^#Ltmfi+o!Sz+Jl2_3AcyzdUpcXH@J+2zck1ZfI^Ckii%DGvwwi7_cM5Ww#S8p z^z)30*FXGJm>U5(d0nNWdEzR8K)bAd_O!kVg^bh0J#V{L-$hz`^G$qPo+U(%C(CPA z*>0{ z{Z{!wr|TB~at7EcIs_Qbb@NnkA9JLpw+tRWVG>{1IPv`tFkZuQYk8@#qxdABFak6_ zE8YMXjM?ZYV0mH&y7>G@8q=cd6geK&A;Rx`Y}9GSSH1|Qr@T_blVyUh`E@1lDPQk$ zwpDKx?b$C4o7&WVwORVvt~NH)%Lr{Tz|V8MquPxLHKh>L1@r{;*q^|-%!RBue*ccV zg#4YAm4dF`n&%V?VeGysoEEcP{&&ng0}=JdS6yX(_io=neNz)1ru*3wYRoE7>0Av7 z4IKp^GWlrt(OLOhmR4k=qs=aTH#=W({ro3M9O5y;AAb=IG|(QM-59|Ls>`&EGEr|E z%tJ>PvBJ!cw3bk8Bwr5{4BBFG=efS#ANBR)zHfbJKS7O;my-(7Q1;jg=~489sTtM! z@23N{5+;V!n(=?99oN=0holvsOS|3q{W;s~s!76)%k&ujK44D>@?6gP*C|2Cg!O-C znN?a~9*E@rD`$30C{te`gVyD9D=$4|4`zvJ_|CjWsNM1)8@slYWI zh@ec8KLp*E?bfujbMH5al;D3&908ovv4qdJ#h;e*MrBpLe*GG8l9ENp%Gu246~V}c z1j*tNaKS-zhZf8~7c7pGkx>?0aaJa6V|Xf;z;pAAvd>Tb6zS=P2M8q9h1dg>?hRb| zuGj*TI5Ti3(sLtT_E(G`JxAws!VSaFJC>f-9${a#c-uZ=ar%r~3fT@TIPOCUK|Y++ z`9RL}1Y(4BHF_cDqr-RIfswA6wyc*5dZAbZz^WoBeaE~pu;dO22ZzC~a&wZLNgefT zb*Dt0lb7KdWDHbv_oS$@ZHdc4Kt8X z9}+Pq*t@tK!*vo$|9(yx>Q0De0-?4YhKjISc=X#wnuKd@asY$-2r{LU3$asSgV`{Bd32{!9aC9yTPc8lD%^=JD~4H2G{ z%PgDra|M$tCMMO(i2d-M-)0<`3naE5+ZN=fsW0TT@4)YLh>lViqcHL^M9V8Go=PKo z?l;cpTWcQNW|z5;$$`n{VNTBU8HEL2K4GgjOf$d9fX9=1SKe<}Tv7efY4)POIkD;Q z=5Tn|vk$)teJW-5K4KL~DU3dQysOLS#Zlw7mF1f*EGxm#g)fYL&B@8mP6o!j;T2T0 z_4R*kfhzTBCMiNPVUy;_wso=0PrPyt&dxE&Z%9Tg#aE-#C0Gc>b@Jryi!U|Z#QnU) zEG#Xrp~%F`x}5ma)MWUsw(sz-ch7pI)%IW&U{jP5(=Uhb*n{La{^pQEYmu+TCKfk8 z?ROHw_6jCgrI!d-p&Gtn+$l^vsj5j&r&1!=>WlG2x}ii&fG+16=0NO1OGPZt`o-R7 zXD@t2FO-FN#oHQ%;-D;0Ow)*4nvPy-I;Z<3cTbE)2i^WdjSE!IJ>Gwjez3f$RsZzK z6Ca4$NeI+OUSHHu^kVDW93@^Y2d<+BT69g`X|fRIH!(5!1f&kG`DO3!`RLf#>&Uu` z!NuOi8`b!`r6nJ0=VOrhtbI{e7wwP{2|;0d^@hytAKVMIp*L&9kW5vJ%ZQ{FyIuEh zchxTzMDVa$SZpi*oB1tCbYly|Xp9!!)0VX90D6#N|b~via+Bdpm+Lk8TTj# zs~B!|1_CaoXbK97T^V}8upx1ZiCui%IlT|Dm<2^eN6~aM&aBR!L&6;To4EXTYsJ-~ z@X=PKjE)f*j{{}@N=K4*%e6oOxEQkL=s#rTGBpS=KxvF*=#_RdLGW*V5nPnZTB*c3H$u- z+)`qd_6xnNKJkNeZDTFZj7vW*JUFVp2iKeavxo@$MspEOiYMJYEajZk+5|63CQ6Y6 zEA_~~Q2WR~p}+13^I&}1ix>PyKK}aQdG><%u>hf~Scy_!^V@eb@Cot$?0f;Dep);K zf}pGkZ|q8nFa-gM+Z&gFn?{!Qxlb$BOa>nQzgOYGBh<=_$nu5-g&elX_y_Lpdk{dQ zyS_8i+j^ea{$TyQmGfDii!zk#LPr?6*y)2g)u{iZKMB}TuT$`dOEG@pI>V@2K+Z_> zJ)~vo2&vue_`|!p_X!uyriqz3R~Rz;{klFIKE74aLg%4v7rR!+i{|U7dZb#RVYID; zF%F^G3qE&VF1t%h^=`8b7NU&)oUZN2t&ooI72z0=&RmGJbbfa~1roT+WMSsSMS z4v_|Fm&}Ze(F=}_i@Mk(j&VE#clpJOZC;Vw8GIqh$J7_byx$GaCRO%ycgwW5w>!Id zcx>ufS&b*W#xmPzs4y00XJ?01d(my_M^;sfDZm!I1@ zeyO)CC76D6bDN%&AP}vc+3z+t2Q)KULPFba4d#pFN1A)KzU=lQoH~6;(H$jMM<))A zQ`o}VX0YRz(Ki?ji{0kT^sin2Fkryw^K>X_dUu2{7yRf)fAsh7bk1Xzy5;F9&#LlW zWMxJ0gE0Oil}nN;BO#9(kjWlgz{tQ*^4We<>Fiz8e+xPDgdm?Pw`!2OoEBZXm%y#$>Nk4uy?h)H7>+){nsY8QQgd1h;WQ5O5UIdYcf607K z25=DmJF-bIrz8FnwIbo*nN^b7gYOyt|NmbW_u8jF+45+1-yz^1brtQi`O4;g{|Do^ B*ew76 literal 0 HcmV?d00001 diff --git a/_images/notebooks_weights_57_0.png b/_images/notebooks_weights_57_0.png new file mode 100644 index 0000000000000000000000000000000000000000..5a20b27b4581f1e9b6a21994f0ba71f6bd544c93 GIT binary patch literal 475756 zcmeFZgsG3FR!@&1LPEY59;+Xw^#NABqp6$Aq19Ntwh(BL~lmeW-5 z3H7a%oGJ#qd14s-17Bm>J=J`RKwuHxyd(XY^1gs?3OY(_IKH$sada_oFh*D#INDj+ zI$D_<(m5MDyfwGAq2uA;;oxPbGjnvb6XN9je}93)*1?pMf%wTS1cDAB_e4_FHF0yw z&GWg-mH6(+N}@;aYlpJ?cRz~Khdx0iAUr30wrOF`B3-`fuNZD#UMK3TmYWrtORmk5 z$t*uaaYtK;E^F>lZJfv@*W*$IG!T zI@oWTcfU(7Oe_6vcKfS(I`eIWJ|9Ki6|(hO>X3yvPeQjr6r;H+t6E8`q1#*lp4iD+ zuMH&x(4O{xLA4jh_jbAKm64`y7g?D`!Em8W#@}BlL$Tz%Cbf(hO)H`vM}z2SXi|AY zcSS|1DIZ$>@>of7nY_w(CV(q`kQz9-3C+DYUazwQ4vTX4{yh({$844X?R)UI}^}Z7Ow}?4!$M^zX^?%S179y0{#FY0#^7#H4&=!_J-1T^BC%ris=` z@8)6+l9o4F8F{Uo&U}`unoER>i<>)9X`9DR@=O>mJKt;b%KC}26;>*fZyusTJa;yk zIYc3&e{;Pr?QxuXftDzjgPx8~*yg6ys-uvrt7~e0K6b)GYu4V*PGNnXcz5#fHt|JT ze%Kw&KVRiODgXWZ*Pp#pqgY>36W%Rfex`~IYYd${e+;`>>=LW$bBI*9e z1?oPAZ{841q)UeeXRS_5OfU!tkco+jy~rD~v$Jdb^^xIFtDu6~cl0{-^@EkJ`2EAK zc-|R8>AxSZ@8#y^p3yNez58TLZftDK6|aD>+ui1eeNI%*QH{I#<*~Agn#hk9>5%O^`Qz^+_We0bbq;9nENKYd>m_b z?qf(DJ8zAT9c+%hbUj^)vwr;e@g*Nc_n(?AhXh{Jo(8vMPEu6*shJs{&DH*lL)M{z z0=`8z8j;>kM6&s1J#)w$M5#}W^H!UHfIt_5>q5DmBD_r`VxePu@&`(iBD!YmEd*{l zGmj*G>_e;3zMX=~X+nVr$_F8aWv1rnH|s0=Uva*W?*77W8Ksylyt=(zub!#0)Ric> z|6@JneY%-#iN+TJVPO;m9|cZ&MuwU{UDx%N(-YaBI#=YR;ae4g--`l0zB#%|%A+6-zT z$8XbZZOb`DNgqG@{rU6fHX=BsM02aDsi|soRAV^v8R^ZgpL|1+R(6bKl*>@h`?)XT z9}v*Z8e>sFhcU6WwRL{9J*AyDu+~@ay#1dSgKORUPoMP%V^pDfDHnj<6e!}IbiyZ>5GRH$Ws{d(|O@a-~o z-jGnU8K3(5^wB5yfz$>D1{^n~WLM-v-m9WL78aIfq^{~~Z`^-1C>mGuKygTXovhDZCWn!{-gQk3OBAJt8hz>0^HU7iO!&5it9nWiO9!l~+ z1|n7s;ag_fYdBG1EiKY}|1H&s$z+wikhb;&dJhXTb0e%P+uq(Ddl>hpF)Qc4`}@uR z5HMIo$US@3Twy&Cp_n98?sRzkMA@;=jBjFVbMvl{^QIZb?c2!h_P=_1+B#y`*ltqL zd-o@LjiqHabBH?x7l-eoeD%C=It=kI3R!VsGH;X*xywwt&l2b`cr7gVALpy5T5Hc9 znCqWA(=noc)4NVB6Yj{!0Xqqmmnszq1Z1kFQWzg+#S6)Q|*K`etx=#Dc&rM1+ zC@90*C_nf}LS_H;ssGmv{MjQ_Q&TIyfB(KIGXe?G)ZA=fYrCVNsybM1&>U1A@lQ=v zmHy^vNwvQ}^5#Tkuie#!n~{l$n4Lm%5RO5)R>Cy3at{*MKP#s`zf1GUAK6d|Y)`X_ zySTUB^vB+k?btW zt7}qH^t#K>j(2QF>%GqJLOK@09z3+MQEG5cOHW7cjD3*zEjQP_*P`6}wtiJgN{V#R zNONy59!Y5HQsqh)RI7BEjQ9a)2(Lfgd!DM2^Sv{Uv*GRK*&zwyUyyiOr2H?Uyh7e4 zakjke8(b#HS6cJY-3{+$@qK4Mwk-QfA=*M z_je4k5xa=lwYB$YkAsJ)XlZFVqhn(DYaNz4NR)}s)zG~|TOIaie+Ep(u)X@4no8FL zw}eB%SLMPWhb-ibD&&X|yCgn2d6R1SD%JSe>^Og_`AhvKRQQ)D>_d~Sm{e{2FkuD~ zHb*AoG;-xs05;kZwg~6y>Uf=4MppK1I0gS7>#@=$T0ud<1%&J8?&UAXNC;hBT{3a+ z3!*HlK@I>vh=|(bX^&8Z{@KBrBn=G>8iJXP4W)PAc&I%j{TJDr3}{1%uk^gsR%U1I zj{BJ);@0geJN|9SGwJ{0`HSBsy~(0#*#llsg*f*`dLiYzDs86zK>yeH!e_px_je`PNjV-ocs}0XBaV&`bw7{@Z439CH`JehVoXensJ|rH-9rw-Myjpz zv!3uRxAd!=X$zm9cPP}Y``Bj@FlcdDh)XTB3hie!BWprfNN7GYPWMlWkdu6a(}uc; zb@_GnPcoEfMT$u;*$Rtt3WR=%hJLx$Aup7BHVmm$It*(Zw1DnN`o|XjVu;V(CWuHV zSZT~5NEG2Rivm3Zh9zcz&L|Koh{Q(};bRTj%>cg!&A*%6Ogg7T@6&(%7184{XhN;~ z^l4zn`!YYDJyFbyLQYN&;S1$6&02>_p9>)<=o^e4(bn>-b*iQ_+_ZODz3$|$NNL%e zT2XTOexjg=5xMLK>gKD<^SD=PYR}d3hT>#D&{*qTZ&SEy#{L~MP5BM`W$5kg{Rav( z&FA!#q@-|YY3b?dQp0PG?5wP}ha@$k7^#FDG0u;7+6N1?)58BjTwU&X-0$RRq?uMO zvf9zrNf035I6W<**`7RYPBkBxd`$VsJNMY2L}RyKmiDLB!v*MnKKj3#-ux~tZJDh% zMjh(t>?|?sPrqF@Hu=YlFRLe6)I-kI^&~Gz*d<7}s2x%xGCm%Yl9JNZ-925m&V7g) zm7h_rsp%aS8_Qdgy-()R(98}Tajq98 zAFQsT(Dj<}#fq-ELjS+6Ji!yc*zL7JxhcHY1%ZL6rpYTa+rtGDv^*0%Jw3Rv7y?e~ z#L$2AZEZiyRteAvknJAHoPOrkaJdxP7|6!s&HVcGh(RWGdc3@AWt@MR%LF?>5uJq{ zyRs+6_GCWf&NT*a!mZ=}48cTUbOAxX9Mylq!i*rto+>KJn3*vTtU2-@SC*H*i;E+@ zxV(&qPp((fw~^Y&JP+KTn)cB3Pf^D_4(?zwHtrf5)5L6k7KeO&5?rc&UHIpZil@&e zS%jMhL;I9y;ptFb(CkE|;PN7BRgL&xFFPu92>e807hFk6$#3Nv`qH-=?Hft;5V8@7 ziVBG*s9bM?_Ky9LXJ;iPiqNgB(<(~*>gwuPMMb?_4Gj%7)YOK)0fgsjGxG8ASzcYm zfbs>&+^EkbLVS=nBmLw_V8_(dR2~%SbtqlS>+2x{*-DS|h8&9O&vKzWsvC2WCGzm_ zjF+1aET{CIf~$`zsAhhx^=LAtEyURv>YqE{(`VuDN+A? z#zTpw%9R_XoyG4|PS=xwdTXo1>%@*q%v*<*g=Oyia3eSfhf->ylu1MSmcv_zSy+j1 znSg{xw)5lVma_u5k0|*1^543&vrW}Bd+iye>Wb>O-ew9EmvQ=A*R?S+N8jliipAx| z)0c_$LIt_@@}b=-eq=nRfDkecC9-xUa*Z>Rb_JrauyL%c(f^ij3T*wBN$RaRBJjp6IHoMms^lz1UmoEXa@vpXaB*K}_aeolb4x zI>}^|Txf0|rVvV(Q1|ZJ!&Knl=~*kr%!~nTP3~Q*VaYp{&5wXN^icmLW)^$zz)0Om z{^oMab(ozRTWnCT5xR^O%WD-u*4?h9Db|L8AMk)yf&WI)-;u2eMJ5r6sf| zitW+}QyCay?7ZfXcVTC$o%D~6R=r%NJmlqX10+Pt8@ertkMFuh$U#E-*bw{b>dL|0 zT?i$*G5OOc6v=E9T71OC1+U!+7nc=T-&f4tz0MBzYm0a9+RNG-6^%+3E`LtSp=yC?WQy|0rqO;zOkjEG zXU=!xZs$$kVoTE9tMiU7gpW^SbH=bS<_97`(87X(2GILG-P{Bf0pe+CYM$Og{FA;~ zq@IVTSupGlEni#IX?;+6Xyti|SY5D8h9+I-p4_M32c`XH`JR9308?f3n`HrJT?15| z6Pt28vT>NlaQANDuU}8g^YYld&(^Y8HDfDb0_p5M&<9|6W%n=MG+i>(dh?#clcad3HS&M6*k^U$yjzntwLh>M=;rwXHei6g&Qb?bN z<>j7sIdW5TOe58uTVd4a62fqK0zyLn{gvKk!xFl^0VQadc2i^I&?QU|T*e*5`C8>2 zcRNd2@7`@%UtjMC;LZ&3Q6(-m!YuX@E;hl@FK5-Ov?-W$`D@tNj(*tOTry-Ov-{n= z&tWp49NFSia-pLN7n(u}uGMHN>b2LouX2Vj8cwt+$_v+J?4z-X&YqFNlB)d`K@zCPW7yXfBjzA=IY0i#iDYg=2jG@v0Y z5_U4yka_lu{*yfBkZG9l&Y>S}L{JMadn~ktvm;*aG!!z2gsq&~`_t7T)76xg@<h4H$hj9c8!79!)e%VRgKE;PlJ&!7Juson#NfH%-Q3Wt>K{Mmv}`z1zI;R~%VWE{())_S zem-!oA;mL2>>oUGWGaEwz=LzMa;+yaGORv=ju^W~ZNCe&kr05Sq7U6gJ(gl#soqyi zZ0t!AK7~+KCB+U5$JwoHK+3;`eAAFt}%CC-odM~?p3E;vAUaVC>0-RUQ89a%0&d_=tVl<4LSElaz>U@Lt z&Bj<3gv&HaKmphVMxi_*%h0v z^dt?z_;82?0ENl7<$jW|<#4_A*Ow_v&l-i#GpKMgL*KQi{)2 zJlshMB?%Vt#f9&nYU&$V;@0+s<(Bst9!q!lwui$X=+#qA)ws0BKG0s=X}C_#iAMH5 zrcl-`RQ;}3NAar@rT&V7nGI!r!P54?59O(n+|M8Ghxil}Autr7A%HuL$Q%~c3n{nTMWTLAnI%@so#a?k{CC4$Kcg_A|wRdSKpfBXvrIN=wfLNwn+`GhLR>G z_e4ZR?N@rJzh-5nx86^YxQ4(I6FVL!Aw;$sN8Ow*2)rIE^E2s=jEeH_=#aM=EjHLa zJgj?UJM$ZJbyD-R+EmF{E+D-7jdlfUZVmveP#Q?Hjl)`FU}y^o4%Bb9P=aPTiG;*9(F@#8)~Q)(oA0#y2Hz?aUPwY&aTSB4=&jBv=9!e8()o&nwl*bno0#!YtRA|5Q)NAbO1vO`G8;gOS{QO89jgYjMBi;GIV#>PFOScV^q|i%i#j;5ou*BLq3YknPj$* zbQ0e+bKy~7rmkiGtNNxRt<%%>x((i!dDf@6%_Guhs^3sfE>T2C|-a;}z*O;L1fsCM0x1@C54n_}B>w%0KrrXpRoxqcDDQ zmGQwhoHEAgC;$!Vbqz9SU7%zDn!!-6+6{8fQ!j}8@+AcBI8oF?ot2YwB^T?Skg)Kx zpe}{&(d{Xf;;}BL&C$QQDCJtIF1E(qKF$w|9a*dr9tAVXX_T4Zgvl&qh)2&G&gK>Q z9)9R*jx>&6aI4SamBL4DX>Yegm~D#}e*M}4R9g%R0@Bh>Uq3bN%=9KSo=Zylb$2H` z@|g0X;WO)-{dkK$&(sX6LJ;8i^3LAg55QYRe9O;|zPPxks*y$pb`l_D*5z`7?L%My z-!z@?G&CSL`oSXFLA=TW(*7YUE&^lYdV5QYolsK5#&~%i1tKIQBr+~8SSFlejPc$* zca&MgU?5bgcsh&}p0<0SJUmNhuHd5x|Bi)#dC~u0v0*RFHF<}OfdVv=J8UsZsqOI+HR-i55b@qL-+R1WxX^Cm7%02*yu^oJJ!n?<# z^+_dDH9P$5>Q z5|^UQ*UCTb4w(DCuhpUGc|2cJ-Q7p=_mBK-U)+;|_fnI*Fh!8Tobur!F0EJ?jCZ3G z6VIHTol5~}Q38$yjshPaAEB=KJD!j*l9s5MTErFq{rmT>J9Wo2o<9T7SjsVn^CdH| zNDJkqd5 zIY*(c`-|t9Ds{lqa4iE%G5@MSYbgd;1M)^Zr9*&|d)MUu>qV$(HPBd55M^UGN)06f zoz?}n-F^WZ?QuX`IAs90I`tQg6frN~8v2gmVG@|>Sb^(h@&aYzpAR2aDEKV`q4p3H z6Q=@`{37S7?0SQPnHhl?eCzbiW{7pv)aciETHK`KG2>Fs^YJ zcNmT67eHE44h}r3pYE3xjeqw$m~v5h`V_;Ii>wb2njH=W^TcU^E>7)XED!Z`8yb*7 z!39GdLLX=f1_@_(4xfu$U+j12sTT%D$KLazr0m3@5Tm+k@Y=Osh|akbqK>tmvFYyV zS$6U|OZ^#6>9Cpkj9o;4%rgM3*kfA|Lu(7gV7RA8@pS&o$&8h?4+1|rHuf$*|D7K{ ze(-Cb4DBAF#c~E8{b35*n5Le9e%d-*KtN2adLBH#k{x(CZ)hAGFvHBsD&_68(n(ZR zQ}gEH$ zEtx$aS)hK7Xatt_K0p$|Qua=eSa>MH;d@3r-4iCkMMVGe0@S$JmH}m*5EvMk3ymOC zlRY*9a)&KvOYBD78(Md{DNQePRGHb?Rp)F32l2j$50ZpA0E#g7PD?e`7|l!-Ctfma-N!-L{o)quj^$^E8*g@Je@_1Xbic%W z;NGqXUK^RhJtEMHzD$c-T%txX{xmF^UHtt?z-|@+I_P5GtbP#vUjix-v}zLN4X}=`Vi~nya+tJz>6(g4D-^WMk4`W&b%s8Zm-lCsd;0WgWLpGv z=h(yqTg>T<8~Vw%FqO086R3IBE;}5&N=j&zewP`UIL*ml+05pjtxI#HYqKxPh8vVp#Pq{{ zL%V7M%`U#IY(Jpgf^U}MQBZffwAt0+$X>}<*;u$i^J35In$ln~kGAM7^vg@X3TxUE zWf>VX^?VH^#Og@V43YQ-@X}g%R055irP$#z%~yv-KJ;Q@S8E}7)4>Y@*tB9)AVYK$ znZ`bi3he4q*qr?FGRiouQ5e3$?~3 zNzCgEy_B63_(yTT_{S#zIfbCL4(os#ai?(h?O3pn#>+$GH zC}oh4uF2vTP|kH5ge_C!2ag>4OTS>SRO38sgz7zixzevqDB}LW0_TK#aSCXckUPOcnL_}#-Rbm)9 zm%Pr8ep{4(;fG={Kd&#R*tT^GYj!Xze6rBTCuq|u)8EUf)eB)Zf-B&H3j=v#No70i z05tj=x^8)KQT43`EU3Cgxq$h@PLj}fP+QWVM9c~(Von?#HTI=RIP!5B29|oJd3nrU zDgU)?Pz%{T+{Q^>nOj@?&7o7}ySQj1C?r&UuO&sqjSzw&{JYDJu5*4de%$1g=49dP z;<2(|wZk_m_0d-!7FU*7gwZBntu=t$0uzIvqfnBF^*EpU_0>w@yWd7l zFdArp3^Uf~hti+(^8Vt|(r@UL3bDo~qUM4>Z9Oj!M@m}_4ImXtD=Uu~eCA+%gFpal z8W?y9K!Fbeh7JQ6i1a|qk-{|dfh>PIjHw&NX91KnbaZr7G_>0w09c2HgxsTr%23s6 z_=8SPrLw9@AmF!A$ll@M76}E#xC(w?MQdy8C5Qu+-(l5DnL}8US4NJvrzYCk+R(u1 zzyhM%Hlau}Pco&M1y(u#_TU%!4e!T?VvM+jIvRXtDn#S6ONprE^AVl;TzEZXc6p(KcC zL)!waO0@d3+sYq53OFreKXTpG2iFH0Fzcq`*B879J6Mci7`16^YtwYzoIC4ZdCu+{ z7=Q6B(rxr&n8cyvm-5Tb4*VG)_(YaXvN|1EH1@&c@uqjo9O`J6zy?AUZr_?|n1KWm z1HljlV2}Ez-!1%@*hWd^T0zahF(H>?VjT~i8ZOe=$+;*jg~%acK7hd9l_H+PbpO6K z3NrFZQAZ2%K+8>SV&PoG2XwyOL+J4Sf0B9 zMt8YSzNvIfk>_W_A}Iw04`e>jbb}{^$>*S7wzRB_myMl0S}@{`y}iATtE&L?y4FzA z66p*{Gr9Mh6E%+}M)Jw`C?CZ_!&m{F2*izpx0skdDm_I- z+=tfVjPczjqobo-ZJ#Gg-pIDucgWvN2_;ajW(RX#I)D_GQW(6-0ST@d#i(Al|1;y{ z>`baaoq>ZR0thk03pKS{pv>P8U~X=1Yv5lvY!uwy-X`NSi@bsnP6L<#ys#1;Jw3go zloVR1O&0FWV0++y7R&y(yR&oSmhp4%N3ycAh1J^quJVk1B>QVyL+m6tCCLtBvpe$sKbRYegRn}fz5l$4aDs;T*V zJ0i71QBhF`>QL@u4V+Jy|AfA*$f|La8%yTkCa5YRkSGLQ1Tx ztmLy8WM+DRg zWdj2AmO(|W&YC`;d+#gFHPzMe!=Kj2se_hJ<>i}hv{MKLJMi=1b=3-hL!-iWCc