forked from qiuwch/vc-shapenet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
blender_all.py
390 lines (349 loc) · 12.5 KB
/
blender_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#!/usr/bin/python3
# -*- coding: utf-8 -*-
'''
This is modified from
RenderForCNN/render_pipeline/render_model_views.py by Weichao
to enable explictly control of lighting, to see the modification
use git diff.
'''
'''
RENDER_MODEL_VIEWS.py
brief:
render projections of a 3D model from viewpoints specified by an input parameter file
usage:
blender blank.blend --background --python render_model_views.py -- <shape_obj_filename> <shape_category_synset> <shape_model_md5> <shape_view_param_file> <syn_img_output_folder>
inputs:
<shape_obj_filename>: .obj file of the 3D shape model
<shape_category_synset>: synset string like '03001627' (chairs)
<shape_model_md5>: md5 (as an ID) of the 3D shape model
<shape_view_params_file>: txt file - each line is '<azimith angle> <elevation angle> <in-plane rotation angle> <distance>'
<syn_img_output_folder>: output folder path for rendered images of this model
author: hao su, charles r. qi, yangyan li
'''
#import sys
#sys.path.append('.')
#from share.py import color
import pickle
#color = pickle.load( open( "color_map.p", "rb"))
import os
import bpy
import sys
import math
import random
import numpy as np
import mathutils
from bpy_extras.object_utils import world_to_camera_view
from mathutils import Matrix
from mathutils import Vector
division = 5 # 5*5*5
#bpy.context.user_preferences.system.compute_device_type = 'CUDA'
#bpy.context.user_preferences.system.compute_device = 'CUDA_1'
# Load rendering light parameters
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
dep_paths = [
BASE_DIR,
os.path.join(BASE_DIR, 'rendercnn')
]
for p in dep_paths:
sys.path.append(p)
sys.stdout.flush()
from global_variables import *
import render_opt as opt
def setObjectPaintMode(obj):
def setMaterialPaintMode(material):
if material:
material.use_shadeless = True
material.use_vertex_color_paint = True
material.use_transparency = False
for i in range(len(material.use_textures)):
material.use_textures[i] = False
else:
print('Material not available')
#----
if obj:
if len(obj.material_slots.items()) == 0:
print('No material is defined for object: %s' % obj.name)
for slot in obj.material_slots:
setMaterialPaintMode(slot.material)
else:
print('Enable paint mode: Object not exist')
def find_connected_verts(obj, found_index):
edges = obj.data.edges
# connecting_edges = []
# for edge in edges:
# #print('vertices',found_index, edge.vertices)
# for vert in edge.vertices:
# if vert == found_index:
# connecting_edges.append(edge)
# continue
connecting_edges = [i for i in edges if found_index in i.vertices[:]]
if len(connecting_edges) < 2:
return None
else:
connected_verts = []
for edge in connecting_edges:
cvert = set(edge.vertices[:])
cvert.remove(found_index)
connected_verts.append(cvert.pop())
return connected_verts
def color_vertex(obj, vert, color):
"""Paints a single vertex where vert is the index of the vertex
and color is a tuple with the RGB values."""
mesh = obj.data
scn = bpy.context.scene
#check if our mesh already has Vertex Colors, and if not add some... (first we need to make sure it's the active object)
scn.objects.active = obj
obj.select = True
if mesh.vertex_colors:
vcol_layer = mesh.vertex_colors.active
else:
vcol_layer = mesh.vertex_colors.new()
for poly in mesh.polygons:
for loop_index in poly.loop_indices:
loop_vert_index = mesh.loops[loop_index].vertex_index
if vert == loop_vert_index:
vcol_layer.data[loop_index].color = color
#example usage
def makeMaterial(name, diffuse, specular, alpha):
mat = bpy.data.materials.new(name)
mat.diffuse_color = diffuse
mat.diffuse_shader = 'LAMBERT'
mat.diffuse_intensity = 1.0
mat.specular_color = specular
mat.specular_shader = 'COOKTORR'
mat.specular_intensity = 0.5
mat.alpha = alpha
mat.ambient = 1
return mat
def setMaterial(ob, mat):
me = ob.data
me.materials.append(mat)
red = makeMaterial('Red',(1.0,0,1.0),(0,0,0),1)
def paint(obj,color):
for i in range(len(obj.data.vertices)):
color_vertex(obj, i, color)
setObjectPaintMode(obj)
def label_vertex(loc, color):
bpy.ops.mesh.primitive_uv_sphere_add(location=loc)
obj = bpy.context.object
obj.dimensions = [0.0025,0.0025,0.0025]
setMaterial(obj, red)
paint(obj, color)
def applyRemesh (target):
# remesh = target.modifiers.new('RemeshToBlocks', 'BOOLEAN')
scn = bpy.context.scene
scn.objects.active = target
# No empty line
bpy.ops.object.modifier_add(type='REMESH')
remesh = target.modifiers['Remesh'] # This is the default name, might cause problem if Remesh already exist
if target.name == 'mesh15.002_mesh15-geometry':
remesh.octree_depth = 6
else:
remesh.octree_depth = 7
remesh.mode = 'SMOOTH'
bpy.ops.object.modifier_apply(apply_as='DATA', modifier="Remesh")
def build_kdtrees():
kdtrees = []
mat_worlds = []
for obj in bpy.data.objects:
if obj.type == 'MESH':
mesh = obj.data
size = len(mesh.vertices)
kd = mathutils.kdtree.KDTree(size)
for i, v in enumerate(mesh.vertices):
#if obj.name == 'mesh61.003_mesh61-geometry':
#label_vertex(v.co, [1.0,0,1.0])
kd.insert(v.co, i)
kd.balance()
kdtrees.append(kd)
mat_world = obj.matrix_world
mat_worlds.append(mat_world)
return kdtrees, mat_worlds
def find_bbox():
min_co = np.asarray([99999.9, 99999.9, 99999.9])
max_co = np.asarray([-99999.9, -99999.9, -99999.9])
for obj in bpy.data.objects:
min_tmp = [99999.9, 99999.9, 99999.9]
max_tmp = [-99999.9, -99999.9, -99999.9]
if obj.type == 'MESH':
bbox_corners = [obj.matrix_world * Vector(corner) for corner in obj.bound_box]
for vec in bbox_corners:
#print('vec', vec)
for i in range(3):
if vec[i] > max_tmp[i]: max_tmp[i] = vec[i]
if vec[i] < min_tmp[i]: min_tmp[i] = vec[i]
print('min_tmp',min_tmp,'max_tmp',max_tmp)
for j in range(3):
if min_tmp[j] < min_co[j]: min_co[j] = min_tmp[j]
if max_tmp[j] > max_co[j]: max_co[j] = max_tmp[j]
dimensions = max_co - min_co
print('min',min_co,'max',max_co, 'dimensions', dimensions)
return min_co, max_co, dimensions
def get_centers(division, dimensions, min_co):
centers = []
dim = dimensions / (division * 2)
print('dim',dim)
th = dim[0] * dim[0] + dim[1] * dim[1] + dim[2] * dim[2]
for i in range(0, division * 2 + 1, 2):
for j in range(0, division * 2 + 1, 2):
for k in range(0, division * 2 + 1, 2):
centers.append(min_co + [i * dim[0], j* dim[1], k * dim[2]])
return centers, th
def camPosToQuaternion(cx, cy, cz):
camDist = math.sqrt(cx * cx + cy * cy + cz * cz)
cx = cx / camDist
cy = cy / camDist
cz = cz / camDist
axis = (-cz, 0, cx)
angle = math.acos(cy)
a = math.sqrt(2) / 2
b = math.sqrt(2) / 2
w1 = axis[0]
w2 = axis[1]
w3 = axis[2]
c = math.cos(angle / 2)
d = math.sin(angle / 2)
q1 = a * c - b * d * w1
q2 = b * c + a * d * w1
q3 = a * d * w2 + b * d * w3
q4 = -b * d * w2 + a * d * w3
return (q1, q2, q3, q4)
def quaternionFromYawPitchRoll(yaw, pitch, roll):
c1 = math.cos(yaw / 2.0)
c2 = math.cos(pitch / 2.0)
c3 = math.cos(roll / 2.0)
s1 = math.sin(yaw / 2.0)
s2 = math.sin(pitch / 2.0)
s3 = math.sin(roll / 2.0)
q1 = c1 * c2 * c3 + s1 * s2 * s3
q2 = c1 * c2 * s3 - s1 * s2 * c3
q3 = c1 * s2 * c3 + s1 * c2 * s3
q4 = s1 * c2 * c3 - c1 * s2 * s3
return (q1, q2, q3, q4)
def camPosToQuaternion(cx, cy, cz):
q1a = 0
q1b = 0
q1c = math.sqrt(2) / 2
q1d = math.sqrt(2) / 2
camDist = math.sqrt(cx * cx + cy * cy + cz * cz)
cx = cx / camDist
cy = cy / camDist
cz = cz / camDist
t = math.sqrt(cx * cx + cy * cy)
tx = cx / t
ty = cy / t
yaw = math.acos(ty)
if tx > 0:
yaw = 2 * math.pi - yaw
pitch = 0
tmp = min(max(tx*cx + ty*cy, -1),1)
#roll = math.acos(tx * cx + ty * cy)
roll = math.acos(tmp)
if cz < 0:
roll = -roll
print("%f %f %f" % (yaw, pitch, roll))
q2a, q2b, q2c, q2d = quaternionFromYawPitchRoll(yaw, pitch, roll)
q1 = q1a * q2a - q1b * q2b - q1c * q2c - q1d * q2d
q2 = q1b * q2a + q1a * q2b + q1d * q2c - q1c * q2d
q3 = q1c * q2a - q1d * q2b + q1a * q2c + q1b * q2d
q4 = q1d * q2a + q1c * q2b - q1b * q2c + q1a * q2d
return (q1, q2, q3, q4)
def camRotQuaternion(cx, cy, cz, theta):
theta = theta / 180.0 * math.pi
camDist = math.sqrt(cx * cx + cy * cy + cz * cz)
cx = -cx / camDist
cy = -cy / camDist
cz = -cz / camDist
q1 = math.cos(theta * 0.5)
q2 = -cx * math.sin(theta * 0.5)
q3 = -cy * math.sin(theta * 0.5)
q4 = -cz * math.sin(theta * 0.5)
return (q1, q2, q3, q4)
def quaternionProduct(qx, qy):
a = qx[0]
b = qx[1]
c = qx[2]
d = qx[3]
e = qy[0]
f = qy[1]
g = qy[2]
h = qy[3]
q1 = a * e - b * f - c * g - d * h
q2 = a * f + b * e + c * h - d * g
q3 = a * g - b * h + c * e + d * f
q4 = a * h + b * g - c * f + d * e
return (q1, q2, q3, q4)
def obj_centened_camera_pos(dist, azimuth_deg, elevation_deg):
phi = float(elevation_deg) / 180 * math.pi
theta = float(azimuth_deg) / 180 * math.pi
x = (dist * math.cos(theta) * math.cos(phi))
y = (dist * math.sin(theta) * math.cos(phi))
z = (dist * math.sin(phi))
return (x, y, z)
# Input parameters
shape_file = sys.argv[-5]
shape_synset = sys.argv[-4]
shape_md5 = sys.argv[-3]
shape_view_params_file = sys.argv[-2]
syn_images_folder = sys.argv[-1]
if not os.path.exists(syn_images_folder):
os.mkdir(syn_images_folder)
#syn_images_folder = os.path.join(g_syn_images_folder, shape_synset, shape_md5)
view_params = [[float(x) for x in line.strip().split(' ')] for line in open(shape_view_params_file).readlines()]
if not os.path.exists(syn_images_folder):
os.makedirs(syn_images_folder)
bpy.ops.import_scene.obj(filepath=shape_file)
bpy.context.scene.render.alpha_mode = 'TRANSPARENT'
bpy.data.objects['Lamp'].data.energy = 0
camObj = bpy.data.objects['Camera']
# set lights
bpy.ops.object.select_all(action='TOGGLE')
if 'Lamp' in list(bpy.data.objects.keys()):
bpy.data.objects['Lamp'].select = True # remove default light
bpy.ops.object.delete()
#print('Remesh.....')
# for obj in bpy.data.objects:
# #bpy.ops.object.select_all(action='DESELECT')
# if obj.type == 'MESH':
# applyRemesh(obj)
# YOUR CODE START HERE
# scene = bpy.context.scene
# print('here')
# for i, obj in enumerate(bpy.data.objects):
# if obj.type == 'MESH':
# print(i, 'th obj')
# mesh = obj.data
# paint(obj,color[i%len(color)])
for param in view_params:
azimuth_deg = param[0]
elevation_deg = param[1]
theta_deg = param[2]
rho = param[3]
# clear default lights
bpy.ops.object.select_by_type(type='LAMP')
bpy.ops.object.delete(use_global=False)
# set environment lighting
#bpy.context.space_data.context = 'WORLD'
cx, cy, cz = obj_centened_camera_pos(rho, azimuth_deg, elevation_deg)
q1 = camPosToQuaternion(cx, cy, cz)
q2 = camRotQuaternion(cx, cy, cz, theta_deg)
q = quaternionProduct(q2, q1)
camObj.location[0] = cx
camObj.location[1] = cy
camObj.location[2] = cz
camObj.rotation_mode = 'QUATERNION'
camObj.rotation_quaternion[0] = q[0]
camObj.rotation_quaternion[1] = q[1]
camObj.rotation_quaternion[2] = q[2]
camObj.rotation_quaternion[3] = q[3]
scene = bpy.context.scene
lamp_data = bpy.data.lamps.new(name="New Lamp", type='POINT')
lamp_object = bpy.data.objects.new(name="New Lamp", object_data=lamp_data)
scene.objects.link(lamp_object)
lamp_object.location = (cx, cy, cz)
lamp_data.energy = 0.5
# ** multiply tilt by -1 to match pascal3d annotations **
theta_deg = (-1*theta_deg)%360
syn_image_file = './%s_%s_a%03d_e%03d_t%03d_d%03d.png' % (shape_synset, shape_md5, round(azimuth_deg), round(elevation_deg), round(theta_deg), round(rho))
bpy.data.scenes['Scene'].render.filepath = os.path.join(syn_images_folder, syn_image_file)
bpy.ops.render.render( write_still=True )