-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdatasets.py
executable file
·320 lines (245 loc) · 11.8 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import glob
import math
import os
import random
import shutil
from pathlib import Path
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
from tqdm import tqdm
from utils import xyxy2xywh
class LoadImages: # for inference
def __init__(self, files, img_size=416):
self.height = img_size
self.img_dir = './data/data'
self.files = files
self.char2labels = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9,
'A': 10, 'B': 11, 'C': 12, 'D': 13, 'E': 14, 'F': 15, 'G': 16, 'H': 17, 'J': 18, 'K': 19,
'L': 20, 'M': 21, 'N': 22, 'P': 23, 'Q': 24, 'R': 25, 'S': 26, 'T': 27, 'U': 28, 'V': 29,
'W': 30, 'X': 31, 'Y': 32, 'Z': 33,
'深': 34, '秦': 35, '京': 36, '海': 37, '成': 38, '南': 39, '杭': 40, '苏': 41, '松': 42}
def __iter__(self):
self.count = 0
return self
def __next__(self):
if self.count == len(self.files):
raise StopIteration
# path = self.files[self.count]
data = self.files[self.count]
path = data[11:len(data)]
path = os.path.join(self.img_dir, path)
labels = np.zeros((9, 5)).astype(np.float32)
label_c = data[0: 9]
for i in range(9):
labels[i, 0] = self.char2labels[label_c[i]]
# Read image
self.count += 1
img0 = cv2.imread(path) # BGR
# Padded resize
img, _, _, _ = letterbox(img0, height=self.height)
# Normalize RGB
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
# cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
return img, label_c
def new_video(self, path):
self.frame = 0
self.cap = cv2.VideoCapture(path)
self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
def __len__(self):
return self.nF # number of files
class LoadWebcam: # for inference
def __init__(self, img_size=416):
self.cam = cv2.VideoCapture(0)
self.height = img_size
def __iter__(self):
self.count = -1
return self
def __next__(self):
self.count += 1
if cv2.waitKey(1) == 27: # esc to quit
cv2.destroyAllWindows()
raise StopIteration
# Read image
ret_val, img0 = self.cam.read()
assert ret_val, 'Webcam Error'
img_path = 'webcam_%g.jpg' % self.count
img0 = cv2.flip(img0, 1) # flip left-right
# Padded resize
img, _, _, _ = letterbox(img0, height=self.height)
# Normalize RGB
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return img_path, img, img0, None
def __len__(self):
return 0
class LoadImagesAndLabels(Dataset): # for training/testing
def __init__(self, files, img_size=416, augment=False):
# label_dir = os.path.join(path, 'label.txt')
# with open(label_dir, 'r') as file:
# img_files = file.read().splitlines()
# # self.img_files = list(filter(lambda x: len(x) > 0, img_files))
self.img_files = files
path = './data'
self.img_dir = os.path.join(path, 'data')
gtboxes = np.loadtxt(os.path.join(path, "labelGT_4000.csv"), delimiter=',')
self.gtboxes = gtboxes
self.img_size = img_size
self.augment = augment
self.char2labels = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9,
'A': 10, 'B': 11, 'C': 12, 'D': 13, 'E': 14, 'F': 15, 'G': 16, 'H': 17, 'J': 18, 'K': 19,
'L': 20, 'M': 21, 'N': 22, 'P': 23, 'Q': 24, 'R': 25, 'S': 26, 'T': 27, 'U': 28, 'V': 29,
'W': 30, 'X': 31, 'Y': 32, 'Z': 33,
'深': 34, '秦': 35, '京': 36, '海': 37, '成': 38, '南': 39, '杭': 40, '苏': 41, '松': 42}
def __len__(self):
return len(self.img_files)
def __getitem__(self, index):
data = self.img_files[index]
img_path = data[11:len(data)]
img_num = int(data[11:20])
img_path = os.path.join(self.img_dir, img_path)
img = cv2.imread(img_path)
# label_path = self.label_files[index]
augment_hsv = True
if self.augment and augment_hsv:
# SV augmentation by 50%
fraction = 0.50 # must be < 1.0
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # hue, sat, val
S = img_hsv[:, :, 1].astype(np.float32) # saturation
V = img_hsv[:, :, 2].astype(np.float32) # value
a = (random.random() * 2 - 1) * fraction + 1
b = (random.random() * 2 - 1) * fraction + 1
S *= a
V *= b
img_hsv[:, :, 1] = S if a < 1 else S.clip(None, 255)
img_hsv[:, :, 2] = V if b < 1 else V.clip(None, 255)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
h, w, _ = img.shape
img, ratio, padw, padh = letterbox(img, height=self.img_size, mode='square')
# Load labels
labels = np.zeros((9, 5)).astype(np.float32)
label_c = data[0: 9]
for i in range(9):
labels[i, 0] = self.char2labels[label_c[i]]
x = self.gtboxes[self.gtboxes[:, 0] == (img_num+1)]
x = x[np.argsort(x[:, 1])]
labels[:, 1] = ratio * x[:, 1] + padw
labels[:, 2] = ratio * x[:, 2] + padh
labels[:, 3] = ratio * (x[:, 1] + x[:, 3]) + padw
labels[:, 4] = ratio * (x[:, 2] + x[:, 4]) + padh
# Augment image and labels
if self.augment:
img, labels = random_affine(img, labels, degrees=(-5, 5), translate=(0.10, 0.10), scale=(0.90, 1.10))
nL = len(labels) # number of labels
if nL:
# convert xyxy to xywh
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) / self.img_size
labels_out = torch.zeros((nL, 6))
if nL:
labels_out[:, 1:] = torch.from_numpy(labels)
# Normalize
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img, dtype=np.float32) # uint8 to float32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return torch.from_numpy(img), labels_out, img_path, (h, w)
@staticmethod
def collate_fn(batch):
img, label, path, hw = list(zip(*batch)) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, hw
def letterbox(img, height=416, color=(127.5, 127.5, 127.5), mode='rect'):
# Resize a rectangular image to a 32 pixel multiple rectangle
shape = img.shape[:2] # shape = [height, width]
ratio = float(height) / max(shape) # ratio = old / new
new_shape = (round(shape[1] * ratio), round(shape[0] * ratio)) # new_shape = [width, height]
# Select padding https://github.com/ultralytics/yolov3/issues/232
if mode is 'rect': # rectangle
dw = np.mod(height - new_shape[0], 32) / 2 # width padding
dh = np.mod(height - new_shape[1], 32) / 2 # height padding
else: # square
dw = (height - new_shape[0]) / 2 # width padding
dh = (height - new_shape[1]) / 2 # height padding
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
img = cv2.resize(img, new_shape, interpolation=cv2.INTER_AREA) # resized, no border
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # padded square
return img, ratio, dw, dh
def random_affine(img, targets=(), degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-2, 2),
borderValue=(127.5, 127.5, 127.5)):
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
if targets is None:
targets = []
border = 0 # width of added border (optional)
height = max(img.shape[0], img.shape[1]) + border * 2
# Rotation and Scale
R = np.eye(3)
a = random.random() * (degrees[1] - degrees[0]) + degrees[0]
# a += random.choice([-180, -90, 0, 90]) # 90deg rotations added to small rotations
s = random.random() * (scale[1] - scale[0]) + scale[0]
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)
# Translation
T = np.eye(3)
T[0, 2] = (random.random() * 2 - 1) * translate[0] * img.shape[0] + border # x translation (pixels)
T[1, 2] = (random.random() * 2 - 1) * translate[1] * img.shape[1] + border # y translation (pixels)
# Shear
S = np.eye(3)
S[0, 1] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan((random.random() * (shear[1] - shear[0]) + shear[0]) * math.pi / 180) # y shear (deg)
M = S @ T @ R # Combined rotation matrix. ORDER IS IMPORTANT HERE!!
imw = cv2.warpPerspective(img, M, dsize=(height, height), flags=cv2.INTER_LINEAR,
borderValue=borderValue) # BGR order borderValue
# Return warped points also
if len(targets) > 0:
n = targets.shape[0]
points = targets[:, 1:5].copy()
area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1])
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = (xy @ M.T)[:, :2].reshape(n, 8)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# apply angle-based reduction of bounding boxes
radians = a * math.pi / 180
reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
x = (xy[:, 2] + xy[:, 0]) / 2
y = (xy[:, 3] + xy[:, 1]) / 2
w = (xy[:, 2] - xy[:, 0]) * reduction
h = (xy[:, 3] - xy[:, 1]) * reduction
xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
# reject warped points outside of image
np.clip(xy, 0, height, out=xy)
w = xy[:, 2] - xy[:, 0]
h = xy[:, 3] - xy[:, 1]
area = w * h
ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16))
i = (w > 4) & (h > 4) & (area / (area0 + 1e-16) > 0.1) & (ar < 10)
targets = targets[i]
targets[:, 1:5] = xy[i]
return imw, targets
def convert_images2bmp():
# cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s
for path in ['../coco/images/val2014/', '../coco/images/train2014/']:
folder = os.sep + Path(path).name
output = path.replace(folder, folder + 'bmp')
if os.path.exists(output):
shutil.rmtree(output) # delete output folder
os.makedirs(output) # make new output folder
for f in tqdm(glob.glob('%s*.jpg' % path)):
save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp')
cv2.imwrite(save_name, cv2.imread(f))
for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']:
with open(label_path, 'r') as file:
lines = file.read()
lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace(
'/Users/glennjocher/PycharmProjects/', '../')
with open(label_path.replace('5k', '5k_bmp'), 'w') as file:
file.write(lines)