In this example, we show how to use a pre-trained custom MNIST model to performing real time Digit recognition with TorchServe and TorchData.
The inference service would return the digit inferred by the model in the input image.
We used the following pytorch example to train the basic MNIST model for digit recognition : https://github.com/pytorch/examples/tree/master/mnist
- Demonstrate how to use torchdata and torchserve together.
Install aiohttp package
pip install aiohttp
Download MNIST dataset
cd examples/image_classifier/mnist/torchdata
mkdir mnist_dataset
wget http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz -P ./mnist_dataset
wget http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz -P ./mnist_dataset
Run the commands given in following steps from the parent directory of the root of the repository. For example, if you cloned the repository into /home/my_path/serve, run the steps from /home/my_path
-
Step - 1: Create a torch model archive using the torch-model-archiver utility to archive the above files.
torch-model-archiver --model-name mnist --version 1.0 --model-file examples/image_classifier/mnist/mnist.py --serialized-file examples/image_classifier/mnist/mnist_cnn.pt --handler examples/image_classifier/mnist/torchdata/mnist_handler.py
-
Step - 2: Register the model on TorchServe using the above model archive file and run digit recognition inference
mkdir model_store mv mnist.mar model_store/ torchserve --start --model-store model_store --models mnist=mnist.mar --ts-config config.properties curl http://127.0.0.1:8080/predictions/mnist -T examples/image_classifier/mnist/test_data/0.png
-
Step - 3: Run
inference.py
script that loads MNIST dataset using torchdata and sends REST API requests to torchserve for inference.python inference.py
Refer the MNIST Readme for KServe to run it locally.
Refer the End to End KServe document to run it in the cluster.